The implementation of peer-to-peer in flash crowds
A case study of bandwidth and cost reduction
for over-the-air updates

Artur Matulaniec
datllama@student.lu.se

Sony Mobile Communications AB
Advisors:
Magnus Thuresson, magnus. thuresson@sony . com

Jens A. Andersson, jens_a.andersson@eit.lth.se

June 21, 2017



Printed in Sweden
E-huset, Lund, 2017



Abstract

This thesis will examine the plausibility of exchanging protocol from a normal
server-client to a peer-to-peer solution for over-the-air updates, using a single case
study for Sony Mobile Communications AB in Lund, Sweden. It will examine the
effort, the risks, and what the actual gain may be comparing to a client-server
approach for over-the-air software updates. Sony Mobile today uses a content de-
livery network which creates a peak upon new releases of software and this thesis
will examine how efficient the peer-to-peer approach is for flash crowds in terms of
saved data from the content delivery network. Continuing on the problem there
are several global network infrastructure limitations, such as NAT44, NAT444 and
firewalls, which proves to decrease the overall connectability of peers in peer-to-
peer networks. Live experiments using real mobile devices from Sony Mobile will
be used to examine the gain after a comprehensive literature study to explore what
impact such network limitations has on peer-to-peer networks. As a consequence
showing that even with limitations there is a potential gain of changing the ap-
proach to a peer-to-peer model. The live experiments prove that with few steps
there can be a potential data saving gain up to 20%, without any interference
with the global infrastructure. The findings will also prove the feasibility of addi-
tional hole punching techniques which may further push the gain towards higher
numbers.



ii



Acknowledgements

This thesis marks an end to a road which began in autumn 2011. It has been a
bumpy ride with both high valleys and deep rivers but with the support of family
and friends it has been quite enjoyable. I want to thank you all for the support,
cheering words, and the great feedback received along the way. Without you it
would have been hard to progress.

A special acknowledge is pointed towards my supervisors of this thesis, Magnus
and Jens. Without the support and enlightenment of certain topics I would have
still wondered around in a dream world. Your comments and input along the way
have been very valuable for the outcome of this thesis and I highly appreciate all
of your support.

A special thank you to Lars Bergman for giving me the opportunity to conduct
this thesis in his organization. It has been a pleasure to work with all the new
colleagues I have had around me. A lot of laughter, a bit of work, and some stress
can summarize the experience but I would not imagine having it any other way.

All good things must come to an end as the saying goes and I look forward on
the new adventures that life will present itself with.

iii



v



Popular Science Summary

As from ancient history, sharing a burden have always ensured that a task can be
completed much quicker than doing it entirely by yourself. Columbus would not
have made it to the West Indies without the help of his crew, and the same applies
for over-the-air software updates to actively reduce data flow from a server, and
by doing so reducing costs by up to 40%)!

Peer-to-peer, a solution which can be easily described with a pub environ-
ment, where all the pub-people speak out and everyone listens at the same time.
Information is shared to all without a central entity in between. Over-the-air soft-
ware updates are spread globally whenever a mobile receives a fresh version of
the operating system. This is usually followed by a craving of having the latest
by the end-user which results in a flash crowds. Flash crowds, as a phenomenon,
resembles ants going after sugar. This flash crowd puts a normal server structure
under a lot of strain. It is as well costly as all the downloads must be paid for by
the manufacturer. By distributing the effort to the mobile devices themselves, the
data flow reduces by 17%, which actively translates to a cost reduction of the same
magnitude. This is just by changing the way of communication, from a monologue
to a dialogue for the mobiles. However, there are some drawbacks. In the global
Internet, public IP-addresses are being used in extent and to many devices are
today connected. Consequently, now even IP-addresses are shared among many
devices.

Returning to the pub scenario, imagine that you need to talk to a stranger
which has your hat, because you throw it in the air when your favorite song
came on. However, to reach this stranger you must firstly pass a bouncer, as
the stranger is within a restricted area (private network). The bouncer acts as a
network address translator (NAT) and tells you whether you may pass or not, if
you know this stranger you can tell the bouncer this and he will let you through.
If you do not, then you will be blocked and the bouncer will just throw away your
request.

To deal with such bouncers on the Internet, hole punching techniques have
been introduced. A hole punching technique is, with common predetermined rules
in the pub and with the bouncer’s attention, you passing the line and entering the
restricted area to the stranger and successfully retrieving your hat. This mutual
agreement between you (mobile device), the pub (the Internet), and the bouncer
(NAT) represents the hole punching technique Universal Plug and Play, or just



UPnP. Consequently, with UPnP the 17% reduction can increase and reach levels
towards 40%, which is the ideal scenario where all the pub-people can freely speak
to anyone without restricted areas. Actively increasing the amount of friendly
faces willing to share the software updates with you.

The plausibility of transitioning towards a peer-to-peer model from a normal
client-server approach not a large effort for any mobile manufacturer. The con-
clusion is that even with obstacles present around the world, just as with the
restricted areas in the pub, it is with little effort of implementation a cost reduc-
tion can be obtained when new versions are released online. Any manufacturer
trying to reduce costs should look no further than towards peer-to-peer with ad-
ditional hole punching techniques. Such a transition means very little effect on
the mobile devices but actively reducing costs and releases strain on any server
structure which might be in place for any manufacturer.

vi



Table of Contents

1 Introduction

1.1 Primary objectives . . . . . . ...
1.2 Context and motivation . . . . . . . . ... L L
1.3 Approach . . . . . . .
1.4 Thesisdivision . . . . . . ...

2 Background

2.1  Problem description of this single case study . . . . ... ... ...
2.2 Protocols and infrastructure . . . . . . . . ... ...
2.3 Related work and literature review . . . . . . . . ... ... .. ...

3 Network Address Translation

4 Approach
4.1 Methodology . . . . . . .. ...
4.2 Proposed solution of the test environment . . . . . . . ... ... ..
43 Tools . . . .

5 Live experiments and evaluation of scenarios
5.1 Live experiments using mobile devices . . . . . . ... ... ... ..

6 Results

6.1 Results from the live experiments . . . . . . . .. ... ... ...

7 Discussion

7.1 Performance impact of NAT . . . . . . ... ... ... .......
7.2 Data saving for flash crowds . . . . . .. ... ... ... ..

8 Conclusion

8.1 Recommendation . . . . . . .. ...
8.2 Futureworks . . . . . ..

References

vii

27
27
27
29

31
31

39
39

a7
47
49

51
51
51

53



viii



List of Figures

2.1

2.2

2.3

2.4

31
3.2

3.3

3.4

5.1

6.1
6.2
6.3
6.4

Presenting the graphical representation of the peak which is intro-
duced due to the flash crowd of devices which potentially a peer-to-
peer approach can reduce. . . . . . . . ...
Simplified server structure of the current update setup. . . . . . . . .
A screenshot from the Software update application in a Sony mobile
device showing the graphical user interface. . . . . . . ... ... ..
Figure showing how a possible CDN may look like over Sweden. One
main server placed in Stockholm and mirror servers placed in different
locations in the country. . . . . . . .. ... L L

Figure showing a possible solution using NAT44 in a home environment.

Figure showing a possible solution using NAT444 for a carrier and how
it is connected to the private a home environments. . . . . . . . ..
Figure showing how a trusted third-party allows two peers behind
NAT's to find the respective peers end-point. . . . . . . .. .. ...
Figure showing how hairpinning works in general practice. . . . . . .

The figure presenting the test environment. All the mobile devices for
the test scenarios were connected to the same access point over WiFi
2.4Ghz creating a private network. . . . . . ... ... L.

The figure is presenting the data set from the ideal-case scenario. . .
The figure is presenting the data set from the worst-case scenario. . .
The figure is presenting the data set from the general-case scenario. .
The figure is presenting the combined data set from all of the scenarios
together with the increasing standard deviation towards the ideal-case
SCENANIO. . v v v v e e e e e e e e

ix

11

17

18

22
23

34

41
43
45

46






List of Tables

5.1

5.2

5.3

5.4

6.1

6.2

6.3

Standard setup for peer-to-peer testing and for client-server model in

terms of execution. . . . . .. .. ... 33
Setup for the ideal-case swarm which was used both for the client-
server and the peer-to-peertest. . . . . . . .. ... 35
Setup for the worst-case swarm which was used both for the client-
server and the peer-to-peertest. . . . . . . . ... ... ... .. .. 36
Setup for the general-case swarm which was used both for the client-
server and the peer-to-peertest. . . . . . . .. ... 37

Table shows the results in terms of downloaded data from the ideal-
case scenario including the standard deviation for all examined parts. 40
Table shows the results in terms of downloaded data from the worst-
case scenario including the standard deviation for all examined parts. 42
Table shows the results in terms of downloaded data from the general-
case scenario including the standard deviation for all examined parts. 44

xi



xii



Chapter 1

Introduction

This thesis will introduce and examine the field of content delivery networks and
peer-to-peer focusing on over-the-air updates on behalf of Sony Mobile Communi-
cations AB in Lund, Sweden. Sony Mobile and Sony will be used as abbreviations
throughout the thesis. This chapter will describe the overall outline of the con-
duction of the thesis, methodology, and way of proceeding towards the primary
objectives.

1.1 Primary objectives

The thesis will primarily focus on three main objectives. These objectives will be
the main motivation as of choosing direction and topics for the thesis. They will
be explored, answered, and tackled using primarily an extensive literature review
and further on experiments using a live setup with mobile devices from Sony.

o Will a peer-to-peer protocol, like BitTorrent, help improve the performance
of OTA updates, when there is a need for a bigger network capacity during
magjor software releases.

o Will this approach allow a manufacturer to reduce network bandwidth from
the server to the devices effectively reducing costs for the company.

o What are the risks, the costs and the effort needed to change the current
approach into a new one.

1.2 Context and motivation

The motivation of the thesis is to propose and examine whether a peer-to-peer ap-
proach will reduce the bandwidth for a manufacturer’s over-the-air updates when
new versions of applications or software updates are being released for commercial
use. Similarly to many other fields of study, information sharing is a continuous
evolving field of study. Not only are more and more people globally being con-
nected to the Internet but also more and more items are becoming part of the
Internet. Consequently, all of the connected devices and people create a lot of
data flowing around the globe. As such, increasingly more clients must be ensured
a stable and fast connection. This thesis will examine how a connection towards



2 Introduction

other clients might help reduce connection delays and create a more efficient ad-hoc
network structure, as the commonly known fact of peer-to-peer networks present.

Information sharing has historically been built on a client-server approach. A
server serves multiple client requests concurrently. Due to the recent exponential
growth of the Internet, such an approach puts a lot of strain on maintaining stable
servers. A normal client-server approach might lack the scalability if many more
clients would requests information at the same time. As a result, content delivery
networks have evolved. Content delivery networks still rely on the same client-
server structure but with server nodes distributed around the globe. This global
distribution creates shorter distances for clients when requesting data from a server
and the request will be directed towards a closer node.

As of recent times, when mobile devices are given greater computational power,
content delivery networks are being reworked with an overlying peer-to-peer net-
work. As a result, they may help reduce the bandwidth of content delivery net-
works even further. Although this field of study is still very young this thesis will
assist with covering the performance and possibly the financial gain such network
topology may have. This thesis will also look into the performance benefits of such
a solution. Peer-to-peer networks do have the benefits of scalability and creating
ad-hoc networks expanding the range of networks. Consequently, countries with
a worse network infrastructure may be beneficiary of peer-to-peer networks.

1.3 Approach

The thesis will be initiated by an extensive literature review to ensure the full
coverage to conduct any further research and to understand where the lack of
performance may be examined. This means to choose the correct methodology
and to emphasize any already covered concerns. Moreover, the literature review
will be specific towards the nature of the thesis and its primary goals.

The next steps of the thesis will include further analysis of collected data, a
proposition of a solution, and how to tackle the steps towards the solution. The
thesis will be completed with a summary of the findings and discussion around the
overall progress and if any specific topics have to be explained in further details.

