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Abstract

Manufacturing systems are becoming increasingly more complex at the same time
as competition requires manufacturers to continuously improve their effectiveness
and efficiency. The use of discrete event simulation to model manufacturing sys-
tems is well-established and generally considered to be the method of choice when
analysing what-if scenarios. Simulation is currently predominantly applied when
evaluating manufacturing system design and manufacturing rules and policies.
These applications studies specific attributes and dimensions of the manufacturing
system. To make full use of simulation-based decision-support in operations and
inventory management, a performance measurement system needs to established
to enable evaluation of simulated scenarios.

In this study, manufacturing simulation and knowledge-based decision support
are linked to performance measurement practises used on real systems. By exam-
ining the characteristics of manufacturing simulation applications as well as the
modelling conditions of discrete event simulation, measurable performance dimen-
sions on manufacturing simulations are identified. Furthermore, a proposition on
how to design a manufacturing simulation and a performance measurement sys-
tem to provide effective decision support is formulated. Based on this, the authors
present a suggestion for a manufacturing organisation on how they should develop
their simulation-based decision support system.
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Chapter 1

Introduction

This chapter will outline the foundation of the study. First, it will cover a back-
ground of the research topic and contextualise the study. Thereafter, a description
of the problem will be provided, followed by the formulation of the research pur-
pose, research question and objective of the study. Last, this chapter will state the
delimitation of the study as well as motivate its contribution.

1.1 Background

This section will introduce the research topic and present the premise of the study.
In the first part, the theoretical background will be discussed, including simulation
and manufacturing, decision-making and decision support, as well as evaluation
of manufacturing simulations. The second part will cover a practical background,
briefly introducing the unit of analysis for the case study.

1.1.1 Simulation in Manufacturing

As manufacturing companies today strive towards improving efficiency and effec-
tiveness in their operations, they also find themselves in a rapidly changing envi-
ronment, imposing various requirements and constraints. This makes change and
operational improvement a daily concern for many manufacturing facilities. In or-
der to know what to change, how to do it, and the impacts of different scenarios,
there is a need to model the manufacturing system. However, in many cases, man-
ufacturing and logistics processes have grown into complex networks, sometimes
with hundreds of different articles, which further consist of multiple components
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and sub-components. Being able to build a mathematical model representing such
a network, which makes reasonably accurate predictions of real outcomes, is indeed
a difficult matter (McGarvey & Hannon, 2004).

The difficulty of modelling a manufacturing system analytically is not only
caused by the complexity of the many production flows in the system, but also
largely due to its inherent variability. Besides the more direct variability caused
by customer demand and supplier deliverability, the root of the variability is the
process time variability at each workstation on the shop floor. It is mainly caused
by natural minor fluctuations such as differences in operators, machines and ma-
terial, as well as random outages, setups, operator availability and rework (Hopp
& Spearman, 2008). In turn, the process time variability causes variability in the
workflow, as the variability at one workstation might have effects on other work-
stations (Hopp & Spearman, 2008). The variability can be explained as stochastic
processes, and in theory, for instance the expected throughput can be computed
analytically. However, the complexity of the system as well as the many interde-
pendent stochastic processes makes the computation impossible in practice.

An alternative, or rather a complement, to analytic modelling of manufactur-
ing systems is to use discrete event simulation (DES), which has been used ex-
tensively in manufacturing since the 1960s (AlDurgham & Barghash, 2008). The
main drivers of using simulation is to reduce running costs, increase productivity,
and increase deliverability in order to increase profitability and competitiveness
(Sundkvist et al., 2012). According to AlDurgham & Barghash (2008), the most
common applications for using simulation in manufacturing are:

1) material handling;

2) layout;

3) sequencing and scheduling; and

4) decision support for the manufacturing strategy.

Simulation provides a solution to model the dynamics of a manufacturing sys-
tem. Although simplifications and assumptions of the manufacturing system need
to be made, the simulations are able to capture the variability and the complex
flow network of the manufacturing system in a way that is impossible analytically.
Furthermore, a DES model can be used to study and measure the behaviour of
a variety of different parameters and sub-processes in the system, and thus reveal
potential bottlenecks, poor utilisation and other forms of inefficiencies that are not
obvious. As a result, DES is a useful tool for locating improvement areas in the
production system (McGarvey & Hannon, 2004).

A simulation model is also highly flexible, as it is generally easy to change
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variables and modify the shop-floor layout to test different scenarios. Another
advantage of using simulation is that it is possible to study the effects of manu-
facturing scenarios on multiple processes outside of the actual manufacturing flow,
e.g. the finished goods warehouse (FGW).

1.1.2 Decision-making and the need for support

The need for modelling complex manufacturing systems is closely related to a need
for support in decisions in general. Predicting the effects of decisions in complex
systems can be difficult, even for experienced decision-makers, especially when the
external environment is changing. As Axelrod & Cohen (1999) illustratively state
in relation to decision-support:

”The hard reality is that the world in which we must act is beyond our
understanding” (Axelrod & Cohen, 1999, p. xvii)

In addition to the fact that the actual task of making decisions is becoming
increasingly difficult, one can also argue that the quality of decisions in this context
also needs to increase:

”As the decision-making world becomes more complex, it becomes in-
creasingly difficult to anticipate the result of our decisions, and our
decision-making processes must become as effective as possible.” (Ben-

net & Bennet, 2008, p.5)

1.1.3 Evaluating scenarios in manufacturing simulations

Whether the purpose of the simulation is to test scenarios to find an optimal set of
parameters, or to test the impacts of a certain set of parameters, the performance
of simulation must be evaluated in order to make a decision. To evaluate the per-
formance of simulated scenarios, the vast amount of operational data that can be
produced by a simulation model needs to be processed. When evaluating organ-
isational performance in general or manufacturing systems specifically, it is done
using specified sets of performance measures that represent the relevant dimensions
and drivers of performance.

Stretching back to early 20th century and exploding in the 1990s, performance
measurement is now a well researched field. Numerous work have been done on
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both designing and evaluating performance measurement systems in multiple set-
tings and scopes (Gunasekaran & Kobu, 2007). It is important to note that while
the field is well researched on real manufacturing systems, the virtual setting of sim-
ulated manufacturing systems is subject to other constraints and possibilities. Pre-
vious research, such as Sundkvist (2014) and Pehrsson (2013), has studied specific
simulation-based performance measurement in manufacturing, e.g. productivity
and cost. However, the authors have not found any research taking on a com-
prehensive view of the conditions of simulation-based manufacturing performance
measurement.

1.1.4 Internal view
Company X

The study took an in-depth look at one specific manufacturing company, which
hereinafter is referred to as ”Company X”. Company X is a large manufacturer of
wooden and wood-based products, with multiple factories across Europe. Part of
a corporate group, Company X is an internal supplier to the group’s retail branch
and competes with external suppliers. One of their goals is to be a competitive
actor in the industry, in order for the group to obtain a better negotiation position
against their external suppliers.

Company X has on some occasions adopted discrete-event simulation to model
their manufacturing systems as decision-support in projects regarding changes to
layout and equipment as well as factory design. However, they have experienced
problems with using simulation, mainly due to issues with interpreting and eval-
uating the simulation output. This led to low implementation rate of simulated
projects as well as a scepticism towards the usability of simulation as decision
support.

Notably, the simulations have not been conducted by the organisation itself but
outsourced to a consultancy firm. Hence, Company X’s experience with simulation
is limited to defining requirement specifications as well as analysing and interpreting
the results as provided by the consultancy firm.

