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Abstract

The use of machine learning as a tool in medicine is increasing and has
provided new avenues for research into a number of diseases. Creating bet-
ter predictive models for these diseases could provide opportunities for better
care, which we have applied to osteoarthritis, a degenerative disease that af-
fects a large part of the older population. We have sought to answer “Is it
possible to predict patient outcomes?” and “What factors contribute to the
patient outcome?” by constructing and evaluating machine learning models.
In order to do this, a dataset containing 75,366 patients who have participated
in an osteoarthritis treatment program was used and analyzed. The selection
of models included neural networks, logistic regression, and gradient boosting
machines among others in order to capture the performance of several types of
machine learning models. Our results show that it is possible to predict patient
outcomes on a test set with 60% accuracy.
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Chapter 1
Introduction

1.1 Background
Osteoarthritis (OA) is a frequently occurring joint disease affecting a quarter of all Swedes
over the age of 45, or almost 1 million people (Turkiewicz, 2016) but younger people can
also be affected. Symptoms of OA include joint pain as well as stiffness of the joints
resulting from a breakdown of joint cartilage and the underlying bone (Poole, 2012).

The national guidelines in Sweden (Socialstyrelsen, 2012) prescribe exercise, inform-
ation, and weight reduction as the best treatment for OA. However, it is not uncommon for
patients to receive surgery for pain relief, though 10-30% of the patients do not show any
improvement or display a worsened condition afterward (Desmeules et al., 2013).

Additionally, only a minority of the patients who receive surgery have seen a physio-
therapist or occupational therapist at any time before surgery. These two facts prompted
the creation of the initiative “Better management of patients with OsteoArthritis” (BOA) in
2008. The aim is to reduce sick leave and improve rehabilitation of patients with osteoarth-
ritis by following the national guidelines, promoting exercise and providing information
to the patients (BOA-Registry, 2015).

The BOA initiative also includes a national quality registry to ensure the quality and
results of the program. Several metrics are evaluated using a standardized set of questions:
the quality of life, health, physical activity, and level of pain are all among the included
metrics.

Simultaneously, the advances in machine learning have created an opportunity for bet-
ter quantitative models in health care (Miotto, Li, Kidd & Dudley, 2016). A usual approach
is for a domain expert to specify patterns and clinical variables to analyze, as well as con-
structing the models. Machine learning models can bypass this by automatically creating
representations and identifying latent patterns in the data. These models enable research-
ers who are not domain experts, for example in the field of osteoarthritis, to find these
patterns and draw conclusions.
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1. Introduction

In this project, we have used the data from the BOA quality registry to create machine
learning models, with the goal of predicting patient outcomes, i.e if the patient improved.

1.2 Problem Definition
To give the best care, identifying the patients who are most in need of intervention is
desirable. We will investigate the possibility to predict the patient outcomes in a database
of osteoarthritis patients using machine learning (ML) tools. With this, we will attempt to
answer the questions:

1. Is it possible to predict the outcome?

2. What factors contribute to the outcome?

1.3 Related Work
Though BOA produces an annual report containing results from the medical units parti-
cipating in the initiative, the analysis is primarily focused on the results of the program
and between units.

As such we cannot compare our results with others when studying osteoarthritis pre-
dictions, though there have been similar approaches to ours for other medical conditions.

Most closely Weng, Reps, Kai, Garibaldi and Qureshi (2017) used machine learning
methods to predict cardiovascular events. They used electronic medical records from 700
UK family practices containing 30 variables for 378 256 patients. Four machine-learning
algorithms were used and compared to an established algorithm to predict cardiovascular
events over ten years. They found the best performing algorithm (a neural network) cor-
rectly predicted 7.6% more patients compared to the established algorithm. Though our
methodology is similar, we differ in the kinds of features used for the predictions, with the
majority of our features being patient-reported and theirs measured from blood samples.

Similarly, Lee et al. (2014) analyzed and identified Health-Related Quality of Life
(HRQoL) factors of the elderly with chronic diseases which they used to construct pre-
dictive models. With similar methodology, they measured HRQoL using the patients’
EQ5D-index, which is present in our dataset as well, and the selection of machine learn-
ing algorithms to use in the predictive steps contained decision tree and random forest.
With a dataset consisting of 716 patients, they achieved a final accuracy of 0.93 using
stepwise logistic regression. Their models predicted the patient final EQ5D-index in two
classes as above and below an absolute cutoff value while we predict an outcome relative
to the initial value which may explain the higher accuracy they achieved.

The main difference between both of these studies and ours is the diseases studied along
with the datasets used, which makes it interesting to see how the predictive capabilites of
the models transfer between types of data and diseases.

1.4 Contributions
We worked together the entire time spent producing this thesis, collaborating on all parts.
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Chapter 2
Fundamentals of Machine Learning

Machine learning has its roots in statistics, and also involves terms not commonly found in
other fields. To fully understand the method used in this report, we recommend enjoying
a quick rundown.

2.1 Prediction
To be able to make predictions, two things are needed, a model and the data on which
to fit the model. Regarding the model, for making predictions on this type of data there
are two approaches: classification and regression. Classification aims to, given a sample,
determine a category to put it in. For example, given a patient, predict the outcome as
improved, stable or worsened. For regression the output is instead a continuous value.
An example of this would be that, given the same sample, the model predicts a value of
4.42. In our case, by comparing the predicted value to the original value we can also
determine a category.

One advantage of using regression is that the models include the distance to the correct
answer, in other words, the larger the error, the more the model would correct its predic-
tions due to its loss function. This might seem like a reason to always use regression, but
the classifier also outputs probabilities along with each class, which makes it easier to set
a threshold to reduce the number of false positives.

2.2 Training
Fitting the model to data is usually referred to as training the model. It is important to note
that training a model on a set of data and then using the same data to test the model will
result in a overfit. Doing this is very likely to result in a model that archives a perfect score
on the test data but, when faced with new unseen data it would not always make accurate
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2. Fundamentals of Machine Learning

predictions, i.e., the model would fail to generalize, when this is the case the model is
said to be overfitting. To avoid this lack of generalization, we withhold part of the data
during training and use this data to test the performance of the models afterward. We call
these two sets of data the training set (to train on), and the test set (to evaluate the final
performance on).

When experimenting and evaluating model parameters, a situation can occur where
these parameters improve performance on the test set. However, the act of continuously
evaluating them on the test set leaks information on the data in the test set, and we also
end up in a situation where the model has overfitted and does not work as well on unseen
data.

There are two main solutions to this problem. The first is to split the data into three
parts instead, a training set, a validation set, and a test set. This way the validation of the
model parameters is performed on the validation set and final evaluation is done on the
test set. However, this can reduce the number of available samples and which in turn may
result in worse performance. The other solution is to perform cross-validation. The basic
approach to doing this is to use k-fold cross-validation (CV), which splits the training set
into k smaller sets. For each of these folds, the model uses the fold as validation set and the
remaining k − 1 folds as the training set. The performance is then reported as the average
over all the folds. Using cross-validation is more computationally expensive since we need
to train the model k times, but the upside is that cross-validation wastes less data.

Since the models usually pose several requirements on the input, the raw data usu-
ally needs to be processed. One of the problems faced may be incomplete data, fields or
columns may be missing due to any number of circumstances. We need to address this to
prevent the model from inferring unwanted patterns from the distribution in this missing
data, as well as improve performance with more samples. A simple strategy is to remove
the offending features or samples, but this can exclude useful data. The process of filling in
the missing data is known as imputing, and can also result in better performing models.
Imputation can be done in several ways, by filling in the missing values with the mean,
median, most frequent value (the mode) or a random sample selected from the rest of the
set. For the models to perform optimally, the data also needs to be scaled to have unit
variance and norm, done by scaling the data.

To evaluate the models, we need to have some evaluation framework, and most import-
antly metrics to use. The simplest metric to consider is the ratio of true to false predictions
or the accuracy. However, consider the case where the data is imbalanced, and 70% of the
data belongs to one class, a model that simply always predicts the dominant class would
achieve 70% accuracy. So to gain more insight into the behavior of the model, we are also
going to use the related metrics precision, recall, and F-1 score. Precision can be stated
as “of the selected items, how many were relevant” and recall as “of the total relevant
items, how many were selected”. The F1-score is the weighted harmonic mean of preci-
sion and recall. Precision and recall can also be plotted against each other which gives us
a precision-recall curve, and calculating the area under this curve gives us our average
precision.

As we are using these binary metrics for multi-class problems, we are going to treat
each class in the data as one binary problem. We are then faced with the issue of how to
average or sum the performance of each class across the set of classes. The two most used
strategies are macro and micro. The macro strategy simply calculates the mean of the
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2.3 Models

binary metrics, while the micro strategy sums all the false positives, negatives and true
positives for the different classes to get the metrics. We are also going to plot the receiver
operating characteristic (ROC) Curve, which is the true positive rate plotted against the
false positive rate.