The thesis will use a live implementation of a torrent client for mobile devices to
highlight the effect of peer-to-peer networks. A live implementation will cover real
time aspects of the mobile devices as many situations caused by user interaction
may cause issues with the update. The live implementation will also show the
protocol change impact of the mobile devices as simulations may not always show
such physical related issues.

1.4 Thesis division

The thesis will be outlined in the following manner. Chapter 2 will cover, in extent,
the background of the problem as well as including the literature review and any
other related work. Chapter 3 will describe network address translation and how
this technique impacts peer-to-peer environments. Chapter 4 will describe the
approach and all the environments used throughout the thesis including the tools



Introduction 3

and their respective setup. Chapter 5 will evaluate the approach and explain the
test setup to ensure the full transparency of the results. Chapter 6 will conclude the
findings and explanation from the results. Chapter 7 will include the final verdict
of the findings and answer the main goals for the thesis given in Section 1.1. As
well, the full analyze of the results presented in Chapter 6. Chapter 8 will present
the final recommendation and future works.



Introduction




Chapter 2

Background

This chapter will, for this single case study, describe the current structure, the
current setup of the system, and overall describing how it interacts between the
server and the mobile devices requesting an update. This chapter will also cover
already conducted related work including the literature review.

2.1 Problem description of this single case study

Sony Mobile today are experiencing a major load on their content delivery network
when new software is released. The released over-the-air software updates are
being pushed out to a larger amount of mobile devices but with caution to not
overflow the update servers [1]. This flash crowd of devices downloading at the
same time causes a peak of downloads which only lasts for a short while, a day
or so. Figure 2.1 shows the graph of the peak which the peer-to-peer approach
hopefully can reduce. Emphasizing the fact of flash crowds, the thesis will examine
the effectiveness of peer-to-peer solutions and their actual reduce in traffic load of
servers.

When new software versions are made available and released as over-the-air
update packages, a push notification from the internal server structure is sent
out to the affected mobile devices. Downloads automatically starts if the mobile
devices are well powered and if they are connected to a WiFi network. Thus this
load causes high costs for Sony [1] and a peer-to-peer approach may introduce a
tool to reduce this peek and endorse any manufacturer, with a similar situation,
into transitioning towards a peer-to-peer approach.

2.1.1 Current configuration setup

To understand the thesis and the proposed solution for this case study, it is im-
portant to understand how the current configuration is designed. There are two
main parts in the architecture, a client side and a server side. Both of the parts
will be described in further details in the forthcoming sections. Even though the
main focus for this thesis will be the server side infrastructure and implementation
and not the entire chain of updates which means excluding the installation process
internally on mobile devices.
For a simplified server architecture refer to Figure 2.2.



Background

Number of downloads

16000

14000

12000

10000

8000

6000

4000

2000

0
5-16-2017 0:00 5-16-2017 12:00 5-17-2017 0:00 5-17-201712:00 5-18-2017 0:00 5-18-201712:00 5-19-2017 0:00

Time

Figure 2.1: Presenting the graphical representation of the peak
which is introduced due to the flash crowd of devices which
potentially a peer-to-peer approach can reduce.

CDN
Edgecast

Amazon S3

Figure 2.2: Simplified server structure of the current update setup.



Background 7

2.1.2 Server

Sony is using Amazon S3 as the file server [2] which hosts all the new released soft-
ware binaries, both for new application releases and for Android software releases
[1]. The content delivery network is hosted by EdgeCast, a Verizon copyright
trademark [3]. The distribution of the content delivery network is as of today 95
nodes worldwide [4].

2.1.3 Client

The client will refer to any Sony Mobile device, including mobile phones and
tablets, but may as well be any other Android powered mobile device. Throughout
the thesis the client, together with mobile device, will be exchangeable. The clients
are continuously searching for updates through the application Software update,
which is installed on the mobile devices, and always included. The graphical user
interface of the application can be seen in Figure 2.3. When new requests are
being made from the clients they receive a manifest file, which includes an URL
to the binary file, an URL to the release notes, and other metadata which are
necessary for the completion of the updates and to confirm that there is a newer
version available or not.

L

& Software update

Latest sync:
Feb 18,2017, 15:38

Your device is up to date!

To learn more about software updates or to find
software update related support, please visit
http://support.sonymobile.com/update

Figure 2.3: A screenshot from the Software update application in a
Sony mobile device showing the graphical user interface.



8 Background

New update available

Considering the scenario when there is a new available update for a mobile de-
vice. Upon receiving an HTTP request from the client the server responds with
a manifest file. Upon receiving the manifest file, the client request the binary file
and also the release notes from their respective URL specified in the manifest.
The EdgeCast content delivery network handles the request by firstly checking its
cache, since the binary file might already have been downloaded. If it is not present
in the cache, the request is forwarded to Amazon S3 which is then downloaded
and stored in the cache for a certain amount of time [1]. This design decision
is made to decrease the request time for clients. The release notes, which are
also requested by the client, may potentially include pictures, videos, and other
information which regards the specific update.

2.1.4 Economic consequence

The thesis will examine how the transfer to a peer-to-peer model, like BitTorrent,
may change the economic consequences for a manufacturer. As for this case study,
Sony today does not have a flat rate price with Verizon EdgeCast and are paying
per downloaded gigabyte from the content delivery network [1]. Which, as a
consequence, varies in price depending on the size of the binaries present on a file
server. Hence, for any manufacturer as for Sony in this case study, the larger the
binary the higher the costs if not a flat rate contract is signed.

2.2 Protocols and infrastructure

This section will describe any specific protocols that are currently used today
or will be used in the thesis. As well introduce the reader to certain network
infrastructure which will be used in the thesis.

2.2.1 BitTorrent

The BitTorrent protocol was first introduced in 2001 by the programmer Bram
Cohen [5] and is today one of the most widely used protocols for implementing
peer-to-peer networks [6]. The conceptual idea behind BitTorrent is that peers,
or clients, can communicate directly with each other sharing information between
each other without any interference of a central entity. Consequently letting peers
gain higher download speeds if many are interconnected peers [5].

Parts of BitTorrent

To be able to understand the architecture proposed in the thesis an introduction
to the different parts of BitTorrent will be described in this section.

.torrent-file The .torrent-file is a metadata file which contains information
which will be used by the client. Some of the information found in the .torrent-file
are,



Background 9

The address to the tracker,

Piece length,

SHA-1 hashes of the pieces,

Information about the files,

Which enables the clients to find the correct information and validate the data
[7].

Leech A leech is a client which only have a partial part of the file or have just
join the swarm to begin download. A leech works both as an uploader and a
downloader. This means that what partial parts the leech has downloaded until
a certain time the leech is also able to share with other peers connected to the
swarm [6].

Seed A seed is a client which has fully downloaded the entire copy of the file.
For BitTorrent to work there must be at least one (1) seed in the swarm. As
regards to the thesis the Amazon S3 file server works as a stable seed at all times.
Without this seed other peers do not have any chance of downloading the entire
file [6].

Swarm A swarm is the set of peers, both seeders and leechers which participate
in the peer-to-peer BitTorrent network [6].

Tracker The tracker is the bookkeeper in the protocol. The trackers respon-
sibility is to track the progress of all the peers in the swarm and make sure that
new joiners receives a list of peers they may connect to. As such the tracker is the
only way for peers to find each other. The tracker is also responsible to keep track
of certain information about the download progress for the entire swarm and also
to ensure that the peer list is up to date [8][9].

File division For BitTorrent to work as intended the original file is divided into
small pieces, approximately into 256kB pieces or chunks [8][6]. All of those pieces
are hashed with SHA-1 and added into the .torrent-file as information. Upon
completing downloading a piece the peer performs a check of the hash comparing
it to the information in the .torrent-file. When this is completed and the integrity
is confirmed the peer reports the finished download to the tracker [8].

Choking As BitTorrent is a peer-to-peer protocol where peers share chunks of
data between each other sometimes a peer stops fulfilling its purpose and stops
sharing with other peers connected to it. To ensure that the protocol does not
come to a stall choking is introduced. A choking algorithm is to ensure that peers
are exchanged if they are not providing the necessary information requested by
the other peer. In BitTorrent a variant of tit-for-tat is being used which is strictly
based on the downloading rate of the peers [8].



10 Background

Piece selection The basics for each downloading peer is to obtain all the pieces
of a file to obtain the entire file. Consequently the peer must be able to select in
what order the pieces should be downloaded in. Depending on the implementation
design BitTorrent may use the following policies,

e Strict priority,
e Rarest first,
e Random first piece,

e FEndgame mode,

As well as a good selected algorithm will ensure a good performance [8].

Communication in BitTorrent

The communication in BitTorrent is maintained by TCP/IP [8]. In order to keep
the tracker informed and updated peers periodically send updates to it. The
frequency of such updates are usually set to 15min and this is maintained in the
tracker [6]. The tracker protocol is a simple protocol based on Hypertext Transfer
protocol (HTTP) [8][6].

Ports BitTorrent relies on TCP as a transport protocol. Destination ports
commonly used are in the range 6881-6889. Port 6969 is designated to all tracker
communication [10].

222 HTTP

Hypertext Transfer protocol, or just HT'TP, is the most common used protocol
which is the Internet is built on. HTTP is widely used for requesting either binary
files or web pages. For a detailed protocol description the reader is referred to [11].

2.2.3 Content delivery networks (CDN)

Content delivery networks expands the basic concept of the client-server architec-
ture by expanding the server into several distributed servers. As mentioned in
Section 2.1.2 Sony takes advantages of EdgeCast’s content delivery network.

Referring back to the distributed part of content delivery networks they deploy
many servers in strategic points, either chosen by geographical location preference
or edge points on backbone networks of Internet service providers [12]. The main
concept of content delivery networks is that the content of one server, which will
be referred to as the main server, is mirrored out to other servers called mirror
servers [12]. The mirror servers are considered as caches of the main server and
emphasize the effect of close locality to the end users. The end users are in this
case referred to as clients requesting content from a web server [12]. The content
delivery network itself is being updated as changes occur on the main server. This
is to ensure that all the servers in the network are up to date with what is placed
on the main server.



Background

11

Figure 2.4!. shows an example distribution of a main server with several mirror
servers in a country. Likewise how the communication may look like between the

servers to ensure quick and painless updates of the content.

Figure 2.4: Figure showing how a possible CDN may look like
over Sweden. One main server placed in Stockholm and mirror
servers placed in different locations in the country.

"http://www.mapsopensource.com/sweden-capital-map-black-and-white.html,

cessed 2017-04-18

FINLAND

LITHUANIA

ac-



12 Background

2.3 Related work and literature review

For this thesis a literature review have been performed to gather information on
the topic of content delivery and peer-to-peer networks. The literature review
have also been broadened in order to cover any topics in order to understand
what infrastructure issues and limitations may cause towards the performance
of peer-to-peer networks. The literature review have also been directed towards
the other primary objectives of the thesis as to gather any necessary knowledge
and proceedings of others to explore the fact of the possible solutions others have
already completed.

2.3.1 Security and privacy

The security of peer-to-peer protocols and WiFi have been directed towards sniffing
network data and identifying how user behavior in mobile devices may be used to
identify your identity. Atkinson et al. [13] explained how an external party may
sniff a channel between a mobile device connected to an access point and with
great accuracy identify the user of the mobile device. Atkinson et al. focused on
anonymous traffic, which includes encrypted traffic between two entities. Their
methodology included selecting several applications and creating user profiles. By
observing user patterns they could identify an anonymous user and assess that
certain user to one of the user profiles with high accuracy.

Continuing on the user patterns, Arvidsson et al. [14] studied a great amount
of data of YouTube users in order to determine whether caching might help reduce
traffic within a smaller geographical area. The idea Arvidsson et al. showed was
that a YouTube clip requested once by a user will be requested once again by either
the same or another user within the same geographical area. A geographical area
could be a university campus or the same country. The results from this study
shows that users in the same geographical area tend to watch the same YouTube
clips as their neighbors.

