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Abstract 
 

Seasonal hydrological forecasts of future streamflow volumes can provide water 

resources managers with valuable information to improve long-term water resources 

planning and water use efficiency. The latest generation of coupled ocean-atmosphere 

general circulation models provides an opportunity for the prediction of 

hydroclimatic variables (e.g. precipitation, streamflow; soil moisture) at long lead 

times, which is central to water resources management, agriculture and disaster 

planning. However given the inherent uncertainty and the large-scale resolution of 

climate model forecasts compared to the catchment scale, there is a need to evaluate 

their accuracy and value for water management. This study systematically evaluates 

several seasonal hydrological forecasting options for a mountainous catchment in 

central Chile, to assess seasonal reservoir inflow forecast skill in comparison with 

conventional seasonal hydrological forecasting. We find, in comparison with 

resampled historical precipitation forecasts, that bias-corrected seasonal precipitation 

and temperature forecasts from the latest global climate models can improve the 

accuracy and skill of inflow forecasts during the high-rainfall season (April-October) 

forecasts with periods of above-average rainfall typically associated with the El Niño-

Southern Oscillation (ENSO). For reservoir managers, this improvement in forecast 

skill provides valuable information related to aid long-term planning of water 

resources management and hydropower production. Due to greater predictability of 

predominantly snowmelt-based inflow during the low-rainfall season (October-

April), accurate simulation of initial hydrological conditions such as reservoir water 

levels and accumulated snow, can provide accurate seasonal hydrological forecasts 

for longer lead times with the use of forecasted precipitation and temperature data. 

However, the improvements in inflow forecast accuracy and skill, during the low-

rainfall season, are marginal when compared with an Extended Streamflow 

Prediction (ESP) approach. 
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Summary 
 

Seasonal hydrological forecasts of future streamflow volumes can provide water 

resources managers with valuable information to improve long-term water resources 

planning and water use efficiency. The latest generation of Coupled Ocean-

atmosphere General Circulation Models (CGCMs) provides an opportunity for the 

prediction of hydroclimatic variables (e.g. precipitation, streamflow; soil moisture) at 

long lead times, which is central to water resources management, agriculture and 

disaster planning. However given the inherent uncertainty and the large-scale 

resolution of climate model forecasts compared to the catchment scale, there is a need 

to evaluate their accuracy and value for water management at catchment scale, which 

is the scale at which water is managed.  

This study systematically evaluates several seasonal hydrological forecasting options 

for a mountainous catchment in central Chile, to assess potential seasonal forecast 

skill improvement and added value over conventional seasonal hydrological 

forecasting approaches. Accurate prediction of seasonal inflows to the Colbún 

Reservoir, a large multipurpose dam located at the outlet of the Upper Maule River 

Basin, would provide valuable information to aid planning of long-term water 

resources management and hydropower generation. 

Conventional climatology-and hydrological based seasonal forecast approaches are 

expressed through the methods of using resampled long-term observed inflow records 

to Colbún Reservoir, as well as through Extended Streamflow Prediction (ESP) using 

metrological forcing of resampled historical catchment precipitation records. 

Seasonal hydrological forecasting options based on the combined use of an ESP 

approach with meteorological forecasts from the latest CGCMs are evaluated against 

conventional methods. A combined ESP and CGCM seasonal hydrological 

forecasting system is used to assess multiple forecast options consisting of varied 

meteorological forecast variables, statistical downscaling procedures and 

hydrological model configurations. 

Previous work indicates a high level of precipitation predictability in the study region 

due to the effects of El Niño-Southern Oscillation (ENSO) and streamflow 

predictability because of storage of water in the snow pack. As the catchment’s 

rainfall season occurs in the austral winter, followed by a snowmelt period in spring, 

the study evaluates the potential improvement of seasonal hydrological forecast skill 

with the use of reforecast precipitation and temperature (snowmelt) data sourced from 

the coupled ocean-atmosphere dynamical forecast system, ECMWF-System 4. The 

application and impact of a linear statistical downscaling method is assessed to 

correct systematic biases in ECMWF-System 4 forecast ensembles due to forecast 

model limitations such as computational demands, limited observational data for 

initial conditions, and approximation of physical processes,  

Seasonal streamflow forecasts for selected years are generated using a suite of 

hydrological models and data processing tools. The conceptual NAM rainfall-runoff 
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model is used for catchment runoff generation. Output from the NAM model is used 

as input into the river basin management and planning tool MIKE HYDRO Basin. 

MIKE HYDRO Basin is used to represent the rivers, reservoirs, water users and water 

diversions in the Upper Maule River Basin. The incorporation of Data Assimilation 

(DA) of streamflow and reservoir levels to observed levels, and its impacts on 

seasonal inflow forecast accuracy, is assessed. MIKE Workbench is used for the 

establishment of model links between the NAM and MIKE HYDRO Basin models 

and the configuration of forecast simulations and automated workflows. 

A number of forecast verification methods are used to evaluate seasonal hydrological 

forecast performance in terms of forecast bias against observed values, and forecast 

accuracy compared to conventional ESP based seasonal forecast approaches. Results 

of seasonal inflow forecast over the high-rainfall season (April-October) indicate 

seasonal forecast improvement in terms of model bias and forecast skill with the use 

of bias corrected forecasted precipitation data. An increased seasonal forecast model 

bias and reduction in forecast skill however occurs during periods of below-average 

precipitation, due to the overestimation of seasonal precipitation based on the use 

long-term monthly average bias correction scaling factors. A general reduction in 

seasonal forecast accuracy is observed after lead month 2. Average percentage 

volume errors at the end of the 7-month high-rainfall season forecast period were 

calculated as 12.6% for bias corrected CGCM based seasonal inflow forecast versus 

19.5% for an ESP based approach using resampled historical precipitation.  

Results for seasonal inflow forecasts over the low-rainfall season (October-April) 

indicate a large overall reduction in model bias compared to high-rainfall season 

forecasts, due to increased predictability of predominantly snowmelt based inflow. 

Introduction of bias corrected temperature forecasts resulted in small decrease of 

forecast model bias and increase in forecast accuracy. The use of bias corrected 

precipitation data results in increased forecast skill for above-average precipitation 

years, but overestimations of precipitation during periods of below-average 

precipitation. A general reduction in seasonal forecast skill is observed after lead 

month 2. Average percentage volume errors at the end of the 7-month low-rainfall 

season forecast period were calculated as 7.3% for bias corrected CGCM based 

seasonal inflow forecast versus 7.6% for a for an ESP based approach using 

resampled historical precipitation.  

Data Assimilation (DA) of reservoir levels and streamflows over the hindcast periods, 

provides improved forecast accuracy and skill predominantly over the initial forecast 

lead months. For simulation periods where a good match between simulated and 

observed records are been obtained, Data Assimilation (DA) of reservoir levels and 

streamflow provides limited forecast improvement over the hindcast and forecast 

period. Although inclusion of DA provides a more accurate representation of initial 

hydrological conditions and total accumulated inflow volume at Time of Forecast 

(ToF), simulation model biases can however still be present in the forecast period. 

The study shows that the use of bias corrected seasonal precipitation and temperature 

forecasts from the latest global climate models over resampled historical 
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meteorological data, can improve seasonal hydrological forecast accuracy and skill 

over periods of above-average rainfall typically associate with the El Niño-Southern 

Oscillation (ENSO). For reservoir managers, this improvement in forecast skill 

provides valuable information related to potential hydrological effects of ocean–

atmosphere teleconnections, to aid long-term planning of water resources 

management and hydropower production. Due to increased predictability of 

predominantly snowmelt-based inflow during the low-rainfall season, accurate 

simulation of initial hydrological conditions such as reservoir water level and 

accumulated snow, can provide accurate low-rainfall seasonal hydrological forecasts 

for long lead times with the use of forecasted precipitation and temperature data. 

Increases in forecast accuracy and skill over an ESP based approach was however 

marginal. 

It is recommended that additional seasonal inflow forecasts based on the combined 

ESP and CGCM model approach be conducted for additional forecast periods and 

historical years to evaluate forecast performance under varied hydrological 

conditions. Analysis of additional statistical downscaling methods such as quantile 

mapping is recommended due to high annual variability of catchment precipitation. 

Incorporation of DA of snow measurements is also recommended for more accurate 

representation of the snowpack volume, due to its important role is the hydrological 

cycle of the study area. 
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Acronyms and Abbreviations 
 

Term Description 

BC Bias Correction 

CGCM Coupled ocean-atmosphere General Circulation Models 

DA Data Assimilation 

ENSO El Niño-Southern Oscillation 

ECMWF European Centre for Medium range Weather Forecasting 

ECOMS European Climate Observations, Modelling and Services initiative 

EoS End of Simulation 

GCM General Circulation Model / Global Climate Model  

IHC Initial Hydrologic Conditions 

LS Linear Scaling 

MAP Mean Annual Precipitation 

MAR Mean Annual Runoff 

masl meters above sea level 

MW Megawatt 

NAM Nedbør Afstrømnings Model 

ONI Oceanic Niño Index 

RCM Regional Climate Model 

RPS Ranked Probability Score 

RPSS Ranked Probability Skill Score 

S4 System 4 

SoS Start of Simulation 

SST Sea Surface Temperature 

SVZ Southern Volcanic Zone 

ToF Time of Forecast 

UDG User Data Gateway 

UMRB Upper Maule River Basin 
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1 Introduction 
 

1.1 Background 

The effective and equitable management of conflicting water user demands such as 

domestic water supply, hydropower generation, and agriculture, can provide 

substantial economic benefits to ensure energy, food, and water security. For water 

managers, accurate predictions of future streamflow volumes can provide valuable 

information to aid decision-making and management of a valuable and limited 

resource.  

Seasonal or long-range forecasting of precipitation and streamflow, has been 

incorporated into many water resources projects, with particular application to 

reservoir management (Gelfan, et al., 2015; Arenaa, et al., 2015; Dixon & Wilby, 

2015). With the aid of hydrological modelling and optimisation tools, seasonal 

forecasted meteorological variables such as precipitation and temperature, can be 

incorporated into existing hydrological models to provide an estimation of future 

streamflows under a variety of historical conditions or climate change scenarios 

(Etkin, 2009). 

The reliability and accuracy of seasonal streamflow forecasts depend on a number of 

factors, including the hydrological model configuration and calibration as well as the 

skill and resolution of climate variable forecasts. In a study across Europe, Bierkens 

& Beek (2009) found that seasonal forecasting skill is highly dependent on the correct 

simulation of initial catchment conditions related to water storages such as soil 

moisture and surface water storage.  

Continent- or country scale seasonal hydrological forecasting systems however 

usually do not incorporate water related infrastructure at local scale such as reservoirs, 

canals, river diversions and major water users. In regions with high seasonal and 

interannual variability in runoff, artificial surface water storages such as dams are 

constructed to increase the seasonal carry-over storage and increase water security. 

There is thus an opportunity to investigate the potential use of seasonal hydrological 

forecasting systems at a local scale to provide valuable information to local water 

managers and water users.  

In some regions of the world, local seasonal and interannual weather patterns can be 

greatly affected by large-scale atmospheric circulation patterns known as 

teleconnections (Rivera, et al., 2012). The latest seasonal forecasting systems in 

operation are based on Coupled Global Circulation Models (CGCMs) primarily 

consisting of a coupled ocean-atmosphere dynamic simulation model. These latest 

forecasting models are able to better simulate slowly varying teleconnections signals 

in a climate system that contains memory, such as sea surface temperature (SST), 

which is related to the relatively high heat storage capacity of water (MacLachlan, et 

al., 2015). While the effects of large-scale teleconnections on regional and local 

weather can vary greatly in intensity and duration, early detection of potential 
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teleconnection development can provide valuable information related to early 

estimations of seasonal precipitation and associated runoff.  

This study evaluates the use of seasonal hydrological forecasting in the Upper Maule 

River Basin located in central Chile. The Colbún Reservoir, situated at the outlet of 

the basin, is a large multipurpose dam supplying water for hydropower generation and 

large scale irrigation. Western South America is subject to considerable inter-annual 

climate variability due to El Niño-Southern Oscillation (ENSO), thus forecasting of 

inter-annual streamflow variations associated with ENSO would provide an 

opportunity to optimise water management decisions based on seasonal predictions 

(Rivera, et al., 2012). An initial study by DHI (2011) indicated a high level of rainfall 

predictability in the study region related to the effects of the ENSO as well as seasonal 

streamflow predictability based on the volume of the basin’s snow pack. Accurate 

seasonal inflow forecasts can therefore provide valuable information to reservoir 

managers to improve long-term water resources planning and water use efficiency. 

 

1.2 Objectives 

The main objective of this project work is to explore the added value associated with 

the use of seasonal hydrological forecasts for long-term decision-making in reservoir 

operation for the Upper Maule River Basin in central Chile. To determine the added 

value of seasonal hydrological forecasts for decision-making in reservoir operation, 

the project will systematically evaluate the potential increase in seasonal forecast 

accuracy and skill of several seasonal hydrological forecasting options over 

conventional climatology based approaches.  

As the basin’s rainfall season occurs in the austral winter, followed by a snowmelt 

period in spring, the study will evaluate the value of forecasting precipitation and 

temperature (snowmelt) or both, for predicting reservoir inflows. The ability of the 

latest generation of CGCMs to capture the effects of global climate patterns such as 

ENSO would be examined, as well the corresponding impacts on rainfall and 

hydrology. Due to the varied reliability of seasonal precipitation forecasts with 

geographical location and scale, the value of using these forecasts for small scale 

hydrological forecasting will be assessed. 

The sources and contributions of uncertainty in seasonal hydrological forecasts are 

identified and potential methods to reduce uncertainty will be examine through 1) 

Data Assimilation (DA) of reservoir levels and streamflows, and 2) bias correction of 

meteorological forecast data with the used of observed data. 

The objectives of this study can be summarised to the evaluation of following points: 

 The added value associated with the use of seasonal forecasts for long-term 

decision-making in reservoir operation for the Upper Maule River Basin in 

central Chile. 
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 Climate-model based seasonal forecast model performance against 

conventional climatology-and hydrological based forecast seasonal 

approaches; 

 The ability of the latest generation of global climate-ocean models to capture 

the effects of global climate patterns such as ENSO are examined for this 

study area; 

 The added value of forecasting precipitation and temperature (for snowmelt) 

and both, for predicting reservoir inflows and water resource management; 

 The improvement of initial hydrological conditions and seasonal forecast 

performance through incorporation of  DA of reservoir levels and 

streamflows; 

 Evaluation of bias correction of meteorological forecast data and its effect on 

seasonal forecast performance.  
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2 Seasonal Forecasting 
 

2.1 Background 

A key element in achieving sustainable and risk based water resources management, 

is forecasting the future condition of surface water resources (Sudheer, et al., 2014). 

Accurate prediction of future hydrological states can provide valuable information to 

aid water resources mangers in the efficient operation of water related infrastructure 

and mitigation of the effects of natural disasters and climate variability.  

A hydrological forecast is an estimation of the future states of hydrological variables. 

Hydrological forecasts typically aim to convert meteorological observations and 

forecasts into estimates of future river flows (Sene, 2010). Forecasting techniques can 

include rainfall-runoff hydrological models as well as hydrodynamic flow routing 

models. Additional model components can be required for water quality applications, 

and for inducing catchment specific features such reservoirs, wetlands, water users 

and snowmelt. 

The prediction of future hydrological states can be categorized based on the forecast 

horizon. WMO (2009) provides the following classification for hydrological 

forecasts: 

a) Short-term hydrological forecasts, which cover a period of up to two days; 

b) Medium-range hydrological forecasts, which apply to a period ranging from 

2 to 10 days; 

c) Long-range hydrological forecasts, which refer to a period exceeding 10 days. 

Seasonal hydrological forecasting aims to predict the future states of hydrological 

variables (e.g. streamflow, soil moisture) at monthly to seasonal time scales (Yuan, et 

al., 2015). Seasonal hydrological forecasting, also referred to as long-term 

hydrological forecasting, is essential for the forecast and mitigation of persistent 

hydrological phenomena such as droughts. Successful performance of seasonal 

forecasts systems requires accurate representation of initial catchment conditions (e.g. 

streamflow, soil moisture, snow cover) that contain memory in hydrological systems, 

as well as skilful seasonal forecasts of meteorological forcing variables (e.g. 

precipitation and temperature) used in hydrological models (Shukla & Lettenmaier, 

2011; Yuan, et al., 2015). 

 

2.2 Benefits and Limitations 

Accurate and reliable seasonal hydrological forecasts can provide valuable 

information to water resources mangers and provide large potential socioeconomic 

benefits to interrelated sectors such as water, health, energy, agriculture and food 

security. Hydrological extremes such as floods and droughts can have severe and long 

lasting socioeconomic impacts on affected areas. Improved streamflow predictions 

can aid in the reductions of losses associated with hydrological extremes events, to 
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the extent of flood and drought mitigated through management of water resources 

stored in reservoirs (Wood & Lettenmaier, 2006). In years with non-occurrence of 

hydrological extreme events, accurate seasonal hydrological forecasts can still 

provide potential economic benefits. Yao and Georgakakos (2001) found that reliable 

inflow forecasts and adaptive decision systems can substantially benefit reservoir 

performance, with the potential to increase hydropower revenues through 

incorporation of climate information in hydrological forecasts. Brumbelow & 

Georgakakos (2001) showed the potenial benefits of improved hydrological forecast 

related to the mananagement of agricultural water supply. 

Despite the potential benefits of improved seasonal forecasting systems, the majority 

of operational hydrological forecasting systems of long lead times are based on 

methods and data sources that have been in place for over 50 years (Wood & 

Lettenmaier, 2006). One of the contributing factors is that long-term meteorological 

predictability is quite limited. Shorter-term meteorological forecasts based on 

atmospheric modelling have skill for approximate time horizons of two weeks 

(Higgins, 2015), potentially providing only a marginal improvement over long-term 

climatic averages. Climate and weather forecast skill has however improved 

significantly over recent decades due to technological advancement in computational 

power, increased model spatial and temporal resolution and improved observation 

capabilities for boundary model forcing such as sea surface temperature (SST) (Wood 

& Lettenmaier, 2006). Hydrological modelling improvements have however been 

more limited due to the physical processes that control runoff generation contain 

longer memory and are more spatially varied than those that control weather and 

climate (Wood & Lettenmaier, 2006; Goddard, et al., 2001). 

The majority of seasonal hydrological forecast are limited to forecast lead times of 1 

to 3 months, primarily due to the limited skill of meteorological forecasts at longer 

lead times. The successful performance of seasonal hydrological forecast systems is 

therefore highly reliant on the accuracy of meteorological forecasts and the accurate 

representation of initial catchment conditions that contain memory related to for 

example, the land surface moisture states (Shukla & Lettenmaier, 2011).  

Wood & Lettenmaier (2008) showed that seasonal streamflow volumes for northern 

Californian regions with high snow pack accumulation could be forecasted with 

reasonable accuracy for lead times up to five months. Forecast accuracy was found to 

be related to the physically constrained evolution of initial land surface moisture 

states, from snow accumulation in the winter wet season and melting in spring. 

Relating  snowpack volumes to the subsequent spring and summer runoff through 

regression methods has been used for decades (Pagano & Garen, 2004). Forecasts 

made following drier summer periods do not include the snowpack volumes that 

influences hydrological fluxes. Therefore, seasonal hydrological forecasts over these 

dry seasons are more dependent on initial soil moisture conditions and accuracy of 

meteorological forecasts (Maurer & Lettenmaier, 2003). 
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2.3 Uncertainty in forecasts 

The primary objective of seasonal hydrological forecasting is to provide predicted 

future streamflows of sufficient accuracy at a maximum lead time. This allows for 

water resources managers and users to take appropriate action to mitigate losses and 

increase water use efficiency (WMO, 2009). Shukla & Lettenmaier (2011) indicated 

that the two key factors limiting seasonal hydrological forecast skill are (1) 

uncertainties in the Initial Hydrological Conditions (IHC) associated with 

uncertainties in hydrological model prediction skill and meteorological forcing over 

the hindcast period; and (2) climate forecast skill over the forecast period.  

Meteorological forecasts have been seen as the main source of uncertainty in 

hydrological forecast systems for some years due to the attempt to essentially model 

a chaotic atmosphere. With regards to hydrological models, there are four main 

sources of uncertainty related to deterministic flow modelling, which are (1) random 

or systematic errors in the model inputs or boundary condition data; (2) random or 

systematic errors in the recorded output data; (3) uncertainty due to sub-optimal 

parameter values; and (4) errors due to incomplete or biased model structure (Beven 

& Freer, 2001; Madsen, 2003; Butts, et al., 2004). 

Numerous attempts have however been made by researchers in the hydrological and 

climate communities to reduce the uncertainties associated with seasonal hydrological 

forecasting. For example, various researchers have investigated methods for 

assimilating observed hydrological data (e.g. streamflow, reservoir level, snow cover) 

to improve the IHCs for seasonal hydrological forecast (Shukla & Lettenmaier, 2011; 

Wood & Lettenmaier, 2006; Clark, et al., 2006). The latest generation of coupled 

atmosphere-ocean-land general circulation models (CGCMs) can also improve the 

accuracy of seasonal meteorological forecasts over periods where meteorological 

forcing variables play a significant role in runoff generation compared to IHC. 

 

2.4 Current methods 

Traditional seasonal hydrological forecasting approaches are based on time series 

modelling, by relating large-scale climate indices such as Sea Surface Temperature 

(SST) and/or local IHC with hydrological predictands (Yuan, et al., 2015). With the 

increased use of conceptual and distributed hydrological models, seasonal 

hydrological forecast with the aid of such models became popular. One example is 

the Extended Streamflow Prediction (ESP), also known as Ensemble Streamflow 

Prediction, which was first introduced by the US National Weather Service (NWS) in 

1977 and still used in modern streamflow forecasting systems (Twedt, 1977; Najafi, 

et al., 2012).  

An ESP based forecast system initialises a hydrological model with current IHC’s, 

and runs forecast simulations based on resampled long-term historical records of 

observed meteorological forcing variables such as precipitation and temperature. The 

ESP approach can be useful over certain seasonal periods where long term memory 

of land surface moisture states (e.g. soil moisture, snow cover, reservoirs) have an 
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strong influence on forecast accuracy. ESP based seasonal forecast skill however 

decreases significantly over most regions of the world after a period of 1 month 

(Shukla, et al., 2013). Therefore, the seasonal predictability of meteorological forcing 

variables has to be taken into account for long-term hydrological forecasting systems. 

Coupled ocean-atmosphere general circulation models (CGCMs) are the main sources 

of seasonal precipitation forecasts by some of the main operational meteorological 

centres, including the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the United States (US) National Centers for Environmental Prediction 

(NCEP). In recent years, there has been great improvement in model physics, data 

inputs, and computational power of CGCMs (Peng, et al., 2014). CGCM forecasts are 

typically produced as probabilistic based ensembles through multiple model 

initializations of different initial conditions and physical parameterizations, to account 

for various uncertainties. Limitations of CGCMs such as computational demands, 

limited observational data for initial conditions, and approximation of physical 

processes, can lead to systematic biases in model output ensemble spreads (Molteni, 

et al., 2011).  

Multiple statistical and dynamical downscaling techniques have been developed to 

overcome such model biases. Statistical downscaling methods establish a statistical 

relationship between a local observed variable (predictand) and a larger scale variable 

modelled by a CGCM (predictor) (Wetterhall, et al., 2012; Bárdossy & Pegram, 

2011). Dynamical downscaling uses output data from a CGCM as boundary 

conditions for a smaller scale Regional Climate Model (RCM) which induced multiple 

feedback processes related to radiation and water balances. 

The continuous development and improvement of CGCMs for seasonal climate 

predictions has however improved the understanding and representation of ocean–

atmosphere teleconnections such as El Niño-Southern Oscillation (ENSO), as well a 

land–atmosphere coupling that form the basis of seasonal climate forecasts (Yuan, et 

al., 2015). Consequently the combined use of an ESP approach with meteorological 

forecasts from CGCMs, has received more attention over recent years (Mo & 

Lettenmaier, 2014; Yuan, et al., 2013). 

