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Abstract 

It has been argued that cognitive biases are the source of a range of problems in modern society, 

from stereotype formation to belief in pseudoscience. One of those biases causes people to 

perceive causal relationships between unrelated events and is known as illusion of causality. 

Scientists are pointing to the importance of strategies to debias people on a global scale. 

However, research on effective debias techniques is lacking. The purpose of this study was to 

examine if results from previous studies on illusion of causality could be generalized to another 

context. Specifically, a debias intervention that had been found to be effective in Europe was 

examined in rural Kenya. To the best of our knowledge, this was the first study to examine the 

effectiveness of a debias intervention aimed to reduce illusions of causality, outside Western 

countries. The intervention consisted of a lesson in basic scientific thinking, which has been 

argued to be the best, if not the only, way to reduce or eliminate illusion of causality. A repeated 

measures design was used, and illusions of causality were assessed with a contingency judgment 

task. The results showed, in contrast to the main hypothesis, that illusions of causality persisted 

after the intervention. Further research is needed to assess if the educational intervention is a 

globally effective strategy to debias people from illusions of causality.   

  

Keywords: illusion of causality, bias, debias, intervention, contingency judgment task, basic 

scientific thinking, Kenya 
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Introduction 

Wilson and Brekke (1994) succinctly refer to cognitive biases as ‘mental contamination’, 

and to debiasing as ‘mental correction’. We are all vulnerable to ‘mental contamination’, and it 

strongly affects our judgments and our decision-making (Croskerry, Singhal & Mamede, 2013). 

The consequences of the contamination, the biases, can be severe, even harmful (e.g. Barberia, 

Blanco, Cubillas & Matute, 2013).  

One specific bias that the human mind is evolutionary vulnerable to is illusion of 

causality. Illusion of causality is developed when people perceive that there is a causal 

relationship between events that are in fact unrelated (Barberia et al., 2013). Illusions of causality 

seem to have sparked a newfound interest among researchers in recent years (e.g. Barberia et al., 

2013; Blanco, Matute & Vadillo, 2011; Yarritu, Matute & Vadillo, 2014). Barberia et al. (2013) 

successfully tested an intervention consisting of education in scientific thinking to reduce 

illusions of causality.  

Regarding the mental correction, the debiasing, some researchers have been pessimistic 

about our capacity to correct our thinking (e.g. Willingham, 2008). Currently, researchers seem 

to have an optimistic perspective on debiasing. For example, Croskerry et al. (2013) argue that 

 “..clearly people can change their minds and behaviours for the better.” (p. 23). 

There seems to be a consensus among researchers in the area about the importance of 

designing a worldwide strategy to debias people (e.g. Barberia et al., 2013; Matute et al., 2015). 

Despite this, and to the best of our knowledge, studies on debiasing against causal illusions have 

only been conducted in Western countries. With the aim to fill a bit of the gap in this worldwide 

debiasing strategy, this study was conducted in rural Kenya to explore to what extent findings 

from previous research could be generalized to a different context. After all, as Lilienfeld, 

Ammirati and Landfield (2009) put it: “..a plausible case can be made that debiasing people 

against errors in thinking could be among psychology’s most enduring legacies to the promotion 

of human welfare.” (p. 391).  

Cognitive biases 

 The main psychological theory that this thesis aims to investigate is that of cognitive 

biases, and techniques for reducing cognitive biases in people. In short, cognitive biases are 

byproducts of cognitive processing limitations. In other words, distortions to mental 

representations or cognitive processes in the human (and animal) mind (Trimmer, 2016).  

Some cognitive biases may be viewed as design flaws of the mind when looked upon 

from one perspective, or as design features when looked upon from another perspective. From an 

evolutionary perspective most features of the human mind serve an adaptive function. These 
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functions are mostly domain specific and might therefore not generalize well to different 

domains than the ones they were “designed” for. For that reason, these evolutionary adaptive 

functions are prone to produce biases when applied in the “wrong” context (Haselton, Nettle & 

Andrews, 2015).  

Most biases are associated with heuristics, which are adaptive mechanisms that save 

effort and time in everyday life decision-making and problem solving. To think about every 

event and stimuli that occur on a daily basis in an analytical and focused manner would be 

impossible (Croskerry et al., 2013). So, we use mental shortcuts, heuristics (Tversky & 

Kahneman, 1974). Most of the time our minds are set to an intuitive mode in which one event or 

thought automatically triggers the next and so on. We tend to use heuristics often, and while they 

mainly work well they frequently result in errors in thinking and decision-making (Croskerry et 

al., 2013). These systematic errors are what we call biases (Kahneman, 2011). Heuristics are 

natural mechanisms in the human mind, and consequently, everyone is affected by biases 

(Lilienfeld, Ammirati & David, 2012). For several biases there are no correlations with 

intelligence, but for other biases there are modest correlations. However, as Stanovich (2010) 

puts it  “Overall, the associations are surprisingly modest.” (p. 121).  

Causes of cognitive biases 

Arkes (1991) argues that a wide range of biases can be understood by three underlying 

causes, namely strategy-based judgment errors, association-based judgment errors and 

psychophysically based errors. 

Firstly, the strategy-based judgment error occurs when a poor decision is made that may 

be thought to be beneficial in a larger sense. If a person uses a quick but not very thoroughly 

elaborated strategy to solve a problem it could be argued that the benefit of saving time and 

cognitive effort may be larger than the cost of errors that occurs because of the poorly chosen 

strategy. However, when errors occur from such a strategy, they are considered biases.  

Secondly, the association-based judgment error is related to errors in the automatic 

processes that underlie the retrieval of information in memory. One bias caused by association-

based errors is the bias of ignoring, which is closely related to illusion of causality, the main bias 

of this study. The bias of ignoring occurs when people take into account only the presence of a 

potential cause to predict its outcome, but ignores the instances when the outcome is present and 

the potential cause is absent.   

Finally, the psychophysically based error occurs when people are presented with a 

reference point and make an estimate that is based more on the reference point than on other 

relevant data. Tversky & Kahneman (1974) illustrated a bias caused by this error in an 
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experiment. In one test, subjects were asked to estimate the percentage of African countries in 

the UN. One group was presented with 10 as an initial value and had a median estimate of 25. 

Another group that was presented with 65 as an initial value had a median estimate of 45. Thus, 

people seemed to adjust their estimates based on the initial value that they were presented with. 

The three underlying causes presented above are related to judgment behaviors and 

judgment- and decision biases. There are however other types of biases and some biases may 

have more than one single underlying cause. Still, categorization of different biases based on 

their underlying causes does hold a value when it comes to techniques for debiasing (Arkes, 

1991). 

The dual process theory is important when discussing the origins of biases, and the theory 

is heavily supported in research. According to it, there are two distinctive types of cognition. The 

two types have been named differently in various studies (Stanovich, 2010). We will call them 

type 1 and type 2 processes, since these names are the most neutral ones (Evans, 2008).  

Type 1 processes are fast, intuitive and demand little, if anything, from the thinker. In 

fact, they are automatic and we are unaware of them. Type 2 processes are slower, analytical, 

more demanding and we are in control of these processes. When type 1 processes are in action 

we can make routine decisions, but when it becomes more advanced, type 2 processes are needed 

(Kahneman, 2011). Type 1 processes are known to make systematic errors, biases, and as a 

consequence result in irrational responses (Kahneman, 2011; Stanovich, 2010). This means that 

type 2 processes are crucial in overriding type 1 processes (Stanovich, 2010). Biases can occur in 

type 2 processes as well, but they are most often associated with type 1 processes. Decisions can 

either be made through type 1 processing or type 2 processing. However, the brain tends to make 

use of type 1 processing, prone to biases and more likely to fail, more than type 2 processing. In 

fact, we spend most of our time using type 1 processes. The override function of type 2 processes 

is vital for debiasing because only type 2 processing can correct biases (Croskerry et al., 2013). 

Bias and rationality 

Arnott (2006) writes that “One way of viewing cognitive biases is as predictable 

deviations from rationality” (p. 59). Stanovich (2010) discusses what he calls “the Great 

Rationality debate”. This debate regards human cognition and irrationality, and there are two 

main perspectives in this matter. Followers of the first perspective are called meliorists. They 

believe that there is a gap between on the one hand, normative models of rational responding and 

on the other hand, descriptive models of how people actually respond. Simply put, they believe 

that people act irrationally at times and that people need and can improve their thinking, for 
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example through education (Stanovich, 2010). Researchers that study biases are in many cases 

meliorists (Stanovich, 1999, cited in Stanovich, 2010).   