Faath et al. [15] further focused on the topic of broadcast data and what
it may tell a sniffer of such network characteristics. Their methodology was to
sniff a large campus network over several months and by storing this data trying
to learn as much as possible from this data set. The focus was both to gather
information about the devices and the users behind them. One of the key findings
they identified was that many of the users do not change the name of their device
but continue to use the standard device name which might include both language
preferences and their first or last name. They did also find that Dropbox, as an
example, sends an unique identifier in broadcast. The key showings of their work
included that even with technical countermeasures it is with relative ease from an
attacker to identify an unique user just by looking at the broadcasted data from
its mobile device.

2.3.2 Energy consumption

The field of energy consumption in mobile peer-to-peer networks focuses mainly
on how the peer-to-peer quality and traffic affects the battery life. Nurminen
and Noyrénen [16] focus solely on how peer-to-peer network behavior affects the



Background 13

battery life of mobile devices. They performed real time tests showing that a
mobile BitTorrent client is more vulnerable to greater power consumption if the
network it is connected to is of bad quality. Their conclusion in the paper stated
that higher bit rate networks, such as a WiFi connection, will be better for mobile
devices in peer-to-peer networks in terms of battery consumption. What also was
interesting was the finding that mobile devices should, to maximize their battery
efficiency, only act as full peers until their download is completed. Kelényi et
al. [17] also confirms the findings by Nurminen and Noyrénen. The battery
efficiency is dependent on the time spent sharing rather than the amount of data.
Consequently, higher bit rate networks can send data quicker comparing to slower
bit rates thus consuming less battery time as both downloading and sharing takes
less time.

Further on the topic, Kouyoumdjieva and Karlsson [18] focused on ad-hoc
opportunistic networks in urban environments. Opportunistic networks are very
similar to peer-to-peer networks but focuses more on device-to-device networking.
Their study focused on whenever a mobile operator trying to push out an update
to see if data offloading could be utilized. The data offload would be utilized
using mobile devices in an urban area, for example a street. They distinguished
between data fulfilled nodes and data seeking nodes as to examine the energy
consumption. Their findings do however state that in a crowded environment
data fulfilled devices still help in the data offloading consequently decreasing the
time data seeking nodes are active in search for a device to download from. Their
findings can be summarized to whenever there are many devices in an area, the
better the battery performance as the bit rate of the network increases. This is
the same conclusion Nurminen and Noyrénen [16] got in their study.

2.3.3 Cross-traffic and infrastructure decisions

Another topic which was highlighted in the literature review was inter Internet
service provider (inter-ISP) traffic. Cho et al. [19] highlight the issue in which
inter-ISP traffic creates a lot of economic loss for Internet service providers. They
highlight that since BitTorrent uses swarming and choses peers randomly it em-
phasizes the need to select peers as with content delivery networks servers. The
peers selection must be smarter to avoid crossing inter-ISP traffic. What they
propose is a solution of iCodes. Which means that each Internet service provider
provides a token to the peers within it and when peers are to be selected, the ones
with the same iCode are chosen firstly.

Bindal et al. [20] emphasizes the same economic lost as Cho et al. and do
also propose a solution for better choosing peers instead of randomly selecting, as
per native BitTorrent behavior. Although, they do highlight that other studies
has shown that randomly selected peers do keep the performance of the network
at almost optimal levels. However, from their own simulation findings they do
get almost the same level of optimality as with a random selection. Consequently,
there is an economic gain from a Internet service providers perspective to adapt a
smarter peer selection algorithm while still maintaining the same level of network
quality. Streit and da Silva Rodrigues [21] do also propose another policy of peer
selection. Their proposal is Quota-Based Peer Selection (QBPS). However, their



14 Background

policy focuses on the user experience. The QBPS policy builds on that lower bit
rate peers receives a greater amount of opportunities to connect to more sources.
Their findings shows an increase in performance when using QBPS in comparison
with the regular random peer selection policy.

2.3.4 Live streaming and sharing

Streaming of media have transformed the shape of how we as society digest me-
dia. Many of the major streaming services, such as Spotify and Netflix, uses
either a peer-to-peer network or content delivery network architecture. Kreitz and
Niemel4 [22] describes the architecture in Spotify and how the client behaves when
streaming the live media. Ellis et al. [23] further analysis the Spotify peer-to-peer
architecture. They go in depth with the interaction between other peers and how
the overlaying server-client co-operates with it. Goldmann and Kreitz [24] focus on
the same topic but expand their research into exploring user patterns. Goldmann
and Kreitz examine whether the network behavior differs between weekdays and
weekends. They do find discrepancies but smaller than what they expected.

Adhikari et al. [25] study the architecture of Netflix. They find that Netflix
utilizes several content delivery networks depending on what streaming quality
the user is capable of receiving. Likewise, as with Sony’s infrastructure [1], Netflix
outsources many of their services to the Amazon cloud service, Amazon Web
Service [26]. To be able to maintain a high quality of experience for the end-
users Netflix uses several content delivery networks which are working together.
However, the effort is to delivery highest possible quality of experience to the
end-user. Due to the several content delivery networks, Netflix uses a trade-off
which uses static choosing the content delivery network depending on geographical
location of the end-user. As such, it does not focus entirely on the quality of
experience for the end-user [25]. Netflix, just as Sony, are using manifest files
to deliver the correct content to the end-user [1][25]. The manifest file includes
several important information fields in order for the client to be able to connect
and stream the correct file.

Hammami et al. [27] continue on the topic and describe the drawbacks of
BitTorrent in terms of initial startup delay and how pieces are selected. Next
Hammami et al. focuses on the peer selection. They highlight the inefficiency in
the pure BitTorrent protocol in the peer selection phases but do consider another
algorithm called Give-to-Get [27]. Farahbakhsh et al. [9] examined the popular-
ity of the content and the diversity of the different types of multimedia content
available. Consequently, video content was the most popular multimedia category.
One of the key aspects which Farahbakhsh et al. explained is a direct consequence
of the multimedia contents popularity. If all other multimedia categories would be
deleted of a tracker, which roughly was half of the content, the download capacity
would not be affected [9].

Abdelhalim et al. [28] continue to examine and describe the efficiency with
peer-to-peer networks, such as BitTorrent, to deliver and stream large multimedia
files. Abdelhalim et al. focuses mainly on Scalable Video Coding (SVC) together
with BitTorrent to allow the media streams be encoded into several substreams.
The substreams are encoded into different qualities and be distributed concurrently



Background 15

into a peer-to-peer network [28]. Abdelhalim et al. also highlights the issues as
Hammami et al. considering the poor native piece selection algorithm. Abdelhalim
et al. expands the selection by utilizing a sliding window. This sliding window is
used both as a buffer and to guarantee that the right pieces are requested at the
right time. To tackle the native peer selection Abdelhalim et al. adapts part of
the tracker to ensure that peers closest to the requesting peer are selected to avoid
any unnecessary network delays [28].

Continuing on streaming, Kouyoumdjieva and Karlsson [29] assumes that by
year 2020 75% of mobile traffic will be real-time data. Their paper focuses on
opportunistic communication to enable offloading of the mobile network. Op-
portunistic communication is working without any overlying infrastructure and
enables two or more devices share information between each other [29]. In relation
to this thesis, Kouyoumdjieva and Karlsson states that software update is one of
the topics which could be offloaded using device-to-device communication. This
is a direct consequence of the nature of software updates. Software updates are
delay-tolerant comparing to a live streaming song. Kouyoumdjieva and Karlsson
continues describing the interaction between two devices. As with BitTorrent,
a device must show interest in a certain file or other media. A key finding in
Kouyoumdjieva and Karlsson’s paper is the nature of how well opportunistic com-
munication works. For it to be efficient at all, it all boils down to node density
within a close radius of the devices [29].

2.3.5 Content delivery and peer-to-peer networks hybrids

Content delivery networks have recently grown in popularity to ensure high qual-
ity delivery to end-users independently of their location. Just as Sony with the
distribution of software updates. A field closely related to this thesis is the use of
hybrid content delivery networks with an overlying structure using a peer-to-peer
network. Lu et al. [30] examine the purpose, the implementation, and the gain-
ing of such an approach. Lu et al. begin with describing any related work but
pinpoint that this hybrid model is a combination where non of the content deliv-
ery network or the peer-to-peer network is more important than the other. The
main implementation is that each mirror server in the content delivery network
has its own peer-to-peer network [30]. Another key aspect from the paper is the
comparison between content delivery network and peer-to-peer solutions. Lu et
al. did find many common points as to being able to compare the advantages and
disadvantages between the two solutions to enable file sharing for many end-users.

Further in the paper Lu et al. presents two methods for which the content
delivery network may use the peer-to-peer. The two different approaches are peer-
aided content deliver peer-to-peer network (PAC) or content delivery network aided
peer-to-peer network (CAP) [30]. The latter is the more popular one today as the
content delivery network works as a back-up if peers are starving in the peer-to-
peer network. As to compare the latter solution to an actual implementation a
similar approach is deployed and implemented by Spotify. This can be seen and
further analyzed in [22], [23], and [24]

Mondal et al. [31] continue with the same assumptions as Lu et al. in which
content, delivery networks may become more efficient with an overlying peer-to-



16 Background

peer network. Mondal et al. focuses on decreasing the inter-ISP traffic in which
peer-to-peer networks tend to create a lot thus implicating an economic loss for the
Internet service providers [19][20]. Their paper further emphasizes the importance
of a well defined and well working peer selection algorithm. Thus, emphasizing
to refrain from using the native random peer selection present in the BitTorrent
protocol. Comparing to Lu et al. Mondal et al. focuses more on the geographical
location of peers [31].

2.3.6 Mobile data increasing constantly

Cisco [32] released it newest VNI forecast for 2016-2021 explaining that the mobile
traffic will continue to grow over the course of the next few years. According to
the forecast approximately 12 billion mobile devices will by 2021 be connected
to the mobile networks globally. Cisco do also point out the connection speed of
mobile networks will continue to increase as well as the amount of data produced
by these devices.

One other key fact presented by Cisco [32] is the decrease of wired connec-
tions. The trend presented by Cisco point towards a steady increase of wireless
connections for the networks. As well the traffic of video streaming will continue
to increase being almost 75% of the total network traffic.



Chapter 3

Network Address Translation

This chapter will describe and introduce Network Address Translation (NAT) and
how NAT devices affects the overall feasibility to change from a client-server model
into a peer-to-peer model for over-the-air updates. NAT’s, on all levels, impose
a blockage on the original end-to-end principle of which Internet was designed
around. This chapter will describe the issues which arise from NAT’s and also how
to tackle them with hole punching techniques to enable the end-to-end principle
between peers. This chapter will also highlight the overall impact on peer-to-peer
networks in terms of number of neighbors and performance of peers behind a NAT
device in the infrastructure.

3.0.1 Network Address Translation — NAT44

Description

Networks address translation allows an end-user to use several devices through
only one public reachable IP-address. Figure 3.1 shows how the NAT device, in
most cases a home router, divides the public IP-address and translates them into
private IP-addresses.

Private IP-addresses

. \\ Public IP-address

Public internet

Figure 3.1: Figure showing a possible solution using NAT44 in a
home environment.

17



18 Network Address Translation

Potential drawbacks and advantages

NAT44 ruins the natural end-to-end principle of how the Internet was originally
implemented. This is due to the translation of one public IP-address into several
private IP-addresses as presented in Figure 3.1. On the other hand, as NAT44 usu-
ally is deployed within a home environment, not allowing end-to-end connections
into the private network creates a natural firewall and security for the end-users
within this private network. Consequently, keeping the private network more
secure comparing to a native end-to-end connectivity. Another advantage with
NAT44 is that end-users have the possibility to alter with their own private net-
work. This option creates the possibility to change the behavior accordingly to
the users needs.

3.0.2 Carrier-grade Network Address Translation — NAT444

Description

As with NAT44, described in Section 3.0.1, carrier-grade network address trans-
lation allows one public IP-address to be shared and distributed between several
users. However, as opposite to NAT44, NAT444 distributes a pool of public IP-
addresses which are distributed and used by several home routers. Consequently,
the setup using NAT444 creates an additional layer of NAT. Figure 3.2 shows a
potential implementation. A considerable advantage for NAT44 is that the public
IP-address is not changing when establishing new sessions whereas within NAT444
a client is assigned an IP-address from the shared pool within the specific NAT444
[33].