Factory 1

One of the factories of Company X was ” Factory 1”7, which produces a wide selection
of Company X’s product range in a make-to-stock continuous-flow production. Due
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to their geographical location, Factory 1 is challenged by noncompetitive costs of
salary and high distribution costs in comparison with other factories at Company X.
As a result, Factory 1 has in general adopted a progressive position in implementing
new ideas and improvements to achieve competitive advantage. Factory 1 is further
one of the factories at Company X which previously has adapted simulation in
project form.

1.2 Problem description

Company X is initiating a pilot test of implementing continuous use of simulation
at Factory 1. Alongside with being able to simulate changes to layout, equipment
and product mix, they are also planning to incorporate simulation-optimisation
on production planning and scheduling. If the pilot is successful, the goal is to
implement the simulation at other Company X factories. Based on their previous
experience, Factory 1 has stressed the necessity of being able to better evaluate the
performance of simulated scenarios to enable adequate decision-support. Company
X has proposed that cost is an attractive measure for evaluation due to its simplicity
and comparability, although there is no certainty as to whether this indeed is
the best option, or even possible. They have also expressed an interest in the
relation between financial and non-financial performance measures. This includes
the questions if and how, it would be possible to relate or translate operational
performance improvements into quantified financial impacts. In addition, what
implications simulation would have on the selection of performance measures is
another area of interest.

As the research client, Company X have pointed out two main objectives:

Obj1 To find what types of performance measures can provide with credible and
understandable decision support on simulations, especially concerning finan-
cial performance measures.

0Obj2 To map out appropriate sets of performance measures for different application
areas of simulation-based decision-support.

1.3 Purpose, research questions and objectives

The purpose of this study is to investigate which performance measures enables
comparable and credible evaluation of simulated manufacturing scenarios to support
decision-making.
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Based on the purpose, three research questions were formulated:

R(Q1 What specific conditions does simulation-based decision-support put on the
selection of performance measures and the design of a PMS, as opposed to
performance measurement in a real system?

R(Q2 What performance measures should be selected in a PMS in simulation-based
decision-support, depending on the areas of application?

RQ1 is focused on developing grounded theory on how the performance of a man-
ufacturing system can be measured in a simulation, as well as the possibilities,
limitations and conditions that simulation itself has in performance measurement.
Answering RQ1 is also a prerequisite to understanding what measures to use, and
thus to answer RQ2. Following, RQ2 is closely related to the practical purpose
of the study and aims to connect the academic view with the corporate view of
preferable performance measures. Answering RQ2 allows for selecting the specific
measures to use in the context of simulation-based decision-support in manufac-
turing, in different application areas. Finally, RQ2 further deals with how the
most relevant performance measures found can be combined, essentially forming a
Performance Measurement System.

1.4 Delimitations

The study will investigate performance measures of a manufacturing system which
is delimited to the shop floor and finished goods warehouse. Thus, no other parts
of the supply chain such as suppliers, material warehouses and distribution will
be considered. Furthermore, the study will neither cover why production improve-
ments are beneficial, nor how to improve performance for a production process, the
company or in general. It will rather focus on how to measure the performance of
improvements to support decision-making.

How to develop and conduct manufacturing simulations in general will also be
excluded, although, modelling requirements regarding what the necessary opera-
tional outputs are for computing relevant performance measures will be discussed.
The study will also exclude performance reverse-engineering. In other words, it
will not cover what actions should be implemented to reach a specific performance
objective, but rather focus on measuring the performance impact of a decision.
Furthermore, the study is not focused on capital budgeting or financial evaluations
of investment decisions in general.
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1.5 Contribution

There is a substantial amount of research covering simulation, decision-making,
decision-support and performance measurement in manufacturing. Among these
are several papers with important contribution to this study. Leong et al. (1990)
and Chryssolouris (2006) provide a solid understanding of the nature decision-
making and the relation to manufacturing strategy. AlDurgham & Barghash (2008)
discuss applications for simulation in manufacturing relations between different de-
cision areas. Gunasekaran et al. (2004), Neely et al. (1995) and Beamon (1999)
form the basis on the selection of performance measures and design of performance
measurement systems. Pehrsson (2013) provides the most comprehensive study
on the subject, as the author proposes a comprehensive framework and estab-
lishes a proof-of-concept for using simulations-based multi-objective optimisation
for decision-support in manufacturing. While he covers costing, he does not focus
on the selection of performance measures in general.

The authors have found no study that focuses on the selection performance
measure and design of a performance measurement system for decision-making on
simulated manufacturing. The contribution of the study will be an understanding of
how performance measures can improve the use of simulations as decision-support
and increase the credibility of simulation results. The contribution to manufactur-
ing businesses will be a better understanding of the link between operational and
financial metrics for stakeholders on various organisational levels and with different
backgrounds.






Chapter 2

Methods

The objectives of this chapter are to describe and motivate the choice of research
methodology for conducting this study and answering the research questions. This
includes the choice of research philosophy, research approach, research strateqy and
research design. Moreover, the chapter will specify which methods were chosen and
how they were used as well as how the collected data was analysed. Finally, the
chapter will discuss quality of the study in terms of credibility, validity, transfer-
ability and reliability.

2.1 Research paradigm

This section will start by outlining the adopted philosophical view, reviewing the
authors’ stance on the three aspects of research philosophy which influenced the
way the research process was approached, i.e.: epistemology, ontology, and aziology
(Saunder et al., 2007). Thereafter, the research approach will be discussed and
the choice of an inductive approach motivated. The research philosophy and the
research approach supported the choice of research strategy by indicating if the
approach to answer the research questions should be explorative. The philosophy,
approach and strategy also clarified the choice of research design, i.e. what kind of
data to collect and from where, as well as how the data should be interpreted. Last,
the research traditions associated with the different approaches aided in adapting
the research design to constraints, such as limited data and lack of theory or knowl-

edge.
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2.1.1 Research philosophy

The research philosophy is related to the development of knowledge and its nature.
The importance of declaring the research philosophy is that it has dictated how the
research questions were to be answered and what assumptions the authors made
about the way they see the world.

The authors adopted a pragmatic epistemic view in this study, letting the
research questions be the main determinant of research philosophy. Instead of
adopting a defined stance on e.g. positivism, realism, or interpretivism, the au-
thors claimed it was reasonable that multiple views could be adopted to obtain
knowledge depending on their fit to each research question. The authors used an
evolutionary view on the use of methods and approaches, with the aim of choosing
the methods according to what is appropriate given the situation. As such, the
view was that part of a study might be characterised by interpretivism, while an-
other by positivism, without there being a contradictions between the legitimacy
of the knowledge. The authors viewed that dismissing either knowledge from the-
ory, measures or subjective interactions as invalid would inhibit the quality of the
results.

The authors’ position regarding ontology was that the distinction between ob-
jectivism and subjectivism were deemed unnecessary and practically unrealistic.
The foundation of this stance was the acknowledgement of the existence of both
an objective and subjective reality depending on the context, and that subjective
realities in many cases can be collectively generalised as an objective reality. Again,
this position is cohesive with the pragmatic view. Regarding axiology, the authors’
background in natural sciences and engineering affected the preference of approach-
ing research in an objective manner and that the research should be value-free to
uphold validity. However, the authors maintained that a truly value-free and un-
biased approach is in practice not achievable when the research is not driven by
objective truths, e.g. as in mathematics or physics. As soon as subjective inter-
pretation is involved in the research process, the authors asserted that the research
will not be value-free.