Finally, we analyzed the learning curve (Perlich, 2011), which shows how the beha-
viour of the model changes with the number of samples used.

2.3 Models
We evaluated a set of models, both a group of models implemented in Scikit-learn as well
as a neural network we built ourselves. The models we used included logistic regression,
decision trees, random forests, gradient boosting, adaptive boosting, and a multi-layer per-
ceptron.

Logistic regression is a linear model for classification (despite its name), which fits
data to a logistic function. This function follows a sigmoid curve which gives it its S-shape,
given by the equation

f (x) =
L

1 + e−k(x−x0)

For decision trees (Quinlan, 1986), the goal is to infer simple rules from the data, an
example being “when X > 3, output: Improved”. This results in models that are simple
to understand and interpret since the model is just a tree of these rules. The downside is
that the model can also create overly complex trees that are prone to overfitting, as well as
show a bias towards the most dominant classes.

One solution to this is to use an ensemble method such as random forest or gradient
boosting. Random forest (Ho, 1998) is an averaging method, which builds a forest of
decision trees and then averages their predictions, creating a model with lower variance
than the individual trees.

Gradient boosting (Friedman, 2001) on the other hand is a boosting method, where
the idea is to combine several weaker models into a powerful ensemble by building them
sequentially. In essence it performs gradient descent, attempting to find a local minimum
by following the negative gradient of a function, on a arbitrary loss function. The imple-
mentation in Scikit-Learn uses several decision trees which are fit on the negative gradient
of the deviance loss function.

Adaptive boosting (Freund & Schapire, 1995) is also a boosting model, though the
two models differ in how they are trained. Adaptive boosting instead begins by fitting one
classifier on the data, and then proceeding to fit copies of that classifier with modified
weights on the incorrectly classified instances, this improves performance on the more
difficult classes.

2.3.1 Neural Network Models
The basic principle behind a neural network is to stack layers of functions on top of each
other, and during training, the model creates an internal representation of the relevant
features. This overall architecture remains constant, though there are many types of neural
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2. Fundamentals of Machine Learning

networks. A neural network can be split into three separate parts, the input layer, the
hidden layers, and an output layer. The input layer simply passes the data on to the hidden
layers. The layers following the input are referred to as the hidden layers, and these layers
contain the logic in a neural network. For the model to return a useful result, it has a
dedicated output layer that is responsible for translating the internal representation into a
format that matches the desired output. A very simple illustration of this concept can be
found in Figure 2.1.

Since the patient values both before and after the program are known, we can calculate
the outcome as our ground truth and train the models using supervised learning. Super-
vised learning compares the predicted result with the known correct value, for example,
a label of what an image depicts, what category it belongs to or an output value. In con-
trast, training can also be performed unsupervised, by instead providing the model with a
function to be maximized instead of a ground truth.

2.3.2 Multi-Layer Perceptron

Figure 2.1: A two layer deep multi-layer perceptron (Wikimedia
Commons, 2013)

A multi-layer perceptron (MLP) is a simple type of neural network that has three dis-
tinct features that make it simple but still powerful. It utilizes a feed-forward design,
all the layers are fully connected with their respective previous one, and is uses back-
propagation during training.

Feed-forward neural networks are simplest and most straightforward neural network
architecture. In this kind of network, the information flow is restricted to the forward dir-
ection, compared to other network architectures which might have dependencies backward
in the network or other exotic behaviors.

In a fully connected layer each node in the layer is connected to all the nodes in the
previous layer and during training, weight is assigned to all the individual connections.

12



2.3 Models

Backpropagation is a multi-step process used during training for calculating and up-
dating the weights used in the neural network. When the training data has passed through
the neural network, the result is compared to the expected value. The expected value is
then propagated backward through the neural network, and a delta is calculated for all the
weights based on the current weight and what it needs to be to produce the correct result.
This delta is then in turn used by a optimizer function to update the weights optimally.

The optimizer is a function that is responsible for calculating the new weights with
the overall goal of minimizing the loss value.

2.3.3 Additional Types of Neural Network Layers
In addition to the simple feed-forward layers previously described, more complex layer
types have been constructed and used in several machine learning applications. These
layers can incorporate memory or act as convolutional filters. There are also layers spe-
cifically designed to be used during training to prevent overfitting; one such layer is the
dropout layer.

A dropout layer1 (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov, 2014)
provides regularization in the network and is special in the sense that it only affects the res-
ult during training. During training, the layer will drop units randomly with a probability
p. Dropping a unit means that the node and all of its incoming and outgoing connections
are temporarily removed, preventing the network from depending on only a few nodes to
provide its predictive strength. A desirable effect of using dropout layers is that each time
the layers are updated it constructs a new neural network within the existing one, and by
doing this repeatedly during the training the resulting neural network is a combination of
several smaller networks, which can improve performance.

Figure 2.2: Dropout illustrated (Srivastava et al., 2014)

Batch normalization is also a sort of regularization layer and allow for higher learning
rates to be used (Ioffe & Szegedy, 2015). During training it normalizes the input to the
following layer and it does this for each batch.

1In Keras dropout is applied on a layer by layer basis.
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2. Fundamentals of Machine Learning

2.3.4 Training Neural Networks
Training a neural network works very similarly to training the earlier models but requires a
bit more time spent optimizing to get the best performance. Two parameters that we often
needed to change were the batch size and the number of training epochs. Both of these
concepts can be applied to the earlier models as well, but the increased computational
complexity of the neural networks necessitates their inclusion.

By collecting the samples into batches before feeding them to the network, we can
simultaneously decrease the memory needed for the computations as well as speed up
training. The batch size controls how many samples the model will be trained on at a
time, i.e., how many will be passed through the model before updating the model weights.
That means that the model update is based on an average of all the corrections generated
by the samples in a single batch.

The batch size can affect the result of the training greatly. A small batch size results
in the weights being updated many times based on a few samples, and as a result, the
model might converge quicker, but the weights will be updated more erratically. In con-
trast, bigger batch sizes led to the weights being updated fewer times but based on a more
substantial number of samples. This can cause it to converge slower but also more stable
as the new weights are a result of the average gradients of all the samples, which helps
to filter out the noise in the data but can also lead to reduced performance for minority
classes.

The number of epochs denotes the number of times the model has been trained on the
entire training set. Tweaking this number can make the model overfit either more or less
since it lets the model see the data several times.

We also used oversampling, a method for balancing imbalanced data sets (Estabrooks,
Jo & Japkowicz, 2004), which consists of adding extra samples to minority classes in to
even out the class distribution. There are many ways this can be done, including copying
existing samples or by imputing.

2.4 Statistical Tools
For us to perform the validation of our assumptions, we also need some statistical tools.

A hypothesis-test is a common way to confirm the statistical significance of any res-
ults, or in other words asserting the certainty that the results are significantly not random,
which we used to verify that our models learned real patterns.

Before performing the test, a threshold is selected for the level of statistical significance
needed, this threshold is then compared with the p-value obtained in the test.

Student’s t-test can be used to perform a hypothesis test to determine if two sets of
data are significantly different. A simple One-sample t-test uses the statistic

t =
x̄ − u0

s/
√

n

where x̄ is the sample mean, s is the sample standard deviation, n the sample size, and
u0 the value to compare with, in our case the sample mean of the other set. The mean is
assumed to be normal, and the central limit theorem can be used in certain situations to
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2.4 Statistical Tools

strengthen that assumption. To get the p-value simply look up the value for t at the required
significance in a table for Student’s t-distribution.

A confidence interval can also be constructed and used to perform a hypothesis test.
Similarly to a threshold, a critical area is defined and compared with the result.

Though these tests can be used to distinguish a result from random noise when dealing
with large sample sizes even a subtle difference in sample means can prove to be signific-
ant. Cohen’s d is a measure of effect size (Sullivan & Feinn, 2012), which is commonly
used to show the practical difference for populations by calculating the distance of the
means in standard deviations2. Cohen also defined the guidelines shown in Table 2.1 for
what constitutes a small, medium, and large difference.

d Practical difference

>0.2 Small
>0.5 Medium
>0.8 Large

Table 2.1: Guidelines for Cohen’s d

2A good visualization is available at http://rpsychologist.com/d3/cohend/
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Chapter 3
Method

Our approach and method is very similar to established data mining methodology such as
CRISP-DM (Wirth, 2000) and can be split into several phases.