Private
IP-address

le—— » ((I)) Private
[

IP-address

NAT444
= 0| Public IP-address

Public internet

N PR ()
o]
Pool of public
IP-addresses
. l———> ((I))
]

Figure 3.2: Figure showing a possible solution using NAT444 for a
carrier and how it is connected to the private a home environ-
ments.



Network Address Translation 19

Potential drawbacks and advantages

NAT444, or also known as CGN, shares the same drawbacks as NAT44 including
the broken end-to-end principle. In this thesis NAT444 will be used. However, due
to the double layer of NAT the situation becomes even worse. Due to the nature
of NAT444 creating an additional layer, the end-users lose the possibility to alter
anything on the second level NAT. This issue could be considered as a limitation
for the end-users free movement on the Internet. As NAT444 may use a pool of
public IP-addresses, which are shared within an Internet service provider, one user
can never be sure to receive the same [P-address for two different sessions. Upon
entering the public Internet, as specified in Figure 3.2, the NAT444 assigns an
available public IP-address to the requester in its private network.

3.0.3 Avoiding double NAT situations

Network address translation is nothing which, by any means, can be avoided in
the current situation with IPv4 IP-addresses still being used excessively [34]. Al-
though, end-to-end solutions and protocols, such as the peer-to-peer protocol Bit-
Torrent, are still available. Even with the presence of NAT devices connected to
the peer-to-peer swarm, they are still functioning behind the NAT device due to
the existence of techniques for hole punching and NAT traversal [34].

In the report Report on the Implications of Carrier Grade Network Address
Translators [35] the authors emphasized the fact that with NAT444 the overall
performance must be shared with more devices comparing to a solution without a
NAT444. As certain applications requires several concurrent sessions, the presence
of a NAT444 may cause the number of allocated ports towards each of the devices
to decrease drastically. The authors also emphasize that with the presence of a
NAT444, certain VPN applications may be broken and malfunction. This is due
to the fact that NAT444 assigns IP addresses randomly and for tunnel sessions
this pipeline may be broken more easily comparing to a single level NAT.

Port forwarding also becomes an issue in the presence of a multilevel NAT
situation. The authors of [35] highlight the issue of not being able to configure
the NAT444, hence, port forwarding for applications becomes a major fault. This
is however possible for NAT44. As shown by Figure 3.2, many of the first level
NAT’s (NAT44) are reachable and in most cases integrated into home network
routers [33]. Although, with NAT444 those configurations are off limits for end-
users and Internet service providers deploying a NAT444 are reluctant to set those
configurations free to alter for the end-users. The authors continued to emphasize
that certain applications will require much additional configuration to make them
work. One of them specifically is the peer-to-peer protocol BitTorrent, which
eventually will work but new traversal techniques and configurations must be
presented to cope with the multilevel situation. In Section 3.0.4 more techniques
will be presented.

3.0.4 NAT traversal and hole punching techniques

To deal with the issues of firewalls and NAT’s on all levels, hole punching tech-
niques have been presented. The common ground for the hole punching techniques



20 Network Address Translation

is to enter into a locked door without user involvement. As one of the main draw-
backs for hole punching techniques, presented by different papers, is not being able
to find a common technique. This is due to the not standardized nature of NAT’s
and firewalls. Miiller et al. [36] not only mentioned the difference in manufacturers
but also model-wise within the same manufacturer. Consequently, creating issues
with trying to establish a standardized solution for NAT traversal.

3.0.5 Feasible techniques

This section will introduce the most common ways of hole punching and their
respective implementation for a work around of the NAT and firewall issues.

Universal Plug and Play — UPnP

Universal Plug and Play (UPnP) was created as a set of protocols to try to stan-
dardize the way of opening holes of firewalls and routers to enable a peer-to-peer
connection between two devices [37]. Consequently, UPnP allows a device to
co-operate with the NAT device in order to punch a hole through it [38]. This
co-operation is based on previously agreed terms which are present in the protocol
itself. This agreement allows the device to automatically negotiate and open holes
in the NAT [39] without the need of end-user interference. However, as the name
Universal emphasizes, UPnP can be used in other environments as well and not
only in NAT’s and firewalls.

Grimmett and O’Neill [40] in their article states that UPnP, as a protocol,
allows UPnP enabled devices to tell others about what services and configurations
it is subscripted to. The UPnP device itself becomes exposed to the rest of the
Internet and will allow certain configuration being made on it by other UPnP
enabled devices. They do emphasize that UPnP is not well scalable due to the
multicast messages being sent. As such, UPnP enabled devices usually are within
a home network. They did also highlight that there might be a certain security
risk in enabling UPnP for the device, as it might be tampered with.

One protocol in particular to highlight, which is based on UPnP, is the Internet
Gateway Device protocol (IGD protocol). NAT’s and firewall may, to the Internet,
expose themselves as Internet Gateway Devices. As they are usually placed at the
end points of LAN networks they will allow other devices to receive information and
allowing them to perform port forwarding on the announced IGD device [41][40].

Session Traversal Utilities for NAT — STUN

Session traversal utilities for NAT (STUN) is a protocol that enables the devices
connecting to the NAT to identify how a certain communication path looks like
along the way to the NAT device itself [38]. This identification is specially interest-
ing for situation where multilevel NAT’s (see Section 3.0.2) arises [38]. Although,
not being very accurate [38] it can sometimes help in the guessing of the behavior
of the NAT. STUN makes this guessing possible due to the structured nature of
NAT’s. When a NAT is to be considered as symmetric, it assigns port numbers
in a certain logical way and not ad-hoc randomly. STUN allows the devices con-
necting to the NAT to explore this logic and then predict the end-points. This



Network Address Translation 21

structured way makes the guessing very efficient [38]. Ford et al. [38] showed that
80% of the UDP sessions were successful using STUN. They do also emphasize
that many of the hole punching techniques presented and used today are having
a high successful rate. Much more in one level NAT situations rather than in
multilevel situations, making it an effective technique to pass NAT devices.

Richter et al. [42] argues that a very permissive approach of STUN will produce
a result closest to the actual behavior of the NAT444. The NAT traversal using
STUN allows the devices to guess the behavior of the NAT further down the road.
Which means that predictions on multilevel NAT’s may be bypassed as well.

Fu et al. [43] emphasized the fact that STUN is an explicit protocol of which a
peer, most likely using another peer without interference of a third-party, explores
the network. From that guessing the two peers uses hole punching to establish a
connection between themselves.

STUN, as protocol, may be programmed to query an external STUN server
as well. Lutu et al. [44], when deploying their own client, used an external STUN
server to query for the public IP-addresses of the peer. Consequently, making
STUN a very versatile hole punching technique.

Third-party relay

To ensure peer-to-peer functionality each of the peers in a swarm must know
all the others end-points in their respective network to be able to establish a
connection between them. As NAT’s, both NAT44 and NAT444, creates walls
between the peers a trusted third-party relay may be used [38]. This trusted
third-party, which for example may be a server, will ensure that the two peers
wanting to establish a connection between them may properly do so. The part the
third-party plays is to basically ensure that the two connections are mapped to
each other, as they both share their end-points with the common server. Figure 3.3
shows the logic of a third-party relay. Although a third-party relay will ensure the
end-to-end connectivity of peers it results in a performance drop, higher delays
of communication, and creates an additional party which must be maintained
[38]. However, in terms of durability and robustness, using a third-party relay will
ensure the highest quality of service for the peers in the swarm [38]. A third-party
relay will ensure that most of the connections will be successful.



22 Network Address Translation

Trusted third-party

()
[

7
e%o’*
4

Figure 3.3: Figure showing how a trusted third-party allows two
peers behind NAT's to find the respective peers end-point.

Traversal Using Relays around NAT — TURN The traversal using
relays around NAT (TURN) protocol is also used together with a third-party
relay. This is also an effort to standardize the protocol for third-party relays. As
stated in RFC5766[45], it creates additional costs and complexity for the party
deploying the TURN relay server. As with any trusted third-party relay, it sets
high expectations on the server itself not to produce any delays for the peers.



Network Address Translation 23

NAT Loopback — Hairpinning

In RFC 5128 [46], a solution called Hairpinning is presented. Hairpinning allows
two devices behind the same NAT, to connect directly to each other. The NAT
device will know for a fact that they are connected to the same private network.
What occurs when a NAT recognizes a package, it loop backs it to the known
private destination IP-address, as it is a part of the same pool of connected peers
[42]. Figure 3.4 shows the logic of hairpinning.

However, as also mentioned in the RFC and by Ford et al. [38], not all NAT
devices implement this functionality. Although, Ford et al. highlight that this
type of functionality is becoming more and more popular.

()
o

Figure 3.4: Figure showing how hairpinning works in general prac-
tice.

3.0.6 Transition to IPv6

Another topic which arises along the infrastructure of the Internet is the transition
towards IPv6. Internet today uses, in extent, IPv4 as the main addressing proto-
col. According to Internet Assigned Numbers Authority (IANA) the last available
IPv4 address space was assigned in 2011 [47][48]. Consequently, forcing IPv6 to
be successful to ensure unique global addresses for devices connected to the In-
ternet. In May 2014 [49] Internet Corporation For Assigned Names and Numbers
(ICANN) announced that the final allocated block of IPv4 IP-addresses started to
be assigned and even further emphasizing the need to adjust and move towards
IPv6.



24 Network Address Translation

3.0.7 IPv4 to IPv6 — transition with the help of NAT444

One of the tactics for a smooth transition of IPv4 to IPv6 is to use dual stacks
network, as Levin and Schmidt [48] are presenting in their study. During the tran-
sition phase the two existing infrastructures will co-exist. This is to allow the full
usage of IPv6 until the overall network infrastructure has been fully implemented
in all parties. Levin and Schmidt predicts that such an approach will be available
for a longer time until the change has been fully made [48]. Cisco [50], as one of
the leading global infrastructure providers, pinpoints the same approach as Levin
and Schmidt. However, Cisco in addition adds the complexity of a NAT444 to deal
with the lack of IPv4 IP-addresses [51]. In 2008 Russ Housley, the former chair-
man of IETF, also confirmed that NAT’s in general are necessary for a smooth
transition from IPv4 to IPv6 [52]. From [52] a table presenting IETF’s approach
for the transition to IPv6 included a dual stack network with the use of NAT444
for Internet service providers.

Beeharry and Nowbutsing [53] showed that the transition towards IPv6 is slow
but steadily increasing. Dell et al. [54] did an analysis for the progress in Australia
and they highlighted some issues in terms of where to begin the transition. The
question they asked was to whether the transition should begin in the core network
and work out towards the edge or the opposite. They concluded that the transition
should begin with the edges and work towards the core network. They did also
highlight the fact that NAT444 is useful to help with the transition. One of their
key findings is that there is a resistance of organizations being the first to move to
IPv6. Although, still emphasizing that some governments around the Asia-Pacific
(APAC) region are starting to push towards a faster transition to IPv6, as a result,
the momentum of the transition is gaining.

IPv4 addresses — Market target

Interestingly, due to the slow pace of movement towards IPv6 [53], IPv4 address
spaces has become a target for organizations and Internet service providers to
start selling public IPv4 addresses. Akplogan [55] also emphasized the fact that
IPv4 TP-addresses have been fully allocated, but due to the original allocation,
some parts of the world still have unallocated addresses available. Aklogan also
emphasized that ICANN does allow transfers of IP-addresses, however, due to the
unstructured and uncontrolled nature prices may differ which creates a market for
IPv4 address spaces.

Howard [56] did an extensive comparison up to what price IPv4 IP-addresses
may rise before deploying a NAT444 becomes useful for an Internet service provider.
Also, considering the top price of what subscribers are willing to pay before nat-
urally the need to move to IPv6 becomes the case [56].

3.0.8 NAT444 not causing any significant performance drop for users

As a NAT444 must ensure to examine all incoming and outgoing packages some
delays may be expected. Bocchi et al. [57] in extent tried several targets to examine
the impact of deploying a NAT444 for an Internet service provider. Specially
targeting the end-users and their experience of quality decrease. Bocchi et al.