A combined ESP and CGCM seasonal hydrological forecast system typically consists 

of initialization procedures, pre-processing statistical or dynamical downscaling 

procedures, hydrological models, and hydrological post-processing procedures. While 

combined forecasting systems may share similar initialization procedures to ESP, the 

key difference is the use of climatic variable forecasts from CGCM over the seasonal 

forecast period. The selection and configuration of seasonal hydrological forecast 

model components and climatic variable inputs is therefore of key importance to 

ensure an ensemble forecast of sufficient skill. 
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3 Study Area 
 

3.1 Introduction 

The Upper Maule River Basin is located in central Chile within the 7th Maule Region, 

one of Chile 15 first order administrative divisions. The region derives its name from 

the 240 km long Maule River draining westwards from the Andes, bisecting the 

Region before draining into the Pacific Ocean, just north of the city of Constitución 

(see Figure 3-1). The total surface area of the Maule River Basin is approximately 

20,295 km2. The local climate is temperate humid (Mediterranean) characterized by 

dry summers and high rainfall during the austral winter months (Pizarro-Tapia, et al., 

2014). 

The Maule River is an important source of water and alluvial soils used for agricultural 

practices in parts of the Central Valley situated between the foothills of the Andes 

mountain range and the parallel coastal mountain range. The Region’s economy is 

largely driven by forestry and agriculture, led by commercial winemaking developed 

from traditional activity along the Maule Valley. The Maule River provides inflow 

for five hydropower generating plants in the region through a series of reservoirs, run-

of-river and tunnel diversions. The Maule River is also of great historic importance, 

as it demarcated the southern limits of the Inca Empire (Cobo & Hamilton, 1979).  

This study will focus on the Upper Maule River Basin, a subcatchment of the larger 

Maule River Basin, which constitutes the drainage area upstream of the Colbún 

Reservoir to the headwaters of the Maule River along the Andes mountain range and 

border with Argentina. 

 

3.2 Topography 

The Upper Maule River Basin encapsulates the 5741 km2 area upstream, 

predominantly to the east and southeast, of the Colbún Reservoir at an elevation of 

425 masl (see Figure 3-2). The basin area is enclosed by mountain ranges that form 

part of the Southern Volcanic Zone (SVZ) of the Andean Volcanic Belt.  The eastern 

catchment divide, approximately 75 km east from the Colbún Reservoir, is created by 

the Andes mountain range ridgeline at an approximation elevation of 3000 masl. This 

ridgeline also forms the national border between Chile and Argentina. The highest 

elevation in the catchment is the summit of the stratovolcano Descabezado Grande 

(3953 masl), located approximately 40 km east from the Colbún Reservoir in the 

northern edge of the catchment and the SVZ. The majority of the catchment extends 

upstream in a south-southeast direction forming the drainage basin of the Melado 

River, forming a southern and south-western catchment divide at an elevation of 

approximately 2200 masl.  
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3.3 Drainage 

The Maule River originates at Laguna de Maule, located in proximity to the 

Argentinean border at an elevation of 2163 masl (see Figure 3-2). From the 

headwaters, the river drains westward and is joined on its right bank by rivers Puelche, 

Cipreses and Claro. Near the confluence with the Claro River, the Maule River is 

joined on its left bank by the Meldo River, a major tributary originating from Laguna 

Dial located near the southern boundary of the basin. A short distance downstream of 

this major confluence, the Maule River flows into the 1420 million m3 capacity 

Colbún reservoir, forming the controlled outlet of the Upper Maule River Basin. 
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Figure 3-2 | Upper Maule River Basin Drainage Map 
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4 Data Collection and Review 
 

4.1 Previous work 

DHI was contracted by Chilean utility company, Colbún S.A., to establish a real-time 

modelling system for both short-term and long-term forecasting of inflows to the 

Colbún Reservoir (DHI, 2011). Colbún S.A. is a power generation company in Chile, 

with a countrywide energy generating capacity of approximately 3279 MW from a 

mix of sources. The forecast modelling system was developed and put into operation 

in 2011 for one of Colbún S.A.’s larger hydropower plants, namely the 474 MW 

Colbún hydropower station located in the Upper Maule River Basin. Water resources 

in the basin are shared with upstream power producers as well as with extensive 

irrigation schemes. 

The implemented modelling system, which is also used in this study, is based on the 

NAM rainfall-runoff model and the river- and reservoir regulation model, MIKE 

HYDRO Basin (see Table 4-1). The seasonal forecast model for Colbún S.A. is based 

on historical flows and rainfall until time of forecast, and then using the Extended 

Streamflow Prediction (ESP) method based on historical rainfall to predict a range of 

future streamflow. The system enabled Colbún S.A. to safely operate the reservoir 

during forecasted flood events and optimise energy generation more effectively, 

reducing potential downstream property damage and loss of life. 

 

Table 4-1 | Colbún S.A. Forecast Model Components 

Rainfall-Runoff Model NAM 

Reservoir- and River Regulation Model MIKE Basin 

Real-time Modelling System MIKE IPO 

 

Hydrological data and relevant information for the study area was largely collected 

from established DHI project models and accompanying reports (DHI, 2011; Panthi, 

2016). Collected data was reviewed based on its intended application for seasonal 

forecasting and is discussed in following sections. Information about the configuration 

and operation of the hydrological models and forecasting system is discussed in 

Chapter 5.3.  

 

4.2 Precipitation 

Precipitation in the Upper Maule River Basin is highly seasonal, with the onset of 

rainfall season starting in April and reaching a maximum around June. In this study, 

referral to the hydrological year therefore implies the 12-month period from 01 April 

to 31 March. The large majority of precipitation in the basin occurs within the austral 

winter months from May to August. Following this period, precipitation decreases 

and a significantly lower amount of precipitation is experienced through the spring 
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and summer period from September to March. Figure 4-1 presents the average 

monthly precipitation per hydrological year for rainfall station Armerillo, located 

approximately 7 km upstream of the Colbún Reservoir (see Figure 3-2).  

 

Figure 4-1 | Rainfall station Armerillo average monthly precipitation (1991-2008) 

 

The average annual precipitation for the Armerillo station is approximately 2200 mm. 

From Figure 4-1 it can be seen that greatest amount of precipitation and variability 

occurs during the austral winter months, with considerable annual variation occurring 

during the peak precipitation months of May and June. After this period, a steady 

decrease in average monthly rainfall occurs until the month of February. A small 

increase occurs in March, followed by a significant increase in average monthly 

precipitation occurs during April, at the onset of the hydrological year. 

 

4.2.1 Spatial distribution of precipitation 

Due to limited availability of observed rainfall data, catchment precipitation files for 

the established NAM model subcatchments were largely based on the Armerillo (509 

masl) and Cipreses (933 masl) rainfall station records. The shorter records of 

additional stations and their locations, predominantly in the valleys, provided limited 

additional information on rainfall distribution and variation with elevation. In addition 

to rainfall measurements, snow pack observations are available for a number of 

mountain stations in the study area (see Figure 4-2). Information on rainfall and snow 

data availability for the study area can be found within the original hydrology project 

report (DHI, 2011). 

Additional information on the spatial distribution of precipitation in the study area 

was obtained from the NASA Tropical Rainfall Measuring Mission (TRMM). 

Satellite based precipitation data at a 27 x 27 km grid cell resolution was obtained for 
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the period between 2005 and 2010. This data was primarily used on a qualitative basis 

and limited comparisons to the ground observations during the low-rainfall season 

(Oct-Mar) were made. 

Based on the available information, catchment precipitation files were produced for 

each established subcatchment of the study area for the period between 1991 and 

2011. Mean Annual Precipitation (MAP) values per subcatchment are presented in 

Table 4-2 and the spatial distribution of mean annual rainfall is shown in Figure 4-2.  

 

Table 4-2 | NAM model and subbasin average rainfall per hydrological year (Apr-Mar) 

Subbasin no. Name Area 
Mean Annual 
Precipitation 

(MAP) 

- - km2 mm 

C17 Claro 400.9 1911 

C20 Cipresses 867.1 1257 

C19 Embalse Colbun 268.0 1083 

C22 Embalse Melado 142.2 1904 

C6 Guaiquivilo 1155.1 1218 

C21 Laguna Maule 308.7 1106 

C13 MauleBajo I 505.8 1751 

C18 Maule Bajo II 255.4 1751 

C4 Maule Baños 861.85 1086 

C7 Melado 976.0 1419 

 Total 5741.0   

 

From Figure 4-2 it can be seen than annual precipitation varies significantly 

throughout the Upper Maule River Basin. Higher annual precipitation is experienced 

towards the north-western region of the basin. Increased precipitation in this region is 

due to the orographic effect of Andes mountain range, with the associated rain shadow 

effect decrease precipitation towards to east. The Armerillo rainfall gauge location 

(see Figure 4-2) appears to be located at the region of highest annual rainfall in the 

basin. 

Precipitation towards to southern end of the basin also decreases. Possibly due to the 

protective mountain ridgeline on the western edge of the basin. There are also only a 

limited number of precipitation stations in the eastern and southernmost areas of the 

basin. Thus, estimations of precipitation distribution at higher altitudes in the basin 

elevation are highly uncertain. 
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Figure 4-2 | Mean Annual Precipitation (MAP) per subcatchment 
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4.3 Streamflow 

Information on streamflow gauge location, data availability and subcatchment 

calibration can be found in the hydrological analysis report (DHI, 2011). The model 

calibration has focused on the overall performance in terms of inflow water balance 

and seasonal distribution of inflow to the Colbún Reservoir. Calibration of inflow to 

the Colbún Reservoir is discussed in Section 5.3.3. Figure 4-3 presents the observed 

average monthly-accumulated inflow to Colbún Reservoir for the period between 

1991 and 2011.  

 

 

Figure 4-3 | Colbún Reservoir average monthly observed inflow (1991-2011) 

 

When compared to the average monthly precipitation pattern in Figure 4-1, the 

corresponding monthly-accumulated flow volume in Figure 4-3 shows a quite 

different monthly distribution. Figure 4-3 indicates a corresponding increase in 

catchment runoff during the onset of the rainfall season in April. Peak inflow to the 

reservoir occurs during the peak precipitation month of June. In the subsequent 

months from July to October, inflow volumes decreases only slightly with reduced 

annual variability, despite a significant decrease in average precipitation. An increase 

in inflow volumes is seen during the months of November and December, with large 

annual variability during the month of December. After this period, a large decrease 

in inflow volumes occurs in the months from Jan to March. 

The shape of the inflow hydrograph in Figure 4-3 indicates that snowmelt 

accumulation- and snowmelt processes play an important part in annual water balance 

Upper Maule River Basin. As the majority of precipitation in the basin occurs during 

the winter months, significant snow accumulation occurs at higher altitudes in the 

basin. By mid-winter, up to roughly 80% of the basin can be covered in snow (DHI, 
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2011). The subsequent spring melting period provides a substantial contribution to the 

total annual runoff in the catchment. The snow pack therefore constitutes a valuable 

natural seasonal water storage. A comparison of seasonal snow cover extent in the 

basin during the summer and winter periods is presented in Figure 4-4. 

 

 

Figure 4-4 | Upper Maule River Basin snow cover extent comparison for summer (left: January 2017) and 
winter periods (right: August 2016) 

 

Figure 4-3 also indicates great annual inflow variability occur during the months of 

November and December. With average low rainfall during this period, the runoff 

variability during this period could be attributed to annually varied snow cover 

depth/extent as well as timing of the snowmelt peak.  

Figure 4-5 presents a comparison of the average monthly precipitation for the 

Armerillo rainfall station and observed inflow to the Colbún Reservoir. Average 

observed monthly temperature for the LoAguirre temperature station, located 

approximately 5 km downstream of Laguna del Maule at elevation of 1981 masl ( see 

Figure 3 2) , is also presented.  
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Figure 4-5 | Comparison of monthly- precipitation, Colbún Reservoir inflow and air temperature. 

 

Figure 4-5 shows that the increase in average monthly inflow to the Colbún reservoir 

can be attributed to the increase in average temperature. As the LoAguirre temperature 

station is located at 1981 masl, the portion of the basin located at higher elevations is 

expected to exhibit lower average temperatures with increasing elevation. The 

temperature increase occurring between September and October initiates the 

snowmelt period and an increase in reservoir inflow. The temperature variability 

during this period therefore plays an important role in the timing and intensity of the 

snowmelt period. Following this period, inflow to the Colbún Reservoir reaches a 

peak average inflow volume in November, after which average inflow subsides with 

increasing temperatures and diminishing snow cover depth. 

 

4.4 Temperature and Evaporation 

As snow accumulation and melting has a significant influence on the annual 

hydrograph of the Upper Maule River Basin, correct modelling of temperature 

distribution in the catchment is of key importance. Due to limited observed 

temperature data availability, temperature distribution in the catchment was primarily 

based on two temperature stations namely, MauleArmerillo (430 masl) and LoAguirre 

(1981 masl) (see Figure 3-1). The use of these two stations allowed for the 

establishment of a temperature-elevation relationship and the creation of temperature 

times series files for 200 m elevation zones. Population of historical time series per 

elevation zone was based on the following sequence: 

1. If observations from both stations were available, the temperature of each 

elevation zone is calculated by linear interpolation/extrapolation based on the 

available station data; 
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2. If data is only available for one station, the available data and a standard lapse 

rate is used to calculate the elevation zone temperatures; 

3. If no data exist for a particular date, a long-term average temperature is used 

based on the elevation zone and historical observed data. 

 

Due to limited availability, reference evapotranspiration (ET0) data for the study area 

was sourced from the FAO CLIMWAT database (FAO, 2017). A relationship 

between average monthly reference evapotranspiration and elevation was established 

based on station in proximity to the study area. Subcatchment were assigned average 

monthly reference evapotranspiration values based on their average catchment 

elevation. 

Figure 4-6 presents the average monthly air temperature for the LoAguirre 

temperature station for the period between 2000 and 2010. This station was primarily 

used in the creation of temperature files for elevation zones, due to the availability of 

good quality hourly data. 

 

Figure 4-6 | Temperature station LoAguirre average monthly air temperature (2000-2010) 

 

Figure 4-6 indicates a relative increased temperature variability during the months of 

June and August. Increased temperatures during this time could contribute to larger 

percentages of precipitation falling as rainfall, thus reducing the snow cover depth and 

associated snowmelt-generated runoff during the spring period. The opposite is also 

true for colder temperatures during over the austral winter months with potential 

temporary delay of the snowmelt period and associated reservoir inflow. 

Figure 4-7 presents a comparison of average monthly temperatures for the 

MauleArmerillo (430 masl) and LoAguirre (1981 masl) temperature stations. The 
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comparison provides information on the distribution of average monthly temperatures 

with regards to elevation in the basin. 

 

Figure 4-7 | Average monthly temperature for LoAguirre and MauleArmerillo stations (2000-2010) 

 

Figure 4-7 indicates that the higher altitude LoAguirre station experiences minimum 

and maximum average temperatures approximately one month after the lower altitude 

MauleArmerillo station. The annual temperature variation for both stations is 

approximately 15°C between summer and winter periods. The LoAguirre station 

experiences a prolonged colder period over the winter months with slower response 

to increasing temperatures during spring month of September. Indicating a potential 

slower snowmelt response from higher altitudes in the basin.  

 

4.5 Annual variability of precipitation and runoff 

To gain more information on the interannual climate variability of the Upper Maule 

Basin, annual totals of area-weighted catchment average precipitation and observed 

inflow were compared. Figure 4-8 presents a comparison of total annual catchment-

based precipitation and total inflow to the Colbún Reservoir per hydrological year 

(Apr-Mar).  
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Figure 4-8 | Total annual catchment-based precipitation and Colbún Reservoir inflow 

 

From Figure 4-8, a large interannual variability in catchment precipitation and total 

runoff can be noted. Hydrological years with significantly below average total 

precipitation and correspondingly significantly low runoff are seen as the hydrological 

years 1996, 1998 and 2007. At the opposite end of the spectrum, substantial 

precipitation occurs in during 1997, 2002 and 2005. The largest annual cumulative 

inflow to the Colbún Reservoir occurs during 2002, although higher precipitation was 

observed in 1997 and 2005. Various factors could have contributed to this result, 

including the drier preceding years experienced in 1996 and 2004 as well as varying 

snowmelt contributions. 

 

4.6 El Niño-Southern Oscillation  

El Niño-Southern Oscillation (ENSO) events are coupled ocean-atmosphere 

phenomenon, with El Niño and La Niña at opposite warming and cooling phases. The 

ENSO cycle is a scientific term that describes fluctuating temperatures between the 

atmosphere and the ocean in the equatorial pacific, approximately between the 

International Date Line and the west coast of South America (Solomon, et al., 2007; 

NOAA, 2016). 

El Niño involves the warming phase of the ENSO, resulting in the weakening of a 

usually strong SST gradient across the equatorial Pacific, with associated changes in 

ocean circulation. The closely linked atmospheric counterpart to ENSO, the Southern 

Oscillation (SO), involves changes in trade winds, tropical circulation and 

precipitation. Historically, El Niño events occur about every 3 to 7 years and typically 

alternate between the cooling La Niña phase with below average temperatures. El 

Niño and La Niña phase usually last for 9 to 12 months, but extensive phases may last 
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for multiple years. Associated changes in the trade winds, atmospheric circulation, 

precipitation and associated warming of the atmosphere can cause widespread 

changes in the climate system that last several months, leading to significant socio-

economic losses (Met Office UK , 2016; NOAA, 2016).  

The El Niño (La Niña) is characterised by a time-series of the monthly SST anomalies 

in a region of the central equatorial Pacific. The Niño 3.4 region (5°S - 5°N, 120°W - 

170°W) is one of several used to monitor SST changes in the tropical Pacific (see 

Figure 4-9). El Niño (La Niña) phases are characterized by a five consecutive 3-month 

running mean of SST anomalies in the Niño 3.4 region that is above (below) the 

threshold of +0.5°C (-0.5°C) (NOAA, 2017; Met Office UK , 2016). This standard of 

measurement is known as the Oceanic Niño Index (ONI). The thresholds values for 

El Niño and La Niña phases can be broken down further as presented in Table 4-3. 

 

 

Figure 4-9 | Nino regions for STT anomaly measurements in tropical Pacific (NOAA, 2017) 

 

Table 4-3 | El Niño/La Niña event threshold categories and associated STT anomalies in Niño 3.4 region 
(Williams & Null, 2015) 

Event threshold 
category 

El Niño SST anomaly 
(°C) 

La Niña SST anomaly 
(°C) 

Weak 0.5 to 0.9 - 0.5 to -0.9 

Moderate 1.0 to 1.4 -1.0 to -1.4 

Strong 1.5 to 1.9 -1.5 to -1.9 

Very Strong ≥ 2.0 ≤ -2.0 

 

Figure 4-10 shows SST anomalies in Pacific Ocean during a strong La Niña 

(December 1988) and a very strong El Niño (December 1997). During ENSO events, 

the changes in sea surface temperature result in changes in atmospheric circulation, 

which through atmospheric dynamics can extend well beyond the Pacific region. Due 

to the varied seasonal timing, location and intensity ENSO related effects, statistical 
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analysis of past ENSO events can produced empirical relationships between measured 

climatological variables and local associated impacts. An important feature of the 

ENSO cycle is that its evolution is predictable several months in advance, thus 

allowing mitigation measures to be introduced to reduce negative effects as well as 

taking advantage of potential favourable effects. The accurate prediction and 

simulation of ENSO effects is therefore highly dependent on the use of accurate initial 

model conditions to represent state of the ocean-climate system (Met Office UK , 

2016). 

 

 

Figure 4-10 | Sea surface temperature anomaly in the Pacific Ocean during a strong La Niña (top, 
December 1988) and very strong El Niño (bottom, December 1997). Maps by NOAA Climate.gov, based 

on data provided by NOAA (NOAA, 2014) 

 

4.6.1 ENSO Influence on Study Area 

Western South America is subject to considerable interannual variability due to 

ENSO, leading to above-average precipitation in western South America during El 

Niño phases, and opposite conditions during cooling La Niña phases (Rivera, et al., 

2012). In a study to investigate the seasonality of ENSO-related rainfall variability in 

central Chile, Montecinos et al. (2000) found that during El Niño warming phases, 

there is a inclination for the occurrence of above-average precipitation between 30° 

and 35°S in the austral winter winter (June-July-August, and from 35° to 38°S in late 

spring (October-Novemeber). Following El Niño phases, a rainfall deficit is typically 

observed from around 38° to 41°S during the following summer (January-February-

March), when El Niño reaches its maximum development. The Upper Maule River 

Basin is situated between approximately 35.3° and 36.3° S, and is therefore situated 

in an area which could potentially expect above-average rainfall over the seaonal 
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period between June and November, during El Niño warming phases. Montecinos et 

al. (2000) also found that the opposite rainfall anomalies are characteristic during La 

Niño cooling phases, resulting in below-average precipititon in the indentified latteral 

zones. However, not all warm (cold) phases were found to lead to wet (dry) 

conditions, which could be explained by intraseasonal variations in the related 

circulation patterns as a result of the nonlinear behavior of the ocean-atmosphere 

system (Montecinos, et al., 2000; Rivera, et al., 2012).  

Based on a cluster analysis of 43 stream gages located in south central and southern 

Chile (34°-40°S ), Rubio-Álvarez & McPhee (2010) indicated two major geographical 

zones can be considered homogeneous from the point of view of water availability 

variation. These zones include on one hand the greater Maule River basin and its 

tributaries (north) and the rivers located within the Itata, Biobío, Imperial, and 

Valdivia river basins (south). The study found significant correlation with climatic 

indexes at different spatial and temporal scales, with ENSO influence being stronger 

at the northern sub-region, and notably the Antarctic Oscillation (AAO) and the 

Pacific Decadal Oscillation (PDO) correlation with summer flows in the southern 

subregion. Figure 4-11 presents a monthly flow regime comparison for the Maule 

River during El Niño and normal years, based on a 36 year long observed Armerillo 

station streamflow record. 

 

Figure 4-11 | Mean Monthly Flows of Maule River at Armerillo comparing regimes in El Niño and normal 
years (Waylen, et al., 1993) 

From Figure 4-11 it can be seen that significantly higher monthly average flows are 

experienced during the period from October to February during years warming El 

Niño phases. Associated above-average precipitation over the winter months lead to 

increased snow accumulation during the austral winter periods, thus resulting in 

increased average monthly streamflow during the spring snowmelt period. 

A possible explanation for interannual variability in catchment precipitation could be 

related to the influence of ENSO phases and timing. Table 4-4 presents the total 

annual catchment-based precipitation and Colbún reservoir inflow for hydrological 

years from 1991 to 2010. Annual runoff percentage is calculated based on the total 
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runoff divided by the total precipitation. Recorded El Niño and La Niña phases based 

on the Oceanic Niño Index (ONI) are indicated per occurring year. El Niño (La Niña) 

phases are characterized by five consecutive 3-month rolling mean of SST anomalies 

above (below) threshold values of +0.5 °C (-0.5 °C). 

 

Table 4-4 | Total catchment-based precipitation and Colbún Reservoir inflow per hydrological year. 

Year 

Catchment-
based 

Precipitation 

Colbún 
Reservoir 

Inflow 
ONI Phase 

mm mm - 

1991 1899 7542 Moderate El Niño 

1992 1740 8022  

1993 1408 6651  

1994 1327 6113 Weak El Niño 

1995 1367 6985 Weak La Niña 

1996 741 3406  

1997 2070 9759 Very strong El Niño 

1998 528 3138 Moderate La Niña 

1999 1223 5397 Moderate La Niña 

2000 1547 7998 Weak La Niña 

2001 1470 8268  

2002 1821 10743 Moderate El Niño 

2003 960 5415  

2004 1143 5736 Weak El Niño 

2005 2065 9895  

2006 1688 9549 Weak El Niño 

2007 679 4892 Moderate La Niña 

2008 1474 7522  

2009 1323 6357 Moderate El Niño 

2010 759 4194 Moderate La Niña 

Average 1362 6879   

 

From Table 4-4, a correlation between annual precipitation totals and ONI phases can 

be seen, with above-average precipitation totals occurring in years with El Niño 

occurrences such as 1991, 1997 and 2002. A corresponding correlation regarding 

below-average precipitation can be seen for years with recorded La Niña occurrences 

such as 1998, 1999 and 2007.  

Above average rainfall recorded during the 2005 hydrological year is not by the 

associated with an active El Niño warming phase, but could have been influenced by 

the weak El Niño which occurred towards the end of 2004. Similarly, below average 

rainfall occurring in 1996 is not associated with an active La Niña cooling phase. The 

relationship between the ONI and precipitation in the Upper Maule Basin was 

therefore investigated further. 