• Data understanding

• Data preparation

• Modeling

– Model comparison
– Model optimization

• Evaluation

– Model understanding
– Statistical Validation

3.1 Tools
We used several libraries and tools during the process, which decreased the amount of
time spent on implementation and freed up more time for experimentation with different
models.

We stored our dataset in SQLite, an open source database having good interoperability
with the other tools.

The primary tool used to create and evaluate the models was Scikit-Learn (Pedregosa
et al., 2011). Scikit-Learn contains many built-in models and utilities, for everything from
data pre-processing to evaluation and visualization.

However, the facilities included in Scikit-Learn for designing and building neural net-
works are not very comprehensive and do not utilize the GPU for a computational speedup,
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3. Method

so instead, we used Keras for building neural networks. Keras is an open-source library
that aims to provide high-level abstractions for neural network layers and concepts. Keras
is then able to interface with a number of backends that provide the lower level building
blocks to model the neural networks and perform the computations, of which we used
TensorFlow. TensorFlow is also an open-source library, built at Google to provide the
low-level building blocks for neural networks. A major advantage for TensorFlow is the
fact that it is GPU accelerated, resulting in the feasibility of training larger networks or
iterating faster on smaller networks.

3.2 Data Understanding
Understanding the data includes studying the dataset and its patients’ characteristics. As
previously mentioned the data used is from the Swedish quality registry BOA “Bättre om-
händertagande av patienter med artros”, the file we received included answers for 75,366
patients in total. We received this data as an Excel document, which we then imported into
an SQLite database so that querying and analyzing the data would be easier.

This data is collected using forms filled in on three occasions, before the program (First
Visit, FV), a checkup three months directly after the program (M3), and one year after the
program (Y1). The forms include questions for the patient and also a small section for
the physiotherapist. A description of the questions in the set can be found in Table 1
in the appendix. The majority of the questions are answered on each occasion, though
demographic data (Age, BMI, Sex) is only collected on First Visit, and for M3 questions
are added for the physiotherapist regarding the patient’s participation in program activities.

These questions primarily answer:

• Which of the patient’s joints are affected?

• The amount of pain the patient is experiencing

• Health Related Quality of Life for the patient

• The patient’s level of physical activity and exercise

• Does the patient want, is in the progress of getting, or has received surgery to treat
their joint?

• Is the patient taking any medication, and if so which one(s)?

In order to gain an understanding of the data, we generated histograms to visualize the
distributions of each feature in addition to calculating the mean, median and variance for
the different features, taking note of any missing data.

We also noted that the answer rate is 65% after three months, and it falls to a bit below
half the total after one year, as shown in Table 3.1. Since the program is still ongoing,
some patients have not finished their three months yet, though that does not account for all
of the missing answers. Using the BOA annual report and looking through the dataset we
selected the features shown in Table 3.2 to use as indicators for improvements in health.
These indicators measure patient pain, quality of life, physical activity and joint related
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3.2 Data Understanding

Answers Percentage of total

Total Patients 75365
3 months 49283 65%
1 year 34157 45%

Table 3.1: Answer overview

Metric Answers Improved Stable Worsened

EQ5D Index 3M 36568 24.6 66.7 8.64
1Y 23742 22.4 66.1 11.5

EQ5D VAS 3M 40093 19.5 62.7 10.4
1Y 24977 18.0 61.1 14.1

Pain Frequency 3M 48196 34.4 53.6 12.0
1Y 33360 38.0 47.7 14.3

NRS 3M 48932 56.9 22.9 20.2
1Y 33385 52.2 20.5 27.3

Fear Movement 3M 48751 12.9 84.2 2.9
1Y 33425 11.8 83.5 4.6

Exercise Weekly 3M 40547 43.6 32.8 23.5
1Y 25975 37.4 32.6 30.0

Physical Activity 3M 40606 36.0 34.1 30.0
1Y 26079 32.4 33.2 34.5

Drugs 3M 47765 18.7 74.4 6.8

Table 3.2: Indicator metrics overview, values as percentages

drugs. These features are also present on all three occasions (FV, M3, Y1) which we need
to predict future values.

We narrowed our focus to four of these indicators to preserve time and effort, and we
are going to use the three-month answers as our ground truth for the patient outcomes.
Though there is also the one-year follow-up data, after an initial comparison we found it
similar to the three-month data in addition to restricting the number of patients available
for training if used. Due to this, we decided to only perform predictions for the three-month
outcomes.

• EQ5D Index, an index for overall life-quality, on a scale from 0-1

• EQ5D VAS (Visual Analog Scale), a patient-reported scale, also for overall life-
quality, on a scale from 1-100

• Pain Frequency, a scale answering the question “How often does your joint hurt?”
with never, every month, every week, every day, always.

• NRS (Numeric Rating Scale), a 1-10 scale for the amount of pain experienced in the
joint marked as most painful.
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When categorizing the values into Improved, Stable and Worsened we used the clinical
definition of change found in the annual BOA report.

• For the EQ5D Index we counted an improvement when the index changed at least
0.1 units.

• For EQ5D VAS a change of 15 units, which is a clinical improvement was required.

• For pain frequency and NRS we used one unit on each particular scale.

3.3 Data Preparation - Pre-processing and
Feature Engineering

Preparing the data for the models required a few simple sets.
We split the dataset into a training and a test set. For the test set, we randomly picked

25% of the patients. When modifying and searching for optimal parameters we used five-
fold cross validation on the training set.

Additionally, we imputed the missing data filling in the missing data with the mean
value for each feature. We scaled the data to 0 . . . 1 by dividing by the max absolute value
for each feature. Later, while optimizing the models we experimented with different im-
putation and scaling strategies, though we found the best performance using the mean for
imputation and 0 . . . 1 as endpoints for scaling.

3.4 Modeling
We ended up comparing five different models, all are included in Scikit-learn and all used
the default parameters.

• Logistic regression

• Random forest

• Adaptive boosting

• Gradient boosting

• Multi-layer perceptron

Using only the first visit data to predict the three-month result after the program gave
us the results visible in Table 3.3. The models had overall similar performance, both in
regards to the different models and the different metrics. Only random forest had 100%
training accuracy, while the training accuracy of the other models are lower but remain
ahead of the test accuracy. This discrepancy could be an indicator to increase the com-
plexity by adding more features or changing the model parameters.

The accuracy of the models looked to be between 60%-70% for the best performing
model, which was gradient boosting and made it a good candidate to optimize further.

20



3.4 Modeling

Model Metric Train Accuracy Precision Recall F1 ROC AUC Avg Prec

Logistic R. EQ5D Index 0.742 0.705 0.532 0.404 0.393 0.715 0.511
Random F. 1.000 0.703 0.438 0.494 0.463 0.724 0.531
Adaptive B. 0.749 0.670 0.645 0.517 0.498 0.722 0.533
Gradient B. 0.759 0.689 0.619 0.524 0.509 0.745 0.558
MLP 0.752 0.607 0.545 0.399 0.368 0.660 0.489

Logistic R. EQ5D VAS 0.672 0.668 0.700 0.436 0.422 0.744 0.543
Random F. 1.000 0.662 0.622 0.430 0.417 0.724 0.527
Adaptive B. 0.673 0.665 0.560 0.455 0.453 0.717 0.512
Gradient B. 0.693 0.674 0.601 0.460 0.458 0.750 0.554
MLP 0.708 0.653 0.535 0.467 0.462 0.719 0.510

Logistic R. Freq 0.579 0.570 0.547 0.438 0.449 0.701 0.511
Random F. 1.000 0.582 0.562 0.418 0.412 0.703 0.510
Adaptive B. 0.582 0.578 0.543 0.455 0.457 0.672 0.488
Gradient B. 0.611 0.594 0.564 0.483 0.495 0.724 0.535
MLP 0.627 0.573 0.543 0.454 0.467 0.695 0.503

Logistic R. NRS 0.590 0.591 0.395 0.427 0.407 0.708 0.500
Random F. 1.000 0.578 0.586 0.415 0.397 0.689 0.483
Adaptive B. 0.593 0.590 0.526 0.431 0.422 0.674 0.466
Gradient B. 0.614 0.596 0.580 0.436 0.429 0.716 0.513
MLP 0.627 0.575 0.513 0.428 0.429 0.691 0.482

Table 3.3: Performance of three month result prediction, best per-
formance per model and metric is highlighted
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F1-scores and average precision scores were low overall, owing mainly due to bad
recall. The best F1-score and accompanying average precision score belonged to predict-
ing EQ5D with gradient boosting, achieving a F1-score of 0.509 and average precision of
0.558.

After picking gradient boosting to use as our baseline, we needed to search for better
parameters and try to optimize its performance characteristics. To do that we had several
tools at our disposal.