Followers of the second perspective are called Panglossians. According to them, there is 

no gap between the normative and the descriptive. They believe that the way that people respond 

is the normative way. If a heuristics and bias researcher works with a model that fails to predict 

people’s responses the model should be changed because the people are the norm, the model is 

not. Panglossians do not believe that people are irrational (Stanovich, 2010).    

Illusion of causality 

Illusion of causality, or causal illusion, is a bias that occurs when we develop the belief 

that one event causes another, when in fact there is no relationship between the two events 

(Matute et al., 2015). The events are independent of each other, but due to chance they appear 

together (Barberia et al., 2013). Illusions of causality “..occur because of the way the human 

mind has evolved: It extracts causality from coincidences.” (Matute et al., 2015, p. 3). It is 

common knowledge that we have developed abilities through natural selection that help us 

achieve the wanted, and to avoid the unwanted (Blanco et al., 2011). By having developed the 

ability to identify causal relationships, we can predict events and prepare ourselves for them, 

which means that we can influence our environment (Greville & Buehner, 2010). However, the 

tendency to detect causal relationships is so strong that we identify causal relationships even 

when they do not exist (Barberia et al., 2013). Causality itself cannot be observed, it has to be 

inferred from evidence that can be observed (Hume, 1739/1888, cited in Greville & Buehner, 

2010). The evidence that indicates a causal relationship is contingency and contiguity. 

Contingency, or regularity, is necessary to infer causality because it means that events reliably 

and regularly follow each other. Contiguity refers to the closeness in time between events 

(Buehner, 2005).    

Illusion of causality is regarded as the basis of beliefs in pseudoscience (Matute et al., 

2011) and may be the basis of for example stereotypes (Hamilton & Rose, 1980), racism and 

economical collapses (Barberia et al., 2013).  

According to Barberia et al. (2013), what some studies call “illusion of control” (e.g. 

Blanco et al., 2011) is simply a specific case of illusion of causality. Therefore, Barberia et al. 

(2013) include illusion of control in the more general term illusion of causality. This study will 

follow that approach. 

How to assess illusions of causality 

The contingency judgment task, or contingency learning task, has often been used as a 

way to assess illusion of causality (Blanco et al., 2011; Crump et al., 2007; Barberia et al., 2013). 
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Research on contingency judgments was initiated in the 1960s, when researchers started 

questioning early learning theorists’ notions about Pavlovian conditioning. It was believed that 

temporal contiguity alone was enough to elicit conditioning between a conditioned stimulus (CS) 

and an unconditioned stimulus (US) in animal subjects (Allan, 1993). In contrast to earlier 

notions, the new idea of contingency took into account how often events are not paired as well as 

how often events are paired (Allan, 1993). The difference of the probability of the US in the 

presence and in the absence of the CS is contrasted to give the contingency between events. In 

accordance with these new theories, Rescorla (1968) conducted two experiments to test the 

ideas. Results from these experiments confirmed that both contingency and temporal contiguity 

were needed to elicit conditioning. Although these experiments were conducted to assess 

Pavlovian conditioning, the procedural similarities between human contingency learning and 

conditioning are striking. Research like that of Rescorla (1968) sparked an interest in human 

contingency learning within experimental psychology. The literature on human contingency 

learning has since then developed and several theoretical models of explanation have been 

introduced (for a review, see De Houwer & Beckers, 2002). 

In a contingency judgment task, two variables are paired over several trials. Then, the 

strength of the relationship, the contingency, is rated. People tend to overestimate the 

contingency between the variables. The overestimation occurs due to illusion of causality 

(Blanco et al., 2011). In the task, a potential cause is either presented or not presented, followed 

by either the presence or the absence of an outcome. The cause and the outcome are often 

illustrated with examples, such as rain (the cause) that is presented or not presented, followed by 

plant growth (the outcome) that occurs or does not occur. This creates four possible cause-

outcome pairings that can have different frequencies (see table 1). The frequencies of the cause-

outcome pairings can be manipulated to change the contingency between the cause and the 

outcome (Blanco et al., 2011). The potential cause has also been called “cue” (e.g. Blanco et al., 

2011). In this study, the term cause or potential cause will be used, to emphasize that it is 

potentially causing the outcome. 
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Table 1. A 2x2 matrix showing the four possible cause-outcome pairings. 

 Outcome present Outcome absent 

Cause present A B 

Cause absent C D 

 

There are generally two different types of contingency judgment tasks. The first type is a 

passive task with a preprogrammed sequence of cause-outcome pairings that the participant 

merely observes before rating the contingency. The second type is an active task in which 

participants are allowed to decide when the cause should be presented and when it should not. 

The active version of the task can have a preprogrammed and fixed order of when the outcome is 

present, so that the participants’ decision to present the cause or not doesn’t have any effect on 

the presence or absence of the outcome. In this case, it is a zero contingency and the outcome is 

independent of the cause. Consequently, the contingency should be rated as 0 to be correct. The 

active version of the task can also be programmed to show the outcome in a preprogrammed 

percentage of cause-present trials. This means that if the participant decides to present the cause, 

there is, for example, 75% chance that the outcome occurs (Matute et al., 2015).  

After several cause-outcome pairings have been presented, the participant is asked to rate 

the strength of the contingency between the cause and the outcome on a scale (Crump et al. 

2007). Some studies use a unidirectional scale, in which the scale ranges from 0 to a positive 

value (usually 100) representing a positive contingency. Other studies use a bidirectional scale, 

in which the scale goes from a negative value (usually -100) representing a negative 

contingency, to a positive value representing a positive contingency. A rating of 50 would mean 

a positive contingency of average strength. In addition, how often the participant has presented 

the cause, i.e. the response ratio, is of interest. It is called the probability of the potential cause, 

P(cause), and the value expressed in percent reveal how often the participant presented the cause 

divided on the total amount of trials (Allan, 1993).  

The appropriate way of measuring the dependency of one variable on another is the ΔP 

index (Allan, 1993). The ΔP index is a normative measure of contingency (Matute et al., 2015), 

produced by the difference between the probability of the outcome given the cause, and the 

probability of the outcome in the absence of the cause: ΔP = A/(A+B) – C/(C+D) (Jenkins & 

Ward, 1965). ΔP values can range from -1, representing a negative contingency, to 1, 

representing a positive contingency. A ΔP value of 0 means that there is no contingency between 
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the variables. A positive ΔP value means that the probability that the outcome occurs is higher in 

the presence of the potential cause, than in its absence. The cause is therefore potentially 

contributing to producing the outcome. A negative ΔP value means that the probability that the 

outcome occurs is higher in the absence of the potential cause, than in its presence. In this case, 

the potential cause is not producing the outcome but rather preventing it. 

The ΔP index is used to calculate participants’ actual contingencies in the contingency 

judgment task (Matute et al., 2015). The actual contingency is the contingency that the 

participants experience based on when they decide to present the potential cause in an active 

contingency judgment task. That is, even if the preprogrammed contingency is zero, participants 

might experience a contingency higher than zero if they happen to present the cause on those 

precise trials when the outcome has been preprogrammed to be present (Blanco et al., 2011). 

Some research do show that people are sensitive to actual contingencies (e.g. Shanks & 

Dickinson, 1987), but much research show that people are biased in their judgments of 

contingencies (Barberia et al., 2013). 

Increasing the risk of illusions 

Several variables are known to increase the likelihood of illusion of causality. The first 

variable is the probability of the outcome. When the outcome occurs often, people are more 

likely to overestimate the contingency. This is called the outcome-density bias (Matute et al., 

2015). The second variable is the probability of the cause. If the cause is presented often, this 

will increase the likelihood of causal illusions. This effect is called the cause-density or cause-

frequency bias (Matute et al., 2015). Blanco et al. (2013) calls this variable the probability of 

responding, P(R), and distinguishes a difference between the former and the latter. Namely, the 

effect is called cause-density effect when the cause is external, as in a passive task, and the 

probability of responding, P(R), effect when it appears in an active task, when the participant 

controls when to respond. In the present study, this effect will be called the probability of the 

potential cause, P(cause), as it is called in Barberia et al. (2013).     

In active tasks that let the participants decide when to present the cause, participants tend 

to present the cause often. This seems connected to a general hypothesis testing strategy called 

positive testing strategy (Barberia et al., 2013). Using a positive testing strategy when testing a 

hypothesis means that you focus on the cases that can confirm the hypothesis, not on the ones 

that can disconfirm the hypothesis (Klayman & Ha, 1987). Some would like to connect this to 

confirmation bias, but according to Klayman and Ha (1987) this is not suitable because making 

this connection suggests that the positive testing strategy is faulty. In fact, the strategy can be a 

useful heuristic in many situations. However, since it is a shortcut, it can lead to problems when 
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used incorrectly. One evident problem that can arise from using the strategy is that some events 

receive too much attention while others receive too little, resulting in inaccurate responses 

(Klayman & Ha, 1987). In a contingency judgment task, using the strategy means that you 

present the cause often, resulting in a high P(cause) value, and focus on the cause-present cases. 