Figure 4-12 and Figure 4-13 present comparative time series plots of monthly 

cumulative- precipitation (Armerillo) and inflow to the Colbún reservoir, to a 3-month 
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rolling mean SST anomaly for the Niño 3.4- and Niño 1+2 Regions. As a comparison 

of observed values is preferred, the precipitation record of the Armerillo rainfall 

station is used for the comparison in Figure 4-12, as it was found to be the most 

reliable observed precipitation record during the hydrological analysis (DHI, 2011).  

 

 

Figure 4-12 | Monthly accumulated precipitation (Armerillo) vs 3-month rolling mean SST temperature 
anomaly for Niño Region 3.4 and Niño Region 1+2  

 

 

Figure 4-13 | Monthly accumulated Colbún Reservoir inflow vs 3-month rolling mean SST temperature 
anomaly for Niño Region 3.4 and Niño Region 1+2 
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From Figure 4-12 and Figure 4-13 it can be seen that total accumulated precipitation 

and reservoir inflow appear to follow similar developments compared to SST 

anomalies in Niño Region 3.4- and Region 1+2. Positive SST temperature anomalies 

in Niño Regions 3.4- and Region 1+2 generally correspond to an increase in annual 

accumulated precipitation and reservoir inflow over the study area. Similarly, 

negative SST anomalies in these regions appear correspond to lower accumulated 

precipitation and reservoir inflow. 

Extremely high precipitation in 1997 and correlates well to an established strong El 

Niño phase and associated strong positive SST anomalies in Niño 3.4- and Niño 1+2 

Regions over this time period.  

Lower recorded precipitation and inflow during the 1996, 2003 and 2004 hydrological 

years appear to be better correlated to negative SST anomalies in Niño Region 1+2 

than compared to higher recorded SST anomalies in Niño Region 3.4. This potential 

improved correlation could provide reasoning for low precipitation periods occurring 

outside of establish ONI phases as found in Table 4-4.  

A steady increase in annual accumulated inflow can be noted for the period from 1998 

to 2002 with a corresponding increasing trend in mean SST anomalies for both Niño 

Regions. High cumulative rainfall and inflow for the 2005 hydrological year however 

does not correspond to a period of substantial SST anomalies, but is situated between 

two weak El Niño phases. 

4.6.2 Variation in precipitation and streamflow regimes 

Monthly precipitation and flow regime comparisons were conducted for years with El 

Niño/La Niña phases compared to long-term average values, to assess the influence 

of ENSO on the temporal distribution of precipitation and runoff in the study area.  

4.6.2.1 Precipitation 

The total monthly catchment-based precipitation for hydrological years with of 

moderate- to very strong El Niño and La Niña occurrences are presented in Figure 

4-14 and Figure 4-15 respectively. 
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Figure 4-14 | Catchment-based total monthly precipitation for years with recorded Moderate to Very 
strong El Niño occurrences 

 

 

Figure 4-15 | Catchment-based total monthly precipitation for years with recorded Moderate La Niña 
occurrences 

 

Figure 4-14 indicates above average precipitation is experienced in period between 

May and Aug for years with El Niño occurrences, During 1997 and 2009, above 

average precipitation was also experienced during the period from August to October. 

This corresponds temporal distribution of increased precipitation corresponds to 

information provided in Section 4.6.1. The increased precipitation and warmer 

temperatures during the austral winter provides early snowmelt runoff as well as 
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additional snowpack volume at higher altitudes. This leads to increased early season 

runoff and additional runoff during the spring melting period.  

Figure 4-15 indicates a substantial reduction in total austral winter precipitation 

during La Niña occurrences, with significant reductions experienced during the period 

from April to June. A severe reduction in annual precipitation is experienced during 

1998. Increased rainfall is however experienced in 1999 during the months of August 

and September. This however could be attributed to an increase in oceanic 

temperatures during the latter end of a moderate La Niña phase. 

 

4.6.2.2 Colbún Reservoir Inflow 

A similar average monthly flow regime comparison as shown in (Figure 4-11) was 

conducted based on observed inflow record to the Colbún Reservoir. Average 

monthly flow values for years with recorded moderate to very Strong El Niño/ La 

Niña are presented in Figure 4-16 and Figure 4-17 . 

 

 

Figure 4-16 | Colbún Reservoir average monthly inflow for years with recorded moderate to very strong El 
Niño occurrences 

 

0

200

400

600

800

1000

1200

1400

1600

1800

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

A
c
c
u
m

u
la

te
d
 i
n
fl
o
w

 (
m

ill
io

n
 m

3
)

1991 1997 2002 Average (1991-2011)



30 

 

 

Figure 4-17 | Colbún Reservoir average monthly inflow for years with recorded moderate to very strong 
La Niña occurrences 

 

Figure 4-16 indicates above average monthly inflow to the Colbún Reservoir was 

experienced for the period from August to February during El Niño occurrence years. 

This can be attributed to the increased precipitation during the preceding high-rainfall 

season and resultant increase in snowmelt contribution during spring. Above-average 

inflows were experienced in May during the 1991 moderate El Nino, with for the 

remainder of the hydrological year. 

Figure 4-17 indicates a severe reduction in monthly average inflow to the Colbún 

Reservoir for years with La Niña occurrences. Above-average inflow during the 

spring period of 1999, is due to above-average precipitation experienced over this 

period (see Figure 4-15). Reduced precipitation over the austral winter period can 

therefore be seen to lead to a clear reduction in snowmelt-based runoff during spring. 

 

4.6.3 Relationship between seasonal precipitation and runoff 

As indicated in Sections 4.2 and Figure 4-5, inflow volumes to the Colbún Reservoir 

during the low-rainfall season (Oct-Apr) appears to be highly dependent on total 

precipitation over the austral winter period. The accurate estimation of snow cover 

depth and distribution in the catchment during the high-rainfall season (Apr-Oct) 

would therefore provide valuable information in the estimation of future low-rainfall 

season inflow. Figure 4-18 presents a comparison of total accumulated low-rainfall 
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season inflow to the Colbún Reservoir vs total accumulated catchment precipitation 

during the preceding high-rainfall season. 

  

 

Figure 4-18 | Accumulated low-rainfall season Colbún Reservoir inflow vs preceding high-rainfall season 
accumulated catchment precipitation 

 

Figure 4-14 illustrates a good correlation between low-rainfall season Colbún 

Reservoir inflow and preceding high-rainfall season accumulated catchment 

precipitation. This indicates that if high-rainfall season catchment precipitation can be 

accurately measured or estimated, an initial estimation of accumulated low-rainfall 

season inflow to the Colbún Reservoir could potentially be made. Variable basin 

regulation and climatic patterns, amongst other factors, however can have a significant 

effect on produced runoff and accumulated inflow. 

Figure 4-14 also indicates that hydrological years similar recorded ONI phases tend 

to group together in areas of similar precipitation and associated runoff. This is 

evident for hydrological years with lower than 900 mm of accumulated catchment 

precipitation, where moderate La Niña phases were recorded for 3 of the 5 years. The 

remaining two years, 1996 and 2003, were found to have larger recorded negative 

SST anomalies in Niño Region 1+2, compared to the Niño Region 3.4.  

Deviations from these groupings of similar ONI phases such as for moderate El Niño 

phases in 2002, 2004 and 2006, could possibly be attributed to the catchment 

conditions of the preceding season. High precipitation and runoff during the 2001 

hydrological year for example, could have significantly increased surface- and 

groundwater storage levels in the catchment as well a snow cover depth. High 

precipitation in 2002 could therefore have fallen on a ‘wet’ catchment with a higher 

runoff percentage, thus limiting the amount of runoff reduction. A similar scenario is 
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evident for the high precipitation/high inflow year of 1997, preceded by a below-

average precipitation year of 1996. The role of groundwater-, surface water- and snow 

storage could therefore be of key importance in the estimation of seasonal runoff.  

 

4.7 Global Climate Model data 

The European Climate Observations, Modelling and Services initiative (ECOMS) is 

responsible for the coordination of activities surrounding three ongoing European 

projects (EUPORIAS, SPECS and NACLIM) (UCMG, 2016). Multiple activities in 

these projects require seasonal forecasts from the latest forecasting systems (e.g., 

ECMWF - System 4, NCEP - CFSv2 or UKMO - GloSea5) for a reduced number of 

datasets and variables. Information can be obtained from data providers, but resulting 

formats and aggregations may not be identical, requiring post processing before use. 

Data access to certain datasets may also not be straightforward to separate data use 

policies. 

To aid data management, the Santander Meteorology Group at the University of 

Cantabria developed the ECOMs User Data Gateway (UDG) in order to facilitate 

seasonal forecasting data access to end users (UCMG, 2016). The UDG provides an 

efficient platform for users to retrieve required seasonal forecasting datasets for a 

study region. The use of R has been adopted for a number of tasks in mentioned 

projects for processes such as forecast validation and downscaling. An R package 

called loadeR.ECOMS was developed by the Santander Meteorology Group for data 

exploration and access as well as additional functionalities (Santander Meteorology 

Group, 2017).  

This study uses monthly ensembles of ECMWF- System 4 precipitation (variable tp) 

and near-surface air temperature (variable tas) reforecasts. The System 4 coupled 

ocean-atmosphere forecasting system is described in more detail in Section 5.1.3. The 

period from 1991 to 2010 is used for all System 4 based datasets employed in this 

study based on the matching availability of observed data for the study area. Figure 

4-19 and Figure 4-20 show the System 4 mean seasonal accumulated precipitation 

and near-surface air temperature for a 15-member seasonal forecast ensemble over 

central Chile and the demarcated study area. Seasonal periods are indicated by a three 

month period acronyms e.g. MAM representing the autumn months of March-April-

May. 
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Figure 4-19 | System 4_seasonal 15: Average accumulated seasonal precipitation (1991-2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20 | System 4_seasonal 15: Average seasonal near-surface air temperature (1991-2010) 
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Similar to observed precipitation records (see Section 4.2), Figure 4-19 indicates a 

high seasonality in annual System 4 precipitation totals with considerably higher 

average accumulated precipitation over the austral winter period. Investigating the 

spatial distribution of seasonal precipitation, the clear impact of the Andes mountain 

range is shown with a sharp reduction in precipitation east of the Argentinean border. 

A clear increase in annual precipitation is also evident from north to south over the 

study area, increasing further towards the southern regions of Chile. The average 

accumulated catchment-based observed precipitation for the winter season (1991-

2010) was calculated as 774 mm. The value can be compared to System 4 winter 

precipitation values in Figure 4-19 of approximately 450 mm, which indicates a large 

underestimation of seasonal accumulated precipitation by the System 4 based grid 

cells. 

System 4 seasonal temperature distribution shown in Figure 4-20, presents a similar 

seasonal distribution compared to observed temperature records (see Figure 4-6).  The 

effects of the increased average elevation over the Andes mountain range is clearly 

evident, resulting in decreased temperatures over this region. A closer comparison of 

System 4 grid cell resolution and study area size is shown Figure 4-21 and Figure 

4-22. These figures presents the System 4 total seasonal precipitation and temperature 

for a 15-member seasonal forecast ensemble initialized every 3 months starting 01 

March 2002. 

From Figure 4-21 it can be seen that the Upper Maule River Basin is situated over six 

System 4 precipitation grid cells, with the majority of the basin located over two cells. 

Examination of Figure 4-21 and Figure 4-22 reveals a distinct change cell values 

from east to west. The change indicates the System 4 simulated interface between the 

Maule valley foothills and Andes mountain range. A clear decrease in grid cell 

precipitation and temperature values can be seen for cells west of this interface.  

Due to the relative coarse nature of the System 4 grid data compared the basin size, 

System 4 data assignment to subbasins was not solely based on the grid cell it was 

located in. For seasonal forecast simulations, System 4 precipitation grid data for the 

forecast period in question was downloaded for the study area extent with a 0.75° 

degree buffer, using the loadeR.ECOMS package in R. Forecast precipitation grid 

data was then assigned to each subbasin using bilinear interpolation of the gridded 

dataset to centroid location of each subbasins. Thus resulting in unique forecast 

precipitation time series for each defined subbasin.  For temperature data, System 4 

temperature grid data was then assigned to the LoAguirre and MauleArmerillo 

temperatures stations using bilinear interpolation of the gridded dataset to known 

location of each station. 
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Figure 4-21 | System 4_seasonal 15: Accumulated seasonal precipitation 2002/2003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-22 | System 4_seasonal 15: Average seasonal near-surface air temperature 2002/2003 
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5 Methodology 
 

5.1 Workflow 

Figure 5-1 presents the main steps in the study methodology and the related workflow 

processes based on the two types of meteorological forcing data used in this study. 

Each step and related processes are discussed in detail in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Analysis Year Selection 

Due to time constraints, seasonal forecasts were conducted and analysed for selected 

years based on available hydrological data. Four consecutive years of 2002, 2003, 

2004 and 2005 were selected to represent a range of climatic conditions experienced 

over this time period (see Figure 4-8). In total, seven seasonal forecast time periods 

would be used for forecast option comparison as presented in Table 5-1. System 4 

forecast ensembles were available once a month for forecasting, but two sets of 

forecasts for each year are examined here. These were selected to cover periods of 

critical conditions in reservoir systems, when forecasted inflow information would be 

most valuable to reservoir managers, such as estimated precipitation during winter 

and then snowmelt contribution during spring. Two annual start dates, or Time of 

Forecast (ToF), were therefore selected representative of the start of the high-rainfall 

season (01 April) and the start of the low-rainfall season (01 October). Seasonal 

forecast would consist of a 6-month hindcast period up to the ToF, followed by a 7-

month forecast period. 
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Figure 5-1 | Study categorical workflow and related processes  
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Table 5-1 | Seasonal forecast simulation dates for selected analysis years 

  

Simulation 
time period 

Start of Simulation 
(SoS) 

Time of Forecast 
(ToF) 

End of Simulation 
(EoS) 

High-rainfall 
Season 

1 2001-10-01 2002-04-01 2002-10-31 

2 2002-10-01 2003-04-01 2003-10-31 

3 2003-10-01 2004-04-01 2004-10-31 

4 2004-10-01 2005-04-01 2005-10-31 

Low Rainfall 

Season 

5 2002-04-01 2002-10-01 2003-04-30 

6 2003-04-01 2003-10-01 2004-04-30 

7 2004-04-01 2004-10-01 2005-04-30 

 

Figure 5-2 compares the monthly precipitation and Colbún Reservoir inflow over the 

selected period (01 April 2002 - 31 October 2005), together with the average monthly 

temperature for the LoAguirre temperature station. 

 

Figure 5-2 | Observed monthly catchment-based precipitation, Colbún Reservoir inflow and LoAguirre 
temperature for selected analysis period (01 Apr 2002 – 31 Oct 2005) 

 

Figure 5-2 shows the high precipitation occurring during the 2002 and 2005 high-

rainfall seasons, as well as the increased inflow during the subsequent low-rainfalls 

seasons. Figure 5-2 also indicates that above-average temperatures were experienced 

during the 2003 and 2004 austral winter periods, as well as for the 2003 spring period. 

This increase in temperature could potentially have resulted in a reduction in snow 

accumulation over the winter period and an earlier onset of the snowmelt period. 

Additional hydrological analysis of selected study years can be found in Appendix A. 
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5.1.2 Selected Seasonal Forecasting Options  

In total, 10 sets of forecasts options were carried out for seasonal inflow forecast 

performance evaluation and comparison. A short description of forecast options and 

associated model configuration and input datasets is provided below. Explanations of 

forecasting option concepts are describe in the following sections of this chapter. A 

summary table of the selected seasonal forecast options in presented in Table 5-2. 

Seasonal Forecast Options: 

1. Historical flows until time of forecast (ToF) hereafter Extended Streamflow 

Prediction (ESP) based on historical discharges. This is referred to here as 

ESP-Q and is used as a reference case.  

 

2. Historical flows and precipitation up to ToF, hereafter ESP based on 

historically observed precipitation. This corresponds to the widely used 

Extended Streamflow Prediction method.  

 

3. Option 2) with Data Assimilation (DA) of reservoir inflows and reservoir 

water levels up to the time of forecast. 

 

4. Historical flows and precipitation up to ToF, hereafter ESP based on 

ensemble seasonal System 4 precipitation forecasts. 

 

5. Option 4) with DA of reservoir inflows and reservoir water levels up to the 

time of forecast. 

 

6. Option 5) with downscaling of precipitation data. 

 

7. Historical flows and precipitation up to ToF, hereafter ESP based on 

ensemble seasonal System 4 forecast of precipitation and temperature. 

 

8. Option 7) with DA of reservoir inflows and reservoir water levels. 

 

9. Option 8) with downscaling of temperature data only.  

 

10. Option 9) with downscaling of precipitation data, i.e. both precipitation and 

temperature. 
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Table 5-2 | Summary of selected Seasonal Forecast options 

 

 

5.1.3 ECMWF-System 4 

The European Centre for Medium-Range Weather Forecasts’ (ECMWF) System 4 

operational seasonal forecast system has been operation since November 2011. 

System 4 is a fully coupled ocean-atmosphere dynamical forecast system. The 

atmospheric model has a resolution of approx. 0.7° (79 km) in longitude and latitude 

with 91 vertical levels. The ocean model has a horizontal resolution of 1° in the mid-

latitudes with enhanced meridional resolution near the equator, with 42 vertical levels. 

Initial conditions for the atmospheric and land surface components are obtained from 

the ECMWF's ERA-Interim reanalysis. System 4 is a probabilistic forecast system 

meaning ensemble forecasts are generated for each lead time step since the 

initialization date which potentially shows a better skill than a deterministic forecast 

system (single value) (Molteni, et al., 2011). 

System 4 is has two main types of forecast, namely reforecasts and operational 

forecasts. Operational forecasts run two different ensemble sizes based on the same 

mode configuration: 

1. A 51-member ensemble initialized at the start of every calendar month with 

lead times from 0 to 6 months ( 7-month forecast period) 

2. A 15-member ensemble initialized four times a year (01 Feb, 01 May, 01 Aug 

and 01 Nov) with a forecast range of 13 months.  

System 4 seasonal reforecasts (also known as hindcasts) are available for 30 year 

period from 1981 to 2010. Reforecasts are generated on the first day of each month 

using the same configuration as real-time forecasts, but has a smaller ensemble size 

of 15 members and run for 7 months (Molteni, et al., 2011).  

No. Name Precipitation Temperature

1 ESP-Q x x

2 ESP-P x x

3 ESP-P_DA x x x

4 S4 x x

5 S4_DA x x x

6 S4_DA_BC x x x x

7 S4T x x x

8 S4T_DA x x x x

9 S4T_DA_BC x x x x x

10 S4TP_DA_BC x x x x x x

Forecast Option

 Includes 

Downscaling 

of Temp Data 

Ensemble Streamlow prediction based on 

Inflows after ToF based on
Inflows before ToF based 

on

Historical 

Streamflows

Historical 

Precipitation 

(Rainfall-

runoff Model)
Historical 

Streamflows 

ESP-Q

Includes DA 

of discharge 

and water 

levels

Historical 

Precipitation 

ESP-P

System 4  forecast variable 

(15 member ensemble)  Includes 

Downscaling 

of Precip 

Data 



40 

 

Ensembles for each forecast or reforecast are generated by using an ensemble of initial 

conditions and the use of stochastic physics. At the seasonal timescale, most of the 

spread in the ensemble is internally generated and the role of initial perturbations is 

limited. It is however attempted to represent most of the important perturbations to 

allow a realistic evolution of the ensemble spread through the early part of the forecast 

(Molteni, et al., 2011). 

In this study, the System 4 seasonal reforecast product are used due to dataset’s 

intended use in calibration and verification processes. Reforecast datasets for the 

meteorological forcing variables precipitation (variable tp) and near-surface air 

temperature (variable tas) were downloaded based on monthly initialisations of a 7-

month forecast for the period between 1991 and 2010. 

 

5.2 Statistical pre-processing 

Due to the coarse resolution typically available from Global Climate Models datasets, 

a series of dynamic downscaling methods can be used derive higher resolution 

Regional Climate Models (RCMs) presenting local conditions in higher detail. RCMs 

however due suffer from similar bias problems as the global-scale models and are 

exceptionally demanding on computer resources (Hay & Clark, 2003). An alternative 

is the use of simple statistical downscaling techniques that can be employed to 

improve global climate model based output (Hay & Clark, 2003; Leung, et al., 2003). 

Statistical downscaling techniques develop empirical relationships between features 

reliably simulated in global-scale models at larger grid size resolution, and surface 

predictands at sub-grid scales such as precipitation amounts. The disadvantage of 

statistical downscaling techniques is that empirical relationships must be develop 

from historical forecasts (also referred to as hindcasts or reforecasts) from the same 

model used in a real-time operational setting. Temporal stationarity of empirical 

relationships is thus assumed to translate to future climate forecast (Hay & Clark, 

2003; Wetterhall, et al., 2012). 

Several sophisticated statistical methods have been developed for downscaling 

climatic variables. Draw (2016) tested a number of statistical downscaling methods 

for precipitation forecast from System 4 for a catchment in Spain and found slightly 

better performance in terms of seasonal inflow forecast accuracy, reliability and bias 

against observations, using a simple linear downscaling method. For this study, the 

simple Linear Scaling (LS) method was selected for the statistical downscaling of 

System 4 based gridded precipitation and temperature forecasts.  

 

5.2.1 Linear Scaling  

For bounded variables such as precipitation, the Linear Scaling (LS) method scales 

the modelled variable value by multiplying it with the ratio of the observed and GCM 

modelled mean values over the control forecast period (also referred to as hindcast 

period): 
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𝑧̂𝑚𝑜𝑑(𝑡, 𝑛) = 𝑧𝑚𝑜𝑑(𝑡, 𝑛) × 
𝑍̅𝑜𝑏𝑠(𝑛)

𝑍̅𝑚𝑜𝑑(𝑛)
 

(1) 

where 

𝑧𝑚𝑜𝑑(𝑡, 𝑛) : GCM-modelled variable value at time 𝑡 for point 𝑛 in space 

𝑧̂𝑚𝑜𝑑(𝑡, 𝑛)  : The adjusted GCM based at time 𝑡 for point 𝑛 in space 

𝑍̅  : Denotes the mean- observed (obs) and modelled (mod) values over 

the hindcast period 

 

The linear scaling method removes GCM variable biases in the mean, but the 

coefficient of variance of the modelled data is not changed (Lenderink, et al., 2007). 

For unbounded variables such as temperature, additive adjustments are based on the 

difference between the mean values of observed and GCM modelled values over the 

hindcast period: 

 

𝑧̂𝑚𝑜𝑑(𝑡, 𝑛) = 𝑧𝑚𝑜𝑑(𝑡, 𝑛) + ( 𝑍̅𝑜𝑏𝑠(𝑛) − 𝑍̅𝑚𝑜𝑑(𝑛)) 

(2) 

The application of the DM to System based precipitation and temperature data for the 

study area is discussed in the following sections. 

 

5.2.2 Precipitation data bias correction 

Long-term average monthly observed- and modelled precipitation values was based 

on the hindcast period from 1991 to 2009. For this period, System 4 precipitation data 

was collected for each subbasin based on monthly forecast initializations and a 7-

month forecast period. Average System 4 precipitation values were determined as a 

factor of the month of the year and forecast lead month. Figure 5-3 presents the 

average monthly System 4 based precipitation totals per forecast lead month for the 

Embalse_Colbún subbasin (see Figure 3-2). Average monthly-observed precipitation 

of the Embalse_Colbún subbasin based precipitation file is presented for comparison. 
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Figure 5-3 | System 4 average monthly forecasted precipitation per lead month for Embalse_Colbún 
subbasin (1991-2009) 

 

From Figure 5-3 it can be seen that monthly average total precipitation for System 4 

forecast increases with increasing lead month time. Compared to the observed record 

of the subbasin, System 4 based forecast underestimates total precipitation for the 

majority of the high-rainfall season (Apr-Oct). Average precipitation forecasts in the 

low-rainfall season (Oct-Apr) are comparable to observed values. 