First, we tried changing the feature representations to less noisy and better ones. We
used recursive feature elimination with cross-validation on the training set (RFECV) to
obtain a smaller feature set with higher performance. An addition we also tried applying a
dimensionality reduction algorithm to combine highly correlated features. We also exper-
imented with different strategies for imputing the missing data, scaling and normalizing
it.

Second, we searched the parameter space using both a grid search and a randomized
search, which yielded slightly improved performance.

Since we thought that regression models might result in lower errors due to the way
far off predictions are penalized more we also tried to train regression models. These
models did not show a significantly different initial performance, as well as losing pre-
diction probabilities as an output from the models which led us to instead try to optimize
the classification models using other techniques instead. We found that applying principal
component analysis as dimensionality reduction did not improve the performance for any
of the metrics, the same was true for RFECV due to the low amount of features eliminated.
Since gradient boosting is based on decision trees, this already provides a robust way to
capture non-linear dependencies between features, and we do not gain much of the benefit
from either of these two methods. Experimenting with imputation and scaling likewise
did not result in any substantial gains.

3.5 Neural Networks
After having explored and optimized the more traditional models, we wanted to determine
if it was also possible to get similar or better scores using a neural network.

From our the four indicators we decided to only include the pain value (NRS) in this
stage since we mainly wanted to know if there is any drastic difference when applying
more advanced neural networks.

3.5.1 Challenges
There are several challenges with designing and training a neural network. The models that
we studied earlier were somewhat limited in the number of hyper-parameters that could
be changed, though this had the benefit of limiting the number of parameters that needed
to be tested to be able to find the optimal parameter set. Neural networks are generally
more challenging to tune correctly in practice since each layer and component that make
up the network all have a set of parameters to tune leading to a combinatorial explosion of
possibilities to test.
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Ideally, we would try to find the optimal parameters each time when we changed the
architecture or layout of the neural network, but this turned out to be unfeasible. Because
a neural network is computationally heavy on its own adding the time required to search
the parameter space during every training became unfeasible on our machines. Instead,
we focused on experimenting with the internal structure and only when we were happy
with the performance of the structure did we perform a grid search of the parameters.

3.5.2 Initial Design
As we had to start somewhere, we used a multi-layer perceptron structure similar to the
one included in scikit-learn as a starting point in the design process.

Most of the work done at this stage went into figuring out what designs and parameters
worked reasonably.

When starting out with the design process, we settled on using a batch size of 128 and
that the training period should last for 30 epochs.

The initial design used fully connected layers, which are referred to as dense layers
in Keras and the activation function ReLU or rectified linear unit which is a very simple
mathematical function. A ReLU layer simply takes the output from the last layer and sets
any value that is negative to zero according to f (x) = max(0, x) before passing it on to the
next layer.

3.5.3 Optimizer
To be able to train the neural network we needed to select an optimizer for the training
process. We made the initial choice from among the seven optimizers that are included
in Keras, and the choice was made based on how well they performed when trained on a
very basic neural network with three dense layers each with ReLU but without any regu-
larization.

To get the best performance possible without regularization, we added an early-stop-
and checkpoint callback to the training process. The early-stop callback allowed us to stop
the training process automatically when it started to overfit to the training data and the
checkpoint callback was used to store a copy of the model at each epoch, this allowed us
to load the model from the specific epoch when it performed the best.

The results were not very conclusive due to overfitting despite the precautions we had
taken with the callbacks. The networks often performed well on some metrics but worse
on others, which meant that there was no clear winner. Despite the varying performance
we settled on using the optimizer adam.

This initial choice ended up being not very important, as the optimal optimizer would
change later as the architecture of the neural network changes during the experimentation.
Because the relatively short training times, it is possible to test other optimizers at a later
stage easily.

3.5.4 Class Weights and Class Imbalance
As seen in Table 3.2 the class distribution for NRS 3M is very uneven, and we found that
this greatly affected the result of the training. Early models tended to exhibit behaviors
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where they either only predicted a single class or only stable and improved. It had many
difficulties learning to predict if the patient would worsen. To counteract this behavior, we
decided to specify a set of custom weights for the loss function.

That means that during training, the model is encouraged to get better at predicting the
minority classes by increasing the punishment for getting them wrong. To calculate the
weight for each class, we initially used the inverted fraction of the training data that the
class represented according to:

wclass =
Total number of patients

Total number of patient belonging to class
(3.1)

This had the advantage of giving a weight that was directly correlated to how large the
class is compared to all the other. A downside with this approach was that during training
the class ‘worsened’ got a weight that was a magnitude greater than the rest. That resulted
in models that always predicted worsened and as such did not solve our initial problem.

It was possible to get the model to perform better using these weight calculations, but
it required that we manually scale down the calculated weights. This worked, but it was
not a desirable method as the scaling factors were dependent on that specific data set and
the current behavior of the model.

To get class weights that didn’t require manual tuning, we decided to scale the value
by the largest size class instead of the size of the data set according to:

wclass =
Size of the single largest class

Total number of patient belonging to class
(3.2)

This resulted in class weights that were much closer to each other, which helped to
increase the performance. However, there is a limit to how much that can be done with
only class weights, they helped when using small batch sizes, but as we tried to increase the
batch size, the models returned to the old behavior of only predicting stable and improved
or only worsened.

We assumed that this was because there were too few patients in the batch that got
worse, and that the large batch sizes caused them to get lost when calculating the average
update. In an attempt to solve this we implemented what is called oversampling to balance
the training set. It is important to note that we did this after the validation set was split
from the training data, thus preventing it from containing the same data as the training set.

An interesting consequence of this method of balancing was that the models now ten-
ded to perform better without any custom class weights at all, and we ended up removing
them from the training.

3.5.5 Training
As there are no clear cut rules governing how to design a neural network for a specific
problem, we had to spend a lot of time experimenting. This was mostly a trial and error
process which involved both much manual tuning but also comprehensive grid searches of
different designs. It was a very iterative process which involved making small changes to
the neural network, and after that trying to minimize or prevent overfitting. If the model
continued to performed worse than it did before, then the changes were reverted and docu-
mented. On some occasions, this process resulted in a neural network that grew too large
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Layer names

dense_21 Layer size: 8
activation_11 Activation: ReLU
dropout_11 Dropout rate: 0.1
dense_22 Layer size: 3

Table 3.4: Final neural network layer parameters

and complex, when that happened we started over by removing as much as possible while
still retaining the core architecture that worked earlier.

To try and find which architectures that worked well but without having to try them all
manually we implemented a randomized grid search that over several iterations random-
ized a neural network design and then trained it. This allowed us to identify what designs
worked better than others.

The final neural network design is shown in Figure 3.1 and Table 3.4

Figure 3.1: Final neural network design as Keras layers
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3.6 Model Understanding
Understanding the how and why of the models is important for several reasons. We wanted
to validate that the models are capturing the interesting phenomena, that can be actionable
in practice. Also, it can provide a possibility to create simpler models with the same
characteristics, or improve the performance of the model.

With our main goal being able to understand which features are the most important
and what feature interactions are present we used three methods: calculating the feature
importance and comparing them with each other, plotting partial dependency plots and
tree diagrams for decision trees.

Also, we also tried recursive feature elimination, but the features that were left after
elimination were very closely related to the highest ranked features from our feature im-
portance rankings, which did not provide any new information on the interactions between
features.

3.6.1 Feature Importance
To understand which features the models based their predictions on, we calculated the
feature importances shown in Table 3.5. This table shows the top 15 features ranked by
their importance as given by the models. From this we can see that the most important
feature for predicting the outcome is the initial value for each of the indicators.

The next features are the other indicator variables as well as Age, Height, and Weight.
The location of the worst joint seems to be more important for the joint pain frequency
than the other indicators, but the other values are similar for all four models.

3.6.2 Approximation by decision trees
Since the different models performed similarly during our comparison, we attempted to
approximate the behavior of our Gradient Boosting classifier using a simple Decision Tree
and analyze its behavior instead.