Then, if the possibility of the outcome is high, exposure to cases where the outcome appears 

without the cause is reduced (Barberia et al., 2013). For example, imagine that people often 

recover from a sickness without being given medicine. If you give medicine to these people 

frequently, you will fail to notice that people often recover without the medicine. That is, you 

will fail to notice that the outcome (the recovery) frequently is present when the cause (the 

medicine) is absent. In this case, the strategy is likely to result in an inaccurate response, since 

the medicine-absent events receive too little attention. 

Lagnado and Sloman (2006) points out a third variable that can increase the illusion of 

causality, and it has to do with the closeness in time between events. The closeness in time 

between events is a necessary cue for us when we infer causality, but it can mislead us to infer 

causality where none exists. So, from events that by chance appear close in time we can 

erroneously draw the conclusion that one causes the other. Barberia et al. (2013) calls this 

variable “cause-outcome coincidences” (p.5), which reflects the idea that if the potential cause 

and the outcome coincides, we are likely to draw the conclusion that the potential cause in fact 

causes the outcome, even when the two only coincide by chance.  

Consequently, in order to decrease the illusion of causality, either the frequency of the 

cause or the outcome can be decreased. However, in real life it is usually not possible for a 

person to decrease the frequency of the outcome. What remains is the possibility to decrease the 

cause, and this is often within a person’s control. For example, a person might not be able to 

decrease how often she becomes ill, the outcome, but she can decrease how often she takes the 

medicine, the cause, to find out if the medicine cures the illness (Barberia et al., 2013). To 

conclude, even though we might be unable to control the frequency of the outcome, being aware 

of the fact that a frequently occurring outcome can increase causal illusion means that we can 

prepare for these sorts of situations and try to make sure that we won’t develop the illusions 

(Matute et al., 2015).  

Debiasing 

Debiasing is defined as “a procedure for reducing or eliminating biases from the 

cognitive strategies of a decision-maker.” (Arnott, 2006, p. 62). By debiasing our thinking, we 

become better thinkers (Croskerry et al., 2013). 0 
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Teaching people scientific thinking might be the best, if not the only, way to debias 

people from illusion of causality (Matute et al., 2015). This has to do with the fact that people 

don’t have the ability to assess causality naturally. Matute et al. (2015) mean that “..scientific 

methods should always be used when assessing causality.” Unfortunately, people don’t think 

scientifically by nature (Lilienfeld et al., 2012). Scientific thinking can reduce or eliminate 

illusion of causality by influencing people to: refrain from presenting the cause often, observe 

what happens when the cause isn’t presented, make sure to look for complete information and be 

aware of the possibility of being biased. It is not only important to learn to use basic scientific 

thinking, it seems to be if not even more important to learn in what situations this kind of 

thinking is crucial (Matute et al., 2015).  

          Lilienfeld et al. (2009) point out several aspects that can negatively affect the success of 

debiasing techniques. Firstly, people don’t believe that they are affected by bias. This is called 

the bias blind spot. People can acknowledge that biases exist and that they affect others, but 

people believe that when it comes to themselves, they perceive the world objectively (Pronin, 

Lin & Ross, 2002). Secondly, people fail to realize that debiasing is valuable for their everyday 

life. For some debiasing interventions this might mean that in order to be effective, participants 

need to be shown the consequences of biased decisions taken in the daily life (Lilienfeld et al., 

2009). Barberia et al. (2013) included a deceptive part in their debias intervention to show the 

participants how easily they could be affected by bias, in order to avoid the bias blind spot 

aspect. In addition, the deceptive part had connections to daily life, so that the participants would 

more easily recognize the value of the debiasing (Lilienfeld et al., 2009). Thirdly, issues 

connected to scientific thinking can make debiasing efforts unsuccessful. Scientific thinking is 

both hard to teach and to do. For instance, telling people what they should do when facing a 

problem doesn’t mean that they will be able to implement the advice. In order to think 

scientifically, people need practice as well as knowledge about the specific domain that the 

problem appears within. Furthermore, people tend to focus on the surface structure of problems, 

rather than on the deep structure. For example, people might not realize that two mathematical 

problems have the same deep structure, i.e. require the same mathematics, because they focus on 

the surface structure, the differing scenarios that the problems appear in. However, through 

experience people can learn to recognize the deep structure, and then the knowledge of how to 

solve a problem can transfer to other problems with the same deep structure (Willingham, 2008).  

          Lilienfeld et al. (2009) mean that there is a need for a lot more research on effective 

debiasing techniques, on what makes them effective and how the knowledge gained in them can 

be generalized for use in everyday life. Most techniques that have been developed so far don’t 
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have a proper connection to everyday life.  In fact, so far researchers have spent more effort on 

discovering biases than on constructing techniques to debias people (Lilienfeld et al., 2009). 

Since debiasing faces plenty of difficulties, any good techniques that are invented to debias 

might only achieve a small change. However, according to Lilienfeld et al. (2009), the topic of 

debiasing should be given priority. Debiasing people will lead to a wiser, and hopefully safer, 

world.   

Previous studies 

The experiment of this study is a based on the experiments of two earlier studies made by 

Blanco et al. (2011) and Barberia et al. (2013). 

In the study by Blanco et al. (2011), two experiments were conducted to assess the 

participants’ illusion of control. University students from an introductory course in psychology 

were tested in a computerized contingency judgment task. The contingency judgment task was 

set up like a computer game in which the participant was to imagine that he or she was a medical 

doctor. The participants’ task was to find out if the medicine was effective in healing a fictitious 

disease. In the first experiment, the participant was presented with 50 fictitious patients suffering 

from the fictitious disease. For each patient, the participant could choose to give or not to give a 

medicine, the potential cause, and then the participant received feedback regarding the patient’s 

health. If the patient was healed, the desired outcome had occurred. It was then an outcome-

present case.  If the patient was not healed, it was an outcome-absent case. After the participant 

had been presented with all the 50 patients, he or she was asked to judge how effective the 

medicine was on a scale from 0 – 100. A second, similar experiment, in which the number of 

trials was doubled, was performed by Blanco et al. (2011). The idea was to examine if the results 

from the first experiment were due to insufficient training, and that the overestimation of 

contingency that was found in the first experiment therefore would not be seen in the second, 

longer experiment, as predicted by some models (e.g. Rescorla & Wagner, 1972). In the 

experiments, the outcome was fixed to be present in 75% and 76% of trials respectively, in a 

randomized order. The percentages differed between the experiments because of the difference 

in the total number of trials (Blanco et al., 2011).  

Results from the two experiments showed that there was a significant difference between 

the participants’ judgments of contingency and the preprogrammed contingency of 0. This means 

that the participants overestimated the contingency in both the experiments, that is, the 

participants had developed illusions of control (Blanco et al., 2011). The main finding in the first 

experiment replicated findings from Matute (1996), namely that higher frequency of presenting 

the cause, P(cause), resulted in higher judgments of contingency. In other words, the participants 
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who presented the cause in most of the trials developed the strongest illusions of control. As 

mentioned previously, this is called the P(cause) effect. In addition, these results meant that 

judgments of contingency could be predicted by how often participants chose to give the 

medicine. This got further support in the second experiment (Blanco et al., 2011).  

Results from the first experiment revealed that the actual contingencies that the 

participants experienced were close to zero, but there was a significant difference between the 

actual contingencies and the preprogrammed contingency of 0. There was also some variability 

in the actual contingencies that the participants experienced. Blanco et al. (2011) tested if actual 

contingency went up when frequency of presenting the cause, P(cause), went up. This turned out 

to be the case. However, a regression analysis showed that the actual contingency could not 

predict the participants’ judgment of contingency (Blanco et al., 2011). In the second 

experiment, the actual contingencies did not significantly differ from the preprogrammed 

contingency of 0, and the variance of the actual contingencies was reduced. Blanco et al. (2011) 

meant that these results taken together indicated that the overestimation of contingency by the 

participants did not develop as a result of the actual contingencies that they experienced.  

The theory of insufficient training was not supported by the results. According to the 

theory, the overestimations seen in the first experiment should have decreased in the second 

experiment. However, the results revealed the opposite. The mean value for judgments of 

contingency in the second experiment was significantly higher than in the first experiment. So, 

the overestimation of contingency became stronger when the amount of trials was increased. 