2.1.2 Research approach

While the focus of this study was an under-researched subject, the theory related
to the subject, i.e. decision-support, performance measurement, and DES in man-
ufacturing, were well-researched. The literature thus provided sufficient amount
of substance to develop a thorough theoretical frame of reference for the research
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topic, which might have suggested a deductive approach. Although, formulating
a hypothesis by its formal definition is only valuable when it can be adequately
tested. To the extent of the authors’ knowledge, continuous use of simulated man-
ufacturing requiring a system for evaluating performance was at the time severely
limited. Trying to formulate a conclusive verification or rejection of the hypothe-
sis would therefore not produce a reliable result, which indicated that a deductive
approach was not fitting. The rigid methodology of deduction and the finality of
the choice of theory and hypothesis was further seen as constraining alternative
explanations of phenomena.

Rather than testing and verifying a theory, the inductive approach focuses
on developing theory by analysing collected data. The consideration in inductive
research is generally on the context in which events occur, focusing on small samples
and qualitative methods (Saunder et al., 2007). The authors found the inductive
approach fitting to answer the research questions due to several reasons:

1) As noted, the research topic was under-researched, while the related topics
were comprehensive. The development of a theory itself which identified the
intersections of the related topics was therefore the primary concern, and had
to be done, prior to testing it deductively.

2) Due to the lack of literature on the subject as well as the limited data avail-
able, the inductive approach provided more flexibility and compatibility with
more subjective data collection.

3) The exploratory nature of the research questions requires a clarification of the
understanding of the problem. This is highly compatible with the bottom-up
inductive reasoning.

4) The interest of the research client, i.e. Company X, was to gain in-depth
knowledge of the research topic and a framework to apply for the pilot testing
of their simulation endeavour. Thus, their inclination was aligned towards an
inductive approach.

2.2 Research strategy

The research strategy was the plan on how the research questions were going to be
answered. The choices made in the research design depended on the authors’ pref-
erences, the research philosophy, the research approach as well as the preferences
of the research client. This section will explain and justify the research strategy
choices made.
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2.2.1 Relation with the research purpose

The research purpose was to gain new insights by assessing how performance mea-
surement should be utilised for credible decision-support when evaluating simu-
lations in manufacturing. The characteristics of the research purpose correspond
with those of an exploratory study. The inherent lack of prior knowledge in the
research field associated with an exploratory study requires flexible research de-
sign. The researcher(s) must be able to change the direction of the study when
new data or insights occur (Saunder et al., 2007). As a result, the research design
of this study was emergent in its nature, meaning that methods, questions and
focus areas shifted throughout the research process. This was furthermore aligned
with the pragmatic epistemological and ontological view.

2.2.2 Formulating a research strategy

The research strategy applied to this study was selected according to the research
questions and objectives, the prior knowledge of the researchers, the resources
available as well as the declared philosophical stand and research approach.

To begin with, the inductive approach implies theory building rather than the-
ory testing, the research strategy for an inductive study should thus be aligned
accordingly. The number of manufacturing organisations and people with knowl-
edge of applying and evaluating simulation in manufacturing were furthermore, as
earlier noted, sparse to the authors knowledge. This put a constraint on choosing
an empirical research strategy which demanded a large sample size. Being an ex-
ploratory study further implied choosing a research strategy which would enable
answering questions regarding ”what”, rather than "how” and "why”. As an ex-
ploratory study requires a flexible design, it further called for a flexible research
strategy.

Saunder et al. (2007) list three main ways of conducting exploratory studies:

1) a search of the literature;
2) interviewing "experts” in the subject; and
3) conducting focus group interviews.

Important to note is that research strategies are not necessarily mutually exclusive
and can successfully be used in conjunction with each-other (Saunder et al., 2007).
The chosen research strategy was congruent with the list by Saunder et al. (2007)
and consisted of a case study, an interview study and an extensive literature review.
The case study and interview study represented two sub-strategies which together
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was deemed the best way to answer the research questions. In the continuing part
of section 2.2.2, a more detailed description and motivation of the chosen research
strategy is provided.

Internal view: Case study

Fitting to the criteria of a fitting research strategy stated earlier was the case
study. Case study strategies are often used in exploratory studies as they provides
a good understanding of the research context and are useful for understanding
organisational and managerial processes (Saunder et al., 2007, Yin, 2009). A case
study can be defined by two technical characteristics, of which the first one is the
scope:

1) The case study is an empirical enquiry that
i) investigates a contemporary phenomenon in depth and within its real-
life context; especially when
ii) the boundaries between phenomenon and context are not clearly evident
(Yin, 2009).

The second characteristic of the case study refers to the data collection and
analysis strategies:

2) The case study enquiry:
i) copes with the technically distinctive situation in which there will be
many more variables of interest than data points; and as a result
ii) relies on multiple sources of evidence, with data needing to converge in
a triangulating fashion; and as another result
iii) benefits from the prior development of theoretical propositions to guide
data collection and analysis (Yin, 2009).

Regarding item 2.i) of the characteristics of a case study, the complexity of the
research topic stemmed from the multiple aspects of the research questions. This
was particularly the instance corresponding to the interconnected implications of
the technical aspects of simulation, the design of performance measurement systems
and the enabling of adequate decision support.

As discussed in the problem description in section 1.2, Company X was in the
stage of implementing a DSS using simulation and was seeking a way to evaluate
the simulations. The contextual situation of Company X was thus in essence the
same as the phenomena which was to be investigated through the research ques-
tions. Furthermore, the research client, Company X, also provided the resources
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to conduct an in-depth investigation. Due to their unique current situation and
availability, using Company X as a holistic unit of analysis in a single case study
was therefore one fitting strategy to support answering the research questions.

The main available form of data at Company X was the experience and knowl-
edge of individual employees. Using decision-makers and stakeholders relevant for
the application of simulation-based decision support at Company X as the units
of observation in the case study would cover the organisation’s view of how the
research questions should be answered with respect to:

1) their expectations of how a simulation-based decision support should be used;
2) where they see its usefulness in relation to their current practice; and
3) the evaluation of their historically occasional simulation projects.

The Company X employees’ experience of simulation was however sparse and
limited to the evaluation of presented results of outsourced simulations. The exe-
cuted simulation projects were furthermore initiated with specific targets in focus
and did not consider any general impacts nor the implications of continuous use of
simulation. Hence, Company X lacked both the general knowledge of how perfor-
mance measurement could be utilised for simulation-based decision support as well
as experience of the effects of its implementation. This would however not cover
all the variables of interest to answer both research questions, especially not RQ1.
Furthermore, the data collected from Company X would provide an internal view
that risked being:

1) Company-specific, i.e. not necessarily generalisable to other manufacturing
companies,

2) Factory-specific, i.e. not necessarily generalisable to other factories, or

3) Close-minded, i.e. biased toward current practises, conformist and/or unre-
ceptive to new ideas.

Theoretical view: Literature review

Regarding item 3.iii) on the characteristics of a case study, the prior development of
a theoretical proposition is recommended to support the case study. Again, any lit-
erature on performance measurement for evaluation of manufacturing simulations
was to authors’ knowledge non-existent. In order to develop a theoretical proposi-
tion on the research topic, different topics related to it and their intersections had
to be investigated to create an initial theoretical frame of reference.