Network Address Translation 25

tried to compare public IP-addresses versus private IP-addresses and comparing
them to each other. One of their key findings in the paper was that the point of
significant impact was the number of hops a package had to make before ending
up at the other side. However, the conclusion they made was that NAT444 is
a mature tool and do not affect the overall performance for end-users. Thus, is
terms of deploying a NAT444 environment, they concluded that for an Internet
service provider, the overall user-experience will not be impacted by a NAT444.

3.0.9 NAT's decreases the number of neighbors for peers in BitTorrent
swarms

In this section references to unconnectable peers refer to devices behind a NAT or
firewall which do not have a public routable IP-address. References to connectable
peers will refer to the right opposite, thus to devices which have a public routable
IP-address.

One of the key impacts of deploying a NAT is the division of many devices shar-
ing only one, or several, public routable IP addresses. This fact has a significant
impact on the unconnectable peers when it comes to public swarms in peer-to-peer
protocols like BitTorrent [58]. Yoshida and Nakao [58] continued their analysis and
their methodology to measure the swarm sizes which concluded that over 90% of
the swarms have less than 20% connectable peers. They highlighted in their study
that the general number of connectable in a swarm is just over 8%. Liu et al. [34]
emphasizes the same number of approximately 20% of the peers being connectable
in swarms in general.

Due to the level of unconnectable peers in swarms many studies have tried
to establish if conectable peers actually benefit from those unconnectable peers.
D’Acunto et al. [59] showed that connectable peers do benefit of the larger sphere
of unconnectable peers. This benefit, which arises for the connectable peers, is that
they do not have to share the bandwidth with more peers than needed. However,
they did also show that after crossing a threshold of having more unconnectable
peers comparing to connectable will in fact have a major impact on the upload to
the swarm. The unconnectable peers will have a very hard time to reach the limit
of any share ratio which has been set by the site or organization.

However, Liu et al. [34] showed the opposite as well. Concluding that con-
nectable peers do not benefit the presence of unconnectable peers due to the na-
ture of peer-to-peer protocols, specifically BitTorrent. The logic behind BitTorrent
functionality is that peers within a swarm share bits and pieces among each other.
Liu et al. showed that having to many peers behind NAT’s and firewalls causes
the natural sharing to diminish, thus, creating inefficient swarms. However, non
of the mentioned articles provided any actual numbers in terms of how worse the
efficiency actually becomes.

Download performance of NAT devices decreases

Liu et al. [34] continued to argue that the performance of unconnectable peers
is decreasing due to the fact that they are not chosen by other peers. As stated
in Section 2.2.1, BitTorrent uses tit-for-tat methods to chose the right peers to



26 Network Address Translation

connect to, even if the peer selection is randomized. In the most general way,
the peers are selected depending on their performance towards others and peers
not sharing will be chocked more often then connectable peers. Due to this reason
unconnectable devices will take longer time to download pieces from the swarms as
non of the other peers will want to connect to them. Their results also emphasize
the fact that the fewer neighbors in a swarm the worse performance in terms of
download speed. This is due to the fact that peers must be able to connect to
each other to establish an end-to-end connection.



Chapter 4

Approach

This chapter will describe the approach of how the thesis was conducted and
executed. This chapter will also describe the different parts and a proposition of
solution will be given.

4.1 Methodology

The literature review has been used to gather a thorough understanding of already
tested approaches. The literature review has been used as an information source to
examine any drawbacks which others stepped onto. Those issues are described in
Section 2.3. The literature review has presented tools and useful statistics which
has been used in this thesis as well. Those findings has been summarized for
understanding.

Next a conceptual architecture has been created as to understand the direction
of the implementation. The architecture worked as a template from which an
analysis was made and to be used for persuasion of the problem. The main purpose
of the conceptual model is to give the reader the understanding of what was lacking
in the literature review and which will be covered in the experiments.

Finally the experiments were conducted. The experiments were conducted to
tests the drawbacks highlighted in the literature review and comparing them to
the current setup. The main idea was to see how a peer-to-peer model, using
for example BitTorrent as the protocol, did help reduce the peak load of flash
crowds upon releasing a new software update. The experiments are presented
and introduced in Section 5.1. The experiments were created to examine different
performances in different setups. This was to ensure a valid data set to further
analysis of the results.

4.2 Proposed solution of the test environment

This sections will describe in details what the proposed solution for the test envi-
ronment looked like. The idea is to describe the different parts and how this was
implemented to conduct the thesis.

27



28 Approach

4.2.1 Requirements

As a part of the initialization phase of the thesis some common requirements were
gathered to ensure the scope of the thesis was as expected. The requirements are
presented in the forthcoming list. The requirements were used to ensure the scope
and approach was as expected from the organization in this singular study case
and to deal with the primary objectives of the thesis. The primary objectives in
terms of implementation and statistics gathering.

e Start, pause, and stop download over WiFi.

e Resume downloads if paused manually.

e Resume downloads if WiFi connection is lost.

e The file should be seeded for at least a factor X before being removed.

e The file should be seeded for at least the time before installation is complete.

e If reusing code, explore what licenses the code is under.

4.2.2 Proposed implementation

The ensure the functionality was met an entire change of architecture must occur.
The proposed implementation must meet the requirements from the BitTorrent
protocol, see Section 2.2.1 for details. Thus, both the client and server must be
edited and also ensuring a tracker functionality.

The proposal for this thesis was to ensure,

e Implementing or using a third-party BitTorrent client on Android mobile
devices.

e Using Amazon S3 file server as both the storage and use the integrated
tracker functionality.

e Explicitly not using the ordinary Update Center application to avoid any
disruptions.

As such, keeping things to the minimum in terms of complexity as the objective
of the thesis was to look into the effort of the implementation and the possible
gain due to the protocol change from a client-server model to a peer-to-peer based
model instead.

BitTorrent client for Android mobile devices

The BitTorrent client was decided to be very simple and installed as a third party
application and not to run as a background task. The reason for this is that
having it as an application makes its easier to ensure that it will not interrupt any
other background services which were running on the Android mobile devices. The
other parts of the BitTorrent client is to have a simple GUI to start, pause, and
stop any ongoing downloads. The GUI will also work to gather statistics from the
application in order to be able to compare with the current setup and the possible



Approach 29

gain. The third-party torrent client decided to be used in the experiments was
DrTorrent, as it has been used by others when conducting live implementations
of a BitTorrent setup (see Section 4.3 for details about DrTorent and its related
articles).

Amazon S3

As one of the most important parts of the BitTorrent protocol is to have a book-
keeper controlling all the peers connected to the swarm. Amazon S3, which is
the service used to store the binary files in this case study, offers a tracker func-
tionality. The other advantage using Amazon S3 is that the service also becomes
a steady seed. This means that there is always at least one seed with the full
content. To cope with the stability of the change this is a key fact. There are also
no specific costs related to use the tracker-functionality but rather it is included
in the subscription.

The usage of the tracker and permanent seed in Amazon S3 will both keep the
new configuration simple and strengthen the maintainability for future works.

Software update application

Software update application is the application which is used today by Sony to
download the software updates. The decision to not use this in the thesis is that
it is complex and dependent to many parts which are not in scope for this work.
An example is the dependency to the installation manager. As such, the decision
to avoid changing in the implementation will ensure that the focus remains where
it should be.

The avoidance also affects the implementation positively. This is due to the
fact that many internal dependencies to the download manager creates internal
complexity which is not preferable to change for this work. However, the concep-
tual conviction for the concept have still been met even if the client is not exactly
the same. The conceptual understanding will be therefore later transfered into
the real Software update application depending on the outcome of the results. For
this thesis this has been one key fact to keep out of scope.

4.3 Tools

This section will describe the tools used in the thesis.

4.3.1 Android studio

To develop the android client the official Android Studio was used. As it allowed a
full feature android environment this was mutually agreed to be the most efficient
tool to use. Android Studio did also come with many examples and free available
code to reuse and most importantly to learn from.



30 Approach

4.3.2 Lucidchart.com

Lucidchart.com is an online tool for creating flowcharts. Some of the figures in
this thesis were created using this online tool.

4.3.3 DrTorrent

DrTorrent is a third-party client written by Bori Andréds and is available through
Google Play [60]. DrTorrent has been used by others, e.g. [61] and [62], and has
served as a starting point for any live tests conducted throughout this thesis.

4.3.4 Eclipse

Eclipse is an open-source tool and has become one of the most popular tools for
programmers. It has been used throughout the thesis for any necessary program-
ming.

4.3.5 Internal tools

Many of the internal statistics were gathered using internal tools used by the
architect, developers, and managers. Not all will be described in this subsection
as the relevancy to do so is not in scope with the thesis.



Chapter 5

Live experiments and evaluation of
scenarios

This chapter will evaluate and describe the experiments conducted in the thesis and
their respective purpose. After completing the literature review, some areas were
found where there was a need for further evaluation. This chapter will introduce
the different test scenarios together with an description of their respective area of
solution and what the focus of each experiment was. The results from each of the
experiments are presented in Chapter 6.

5.1 Live experiments using mobile devices

This section will present the live test scenarios. The introduction will include both
the purpose behind the experiments and also their respective setup.

5.1.1 Aim with the live experiments

The aim of the live experiments is to further develop the general knowledge of peer-
to-peer protocols being efficient even with certain network limitations. However,
comparing to other conducted research, the aim will be to examine how badly the
peer-to-peer networks work comparing to an ideal scenario without any network
infrastructures limitations. Since prior conducted experiments used BitTorrent as
the peer-to-peer protocol this thesis will continue to do so as well.

From the literature review, it was found that the focus of those experiments,
in regards to any infrastructure limitations, focused on the download speeds, the
amount of neighboring peers, and how unconnectable peers affect the swarms
themselves. However, the actual gain in terms of how much peer-to-peer networks
reduce a flash crowd peak was not mentioned and will in this thesis be extended
using three different scenarios, which will be described in further details in the
forthcoming section.

Division of live experiments

The purpose of the division was to create a dataset which could expand the well-
know effect of peer-to-peer and emphasize any already conducted research, as

31



32 Live experiments and evaluation of scenarios

to tying the hypothesis that fewer amount of unconnectable peers creates worse
efficieny for BitTorrent swarms. As stated in Section 3.0.9 the impact of NAT
presence in the global networks infrastructure pushes the ratio of connectable
peers in BitTorrent swarms down to only 20%. However, the lack of numbers
proving the real effect of such bad ratio, in terms of actual data saving for flash
crowds, is missing.

Keeping this in mind the experiment division is presented in the forthcoming
list.

1. An ideal-case swarm — All peers connectable.
2. A worst-case swarm — All peers unconnectable.

3. A general-case swarm — 20% peers connectable.

5.1.2 Experiment execution

Returning back to Section 2.1, in which the feasibility of decreasing the peak
occurred by a flash crowd of devices downloading over-the-air updates. In order
to cope and relate to this fact the experiments were divided into two parts, as per
the forthcoming list.

e Client-server test

e Peer-to-peer test

The decision to divide the test scenarios into two parts was to compare down-
loads using the current client-server setup as the reference point. As already
stated, the experiments were meant to simulate a flash crowd to replicate a live
situation when new software is released for over-the-air updates and the most de-
vices connect at the same time. Hence, emphasizing that when the experiments
were performed, all of the mobile devices were cleaned form older downloads and
all did initiate the download of the file at the same time. This way of proceed-
ing included both the client-server and the peer-to-peer test. The mobile devices
were connected to a WiFi home network. The detailed test setup is presented in
forthcoming sections. Before any of the peer-to-peer experiment the .torrent-file
was initialized by Amazon S3, as presented in Section 5.1.3.

An ideal-case swarm — All peers connectable

The ideal-case swarm experiment was the starting point of the analysis and as
well used as the starting point of the experiments. All ports were open and an
ideal end-to-end principle was maintained. The detailed setup for this scenario is
presented in Table 5.2 and using the aforementioned execution methodology.