This was measured by P(cause), since it was an indirect measure of judgment of contingency 

(because of its ability to predict judgment). Consequently, the results showed that the 

participants did not decrease their responses during the increased amount of trials; they increased 

them. That is, the participants’ illusions of causality became stronger (Blanco et al., 2011).     

The other study, conducted by Barberia et al. (2013), used a between-groups design to 

test the effectiveness of a debias intervention aimed to prevent the formation of illusions of 

causality in secondary school students (the average ages were 14.26 in the control group and 

14.84 in the experimental group). According to Barberia et al. (2013), they were the first to test 

an educational intervention aimed to reduce illusions of causality.  

A computerized contingency judgment task was used to assess illusions of causality in 

the participants. The intervention consisted of two separate phases. The first phase involved 

staging a scenario in which a bogus product was said to enhance physical and intellectual 

abilities. This part of the intervention was aimed to show the participants how easily illusory 

perceptions of causality can develop. The participants were then told that the product was fake, 
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and that they had been deceived. The second phase of the intervention involved educating the 

participants about contingency information as the correct way to infer causality. The phase also 

involved information about the importance of comparing the probability of an outcome in both 

the presence and the absence of the potential cause. Different examples were used to illustrate 

the concepts that were covered in the second phase. The control group did the contingency 

judgment task before taking part in the intervention, and the experimental group did the 

contingency judgment task after taking part in the intervention (Barberia et al. 2013). In the 

contingency judgment task the same cover story was adopted as in the experiment of Blanco et 

al. (2011). Participants were told that they would play a computer game, in which they were 

asked to imagine that they were medical doctors that would be presented to 40 fictitious patients 

suffering from a fictitious disease. The participants were not aware that this computer game was 

a part of the experiment. For each patient the participant could choose to give or not to give a 

medicine (cause), and directly afterwards they found out if the patient was healed (outcome) or 

not. After the participants had been presented with all the 40 patients they were asked to judge 

how effective they thought the medicine was on a scale from 0 – 100. The participants did the 

contingency judgment task twice. The first task was preprogrammed as a zero contingency 

condition in which the outcome (patient being healed) was present in 75% of cases, regardless if 

the cause (medicine) was presented. So, 30 out of 40 patients were healed, with or without 

medicine. However, the second task was a positive contingency in which 1 out of 8 patients who 

did not get the medicine were healed, and 6 out of 8 patients who got the medicine were healed. 

The positive contingency condition was added to make sure that the experimental group didn’t 

simply rate the contingency low because they were suspicious after having been deceived in the 

intervention (Barberia et al., 2013).   

As in the study of Blanco et al. (2011), the participants developed causal illusions. 

However, the intervention was successful. In the zero contingency condition, the participants in 

the experimental group made more accurate judgments of the contingency compared to the 

control group. In the positive contingency condition, both groups judged the contingency 

similarly and fairly accurately. Taken together, the results showed that the participants in the 

experimental group did not rate the contingency lower because they were suspicious after the 

intervention. Rather, they were able to detect when evidence indicated a contingency, and when 

it didn’t. In addition, as the researchers had expected, the control group presented the cause more 

often than did the experimental group. To conclude, the debias intervention affected the 

participants in the experimental group in two ways. It had a significant direct effect on their 

contingency judgments, as well as a significant indirect effect on their judgments by affecting 
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them to decrease their presentation of the cause resulting in a lower P(cause) value (Barberia et 

al., 2013).   

Purpose and hypotheses 

Researchers point to the importance of a future worldwide debiasing program (e.g. 

Barberia et al., 2013; Matute et al., 2015). However, to the best of our knowledge, studies have 

only been conducted in Western countries so far. If a future worldwide debiasing program is the 

objective, research needs to be performed in other contexts as well, in order to establish external 

validity of results from previous studies. Moreover, several researchers are pointing to the gap in 

research regarding debias interventions (e.g. Lilienfeld et al., 2009; Barberia et al., 2013; Matute 

et al., 2015). This study aims to examine if results from previous studies on illusion of causality 

(Blanco et al., 2011; Barberia et al., 2013) and a specific debias intervention (Barberia et al., 

2013), can be generalized to another context. More specifically, the study will examine the 

effectiveness of a debiasing intervention aimed to reduce causal illusions, conducted in rural 

Kenya. To the best our knowledge, this is the first study that uses a repeated measures design 

when testing a debias intervention aimed to reduce causal illusions. Furthermore, to the extent of 

our knowledge, it is the first study on debiasing against causal illusions conducted outside 

Western countries. Based on previous research we have the following four hypotheses:     

1. The participants will overestimate the contingency in the contingency judgment 

task.  

2. The study’s main hypothesis is that the participants will make more accurate 

estimates of contingency after the intervention, than before the intervention.  

3. The actual contingency will not predict the participants’ estimates of contingency.  

4. The frequency of the participants’ responses, P(cause), will predict the participants’ 

estimates of contingency.    

Method 

Participants 

The participants consisted of 30 people, 13 women and 17 men, aged 16-51 (M = 27, SD 

= 8.27) from rural Kenya. The mean number of years of education was 13.37 (SD = 3.03). 

The sample was selected through convenience sampling with the help of a local non-

governmental organization based in west Kenya. The organization has a large social network and 

social media was used to request participants. The organization had been informed that the 

participants needed to be over the age of 15, to be able to read and write and that preferably an 

equal amount of women and men would participate. 
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Material 

To assess illusions of causality, a contingency judgment task with a zero contingency was 

used. In the pre-test, the outcome was preprogrammed to be present in 77,5% of the trials in a 

randomized order which was fixed and identical for all participants. In the post-test, the outcome 

was preprogrammed to be present in 75% of trials in a randomized order that was fixed and 

identical for all participants. So, there was no relationship between medicine and recovery. The 

high ratio of outcome-present trials was used as it has been shown to promote overestimations of 

contingency (Matute et al., 2015). The order in which patients were healed or not healed differed 

from pre-test to post-test. The reason for the difference in outcome percentages between the pre-

test and the post-test was a mistake that occurred when the task was prepared. However, we 

believe that this error did not influence the results. If it did the, influence was minimal. This will 

be examined in more detail in the discussion.  

In previous contingency judgment tasks, computers have been used. (Blanco, et al., 2011; 

Crump et al. 2007; Barberia et al. 2013). In this study, both papers and computers were used.  

Papers were used to simulate patients, to give feedback to the participants, to let the participants 

rate effectiveness and to let the participants rate their understanding of the intervention. The 

paper patients consisted of a paper with a sad smiley, and the only difference between them was 

the patient number on the top of the page. The feedback to the participants consisted of a paper 

with either a happy smiley with the text “The patient is healed!”, or a sad smiley with the text 

“The patient was not healed”. The paper used for effectiveness rating consisted of a scale from 0 

to 100, “Ineffective” to “Entirely effective”, and a text saying ”To what extent do you think 

“Elovix” has been effective to heal the patients?” or ”To what extent do you think “Batatrim” 

has been effective to heal the patients?”. The paper for rating understanding of the intervention 

consisted of a scale from 1 to 5,” Not at all” to “Very well”, and the text “How well did you 

understand the lesson?”.    

Computers were used to record general information about the participants, to record the 

participants’ responses, and to look up what feedback the participants should receive. Papers 

were partly used in the experiment because we were unable to find a preexisting computerized 

task that could be used in the test, and we didn’t have the skills to programme one ourselves. In 

the intervention, a flip board was used to illustrate examples. Statistical analysis was done using 

SPSS. The ΔP index was used to calculate the participants’ actual contingencies. Materials used 

in the task can be found in the appendix. 
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Design and procedure 

The experiment had a repeated measures design and consisted of a pre-test, an 

intervention and a post-test. The tests consisted of the same contingency judgment task, set up as 

a game. The only alteration from pre-test to post-test was the names of the medicine and disease. 

The participants arrived at different times. In small groups they were informed that they 

would participate in a test, in a lecture and then in a test similar to the first one. They were also 

told the instructions of the game (see appendix). Then, after the participants had been asked if 

they had any questions, they were asked to sign a letter of consent. 

All participants were given the same instructions. In the first game, the participant was to 

imagine that he or she was a medical doctor. As this medical doctor, the task was to find out if a 

new, imaginary medicine that was called “Elovix” was effective or not in healing a fictitious 

disease that we called “MacGregor’s syndrome”. The participant was going to be presented with 

forty fictitious patients, and for each patient be given the choice to give or not to give “Elovix” to 

the patient. At the end of the game, the experimenter was going to ask the participant to rate the 

effectiveness of the medicine. 

Besides the authors of this study, a third experimenter was recruited and trained to assist 

with the contingency judgment task. In the pre-test, the participants were randomly paired with 

one of the three experimenters to do the game. In the following, we will explain in detail how the 

experiment was conducted.   