Figure 3.2: Decision tree for EQ5D Predictions

We found that we could approximate our Gradient Boosting model with a simple de-
cision tree for EQ5D to a high degree. A diagram of the decision tree is visible in figure
3.2.
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EQ5D Index VAS

1 EQ5DIndex 0.300 EQ5DVAS 0.309
2 PainJointNRS 0.057 EQ5DIndex 0.050
3 EQ5DVAS 0.050 Weight 0.041
4 Age 0.040 BMI 0.040
5 BMI 0.039 ASESSymptomScore 0.039
6 PainJointFreq 0.035 PainJointNRS 0.038
7 ASESPainScore 0.031 Age 0.033
8 ASESSymptomScore 0.026 Height 0.027
9 UCLA 0.025 ASESSymptom1 0.026
10 Height 0.023 ASESPainScore 0.024
11 ASESPain2 0.023 CompareActivity 0.023
12 Weight 0.022 ASESPain2 0.017
13 WorstJoint 0.021 WorstJoint 0.017
14 CompareActivity 0.019 PainJointFreq 0.016
15 Hip 0.014 EQ5DPain5L 0.015

PainJointFreqFreq NRS

1 PainJointFreq 0.234 PainJointNRS 0.266
2 Age 0.059 EQ5DIndex 0.062
3 PainJointNRS 0.052 PainJointFreq 0.055
4 EQ5DIndex 0.041 BMI 0.044
5 BMI 0.038 EQ5DVAS 0.035
6 EQ5DVAS 0.035 Age 0.033
7 ASESPainScore 0.035 ASESPainScore 0.032
8 Height 0.033 Height 0.027
9 Weight 0.031 Xray 0.024
10 WorstJoint 0.029 Weight 0.024
11 ASESPain3 0.026 XRayOA 0.024
12 XRayOA 0.021 WorstJoint 0.022
13 ASESPain1 0.017 EQ5DPain5L 0.019
14 ASESSymptomScore 0.017 ASESSymptom1 0.018
15 ASESPain5 0.017 Hip 0.017

Table 3.5: Feature importances for three month predictions

From this tree, we can see that the model simply picks a threshold of 0.751 and pre-
dicts improvement for patients below this threshold and stable above. Interestingly it also
includes a second higher threshold of 0.877 for which it predicts worsened for those above
it, which seems to indicate that the patients EQ5D results show a return to the mean.

However, we found that this strategy did not work for the other indicators as even with
high tree depths the performance remained below that of our baseline model while the size
of the tree prohibited easy inspection.
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3.6.3 Partial Dependency Plots
From the feature importances it is possible to gain some insight into what features are
important to the models, but it does not explain how the models react to changes in the
features. In order to determine these dependencies we used partial dependency plots.
These plots try to marginalize the effects of all other features except for the one being
examined while iterating over different values and approximating the probabilities that
each class is predicted.

Partial dependency plots for 8 of the most important features when predicting the NRS
value, can be found in Figures 3.3, and 3.4.

In Figure 3.3 we can see that there is no significant change in the probability of any
class being predicted for Age, Weight or Height, though there is a slight increase in the
probability of being predicted as worsened when the BMI increases.

Next, in Figure 3.4 we can see a higher dependency on the features. In the graph for
EQ5D Index we see that the probability of the NRS value remaining stable or become
worsened will decrease if the EQ5D Index is larger than 0,43. The graph for EQ5D VAS
shows a smaller dependency than the other three, though still larger than Age or Weight.
The third graph for NRS itself is the most interesting, showing that the more pain1 the
patient was experiencing before the program the higher probability for improving. The
final graph shows that the probability of improving decreases as the frequency of the pain
increases, with the other two classes showing a small increase at the tail end.

1NRS is inverted compared to the other three, with a larger value implying more pain.
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Figure 3.3: Partial dependency plots for Age, BMI, Weight,
Height

Figure 3.4: Partial dependency plots for EQ5D, VAS, NRS and
pain frequency
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3.7 Statistical Validation
To validate our understanding of the models, we decided to perform a more traditional
statistical analysis of the dataset.

We choose simple tools to do the analysis hypothesis testing, confidence intervals and
studying the effect size as Cohen’s d. Due to the size of the dataset the statistical power is
also very large meaning resulting in very small Standard Errors and p-values. Due to this,
we decided to mainly look at the effect size as an indicator of significance. Also, we also
decided to study the effects of training, naturopathic drugs, and hip/joint pain separately.

We did this by first studying the influence of the Boolean questions on the starting value
for NRS. For each Boolean feature, we split the patients into yes/no groups and calculated
a p-value and Cohen’s d on the difference in means between the two groups. The results
are visible in Table 3.6, the table includes the features where p < 0.05, and are sorted by
effect size. A positive effect size in this table means that a yes correlates with a higher NRS
value, i.e., more pain. A larger value for d in the table corresponds to a larger difference in
pain for the two groups, for example the patients who answered yes on ‘DesireSurgJoint’
are in much more pain than the patients who answered no when using Cohen’s guidelines
for the difference.

From the results, we can see that a desire for surgery correlates positively with a higher
pain value. This is also true for patients who are on medication, afraid to move or on sick
leave due to their joint pain. Interestingly this also applies to patients who have previously
received information on losing weight, though the effect is slight.

Next we instead looked at the change in NRS after the program, still filtering the table
by p < 0.05 and sorting by effect size. A positive effect size means a reduced value for
NRS, which means less pain and an improvement, and vice versa for a negative effect size.

These results are visible in Table 3.6, and while some them fall below p < 0.05 the
effect sizes are also small. For many features, Cohen’s d falls below the limit for a small
effect.

The most interesting features are the continuous ones, especially the starting value for
NRS and EQ5D since they were the most important features in the models as well. We
calculated the effect size for all the continuous features by splitting the patients into two
groups, the patients who responded with a value above the mean of each feature in the
dataset, and the patients who responded below.

We also note that one question with a large effect size is XRayOA, if the patients have
been X-rayed and the x-ray indicated arthritis, with patients displaying less improvement,
had it done so. Comparing this with the feature importances we obtained previously, we
note that XRayOA was also placed among the important features, indicating that this is
something our models also learned. Overall, these results seem to match the feature im-
portances previously displayed, indicating that the patterns found by the model are signi-
ficant.

3.7.1 Training
Since a large part of the program is training and improving the physical condition of the
patients, we decided to look at the features related to training and its effects separately.
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Effect on first visit d Effect on change d

DesireSurgJoint 0.90 PainJointNRS 0.73
Drug 0.53 EQ5DIndex -0.26
WaitingList 0.52 PainJointFreq 0.17
DrugParacet 0.47 XRayOA -0.17
SickLeave 0.43 WorstJoint 0.16
DrugOther 0.42 WaitingList -0.12
DrugNSAID 0.33 DrugNSAID 0.11
DrugCortisone 0.29 Drug 0.11
DrugHyaluronic 0.25 PrevInfoAct -0.10
FearMovement 0.24 PrevPT -0.09
PrevInfoWeightLoss 0.18 Age -0.08
PrevSurgContralat 0.12 Employment -0.08
XRayOA 0.08 FearMovement 0.08
PrevSurg 0.06 SickLeave 0.08
DrugGlucosamine 0.02 Sex 0.07
PrevInfoAct -0.01 Education 0.06
PrevPT 0.01 Smoking 0.05

EQ5DVAS -0.05
DrugParacet 0.05
BMI 0.04
Xray 0.04
PrevSurgContralat -0.03
PrevInfoWeightLoss -0.03
Weight 0.02
DesireSurgJoint -0.01

Table 3.6: Effect of features on pain NRS, p < 0.05
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The first two features related to training in the dataset is ExerciseWeekly and Phys-
ActWeekly; both are 7 point scales describing the amount of time the patient spends each
week training or engaging other kinds of physical activities.

Feature Mean std

FV ExerciseWeekly 3.070 1.744
M3 ExerciseWeekly 3.564 1.640
FV PhysActWeekly 4.818 1.665
M3 PhysActWeekly 5.035 1.537

Table 3.7: Values for training features

Which implies that the patients do become more active after the program, which we
can confirm with a hypothesis test. p < 0.0001, d = 0.134.

The dataset also includes features for the number of supervised training occasions the
patient attended and if the patient had received individual training from either a physiother-
apist or a work therapist. We split the groups for supervised training occasions into those
who had attended at least one, and those who did not attend any. As before, we looked at
how these features correlated with the change in NRS, in addition to if the patients were
active or started training during the program. The ‘active’ group is the group of patients
who have answered 3 or higher for both Exercise and Physical Activity at M3; the other
group is the group that has two or lower for any of the two.

Title Mean (No) Mean (Yes) d p

Trained 0.860 1.158 0.138 <0.0001
Started training 0.914 1.094 0.084 <0.0001
With Physiotherapist 1.075 0.928 0.070 <0.0001
With Work therapist 0.626 0.998 -0.151 0.001
Supervised training 1.156 1.143 0.006 0.044

Table 3.8: Training Results on pain NRS

In Table 3.8 we can see that although the effect size is slight, there is a noticeable differ-
ence between the patients that trained and those who did not. The difference between those
who started training and those who still did not train by M3 is also small. Interestingly the
patients who received individual training from a work therapist correlated negatively with
a change in NRS, their condition worsened. We cannot draw any conclusion as to why, but
a guess is that those patients are farther along in the condition than the others. Attending
supervised training and individual training with physiotherapist both display low effect
sizes.