A worst-case swarm — All peers unconnectable

The worst-case swarm experiment was the second experiment conducted. The
worst-case swarm was conducted to evaluate how NAT devices affect the overall



Live experiments and evaluation of scenarios 33

performance of the offloading. All the ports were closed to ensure that the end-
to-end principle was disrupted. The detailed setup is presented in Table 5.3 and
the execution occurred with the aforementioned methodology.

A general-case swarm — 20% peers connectable

The general-case swarm experiment was the third experiment conducted. One peer
had an open port and the rest were closed. The decision for this experiment was
to emphasize other conducted research and to examine the most general case of
connectable peers in swarms. This general number was provided by the literature
review. The detailed setup is presented in Table 5.4 and was executed using the
aforementioned methodology.

Test setup

In order ensure full transparency and reproducibility of any of the experiments the
test setup will be presented and described. All of the experiments used the general
setup presented in Table 5.1. Figure 5.1 shows a graphical representation of how
the private network looked like. The deviations will be highlighted for each of
the experiments respectively. In order to explain the port forwarding made in the
home router, an open port made the device connectable and a closed port made
the device unconnectable. The devices which were chosen for the experiments were
Sony Mobile smartphones running on different Android versions. The reason for
this was that a decision was made as to diverse the operating system, showing
that the peer-to-peer solution works on a wider population of Android operating
systems.

Table 5.1: Standard setup for peer-to-peer testing and for client-
server model in terms of execution.

Number of devices 5

DrTorrent version 1.3.7

WiF'i connection 2.4GHz

Number of experiments per scenario | 17

File size 129241752bytes
Experiment frequency 2 experiments/h

All of the mobile devices were installed with DrTorrent, a third-party BitTor-
rent client, with standard settings. UPnP was deactivated, on both the access
point and in the clients, to maintain full control over the ports and not allowing
the mobile devices to open ports as pleased.

The frequency of the experiments was two experiment an hour, one client-
server experiment and then one peer-to-peer experiment. This was due to the
granularity of the billing report taken from Amazon S3 with the data. As well, to
ensure that no other data traffic affected the data sets, a new bucket on Amazon
S3 was created.



34 Live experiments and evaluation of scenarios

Public Internet

Figure 5.1: The figure presenting the test environment. All the
mobile devices for the test scenarios were connected to the same
access point over WiFi 2.4Ghz creating a private network.



Live experiments and evaluation of scenarios 35

Setup deviation — An ideal-case swarm

Table 5.2 presents the deviated test configuration for the ideal-case scenario.

Table 5.2: Setup for the ideal-case swarm which was used both for
the client-server and the peer-to-peer test.

Device 1
Hardware/Model | F5321
Android version | 7.1.1
Software build 34.3.A.0.129
Port 6886 (open)

Device 2
Hardware/Model | G8141
Android version | 7.1.1
Software build 45.0.A.1.206
Port 6886 (open)

Device 3
Hardware/Model | E6553
Android version | 5.0.2
Software build 28.0.A.8.251
Port 6886 (open)

Device 4
Hardware/Model | C5503
Android version | 4.4.4
Software build 10.5.1.A.0.292
Port 6886 (open)

Device 5
Hardware/Model | E6603
Android version | 7.1.1
Software build 32.4.A.0.72
Port 6886 (open)




36 Live experiments and evaluation of scenarios

Setup deviation — A worst-case swarm

Table 5.3 presents the deviated test configuration for the worst-case scenario.

Table 5.3: Setup for the worst-case swarm which was used both for
the client-server and the peer-to-peer test.

Device 1
Hardware/Model | F5321
Android version | 7.1.1
Software build 34.3.A.0.129

Port

5612 (closed)

Device 2
Hardware/Model | G8141
Android version | 7.1.1
Software build 45.0.A.1.206

Port

6984 (closed)

Device 3
Hardware/Model | E6553
Android version | 5.0.2
Software build 28.0.A.8.251

Port

5478 (closed)

Device 4
Hardware/Model | C5503
Android version | 4.4.4
Software build 10.5.1.A.0.292

Port

7654 (closed)

Device 5
Hardware/Model | E6603
Android version | 7.1.1
Software build 32.4.A.0.72

Port

5586 (closed)




Live experiments and evaluation of scenarios 37

Setup deviation — A general-case swarm

Table 5.4 presents the deviated test configuration for the general-case scenario.

Table 5.4: Setup for the general-case swarm which was used both
for the client-server and the peer-to-peer test.

Device 1
Hardware/Model | F5321
Android version | 7.1.1
Software build 34.3.A.0.129
Port 6886 (open)

Device 2
Hardware/Model | G8141
Android version | 7.1.1
Software build 45.0.A.1.206
Port 6984 (closed)

Device 3
Hardware/Model | E6553
Android version | 5.0.2
Software build 28.0.A.8.251
Port 5478 (closed)

Device 4
Hardware/Model | C5503
Android version | 4.4.4
Software build 10.5.1.A.0.292
Port 7654 (closed)

Device 5
Hardware/Model | E6603
Android version | 7.1.1
Software build 32.4.A.0.72
Port 5586 (closed)




38 Live experiments and evaluation of scenarios

5.1.3 Initial live test — proof of concept

The first live experiment was conducted with proof of concept in mind. The setup
for it can be seen in the forthcoming list. The main reason for this initial live test
was to confirm the functionality in Amazon web services and as well in Amazon
S3. This test was used to resolve any uncertainties which were still present to
create a smoother path for the other experiments.

e Third-party mobile torrent client.
e An open-source video file.
e A .torrent-file created and hosted by Amazon S3.

e Some additional peers, computers and other mobile devices.

Initial phase

The initiation phase began with creating and initiating a .torrent-file in Amazon
S3 using Amazon’s guide of creating one [63]. Amazon S3 is just a normal file
storage environment but the internal structure of folders are called buckets [64].
All data is stored within buckets instead of folders. For the sake of the test a
bucket was created and an open-source video file [65] was uploaded into the newly
created bucket. To create the .torrent-file a request must be made by a client.
The .torrent-file is automatically generated upon this request. The actual link
is presented in Link 5.1, however, some information is removed due to company
secrets.

https://.../thesisbittorrent/cscw94_10.ml.mpg?torrent (5.1)

The .torrent-file is generated by Amazon S3 upon receiving the flag ?torrent
after the GET HTTP request in the link.

Upon successfully generating the .torrent-file, it was opened in the decided
third-party mobile torrent client, DrTorrent. To prove the concept of how BitTor-
rent works with the Amazon tracker, the original mobile device, which was the
only peer downloading the full copy from Amazon using peer-to-peer instead of
client-server. The mobile device continued to be present in the swarm and acted as
a seed. When the original mobile device continued to seed the rest of the devices
mentioned in the aforesaid list connected to the swarm.



Chapter 6

Results

This chapter will present the findings divided per each test scenario described in
Section 5.1.1. Small comments will be mentioned but an overall discussion and
verdict will be given in Chapter 7.

6.1 Results from the live experiments

This section will be divided for each of the test scenario presenting the data in both
tables and figures also introducing the calculations used to calculate the numbers.

Calculations

Data downloaded with the client-server model is presented as D.s and data down-
loaded through the peer-to-peer model is presented as Dpsp. G is the gain in
bytes moving from a client-server model to a peer-to-peer model and is calculated
according to (6.1)

G = D¢s — Dpayp (6.1)
The actual gain in percentage, W, was calculated according to (6.2).

G

W =
DCS

(6.2)

The min and max points Mmingqein and MaTgqin are given by calculation of the
average gain from the results in the ideal-case scenario and worst-case scenario.

39



40 Results

Results — An ideal-case swarm

This section will present the data collected from the ideal-case swarm scenario.
Table 6.1 shows the collected data from each of the test which was executed.
Due to the division explained in Section 5.1.2, the downloaded bytes from both
the client-server experiment and peer-to-peer are presented separately, likewise the
actual gain for each of the tests. Further, the average of the dataset was calculated

together with the standard deviation for the entire dataset.

Table 6.1: Table shows the results in terms of downloaded data from
the ideal-case scenario including the standard deviation for all

examined parts.
Test # Client-server data, | P2P data, | Actual
D¢ (bytes) D,op (bytes) | gain, W
(%)
1 884726431 577600749 34,71
2 761562484 509850156 33,05
3 741940321 423160302 42,97
4 728391364 323839653 55,54
5 710099876 544573733 23,31
6 715494040 362082134 49,39
7 709859689 474326044 33,18
8 720465286 338592105 53,00
9 827842779 425837304 48,56
10 710681681 454582557 36,04
11 697225464 415773012 40,37
12 720666942 383869073 46,73
13 697939307 348246410 50,10
14 835891507 449903676 46,76
15 700502106 383857202 45,20
16 706134025 548292478 22,35
17 687817321 481974617 29,93
Average 738661213 437732229 40,66
Standard de- | 55027794 74835786 9,77
viation




Results 41

Figure 6.1 shows the graphical representation of the collected dataset. The
figure shows the downloaded data, both from the client-server and peer-to-peer
experiments, the average gain, and the gain for each of the data points. The
standard deviation for the gain is presented for each measurement point.

1000000000 70,00%
900000000
'[ 60,00%
800000000 -[ _[
700000000 ‘—L—"’l f I I T 50,00%
600000000 1 l J— l
................................................................................................................................. 20,00%

500000000 | /\ \/ I ! /\

1
1 I 30,00%
400000000 .
Y T
1 I

300000000

Bytes
Actual data gain

20,00%

200000000
10,00%
100000000

0 0,00%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Experiment nbr

—CS S—2P Gain  ceeeeee Gain average

Figure 6.1: The figure is presenting the data set from the ideal-case
scenario.

What can be seen from the collected dataset, for the ideal-case swarm, is
that the average gain is 40,66% but the results vary with almost a 10% standard
deviation. The results shows that even with distributed effort there is a maximum
point of how much can be saved for flash crowds.



42 Results

Results — A worst-case swarm

This section will present the data collected from the worst-case swarm scenario.
Table 6.2 shows the collected data from each of the tests which was executed.
Due to the division explained in Section 5.1.2, the downloaded bytes from both
the client-server experiment and peer-to-peer are presented separately, likewise the
actual gain for each of the test. Further, the average of the dataset was calculated
together with the standard deviation for the entire dataset.

Table 6.2: Table shows the results in terms of downloaded data from
the worst-case scenario including the standard deviation for all
examined parts.

Test # Client-server data, | P2P data, | Actual
D¢ (bytes) D,op (bytes) | gain, W

(%)
1 686699544 662736678 3,49
2 724445808 661782708 8,65
3 680023068 662212685 2,62
4 681309333 659639651 3,18
5 693343289 660939127 4,67
6 688830985 660733349 4,08
7 689145319 658258600 4,48
8 678729274 658505869 2,98
9 675502120 663737229 1,74
10 696261753 658835282 5,38
11 672598559 661878408 1,59
12 666567935 660789526 0,87
13 668957039 663279914 0,85
14 675377542 663091431 1,82
15 668957039 661229307 1,16
16 672407967 663354430 1,35
17 674553943 659046948 2,30
Average 681982972 661179479 3,01
Standard de- | 13653053 1752137 1,95
viation




Results 43

Figure 6.2 shows the graphical representation of the collected dataset. The
figure shows the downloaded data, both from the client-server and peer-to-peer
experiments, the average gain, and the gain for each of the data points. The
standard deviation for the gain is presented for each measurement point.

740000000 10,00%

9,00%

720000000
8,00%

7,00%
700000000

6,00%

680000000 5,00%

Bytes
Actual data gain

4,00%

660000000

3,00%

2,00%
640000000 - X

1,00%

620000000 0,00%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment nbr

— S e—D)P Gain  ceeeeen Gain average

Figure 6.2: The figure is presenting the data set from the worst-case
scenario.

The worst-case showed that there is a small potential gain if all the peers are
unconnectable. However, the standard deviation was almost 2% which, together
with the average gain of 3,01%, makes an unconnectable swarm just as efficient
as the original client-server approach when it comes to flash crowds. The results
should have been 0%, but the billing report from Amazon Web Services did point
towards a decrease of data from the server.