First, the participant was seated opposite the experimenter. The experimenter asked the 

participant for general information, such as age, education level and gender. Since some people 

had to wait for a while before they were tested, the experimenter made sure to ask if the 

participant had any questions before the experiment started. At this point, few questions were 

asked. Then, the experimenter started the game and showed the paper with the first patient to the 

participant. The participant told the experimenter if he or she wanted to give or not to give the 

medicine to patient one. The experimenter recorded the response in the computer and looked up 

the preprogrammed order to find out what response to give to the participant, if the excel sheet 

showed “healed” or “not healed”. If it showed “healed”, the experimenter held up the paper with 

a happy smiley and the text “The patient is healed!”. If it showed “not healed”, the experimenter 

held up the paper with a sad smiley and the text “The patient was not healed”. Then the 

experimenter showed patient number two, and the same procedure was repeated. This was 

repeated for all 40 patients. The computer was facing away from the participants to make it look 

like it was computing an answer, so that the participants would not figure out that the outcome 

was preprogrammed. When the participant had given a response for all patients, the experimenter 
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showed the scale (see appendix) ranging from 0 to 100, with the sentence ”To what extent do 

you think “Elovix” has been effective to heal the patient?”. The participant was asked how 

effective he or she thought the medicine was in healing the patient and to respond by pointing 

out a number on the scale. Then the participant was done with the first game. At this point, 

participants were asked not to talk about the test before completing the whole study to avoid 

spreading of information among participants that could prove a threat to the internal validity of 

the experiment. 

When all the participants were done with the first game, they participated in the 

intervention together. The intervention aimed to debias the participants and consisted of a lesson 

in basic scientific thinking, based on the intervention by Barberia et al. (2013). The lesson 

covered the scientific method, bias, correlation and causality. The participants were shown the 

different steps of the scientific method and why the logic of the method can have useful 

applications in everyday life. The consequences of bias on thinking and decisions were presented 

shortly, and connections were made to scientific thinking as a tool to work against biases. The 

difference between correlation and causation was discussed, as well as necessary steps for 

figuring out the occurrence of causation, such as refraining from presenting the cause (see 

appendix for the complete intervention). 

After the intervention, all participants did the contingency judgment task individually 

again. But before the game began, they were asked to rate their understanding of the lesson on 

the scale ranging from 1 to 5. The participants were then told that their task was to find out if 

another new, fictitious medicine called “Batatrim” was effective in healing the patients that were 

sick in a different disease than before, called “Haokoman syndrome”. When the participants had 

given their response for 40 new patients they were asked to rate this new medicine on the same 

scale as before, from 0 to 100, but this time the scale was accompanied with the sentence “To 

what extent do you think “Batatrim” has been effective to heal the patient?”. After the second 

contingency judgment task was done, participants were debriefed and financially compensated 

for participating. 

Ethics  

All participants in the study were above the age of 15. Before deciding to participate in 

the study, all participants read and signed a letter of consent. The letter included information 

about how long the study would take, that all data would be kept anonymous and confidential, 

that the study did not cause any physical or psychological harm, that they were free to stop 

participating at any time and that all participants would be financially compensated for 

participating. All participants were given a number that was used during the whole study, to 
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avoid having to record names. After the study, the participants were debriefed regarding the 

nature of the study and they also had an opportunity to ask questions at this time.   

Results 

In line with the first hypothesis, the participants overestimated the contingency in both 

the pre-test and the post-test (see Table 2 for descriptive statistics). A paired-samples t-test 

showed that the participants’ estimated contingency (i.e., rated effectiveness of the medicine) in 

the pre-test (M = 64.53, SD = 25.35), differed significantly from the preprogrammed contingency 

of 0, t (29) = -13.95, p > .001. A paired-samples t-test showed that the participants’ estimated 

contingency in the post-test (M = 70.6, SD = 17.46), differed significantly from the 

preprogrammed contingency of 0, t (29) = -22.15, p > .001 as well.  

In contrast to our second hypothesis, the participants did not decrease their estimates of 

contingency in the post-test compared to the pre-test. In fact, a paired-samples t-test showed that 

there was an increase in rated effectiveness (M = 6.06), but this increase between pre-test (M = 

64.53, SD = 25.35) and post-test (M = 70.60, SD = 17.46) was not statistically significant, t (29) 

= -1.78, p = .09.  

A paired samples t-test showed that there was no significant difference between the actual 

contingencies and the preprogrammed zero contingency in the pre-test, t (29) = 1.25, p = 0.22, or 

in the post-test, t (29) = 1.64, p = .11. This indicates that the overestimations of contingencies 

were not due to actual contingencies experienced by participants. In addition, there was no 

significant difference between the actual contingency in the pre-test (M = 5.57, SD = 24.35) and 

the actual contingency in the post-test (M = 9.07 SD = 30.35), t (29) = -0.54, p = .59, either. 

Paired-samples t-tests were conducted to evaluate the difference between the actual contingency 

and the estimated contingency. There was a statistically significant difference between the actual 

contingency (M = 5.57, SD = 24.35) and estimated contingency (M = 64.53, SD = 25.35), t (29) 

= 9.70, p < .001, in the pre-test. The mean difference between actual contingency and estimated 

contingency was 58.97. There was a statistically significant difference between the actual 

contingency (M = 9.07 SD = 30.35) and estimated contingency (M = 70.6, SD = 17.46), t (29) = -

10.09, p < .001, in the post-test as well. The mean difference between actual contingency and 

estimated contingency in the post-test was 61.53. These results further indicate that the 

overestimation of contingency was not due to the actual contingency.  

There was some interindividual variability. In the pre-test, the minimum actual 

contingency was – 26, and the maximum actual contingency was 82. In the post- test, the 

minimum actual contingency was – 29, and the maximum actual contingency was 75. In the 
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post-test, the lowest estimate of contingency that was reported by a participant was 20. This 

participant had estimated the contingency in the pre-test to 40. 

Two multiple regression analyses were conducted to test the third and fourth hypotheses. 

The analyses revealed that the actual contingency could not predict the estimated contingency in 

the pre-test, β = .002, t (29) = .01 p = .99, nor in the post-test, β = -.13, t (29) = -.67 p = .51. 

These results support the third hypothesis. Regarding the fourth hypothesis, the analyses 

revealed that there was no significant effect of P(cause) on rated effectiveness in the pre-test, β = 

.20, t (29) = .88 p = .39. However, there was a significant effect of P(cause) on rated 

effectiveness in the post-test, β = .53, t (29) = 2.82 p <.01. Based on these results, P(cause) can 

predict the rated effectiveness as hypothesized, but this effect is seen in the post-test, not in the 

pre-test. 

A paired samples t-test was conducted to evaluate the difference between P(cause) in the 

pre-test and P(cause) in the post-test. There was a significant increase in P(cause) in the post-test 

as compared to the pre-test, t (29) = 2.06, p < .05. These results show that the participants were 

more active (presented the cause more often) in the post-test, than in the pre-test. 

After the intervention and before the post-test, each participant was asked how well they 

understood the lesson (intervention) on a scale from 1 to 5, 1 meaning “not at all” and 5 meaning 

“very well”. The mean rated understanding of the intervention was 3.93 (SD = 1.11).  

A visual inspection of normal probability plots and scatter plots failed to show any major 

deviations from normality, linearity and homoscedasticity. 

In sum, results from the study found support for the first and third hypotheses. The 

second hypothesis was not supported and the fourth hypothesis was partially supported. See 

figure 1 for results from the pre-test and the post-test summarized in a bar graph.   
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Table 2. Descriptive statistics from pre-test and post-test. The actual contingency values have 

been re-scaled from a 0-1 scale to a 0-100 scale. 

 Pre-test Post-test 

 M SD M SD 

Preprogrammed contingency 0 0 0 0 

P(cause) in % 68.27 14.21 74.50 19.96 

Actual contingency 5.57 24.35 9.07 30.35 

Estimated contingency 64.53 25.35 70.6 17.46 

Note:  
Preprogrammed contingency = Preprogrammed contingency between cause and outcome. 
P(cause) = Probability of the potential cause (giving medicine) in percentage. 
Actual contingency = Contingency experienced by participants calculated by ΔP. 
Estimated contingency = Rated effectiveness of the medicine provided by participants. 
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Figure 1. Graph showing results from pre-test and post-test. The actual contingency values have 

been re-scaled from a 0-1 scale to a 0-100 scale. 

Discussion 

The aim of this study was to examine if results from two previous studies on causal 

illusions could be generalized to rural Kenya. The study did replicate some results from the 

previous studies. However, the main hypothesis was not supported. The debias intervention that 

was based on the intervention by Barberia et al. (2013) did not succeed in debiasing the 

participants. Consequently, the study could not replicate the main finding of Barberia et al. 