Monthly scaling factors for subbasins were calculated based on the ratio between the 

average monthly precipitation values for the observed record, and System 4 data as a 

factor of forecast lead month. The calculated monthly precipitation scaling factors for 

the Embalse_Colbún subbasin are presented in Figure 5-4.  
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Figure 5-4 | Monthly precipitation scaling factors for System 4 precipitation data per forecast lead month 
(Embalse_Colbún subbasin) 

 

Figure 5-4 shows precipitation scaling factors greater than 1.0 in the high-rainfall 

season when System 4 precipitation forecasts underestimate precipitation. Similarly, 

scaling factors are below 1.0 for periods of overestimation. Scaling factors can also 

be seen to decrease with increasing lead month time to compensate for increasing bias. 

Due to the low average observed precipitation totals for the period between November 

and March, differences between observed and forecasted precipitation totals 

constitute large percentage error values, resulting in exceptionally low value scaling 

factors for the months of November, January and March.  

Monthly precipitation scaling factors were determined for all subbasins using the 

same method. These scaling factors were applied to the raw System 4 daily-

accumulated 7-month precipitation forecast as collected for each subbasin. The 

resulting product is a bias corrected 7-month daily time series of forecasted 

precipitation to be used for meteorological forcing in the hydrological model. 

 

5.2.3 Temperature bias correction 

Long-term average observed monthly temperatures were calculated for the available 

data period from 2000 to 2009. For this period, System 4 temperature forecast data 

was collected for the LoAguirre and MauleArmerillo temperature stations. System 4 

temperature data was based on monthly forecast initializations and a 7-month forecast 

period. Average System 4 temperature values were determined as a factor of the 

month of the year and forecast lead month. Figure 5-5 presents the average monthly 
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System 4 temperatures per forecast lead month for the LoAguirre station location. The 

average observed monthly temperatures for the LoAguirre station has been added for 

comparison. 

 

 

Figure 5-5 | System 4 average monthly temperature per lead month for LoAguirre station location (2000-
2009) 

 

Figure 5-5 shows System 4 based forecasts estimate lower average monthly 

temperatures compared to observed over the period from February to September. 

Higher average monthly temperatures are forecasted for the period from November to 

January. The monthly distribution of System 4 based temperatures also appears 

shifted ahead compared to the observed record, reaching minimum and maximum 

temperatures approximately one month before observed values. It is also evident 

Figure 5-5 that a decrease in average monthly System 4 based temperatures occurs 

with increasing lead month times.  

Elevation zone temperature files used in the calibrated NAM model were based on the 

established temperature-elevation relationship between the MauleArmerillo and 

LoAguirre stations. For forecast simulations, long-term temperature averages for 

these stations were used in the calculation of elevation zone temperatures. The 

introduction of System 4 temperature data therefore requires the generation of new 

elevation zone temperature files based on the established relationship. For each 

seasonal forecast simulation, System 4 forecast temperature grid data was therefore 

interpolated to the MauleArmerillo and LoAguirre stations locations. The known 

temperature elevations relationship between these locations was then used in the 

generation of new elevation zone temperature time series file for during the forecast 

period. 
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Monthly temperature bias correction factors for LoAguirre and MauleArmerillo 

temperature station locations were calculated based on the ratio between the average 

monthly temperature values for the observed record, and the System 4 interpolated 

forecast data as a factor of forecast lead month. The calculated monthly temperature 

additive scaling factors for the LoAguirre station are presented in Figure 5-4.  

. 

 

Figure 5-6 | Monthly additive bias correction factors for System 4 temperature data per forecast lead 
month (LoAguirre station location) 

From Figure 5-6 it can be seen that monthly temperature additive factors are positive 

for periods of where monthly average System 4 forecast temperatures were lower than 

observed. Temperature correction factors are also mostly negative during for the 

snowmelt period from October to January. 

Monthly temperature bias correction factors were determined for both of the 

temperature station locations. These factors were applied to the raw System 4 

temperature forecast as collected for each of the two temperature stations. The 

resulting product is a bias corrected 7-month long time series of forecasted 

instantaneous temperature data to be used during model simulation. 

 

5.3 Hydrological Models 

As mentioned in Section 4.1, DHI was contracted by Chilean utility company, Colbún 

S.A., to establish a real-time modelling system for both short-term and long-term 

forecasting of inflows to the Colbún Reservoir (DHI, 2011). The implemented 

modelling system, which is also used in this study, is based on the NAM rainfall-

runoff model and the river- and reservoir regulation model, MIKE HYDRO Basin. 

For this study, the existing real time modelling system developed for Colbún S.A. was 
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upgraded to the latest version of MIKE OPERATIONS, previously known as MIKE 

CUSTOMIZED. The seasonal forecast model components for this study are presented 

in Table 5-3 and described in this section. 

 

Table 5-3 | Seasonal Forecast Model Components 

Rainfall-Runoff Model NAM 

Reservoir- and River Regulation Model MIKE HYDRO Basin 

Real-time Modelling System MIKE OPERATIONS 

 

5.3.1 Rainfall Runoff Model – NAM 

The hydrological model used in this study is the NAM model which is a module of 

MIKE11 river modelling package. The NAM (Nedbør Afstrømnings Model) was 

developed at the institute of Hydrodynamics and Hydraulics Engineering at the 

Technical University of Denmark (DTU) (Nielsen & Hansen, 1973; Madsen, 2000; 

Butts, et al., 2004; Butts, et al., 2007). NAM is a deterministic, lumped conceptual 

model designed to simulate catchment runoff with continuous accounting of moisture 

content in sub-surface zones. Meteorological forcing variables such as precipitation, 

evaporation and temperature are used to simulate interrelated catchment water 

storages and resultant streamflows. Observed discharge data can be provided in order 

to calibrate NAM catchment parameters and validate model output. Calibration of the 

NAM model parameters for the Upper Maule River Basin is discussed in Section 

5.3.3.  

5.3.2 Basin Configuration Model – MIKE HYDRO Basin 

MIKE HYDRO Basin (MHB) is a multipurpose, map-based decision support tool 

designed for conducting integrated water resources analysis, planning and 

management of river basins (DHI, 2017; Butts, et al., 2016). MHB used as the basin 

configuration model for the Colbún S.A. forecasting system. Catchment based runoff 

generated from the NAM model was fed into the MHB model representing the Upper 

Maule River Basin drainage configuration of reservoirs, water users and water 

diversions. A map based representation of the MHB model configuration is shown in 

Figure 5-7. Characteristics of the major reservoirs in the Upper Maule River Basin in 

presented in Table 5-4. 
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Figure 5-7 | MIKE HYDRO BASIN model configuration for Upper Maule River Basin 

 

Table 5-4 | Characteristics of major reservoirs in Upper Maule River Basin 

Reservoir Name 
MHB 

Identifier 
Bottom 
Level 

Top of 
dead 

storage 
(DS) 

Full supply 
level (FSL) 

Non 
overspill 

crest 
(NOC) 

Full Supply 
Capacity 

(FSC) 

- R# masl masl masl masl million m3 

Embalse Melado R8 617 625 649 655 137 

Embalse Invernada R10 1270 1278 1318.5 1319 180 

Laguna Maule R15 2152 2153 2180.3 2181 1550 

Embalse Colbún R16 393 397 437 438 1420 

 

At the time of the MHB model configuration and calibration, limited information was 

available on reservoir regulation in the basin. It was found that attempting to derive 

such regulation rules from reservoir release records added extra uncertainty in the 

system, which has limited impact on the accuracy of a hydro-meteorological based 

forecast system. Therefore, the observed reservoir release records were used in 

modelled regulation. This approach was justified by the fact that infrastructure based 

regulation affect less than 20% of seasonal inflow, with the majority of inflow being 

unregulated or subjected to daily regulation only.  

Figure 5-8 presents a schematic chart of Maule River regulation and abstraction 

upstream of the Colbún Reservoir. The four upstream hydropower facilities are 
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marked in black, the five off-takes to irrigation schemes are marked in green 

approximate and streamflow measurement stations are indicated in red. 

 

 

Figure 5-8 | Schematic chart of Maule River regulation and abstraction upstream of the Colbún Reservoir 
(DHI, 2011) 

 

Although the Colbún Reservoir has a substantial reservoir capacity of around 1400 

milllion m3, reservoir storage can only be fully regulated during average inflow years. 

Such regulation would also require the full storage capacity of the reservoir, which in 

turn is not ideal with regards to hydropower turbine efficiency. Seasonal inflow 

forecasts can therefore provide valuable information to aid planning of hydropower 

production aspects such as generation periods, energy prices and optimal energy 

generation mix from available plants.  

 

5.3.3 Model Calibration 

Calibration of the seasonal forecast model implemented for Colbún S.A., was based 

on a calibration period of 1997 to 2009. Criteria for overall calibration performance 

is the accurate simulation of inflow water balance during and the seasonal distribution 

of this inflow in the catchment. The latter of these two criteria is particularly relevant 

in this study, where seasonal forecasts are made and a general bias in the simulation 

e.g. the snowpack accumulation, will affect the simulation results. A comparison of 
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the simulated and observed water balance in the form of accumulated Colbún 

Reservoir inflows is shown in Figure 5-1.  A comparison of the simulated and 

observed monthly accumulated inflow to the Colbún Reservoir is shown in Figure .  

 

 

Figure 5-9 | Long term observed- vs simulated accumulated inflow to Colbún Reservoir (1997-2009) 

 

 

 

Figure 5-10 | Observed- vs simulated monthly accumulated inflow to Colbún Reservoir (1997-2009) 

 

From Figure 5-10 and Figure 5-11 it can be seen that a good calibration fit was 

obtained for Colbún Reservoir inflow in terms inflow water balance during and the 

seasonal distribution of this inflow. Figure 5-11 presents a comparison of observed 
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and simulated monthly mean inflow volumes to the Colbún Reservoir. Calculated 

percentage volume errors for simulated average monthly inflow volumes are 

presented in Table 5-5. 

 

 

Figure 5-11 | Observed- vs simulated average monthly inflow to Colbún Reservoir (1997-2009) 

 

Table 5-5 | Observed- vs simulated average monthly cumulative inflow to Colbún reservoir (1997-2009) 

    
Month 

  

Series Unit Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Annual 

Observed 
Inflow 

million 
m3 

308 519 788 759 778 721 751 839 791 483 284 259 7282 

Simulated 
Inflow 

million 
m3 

288 570 791 749 781 700 719 823 782 442 292 240 7179 

Volume 
error 

 % -7.1 9.0 0.4 -1.4 0.4 -3.1 -4.4 -2.0 -1.1 -9.3 2.7 -8.0 -1.4 

 

A comparison of observed and simulated total annual accumulated inflow to the 

Colbún Reservoir is presented in Figure 5-12. Initial review of this figure reveals 

reasonable comparisons between annual accumulated inflow totals of the simulated 

and observed records for the majority of years. Underestimations of observed inflow 

can however be seen for above-average precipitation years 2002, 2005 and 2006. 

Overestimation of inflow however occurs during the below-average precipitation 

years of 2003 and 2004. The overall performance of the 13-year calibration period 

was found acceptable, based on the available data at the time and the model’s intended 

use. 
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Figure 5-12 | Observed- vs simulated annual accumulated inflow to Colbún Reservoir (hydrological years 
1997-2009) 

 

5.3.4 Data Assimilation of streamflow and reservoir levels 

The availability of real-time data in hydrological forecasting systems provides the 

opportunity to update simulated hydraulic states or catchment parameters to improve 

the accuracy of the forecast. This process is called Data Assimilation (DA) or real-

time updating (Sene, 2010). MIKE HYDRO Basin allows for assimilation of model 

state variables to observed conditions in the basin. Both reservoir levels and 

streamflows can be assimilated, but only one state variable may be assimilated at a 

single model calculation node. In some cases however, it is relevant to assimilate both 

reservoir levels as well as inflow consisting of runoff from the local catchment and 

inflow from upstream catchment and regulations. In such cases, two calculation nodes 

were created for the reservoir in question with the aid of an upstream dummy 

catchment (see Figure 5-13). No runoff is generated from the dummy catchment and 

inflow can be assimilated at the upstream node, while water levels are assimilated at 

the reservoir node. An example of this set-up for the Colbún Reservoir is illustrated 

in Figure 5-13. 
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Figure 5-13 | Real and dummy catchments for data assimilation of Colbún Reservoir in MIKE HYDRO 
Basin 

 

5.4 Support Software Systems 

 

5.4.1 MIKE OPERATIONS 

MIKE OPERATIONS, previously known as MIKE CUSTOMIZED, is a software 

product designed for model-based forecast services and for online operational control 

of river systems, water collection systems and water distribution systems (DHI, 2016). 

MIKE OPERATIONS is a product consolidation of software tools developed and 

applied in DHI projects over the past 6-7 years, providing data management, decision 

support and operational forecasting services in one parent window. 

MIKE Workbench is an advanced desktop client provided alongside MIKE 

OEPRATIONS. MIKE Workbench is designed for users who apply data analysis and 

process tools interactively to allow for the configuration of automated workflows, 

scripts and custom-made data reports (DHI, 2017).  

For this study, the existing real time modelling system developed for Colbun S.A. (see 

Section 4.1) was upgraded to the latest version of MIKE OPERATIONS. The MIKE 

Workbench platform was used to establish model links between the rainfall-runoff 

NAM model and reservoir and river regulation model MIKE HYDRO Basin for the 

study area. Data management and scripting tools inside MIKE Workbench were used 

for the configuration of automated workflows for multiple seasonal forecast 

simulations. Seasonal forecast simulations were conducted for 6-month hindcast 

period until the ToF, followed by a 7-month forecast period. All simulations ran on a 

6-hour timestep resulting in a single forecast simulation runtime of approximately 23 

minutes. 
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5.4.2 RStudio 

RStudio is an open source integrated development for R, a programming language for 

statistical computing and graphics. Amongst other features, RStudio includes a 

console and syntax-highlighting editor that supports direct code execution, as well as 

various tools for plotting (RStudio, 2017). For this study, R was used in the RStudio 

environment for accessing and retrieving dimensional slices of System 4 seasonal 

forecasts data as well as pre-processing of model input data using custom functions. 

Some of the main R packages used in this study are listed below: 

 loadeR.ECOMS   : interface to the ECOMS-UDG 

 transformeR    : climate data manipulations 

 visualizer  : visualization tools for forecast verification 

 ggplot2   : plotting system of complex multi-layered graphics 

 hyfo    : hydrological data manipulations 

 

5.5 Model Output 

The required seasonal forecast model outputs from the reservoir and river regulation 

model, MIKE HYDRO Basin, are stored within the MIKE Workbench platform. The 

model output under analysis is the simulated inflow to Colbún Reservoir for each 

forecast option. Based on the meteorological forcing variables used in the simulation, 

streamflow ensembles are produced through ESP or as probabilistic streamflow 

forecasts.  

 

5.5.1 Extended Streamflow Prediction  

The Extended Streamflow Prediction (ESP) was first introduced by the US National 

Weather Service (NWS) in 1977 and still used in modern streamflow forecasting 

systems (Twedt, et al., 1977; Najafi, et al., 2012). ESP provides probabilistic 

streamflow predictions during any user-designated time period for upstream 

catchments. ESP models typically use calibrated conceptual or physically based 

hydrological models and long-term historical records of observed meteorological 

forcing variables, such as precipitation and temperature, to simulate a possible set of 

streamflow regimes upon the current conditions of the catchment.  

In operational settings, the calibrated hydrological model is run up until the ToF to 

reflect the catchment initial conditions. For the forecast period, the model can be 

driven by 1) resampled historical meteorological forcing variables or 2) 

meteorological forecasts to generate a range of possible future streamflows. A core 

assumption of the ESP approach, is that historical meteorological events are 

representative of possible future conditions. This provides ESP the basis for 

considering the uncertainty related to future climate, which could be a significant 

component of forecast uncertainty during certain seasons (Najafi, et al., 2012). 



54 

 

The ESP based approach can be used for short term- and longer term seasonal 

forecasts. For seasonal forecasts, the mean value of ensemble streamflow volume is 

commonly reported as a single best prediction value.  In this study, ESP is used to 

define the range of possible future seasonal inflow volumes to the Colbún Reservoir 

based on meteorological forcing of resampled precipitation data.  

5.5.1.1 ESP-Q 

Another method for deriving ensemble streamflow forecast, referred to here as ESP-

Q, is based on the use of resampled observed streamflow records under the assumption 

that historical streamflow events representative of possible future conditions. This 

simpler approach does not require the use of hydrological model and resampled 

historical streamflow records are used to determine a possible range of future 

accumulated streamflow. This approach however does have several limitations as 

varying catchment conditions over the hindcast and forecast period, such as 

groundwater and surface water storages, are not taken into account. The ESP-Q was 

however included in this study for reference, based on the observed inflow record of 

the Colbún Reservoir.  

Figure 5-14 presents an example of an ESP-Q accumulated inflow ensemble for 

Colbún Reservoir based on 21 years (1991-2011) of resampled observed inflow data. 

The ESP-Q accumulated inflow ensemble in Figure 5-14 is based on a ToF of 01 

April 2002 and a forecast period of 7 months.  ESP-Q ensemble members are based 

on individual extracted records of observed accumulated inflow to the Colbún 

Reservoir for the historical period 01 April – 31 October for the years from 1991 to 

2011, with available data. The accumulated inflow observed over the forecast period 

is shown in blue for reference. Tercile based ranges (0.33, 0.66) of predicted future 

accumulated inflow are determined from ensembles spreads over the forecast period. 

Thus creating three categories of below-normal, normal and above-normal potential 

accumulated inflow ranges are created, each containing 7 ensemble members per 

category as shown in Figure 5-14.  
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Figure 5-14 | High-rainfall season accumulated inflow forecast: ESP-Q ensemble member and 
corresponding terciles ToF 2002-04-01 

 

5.5.1.2 ESP-P 

The ESP approach based on the use of a calibrated hydrological model and 

meteorological forcing of resampled historical precipitation data, is referred to as 

ESP-P. Figure 5-15 presents an example of an ESP-P accumulated inflow ensemble 

for Colbún Reservoir based on 21 years (1991-2011). This accumulated streamflow 

ensemble was produced with the use of the calibrated NAM and MIKE HYDRO Basin 

hydrological models. From Figure 5-15 it can be seen that the calibrated hydrological 

model is run over the 6-month hindcast period up until the ToF (see Section 2.4). For 

the forecast period, the model is driven by the meteorological forcing of resampled 

historical precipitation data to generate future streamflows.  

The ESP-P accumulated inflow ensemble in Figure 5-15 is based on the same ToF 

(01 April 2002) and a forecast period of 7 months, as the ESP-Q example in Figure 

5-14. The observed inflow record is shown in blue and the simulated inflow based on 

the calibrated model is shown in red. Differences between the simulated and observed 

records can be attributed to uncertainties in hydrological model prediction skill and 

uncertainties in IHC. In Figure 5-15, ESP-P ensemble members are plotted over ESP-

Q based tercile category ranges. 

In terms of reservoir management, this study investigates the predicted range of 

reservoir inflows over the forecast period. The probability of predicting a below-

normal, normal or above-normal seasonal inflow range is assigned to the proportion 

of ensemble members per tercile range. Ensemble members locate above (below) the 

maximum (minimum) tercile range are considered to be in additional categories 

during forecast accuracy validation (see Section 5.6.2). 

Terciles: ESP-Q 

               Observed 

Above-normal 
  

Normal 

  

Below-normal 
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Figure 5-15 | High-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2002-04-01 

 

5.5.1.3 Probabilistic Streamflow Forecasts 

For the forecast period, the ESP based approaches can be driven by resampled 

historical meteorological forcing variables (ESP-P) or meteorological forecasts to 

generate a range of possible future streamflow. In the next step of the study, ECMWF-

System 4 probabilistic based reforecast datasets were used for meteorological forcing 

of the hydrological models to produce future streamflow ensembles. Figure 5-16 

presents an example of a future streamflow ensemble produce through the use of a 15 

member System 4 seasonal precipitation forecast initialised on 01 April 2002 for a 7-

month forecast period. From Figure 5-16  it can be seen that the calibrated 

hydrological model is run over the 6-month hindcast period up until the ToF, identical 

to the ESP-P based approach. 

To compare the forecast performance of various System 4 based forecasts options (see 

Table 5-2), System 4 based future accumulated inflow ensembles are plotted on ESP-

P based tercile categories of accumulated inflow. Tercile categories are define based 

on ESP-P ensembles for below-normal, normal and above-normal inflow ranges. The 

probability of predicting an above-normal, normal, or below-normal seasonal inflow, 

therefore, is the proportion of the 15 System 4 based inflow ensemble members in 

each category.  

Terciles: ESP-Q 

               Observed 

               Simulated 
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Figure 5-16 | High-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2002-04-01 

 

5.6 Seasonal Forecast Verification 

There are several performance aspects of forecast to assess to help identify the 

strengths and weaknesses of a forecast system. Verification can allow for the 

identification of areas where effort or resources have improved the forecast. The 

majority of verification analyses are aimed to assess whether the forecast system has 

any skill compared to a baseline forecast. Jolli & Stephenson (2012) stated that longer-

range forecast are diffucult to verify due to their limited sample sizes for verificaction 

analysis. Limited sample sizes can also reflect large uncertainty in the quality of 

results. Thus, it can be difficult to assess the performance of a longer-range seasonal 

forecast system. Some of the forecast verification aspects addressed in this study are 

listed below: 

Bias: The difference between the mean of the forecasts and the mean of the 

observations. Can be expressed as a percentage of the mean 

observation. 

Accuracy: The correspondence between the forecast and the reality which is 

recorded as observed realizations. 

Skill: A measure of the relative improvement of the forecast over a 

reference or ‘low-skill’ baseline forecast. Typical used reference 

forecasts include climatology or output from an earlier version of the 

forecasting system. 

Terciles: ESP-P_DA 

               Observed 
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The seasonal forecast skill assessment measures used in the study are discussed in the 

following sections. 

 

5.6.1 Seasonal Forecast Model Bias 

Seasonal forecast model bias for all forecast options (see Section 5.1.2) was calculated 

as the difference of the forecasted mean accumulated inflow volume to the Colbún 

Reservoir and the observed inflow volume. For ESP-Q and ESP-P ensembles, the 

forecast mean was based on the mean value of the 21 inflow ensemble members.  

System 4 based seasonal forecast model bias was calculated based on the mean value 

for the 15 probabilistic based inflow ensemble members. Bias values were calculated 

at the end of each lead month and expressed percentage volume error of the observed 

value. 

5.6.2 Ranked Probability Score (RPS) 

The Ranked Probability Score (RPS) measures the accuracy of discrete probabilistic 

based forecasts issued for multi-categorical events in matching observed outcomes. 

Both the location and spread of the forecast distribution taken into account in the 

evaluation of how close the distribution is to the observed value (Wilks, 2005). The 

formula for RPS calculation is given by Equation 3 and Equation 4. For each event, 

the 𝑅𝑃𝑆𝑛 is calculated after accumulating the observation and forecasts vectors. The 

overall 𝑅𝑃𝑆, therefore, is the mean value of the 𝑅𝑃𝑆𝑛. 

 

𝑅𝑃𝑆𝑛  =   
1

𝐾 − 1
 ∑(𝐶𝐷𝐹𝐹𝑓𝑐,𝑘

𝑛 −  𝐶𝐷𝐹𝐹𝑜𝑏𝑠,𝑘
𝑛 )2

𝐾

𝑘=1

 

(3) 

 

𝑅𝑃𝑆 =  
1

𝑁
 ∑ 𝑅𝑃𝑆𝑛

𝑁

𝑛 =1

 

 (4) 

where 

𝐾 denotes the total number of categories (𝑘= 1, 2,…, 𝐾) 

𝑁 denotes the total number of forecast observation pairs (𝑛= 1, 2,…, 𝑁) 

𝐶𝐷𝐹𝑓𝑐,𝑘
𝑛  is the cumulative forecast probability for each category and forecast-

observation pair 

𝐶𝐷𝐹𝑜𝑏𝑠,𝑘
𝑛  is the cumulative observation vector for each category and forecast-

observation pair 
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A RPS value of zero would represent a perfect forecast and positive values indicate a 

less than perfect forecast with a maximum value of 1. For this study, a total of five 

categories were defined for the calculation of RPS scores for probabilistic based 

forecast ensembles. Three of the five categories were defined by the ESP-P terciles 

ranges based on climatology; below-normal, normal and above-normal. Two 

additional categories were created to include forecast ensemble members located 

outside the range of established ESP-P terciles; below ESP-P min and above ESP-P 

max.  