However, to be useful as a basis for data collection and analysis in the study, the
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individual topics of the theoretical frame of reference further needed to be bridged
and integrated into a theoretical framework. This theoretical framework would thus
be an implied theoretical proposition, providing a starting point for the empirical
research of the study. As a result, an emphasis on a more thorough literature review
than typical for a case strategy was required to develop the theoretical proposition.
this represented te theoretical view.

External view: Interview study

The authors found that data collection from a case study at Company X alone
would not provide sufficient data to answer the research questions and ensure va-
lidity. Due to the theoretical and practical knowledge deficiency at Company X of
designing and implementing performance evaluation of simulations, it was deemed
necessary to complement the internal view case study.

The authors found that the pragmatic solution to complement the lacking data
from the case study was to include an external view interview study. The inter-
view study would include collecting data externally from experts in the field and
other sources with knowledge and experience of performance measurement and
decision-support on simulated manufacturing scenarios. The maintained that this
additional data would be sufficient to fully complement the case study in answering
the research questions. An interview study was furthermore fitting with the criteria
and properties of an explorative and inductive study.

The overall strategy

While the internal, theoretical and external view represented individual sub-
strategies for obtaining data and material to answer the research questions, how
they were to be used conjointly to form an overall strategy is not answered. The
authors argue that some conclusions could be drawn from analysing the intersec-
tions of related research topics in the theoretical view which would aid the analysis
of the internal view. However, the conclusions and findings on the research topic
would be richer and more valid if analysed in conjunction with data collected from
the external view.

The strategy was therefore to first develop a conceptual analysis using the
theoretical and external view, which would generate general findings. Thereafter,
an empirical analysis was to be made which applied the general findings of the
conceptual analysis with the data from the case study to make a practical analysis.
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This two-phased approach would effectively triangulate and ensure validity of the
study.

Summary

The research strategy was outlined by the development of the three major parts

1) Internal view
2) External view
3) Theoretical view

The wnternal view represented the basis of the single case study on Company X,
and were as such the main part of the empirical study. The external view was
the complementing interview study with external view experts, whose purpose was
to fill the knowledge gap of Company X and to add validity to the study. Last,
the theoretical view was in essence the theoretical framework constructed from the
literature review, and served as the foundation for the data collection and analysis.

The overall research strategy, its components and interconnections are por-
trayed in figure 1.
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Figure 1. Flowchart of the chosen research strategy. (Source: Personal collection).

2.3 Research design

The research design was the plan how the chosen research strategy was going
to implemented. As such, this section deals with the choice of data collection
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techniques and data analysis procedures. It describes and motivates the selection of
research methods based on the previous research choices and the research questions.

2.3.1 Selection of research methods

The inductive research approach is traditionally associated with qualitative meth-
ods, although it is important to note that its not exclusively bounded to qualitative
methods (Saunder et al., 2007, Creswell, 2014). Exploratory case studies further
embrace both qualitative and quantitative methods (Yin, 2009, Saunder et al.,
2007). Hence, the choice of method(s) was determined by the research questions
and the resources available in terms of data.

Data collection techniques

As earlier noted, the main available form of data at Company X was the experience
and knowledge of individual employees. Data collection from Company X was
therefore required to be principally based upon interactions with these employees.
A possible quantitative data collection technique for this purpose was conducting
a survey. However, as discussed in section 2.2.2 about using a survey study as
research strategy, a survey required a larger sample size than available at Company
X to make any statistically significant inferences.

The same argument was valid for data collection from experts for the external
view; the collectable data was in the form of experts knowledge and experience,
and thus the survey would be most adequate among the quantitative techniques.
Again, the availability of experts in performance evaluation of simulated manu-
facturing was sparse due to the lack of organisations with previous experience of
it. Together with the lack of time to acquire a sufficient sample size despite the
sparsity made the survey inadequate as a data collection technique for this study.
Furthermore, quantitative research is in general characterised by more rigid and
predetermined methods (Creswell, 2014). The close-ended questions of a survey
fits that description, and is as such a poor fit for exploratory research such as this
study. The overall conclusion was that quantitative data collection techniques were
not appropriate, and that qualitative techniques would be more effective.

Internal view

In contrast with quantitative data collection techniques, qualitative research meth-
ods are generally more emergent and flexible than the quantitative (Saunder et al.,
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2007). Qualitative data collection techniques includes participant observation,
qualitative interviews, as well as archival material such as documents and audio-
visual material (Creswell, 2014, Saunder et al., 2007). Applicable to Company X
were interviews and observations, as no organisational documents were retrievable
for the authors. Interviews are commonly used in exploratory studies and case
studies, and they are typically differentiated between structured interviews (i.e.

questionnaires), semi-structured interviews, and unstructured interviews (Saunder
et al., 2007, Yin, 2009).

Suitable for exploratory studies are interviews with open-ended questions such
as semi-structured and unstructured interviews, as they provide the researcher
with the possibility to probe answers so that the interviewees can build on and
explain their responses. Furthermore, it enables the discussion to lead into topics
not taken into account by the researchers, and can as such provide significant data
with depth and detail to the study (Saunder et al., 2007). The difference between
semi-structure and unstructured interviews is that the former is structured around
predetermined themes and questions (although these are flexible between interviews
and questions can both be omitted and added during interview). Unstructured
interviews are on the other hand conducted more freely as the path of discussion
is directed by the interviewee rather than the by the interviewer (Saunder et al.,
2007). Due to the complexity of the research topic, containing multiple aspects,
the authors found the semi-structured interview technique to be the most efficient
in getting relevant data for answering the research questions.

As described under item 2.ii) in section 2.2.2 of the case study characteristics,
using multiple sources of evidence in a case study to triangulate the variables of
interest is highly pertinent. The second applicable data collection technique for the
internal view was observations. Observations are useful for recording information
as it occurs, noticing unusual aspects, and bring to light sensitive topics. Other
advantages include the ability to gain firsthand knowledge and to notice aspects
that might be overlooked by other data collection techniques (Creswell, 2014).
Observations were made possible as Company X were willing to provide factory
and corporate head-quarters visits. However, due to limited time and resources,
the amount of visits and their duration was constrained. Observation was therefore
regarded as a secondary source of data at Company X, in addition to the interviews.
Moreover, as the process of simulating manufacturing scenarios had not yet been
established, the process itself could not be observed. Rather, the authors saw the
purpose of the observations in investigating the meaning that the employees attach
to their actions.
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FExternal view

Considering the external view data collection, the authors recognised that the data
would be mainly retrospective with respect to the experts’ previous experiences and
knowledge. As such, interviewing was regarded the best qualitative data collection
technique to gain the additional insights necessary for answering the research ques-
tions. In comparison with the internal view population, the special characteristics
of the external view population, i.e. more knowledgeable in the research topic, sup-
ported the more flexible unstructured interviewee technique. The view was that
the more extensive knowledge of the external view interviewees would not require
as much guidance. Unstructure interviews further enabled them to contribute more
in-depth responses in their specific areas of expertise, providing richer data.

Data analysis procedures

The choice of data analysis procedure is dependent on what data collection tech-
nique is used as some data is harder to convert from quantitative to qualitative than
others, and vice versa. To begin with, participant observations as well as semi-
structured and unstructured interviews are all more compatible with qualitative
analysis procedures (Creswell, 2014). However, the choice is foremost important to
how the analysis supports answering the research questions. Regarding RQ1, the
essence of the research question is investigating the relationship between perfor-
mance measurement in the factory versus performance measuring on simulations.
The conditions that refer to the situations are not strictly defined and highly con-
textual. The qualitative approach is more suitable than quantitative when taking
a holistic account, and when developing a more complex picture of the problem
using multiple perspectives (Creswell, 2014).