(2013).  

As hypothesized, the participants were biased in their estimates of contingency. They 

rated the medicine as effective in both the pre-test and the post-test, when in fact it was not 

effective at all. As previously mentioned, some studies show that people are sensitive to actual 

contingencies (e.g. Shanks & Dickinson, 1987), but our results replicate the findings of both 

Blanco et al. (2011) and Barberia et al. (2013), namely that people generally overestimate 

contingencies. Only one participant gave a correct estimate (0) of the contingency, and another 
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participant gave an estimate of 10 in the pre-test. The lowest estimate of contingency in the post-

test was 20. The fact that the first hypothesis was supported, and that the participants developed 

such strong causal illusions, supports the importance of more research on debiasing 

interventions.   

It was ruled out that the actual contingency affected the participants to develop causal 

illusions. Firstly, the actual contingency did not differ significantly from the preprogrammed 

zero contingency. Secondly, there was a significant difference between the participants’ actual 

contingencies and estimated contingencies in both pre-test and post-test. Thirdly, actual 

contingencies could not predict the participants’ overestimation of contingencies. Consequently, 

the actual contingency cannot explain why the participants overestimated the contingency. These 

results replicate the findings of both Blanco et al. (2011) and Barberia et al. (2013) and further 

deviates from studies that report that participants are sensitive to actual contingencies (e.g. 

Shanks & Dickinson, 1987). There is one main difference between Shanks and Dickinson's 

(1987) study and our study that might explain the contrasting results. In Shanks and Dickinson’s 

(1987) study the potential cause was pressing the spacebar on a computer and the outcome was a 

flashing triangle on the computer screen. In our study the potential cause was giving medicine to 

a patient and the outcome was the recovery of the patient. It is possible that it is easier for 

participants to infer causality from recognizable events, such as medicine and recovery from a 

disease, than from more abstract events like pressing a key and a flashing triangle. That is, 

people might expect a medicine to cause recovery in a patient to a greater extent than they expect 

the pressing of a key to cause a triangle to flash on a screen. Hamilton and Rose (1980) argue 

that people's previous experiences are likely to bias their expectations about the relation between 

two variables. 

The fourth hypothesis, that the frequency of the participants’ responses P(cause) would 

predict the participants’ estimates of contingency, was based on results from Blanco et al. 

(2011). This hypothesis was only partially supported. The frequency of the participants’ 

responses could predict their estimates of contingency in the post-test, but not in the pre-test. In 

the post-test, active participants, those that presented the cause more frequently, were more 

likely to develop a stronger overestimation of the contingency than those who presented the 

cause less often. That is, the more active participants developed stronger illusions of causality.  

The main hypothesis, the second one, was not supported. Based on Barberia et al. (2013), 

we hypothesized that the participants would report more accurate estimates in the post-test than 

in the pre-test. However, these findings were not replicated. The participants maintained their 

illusions of causality. The results support the fact that our tendency to detect causal relationships 



	
	
	 24	
even when they do not exist is very strong (Barberia et al., 2013). The results also indicate that 

the participants used a positive testing strategy, meaning that they presented the cause often and 

focused on the cases in which the medicine was presented (Klayman & Ha, 1987). Since the tests 

were high-outcome conditions, 31 respectively 30 patients were healed, it was likely that the 

cause and outcome would coincide often by chance. This means that the three variables most 

known to produce illusions of causality appeared in the task. The high outcome was 

predetermined, but the P(cause) effect appeared because the participants were active. The 

combination of the two increased the likelihood of cause-outcome coincidences.  

That the participants became more active in the post-test seems to contradict the 

participants’ high ratings of understanding. Problems connected to teaching scientific thinking 

give a potential explanation to why the participants did not decrease their responses. Barberia et 

al. (2013) called the contingency judgment task a transfer task since the participants needed to be 

able to transfer the new knowledge from the intervention to the task, and implement it. Barberia 

et al. (2013) did not discuss the issues regarding teaching scientific thinking, but their results 

showed that they successfully managed to teach the participants scientific thinking that was 

relevant to increase the accuracy in contingency judgments. Since our participants rated their 

understanding of the intervention as high, perhaps the problem was to transfer the knowledge 

into practical application in the task. In their intervention, Barberia et al. (2013) presented 

examples that had not only the same deep structure as in the contingency task, but also the same 

surface structure. For example, they used an example with an herb and recovery. Based on 

Willingham’s (2008) points regarding the difficulties with teaching scientific thinking, this 

probably increased the likeliness that the knowledge of how to solve the problem transferred to 

the task. As mentioned, the participants in the study of Barberia et al. (2013) did not know that 

the game that they played was part of the study. Since our participants were aware that the game 

was part of the study, we didn’t believe that our examples should be as similar to the medicine 

and recovery as they were in the study of Barberia et al. (2013). It was not desired that we simply 

told the participants how to do the task. In conclusion, it is possible that the participants were 

unable to transfer their knowledge to the post-test, and as a result causal illusions persisted in the 

post-test. However, this doesn’t explain why the participants became more active in the post-test; 

the P(cause) value increased significantly from the pre-test to the post-test. According to Blanco 

et al. (2011), illusion of causality increases when the amount of trials increases. They examined 

the development of P(cause) along the trials and found that contrary to some predictions, 

P(cause) increased successively. Since P(cause) could predict the estimated contingency, these 

results indicated that causal illusions increased along with the trials. We were unable to assess if 
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this occurred, since we only replicated the effect of P(cause) on estimates of contingency in the 

post-test. However, the non-significant increase in estimates of contingency between the tests 

approximated significance, and the P(cause) increased in the post-test. In addition, both 

participants that gave low estimates of contingency in the pre-test gave higher estimates of 

contingency in the post-test. These results taken together are in direct contrast to what the 

intervention aimed to achieve, and more in line with what you would expect if illusions 

increased along with the trials. We were not able to examine it, but if causal illusions do increase 

along with the trials in a repeated measures design, effects of the intervention might not be 

discovered because the participants are likely to rate the contingency higher in the post-test than 

in the pre-test. This might then be a confounder, and prevent the discovery of an effective 

intervention. However, since we were unable to examine this, and since it has not been examined 

in a repeated measures design or with an intervention aimed to decrease illusions, it is not 

possible to draw any conclusions at this point.    

Method discussion  

To the best of our knowledge, this is the first study to test a debias intervention aimed to 

reduce causal illusion in an experiment with a repeated measures design. Barberia et al. (2013) 

argued in their study that future studies similar to theirs should examine the effectiveness of the 

intervention in a repeated measures design. Ideally, the repeated measures design should also 

include a control group with no intervention.   

Barberia et al. (2013) included deception in their intervention. The participants were 

deceived into believing that a bogus product was effective, and they did the contingency 

judgment task without knowing that it was a part of the experiment. Barberia et al. (2013) chose 

to include this to clearly show the participants the usefulness of accurate judgment of causality, 

as well as to avoid that the participants due to the bias blind spot (i.e. believing that bias doesn’t 

affect oneself) failed to realize that they were in need of debiasing. Although those reasons seem 

valid, deception was not included in the intervention of this study. We believe that for several of 

the participants, this was their first experience of participating in research. Including deception 

could potentially make the participants feel like they were tricked, or that our expectations on 

them were low. After all, the majority of the participants in the study of Barberia et al. (2013) 

reported that they felt cheated after the intervention. The cost versus benefit of using deception 

in psychological science is a complex issue. Some researchers mean that the use of deception can 

decrease faith in science, and that it increases suspicion towards science (e.g. Baumrind, 1985). 

This risk, in combination with the specifics of the context, resulted in an intervention free from 

deception. Barberia et al. (2013) believed that the deception was an important part of the 
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intervention. At the same time, they did discuss that they were unsure of which part of the 

intervention that was vital for the success. Perhaps including deception is an important part of 

debiasing, if not only to make participants aware of the fact that they are prone to biases.  

Due to human error, the outcome-present trials were 31 (77.5%) in the pre-test. This 

number should have been 30 (75%), as it was in the post-test. However, we believe that this had 

minimal, if any, effect on the results. Firstly, the difference in percentages had no impact on the 

preprogrammed zero contingency since the outcome was independent of the participants 

responses, regardless of the percentage of outcome-present trials. Secondly, values of P(cause) 

and actual contingencies are based on the participants’ responses. It is hard to speculate about 

how and if participants’ responses would be affected by an extra outcome-present trial in the pre-

test. Blanco et al. (2011) compares blocks of 10 trials each to the whole sequence of 40 trials on 

P(cause) values. In each of these blocks the percentage of outcome-present trials is 80% as 

compared to 75% in the whole sequence of 40 trials. The authors argue that these percentages are 

very similar and warrant a fair comparison. Based on this we believe that the difference is too 

small to have any impact on our results. 