To draw more conclusions for the supervised training, we could look at more groups
since the feature includes information on how many occasions the patient attended.

32



3.7 Statistical Validation

3.7.2 Hip/Knee
Since the previous models indicated that the pain location was an important feature we also
looked at how this impacted the results. The patients were split into two groups, patients
with hip pain, and patients with knee pain. From our previous overview of the dataset, we
know that patients with knee pain make up two-thirds of the patients and those with hip
pain one-third.

Feature Mean (Hip) Mean (Knee) d p

NRS 0.821 1.182 -0.169 <0.0001
Weight 77.79 81.67 -0.251 <0.0001
BMI 27.04 28.42 -0.288 <0.0001
EQ5D Hygiene (5L) 1.520 1.290 0.356 <0.0001
EQ5DVAS 64.97 67.18 -0.115 <0.0001

Table 3.9: Hip/Knee Results, p < 0.05 and abs(d) > 0.10

From Table 3.9 we can see that patients with knee pain improve more than those with
hip pain, though the effect size is small. We can also see that knee-pain correlates with
increased weight and BMI, also at small effect sizes. There is also a small difference in
EQ5D Hygiene, i.e., how much difficulty the patient is having with getting dressed and
personal hygiene.

3.7.3 Naturopathic drugs
We also found it interesting to look at the effects of naturopathic drugs. Splitting the
patients into two groups, 3281 patients who used naturopathic drugs at M3 and 35712
patients who did not.

Mean (Used) Mean (No Use) d p

NRS at start 5.335 5.333 0.001 0.422
NRS change 1.075 1.062 0.006 0.270

Table 3.10: Naturopathic drugs

Initially studying the differences between the NRS means of the two groups at First
Visit we find a p-value of 0.422, which is larger than 0.05 and thus we cannot discard
the null hypothesis and assume that users of naturopathic drugs are in more or less pain
at the start. Looking instead at the change in NRS the same is true. We cannot assume
a significant difference here either, and the effect size is similarly very small. Having
concluded that we cannot find a significant difference in starting value or in the change we
can instead test for equivalence. We do this by using a confidence interval for the change,
to discard the new null-hypothesis that means are different we pick 10% of the difference
for our critical area

0.1 ·
1.074843 + 1.061799

2
= 0.107
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to reject the null-hypothesis. We construct the confidence interval as a TOST (Two One-
Sided Test) at a significance of 90%, meaning that the actual value of the difference is with
90% certainty in the confidence interval. Some quick calculations give us the interval
(−0.03, 0.09), which contains 0 and is inside our critical area we previously selected as
0.107.

In summary, naturopathic drugs do not contribute to a significant improvement in NRS
with 90% certainty.

3.8 Predicting Non-Responders
As previously noted, while studying the data we noticed that the number of patients who
did not answer the checkup was quite significant (35% after three months).

As we want to obtain as broad a picture as possible of the contributing factors we
also want to look at differences and patterns when comparing this class of patients to the
responders. An example of this would be finding that the non-responders have a higher
than average pain, which could point to interesting findings that relate to the outcome of
the program.

To perform this analysis, we used the framework we had previously constructed for
outcome predictions and trained it to predict non-responders instead. For this, a Gradient
Boosting model was used, trained on the same data as previously and also evaluated using
the same methodology previously established.
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Chapter 4
Results

In this section we will present the final results of the models we trained and their perform-
ance on our selected test set.

4.1 Final Prediction Performance
With both baseline models and a neural network for NRS, we can examine their behavior
in more detail. We use the ‘macro’ strategy to average the performance over the classes.

Model Metric Train Accuracy Precision Recall F1 ROC AUC Avg Prec

Gradient Boosting EQ5D 0.753 0.695 0.660 0.520 0.502 0.751 0.568
Gradient Boosting VAS 0.693 0.674 0.601 0.460 0.458 0.750 0.554
Gradient Boosting Freq 0.611 0.594 0.564 0.483 0.495 0.724 0.535
Gradient Boosting NRS 0.614 0.596 0.593 0.436 0.429 0.718 0.519
Neural Network NRS 0.525 0.547 0.484 0.502 0.490 0.700 0.495

Table 4.1: Model performance

From the ROC Curves in Figure 4.1, we see that our predictions are better than luck
for all indicators. We can also see that the EQ5D curve shows a slightly different behavior
from the others by diverging at FPR 0.4.

Studying the precision-recall curves, we note that the ‘worsened’ class is the hardest
for all models, while stable and improved are both easier and closer to each other. In the
confusion matrices, we can see that the reason for this is that the models tend to fit towards
predicting stable, which is the most frequent value in the dataset.

Prediction performance as shown in Table 3.3 varies between the different metrics with
though the models perform similarly throughout. Comparing the different models, we can
make the best predictions for EQ5D, though the performance is very similar for all of the
indicators.
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Most patients are predicted to remain stable as shown in Figure 4.3, which reflects
the real data. For the patients who improved, half were predicted to improve and half
predicted to be stable. So the models have difficulty distinguishing those who improved.
The number of patients predicted as Worsened is overall very low which also matches the
data (8.4%) but the majority predicted as such did also worsen. The models also have
difficulty distinguishing between whether the patient would improve or worsen. For the
rest of the features, the models continue to find it difficult to separate the stable from the
improved.

We were unable to build a neural network that beat the gradient boosting model. It man-
aged to get a better F1 score but overall its accuracy was lower, see Table 4.1. Although
we attempted to balance the training set by oversampling, the precision-recall curve mir-
rors the behavior we saw in the other models, with worsened being the hardest to predict
accurately, see Figure 4.4.

Figure 4.1: ROC curves for predicting an improvement over three
months

36



4.1 Final Prediction Performance

Figure 4.2: Precision recall curves for predicting an improvement
over three months

Figure 4.3: Confusion Matrices for predicting an improvement
over three months
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4. Results

Figure 4.4: Final neural network performance

4.1.1 Predicting Non-Responders
For predicting non-responders we could see that the model overwhelmingly predicts the
majority class, which is reflected in the low ROC AUC shown in table 4.2. Considering
we are now only dealing with two classes even though we display a higher accuracy than
before this seems to indicate that predicting non-responders is a harder problem.

Model Accuracy Precision Recall F1-Score ROC AUC Avg Prec

Gradient Boosting 0.725 0.648 0.520 0.470 0.620 0.787

Table 4.2: Performance for predicting non-responders

4.2 Learning Curve
In order to evaluate the model behaviour we studied the learning curve as shown in Fig-
ure 4.5, which shows how the model behaviour changes as the amount of training data is
increased.

In the figure the training score and the cross-validation score both seem to converge
to the final score we obtained earlier. This indicates that we would not be able to increase
generalization by adding more training data, and that to be able to increase performance
we need to change the models, probably by adding different variables.
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4.2 Learning Curve

Figure 4.5: Learning curve for Gradient Boosting (NRS)
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Chapter 5
Discussion

Since this is the first analysis of this type on this dataset, we cannot compare our results
with prior studies. With an accuracy of around 60% on our chosen indicators combined
with our evaluation, we are satisfied that the models are finding useful patterns.

The performance of the different models was also very close in most cases, and the
models chosen should be able to capture somewhat complex interactions between fea-
tures, leading us to conclude that major performance increases could be hard to achieve.
However, it would be interesting to combine this dataset with different kinds of Electronic-
Health-Records, to capture a complete picture of the patient.

We had hoped that designing a neural network by ourselves would allow us to get a
solution that performed better than the existing models as we would be able to tune it for
our specific problem. Tuning the networks turned out to be very time consuming as many
different neural network designs could be combined with many different regularization
methods and parameters. The result was a small neural network with a single hidden layer
of size 8. The small size indicates that the network only uses a few feature combinations
for its predictions, this behavior and its performance is very similar to the other models that
we used and seems to confirm that any increases in performance using only this dataset
would be unlikely.

Neural Networks are currently highly praised for their versatility and good perform-
ance, and while it did perform well, it was not to a significantly higher degree than the
other models tested. Our network is of the simple feed-forward type, and more complex
architectures with recurrent or convolutional layers could be able to show better perform-
ance. However, taking into account the nature of the data, and the lack of dependencies
between its features we find this somewhat unlikely. It provides an interesting avenue for
future research though.

The overall behavior of the models seemed to indicate that those in better health either
remained stable or worsened, those who were in worse health either improved or dropped
out.

We found the behavior of the EQ5D Index interesting, in which almost all of the pre-
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5. Discussion

dictive power came from the initial value. Similar behavior was present for the other in-
dicators, but not to the same degree. The behavior seems to imply that those who have a
low initial value revert to a better quality of life. This seems a little bit paradoxical to us,
and that domain experts should be able to produce a better explanation for this behaviour.