Table 5-6 presents example inputs for RPSn calculation for a System 4 precipitation 

based (S4_DA) high-rainfall season inflow forecast as shown in Figure 5-17. RPSn 

values are calculated for each of the System 4 based forecast options for the high-

rainfall and low-rainfall seasonal periods separately. It should be noted that RPS 

calculations are based on time slicing of forecast and observed time series at the end 

of each forecast lead moth period, and are thus not representative of an average RPS 

score over the entire lead month. 

Note: RPS scores were calculated per forecast option with consideration if DA was 

included during the hindcast period. RPS for forecast options without DA were based 

on tercile categories from forecast option 2, ‘ESP-P’. RPS for forecast options 

including DA were based on tercile categories from forecast option 3, ‘ESP-P_DA’ 

which included DA in the ESP-P based approach. 

 

Figure 5-17 | High-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2004-04-01 

 

 

Terciles: ESP-P_DA 

               Observed 
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Table 5-6 | Example of RPSn calculation inputs S4_DA ensemble forecast ToF 2004-04-01 

Cumulative forecast  probability per category         

Category 
at end of Lead Month 

0 1 2 3 4 5 6 

Above ESP-Q max 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Above Normal 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Normal 86.7% 93.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

Below Normal 13.3% 86.7% 93.3% 73.3% 73.3% 80.0% 80.0% 

Below ESP-Q min 0.0% 0.0% 20.0% 26.7% 13.3% 13.3% 6.7% 

Cumulative observation vector             

Category 
at end of Lead Month 

0 1 2 3 4 5 6 

Above ESP-Q max 1 1 1 1 1 1 1 

Above Normal 1 1 1 1 1 1 1 

Normal 0 1 1 1 1 1 1 

Below Normal 0 0 1 1 1 1 1 

Below ESP-Q min 0 0 0 0 0 0 0 

RPSn 0.19 0.19 0.01 0.04 0.02 0.01 0.01 

 

The RPSn at the end of lead month 0 for the above example would be calculated as 

follows: 

𝑅𝑃𝑆𝑛 =
1

5 − 1
× ((0 − 0)2 + (0.133 − 0)2 + (0.867 − 0)2 + (1 − 1)2 + (1 − 1)2)  = 0.19 

 

5.6.3 Ranked Probability Skill Score (RPSS) 

The Ranked Probability Skill Score (RPSS) measures the RPS improvement of 

forecast to a reference forecast (RPSref) (Weigel, et al., 2007). The RPSS is calculated 

as follows: 

𝑅𝑃𝑆𝑆 = 1 −  
𝑅𝑃𝑆

𝑅𝑃𝑆𝑟𝑒𝑓
 

(5) 

The RPSS relates RPS and RPSref in such a sway that positive RPSS values indicate 

forecast benefit with respect to the reference forecast. A RPSS value of zero would 

indicate identical score for the forecast RPS and RPSref. In this study, the seasonal 

forecast option based on raw System 4 precipitation forecast ensemble (forecast 

option 4, ‘S4’) was used as the RPSref reference forecast. This would allow for the 

assessment on forecast benefit for System 4 based forecast options.   
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6 Results and Discussion 
 

This chapter presents seasonal forecast model results in the form of time series plots 

as well as discussion around the visual inspection of results. Due to the large volume 

of forecast model output data, result plots for selected forecast options and study years 

are presented and discussed. Additional seasonal forecast model output plots can be 

found in Appendix B.  

 

6.1 ESP-Q and ESP-P 

Figure 6-1 through Figure 6-7 present the results of the ESP-Q and ESP-P (see 5.5.1) 

forecast simulations for the selected study years. Accumulated inflow volume time 

series to the Colbún reservoir are plotted for all ESP-P ensemble members. These are 

compared to ESP-Q terciles for the 7-month forecast period, which provides a 

historical reference of observed accumulated inflow over the seasonal period. The 

observed inflow time series as well as the rainfall-runoff based simulated accumulated 

inflow time series, are presented over the hindcast and forecast periods. Seasonal 

inflow forecast results are displayed in chronological order according to the ToF, with 

high-rainfall season (April-October) forecasts preceding low-rainfall season 

(October-April) forecasts for each study year. Comparisons of observed and simulated 

total accumulated seasonal inflow volumes to the Colbún at ToF are presented in 

Table 6-1 and Table 6-2. Simulated seasonal accumulated inflows are based on the 

use of historical precipitation time series of the corresponding years. 

 

Table 6-1 | High-rainfall season (Apr-Oct): Total accumulated Colbún Reservoir inflow at ToF (million m3) 

  01 April 2002 01 April 2003 01 April 2004 01 April 2005 

Observed  3439 5741 2186 2324 

Simulated 3728 4835 2318 2316 

 

Table 6-2 | Low-rainfall season (Oct-Apr): Total accumulated Colbún Reservoir inflow at ToF (million m3) 

  01 October 2002 01 October 2003 01 October 2004 

Observed  5001 3229 3412 

Simulated 5025 3485 3766 

 

6.1.1 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in Figure 6-1 and Figure 6-2 respectively. 

6.1.1.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

Seasonal inflow forecast conducted at the start onset of the high-rainfall season will 

provided reservoir managers with predictions of reservoir inflow, allowing for water 
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allocation and power generation planning over long lead times. From Figure 6-1 it 

can be seen that the observed inflow during the forecast period falls within above- 

normal flow category based on the ESP-Q terciles. The simulated flow appears to 

have a good fit to the observed record until approximately one month before the ToF, 

when an overestimation of inflow occurs. This deviation from the observed record 

remains until the ToF, creating an overestimation of total accumulated inflow at the 

start of the forecast period. 

The majority of the ESP-P ensemble members also fall within or above the above-

normal ESP-Q tercile, which agrees well with the observed inflow for this year. As 

the ESP-P ensemble members are based on historical precipitation data, ensemble 

members falling outside the ESP-Q terciles indicate an accumulation of inflow over 

the forecast time period that has not historically been experienced. These ensemble 

members are associated with the high rainfall years of such as 1991, 1997 and 2005. 

The reason that these high rainfall year ensembles fall outside the historically based 

ESP-Q terciles, is that these high rainfall years were typically preceded by drier years 

of low precipitation and runoff (see Figure 4-8). Indicating an increased percentage 

reduction in runoff due to initial drier catchment conditions, as discussed in Section 

4.6.3. 

The 2002 hydrological year was preceded by two above average rainfall years (see 

Figure 4-8). The simulated total accumulated inflow volume to the Colbún reservoir 

over the hindcast period is an above-average value of 3728 million m3 (see Table 6-1), 

resulting in increased  surface water and groundwater storage levels, limiting storage 

capacity and regulation of inflow. The meteorological forcing of resampled historical 

precipitation series thus results in increased predicted runoff compared to historical 

years.  

The ESP-P ensemble spread does create a wider range of possible flow accumulation 

volumes at later lead month times compared to the ESP-Q terciles. Due to the large 

spread of both the ESP-Q and ESP-P ensemble members, accurate estimation of 

accumulated flow at later lead months would be challenging. If the average 

accumulated flow value over all ensemble members were used as a forecast estimate, 

the higher ESP-P ensemble would provide a result closer to the observed record 

compared to ESP-Q. 
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Figure 6-1 | High-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2002-04-01  

 

 

Figure 6-2 | Low-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2002-10-01 

  

Terciles: ESP-Q 

               Observed 

               Simulated 

Terciles: ESP-Q 

               Observed 

               Simulated 
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6.1.1.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

Seasonal inflow forecast conducted at the start onset of the low-rainfall season will 

provided reservoir managers with temporal and quantitative information about 

predominantly snowmelt-based inflow, allowing for efficient planning and water use 

over longer lead times. From Figure 6-2 it can be seen that simulated inflow shows 

good performance over the hindcast period and simulated and observed values are 

almost identical at ToF, thus reducing the potential accumulated volume error at the 

start of the forecast period. The observed record over the forecast period indicates that 

exceptionally high inflow was experienced when compared to the ESP-Q terciles. The 

observed accumulated inflow is close to the upper limit of the ESP-Q terciles, and is 

the largest historical inflow volume for this 7-month period.  

Figure 6-2 shows a wide range for the ESP-Q terciles. The normal tercile range also 

appears relatively narrow compared to its adjacent terciles, indicating that the majority 

of inflow time series are closely group together with a fewer number of uncommon 

high or low inflow events (see Figure 4-3) .  

As shown in Figure 4-3, inflow to the Colbún Reservoir during the low-rainfall season 

is largely dependent on snowmelt, as precipitation is limited during this seasonal 

period. As discussed in Section 4.6.3, runoff during the low-rainfall season is greatly 

dependent on the total amount of precipitation during the preceding season. The 

resultant ESP-Q terciles during the low-rainfall season are therefore compromised of 

a wide range of historical inflow time series. 

The ESP-P ensemble members for this season form a narrower grouping over the 

entire forecast period. This is due to the limited amount and variability of historical 

rainfall over the seasonal period from November to March (see Figure 4-1). The 

narrow range of ESP-P ensemble members provide significantly improved forecast 

estimate of accumulated flow volumes compared to ESP-Q. The ESP-P however still 

underestimates the accumulated flow at later lead months, as the majority of input 

precipitation time series are lower than the observed record. A single ESP-P ensemble 

member can be seen above the ESP-Q tercile range, corresponding to the 1997 high 

rainfall year experienced during the very strong El Niño phase.  

These results clearly show that forecasts for the low-rainfall season are more strongly 

dependent on the initial conditions than on the precipitation forecasts. The initial 

conditions are accurately represented in our inflow forecasts by using a well-

calibrated hydrological model and a long hindcast period prior to the ToF to 

incorporate the high rainfall season. Therefore using hydrological models to provide 

seasonal forecasts during this low-rainfall season appears to provide accurate and 

reliable inflow forecasts for lead times of many months in this case. 

As discussed in the previous section, above-average precipitation was experienced in 

the 2002 hydrological year. Simulated total accumulated inflow at ToF is an above-

average value of 5025 million m3 (see Table 6-2), thus limiting the catchment water 

storage capacity and increasing the runoff percentage. 
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6.1.2 2003: Below-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2003 are presented in Figure 6-3 and Figure 6-4 respectively.  

6.1.2.1 High-rainfall season (Apr-Oct) ToF: 2003-04-01 

Figure 6-3 shows a clear divergence of the simulated and observed inflow records, 

with a large underestimation of simulated inflow volumes during the hindcast period. 

This underestimation of simulated inflow could be a result of multiple contributing 

factors such as poorer performance by the calibrated model, as well as unaccounted 

reservoir regulation over this time period. The observed inflows over the forecast 

period corresponds to a normal inflow for the initial months, after which accumulated 

flow decreases to the below-normal range. The simulated total accumulated inflow at 

ToF is an above-average value of 4835 million m3, compared to the previous year’s 

value of 3728 million m3 (see Table 6-1), resulting in above-average catchment water 

storage levels due to increased snowmelt based runoff. 

Although the simulated underestimates the accumulated inflow at ToF, the majority 

of ESP-P ensemble members overestimate the accumulated flow value for multiple 

lead months. Similar to the 2002 high-rainfall season (see Figure 6-1), the 

meteorological forcing of resampled historical precipitation series and limited 

available storage capacity, results increased predicted inflow compared to historical 

years. As 2003 experienced below-average precipitation, the majority of ESP-P 

ensembles overestimate the resultant inflow compared to the observed.  
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Figure 6-3 | High-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2003-04-01 

 

 

Figure 6-4 | Low-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2003-10-01 
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6.1.2.2 Low-rainfall season (Oct-Apr) ToF: 2003-10-01 

Figure 6-4 shows a reasonably good correlation between the observed and simulated 

inflow records for the hindcast period. The simulated record however shows an 

increasing overestimation of accumulated inflow approximately 1.5 months before 

the ToF. This earlier onset of simulated, predominantly snowmelt-based inflow could 

be a result of the above-average temperatures measured in the spring 2003 (see Figure 

5-2). Constructed temperature-elevation zones over this period might have 

overestimated the overall catchment temperature increase, particularly at higher 

altitudes, which would result in increased snowmelt-based inflow. The simulated total 

accumulated inflow volume at the ToF is a below-average value 3485 million m3, due 

to the below-average precipitation experienced in the preceding high season. 

The observed inflows over the forecast period corresponds to below-normal inflow 

for the entire forecast period. Similar to the 2002 low-rainfall season, ESP-P ensemble 

members form a narrower grouping over the entire forecast period. Despite 

overestimation of accumulated inflow the ToF, the majority of the ESP-P ensemble 

members fall within close proximity to the observed record for the majority of the 

forecast period. 

The simulated record, indicated in red, can however be seen to be positioned in the 

upper range of the ESP-P range. This result foreseen as the 2002 hydrological year 

received below average rainfall and was expected to fall below the majority of 

ensemble members. Further inspection of the precipitation records indicated that 

above-average precipitation and monthly temperatures were experienced during the 

months of October and November 2002. Thus providing some explanation behind the 

increased inflow over this time period. 

6.1.3 2004: Below-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2004 are presented in Figure 6-5 and Figure 6-6 respectively.  

6.1.3.1 High-rainfall season (Apr-Oct) ToF: 2004-04-01 

Figure 6-5 shows a slight overestimation of simulated inflow record compared to 

observed record for the hindcast period. This overestimation increases throughout the 

forecast period, the effect of a less optimal calibration. The simulated total 

accumulated inflow volume ToF is a below-average value of 2318 million m3. The 

reduction is a result of the preceding below-average precipitation year. The observed 

record corresponds to normal inflow for the initial months, after which accumulated 

flow decrease to the lower edge of the normal range. 

The ESP-P ensemble spread appears similar in range compared to the high-rainfall 

seasons of the previous study years. A large number of ESP-P ensembles do however 

fall above the ESP-Q tercile range, although the total accumulated inflow at ToF is 

below-average. Part of this could be attributed to the overestimation of simulated 

inflow over the hindcast period, resulting in an accumulated volume error at ToF and 

overestimation of accumulated inflow over the forecast period. However, the wide 

spread seems to reflect the large variability in historical rainfall for this period 
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Figure 6-5 | High-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2004-04-01 

 

 

Figure 6-6 | Low-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2004-10-01 
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6.1.3.2 Low-rainfall season (Oct-Apr) ToF: 2004-10-01 

Figure 6-6 shows an increasing overestimation of the simulated inflow record 

compared to observed record, through the hindcast- as well as the forecast period. The 

simulated total accumulated inflow volume at the ToF is a below-average value of 

3766 million m3. The observed inflow over the forecast period corresponds to below-

normal for the entire forecast period. 

Similar to the previously assessed low-rainfall seasons, the ESP-P ensemble members 

form a narrower grouping over the entire forecast period due to limited variations in 

historical precipitation totals over this period. The majority of the ESP-P ensemble 

members fall above the observed record for the majority of the forecast period which 

can be attributed to the overestimation of accumulated inflow at ToF. It is expected 

that by correcting the overestimation at ToF this grouping would shift downwards, 

providing a more accurate estimation of accumulated inflow over the forecast period. 

This could be achieved by improving the model calibration or incorporation of Data 

Assimilation (DA) prior to ToF. 

 

6.1.4 2005: Above-average precipitation year 

The results of forecasts for the high-rainfall season for 2005 are presented Figure 6-7. 

6.1.4.1 High-rainfall season (Apr-Oct) ToF: 2005-04-01 

Figure 6-7 shows good correlation of the simulated and observed accumulated inflow 

record for the hindcast period. Increasing underestimation however occurs throughout 

the forecast period. The simulated total accumulated inflow volume at the October 

ToF is a below-average value of 2316 million m3, due to the two consecutive below-

average precipitation preceding years. The observed record over the forecast period 

corresponds to above-normal inflow based on the ESP-Q terciles. 

The ESP-P ensemble spread appears similar in range compared to the high-rainfall 

seasons of the previous study years. Due to the large spread of both the ESP-Q and 

ESP-P ensemble members, accurate estimation of accumulated flow at later lead 

months would be challenging. If the average accumulated inflow value over all 

ensemble members would be used as a forecast estimate, both ESP-P and ESP-Q 

approaches would provide similar underestimated values compared to the observed 

record. 

From the analysis of high-rainfall season forecasts for all of the selected study years, 

it can be seen that due to the greater historical precipitation variability over this 

season, initial hydrological conditions do not have such a strong impact on seasonal 

forecast performance compared to the low-rainfall season. The ESP-P approach 

therefore results in a wide ensemble range of predicted inflow volumes. In extreme 

precipitation years such as 2005, the ESP-P therefore cannot provide an indication 

of above-average precipitation periods in advance. This suggest that if climate 

model based seasonal forecast were able to capture extreme inflow years, it would 

be very useful for reservoir operation.  
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Figure 6-7 | High-rainfall season forecast: ESP-P ensemble and ESP-Q terciles ToF 2005-04-01 

 

6.2 Performance of Data Assimilation 

The availability real-time observed data in hydrological forecasting systems allows 

for updating simulated hydrologic states or catchment parameters to improve the 

accuracy of the forecast. In this study, DA was introduced to assimilate both reservoir 

levels and streamflows to observed values over the hindcast period (see Section 5.3.4). 

The performance of ESP-P based ensemble forecasts with DA inclusion during the 6-

month hindcast period is discussed in the following section. A limited number of 

result plots are presented as reference to discussion points and additional plots can be 

found in Appendix B. A numerical performance comparison between different 

simulations methods per ToF is presented in Appendix C. 

 

6.2.1 2003: Below-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2003 are presented in Figure 6-8 and Figure 6-9 respectively.  

6.2.1.1 High-rainfall season (Apr-Oct) ToF: 2003-04-01 

From Figure 6-8, the impact of DA inclusion for ESP-P ensemble forecast can be seen 

during the hindcast period. With the updating of reservoir levels and discharge, the 

percentage volume error between simulated and observed records during the hindcast 

period is effectively reduced to zero. This results in equal amounts of total 

accumulated inflow volumes at ToF for both series, providing a closer representation 

of observed conditions at the start of the forecast period. Figure 6-8 can be compared 

to Figure 6-3, which present the results of the ESP-P forecast with no DA applied 
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over the same simulation period. Comparison of these figures reveal that the inclusion 

of DA provides a more accurate performance over the forecast period. The majority 

of ESP-P ensembles members however still appear outside of the above-normal ESP-

Q tercile range. This can be attributed to the large accumulated inflow volume at the 

ToF, as a result of the 2002 above-average precipitation year. 

 

 

 

Figure 6-8 | High-rainfall season forecast: ESP-P ensemble including DA and ESP-Q terciles ToF 2003-
04-01 
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Figure 6-9 | Low-rainfall season forecast: ESP-P ensemble including DA and ESP-Q terciles ToF 2003-
10-01 

 

6.2.1.2 Low-rainfall season (Oct-Apr) ToF: 2003-10-01 

Figure 6-9 indicates the effects of DA inclusion for the ESP-P ensemble forecast 

during the low-rainfall season in 2003. This figure can be compared to Figure 6-4, 

which present the results of the ESP-P forecast with no DA applied over the same 

simulation period. Based on this comparison, it can be seen that the inclusion of DA 

primarily reduced the accumulated volume error for the over the 1.5 month period 

leading up to the ToF. The resultant performance of the ESP-P ensemble over forecast 

period is improved, providing more accurate estimates of accumulated inflow for the 

majority of forecast lead months.  

 

6.2.2 General remarks on DA 

For simulation periods where a good match between simulated and observed records 

are been obtained, inclusion of DA provides limited forecast improvement over the 

hindcast and forecast period. DA is used in both short-term and seasonal forecasting 

to improve the match between the observed and simulated states at the ToF which in 

turn will improve forecast accuracy. Even for well-calibrated models deviations can 

occur because of errors in the raingauge measurements or poor representativeness of 

the network of the storms and spatial patterns. Therefore, it is always recommended 

to use DA methods in operational forecasting.  

During the low rainfall season when the forecasts depend strongly on the initial 

conditions then using DA is expected to improve forecast accuracy. In these 
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simulations the river flows and reservoir storages were updated, but the snow storage 

is not. Adjusting the flows in the model can compensate for any deviations in the 

water storage in the catchment (soil moisture or snow water content). During the high-

rainfall season obtaining the correct initial conditions is still important, but due to the 

large variability in the historical rainfall DA does not significantly improve (reduce) 

the range of the ESP-P forecast ensemble. 

Although DA provides a more accurate representation of total accumulated inflow 

volume at ToF, simulation model biases can however still be included in the forecast 

period. DA should therefore not be included to compensate for poor calibration 

performance, as this could lead to simulation bias in the forecast period. 

 

6.3 System 4 precipitation forecasts 

Figure 6-10 through Figure 6-13 present the results of the forecast simulations 

directly using System 4 forecasts of precipitation for the 7-month forecast period. As 

System 4 based forecast are to be compared to ESP-P based simulation results, System 

4 ensemble members are plotted on ESP-P based terciles for the forecast period. To 

ensure correct visual comparison of simulation results, both System 4 and ESP-P 

result time series were selected from simulation runs, which include DA. Thus 

providing equal accumulated inflow volumes at ToF, limiting the influence of 

accumulated volume errors in the hindcast period. 

The actual observed accumulated inflow time series is presented for each simulation 

period. Results are displayed in chronological order according to the ToF, with high-

rainfall season (Apr-Oct) forecasts preceding low-rainfall season (Oct-Apr) forecasts. 

Due to the large amount of output data, forecast model output plots are only presented 

for the 2002 and 2003 study years. Additional study year forecast results plots can be 

found in Appendix B. 

 

6.3.1 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in Figure 6-10 and Figure 6-11 respectively.  

6.3.1.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

From Figure 6-10 it can be seen that the majority of System 4 ensemble members are 

positioned in the below-normal ESP-P based tercile throughout the forecast period. 

The observed inflow record for the above-average precipitation (El Niño) year 

however indicates normal inflow for the initial forecast months followed by above-

normal inflow. The underestimation of inflow by the System 4 based forecast can be 

attributed to the general underestimation of forecast precipitation (see Section 5.2.2). 

The System 4 based forecast ensemble forms a narrower spread throughout the 

forecast period compared to the ESP-P based terciles. This is due to use of varied 

initial conditions and the use of stochastic physics during System 4 ensemble 



74 

 

generation (see Section 5.1.3) compared to the use of historical varied time series 

during ESP-P ensemble creation. 

 

Figure 6-10 | High-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2002-04-01 

 

 

Figure 6-11 | Low-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2002-10-01 
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6.3.1.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

System 4 based ensemble members in Figure 6-11 appear in a narrower grouping 

throughout the forecast period compared to an ESP-P based terciles, similar to the 

results of preceding high-rainfall season. The majority of these members are located 

in the normal ESP-P based tercile. As the observed time series indicated above-

normal inflow over the entire forecast period, there is also an underestimation of 

precipitation during this low-rainfall season. The introduction of bias corrected 

System 4 precipitation data could therefore be expected to provide some improvement 

in forecast accuracy. 

6.3.2 2003: Below-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2003 are presented in Figure 6-12 and Figure 6-13 respectively.  

6.3.2.1 High-rainfall season (Apr-Oct) ToF: 2003-04-01 

Figure 6-12 shows a greatly improved performance by the System 4 based forecast 

compared to the observed inflows. The System 4 ensemble provides a much narrower 

spread over the forecast period for this below-average precipitation year. The wider 

ESP-P tercile spread is created as a result of the natural annual variability of 

precipitation during the high-rainfall season (see Figure 4-1). 

The System 4 based inflow forecast appear to be able to better represent inflows 

during a below-average precipitation year, but this may just be a result of the climate 

model biases. The application of bias correction scaling factors based long-term 

averages can therefore be expected to increase the forecasted precipitation amounts, 

resulting in higher forecasted inflows than observed. 

6.3.2.2 Low-rainfall season (Oct-Apr) ToF: 2003-10-01 

Figure 6-13 indicates a slight underestimation of forecasted inflow for the System 4 

based ensemble. The narrow width of the forecasted inflow range is found comparable 

to the previous low-rainfall season. Bias correction of forecasted precipitation data 

could potentially increase the forested inflow amount based on the general 

underestimation of System 4 precipitation data. 
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Figure 6-12 | High-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2003-04-01 

 

 

Figure 6-13 | Low-rainfall season forecast: S4_DA ensemble and ESP-P_DA terciles ToF 2003-10-01 
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6.3.3 General remarks on System 4 precipitation forecasts 

Seasonal inflow forecasts based directly on System 4 precipitation forecast generally 

underestimated future accumulated inflow over the high-rainfall season due to 

underestimation of precipitation over this period. This underestimation of 

precipitation could be attributed to the coarse resolution of System 4 variable datasets 

compared to the size of the study area and model biases from the process descriptions. 