One possibility as to why our main hypothesis was not supported could be that the 

participants did not understand the information that we tried to communicate in the intervention. 

This could have been due to language barriers. The experimenters and the participants spoke 

different native languages, and spoke English with different accents. Participants’ ratings of 

understanding suggest that the participants rated their understanding of the intervention as high. 

There is, however, a possibility that the participants’ ratings of understanding did not reflect their 

true understanding of the intervention. This could for example be due to a desire to please the 

experimenters and therefore not wanting to give the intervention a low rating as it could be 

interpreted as a judgment of the experimenters’ skills. The experimenters asked each participant 

to rate their understanding of the intervention before starting the post-test. A suggestion for 

future research is to let participants rate their understanding of the intervention without the 

experimenters being present. This could avoid the risk that the ratings do not reflect participants’ 

true understanding due to a desire to please experimenters. The potential problem of language 

barriers could also have resulted in difficulties in understanding the contingency judgment tasks. 

If this was the case, then estimates of contingency could have been arbitrary and not really based 

on information about contingency deducted from the trials.  

Aside from potential difficulties in communication, there is a potential risk that the 

design of the intervention was flawed. If there was a design flaw in the intervention, then it could 

not have debiased the participants even when controlling for all other factors. Barberia et al. 
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(2013) did not report their intervention in detail. So, our intervention was based on the concept 

and the general themes of their intervention. The intervention used in this study can be found in 

detail in the appendix. 

The contingency judgment task in this study differed from previous studies because the 

task was conducted with papers and computers, while the previous ones were conducted with 

only computers. A problem that could have resulted from this is that the experimenters affected 

the participants’ responses through cues, for example by unintentionally rewarding the 

participants when they used a good strategy. We were aware of this risk, and did our best to 

make sure that this didn’t affect the test. In addition, for the test to be valid it was important that 

the participants believed that the computer calculated the response that we gave them (healed/not 

healed). We believe that this crucial part was upheld during the tests, since no participant seemed 

to realize that the order in which the outcome appeared was preprogrammed. The results, the 

persisting overestimations, supports that this was not a problem for the study.   

Regarding the reliability of the study, the contingency judgment task is standard in 

judgment and decision-making research according to Barberia et al. (2013). Based on this, we 

found the reliability of the contingency judgment task to be high. 

Conclusion and future studies 

The results of this study further strengthen what several studies have shown, that people 

are prone to develop causal illusions. The results also support what is discussed in current 

research, that debiasing is a difficult task that faces many obstacles. That the participants became 

more active was a surprising finding, and it is uncertain what caused this.  

The practical implications of the current study are in line with those reported by Blanco 

et al. (2011). The example that was used in both studies, consisting of medicine as cause and 

recovery as outcome, is similar to real life situations. Based on how people act in the 

contingency judgment task, it seems likely that they easily could develop the belief that a 

pseudomedicine is effective. If it has no or few side effects people will administer the medicine 

often. Even if a disease tends to disappear on its own, people will not expose themselves to cases 

that indicate that the medicine doesn’t cause recovery. Consequently, people might spend money 

on useless pseudomedicines, and some illnesses might become severe if they are not properly 

treated.  

Further research is needed to establish external validity of the debias intervention by 

Barberia et al. (2013). In other words, research to examine if the educational intervention is a 

globally effective strategy to debias people from illusions of causality. For future studies we 
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believe that it is important to consider that illusions may increase when trials are increased, 

especially for studies with a repeated measures design.          
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Patient	1	
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The	patient	has	not	
been	healed.	
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The	patient	is	
healed!	
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To	what	extent	do	you	think	Elovix	has	been	
effective	to	heal	the	patients?	
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To	what	extent	do	you	think	Batatrim	has	been	
effective	to	heal	the	patients?	
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Letter	of	consent	
	
Hello,	we	are	performing	a	study	as	part	of	our	bachelor	thesis	in	psychology	for	Lund	University,	
Sweden.	We	are	studying	how	people	think	about	events.	This	study	consists	of	a	simple	test,	a	
lecture	and	then	another	simple	test.	The	tests	will	take	approximately	10	minutes	each	and	the	
lecture	will	take	an	hour.	The	participants	will	receive	a	400	KES	compensation.	We	would	like	to	
ask	you	to	participate	in	our	study.	

If	you	agree	to	take	part	in	this	study,	you	should	know	that:	

·									All	data	that	we	obtain	will	be	kept	confidential	and	anonymous.	
·									You	may	stop	participating	in	this	study	at	any	time.	
·									If	you	wish	you	shall	receive	information	about	the	results	of	the	study	after	we	have	obtained	

results.	
·									All	data	that	we	obtain	will	be	analyzed	as	grouped	data,	not	as	individual	data.	
·									The	study	will	not	cause	any	physical	or	psychological	harm.	

 
	
	
	
I,	_______________________________________,	understand	the	nature	of	this	study	and	I	agree	to	participate	
voluntarily.	I	give	the	researchers	permission	to	use	my	data	as	part	of	their	study.	
	
	
Signature:	_________________________________________________		

	

Date:	__________________	

	

If	you	have	any	questions	or	wish	to	receive	the	results	of	the	study,	please	contact	any	of	the	
following:	

Supervisor	-	Anna	Kemdal	Pho	-	anna.kemdal_pho@psy.lu.se	

Linnea	Cederlund	-	nea.cederlund@gmail.com	
Henrik	Josander	-	henrik.josander@gmail.com	
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Instructions	
	
In	a	little	bit	you	will	play	a	game	individually,	with	one	of	us.	We	will	now	explain	how	the	game	
works.			
	
When	we	begin	the	game	you	will	imagine	that	you	are	a	medical	doctor.	You	should	try	to	find	out	
if	a	new,	imaginary	medicine,	that	we	call	Elovix,	can	heal	people	that	are	sick	in	a	made-up	disease	
that	we	call	“MacGregor’s	Syndrome”.			
	
Forty	people	are	sick,	and	you	can	choose	to	give	or	not	to	give	medicine	to	each	one	of	them.	We	
will	show	you	one	patient	at	a	time,	until	we	have	gone	through	all	40	patients.		
	
For	each	patient	you	will	tell	me	if	you	want	to	give	or	if	you	don’t	want	to	give	the	medicine.	
After	you	have	done	this,	medicine	or	not	medicine,	we	will	show	you	with	these	papers	if	the	
patient	was	healed	or	if	the	patient	is	still	sick.		
	
Remember,	you	should	try	to	find	out	if	the	medicine	works	or	not,	if	it	heals	people	or	if	it	doesn’t.	
When	we	have	gone	through	all	the	patients	we	will	ask	you	how	good	you	thought	the	medicine	
was	at	healing	patients.			
During	the	test	we	will	write	down	the	answers	in	a	computer.		
	
Do	you	have	any	questions?	
	
We	will	give	you	a	participant	number	that	you	need	to	keep	with	you	until	you	go	home.	We	use	
this	instead	of	recording	your	name,	so	that	all	your	information	will	be	kept	anonymous,	and	we	
will	need	you	to	remind	us	of	your	number	in	the	second	game	later	today.	
	
Let’s	start	the	game.	
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Intervention 
 

Does everyone know what a scientist does?  
 
Basically, a scientist’s job is to find answers to questions. Scientists study pretty much 
everything in the world, and everyday they improve our knowledge about how things work and 
how things look in the world. 
 
What we really are interested in today is something called the scientific method. It is the method 
that scientists all over the world use to get answers to questions, to get new knowledge. 
Scientists get the answers through observations and experiments, so called research, and to make 
sure that they get correct answers when they do this they use the scientific method. Today we 
will show you how you can think like a scientist, and why this can be very useful.  
 
Let’s look at the scientific method in more detail by using an example. 
 
The scientific method begins with a question. This question must be something that we can 
measure in some way. So, as an example, let’s say our question is: Can tea make you perform 
better in school?  
 
Then we make a guess about what the answer is going to be, the guess that we make is called a 
hypothesis. Our hypothesis in this example is: We believe that drinking tea will make you get 
better grades.  
 