As the indicators were highly ranked when considering both the feature importance
and statistical analysis, they appear to work well as indicators of patient health. Though
the ASES scores are due to be removed as they have not been statistically validated, we
found them to contribute noticeably to the prediction results.

The BOA Annual report includes data on the difference between units, which we did
not do. There appear to be significant differences in their results, but we simplified our
work by not controlling for these, which may or may not bias our results.

While we are confident in the performance of the models we obtained, for future work,
the performance should be able to be increased. As the treatment program is still ongoing,
the amount of data continues to grow which could help our problem with too few patients
in the minority classes. However, the learning curve indicate that simply adding more
of the same data is unlikely to increase performance by much. To alleviate this there are
several other sources of data that could also be used in unison to capture a better picture
of the patient. Similar to the BOA-registry, there exist a registry for patients who have
had hip surgery, which could be used to compare the two groups and find further patterns.
Additionally, more general sources of electronic-health-records containing medicines and
other patient conditions and could provide useful information for the predictions.

As far as this dataset is concerned, we feel that we did enough experimenting with
feature representations, imputing, scaling, and model parameters that another approach
is needed to achieve significantly improved performance on the tasks analyzed. There is
however a lot of potential for more interesting work to be done on the dataset, for example
attempting to isolate groupings and clusters of patients, examining correlations between
features in greater detail, expanding the list of indicators to predict, and analyzing how the
patient results change after one year.

We found the tools used to be straightforward and easy to use. Both Scikit-learn and
Keras have online documentation available which was very comprehensive. While training
the models, the neural networks in particular, did take time we were also happy to have fast
graphics cards available. After having seen that the performance of the Gradient Boosting
models was best among the ones we tested, we did consider to try XGBoost. XGBoost is
another library, but which focuses on Gradient Boosting models. In the end, we opted not
to include another library to prevent scope creep.

The statistical analysis more closely resembles a traditional approach to analyzing data,
but it gave us valuable insight into how well the models were modeling reality. We found it
interesting that the effect sizes were smaller than we expected for the different treatments,
but as described by Nüesch et al. (2010). in their meta-study on the effect sizes of OA
treatments, the effect sizes tend to relate to the study size, with smaller studies displaying
larger effect sizes. As the amount of data we have used compared to the studies analyzed
by them is much greater, we find that that would explain the smaller effect sizes. However,
that does not explain why the effect sizes are smaller in the first place.
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5.1 Conclusions

5.1 Conclusions
In this thesis we have constructed several machine learning models and evaluated them in
order to predict patient outcomes in osteoarthritis dataset. In order to do that we began
with two questions:

Is it possible to predict the outcome? Yes, depending on the model we have
shown an accuracy of 60%-70% on the whole dataset.

What factors contribute to the outcome? We have found several, among
the most important is initial health, age, weight and BMI.

In short we can conclude the following.

• We obtained the best results with a Gradient Boosting model; the others are not far
behind however

• Neural Networks do not appear to outperform a Gradient Boosting model signific-
antly and require more tuning

• The most important features are EQ5D Index, EQ5D VAS, PainJointFrequency and
NRS, followed by Age and Weight/BMI

• For predictions we have shown an accuracy of 60%-70% on the whole dataset de-
pending on the model

• Predicting EQ5D gets a 70% accuracy by simply saying that those with an index
under 0.6 will improve, and the others are stable

• The models have a hard time predicting which patients worsen, in part due to that
the amount of patients who do worsen is relatively low

• Patients that begin the program with worse values tend to improve the most, and this
is the largest factor in how much the patients improve

• Patients with knee pain improve more than those with hip pain

• Exercise helps the results, while increased weight has an adverse influence on the
result

• Predicting non-responders on the followup is more difficult, with many false-negatives

• The learning curves indicate that simply increasing training data is unlikely to im-
prove performance
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Table 1: Dataset variables (Swedish)

Occasion Variable Definition (Swedish)
FV, M3, Y1 Pat_Date Datum för besök
FV Pat_Age Ålder
FV Pat_Sex Kön
FV, Y1 Pat_Weight Ange din vikt (kg)
FV Pat_Height Ange din längd (cm)
FV Pat_BMI BMI
Y1 Y1Pat_SurgHipKnee Har du fått en ny höft- eller knäled inoper-

erad sedan du gick artrosskolan
M3, Y1 Pat_StillPain Har du fortfarande besvär från dina

leder.(Höft,Knä,Hand,Axel)
FV, M3, Y1 Pat_WorstJoint Vilken led har Du mest besvär från
FV, M3, Y1 Pat_Hip Höft
FV, M3, Y1 Pat_Knee Knä
FV, M3, Y1 Pat_Foot Fot
FV, M3, Y1 Pat_Hand Hand
FV, M3, Y1 Pat_Elbow Armbåge
FV, M3, Y1 Pat_Shoulder Axel
FV, M3, Y1 Pat_Jaw Käkled
FV, M3, Y1 Pat_Neck Nacke
FV, M3, Y1 Pat_Spine Ryggrad
FV, M3, Y1 Pat_WalkDifficulty Har du gångsvårigheter till följd av dina led-

besvär
FV, M3, Y1 Pat_WalkOtherDifficulty Har du gångsvårigheter av någon annan an-

ledning än smärta eller nedsatt funktion i
lederna

FV, M3, Y1 Pat_CharnleyScore Charnley klassifikation
FV, M3, Y1 Pat_ArmProblem Under den senaste veckan, i vilken utsträck-

ning har besvär från arm, axel, eller hand
stört ditt vanliga arbete eller andra dagliga
aktiviteter

FV, M3, Y1 Pat_PainJointFreq Hur ofta har du ont i någon led
FV, M3, Y1 Pat_FearMovement Är du rädd att dina leder tar skada av fysisk

träning/aktivitet
FV, M3, Y1 Pat_PainJointNRS Markera den siffra som motsvarar din gen-

omsnittliga smärta från din mest besvärande
led den senaste veckan

FV, M3, Y1 Pat_DesireSurgJoint Har du så mycket besvär från någon led att
du vill bli opererad

FV, M3, Y1 Pat_EQ5DMobility5L Rörlighet
FV, M3, Y1 Pat_EQ5DHygiene5L Personlig vård
FV, M3, Y1 Pat_EQ5DActivity5L Vanliga aktiviteter
FV, M3, Y1 Pat_EQ5DPain5L Smärtor/besvär
FV, M3, Y1 Pat_EQ5DAnxiety5L Oro/nedstämdhet
FV, M3, Y1 Pat_EQ5DIndex5L EQ-5D 5
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Occasion Variable Definition (Swedish)
FV, M3, Y1 Pat_EQ5DIndex EQ-5D
FV, M3, Y1 Pat_EQ5DVAS Ditt nuvarande hälsotillstånd
FV Pat_Smoking Rökvanor
FV Pat_BirthPlace Är du född i Sverige
FV Pat_Citizen Är du svensk medborgare
FV Pat_MaritalStatus Vilket av följande alternativ beskriver bäst

ditt civilstatus
FV Pat_Education Vilken är den högsta utbildning du gen-

omgått
FV Pat_SickLeave Har du varit sjukskriven under det senaste

året på grund av dina ledbesvär
FV Pat_SickLeaveDur I så fall sammanlagt hur länge
FV, M3, Y1 Pat_Employment Hur ser din arbetssituation ut idag? Välj det

alternativ som bäst beskriver din situation
FV, M3, Y1 Pat_ExerciseWeekly Hur mycket tid ägnar du en vanlig vecka åt

fysisk träning som får dig att bli andfådd, till
exempel löpning, motionsgymnastik eller
bollsport

FV, M3, Y1 Pat_PhysActWeekly Hur mycket tid ägnar du en vanlig vecka
åt vardagsmotion (minst 10 minuter åt gån-
gen), till exempel promenader, cykling eller
trädgårdsarbete? (räkna inte med trän-
ingstid från föregående fråga)

FV, M3 Pat_CompareActivity Jämfört med andra i din ålder, anser du att
du är

FV, M3, Y1 Pat_UCLA Aktivitetsbedömning. Här ska du uppskatta
din fysiska aktivitetsnivå den senaste mån-
aden. Alternativen väljs med hänsyn till hur
aktiviteten belastar dina leder

M3, Y1 Pat_Opinion Vad tyckte du om artrosskolan
M3, Y1 Pat_InfoAppl Hur ofta tillämpar du det du lärt dig på

artrosskolan i din vardag
FV, M3, Y1 Pat_ASESPain1 1. Hur säker känner du dig på att du kan

minska din smärta avsevärt
FV, M3, Y1 Pat_ASESPain2 2. Hur säker är du på att du kan fortsätta

med dina dagliga aktiviteter
FV, M3, Y1 Pat_ASESPain3 3. Hur säker är du på att du kan undvika att

din smärta stör din sömn
FV, M3, Y1 Pat_ASESPain4 4. Hur säker är du på att du kan åstadkomma

en liten till måttlig minskning av din smärta
genom andra metoder än ökad medicinering