44 Results

Results — A general-case swarm

This section will present the data collected from the general-case swarm scenario.
Table 6.3 shows the collected data from each of the tests which was executed.
Due to the division explained in Section 5.1.2, the downloaded bytes from both
the client-server experiment and peer-to-peer are presented separately, likewise the
actual gain for each of the test. Further, the average of the dataset was calculated
together with the standard deviation for the entire dataset.

Table 6.3: Table shows the results in terms of downloaded data
from the general-case scenario including the standard deviation
for all examined parts.

Test # Client-server data, | P2P data, | Actual

D¢ (bytes) D,op (bytes) | gain, W

(%)

1 671487008 534038483 20,47
2 670284319 553946845 17,36
3 692465596 560240678 19,09
4 669429724 553794293 17,27
5 672407967 579568861 13,81
6 668566992 525168157 21,45
7 672607059 505486159 24,85
8 667231575 579405504 13,16
9 666982393 562450077 15,67
10 665372555 596948645 10,28
11 672705424 566555086 15,78
12 673568348 568060848 15,66
13 674274296 572563231 15,08
14 672894843 572809516 14,87
15 668408087 573996706 14,12
16 672298527 470595860 30,00
17 674344311 529759994 21,44
Average 672078178 553258173 17,67
Standard de- | 5740080 30510932 4,67
viation




Results 45

Figure 6.3 shows the graphical representation of the collected dataset. The
figure shows the downloaded data, both from the client-server and peer-to-peer
experiments, the average gain, and the gain for each of the data points. The
standard deviation for the gain is presented for each measurement point.

800000000 35,00%
700000000 N -[ 30,00%
600000000 T
/_\/\ /\A’_\ 25,00%
g
w e
500000000 T T
T il 1 =
I T 20,00% &,
n 1 £
£ 400000000 reeesd I ........... I ................................................................................... kt
@ T . ®
N L S i e S 15,00% £
o 1 <
300000000 = ¥
I 10,00%
200000000
5,00%
100000000 o
0 0,00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment nbr

(5 =—P2P Gain  seerees Gain average

Figure 6.3: The figure is presenting the data set from the general-
case scenario.

From the dataset in the general-case scenario it can be concluded that the
average gain is following the amount of connectable peers in the swarm. As the
scenario included 20% connectable peers, the average gain almost reached 20%.
The actual average gain was 17,67%.



46 Results

Combined view of the data sets

Figure 6.4 shows the average of the tests and how the gain proceeds from the
minimum Mmingq:, = 3,01% towards the maximum MaZTzq, = 40,66%. The
figure also shows how the gain tends to becomes more and more unstable and
fluctuates with more connectable peers in the swarm.

60,00%
50,00%
40,00%

30,00%

Data saving gain

20,00%

10,00%

el

Worst case General case Ideal case

0,00%

Figure 6.4: The figure is presenting the combined data set from all
of the scenarios together with the increasing standard deviation
towards the ideal-case scenario.



Chapter 7

Discussion

This chapter will present the discussion and summarize the findings and answering
the primary objectives given in the beginning of this thesis. The results from
Chapter 6 will be tied with the literature review to further persuade the reader of
the accuracy of the findings and feasibility of changing into a peer-to-peer model
from a client-server model.

7.1 Performance impact of NAT

In order to examine the performance of peer-to-peer networks this thesis extended
the field and examined the overall performance impact of NAT devices in the global
infrastructure. These issues, in the wider spectra, are impacting the feasibility of
any peer-to-peer networks. Consequently, the presence of NAT’s in the infrastruc-
ture, on any level, creates an additional level of penetration for any traffic flowing
through the NAT’s. As such, NAT presence disrupt the natural end-to-end princi-
ple but studies shows that it does not decrease the performance for end-users but
limits the network modifiability for them.

7.1.1 Hairpinning

Hairpinning will become more and more important with the presence of NAT444
and as such will be highlighted in the discussion. As presented in Figure 3.4, it will
become more and more important when the private networks, as with NAT444,
becomes larger. If the private network itself is large the more gain there will be to
provide hairpinning functionality as more peers will be able to identify each other
in their respective private network. Although, Grundemann [66] stated that the
impact of hairpinning in NAT can cause performance issues, hence the selection
of not implementing it in the NAT devices. Ford et al. [38] continued on the
topic of hairpinning and stating that not all devices implement hairpinning due
to the increased level of complexity. This complexity grows from the fact that
NAT devices with hairpinning functionality must ensure to check both the private
address pool together with the public.

47



48 Discussion

7.1.2 Swarm sizes are affected by the presence of NAT but the perfor-
mance is still maintained

One of the key findings from the literature, which were extended with the live ex-
periments, is how badly smaller connectable swarms perform comparing to an ideal
swarm scenario, where all peers were connectable. This is a direct consequence of
NAT presence, as shown Section 3.0.9. Any NAT presence in the global infras-
tructure must be taken into account when deploying any peer-to-peer solution for
over-the-air updates, or any software release mechanism.

The consequence of such network obstacles opens the field of deploying hole
punching techniques whom can traverse and open up ports in order to establish new
connections. Section 3.0.4 presents the most commonly deployed techniques today
but also highlights the effectiveness of each of them. To ensure cost effectiveness,
in terms of moving into a peer-to-peer model, the manufacturer must consider
the effort of deploying certain techniques but maintaining high feasibility and
cost effectiveness. Using a trusted third party relay creates an environment with
the highest accuracy, in terms of successfully establishing end-to-end connections
between peers. Although, deploying such a third party creates an additional layer
of complexity in the manufacturers own infrastructure and, as such, they must
ensure to plan additional resources for any maintenance.

Moving onto other popular solutions, one of the most common and most widely
deployed techniques is UPnP. The characteristics of UPnP is that it a set of pro-
tocols. As such, implementing it into mobile devices only requires a single effort
when implementing the torrent-client and confirming the functionality of the mo-
bile devices. It will, however, require some effort of selecting the appropriate sets
of protocols to suit the peer-to-peer infrastructure for the torrent-client.

Although, as presented in Section 3.0.9, unconnectable peers in swarms are
badly affected by their unconnectability due to the native implementation of Bit-
Torrent, as the peer-to-peer protocol. This is due to the fact that since the uncon-
nectable peers cannot upload as much as the connectable ones, the unconnetable
peers are not chosen as frequently as the connectable. Interestingly enough, even
though unconnectable peers are not chosen as frequent, the overall performance of
devices behind a NAT is not affected, as presented in Section 3.0.8. This important
fact also emphasizes that NAT devices will continue to be present in the global
infrastructure, as they are cheaply deployed and most of the Internet users are not
widely affected. Which concludes that any manufacturer will have to continue de-
ploying hole punching techniques to cope with such limitations. Section 3.0.3 tells
that avoiding double NAT situations is preferable for the end-users, as those will
loose the possibility to alter any configuration on the NAT444. This is a crucial
point for the transition towards a peer-to-peer model. Even though many users
are not familiar with port forwarding in their home routers a few end-users will
be. More open ports will create a larger population of connectable peers. With-
out this possibility even power users will not be able to open any ports if such
configuration is kept beyond reach.



Discussion 49

7.1.3 Energy consumption not being affected negatively

One of the key objectives was to examine how a peer-to-peer swarm will affect
the battery life of mobile devices. From Section 2.3.2, key findings point towards
that using high bit rate networks with low latency does not negatively affect the
energy consumption more than any other approach. What will have to be taken
into consideration for the manufacturer is to examine how long any mobile devices
should stay in swarms before they end their contribution. This is due to that
time being spent in swarms is the main reason for higher energy consumption for
the mobile devices. Consequently, high bit rate networks means less time spent
downloading and uploading. As such, there is not native impact of peer-to-peer
networks but a manufacturer must ensure to set a policy to enlighten the amount
of time each mobile device must be connected to the swarm.

7.2 Data saving for flash crowds

Finally, mowing onto the additional key aspect of the thesis was to prove the
potential economic gain of transitioning into a peer-to-peer model from a client-
server model, which is tested with the singular case study. The live experiments
performed in this thesis were meant to extend the common knowledge of peer-
to-peer solutions being more efficient for offloading central entities comparing to
a client-server but also emphasizing how much a manufacturer actually can save.
As the original focus of the thesis was flash crowds for the single case study, in
order to decrease the original peak when new software is released and most of the
users download the packages at the same time. This economic saving is restricted,
on average, from 3,01% to 40,66%, ranging from a worst-case scenario towards an
ideal-case scenario. Figure 6.4 shows the actual results taken from the scenarios
implemented in this thesis which concludes that there are benefits even with all
peers being unconnectable. This is although uncertain due to the billing report
extracted from Amazon Web Services. Amazon provides billing reports on byte
level and the worst-case scenario should have shown 0%, as non of the devices had
open ports. However, the extracted report showed a decrease of data even for the
worst-case scenario. This fact may be caused due to discrepancies of the billing
report but since Amazon are paid per byte, the reports should be highly accurate
from a billing perspective. Although, emphasizing the standard deviation of almost
2%, the worst-case is performing just as a client-server model and with more tests
this discrepancy might have been even further reduced. Another interesting finding
from the result is that the uncertainty grows as the swarms moves towards an
ideal-case scenario. The standard deviation is most stable when the amount of
unconnectable peers is less. Hence, the more ideal-case swarm the more the actual
result will vary from time to time and from update to update. However, as seen
in Section 3.0.9, the general number of connectable peers in general swarms reach
approximately 20%, hence, the actual benefits and gain for this case study is on
average 17,67%.



50

Discussion




Chapter 8

Conclusion

This chapter will present a final recommendation based on the results and discus-
sion. It will also present future works which, in some cases, have been highlighted
in the thesis but left uncommented due to limitations of the thesis.

8.1 Recommendation

Concluding the thesis, a recommendation would be that even though with all the
obstacles being present in the global Internet infrastructure, a transition towards
a peer-to-peer model is feasible and potentially giving almost 20% of data saving
for flash crowds when releasing new over-the-air updates. For this singular case
study, the effort will be to implement a torrent-client for mobile devices which im-
plements UPnP to increase the successful end-to-end connections. Minimizing the
infrastructure impact, Amazon S3 should be utilized with its tracker functionality
as the service is already present. Such a setup will be cost efficient and decrease
the data traffic by at least 17,66%.

Looking forward, such an approach will also be future-proof considering that
a transition towards IPv6 may be plausible but is not yet implemented for a wider
audience. The reason for this is that the logic itself will not be changed even
though the addresses themselves will be updated. There will be consequently
a smaller effort to just further enhance the mobile torrent-client for it to work
as Amazon S3 does support IPv6 already, considering this singular case study.
Although, this recommendation still applies for all manufacturers which want to
transit to a peer-to-peer approach.

8.2 Future works

Due to the limitations of this thesis, open questions towards the affect of mobile
devices will be left untouched. Hence, the following points may be picked up by
others to evaluate in further details.

e Further look into the mobile devices. Including dependencies and limitations
in Android as the operating system and further digging into the impact of
mobile devices in a peer-to-peer environment. Mobile devices are constantly
under development and in the future they might have even better network

o1



52

Conclusion

capabilities and battery technology which might further open up for more
complex protocols.

Further developing BitTorrent with geographical limitations, as presented
by some articles, to extend the capabilities of BitTorrent peer selecting algo-
rithm. This point will be to explore the efficiency of BitTorrent and remove
any of the randomness present in the protocol. An uprising field of study is
hybrid-CDN networks, where a content delivery network is creating its own
edge peer-to-peer network to further enhance the sharing between peers.

Further look into the presented hole punching techniques to see explore the
possibilities for mobile devices to efficiently utilize such techniques. As well
as exploring if certain techniques may be better suited for mobile networks
or whether the same applies for WiFi connectivity.

Further look into how the transition towards IPv6 may impact over-the-air
updates. The field is starting to be explored but there seems to be much
more to find.



References

1]
2]
3]

[4]

Magnus Thuresson. Conversation with my thesis advisor.
Amazon. Amazon s3. https://aws.amazon.com/s3/. Last visited 2017-02-07.

Verizon. Edgecast content delivery network service.
https://www.verizondigitalmedia.com/platform/edgecast-cdn/. Last visited
2017-02-07.