Continuing to RQ2; being a what-question, quantitative data analysis proce-
dures such as statistical analysis might prima facie infer an answer to the research
question. The qualitative data collected could in theory be translated into quanti-
tative data on which statistical analysis is applied, e.g. the number of mentions of
specific or types of performance measures in relation to an application are. How-
ever, as mentioned multiple times, for the answer to be statistically significant, it
would have required a much larger sample size than was available with respect to
both time and resources. Furthermore, the open-ended questions of the interviews
is as noted poorly fitting for conversion to qualitative data. The authors’ opinion
was that using qualitative data analysis procedures, searching for themes and pat-
terns in the responses of the interviews and observations, would be able to provide
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a valid answer for RQ2. Considering that the study is inductive and exploratory,
the purpose was not finding definite answers, but rather building an initial theory
on the research topic. Thus, qualitative data analysis procedures were deemed
suitable for RQ2 as well.

Summary

The data collection techniques were chosen to be all qualitative. Data for the in-
ternal view was to be collected using semi-structured interviews as the prime data
and observation with the role of participant as observer as second data. Data for
the external view was on the other hand to be collected solely using unstructured
interviews. Considering the data analysis procedure, they were chosen to be qual-
itative as well. The choices was made with respect to the research questions, the
research approach and strategy, as well as the time and resources available. The
research choice thus corresponds to a multi-method qualitative study.

The use of multiple methods is argued to be advantageous, as it allows better
means to answer the research questions as well as data triangulation. Regarding the
latter argument, its strength is that it mitigates the method effect, i.e. it decreases
the effect on the results of specific weaknesses inherent in every technique and
procedure (Saunder et al., 2007).

2.3.2 Time-horizon

A study can either be cross-sectional or longitudinal, i.e. either a study of a phe-
nomenon or phenomena at a specific time or a study of the changes over a time-
period. The choice of time-horizon is furthermore independent of both the research
strategy and the choice of methods (Saunder et al., 2007). However, it is dependent
on the time constraint of the study; as the thesis was to be written over the time
period of one semester (roughly four months), the authors deemed that a cross-
sectional study was more fitting to the study. This argument was strengthened by
the authors’ recognition that the literature review would be highly time consuming
as well as that a longitudinal study would not yield better answers to the research
questions.
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2.4 Development of theoretical view

This section will describe the development of the theoretical view. It will start
by describing how the literature collection for the theoretical view (chapter 3)
was conducted; how literature material was searched for and how it was selected.
Second, it will describe how the theoretical framework was developed based on the
theoretical view.

2.4.1 Conducting the literature review

In the first step of developing the theoretical view, general key words and topics
were identified from the preliminary research and the problem description provided
by Company X. Based on the general key words, synonyms and related terms were
identified and added to an extended list of key words. The key words were applied
to search the Lund University Libraries’ online search service for electronic and
physical collections, i.e. LUBsearch, which is a collective entry point to all the
libraries joint resources. Using different combinations of the key words, focus was
on finding journals and books which were easy to obtain; being either available
free online or physically at the Lund University libraries. The literature material
was selected on the basis of evaluating its potential usefulness in answering the
research questions. Further considerations in the selection of material were taken
with respect to its quality, i.e. the reliability of authors and publications as well as
the number of citations. The selected literature material was additionally used for
backward and forward reference searching. This was done to circumvent the issue
of relevant literature material being excluded from the key word searches, as well as
to study the development of theories, follow up studies and expand the knowledge
about the topics.

Theoretical frame of reference

The literature review was focused on three main topics which were identified as key
aspects of the research topic from the preliminary research, the problem description,
and research questions, i.e.:

1) DES as decision support in manufacturing applications;
2) decision-making and decision areas in manufacturing; and
3) performance measurement in manufacturing.

The focus was on finding theory in each of the topics which represented a compre-
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hensive and grounded view of the research community. The theory presented either
related to general themes of the three topics, important for building a thorough
understanding, or especially, represented a high relevance to the research questions.
The result of the literature review hence formed the theoretical frame of reference.
A descriptive picture of the primary research topics are depicted in figure 2 below.
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Figure 2. Research topics in literature review. (Source: Personal collection).

2.4.2 Constructing the theoretical framework

The theoretical framework was developed based on the theoretical frame of ref-
erence, particularly focusing on the interactions between the three main topics
related to the research topic. In each of the topics, central issues relating to the
research questions were identified and synthesised. Bridging of the central issues
was done by investigating the points of contact between them and combining com-
mon themes. Formed on a distillation of the central issues and their interrelations,
a canvas was developed which represented an integrated theoretical proposition of
the research topic.

2.5 Data collection and sampling selection

This section will describe the aim and strategy of the data collection in greater
detail. It will also present how the data collection techniques for the internal
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view and external view were applied in the study. First it will cover the semi-
structured interviews followed by the participant observation for the internal view,
and thereafter the unstructured interviews for the external view .

2.5.1 Internal view: Semi-structured interviews

Semi-structured interviews was the primary data collection technique for the inter-
nal view. This subsection will describe how the technique was applied in this study
with respect to the interview questions, sampling and recording of the interview

material.

Interview questions and structure

The interview questions consisted of a mix between:

1) open questions - to allow the interviewees to answer more freely and develop
their response;

2) probing questions - to further explore important responses, provide explana-
tions, and supplement open questions; and

3) specific/closed questions - to obtain specific information.

Although relative uniformity of questions were pursued in the interviews, flexibility
was necessary due to the varying level of competence in different areas among the
interviewees. Hence, both the questions themselves and how they were formulated
varied among the interviews, and questions were subsequently also removed while
others were added. The interviewees were further given some additional time to
speak more freely on topics in which they had specific knowledge and interest,
alongside with spontaneous probing questions. The interviews were in average
conducted during one hour, covering 20 to 30 questions. An outline of the interview
questions can be seen in appendix B.

Sampling

Interviewee candidates were selected with purposive criterion sampling on the ba-
sis of four profiles which represented the different types of key respondents for
simulation-based decision support:

1) Planning stakeholders: Production planners or managers with operational
and tactical responsibilities related to production planning;
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2) Investment decision stakeholders: Mid and top-level managers with tactical
and strategic responsibilities related to proposing and deciding on manufac-
turing investments;

3) Manufacturing strategy stakeholders: Top-level managers responsible for the
implementation of the manufacturing strategy; and

4) Continuous improvement stakeholders: Advisers and decision-makers with
responsibilities related to Lean or continuous improvement.

These profiles were however not necessarily exclusive, as one candidate could em-
body more than one profile in their role at the organisation. Moreover, the ambi-
tion was to sample diverse candidates with respect to Company X locations, e.g.
candidates from multiple factories and the corporate head quarters to achieve het-
erogeneity. This was to ensure validity of a representative view for Company X,
mitigating the risk of location-specific biased results.

Provided with the list of profiles, interviewee candidates were recommended
by the supervisor at Company X. Although some control of the sampling was
consequently lost, given the size of Company X, the filtration by the supervisor was
deemed necessary to find knowledgeable and willing interviewees. The supervisor
at Company X further initiated the contact with the candidates, introducing the
authors and asking for their participation in the study. Interviews were thereafter
booked with the accepting candidates, who were also briefed with an agenda and
information about the topics of the interview.

In total, eight interview sessions with ten employees at Company X were con-
ducted *. A list of all the internal view interviews, with details including their
corresponding reference code, can be seen listed in table A1l in appendix A.