FV, M3, Y1 Pat_ASESPain5 5. Hur säker är du på att du kan åstadkomma
en avsevärd minskning av din smärta genom
andra metoder än ökad medicinering

FV, M3, Y1 Pat_ASESPainScore Smärta
FV, M3, Y1 Pat_ASESSymptom1 1. Hur säker är du på att du kan påverka din

trötthet
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Occasion Variable Definition (Swedish)
FV, M3, Y1 Pat_ASESSymptom2 2. Hur säker är du på att du kan anpassa dina

aktiviteter så att du kan vara aktiv utan att
förvärra dina besvär

FV, M3, Y1 Pat_ASESSymptom3 3. Hur säker är du på att du kan göra något
för att muntra upp dig om du känner dig nere

FV, M3, Y1 Pat_ASESSymptom4 4. Jämfört med andra personer med besvär
som liknar dina, hur säker är du på att du kan
hantera din smärta under dagliga aktiviteter

FV, M3, Y1 Pat_ASESSymptom5 5. Hur säker är du på att du kan hantera dina
symptom så att du kan göra saker du tycker
om att göra

FV, M3, Y1 Pat_ASESSymptom6 6. Hur säker är du på att du kan hantera den
besvikelse/vanmakt som en sjukdom med-
för

FV, M3, Y1 Pat_ASESSymptomScore Andra symptom
FV, M3 PT_Unit Enhet
FV, M3 PT_Unit Landstingstillhörighet
FV, M3 PT_Unit Vårdnivå
FV PT_VisitDate Datum för första besök
FV PT_WorstJoint Patienten har mest besvär från
FV PT_WorstSide ... och sida
M3 PT_IndEstimPT Individuell bedömning vid första besök av

fysioterapeut
M3 PT_IndEstimOT Individuell bedömning vid första besök av

arbetsterapeut
M3 PT_Theory Artrosskola - teori
M3 PT_OACommunicator Tillfälle med artrosinformatör
M3 PT_IndExerPT Individuell träningsgenomgång, fysiotera-

peut
M3 PT_IndExerOT Individuell träningsgenomgång, arbetstera-

peut
M3 PT_Interpreter Har någon del av artrosskolan genomförts

med tolk
M3 PT_SupervisedEx Gruppträning:
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Parameter Value

Optimizer Adamax with defaults
Class weights:
Worsened 1
Stable 1
Improved 1
Batch size 128
Class distribution oversample:
Worsened 3
Stable 1
Improved 1
Callbacks:
Early stopping monitor=‘val_fbeta_score’,

min_delta=0, patience=24,
verbose=1, mode=‘max’

ModelCheckpoint monitor=‘val_loss’,
verbose=0, save_best_only=True,
save_weights_only=False,
mode=‘min’, period=1

ReduceLROnPlateau monitor=‘val_acc’, factor=0.1,
patience=10, verbose=0,
mode=‘auto’, epsilon=0.0001,
cooldown=0, min_lr=0

Table 2: Final NN parameters
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Package Version Package Version Package Version

appdirs 1.4.2 matplotlib 2.0.0 sip 4.18
bleach 1.5.0 mistune 0.7.3 six 1.10.0
cffi 1.9.1 mkl 2017.0.1 sqlalchemy 1.1.6
cycler 0.10.0 nbconvert 5.1.1 sqlite 3.13.0
dbus 1.10.10 nbformat 4.3.0 tensorflow-gpu 1.0.0
decorator 4.0.11 notebook 4.3.1 terminado 0.6
entrypoints 0.2.2 numpy 1.12.0 testpath 0.3
expat 2.1.0 olefile 0.44 Theano 0.8.2
fontconfig 2.12.1 openssl 1.0.2k tk 8.5.18
freetype 2.5.5 packaging 16.8 tornado 4.4.2
glib 2.50.2 pandas 0.19.2 traitlets 4.3.2
gst-plugins-base 1.8.0 pandocfilters 1.4.1 wcwidth 0.1.7
gstreamer 1.8.0 path.py 10.1 wheel 0.29.0
h5py 2.7.0 pcre 8.39 widgetsnbextension 1.2.6
hdf5 1.8.17 pexpect 4.2.1 xz 5.2.2
html5lib 0.999 pickleshare 0.7.4 zeromq 4.1.5
icu 54.1 pillow 4.0.0 zlib 1.2.8
ipykernel 4.5.2 pip 9.0.1
ipython 5.3.0 prompt_toolkit 1.0.9 CUDA 8.0.61
ipython_genutils 0.1.0 protobuf 3.2.0 cuDNN v5.1
ipywidgets 5.2.2 ptyprocess 0.5.1
jbig 2.1 pycparser 2.17
jinja2 2.9.5 pydot-ng 1.0.0
jpeg 9b pygments 2.2.0
jsonschema 2.5.1 pyparsing 2.1.4
jupyter 1.0.0 pyparsing 2.1.10
jupyter_client 5.0.0 pyqt 5.6.0
jupyter_console 5.1.0 python 3.5.3
jupyter_core 4.3.0 python-dateutil 2.6.0
Keras 1.2.2 pytz 2016.10
libffi 3.2.1 PyYAML 3.12
libgcc 5.2.0 pyzmq 16.0.2
libgfortran 3.0.0 qt 5.6.2
libiconv 1.14 qtconsole 4.2.1
libpng 1.6.27 readline 6.2
libsodium 1.0.10 scikit-learn 0.18.1
libtiff 4.0.6 scipy 0.18.1
libxcb 1.12 setuptools 34.3.1
libxml2 2.9.4 setuptools 27.2.0
markupsafe 0.23 simplegeneric 0.8.1

Table 3: Keras enviroment
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Förutspå patientutfall innan behandling
med maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Per-Victor Persson, Hans Rietz

En fjärdedel av Sveriges befolkning över 45 lider av ledsjukdomen atros. Maskinin-
lärning och AI ger potential för bättre vård genom att innan behandling förutspå
utfallet.

Få kan ha undgått att bilar har börjat köra sig
själva, allt fler enheter både lyssnar och svarar på
frågor, och dagens mobiler ritar träffsäkert in både
moustacher och frisyrer på deras ägare. Dessa ex-
empel och många fler är ett resultat av de otroliga
framtsteg inom maskininlärning och artificiel in-
telligens som skett de senaste åren. Fler och fler
uppmärksammar denna potiental och vill under-
söka hur ML kan lyfta den egna verksamheten,
vilket även sträcker sig till den medicinska världen.

Det vi har gjort är, att genom att träna mask-
ininlärningsmodeller på patientdata för ett behan-
dlingsprogram för artros, se om vi redan innan
programmets start kan säga vilka patienter som
blir bättre.

Artros är en ledsjukdom som i Sverige drabbar
en fjärdedel av befolkningen över 45. Symtomen
är ömma eller smärtsamma leder, men smärtan är
i många fall tillräcklig för att göra operation ak-
tuellt. Det har dock visat sig att träning kan ge
lika bra resultat för många, så för att minska an-
talet onödiga operationer startades artrosskolan
och BOA initativet. I artrosskolan får patien-
terna både träning och lektioner om artros, sam-
tidigt som patienternas resultat samlas in for att
utvärdera programmet.

Denna insamlade data har nu vuxit till att
inkludera resultat för cirka 75 tusen patien-

ter, vilket är mycket data där ingen tidigare
djupgående analys gjorts. Just att ha bra och
helst väldigt mycket data är viktigt för maskinin-
lärning, ju mer data desto fler exempel har mod-
ellerna att träna sig själva på.

I slutändan upnådde vi en träffsäkerhet på cirka
65% på hur patienterna mådde efter Atrosskolan
(bättre, samma, eller sämre). Svårigheten låg my-
cket i att andelen som blev sämre var underrepre-
senterade i datan, så modellerna hade färre exem-
pel att träna på.

Vi kan också dra
slutsatsen av resul-
tatet att modellerna
upptäckte mönster i
vilka personer som
faktiskt blir bättre
efter programmet
och vilka som ligger
kvar på samma smärt-
nivåer. Den slutsatsen
är spännande, för kan

man identifiera grupperingar av patienter och
sedan anpassa behandligen utefter gruppen bety-
der det att man kan ge en mer individualiserad
vård där fler kan bli bättre, något som vi i
framtiden tror kommer bli allt vanligare.
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