Bias correction of raw System 4 precipitation forecast could therefore provide closer 

precipitation estimates to observed values. Seasonal forecasts in the low-rainfall 

achieved relative good accuracy of predicted future inflows, which could be attributed 

to low precipitation estimates and the limited impact of precipitation estimates 

compared to the initial hydrological conditions. Underestimation of accumulated 

inflow was however apparent in periods of above-average precipitation. System 4 

based seasonal forecasts also result in a narrower inflow ensemble spreads compared 

to ESP-P, due to the use of varied initial conditions and the use of stochastic physics 

during System 4 ensemble initialization (see Section 5.1.3). 

 

6.4 Performance of downscaling precipitation forecasts 

6.4.1 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in Figure 6-14 and Figure 6-15 respectively.  

6.4.1.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

Figure 6-14 shows an increase in average predicted inflow with the use bias corrected 

System 4 precipitation data, compared to use of raw precipitation forecast (see Figure 

6-10). With the majority of monthly precipitation scaling factors values larger than 

1.0 (see Figure 5-4), use of bias corrected precipitation data results in a wider 

ensemble spread compared to raw System 4 precipitation forecasts, due to higher 

forecasted inflows. If the mean value of ensemble inflow is to be reported as a single 

best prediction value, the bias corrected System 4 inflow ensemble would provide a 

more accurate estimate of the observed value compared to the raw System 4 results. 

6.4.1.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

Similar to the preceding high-rainfall season, Figure 6-15 shows the improved 

forecast accuracy over the raw System 4 based forecast with introduction bias 

corrected precipitation data. The improvement is especially evident during the first 

three months of the forecast period and can be compared to the raw System 4 

precipitation based inflow forecast (see Figure 6-11). During the majority of the 

forecast period however, accumulated inflow is still underestimated compared to the 

observed record. This underestimation could be partly attributed use of long-term 

average based precipitation scaling factors, reducing the potential to successfully 

reproduce extreme events such as the record high accumulated inflow experienced 

during the 2002 hydrological year. The predominant source to forecast inaccuracy 

however is the inaccurate forecast of total seasonal precipitation by System 4, as 

scaling only adjusts the average of the precipitation time series. 
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Figure 6-14 | High-rainfall season forecast: S4_DA_BC ensemble and ESP-P_DA terciles ToF 2002-04-
01 

 

 

Figure 6-15 | Low-rainfall season forecast: S4_DA_BC ensemble and ESP-P_DA terciles ToF 2002-10-01 
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6.4.2 2003: Below-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2003 are presented in Figure 6-16  and Figure 6-17 respectively.  

6.4.2.1 High-rainfall season (Apr-Oct) ToF: 2003-04-01 

From Figure 6-16 it can be seen that the use of bias corrected System 4 precipitation 

data, increases the forecasted inflow volume significantly compared to the raw System 

4 based forecast, resulting in reduced forecast accuracy (see Figure 6-12). The 

overestimation can be partly attributed to the use of long-term average based 

precipitation scaling factors, as below-average precipitation was experienced during 

the 2003 hydrological year. 

6.4.2.2 Low-rainfall season (Oct-Apr) ToF: 2003-10-01 

Figure 6-17 shows improved performance of the System 4 based forecast with the use 

bias corrected precipitation data (see Figure 6-13). A slight underestimation of 

accumulated inflow volume however still exists during the majority of the forecast 

period. Due to the below-average precipitation experienced during seasonal period, 

bias correction of precipitation data could still result in an underestimation of total 

seasonal precipitation.  

 

Figure 6-16 | Low-rainfall season forecast: S4_DA_BC ensemble and ESP-P_DA terciles ToF 2003-04-01 
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Figure 6-17 | Low-rainfall season forecast: S4_DA_BC ensemble and ESP-P_DA terciles ToF 2003-10-01 

 

6.4.3 General remarks on bias correction of precipitation forecasts 

Bias correction of System 4 precipitation forecasts generally provided increased 

forecast accuracy, compared to raw System 4 precipitation data, for high-rainfall 

seasons with above-average precipitation. Accumulated reservoir inflow was 

underestimated for the raw System 4 based forecast (S4) for the 2002 moderate El 

Niño year, but was improved with the use of bias corrected precipitation data. 

Forecasted inflow ensemble ranges were found to be wider in inflow range compared 

to System 4 precipitation based forecasts, due to increased variability in precipitation 

time series with the introduction scaling factors over 1.0 values. During seasonal 

periods of below-average precipitation, bias correction of System 4 leads to the 

overestimation of precipitation and resultant seasonal inflow. The predominant source 

to forecast inaccuracy however is the inaccurate forecast of total seasonal precipitation 

by System 4, as bias correction scaling only adjusts the average of the precipitation 

time series. 

 

6.5 Introduction of temperature forecasts  

Snow melt processes are important in the Upper Maule catchment. To assess the 

impact of forecasted temperature data, forecasted inflow ensembles based on System 

4 temperature data are plotted on the minimum-maximum ensemble spread of the raw 

System 4 based forecast option including DA (S4_DA.) In comparison, the S4_DA 

forecast scenario uses historical observed temperature averages over the forecast 

period. The potential benefit of using temperature forecasts over historical average 
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values, is the prediction of abnormal temperatures related to ocean–atmosphere 

teleconnections which could have significant hydrological impacts such as increased 

snowmelt. No bias correction was applied to precipitation forecasts used in the 

simulations.  

6.5.1 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in Figure 6-18 and Figure 6-19 respectively.  

6.5.1.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

From Figure 6-18 it can be seen that the introduction of System 4 temperature data 

has resulted in the reduction of the mean forecasted inflow volume compared to the 

S4_DA forecast spread. As discussed in Section 5.2.3, average monthly System 4 

based temperatures were found to be lower than observed values for the months from 

February to September. Outside this period, October to January, average monthly 

System 4 based temperatures were found to be higher than observed values. 

The reduction of forecasted inflow volume is likely to be caused by the biased 

(lower) temperature estimates from System 4. The lower average monthly 

temperatures during the high-rainfall season likely resulted in greater snow 

accumulation and reduced runoff at lower altitudes over the austral winter period. 

This theory would however required further investigation for other years.   



83 

 

 

Figure 6-18 | High-rainfall season forecast: S4T_DA ensemble and S4_DA min-max spread. ToF 2002-
04-01 

 

 

Figure 6-19 | Low-rainfall season forecast: S4T_DA ensemble and S4_DA min-max spread. ToF 2002-
10-01 
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6.5.1.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

Figure 6-19 shows that an improved forecast accuracy was obtained with the 

introduction of System 4 temperature data compared to the S4_DA forecast spread. 

Underestimation of accumulated inflow in the latter months of the forecast period is 

reduced, but still remains lower than the observed record. 

Average monthly System 4 based temperatures were found to be higher than observed 

values for the months of October through January (see Section 5.2.3). Increased 

temperatures during these months would result in increased snowmelt based runoff, 

resulting in increased accumulated inflow during the initial forecast lead months, 

compared to raw System 4 temperature forecasts (see Figure 6-19). 

 

6.5.2 Performance of downscaling temperature forecasts 

To assess the impact bias correction temperature data, forecasted inflow ensembles 

based on System 4 temperature data are plotted on the minimum-maximum ensemble 

spread of the S4_DA forecast option. No precipitation bias correction was applied to 

System 4 precipitation forecasts. 

6.5.3 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in in Figure 6-20 and Figure 6-21 respectively.  

6.5.3.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

From Figure 6-20 it can be seen that the introduction of bias corrected System 4 

temperature data resulted in a more varied forecast ensemble spread of increased 

accumulated inflow. Bias correction resulted in the increase of temperatures for the 

period between April and October, thus increasing snowmelt based runoff. The 

resultant bias correct based ensemble however still underestimates the observed 

inflow.  

6.5.3.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

Figure 6-21 indicates that the introduction of bias corrected System 4 temperature 

data resulted in a significant decreases in the forecasted inflow volume. Review of 

observed temperatures records over this seasonal period reveals below-average 

monthly temperatures were experienced for the period between October and 

November 2002. As bias correction scaling values are based on long-term monthly 

temperature averages, above-average forecasted System 4 temperatures over this time 

period were reduced further by the bias correction process. The effect of these reduced 

temperatures can be seen by the delayed snowmelt period and associated runoff. 
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Figure 6-20 | High-rainfall season forecast: S4T_DA_BC ensemble and S4T_DA min-max spread. ToF 
2002-04-01 

 

 

Figure 6-21 | Low-rainfall season forecast: S4T_DA_BC ensemble and S4T_DA min-max spread. ToF 
2002-10-01 
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6.5.4 General remarks on temperature forecasts 

The use of forecasted temperature data over historical temperature averages can 

potentially provide increased forecast accuracy over periods of above- or below-

average temperatures. This could provide valuable information to reservoir managers, 

especially during the low-rainfall season where inflow is predominantly snowmelt 

based. 

Introduction of System 4 temperature forecast causes shifts in forecasted inflow 

ensembles predominantly due to differences between System 4 temperature forecast 

and historical observed averages. Average monthly System 4 forecasted temperature 

values were found to be lower compared to observed averages for the period from 

February to September and higher for the period from November to January. Bias 

correction scaling factors based on long-term temperature averages aim to reduce this 

difference, but bias correction value during periods of above- or below average 

temperatures is limited. 

 

6.6 Performance of downscaling temperature and precipitation 

data  

 

6.6.1 2002: Above-average precipitation year 

The results of forecasts for the high-rainfall season and the low-rainfall season for 

2002 are presented in Figure 6-22 and Figure 6-23 respectively.  

6.6.1.1 High-rainfall season (Apr-Oct) ToF: 2002-04-01 

From Figure 6-22 it can be seen that the inclusion of System 4 bias corrected 

precipitation data provides increased forecast accuracy compared to the use of 

uncorrected precipitation data (see Figure 6-20). During the initial months of the 

forecast period, the majority of the forecast ensemble members do however 

overestimate inflow volume compared to the observed record.  

6.6.1.2 Low-rainfall season (Oct-Apr) ToF: 2002-10-01 

From Figure 6-23 it can be seen that the inclusion of System 4 bias corrected 

precipitation data increases forecasted inflow during the initial parts of the forecast 

period (see Figure 6-21). This increase in precipitation values however does not offset 

the effect of the temperature reduction as discussed in the previous section. There is 

thus a large underestimation of snowmelt based inflow over the initial forecast period 

due to the delay of the snowmelt period.  

6.6.2 2005: Above-average precipitation year 

The results of the high-rainfall season forecasts for the 2005 study year is presented 

in Figure 6-24 . An ensemble spread comparison of forecast options S4_DA, 

S4_DA_BC and S4TP _DA_BC, is presented in Figure 6-25. 
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6.6.2.1 High-rainfall season (Apr-Oct) ToF: 2005-04-01 

From Figure 6-24 it can be seen that the introduction of bias corrected S4 forecasts 

of both precipitation and temperature data provides a improvement to the seasonal 

forecast performance in this above-average rainfall year. The majority of ensemble 

members indicate a normal to above-normal seasonal inflow period, which 

corresponds well to the observed record. The result shows the potential advantage of 

a using probabilistic based forecast approach over ESP-P based methods during 

periods of above-normal inflow. 

Figure 6-25 shows the stepwise improvement of forecast option performance with 

the introduction of bias corrected precipitation and temperature data. It can be seen 

that with the introduction of bias corrected data, variability between ensemble 

members increases resulting in larger ensemble spreads over the forecast period. 

 

Figure 6-22 | High-rainfall season forecast: S4TP_DA_BC ensemble and ESP-P_DA terciles ToF 2002-
04-01 
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Figure 6-23 | Low-rainfall season forecast: S4_DA_BC ensemble and ESP-P_DA terciles ToF 2003-10-01 

 

 

Figure 6-24 | High-rainfall season forecast: S4TP_DA_BC ensemble and ESP-P_DA terciles ToF 2005-
04-01 
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Figure 6-25 | High-rainfall season forecast ensemble spread comparison of raw System 4 precipitation 
(S4_DA), bias corrected precipitation (S4_DA_BC) and bias corrected precipitation and temperature data 

(S4TP_DA_BC). ToF 2005-04-01 

 

6.6.3 General remarks on bias correction of temperature and 
precipitation forecasts  

In comparison with System 4 bias corrected precipitation inflow forecasts, we find 

that bias-corrected precipitation and temperature forecasts improves mean seasonal 

inflow estimates during the high-rainfall season. During periods of below-average 

precipitation, seasonal inflow volumes are still however overestimated due to the 

limited influence of bias corrected temperature data over this period. During the low-

rainfall season, inclusion of temperature forecasts reduces the accuracy of mean 

seasonal inflow estimates during initial lead months and results in comparable 

performance over latter lead months, when compared to System 4 bias corrected 

precipitation inflow forecasts. 
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7 Seasonal Forecast Verification of climate model-
based forecasts 

 

7.1 Seasonal Forecast Model Bias 

The bias of each seasonal forecast model was calculated as the difference in the 

accumulated inflow mean of the forecast ensemble members and the observed inflow. 

Bias values are expressed as a percentage of the observed value. Table 7-1 and Table 

7-2 presents a summary of calculated forecast model bias at the end of forecast lead 

month 2 and lead month 6, for each selected forecast options and study years. Positive 

bias values indicate an overestimation of forecasted accumulated inflow, while a 

negative bias indicates an underestimation. Mean ensemble inflow values for the ESP-

P and ESP-Q based approaches are calculated from the respective 21 member 

ensembles, which includes inflow ensemble based on the observed data of the 

simulation year. Additional tabulated results presenting calculated forecast bias per 

lead month can be found in Appendix C. 

 

Table 7-1 | Seasonal forecast model bias at end of lead month 2 

 

Forecast Option

No. Name 2002 2003 2004 2005 2002 2003 2004

1 ESP-Q -3.9% 0.0% 2.2% -10.0% -19.2% 17.4% 13.1%

2 ESP-P 7.7% -5.3% 18.0% -12.5% -5.8% 3.4% 5.6%

3 ESP-P_DA 1.6% 6.9% 13.9% -12.4% -6.7% -3.9% -2.4%

4 S4 -0.5% -13.8% -4.3% -24.4% -5.3% 1.7% 2.9%

5 S4_DA -6.6% -1.6% -8.5% -24.3% -6.2% -5.6% -5.0%

6 S4_DA_BC 7.8% 10.5% 8.6% -11.6% -4.8% -3.6% -4.1%

7 S4T -5.3% -19.4% -11.5% -27.1% -4.1% -2.3% -0.1%

8 S4T_DA -10.5% -7.1% -15.1% -26.1% -1.5% -5.1% -3.6%

9 S4T_DA_BC -2.8% -1.3% -8.2% -20.3% -12.1% -8.1% -7.5%

10 S4TP_DA_BC 14.8% 10.8% 8.7% -4.3% -10.8% -6.1% -6.5%

(based on forecast ensemble member average)

High-rainfall season: ToF 01 Apr Low-rainfall season: ToF 01 Oct

Percentage volume error of accumualted inflow at end of Lead month 2
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Table 7-2 | Seasonal forecast model bias at end of 7-month forecast period (lead month 6) 

 

 

7.1.1 High-rainfall season (Apr – Oct) 

When studying high-rainfall season bias values presented in Table 7-2, different 

trends can be observed between the above-average precipitation years (2002, 2005) 

and below-average precipitation years (2003, 2004). The majority of simulated 

forecast options underestimate accumulated inflow during above-average 

precipitation years. This is due to the underestimation of System 4 based precipitation 

data compared to observed values. Bias correction of forecasted temperature and 

precipitation results in increased flow prediction and a decrease in the percentage 

volume error.  

During below-average precipitation years, bias correction of System 4 based 

precipitation data results in the overestimation of inflow. This is due to the application 

of multiplicative scaling factors that are based on long-term precipitation averages. 

As the 2003 and 2004 hydrological years experienced below-average rainfall, scaling 

factors applied to forecasted precipitation data likely resulted in the overestimation of 

seasonal precipitation. For the below-average precipitation years, the use of bias 

corrected System 4 temperature data (S4T_DA) provided improved performance in 

terms of forecast model bias and net accumulated flow per lead month (see Appendix 

C). 

7.1.2 Low-rainfall season (Oct– Apr) 

Overall forecast model bias for the low-rainfall season can be seen to be much lower 

compared to the high rainfall-season. This is due to the increased predictability of 

seasonal inflow over this period, which is highly dependent on the preceding season’s 

total precipitation (see Section 4.6.3). Successful simulation of the snowmelt period 

can therefore provide accurate estimates of seasonal inflow over the low-rainfall 

season.  

Forecast Option

No. Name 2002 2003 2004 2005 2002 2003 2004

1 ESP-Q -16.8% 6.9% 8.3% -17.5% -24.3% 9.0% 13.3%

2 ESP-P -8.5% 12.9% 27.4% -19.5% -7.9% -3.1% 6.3%

3 ESP-P_DA -13.0% 21.0% 23.5% -20.6% -9.8% -10.6% -2.3%

4 S4 -22.6% -9.2% -4.6% -36.4% -8.1% -5.5% 2.7%

5 S4_DA -25.9% 0.2% -7.0% -36.3% -8.9% -11.1% -4.0%

6 S4_DA_BC -6.3% 22.6% 24.6% -17.3% -7.3% -9.5% -3.3%

7 S4T -29.9% -19.4% -18.6% -43.2% -9.7% -9.2% -1.1%

8 S4T_DA -32.7% -9.9% -20.7% -42.7% -7.6% -11.4% -4.1%

9 S4T_DA_BC -23.8% -2.7% -10.6% -35.5% -8.9% -12.5% -5.4%

10 S4TP_DA_BC -0.4% 17.7% 18.7% -13.7% -7.1% -10.5% -4.3%

High-rainfall season: ToF 01 Apr Low-rainfall season: ToF 01 Oct

Percentage volume error of accumualted inflow at end of Lead month 6

(based on forecast ensemble member average)
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From Table 7-2 it can be seen that the majority of forecast options result in a negative 

forecast model bias under 10%. The introduction of bias corrected System 4 

precipitation data (S4_DA_BC) results in a small improvement of forecast model bias 

for all study years. The introduction of bias corrected System 4 temperature data 

(S4T_DA_BC) however appears to results in lower total forecasted inflow.  

The majority of forecast options do however provide estimations of total accumulated 

inflow over a 7-month forecast period within 10% of observed values. Values in Table 

7-2 are based on average forecasted inflow at the end of the forecast period (lead 

month 6). Model bias values calculated per forecast lead month can also be viewed in 

Appendix C to assess model bias development with increasing forecast lead month. 

 

7.2 Ranked Probability Score (RPS) 

The Ranked Probability Score (RPS) measures the accuracy of discrete probabilistic 

based forecasts issued for multi-categorical events in matching observed outcomes 

(see Section 5.6.2). A RPS value of zero would represent a perfect forecast and 

positive values indicate a less than perfect forecast with a maximum value of 1. In the 

following section, RPS results are presented and discussed based on the selected 

seasonal forecast periods in this study, i.e. high-rainfall season and low-rainfall 

season.  

7.2.1 High-rainfall season 

The RPS results for the high-rainfall season are presented in Table 7-3. Colour 

shading has been added to aid visual presentation of results, with green shading 

indicating a perfect RPS score equal by 0, and red shading for a maximum value of 1.  

Table 7-3 | High-rainfall season RPS per forecast option (2002-2005) 

Forecast Option RPS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

4 S4 0.29 0.21 0.21 0.16 0.23 0.18 0.24 

5 S4_DA 0.08 0.14 0.12 0.15 0.17 0.25 0.24 

6 S4_DA_BC 0.05 0.14 0.17 0.16 0.15 0.14 0.13 

7 S4T 0.32 0.24 0.30 0.27 0.32 0.25 0.26 

8 S4T_DA 0.52 0.14 0.18 0.26 0.26 0.30 0.25 

9 S4T_DA_BC 0.10 0.11 0.10 0.11 0.12 0.21 0.21 

10 S4TP_DA_BC 0.05 0.12 0.15 0.16 0.14 0.09 0.10 

 

Table 7-3 indicates high forecast accuracy over initial lead months for the majority of 

forecast options. Higher forecast accuracy is obtained with the introduction of bias 

corrected precipitation data (forecast options 6 and 10). The inclusion of DA also 

provides increased forecast accuracy, which is especially evident during initial lead 

months. Interdiction of temperature forecast data however does not increase forecast 

accuracy and bias correction is required to improve forecast performance. 
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Due to high interannual variation of forecasted reservoir inflow, RPSn results per 

forecast option were evaluated individually for selected study years. Table 7-4 and 

Table 7-5 present RPSn results for the S4_DA and S4TP_DA_BC forecast options. 

Additional high-rainfall season RPSn result tables for each forecast option can be 

found in Appendix D. 

 

Table 7-4 | High-rainfall season - RPSn results for S4_DA forecast option 

High-rainfall season RPSn at end of Lead month 

SoS ToF 0 1 2 3 4 5 6 

2001-10-01 2002-04-01 0.02 0.03 0.07 0.12 0.16 0.47 0.44 

2002-10-01 2003-04-01 0.02 0.07 0.02 0.02 0.00 0.00 0.00 

2003-10-01 2004-04-01 0.19 0.19 0.01 0.04 0.02 0.01 0.01 

2004-10-01 2005-04-01 0.09 0.29 0.39 0.44 0.50 0.50 0.50 

RPS 0.08 0.14 0.12 0.15 0.17 0.25 0.24 

 

From the results in Table 7-4 it can be seen that S4_DA ensemble forecast achieved 

significantly lower RPSn values for the 2003 and 2004 below-average precipitation 

years. Above-average precipitation years (2002, 2005) did not achieved such success 

with decreasing accuracy over the forecast period. This is largely due to the 

underestimation of System 4 precipitation compared to observed values (see Section 

5.2.2). 

 

Table 7-5 | High-rainfall season - RPSn results for S4TP_DA_BC forecast option 

High-rainfall season RPSn at end of Lead month 

SoS ToF 0 1 2 3 4 5 6 

2001-10-01 2002-04-01 0.01 0.12 0.14 0.15 0.13 0.06 0.07 

2002-10-01 2003-04-01 0.04 0.29 0.28 0.27 0.23 0.11 0.13 

2003-10-01 2004-04-01 0.11 0.07 0.14 0.15 0.15 0.10 0.10 

2004-10-01 2005-04-01 0.05 0.01 0.06 0.08 0.05 0.08 0.09 

RPS 0.05 0.12 0.15 0.16 0.14 0.09 0.10 

 

Table 7-5 indicates that the introduction of bias corrected System 4 precipitation and 

temperature data greatly increases the forecast accuracy for the above-average 

precipitation years of 2002 and 2005. The accuracy of below-average precipitation 

years 2003 and 2004 is however reduced. This is due to the overcorrection of 

forecasted precipitation data over the below-average precipitation period  

Table 7-6 has been constructed to assess forecast option RPS values based on the 2002 

and 2005 above-average precipitation years. From these results, it is clear that the 

introduction of bias corrected System 4 precipitation data greatly increases the 

forecast accuracy over these above-average precipitation years. The introduction of 



94 

 

bias corrected temperature data alone has a smaller positive effect on seasonal forecast 

accuracy as inflow is predominantly generated though precipitation. 

Table 7-6 | High-rainfall season RPS per forecast option (2002, 2005) 

Forecast Option RPS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

4 S4 0.23 0.20 0.23 0.24 0.33 0.36 0.47 

5 S4_DA 0.05 0.16 0.23 0.28 0.33 0.48 0.47 

6 S4_DA_BC 0.02 0.09 0.12 0.11 0.11 0.14 0.11 

7 S4T 0.18 0.16 0.31 0.28 0.42 0.41 0.50 

8 S4T_DA 0.45 0.16 0.30 0.39 0.42 0.53 0.50 

9 S4T_DA_BC 0.09 0.10 0.18 0.19 0.24 0.42 0.41 

10 S4TP_DA_BC 0.03 0.06 0.10 0.11 0.09 0.07 0.08 

 

7.2.2 Low-rainfall season 

RPS results for the low-rainfall season are presented in Table 7-7.  