Recording the interviews

The authors’ ambition was to conduct interview face-to-face as far as possible,
meeting the informants in person. However, as the factory locations of Company
X are scattered all over Europe, there were not resources nor time to accomplish
that. Instead, the interviews which could not be conducted in relative proximity to
Lund, i.e. outside the vicinity of Sweden, were conducted through videoconference
calls.

Records of all the internal view interviews were made by audio-recording both
face-to-face and videoconference call interviews with the permissions of the infor-

1 . . . . . .
Two interview sessions were conducted with groups of two interviewees
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mants. Audio-recording was used due to several advantages, e.g.:

1) allowing better concentration on both questioning and listening, as no focus
had to be directed at keeping up with taking notes;

2) providing an accurate and unbiased recording of the interviews, further en-
abling direct quotes to be used;

3) making it possible to re-listen the interviews, ensuring that no information
was missed; and

4) perceiving intonations and emphasis of the responses, capturing the tone of
voice (Saunder et al., 2007).

2.5.2 Internal view: Participant observation

Participant observation was the secondary data collection technique for the internal
view. This subsection will detail how the observations were carried out, what data
was recorded and how it was done.

Participant observations can be categorised by the researcher’s role during
the observations: complete participant, complete observer, observer-as-participant,
and participant-as-observer (Saunder et al., 2007). The role most fitting to this
study was observer-as-participant, i.e. as a spectator where the purpose of the
researcher’s presence is known to the observed. The choice was made based on
the presumption that there was no risk of the research subjects being defensive
knowing the research purpose, and that it was not possible for the authors to take
part in the activities.

The observations were unstructured; data was collected when material relevant
to the research topic was observed. They were also done in a naturalistic setting,
at Company X locations. Alongside with reoccurring meetings with the Company
X supervisor at the corporate head-quarters, the main source of observational data
was through a two-day visit at Factory 1. The visit included a whole-day meeting
with, among others, the elected key user of the simulation-based tool (i.e. Plan-
ning Manager at Factory 1 and representatives from the simulation development
consultancy firm.

The data was recorded primarily in real-time by taking notes during participa-
tion in meetings and informal discussions. However, compilation of observations
were occasionally done post hoc. Questions to the informants during observation
included clarification of what had been observed by the authors as well as of the
accounts of circumstances described by the informants.
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2.5.3 External view: Unstructured interviews

Unstructured interviews was the sole data collection technique for the external
view. This subsection will describe how the questioning, the sampling as well as
the recording of the external view interviews was handled in the study.

Interview questions and structure

Compared to the internal view semi-structured interviews, the external view un-
structured interviews were much less directed in terms of listed questions. Although
some questions asked were indeed similar to those of the internal view interviews,
they were not predetermined. Furthermore, rather than asking any closed ques-
tions, the questions were either open or probing with the purpose of supplementing
the open questions. The loose structure of the external view interviews was driven
by the absence of direction. The interviews were held within the frame of relevance
of the research topic, albeit, the emphasis and time spent on different subtopics
were largely dictated by the informants. The purpose of this structure was letting
the informants develop their responses in the areas of their respective expertise to
enrich the data. Similar to the internal view interviews, the external view inter-
views were held during one hour. The number of questions were however highly
flexible, highly varying among the interviews.

Sampling

The population of experts in performance evaluation of manufacturing simulations
was to the authors knowledge sparse due to the lack of research in the topic as well
as the limited implementation in manufacturing organisations. Purposive sampling
was used to find suitable interviewees from the small population. The criteria for
the sampling was that the participators either had theoretical or practical expe-
rience of developing, implementing and evaluating production simulations. The
ambition was also to achieve heterogeneity in terms of occupation.

The sample consisted of four participators; a detailed list of the external view
interviews conducted can be seen listed in table A2 in appendix A.

Recording the interviews

The majority of the external viewinterviews were conducted face-to-face. Like the
internal view interviews, and for the same reasons as listed in subsection 2.5.1, half
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of the external view interviews were audio-recorded. However, the other half was
recorded in real-time on paper by the authors.

2.6 Data analysis

This section will describe the data analysis procedures. First it will explain how
the raw data was prepared for analysis. Thereafter, the section will cover the data
analysis strategy and explain and motivate all the steps of the analysis.

2.6.1 Preparation for data analysis

Before the data could be analysed, the raw data needed to be processed and pre-
pared. This included transcription of audio-recorded interviews and translation of
data. How this was proceeded will be described below.

Transcription

A majority of the interviews were audio-recorded. Subsequently, they had to be
transcribed into written accounts before being analysed. The transcription was
made by the authors through data sampling, i.e. only the parts important for the
study were transcribed. Data sampling was chosen due to the open-ended ques-
tions of both the internal view and external view interviews. In the same way as
the open-ended questions enriched the data by producing developed and thorough
responses, they also resulted in segments of data irrelevant for the study. More-
over, full account transcriptions without the use of voice-recognition software or a
professional typist are immensely time-consuming (Saunder et al., 2007). Hence,
data sampling also enabled faster transcription processes.

Translation

While half of all the interviews were held in English, the rest were held in Swedish.
The interviews in Swedish were hence translated to English by the authors post
transcribing the material.
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2.6.2 Data analysis strategy

The purpose of qualitative data analysis procedures is identifying themes and pat-
terns in the complex set of qualitative data generated through interviews and ob-
servations (Saunder et al., 2007). Moreover, case studies rely on analytic generali-
sation, by expanding and generalising theories (Yin, 2009). To facilitate this, the
data was analysed according to the following steps:

1) categorisation;

2) unitisation;

3) patterns and themes analysis; and
4) theory development

In addition to the theoretical view developed from literature, the research strat-
egy was to first formulate an internal view and external view before developing a
theory. To develop these views, the data collected corresponding to them needed
to be treated separately. The two empirical views were formulated using steps 1),
2), and 3). After the empirical views had been formulated, it was followed by the
process of theory development. This was done in two steps: First, a conceptual
analysis was done by combining the findings from the theoretical view with those
from the external view. Second, an empirical analysis was done by using the con-
ceptual analysis and applying it with the internal view. How the data analysis was
proceeded in each step will be described in detail below.

Categorisation

The first step of the data analysis was to categorise the data into meaningful parts
which could be systematically analysed. In addition to supporting the management
of the data, the categorisation helped with integrating data from different sources
and identifying patterns and themes. In turn, this aided the development of theory
and drawing of conclusions from the collected data.

Categorising the empirical views

The categorisation of the data corresponding to the internal view and external view
respectively was done independently, although, the categorisation procedure was
the same in for both sets of data. The internal view represented a holistic single
case study, hence, the multiple perspectives needed be integrated and analysed in
conjunction. As a result, next to the interviews, the observations were treated as
another perspective of the internal view.
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While there are multiple different strategies to categorising data, the authors
chose to adopt an inductive analysis strategy. The categories were hence derived
from the data rather than from the theory and theoretical framework. However,
as the interview questions themselves were to some degree a product of theory, its
relevance to the data collected, and thus the categories, was not omitted. This
strategy was chosen due to its suitability for exploratory studies, in which theory
emerges from the data. Furthermore, as there was limited previous research on the
topic and the theoretical framework was a product of analysis of relating theory,
a deductive analysis strategy might have been restrictive and not representative of
the participants’ views.