Then we try to answer the question. This we will do by making an experiment, which is the best 
way to get a precise answer to a question. This has to do with the most important thing in an 
experiment, something that is called control. Control in an experiment means that you make sure 
to set up the experiment in a way that makes you certain that you are testing what you want to 
test, that nothing else will have an influence on the answer that you get. For example, a very 
common thing to do in an experiment to have control is to have two groups, one group called the 
experimental group and the other called the control group. In our example, the experimental 
group is the group that drinks tea before they take an exam. The control takes the same exam, but 
they don’t get to drink tea before taking the exam. If our guess, our hypothesis, is right, then the 
participants in the experimental group will get better grades than the participants in the control 
group. 
 
When we have done our experiment we will have a result, an answer to our question. Does it 
look like we guessed it would look? Don’t worry if it doesn’t. It is common in research that the 
results don’t look like you guessed that they would. And sometimes we learn even more from 
finding out that something doesn’t look like we thought it would do.  
If we did the experiment with the tea, I am quite sure that we wouldn’t see any difference. As far 
as I know, tea doesn’t make people perform better. So, if we would have done this experiment 
for real, our guess would have been wrong. But, we would have learnt something new. If we 
want to improve our grades, we shouldn’t rely on tea! 
 
We have to make sure that we document everything we do carefully, both when we plan and 
when we do the experiment. The reason to this is that other scientist are going to want to make 
sure that they can make the experiment just like the one we made, and that they get the same 
result.  Because science is tough, the results that we get must stand several tests. So scientists 
make sure to double-check each other’s results. If the same experiment is made several times, 
and the results differ from each other between the experiments, we need to think of how to make 
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a new, different experiment that might give a better answer to our question. And a better answer 
is an answer that we get in all the tests that we make. All this has to do with something called 
skepticism.  
Scientists are skeptical; to believe something they need to see it several times, the same result 
must be repeated several times. They are careful about what they believe.    
    
Finally, we share our results with everyone. Because sharing what you come up with is an 
important part of science. You share the things that went well in your experiment, as well as the 
things that didn’t go as planned and the errors that you might have made.  Honesty is a basic part 
of the scientific method, as well as one of the most important parts. 
 
Scientists are always aware that the result they get is the best answer to the question so far, but it 
doesn’t mean that we in the future won’t come up with another experiment that gives a better, 
clearer answer to the question. This is why a scientist will say: 
This is how it seems to work, not this is how it works. 
 
Also, scientists are supposed to be as objective as possible. This means that when they are 
looking for answers to questions, it shouldn’t matter what they personally might wish the answer 
to the question to look like. They should always look for the truth. 
 
Why is this method so important? 
To answer that, we need to look a little bit at how we usually think and make decisions. Most of 
the time our thought processes are fast and intuitive. Basically, we are unaware of how we think, 
and we act on the basis of “what feels right”. This works quite well in many cases, but often this 
kind of thinking results in errors. We call them errors because they make us believe things that 
can be far off from what is actually going on in reality.  
 
For example, one error that all of us often do is that we never really question what we believe. 
As a matter of fact, we tend to look for things that support what we already believe, and ignore 
information that shows us that we might be wrong. And, like I said, this is something we do 
without being aware of it. So, because of this error often we believe that we are right about 
something, when in fact we are wrong.  
 
This is why the scientific method is so important. Compared to everyday thinking that is based 
on “what feels right”, it is based on information that we get from observations and experiments. 
It tells us to look for information that may prove that we are wrong, instead of just looking for 
information that proves that we are right.  
The method helps us to learn about things and act in a way that we can’t if we just think like we 
do everyday. It is one of the best methods that we have to really figure things out, and it is used 
every day and all over the world. 
 
Also, us humans tend to believe things, instead of disbelieving them. 
This is why the scientific skepticism is so important, it reminds us that we need to question 
things before we believe them, we need to test things properly before we say that they are right 
or efficient. 
 

So, what can we learn from the scientific method? 
The scientific method can help us get answers that are useful for us, because they will more often 
be correct than the ones that we get from our everyday way of thinking.  
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And we make so many important decisions in our life, and who would want these decisions to be 
based on errors? You don’t have to do experiments to make better decisions, knowing what the 
method is based on can help you make more well-informed decisions in your life.  
So, it teaches us to look for all the information, look for information that can show that you are 
wrong, to question the information that we do get not accepting without thinking it through and 
to be objective, that is, open to the possibility that the answer that we get might not be the one 
that we wanted or expected. 
 
 
 
- Correlation and Causation 

Now we are going to talk about the relationship between different events. I am going to explain 

two concepts regarding to this. Namely, correlation and causation. 

 

- What is correlation? - The word Correlation is made of Co- (meaning "together"), and Relation. 

So, correlation is when two things have a relation together, but that does not have to mean that 

one thing causes the other thing to happen. It just means that they have a relation. 

 

There can be both negative and positive correlations. I will explain this with some examples. An 

example could be that your stomach hurts every time your friends from another village come to 

visit. When they visit, your stomach hurts, when they don’t visit, your stomach doesn’t hurt. So 

there is a relationship or a correlation between your stomachache and visits from your friends. In 

this case there is a positive correlation because the more visits from your friends, the more you 

have stomachaches. 

Does this mean that your stomach hurts because of your friends? 

 

Probably not. Maybe your friends always gives you some different food when they come to visit 

and the real reason that your stomach hurts is not because your friends visited but because you 

ate the food that you are not used to. In this example there is a correlation between visits from 

your friends and stomachache, but no causation. The real causation is between the food and 

stomachache. So correlation means that two things have a relationship but one thing doesn’t 

necessarily cause the other. Causation means that one thing happens because of the other thing. 

Do you see the difference between correlation and causality? 

 

Another example could be amount of time you sleep and how tired you are the next day. If you 

sleep many hours you will be less tired the next day. If you sleep few hours you will be more 

tired. In this case there is a negative correlation between hours slept and tiredness. The more you 
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sleep, the less tired you are. And the less sleep you get, the more tired you will be. So you can 

see that the two things (sleep and tiredness) have a relationship. 

 

Do you think there is causality or only correlation between hours slept and how tired you are the 

next day? It sounds probable that you are tired because you didn’t sleep enough, but you can’t be 

sure about it. Maybe there is something else that affects both how tired you are and how much 

you sleep. So what can you do to be more sure about it? 

 

How to infer causality 

A scientist wouldn’t say that less sleep causes you to be tired just because it sounds likely to be 

true. So how would a scientist do to actually say that there is causality between two things? 

They use the scientific method, like we talked about earlier. A scientist would follow the steps in 

the scientific method to get an answer that is more reliable than just assuming based on your own 

beliefs and experiences. 

 

If a scientist wants to see if there actually is causality between two events, it is important to see if 

the two events can happen independent of each other. The main point of this is to see if you can 

reject and rule out that one event causes another. If you have observed that one event usually 

happens after the next, you might think that one event causes the other to happen. Like sleep and 

tiredness. In other words, you might think that too little sleep is the cause of tiredness. But if you 

can choose to sleep a lot and you are tired anyway, and especially if this happens a lot of times, 

then you might have to change your mind about the causal relationship between sleep and 

tiredness. Then you might find out that there is only correlation, and no actual causation between 

amount of sleep and tiredness. In the example with visits from friends and stomach ache that we 

talked about earlier, you might want to try to eat something else while your friends are visiting, 

or you might want to try to eat their food while your friends are away to see if it is actually your 

friends or the food that causes your stomach to hurt. This would be more in line with how a 

scientist would think to try to find out what is causing your stomach to hurt. 

 

Let’s look at one more example. Imagine that you are a teacher in a school. You want to see if a 

new special book will help your students get better grades. So you let students sign their name on 

a list to get to read the new book. Then you compare the grades of the students who read the 

book with students who did not read the book. 
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It turns out that the students who read the new book got much better grades than the students 

who did not read the book. 

Is this proof that the students got better grades because they read the special book? Or in other 

words, is there causation between reading the new book and getting better grades? Remember 

that in this example, we let the students sign up themselves to read the book. So it might be that 

the students who signed up already were more interested in the subject and therefore would have 

gotten better grades anyway than students who did not sign up to read the book. 

 

This is again an example of a correlation between better grades and reading the new book, but it 

does not have to mean that reading the book causes students to get better grades. Correlation 

does not have to mean causation.  

 

Why is this important? 

In the example with the teacher and the new schoolbook it is very important that the teacher can 

see the difference between correlation and causation. If he or she thinks that the new book 

actually causes students to get better graders he/she might spend a lot of money on new books 

for all the students when in reality the books didn’t have anything to do with the better grades. 

 

Now we have talked about a few examples of when there is correlation between two things but 

not causality. When people mistakenly think that one thing causes another but there in fact is 

only a correlation, we call it “illusion of causality” and it happens all the time. Even highly 

educated scientists make this mistake sometimes but it is very important to know about it and to 

consider it before making any big decisions. 

 
 

 

 

 

 

 

 

 

 
 