Table 7-7 | Low-rainfall season - RPS per forecast option (2002-2004) 

Forecast Option RPS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

4 S4 0.36 0.18 0.16 0.07 0.13 0.08 0.15 

5 S4_DA 0.08 0.10 0.03 0.06 0.06 0.16 0.15 

6 S4_DA_BC 0.05 0.16 0.18 0.16 0.14 0.12 0.13 

7 S4T 0.31 0.23 0.26 0.19 0.25 0.16 0.18 

8 S4T_DA 0.42 0.10 0.09 0.19 0.16 0.23 0.17 

9 S4T_DA_BC 0.10 0.09 0.03 0.04 0.04 0.13 0.12 

10 S4TP_DA_BC 0.05 0.16 0.19 0.19 0.17 0.09 0.10 

 

Table 7-7 indicates that the reduced variability of inflow over the low-rainfall seasons, 

lead to increased overall forecast accuracy when compared to high-rainfall results. 

Forecast accuracy was however reduced with the introduction of bias corrected 

precipitation data (S4_DA_BC; S4T_DA_BC), related to the inaccurate estimation of 

precipitation. Increased forecast accuracy was obtained with the use of bias corrected 

temperature data, due to the important role temperature plays in runoff generation 

during this season. 

Table 7-8 and Table 7-9 present RPSn results for the S4_DA and S4TP_DA_BC 

forecast options. Additional low-rainfall season RPSn result tables for each forecast 

option can be found in Appendix D. 
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Table 7-8 | Low-rainfall season - RPSn results for S4_DA forecast option 

Dry Season RPSn at end of Lead month 

SoS ToF 0 1 2 3 4 5 6 

2002-04-01 2002-10-01 0.02 0.03 0.07 0.12 0.16 0.47 0.44 

2003-04-01 2003-10-01 0.02 0.07 0.02 0.02 0.00 0.00 0.00 

2004-04-01 2004-10-01 0.19 0.19 0.01 0.04 0.02 0.01 0.01 

RPS 0.08 0.10 0.03 0.06 0.06 0.16 0.15 

 

Table 7-8 shows that excellent seasonal forecast accuracy was achieved by the S4_DA 

ensemble forecast for the 2003 and 2004 below-average precipitation years. Similar 

to the high-rainfall season, above-average precipitation years did not achieve good 

forecast accuracy. This is especially evident for latter lead months.  

 

Table 7-9 | Low-rainfall season - RPSn results for S4TP_DA_BC forecast option 

Dry Season RPSn at end of Lead month 

SoS ToF 0 1 2 3 4 5 6 

2002-04-01 2002-10-01 0.01 0.12 0.14 0.15 0.13 0.06 0.07 

2003-04-01 2003-10-01 0.04 0.29 0.28 0.27 0.23 0.11 0.13 

2004-04-01 2004-10-01 0.11 0.07 0.14 0.15 0.15 0.10 0.10 

RPS 0.05 0.16 0.19 0.19 0.17 0.09 0.10 

 

Table 7-9 indicates that the introduction of bias corrected System 4 precipitation and 

temperature data greatly increases the forecast accuracy for the above-average 

precipitation year of 2002. The accuracy of below-average precipitation years 2003 

and 2004 is however reduced, similar to results obtained for the high-rainfall season 

forecast period (see Table 7-5).  

Table 7-10 presents a comparison of forecast option RPS values based on the 2003 

and 2004 below-average precipitation years. From these results, it can be seen that the 

introduction of bias corrected System 4 precipitation data reduces forecast accuracy 

over these below-average precipitation years. The introduction of bias corrected 

temperature data (S4T_DA_BC) however has a positive effect on seasonal forecast 

accuracy, and overall accuracy is of this forecast option is found similar to the S4_DA 

forecast option. 

 

 

 

 



96 

 

Table 7-10 | Low-rainfall season RPS per forecast option (2003, 2004) 

Forecast Option RPS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

4 S4 0.35 0.22 0.20 0.09 0.12 0.01 0.00 

5 S4_DA 0.11 0.13 0.01 0.03 0.01 0.01 0.01 

6 S4_DA_BC 0.08 0.19 0.22 0.21 0.18 0.14 0.16 

7 S4T 0.46 0.33 0.30 0.26 0.22 0.08 0.02 

8 S4T_DA 0.59 0.11 0.05 0.14 0.09 0.07 0.01 

9 S4T_DA_BC 0.12 0.12 0.02 0.03 0.01 0.01 0.00 

10 S4TP_DA_BC 0.08 0.18 0.21 0.21 0.19 0.11 0.12 

 

7.2.3 General remarks on RPS  

The RPS results indicate that the most accurate seasonal inflow forecast for the high-

rainfall season were obtained with the use of bias corrected- precipitation and 

temperature forecasts. However, during periods of below-average precipitation, 

forecast accuracy is reduced due to overestimation of bias corrected precipitation data. 

Additional investigation of alternative precipitation bias correction methods could 

provide better representation of annual precipitation variability to improve bias 

correction and forecast performance over periods of below-average precipitation. 

During the low-rainfall season, the most accurate seasonal inflow forecasts are 

obtained with the use of bias corrected temperature data alone. This is due to the 

limited influence of low precipitation total over this period.  

 

7.3 Ranked Probability Skill Score (RPSS) 

The Ranked Probability Skill Score (RPSS) measures the RPS improvement of 

forecast to a reference forecast (see Section 5.6.3). In this study, the seasonal forecast 

option based on raw System 4 precipitation forecast ensemble (S4) was used as the 

RPSref reference forecast. This would allow for the assessment on forecast benefit for 

System 4 based forecast options. The RPSS results for high-rainfall and low-rainfall 

season forecasts are presented in Table 7-11 and Table 7-12 respectively. Positive 

RPSS scores indicated a forecast benefit over a raw System 4 precipitation forecast 

based approach (forecast option S4). 
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Table 7-11 | High-rainfall season RPSS per forecast option (2002-2005) 

Forecast Option RPSS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

5 S4_DA 0.73 0.31 0.43 0.05 0.24 -0.34 -0.01 

6 S4_DA_BC 0.83 0.34 0.21 0.02 0.35 0.22 0.43 

7 S4T -0.11 -0.17 -0.42 -0.68 -0.41 -0.35 -0.10 

8 S4T_DA -0.80 0.35 0.18 -0.63 -0.13 -0.64 -0.08 

9 S4T_DA_BC 0.64 0.48 0.54 0.33 0.45 -0.17 0.12 

10 S4TP_DA_BC 0.82 0.41 0.28 -0.01 0.39 0.52 0.57 

 

Table 7-11 indicates an increase in forecast skill improvement over most lead months 

for 4 of the 6 forecast options. The introduction of temperature data (S4T and 

S4T_DA) indicates a reduction in forecast performance, which is however 

significantly improved with bias correction of temperature data. The introduction of 

bias corrected precipitation data however provides the greatest forecast benefits, with 

resultant forecast skill improvement over almost all lead months. A general reduction 

in forecast option skill can be seen with increasing lead month time, with a large 

decreases in forecast skill occurring at the end lead month 3.  

 

Table 7-12 | Low-rainfall season RPSS per forecast option (2002-2004) 

Forecast Option RPSS at end of Lead month 

No. Name 0 1 2 3 4 5 6 

5 S4_DA 0.79 0.47 0.78 0.16 0.54 -1.07 -0.01 

6 S4_DA_BC 0.85 0.13 -0.15 -1.39 -0.05 -0.56 0.10 

7 S4T 0.12 -0.28 -0.66 -1.83 -0.85 -1.01 -0.20 

8 S4T_DA -0.17 0.46 0.41 -1.83 -0.23 -1.93 -0.16 

9 S4T_DA_BC 0.73 0.51 0.82 0.47 0.72 -0.67 0.17 

10 S4TP_DA_BC 0.85 0.12 -0.19 -1.82 -0.26 -0.17 0.30 

 

Table 7-12 indicates the largest forecast benefit in the low-rainfall season was with 

the introduction of bias corrected temperature data. The inclusion of bias corrected 

precipitation forecasts reduces forecast skill. RPSS results for the remaining forecast 

options are mixed due to limited variation in forecast estimates and RPS results. A 

general reduction in forecast skill can be seen with increasing lead month time. A 

large decrease in forecast skill can be seen occurring for the majority of forecast 

options at lead month 3. The reduction corresponds to the end of January, where 

snowmelt contribution to runoff is significantly reduced and accumulated inflow per 

month decreases. The RPS value for the raw System precipitation forecast (S4), at the 

end of lead month 3 was 0.09, resulting in large negative RPSS values for the 

remaining forecast options. 
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7.4 General remarks on Forecast Verification 

Seasonal forecast model bias during the high-rainfall season was reduced with the use 

of bias corrected System 4 forecasted precipitation data over ESP based approaches. 

This was especially evident over longer lead time periods. Due to low amount of 

precipitation and variability during the low-rainfall seasons, forecast bias is in general, 

considerably lower compared to high-rainfall season values. Limited variation in 

seasonal forecast bias occurs over the low-rainfall season for all forecast options. The 

introduction of bias corrected precipitation data does however reduce forecast bias 

over longer lead times. 

For high-rainfall season forecasts, improved forecast skill for all lead month times is 

evident with the introduction of bias corrected precipitation data. Forecast skill can 

however be negatively effected over period of below-average precipitation where bias 

correction of precipitation overestimates precipitation totals. Introduction of 

temperature provide improved forecast skill up to the end of lead month 4. For low-

rainfall season forecasts, introduction of bias corrected precipitation reduces forecast 

skill over periods of below-average precipitation. Use of bias corrected temperature 

data improved forecast skill up to the end of lead month 4. For both high-rainfall and 

low-rainfall seasons, incorporation of DA improves forecast accuracy and skill 

predominantly over the initial forecast lead months.  
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8 Discussion and Conclusions 
 

8.1 Conclusions 

This study presents an evaluation of the use of seasonal precipitation and temperature 

forecasts to predict inflow volumes to the Colbún Reservoir located at the outlet of 

the Upper Maule River Basin, Chile. The discussion and conclusions drawn 

throughout this study are summarised below. 

The ESP-Q method provides valuable information in terms of historical ranges of 

accumulated seasonal inflow volumes. During the low-rainfall season however, ESP-

Q based inflow ensembles create a wide forecast tercile range due to the natural annual 

variability of snowmelt volumes over this seasonal period. Seasonal inflow 

estimations based on the ESP-Q therefore are limited in terms of forecast accuracy 

due to the natural variability in the high-rainfall and low-rainfall seasons. If inflow 

estimations are to be based on the average value of forecast ensemble members, large 

volumes error can occur during periods of above- or below-normal inflow. 

The Extended Streamflow prediction or ESP-P method was found to be effective and 

helpful to categorize ranges of possible future water volumes, however the quality of 

output data is heavily reliant on the rainfall-runoff model calibration. During the high-

rainfall season, ESP-P based inflow ensembles span a wide range of predicted inflow 

volumes over the forecast period due to the high inherent variability of seasonal 

precipitation. ESP-P based forecast ensembles generally higher forecast accuracy in 

terms of predicted mean inflow compared to the ESP-Q based approach during this 

seasonal period, due to the continuous simulation of catchment water storages by the 

calibrated rainfall-runoff model used by the ESP-P approach.  

During the low-rainfall season, the ESP-P method was found to greatly outperform 

the ESP-Q based approach. This was due to the continuous simulation of catchment 

conditions during the hindcast and forecast period. As accumulated inflow during the 

low-rainfall seasons was to be highly dependent on the preceding season’s total 

precipitation, accurate simulation of accumulated snowfall would allow accurate 

predictions of inflow volumes during the snowmelt period. The limited average 

precipitation during the low-rainfall season also reduces ensemble variability over this 

period, providing a narrow inflow ensemble spread over the 7-month forecast period. 

Data Assimilation (DA) of reservoir levels and streamflows over the hindcast period 

allows for increased accuracy in simulated initial hydrological conditions up to the 

ToF. Inclusion of DA results in improved forecast accuracy and skill predominantly 

over the initial forecast lead months. For hindcast periods where a good match 

between simulated and observed records are been obtained, inclusion of DA provides 

limited result improvement over the hindcast and forecast period. Although DA 

provides a more accurate representation of accumulated inflow volume at ToF, 

simulation model biases can however still be included in the forecast period.  
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The ensemble inflows generated by the raw System 4 precipitation forecasts resulted 

in reduced forecast accuracy over the high-rainfall season, due to the underestimation 

of observed precipitation. Higher accuracy in the low-rainfall season was however 

largely due to limited precipitation over this period and the strong influence of the 

initial conditions. The underestimation of forecast precipitation data may be due to 

coarse resolution of System 4 variable datasets compared to the size of the study area 

but is also a result of the limitations in the ability of the climate model to represent the 

processes affecting this area.  

The introduction of bias corrected System 4 precipitation provided improved inflow 

forecast accuracy compared to raw System 4 precipitation forecast during high-

rainfall seasonal periods with above-average precipitation. However, during high-

rainfall seasonal periods of below-average precipitation, bias correction of System 4 

data leads (or led) to the overestimation of precipitation and resultant seasonal inflow. 

The predominant source to forecast inaccuracy however is the inaccurate forecast of 

total seasonal precipitation by System 4, as bias correction scaling only adjusts the 

average of the precipitation time series. Introduction of bias corrected System 4 

precipitation to low-rainfall season inflow forecasts results in marginal reduction in 

forecast model bias compared to a raw System 4 precipitation forecast, due to the 

limited amount of precipitation based runoff during this season. 

The use of System 4 temperature forecasts appear to have a relatively limited effect 

on seasonal inflow forecast performance. Variation in estimated inflow volumes are 

predominantly caused by differences in the distribution of average monthly 

temperatures between System 4 forecast and observed values. Generally, average 

System 4 temperatures were found to be lower than observed values during the austral 

winter period and higher than observed values in spring. This results in the simulated 

overestimation of accumulated snow in the winter period and earlier onset of the 

snowmelt period, resulting in a general reduction of inflow volumes compared to the 

raw System 4 precipitation based forecast. Bias correction of System 4 temperature 

data reduced forecast model bias in the high-rainfall seasons compared to a raw 

System 4 temperature forecast, with comparable results in the low-rainfall season. The 

use of bias corrected System 4 temperature resulted in marginal improvement of 

forecast accuracy and skill up to lead month 4, when compared to a raw System 4 

precipitation based forecasts. 

Seasonal forecasts including bias-corrected System 4 values of both precipitation and 

temperature data provided the highest forecast accuracy and skill for above-average 

precipitation years during the high-rainfall season. Seasonal inflow was however. 

overestimated during below-average precipitation years due to the overcorrection of 

precipitation forecasts. Performance of System 4 based low-rainfall season forecast 

using both precipitation and temperature data, can be deemed comparable to the 

majority of forecast options with a general slight underestimation of seasonal inflow.  

In summary, the study shows that the use of bias corrected seasonal precipitation and 

temperature forecasts from CGCM over resampled historical meteorological data, can 

improve seasonal hydrological forecast accuracy and skill over periods of above-
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average rainfall typically associate with the El Niño-Southern Oscillation (ENSO). 

For reservoir managers, this improvement in forecast skill provides valuable 

information related to potential hydrological effects of ocean-atmosphere 

teleconnections, to aid long-term planning of water resources management and 

hydropower production. Due to increased predictability of predominantly snowmelt-

based inflow during the low-rainfall season, accurate simulation of initial hydrological 

conditions such as reservoir water level and accumulated snow, can provide accurate 

low-rainfall seasonal hydrological forecasts for long lead times with the use of 

forecasted precipitation and temperature data. Increases in forecast accuracy and skill 

over an ESP based approach during the low-rainfall season was however marginal. 

 

8.2 Study Limitations 

In terms of observations data, constraints limiting accurate representation of the study 

area climatology are listed below: 

 Limited historical observed precipitation and temperature data for large parts 

of the study area, especially for most southern portion of the basin. This 

makes accurate calibration challenging. 

 Reservoir regulation is based on observed reservoir releases records and not 

on regulation rules. This may affect the response to forecasts especially in 

extreme years. 

Aspects of limitations when applying forecast verification metrics are listed below: 

 Seasonal forecast verification was applied to a limited number of study years 

(4) and seasonal forecast periods (2). Verification of additional years and 

simulation periods would provide valuable additional information. 

 The seasonal forecast verification was implemented with regard to a multi-

categorical approach of events three categories defined by ESP-P based 

terciles. Other possible approaches, such as binary events or continuous 

variables, were not tested in this study. 

 Limited forecast verification methods were applied to seasonal forecasts. 

Additional methods such as the Relative Operating Characteristics (ROC) and 

Reliability diagrams could provide additional information on the forecast 

model performance. 

 

8.3 Improvements and Future Work 

This study investigated the potential performance of rainfall-runoff based forecasting 

system using precipitation and temperature data produced by a probabilistic-based 

global climate forecast system and corrected a simplistic downscaling method. Ideas 

for potential model improvements and further investigation are mentioned below: 
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 Simulation of additional study years and seasonal periods to assess model 

performance over varied conditions. More detailed assessment of forecast 

model performance as a function of lead month. 

 

 Evaluation of uncertainty introduced with the use of reservoir regulation rules 

compared the observed reservoir releases records used in this study. 

 

 The use and comparison of gridded climatic variable datasets from alternative 

seasonal forecasting models such as Glosea5 (MacLachlan, et al., 2015) and 

CFSv2 (Saha, et al., 2014). 

 

 Data Assimilation (DA) of snow station observations could provide better 

estimates of seasonal snow cover depth and distribution at the start of the 

forecast period. This could potentially provide increased forecast accuracy of 

snowmelt based runoff and timing of snowmelt events. 

 

 The use of additional downscaling methods such as Gamma Quantile 

Mapping (GQM) for precipitation data and Empirical Gamma Quantile 

Mapping (eQM) for temperature data. These methods apply linear 

transformation functions to each quantile of the forecasted data, potentially 

providing better representation of seasonal climate variability compared to 

single linear scaling values. 

 

 Scaling factors used for the bias correction of forecasted precipitation data are 

dependent on the month of the year and forecast lead month number. The 

introduction of an additional dependency, amount of total forecasted 

precipitation, could potentially allow annual varying scaling factors to be 

applied to raw forecasted data. As found in this study, application of the 

scaling factors obtained from long term-averages, tend to overestimate 

(underestimate) seasonal periods of below-average (above-average) 

precipitation. 

 

 A constant hindcast period of 6 months was used this his study. Shortening of 

the hindcast period could be tested to assess the impact of shorter model 

warm-up periods over different seasons. 
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Appendix A | Analysis year selection – Hydrological analysis 

 

The average monthly precipitation and Colbún Reservoir inflow for selected analysis 

years (2002, 2003, 2004, 2005) are presented in Figure A-1 and Figure A-2 

respectively. 

 

Figure A-1 | Catchment-based total monthly precipitation per selected analysis year 

 

Figure A-2 | Colbún Reservoir monthly accumulated inflow per selected analysis year 
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Figure A-2 illustrates the two seasonal inflow peaks experienced over the high-rainfall 

and snowmelt periods for the above average-precipitation years of 2002 and 2005 (see 

Figure A-1). Early seasonal forecast of above-average seasonal inflow would provide 

reservoir managers with valuable temporal information related to reservoir filling, 

optimisation of hydropower generation and water management between upstream 

reservoirs. The relationship between high-rainfall season precipitation totals and 

subsequent low-rainfalls seasonal reservoir inflow (see Section 4.6.3), could also 

provide reservoir managers with an initial estimate of seasonal inflow over the low-

rainfall season. 

Figure A-2 also shows greatly reduced seasonal inflow peaks were experienced during 

2003 and 2004, due to the below-average precipitation experienced over the preceding 

high-rainfall seasons (see Figure A-1). This two-year period of below-average 

reservoir inflow would be critical for reservoir management due to limited water 

supply and carry over storage for the subsequent years. 

Figure A-3 compares average monthly observed temperatures for selected analysis at 

the LoAguirre temperature station. 

 

Figure A-3 | LoAguirre Average monthly temperatures for selected analysis years 

 

Figure A-3 indicates similar below-average temperatures were experienced for above-

average precipitation years 2002 and 2005. During the below-average precipitation 

years of 2003 and 2004, above-average temperatures were experienced over the 

winter and spring period.  
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Appendix B | Additional seasonal forecast model output plots for selected forecast 

options 
 

Forecast Option 5: S4_DA 
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Forecast Option 6: S4_DA_BC 
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Forecast Option 10: S4TP_DA_BC 
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Appendix C | Results tables of accumulated inflow and percentage volume error 

per forecast option 

 

Table B-1 | Summary of selected Seasonal Forecast options 

 

 

 

 

  

No. Name Precipitation Temperature

1 ESP-Q x x

2 ESP-P x x

3 ESP-P_DA x x x

4 S4 x x

5 S4_DA x x x

6 S4_DA_BC x x x x

7 S4T x x x

8 S4T_DA x x x x

9 S4T_DA_BC x x x x x

10 S4TP_DA_BC x x x x x x

Forecast Option

 Includes 

Downscaling 

of Temp Data 

Ensemble Streamlow prediction based on 

Inflows after ToF based on
Inflows before ToF based 

on

Historical 

Streamflows

Historical 

Precipitation 

(Rainfall-

runoff Model)
Historical 

Streamflows 

ESP-Q

Includes DA 

of discharge 

and water 

levels

Historical 

Precipitation 

ESP-P

System 4  forecast variable 

(15 member ensemble)  Includes 

Downscaling 

of Precip 

Data 
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SoS

ToF

EoS

No.

- Observed Inflow 3439.5 - 3744.3 - 4409.4 - 5238.1 -

1 ESP-Q 3439.5 0.0% 3722.7 -0.6% 4275.5 -3.0% 5032.4 -3.9%

2 ESP-P 3728.4 8.4% 4133.6 10.4% 4796.2 8.8% 5643.2 7.7%

3 ESP-P_DA 3442.8 0.1% 3812.1 1.8% 4473.9 1.5% 5320.6 1.6%

4 S4 3728.4 8.4% 4038.0 7.8% 4609.0 4.5% 5211.1 -0.5%

5 S4_DA 3439.6 0.0% 3719.7 -0.7% 4288.1 -2.8% 4890.1 -6.6%

6 S4_DA_BC 3442.8 0.1% 3777.5 0.9% 4663.6 5.8% 5648.0 7.8%

7 S4T 3672.2 6.8% 3973.4 6.1% 4462.2 1.2% 4958.4 -5.3%

8 S4T_DA 3442.8 0.1% 3704.5 -1.1% 4193.1 -4.9% 4689.3 -10.5%

9 S4T_DA_BC 3442.8 0.1% 3709.5 -0.9% 4327.7 -1.9% 5089.9 -2.8%

10 S4TP_DA_BC 3442.8 0.1% 3764.9 0.5% 4725.6 7.2% 6014.6 14.8%

Forecast Option

No. Name

- Observed Inflow 5945.5 - 7486.0 - 8412.3 - 9439.4 -

1 ESP-Q 5781.2 -2.8% 6475.1 -13.5% 7155.2 -14.9% 7857.2 -16.8%

2 ESP-P 6497.9 9.3% 7345.7 -1.9% 7992.9 -5.0% 8635.1 -8.5%

3 ESP-P_DA 6174.9 3.9% 7022.5 -6.2% 7669.6 -8.8% 8209.7 -13.0%

4 S4 5844.7 -1.7% 6382.6 -14.7% 6818.5 -18.9% 7301.4 -22.6%

5 S4_DA 5523.5 -7.1% 6061.4 -19.0% 6497.2 -22.8% 6993.7 -25.9%

6 S4_DA_BC 6571.1 10.5% 7411.9 -1.0% 8120.5 -3.5% 8841.0 -6.3%

7 S4T 5386.4 -9.4% 5724.7 -23.5% 6047.1 -28.1% 6617.7 -29.9%

8 S4T_DA 5117.3 -13.9% 5455.6 -27.1% 5778.0 -31.3% 6348.5 -32.7%

9 S4T_DA_BC 5840.0 -1.8% 6376.2 -14.8% 6782.1 -19.4% 7195.3 -23.8%

10 S4TP_DA_BC 7160.3 20.4% 8061.3 7.7% 8769.4 4.2% 9397.6 -0.4%

6

High Rainfall Season 2002

01/10/2001

01/04/2002

31/10/2002 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name

3 4 5
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SoS

ToF

EoS

No.