The categorisation closely resembled the procedure known as template analysis
(Saunder et al., 2007). The initial step of the categorisation was to derive general
topics from the transcripts of each interview and observation notes. All topics were
then arranged into a list of topics, where the occurrence of each topic was counted.
This procedure provided a structure for analysing the weight of each topic in terms
of collected data. Based on their weights, a hierarchy of the topics were constructed.
Topics of high occurrence were set as self-supporting categories and subsequently
broken down into subcategories. Topics of low occurrence were set as subcategories
merged into either new subcategories/categories and/or linked to a preexisting
category depending on their relevance to each other. As such, the categories were
descriptive in their nature, representing the responses and observations.

Unitisation

Unitisation was the second step of data analysis, and its purpose was to attach bits
of data, i.e. units, to the chosen categories. Guided by the research questions, it is
a process of selecting relevant data and rearranging it into a more manageable form
(Saunder et al., 2007). Due to it being a selection process, it was simultaneously
a process of data reduction; data which is deemed irrelevant for answering the
research questions are subsequently discarded at this step. The unitisation was
made by iterating over the data and copying relevant bits to a separate document
for each category. Thus, the documents became containers with unstructured units
of data relevant for the specific category. To keep track of the data source of each
input, they were all labelled accordingly.
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Patterns and themes analysis

Based on the documents of data units corresponding to the different categories, the
individual units were analysed looking for similarities and discrepancies between the
sources. This step was characterised by interpretation by the authors as similar
claims and opinions could be expressed in different terms. At the same time,
consideration had to be taken to not lose important nuances from the individual
sources when unifying views into themes.

2.6.3 Theory development

As noted, theory was developed in two separate phases. The theory development
was made based on the analysis of the collected data and literature, as well as by
discussion including the authors’ own view and knowledge on the subjects.

Regarding the first phase, the conceptual analysis, it had its basis in the external
view. By going through the different themes formulated in the external view, corre-
sponding subjects were related to the theoretical view. By structurally analysing the
combined material, theory was formed trough conceptualisation. The first phase
represented the general findings on the research topic and aimed to answer RQ1
and RQ2 partially. In the second phase of doing the empirical analysis, the con-
cepts developed in the first phase were applied and used together with the internal
view. The second phase was characterised by a more practical approach, aiming on
fully answering RQ2 and formulating a concrete proposal for the implementation
of simulation-based decision-support at Company X.

2.7 Research limitations

The three areas covered by the literature review, i.e. decision-making in manu-
facturing, DES as decision-support, and performance measurement, are all well-
researched fields. Due to the vast amount of research done, the time-frame of
writing this thesis forced limitations on what could be covered. Thus, the au-
thors acknowledge that potentially relevant material to this study might have been
missed or disregarded. The authors do however believe that the most relevant areas

was coverd.

The key limitation to the research was to find a sufficient level of sample data
for the empirical view. This was the case both internally, regarding interviewees
at Company X, and the number of external companies participating. The issue
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with insufficient sample data is partly that it might produce a biased result, but
also that the data collected might miss aspects and considerations of importance.
The number of companies implementing simulation as decision-support in manu-
facturing is very limited. In Sweden, there was only one company to the authors’
knowledge which continuously implemented simulation-based decision-support.

The number of interviewees at Company X was limited due to the time-frame
of writing this thesis as well as a problems with cooperativeness. The latter is inter
alia due to a history of problems with technology acceptance, decreasing possible
candidates’ willingness to participate in a simulation implementation project. The
technology acceptance issue also led to the corporate headquarters wanting to be
cautious with spreading the news of simulation implementation before a successful
role-out at Factory 1 was accomplished. While simulation as decision-support had
previously been implemented in project form at some factories, the development
of the simulations had been outsourced to external consultancy firms. Therefore,
the overall experience and understanding of simulation in the organisation was
generally low.

Moreover, Company X suffered from silo-thinking at the factories as well a sus-
picion towards projects initiated by the corporate headquarters. As this was the
case with the simulation-based decision-support, this also limited the list of possi-
ble interviewee candidates. To mitigate the effects of limited number interviewees
at Company X, an extra emphasis on finding broad and differentiated sample was
made, with respect to both location and manager level. Although this might have
caused inadequate representation of manager level and location-specific views, it
better encapsulates the generic view of Company X. Furthermore, while not being
fully representative for manager level and location-specific views, the specific as-
pects are at least covered. Following, this required a more sceptical view towards
outlying opinions and stated facts from the interviewees at Company X.

2.8 Quality of the study

In this section, the quality of the study will be discussed in terms of credibility,
validity and reliability. However, they will not be addressed individually but dis-
cussed in general form.

The implications on reliability of being an inductive and exploratory study was
that the focus was not predefined more than in the form of the research purpose,
research questions and objective. The orientation of how the research questions
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were going to be answered progressed evolutionarily during the research process.
The reliability of the study was potentially impacted by that consideration needed
to be taken into providing the research client (i.e. Company X) with a valuable
output. However, it should be noted that other than a research proposal, no
directions were given on the proceedings of the research throughout the process.

The credibility and validity of the study was strengthened by the use of multiple
methods of data collection, i.e. method triangulation. For the internal view, both
semi-structured interviews and participant observation was applied, and for the
external view semi-structured interviews were used. Together with the theoretical
view, the different sources ensured a higher credibility of the study.

To better reflect the view of the interviewees, the data was audio-recorded so
that what data collected was not contaminated by any bias of the authors. Fur-
thermore, it enabled to preserve not only what the interviews said in exact detail,
but also how they responded, thus capturing what they emphasised and not. How-
ever, the transcribed data was sampled from the recordings, which posed a risk of
unintentionally filtering out data which was of importance. To mitigate the risk of
missing important data, the transcripts were sent to the corresponding interviewees
for checking and confirmation of their accuracy. Objectivity was further striven for
in the data analysis. However, the authors acknowledge that the data analysis was
inevitably coloured by the views of the authors during both data processing and
the themes and patterns analysis.

While the topics of the interviews were predefined, both the semi-structured
interviews and unstructured interviews were mainly conducted using open-ended
questions. As such, the authors influence on the the interviewees’ answer was very
limited. Among the internal view interviewees, there were a few who were stake-
holders in Company X’s simulation endeavour. This might have impacted on their
answers, potentially downplaying potential problems and issues relating to simula-
tion. There was a potential bias in the sampling of interviewees at Company X as
the sampling was done indirectly via the supervisor at Company X. The supervisor
was further highly involved in the simulation endeavour and had a relation to the
interviewees. As such, the interviewee responses might have been influenced by
subject bias.

While the study was conducted as a single case study, a significant portion of the
study was dedicated towards reaching general findings by performing a conceptual
analysis on the research topic. The general findings are highly transferable to
any study involving performance measurement, decision-support and simulation.
Moreover, the specific findings from the unit of analysis in the empirical analysis
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are generalisable for any manufacturing organisation in similar situations.
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Chapter 3

Theoretical view

In this chapter, research and earlier work related to the topic of this study are
reviewed and a theoretical framework developed. Concepts, frameworks, theories,
and models are presented, and accompanied with a discussion on their relation to
this study. Due to the vast amount of research in the area, the literature review
will be focused on selected research most relevant to this study.

The first section discusses decision-making, focusing on establishing the concept
of knowledge-based decision-making and theory on decision-making in manufactur-
ing specifically. The next section covers performance measurement in manufactur-
ing, including defining manufacturing performance and discussing how performance
measurement should be both structured and applied. In the third section, discrete
event simulation and decision support systems are described. Last, a theoretical
framework is developed based on combining parts of the key concepts of the previ-

ous sections.