Verizon. Edgecast network structure. https://www.verizondigitalmedia.com/our-

network /network-overview/. 2017-02-18.

Unknown. Bittorrent of bram  cohen. http://history-
computer.com/Internet/Conquering/BitTorrent.html. Last visited 2017-02-
16.

Matteo Varvello, Moritz Steiner, and Koen Laevens. Understanding bit-
torrent: A reality check from the isp’s perspective. Computer Networks,
56(3):1054 — 1065, 2012. (1) Complex Dynamic Networks (2) {P2P} Network
Measurement.

N. Gaddam and A. Potluri. Study of bittorrent for file sharing in ad hoc
networks. In 2009 Fifth International Conference on Wireless Communication

and Sensor Networks (WCSN), pages 1-6, Dec 2009.
Bram Cohen. Incentives build robustness in bittorrent, 2003.

R. Farahbakhsh, N. Crespi, A. Cuevas, R. Cuevas, and R. Gonzélez. Under-
standing the evolution of multimedia content in the internet through bittor-
rent glasses. IEEE Network, 27(6):80-88, November 2013.

Wireshark. Bittorrent wiki. https://wiki.wireshark.org/BitTorrent. Last vis-
ited 2017-04-22.

R. Fielding et al. Hypertext transfer protocol — http/1.1. RFC 2616, RFC
Editor, June 1999.

P. Hillmann, T. Uhlig, G. D. Rodosek, and O. Rose. Modeling the location
selection of mirror servers in content delivery networks. In 2016 IEEE In-
ternational Congress on Big Data (BigData Congress), pages 438-445, June
2016.

53



54

References

[13]

23]

[24]

[25]

John S. Atkinson, John E. Mitchell, Miguel Rio, and George Matich. Your wifi
is leaking: What do your mobile apps gossip about you? Future Generation
Computer Systems, pages —, 2016.

A. Arvidsson, M. Du, A. Aurelius, and M. Kihl. Analysis of user demand
patterns and locality for youtube traffic. In Proceedings of the 2013 25th
International Teletraffic Congress (ITC), pages 1-9, Sept 2013.

M. Faath, R. Winter, and F. Weisshaar. How broadcast data reveals your
identity and social graph. In 2016 International Wireless Communications
and Mobile Computing Conference (IWCMC), pages 357-362, Sept 2016.

J. K. Nurminen and J. Noyranen. Energy-consumption in mobile peer-to-
peer - quantitative results from file sharing. In 2008 5th IEEE Consumer
Communications and Networking Conference, pages 729-733, Jan 2008.

I. Kelényi, A. Ludéanyi, and J. K. Nurminen. Distributed bittorrent proxy for
energy efficient mobile content sharing. In 2011 The 14th International Sym-
posium on Wireless Personal Multimedia Communications (WPMC), pages
1-5, Oct 2011.

S. T. Kouyoumdjieva and G. Karlsson. Energy-aware opportunistic mobile
data offloading for users in urban environments. In 2015 IFIP Networking
Conference (IFIP Networking), pages 1-9, May 2015.

K. Cho, H. Jung, M. Lee, D. Ko, T. Kwon, and Y. Choi. How can an isp
merge with a cdn? IEEE Communications Magazine, 49(10):156-162, Oct
2011.

Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George Suwala, Tony
Bates, and Amy Zhang. Improving traffic locality in bittorrent via biased
neighbor selection. In Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems, ICDCS 06, pages 66—, Washington, DC,
USA, 2006. IEEE Computer Society.

Ananda Gorck Streit and Carlo Kleber da Silva Rodrigues. Improving bit-
torrent’s peer selection for multimedia content on-demand delivery. CoRR,
abs/1512.03796, 2015.

G. Kreitz and F. Niemela. Spotify — large scale, low latency, p2p music-on-
demand streaming. In 2010 IEEE Tenth International Conference on Peer-
to-Peer Computing (P2P), pages 1-10, Aug 2010.

M. Ellis, S. D. Strowes, and C. Perkins. An experimental study of client-side
spotify peering behaviour. In 2011 IEEE 36th Conference on Local Computer
Networks, pages 267-270, Oct 2011.

M. Goldmann and G. Kreitz. Measurements on the spotify peer-assisted
music-on-demand streaming system. In 2011 IEEE International Conference
on Peer-to-Peer Computing, pages 206-211, Aug 2011.

V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. L. Zhang, M. Varvello, and
M. Steiner. Measurement study of netflix, hulu, and a tale of three cdns.
IEEE/ACM Transactions on Networking, 23(6):1984-1997, Dec 2015.



References 55

[26]

[27]

[28]

Amazon. Amazon web services (aws) - cloud computing services.
https://aws.amazon.com/. Last visited 2017-02-28.

C. Hammami, A. Gazdar, I. Jemili, and A. Belghith. Study of vod streaming
on bittorrent. In 2015 International Symposium on Networks, Computers and
Communications (ISNCC), pages 1-6, May 2015.

A. Abdelhalim, T. Ahmed, H. Walid-Khaled, and S. Matsuoka. Using bittor-
rent and svc for efficient video sharing and streaming. In 2012 IEEE Sym-
posium on Computers and Communications (ISCC), pages 000537—-000543,
July 2012.

S. T. Kouyoumdjieva and G. Karlsson. Device-to-device mobile data offload-
ing for music streaming. In 2016 IFIP Networking Conference (IFIP Net-
working) and Workshops, pages 377-385, May 2016.

ZhiHui Lu, Ye Wang, and Yang Richard Yang. An analysis and comparison
of cdn-p2p-hybrid content delivery system and model. JCM, 7(3):232-245,
2012.

Amit Mondal, Ionut Trestian, Zhen Qin, and Aleksandar Kuzmanovic. P2p as
a cdn: A new service model for file sharing. Computer Networks, 56(14):3233
— 3246, 2012.

Cisco. Cisco vni global mobile data traffic forecast. 2016-2021.
http://www.cisco.com/c/en/us/solutions/service-provider/visual-
networking-index-vni/vni-infographic.html. Last visited 2017-04-19.

Dan Wing. Nat tutorial. IETF 78, Maastricht, July 2010.

Yangyang Liu, Le Chang, and Jianping Pan. On the performance and fair-
ness of bittorrent-like data swarming systems with nat devices. Computer
Networks, 59:197 — 212, 2014.

Brian Aitken. Report on the implications of carrier grade network address
translators. Technical report, InterConnect Communications, 2013.

A. Miiller, G. Carle, and A. Klenk. Behavior and classification of nat devices
and implications for nat traversal. IEEE Network, 22(5):14-19, September
2008.

Yangyang Liu and Jianping Pan. The impact of nat on bittorrent-like p2p
systems. 2009 IEEE Ninth International Conference on Peer-to-Peer Com-
puting, Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International
Conference on, page 242, 2009.

Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication
across network address translators. USENIX Annual Technical Conference,
2006.

L. DAcunto, M. Meulpolder, R. Rahman, J.A. Pouwelse, and H.J. Sips. How
do firewalls and nats affect the performance of p2p swarming systems? In the
16th Annual Conference of the Advanced School for Computing and Imaging
(ASCI’10), Veldhoven, the Netherlands, pages 1-8. ASCI, 2010.



56

References

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[53]

[54]

[55]

J. Grimmett and E. ONeill. Upnp: Breaking out of the lan. In 2012 IEEE
Wireless Communications and Networking Conference Workshops (WC-
NCW), pages 170-174, April 2012.

Prakash Iyer and Ulhas Warrier. Internetgatewaydevice:1 device template
version 1.01. UPnP Forum?2001.

Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez, Mark Allman,
Randy Bush, Anja Feldmann, Christian Kreibich, Nicholas Weaver, and
Vern Paxson. A multi-perspective analysis of carrier-grade NAT deployment.
CoRR, abs/1605.05606, 2016.

X. Fu, M. Stiemerling, and H. Schulzrinne. Implications and control of mid-
dleboxes in the internet. IEEE Network, 22(5):6-7, September 2008.

Andra Lutu, Marcelo Bagnulo, Amogh Dhamdhere, and K. C. Claffy.
Nat revelio: Detecting nat444 in the isp. Passive & Active Measurement
(9783319305042), page 149, 2016.

R. Mahy, P. Matthews, and J. Rosenberg. Rfc 5766, traversal using relays
around nat (turn), 2010.

et al. P. Srisuresh. Rfc 5128, state of peer-to-peer (p2p) communication across
network address translators (nats), 2008.

Available pool of unallocated ipv4 internet addresses now completely emptied.
https://www.icann.org/resources/press-material /release-2011-02-03-en. Last
visited 2017-03-20.

Stanford L. Levin and Stephen Schmidt. Ipv4 to ipv6: Challenges, solutions,
and lessons. Telecommunications Policy, 38(11):1059 — 1068, 2014.

Remaining ipv4 addresses to be redistributed to regional internet reg-
istries - address redistribution signals that ipv4 is nearing total exhaus-
tion. https://www.icann.org/news/announcement-2-2014-05-20-en. Last vis-
ited 2017-03-20.

Cisco systems, inc. http://www.cisco.com. Last visited 2017-03-21.
Cisco. Deploy cgn to retain ipv4 addressing while transitioning to ipv6.

Carolyn Duffy Marsan. Slow move to ipv6 giving nat a new life. (cover story).
Network World, 25(28):1 — 14, 2008.

J. Beeharry and B. Nowbutsing. Forecasting ipv4 exhaustion and ipv6 mi-
gration. In 2016 IEEE International Conference on Emerging Technologies
and Innovative Business Practices for the Transformation of Societies (Emer-
giTech), pages 336-340, Aug 2016.

Peter Dell, Christopher Kwong, and Liu Ying. Some reflections on ipv6 adop-
tion in australia. Info, 10(3):3 — 9, 2008.

Adiel. A. Akplogan. Ipv6: The future is now more than ever.
https://www.icann.org/news/blog/ipv6-the-future-is-now-more-than-ever,
September 2015. Last visited 2017-03-21.



References 57

[56]
[57]

[58]

[62]

[63]

[64]

[65]

[66]

Lee Howard. Internet access pricing in a post-ipv4 runout world.

E. Bocchi, A. S. Khatouni, S. Traverso, A. Finamore, V. D. Gennaro, M. Mel-
lia, M. Munafo, and D. Rossi. Impact of carrier-grade nat on web browsing.
In 2015 International Wireless Communications and Mobile Computing Con-
ference (IWCMC), pages 532-537, Aug 2015.

M. Yoshida and A. Nakao. Measuring bittorrent swarms beyond reach. In
2011 IEEFE International Conference on Peer-to-Peer Computing, pages 220—
229, Aug 2011.

L. DAcunto, M. Meulpolder, R. Rahman, J. A. Pouwelse, and H. J. Sips. Mod-
eling and analyzing the effects of firewalls and nats in p2p swarming systems.
In 2010 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), pages 1-8, April 2010.

Bori Andras. Drtorrent. https://play.google.com/store/apps/details?id=hu.b
ute.daai.amorg.drtorrent&hl=sv. Last visited 2017-03-04.

K. Csorba, P. Ekler, A. Bori, and H. Charaf. Analysis of mobile bittorrent
client behavior. In 2013 IEEE 4th International Conference on Cognitive
Infocommunications (CoglnfoCom), pages 613—-618, Dec 2013.

A. Bori and P. Ekler. The analysis of bittorrent protocol reliability in modern
mobile environment. In 2013 3rd Fastern European Regional Conference on
the Engineering of Computer Based Systems, pages 120-126, Aug 2013.

Amazon. Using bittorrent with amazon s3.
http://docs.aws.amazon.com/AmazonS3/latest /dev/S3Torrent.html.  Last
visited 2017-01-19.

Amazon. Working with amazon s3 buckets.
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html.
Last visited 2017-03-04.

Assocation for Computing Machinery (ACM). Acm cscw 1994 issue 87 - seam-
less media design. https://open-video.org/details.php?videoid=8246, 2004.
Last visited 2017-02-20.

Chris Grundemann. Carrier grade nat - observations and recommendations.
In North American IPv6 Summit, 2012.