- Observed Inflow 5001.4 - 5999.9 - 7348.2 - 8927.4 -

1 ESP-Q 5001.4 0.0% 5694.2 -5.1% 6495.7 -11.6% 7209.1 -19.2%

2 ESP-P 5025.2 0.5% 5916.6 -1.4% 7005.3 -4.7% 8411.4 -5.8%

3 ESP-P_DA 5001.4 0.0% 5848.2 -2.5% 6922.5 -5.8% 8328.0 -6.7%

4 S4 5025.2 0.5% 5924.3 -1.3% 7034.2 -4.3% 8456.6 -5.3%

5 S4_DA 5001.4 0.0% 5856.1 -2.4% 6951.5 -5.4% 8373.3 -6.2%

6 S4_DA_BC 5001.4 0.0% 5932.1 -1.1% 7043.8 -4.1% 8499.7 -4.8%

7 S4T 4705.2 -5.9% 5621.8 -6.3% 7267.6 -1.1% 8558.9 -4.1%

8 S4T_DA 5001.4 0.0% 5864.7 -2.3% 7501.9 2.1% 8791.6 -1.5%

9 S4T_DA_BC 5001.4 0.0% 5678.0 -5.4% 6547.7 -10.9% 7847.7 -12.1%

10 S4TP_DA_BC 5001.4 0.0% 5724.8 -4.6% 6616.0 -10.0% 7965.9 -10.8%

Forecast Option

No. Name

- Observed Inflow 9979.4 - 10400.7 - 10731.2 - 11036.3 -

1 ESP-Q 7617.4 -23.7% 7854.8 -24.5% 8072.1 -24.8% 8359.8 -24.3%

2 ESP-P 9159.9 -8.2% 9514.6 -8.5% 9812.9 -8.6% 10159.8 -7.9%

3 ESP-P_DA 9076.0 -9.1% 9430.5 -9.3% 9728.8 -9.3% 9950.1 -9.8%

4 S4 9219.0 -7.6% 9562.5 -8.1% 9843.9 -8.3% 10142.3 -8.1%

5 S4_DA 9135.0 -8.5% 9478.5 -8.9% 9759.8 -9.1% 10058.3 -8.9%

6 S4_DA_BC 9277.9 -7.0% 9624.8 -7.5% 9901.1 -7.7% 10229.6 -7.3%

7 S4T 9115.8 -8.7% 9441.1 -9.2% 9703.6 -9.6% 9961.8 -9.7%

8 S4T_DA 9348.1 -6.3% 9673.4 -7.0% 9935.9 -7.4% 10194.1 -7.6%

9 S4T_DA_BC 8931.0 -10.5% 9395.7 -9.7% 9737.6 -9.3% 10056.4 -8.9%

10 S4TP_DA_BC 9080.4 -9.0% 9557.1 -8.1% 9898.7 -7.8% 10247.7 -7.1%

3 4 5 6

Low Rainfall Season 2002 / 2003

01/04/2002

01/10/2002

01/04/2003 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name
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SoS

ToF

EoS

No.

- Observed Inflow 5741.2 - 6034.9 - 6363.6 - 7335.0 -

1 ESP-Q 5741.2 0.0% 6024.1 -0.2% 6577.0 3.4% 7333.9 0.0%

2 ESP-P 4834.9 -15.8% 5168.0 -14.4% 5846.6 -8.1% 6945.5 -5.3%

3 ESP-P_DA 5741.2 0.0% 6061.9 0.4% 6742.7 6.0% 7842.8 6.9%

4 S4 4834.9 -15.8% 5090.7 -15.6% 5597.7 -12.0% 6320.3 -13.8%

5 S4_DA 5741.2 0.0% 5983.5 -0.9% 6495.1 2.1% 7218.2 -1.6%

6 S4_DA_BC 5741.2 0.0% 6047.0 0.2% 6857.2 7.8% 8107.9 10.5%

7 S4T 4827.3 -15.9% 5069.8 -16.0% 5463.6 -14.1% 5913.2 -19.4%

8 S4T_DA 5741.2 0.0% 5968.5 -1.1% 6366.0 0.0% 6817.5 -7.1%

9 S4T_DA_BC 5741.2 0.0% 5979.0 -0.9% 6501.8 2.2% 7240.2 -1.3%

10 S4TP_DA_BC 5741.2 0.0% 6035.2 0.0% 6854.9 7.7% 8127.6 10.8%

Forecast Option

No. Name

- Observed Inflow 7999.8 - 8469.3 - 8949.5 - 9505.0 -

1 ESP-Q 8082.7 1.0% 8776.5 3.6% 9456.7 5.7% 10158.7 6.9%

2 ESP-P 7972.5 -0.3% 9052.0 6.9% 9977.6 11.5% 10731.6 12.9%

3 ESP-P_DA 8870.0 10.9% 9949.5 17.5% 10875.1 21.5% 11503.2 21.0%

4 S4 6984.2 -12.7% 7619.0 -10.0% 8181.0 -8.6% 8627.3 -9.2%

5 S4_DA 7882.5 -1.5% 8517.4 0.6% 9079.4 1.5% 9525.7 0.2%

6 S4_DA_BC 9097.9 13.7% 10064.1 18.8% 10928.2 22.1% 11652.2 22.6%

7 S4T 6329.6 -20.9% 6725.4 -20.6% 7125.1 -20.4% 7662.3 -19.4%

8 S4T_DA 7233.9 -9.6% 7629.7 -9.9% 8029.4 -10.3% 8566.6 -9.9%

9 S4T_DA_BC 7934.7 -0.8% 8483.1 0.2% 8909.9 -0.4% 9248.9 -2.7%

10 S4TP_DA_BC 9189.4 14.9% 10033.8 18.5% 10690.5 19.5% 11189.9 17.7%

6

High Rainfall Season 2003

01/10/2002

01/04/2003

31/10/2003 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name

3 4 5
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SoS

ToF

EoS

No.

- Observed Inflow 3229.2 - 3763.8 - 4309.9 - 4631.0 -

1 ESP-Q 3229.2 0.0% 3920.6 4.2% 4722.1 9.6% 5435.5 17.4%

2 ESP-P 3485.5 7.9% 4111.3 9.2% 4516.1 4.8% 4787.7 3.4%

3 ESP-P_DA 3229.2 0.0% 3810.7 1.2% 4179.9 -3.0% 4449.8 -3.9%

4 S4 3485.5 7.9% 4077.2 8.3% 4464.2 3.6% 4710.8 1.7%

5 S4_DA 3229.2 0.0% 3780.1 0.4% 4126.2 -4.3% 4371.2 -5.6%

6 S4_DA_BC 3229.2 0.0% 3844.2 2.1% 4211.3 -2.3% 4462.9 -3.6%

7 S4T 3260.5 1.0% 3803.7 1.1% 4249.5 -1.4% 4522.3 -2.3%

8 S4T_DA 3229.2 0.0% 3719.4 -1.2% 4123.0 -4.3% 4393.8 -5.1%

9 S4T_DA_BC 3229.2 0.0% 3607.5 -4.2% 3914.5 -9.2% 4254.9 -8.1%

10 S4TP_DA_BC 3229.2 0.0% 3656.0 -2.9% 3981.6 -7.6% 4347.0 -6.1%

Forecast Option

No. Name

- Observed Inflow 4931.1 - 5164.3 - 5406.8 - 6050.3 -

1 ESP-Q 5843.8 18.5% 6081.2 17.8% 6306.2 16.6% 6593.9 9.0%

2 ESP-P 5113.1 3.7% 5362.4 3.8% 5570.6 3.0% 5862.7 -3.1%

3 ESP-P_DA 4774.9 -3.2% 5024.1 -2.7% 5231.9 -3.2% 5410.1 -10.6%

4 S4 5032.7 2.1% 5273.6 2.1% 5466.2 1.1% 5717.4 -5.5%

5 S4_DA 4692.8 -4.8% 4933.7 -4.5% 5126.3 -5.2% 5376.3 -11.1%

6 S4_DA_BC 4779.5 -3.1% 5013.3 -2.9% 5198.4 -3.9% 5474.6 -9.5%

7 S4T 4838.2 -1.9% 5074.7 -1.7% 5262.9 -2.7% 5491.3 -9.2%

8 S4T_DA 4709.2 -4.5% 4945.7 -4.2% 5133.9 -5.0% 5362.3 -11.4%

9 S4T_DA_BC 4606.3 -6.6% 4857.3 -5.9% 5050.2 -6.6% 5295.8 -12.5%

10 S4TP_DA_BC 4701.9 -4.6% 4957.2 -4.0% 5145.9 -4.8% 5415.2 -10.5%

6

Low Rainfall Season 2003 / 2004

01/04/2003

01/10/2003

01/04/2004 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name

3 4 5
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SoS

ToF

EoS

No.

- Observed Inflow 2186.1 - 2821.2 - 3169.7 - 3696.3 -

1 ESP-Q 2186.1 0.0% 2468.8 -12.5% 3021.6 -4.7% 3778.5 2.2%

2 ESP-P 2318.1 6.0% 2649.9 -6.1% 3322.2 4.8% 4361.9 18.0%

3 ESP-P_DA 2188.0 0.1% 2490.6 -11.7% 3164.7 -0.2% 4208.9 13.9%

4 S4 2318.1 6.0% 2587.8 -8.3% 3006.0 -5.2% 3538.9 -4.3%

5 S4_DA 2188.0 0.1% 2427.5 -14.0% 2849.1 -10.1% 3383.2 -8.5%

6 S4_DA_BC 2188.0 0.1% 2503.5 -11.3% 3121.9 -1.5% 4012.7 8.6%

7 S4T 2299.6 5.2% 2547.9 -9.7% 2894.1 -8.7% 3272.9 -11.5%

8 S4T_DA 2188.0 0.1% 2411.6 -14.5% 2759.0 -13.0% 3139.4 -15.1%

9 S4T_DA_BC 2188.0 0.1% 2423.2 -14.1% 2838.4 -10.5% 3394.2 -8.2%

10 S4TP_DA_BC 2188.0 0.1% 2494.9 -11.6% 3099.5 -2.2% 4016.9 8.7%

Forecast Option

No. Name

- Observed Inflow 4306.1 - 4871.3 - 5574.4 - 6099.2 -

1 ESP-Q 4527.3 5.1% 5221.2 7.2% 5901.3 5.9% 6603.3 8.3%

2 ESP-P 5341.0 24.0% 6313.6 29.6% 7148.4 28.2% 7768.4 27.4%

3 ESP-P_DA 5196.0 20.7% 6172.9 26.7% 7010.8 25.8% 7532.3 23.5%

4 S4 4243.9 -1.4% 4890.8 0.4% 5458.4 -2.1% 5816.5 -4.6%

5 S4_DA 4090.7 -5.0% 4737.6 -2.7% 5305.3 -4.8% 5669.6 -7.0%

6 S4_DA_BC 5074.3 17.8% 6073.0 24.7% 6973.8 25.1% 7601.5 24.6%

7 S4T 3688.8 -14.3% 4099.6 -15.8% 4434.4 -20.4% 4964.0 -18.6%

8 S4T_DA 3555.4 -17.4% 3971.3 -18.5% 4307.3 -22.7% 4837.0 -20.7%

9 S4T_DA_BC 4134.4 -4.0% 4731.6 -2.9% 5138.0 -7.8% 5455.5 -10.6%

10 S4TP_DA_BC 5131.5 19.2% 6074.0 24.7% 6732.3 20.8% 7238.2 18.7%

6

High Rainfall Season 2004

01/10/2003

01/04/2004

31/10/2004 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name

3 4 5
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SoS

ToF

EoS

No.

- Observed Inflow 3411.8 - 3913.1 - 4467.1 - 4968.3 -

1 ESP-Q 3411.8 0.0% 4102.2 4.8% 4903.6 9.8% 5617.1 13.1%

2 ESP-P 3766.1 10.4% 4325.1 10.5% 4843.1 8.4% 5245.5 5.6%

3 ESP-P_DA 3411.8 0.0% 3937.1 0.6% 4452.2 -0.3% 4850.0 -2.4%

4 S4 3766.1 10.4% 4257.6 8.8% 4751.7 6.4% 5114.9 2.9%

5 S4_DA 3411.8 0.0% 3870.0 -1.1% 4361.6 -2.4% 4720.7 -5.0%

6 S4_DA_BC 3411.8 0.0% 3898.3 -0.4% 4394.8 -1.6% 4762.4 -4.1%

7 S4T 3526.7 3.4% 4150.6 6.1% 4696.8 5.1% 4965.3 -0.1%

8 S4T_DA 3411.8 0.0% 4007.1 2.4% 4521.0 1.2% 4788.1 -3.6%

9 S4T_DA_BC 3411.8 0.0% 3862.9 -1.3% 4213.6 -5.7% 4596.7 -7.5%

10 S4TP_DA_BC 3411.8 0.0% 3890.1 -0.6% 4249.6 -4.9% 4644.0 -6.5%

Forecast Option

No. Name

- Observed Inflow 5242.2 - 5468.1 - 5731.5 - 5970.8 -

1 ESP-Q 6025.4 14.9% 6262.8 14.5% 6480.0 13.1% 6767.7 13.3%

2 ESP-P 5577.5 6.4% 5836.8 6.7% 6052.5 5.6% 6345.1 6.3%

3 ESP-P_DA 5181.8 -1.2% 5441.1 -0.5% 5656.8 -1.3% 5832.7 -2.3%

4 S4 5440.6 3.8% 5684.0 3.9% 5885.9 2.7% 6129.2 2.7%

5 S4_DA 5046.3 -3.7% 5289.6 -3.3% 5491.5 -4.2% 5734.1 -4.0%

6 S4_DA_BC 5084.1 -3.0% 5323.9 -2.6% 5515.7 -3.8% 5776.0 -3.3%

7 S4T 5265.2 0.4% 5494.9 0.5% 5686.5 -0.8% 5903.7 -1.1%

8 S4T_DA 5087.7 -2.9% 5317.4 -2.8% 5508.9 -3.9% 5726.2 -4.1%

9 S4T_DA_BC 4948.3 -5.6% 5207.6 -4.8% 5408.3 -5.6% 5646.3 -5.4%

10 S4TP_DA_BC 5001.0 -4.6% 5261.0 -3.8% 5456.1 -4.8% 5713.6 -4.3%

3 4 5 6

Low Rainfall Season 2004 / 2005

01/04/2004

01/10/2004

01/04/2005 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name
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SoS

ToF

EoS

No.

- Observed Inflow 2324.0 - 2559.0 - 3171.2 - 4353.1 -

1 ESP-Q 2324.0 0.0% 2606.3 1.8% 3159.1 -0.4% 3916.0 -10.0%

2 ESP-P 2315.7 -0.4% 2590.1 1.2% 3063.4 -3.4% 3808.0 -12.5%

3 ESP-P_DA 2325.2 0.1% 2593.1 1.3% 3067.0 -3.3% 3812.4 -12.4%

4 S4 2315.7 -0.4% 2494.4 -2.5% 2891.2 -8.8% 3292.7 -24.4%

5 S4_DA 2325.2 0.1% 2497.9 -2.4% 2895.6 -8.7% 3297.0 -24.3%

6 S4_DA_BC 2325.2 0.1% 2531.4 -1.1% 3144.6 -0.8% 3849.3 -11.6%

7 S4T 2279.5 -1.9% 2455.9 -4.0% 2886.7 -9.0% 3174.6 -27.1%

8 S4T_DA 2325.2 0.1% 2495.1 -2.5% 2926.9 -7.7% 3214.9 -26.1%

9 S4T_DA_BC 2325.2 0.1% 2497.0 -2.4% 3016.7 -4.9% 3467.5 -20.3%

10 S4TP_DA_BC 2325.2 0.1% 2529.4 -1.2% 3360.1 6.0% 4166.1 -4.3%

Forecast Option

No. Name

- Observed Inflow 5316.6 - 6594.7 - 7384.0 - 8171.1 -

1 ESP-Q 4664.8 -12.3% 5358.7 -18.7% 6038.9 -18.2% 6740.8 -17.5%

2 ESP-P 4595.6 -13.6% 5349.9 -18.9% 5950.7 -19.4% 6575.3 -19.5%

3 ESP-P_DA 4601.3 -13.5% 5357.0 -18.8% 5958.6 -19.3% 6484.3 -20.6%

4 S4 3800.6 -28.5% 4307.5 -34.7% 4689.6 -36.5% 5200.7 -36.4%

5 S4_DA 3804.9 -28.4% 4311.9 -34.6% 4694.5 -36.4% 5206.1 -36.3%

6 S4_DA_BC 4627.2 -13.0% 5440.0 -17.5% 6033.6 -18.3% 6757.1 -17.3%

7 S4T 3495.7 -34.2% 3793.0 -42.5% 4092.4 -44.6% 4643.4 -43.2%

8 S4T_DA 3536.0 -33.5% 3833.3 -41.9% 4133.5 -44.0% 4684.9 -42.7%

9 S4T_DA_BC 4063.5 -23.6% 4558.4 -30.9% 4907.1 -33.5% 5273.5 -35.5%

10 S4TP_DA_BC 5113.8 -3.8% 5955.0 -9.7% 6526.1 -11.6% 7055.4 -13.7%

3 4 5 6

High Rainfall Season 2005

01/10/2004

01/04/2005

31/10/2005 at ToF 0 1 2

at end of Lead Month 0-6

 Ensemble member average: Total accumulated inflow volume (million m
3
) and % error

Forecast Option

Name
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Appendix D | RPSn result tables per forecast option and seasonal forecast period 
 

1. High-rainfall season 

 

 

  

S4

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.36 0.11 0.07 0.03 0.16 0.22 0.44

2 2002-10-01 2003-04-01 0.52 0.27 0.38 0.14 0.22 0.00 0.00

3 2003-10-01 2004-04-01 0.19 0.16 0.01 0.04 0.02 0.01 0.01

4 2004-10-01 2005-04-01 0.09 0.29 0.39 0.44 0.50 0.50 0.50

0.29 0.21 0.21 0.16 0.23 0.18 0.24

S4_DA

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.02 0.03 0.07 0.12 0.16 0.47 0.44

2 2002-10-01 2003-04-01 0.02 0.07 0.02 0.02 0.00 0.00 0.00

3 2003-10-01 2004-04-01 0.19 0.19 0.01 0.04 0.02 0.01 0.01

4 2004-10-01 2005-04-01 0.09 0.29 0.39 0.44 0.50 0.50 0.50

0.08 0.14 0.12 0.15 0.17 0.25 0.24

S4_DA_BC

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.01 0.09 0.09 0.08 0.06 0.08 0.08

2 2002-10-01 2003-04-01 0.04 0.29 0.31 0.26 0.22 0.16 0.19

3 2003-10-01 2004-04-01 0.11 0.09 0.14 0.15 0.14 0.12 0.13

4 2004-10-01 2005-04-01 0.03 0.08 0.14 0.14 0.16 0.21 0.14

0.05 0.14 0.17 0.16 0.15 0.14 0.13

S4T

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.01 0.04 0.18 0.05 0.30 0.30 0.50

2 2002-10-01 2003-04-01 0.58 0.44 0.53 0.36 0.30 0.05 0.00

3 2003-10-01 2004-04-01 0.34 0.22 0.07 0.16 0.13 0.11 0.03

4 2004-10-01 2005-04-01 0.35 0.28 0.44 0.51 0.53 0.52 0.50

0.32 0.24 0.30 0.27 0.32 0.25 0.26

S4T_DA

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.07 0.07 0.18 0.30 0.30 0.54 0.50

2 2002-10-01 2003-04-01 0.62 0.00 0.03 0.11 0.05 0.05 0.00

3 2003-10-01 2004-04-01 0.55 0.22 0.07 0.16 0.13 0.09 0.01

4 2004-10-01 2005-04-01 0.83 0.25 0.43 0.48 0.53 0.52 0.50

0.52 0.14 0.18 0.26 0.26 0.30 0.25

RPS

RPS

RPS

RPS

RPS

High-rainfall season RPS
n
 at end of Lead month

High-rainfall season

High-rainfall season RPS
n
 at end of Lead month

High-rainfall season RPS
n
 at end of Lead month

RPS
n
 at end of Lead month

High-rainfall season RPS
n
 at end of Lead month
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2. Low-rainfall Season 

 

 

 

 

 

 

S4T_DA_BC

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.04 0.04 0.05 0.05 0.09 0.36 0.36

2 2002-10-01 2003-04-01 0.04 0.04 0.03 0.02 0.00 0.00 0.00

3 2003-10-01 2004-04-01 0.21 0.19 0.01 0.04 0.02 0.03 0.01

4 2004-10-01 2005-04-01 0.13 0.16 0.31 0.33 0.38 0.47 0.47

0.10 0.11 0.10 0.11 0.12 0.21 0.21

S4TP_DA_BC

SoS ToF 0 1 2 3 4 5 6

1 2001-10-01 2002-04-01 0.01 0.12 0.14 0.15 0.13 0.06 0.07

2 2002-10-01 2003-04-01 0.04 0.29 0.28 0.27 0.23 0.11 0.13

3 2003-10-01 2004-04-01 0.11 0.07 0.14 0.15 0.15 0.10 0.10

4 2004-10-01 2005-04-01 0.05 0.01 0.06 0.08 0.05 0.08 0.09

0.05 0.12 0.15 0.16 0.14 0.09 0.10

RPS

RPS

High-rainfall season RPS
n
 at end of Lead month

High-rainfall season RPS
n
 at end of Lead month

S4

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.36 0.11 0.07 0.03 0.16 0.22 0.44

6 2003-04-01 2003-10-01 0.52 0.27 0.38 0.14 0.22 0.00 0.00

7 2004-04-01 2004-10-01 0.19 0.16 0.01 0.04 0.02 0.01 0.01

0.36 0.18 0.16 0.07 0.13 0.08 0.15

S4_DA

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.02 0.03 0.07 0.12 0.16 0.47 0.44

6 2003-04-01 2003-10-01 0.02 0.07 0.02 0.02 0.00 0.00 0.00

7 2004-04-01 2004-10-01 0.19 0.19 0.01 0.04 0.02 0.01 0.01

0.08 0.10 0.03 0.06 0.06 0.16 0.15

S4_DA_BC

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.01 0.09 0.09 0.08 0.06 0.08 0.08

6 2003-04-01 2003-10-01 0.04 0.29 0.31 0.26 0.22 0.16 0.19

7 2004-04-01 2004-10-01 0.11 0.09 0.14 0.15 0.14 0.12 0.13

0.05 0.16 0.18 0.16 0.14 0.12 0.13

Dry Season RPS
n
 at end of Lead month

Dry Season RPS
n
 at end of Lead month

RPS

Dry Season RPS
n
 at end of Lead month

RPS

RPS
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S4T

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.01 0.04 0.18 0.05 0.30 0.30 0.50

6 2003-04-01 2003-10-01 0.58 0.44 0.53 0.36 0.30 0.05 0.00

7 2004-04-01 2004-10-01 0.34 0.22 0.07 0.16 0.13 0.11 0.03

0.31 0.23 0.26 0.19 0.25 0.16 0.18

S4T_DA

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.07 0.07 0.18 0.30 0.30 0.54 0.50

6 2003-04-01 2003-10-01 0.62 0.00 0.03 0.11 0.05 0.05 0.00

7 2004-04-01 2004-10-01 0.55 0.22 0.07 0.16 0.13 0.09 0.01

0.42 0.10 0.09 0.19 0.16 0.23 0.17

S4T_DA_BC

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.04 0.04 0.05 0.05 0.09 0.36 0.36

6 2003-04-01 2003-10-01 0.04 0.04 0.03 0.02 0.00 0.00 0.00

7 2004-04-01 2004-10-01 0.21 0.19 0.01 0.04 0.02 0.03 0.01

0.10 0.09 0.03 0.04 0.04 0.13 0.12

S4TP_DA_BC

SoS ToF 0 1 2 3 4 5 6

5 2002-04-01 2002-10-01 0.01 0.12 0.14 0.15 0.13 0.06 0.07

6 2003-04-01 2003-10-01 0.04 0.29 0.28 0.27 0.23 0.11 0.13

7 2004-04-01 2004-10-01 0.11 0.07 0.14 0.15 0.15 0.10 0.10

0.05 0.16 0.19 0.19 0.17 0.09 0.10

Dry Season RPS
n
 at end of Lead month

RPS

Dry Season RPS
n
 at end of Lead month

RPS

Dry Season RPS
n
 at end of Lead month

RPS

RPS

Dry Season RPS
n
 at end of Lead month