3.1 Decision-making

Bennet & Bennet (2008, p. 4) argue that making a decision involves several com-

ponents and state the following:

”Every decision has hidden within it a guess about the future. When solving
a problem, or achieving a goal, we estimate the situation and then anticipate
that if we take a certain action (or series of actions), another situation will
be created which will achieve our desired objective.”

In other words, the main components of a decision are:
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1) an understanding or interpretation of the current situation
2) a desired new situation (or outcome), which the objective is to achieve
3) an idea about what actions to take in order to realise the desired outcome

In complex situations and environments, which are increasingly common in
today’s world, decision-makers turn to their intuition and judgment. However, one
can argue that intelligent and informed decision-making is more relevant than ever
(Bennet & Bennet, 2008).

3.1.1 Knowledge-based decision-making

Holsapple (2008) regards decision-making as an activity based on knowledge, which
is the key to supporting better decisions. It can be seen as a process in which
knowledge is both input and output, ” Work in process” and subcomponents, while
at the same time forming the context in which the decision is made. Using the
analogy of a manufacturing system, the decision-making process on a conceptual
level is described as one which requires knowledge as input and produces new
knowledge as output, while the process itself is one of transforming knowledge. His
knowledge-based conception of decision-making is described in figure 3 below.

Knowledge
sources

e N-1
\ 4
\ 4

l

Alternative 1

Constraints

Ide qation

Knowledge that
characterizes
commitment

Knowledge that characterizes
Knowledge alternatives
sources

Figure 3. Knowledge-based conception of decision making. (Holsapple, 2008).

The first step of decision-making in figure 3 is to identify an (arbitrarily large)
set of alternatives. Then, one selects, studies and evaluates the implications of
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some or all of them, to a reasonable extent. Lastly, they are compared on the basis
of purpose, goals, pressures and constraints, in order to finally pick one and arrive
at a decision.

Given the knowledge-based conception of decision-making, the question arises
how to define knowledge in this context, how it is created and how that process
interacts with the actual decision-making. Holsapple (2008) interrelates three basic
phases of decision-making, Intelligence, Design and Choice (originally by Simon
(1960)), with the six knowledge states identified by Van Lohuizen (1986).

Knowledge of increasing Evaluate Decision _
usability and relevance Choice
for a decision setting
(sense making) Weigh Judgment
Insight

Design

Structured Information

Information

Intelligence

Data

Figure 4. Knowledge as a progression of states. Adapted from Holsapple (2008), based on
Simon (1960), Van Lohuizen (1986))

Figure 4 shows how Information created by selecting from Data gathered,
which corresponds to the Intelligence phase of decision-making. In this phase, the
decision-maker is concerned with finding what to make decisions about, diagnosing
and relating data or information to the organisational objectives. The information
is analysed to produce Structured Information, which in turn is synthesised into
Insight in the Design phase. The design phase involves considering which courses of
action that would be appropriate to resolve the issue at hand. The insight is then
weighed, leading to a Judgment about it in the Choice phase. Finally, the judg-
ment is evaluated and a decision can be made. Thus, the Choice phase is where the
decision-maker will select one alternative over others, based on his/her knowledge
about them, or discard them all and return to the Design phase. Overlooking the
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terminology, the main idea of figure 4 can be summarised as that through process-
ing activities, knowledge progresses from lower states of low or unclear usability
for the decision-maker, to higher ones with increasing relevance.

Information overload

The information needed for decision making has been under much research. Due
to the vast amount of data available from a simulation model, consideration into
the volume of information that a decision support system should supply must be
taken. This has brought the concept of information overload into the spotlight.
Pijpers (2010) explains the basis of the concept being that the value of additional
information only increases as the recipient is able to process it. Consequently,
there will be a limit when the amount of information input to the recipient exceeds
his processing capacity - this is when information overload occurs (Pijpers, 2010,
Speier et al., 1999). As the cognitive capacity of decision-makers, like everybody
else’s, is not unlimited, the information overload will have a negative impact on
the decision quality (Speier et al., 1999). Referring to multiple studies in different
disciplines, Speier et al. (1999) claims that information overload caused increased
confusion about the decision and increased the time to make it.

3.1.2 Decision-making in manufacturing

The manufacturing competitive priorities (MCP) U of manufacturing organisation
constitute classes of attributes which are important for decision-making (Chrys-
solouris, 2006). The decisions made on the decision areas (described in sec-
tion 3.1.3) with respect to the MCP encapsulates the manufacturing strategy
(Leong et al., 1990) (see figure 5). All objectives, goals and criteria’ of a man-
ufacturing strategy can be described relating to the attributes of the MCP (Chrys-
solouris, 2006). It should however be noted that the relations between the attributes
and the MCP is not always straightforward, and a successful identification of these
would improve decisions (Rusjan, 2005).

Decisions should be made with respect to relative importance of the MCP in
order to support the manufacturing strategy. However, while different MCP are
assigned with different levels of importance with respect to the manufacturing strat-

'A deeper explanation of different competitive priorities is provided in section 3.2.2.

2Chryssolouris (2006, p. 9) defines an objective as an attribute to be minimised or maximised,
a goal as a ”target value or range of values for an attribute”, and a criterion as ”an attribute that
is evaluated during the process of making a decision”.
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egy, decisions should not solely focus on the competitive priority with the highest
importance. Decisions should rather be made with respect to the difference between
the desired (as determined by the business strategy) and the achieved performance
relating to the different MCP (Rusjan, 2005). Hence, decisions should be problem-
based; not only taking into account the importance of a specific competitive prior-
ity, but also the importance of the problem (i.e. the discrepancy between desired
and achieved performance) relating to a competitive priority (Rusjan, 2005).

Naturally, the MCP are all interrelated, and the outcome of a decision on an
attribute has in general trade-offs on other attributes. Traditional examples of
this are cost-quality and dependability-flexibility (Leong et al., 1990). As a result,
it is in practice impossible to simultaneously optimise all classes. The essence of
decision-making has therefore historically largely revolved around the assessment
of trade-offs (Rudberg, 2002, Chryssolouris, 2006). However this view has been
challenged. For instance, the emergence of lean and Toyota Production System
(TPS) showed that there does not necessarily have to be a trade-off between cost
and quality, but that the real issue is finding techniques that improves quality and
total cost (Leong et al., 1990).

BUSINESS
STRATEGY

A

MANUFACTURING
STRATEGY

COMPETITIVE

PRIORITIES DECISION AREAS

Figure 5. Predominant content model of manufacturing strateqy. Based on Leong et al.

(1990).

Chryssolouris (2006) argues that the decision-making process is formed on the
performance objectives, goals or criteria of relevant manufacturing attributes. Con-
nected to every decision are decision variables related either to the design or to the
operation of a manufacturing process, machine or system. The decision variables
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can be generally defined as the variables which the decision maker can change. It
follows that every decision in manufacturing can be seen as the selection of values
on decision variables which affect the attributes. Furthermore, the decision making
process can be seen as ”a mapping from desired attribute values onto corresponding
decision variable values” (Chryssolouris, 2006, p. 11).

3.1.3 Decision categorisation

This section will discuss how decision in manufacturing can be categorised. First,
the concept of (strategic) decision areas is briefly introduced. Thereafter, the re-
lation between manufacturing decisions and managerial decision levels will be cov-
ered.

Strategic decision areas

The manufacturing strategy is the pattern of coordinated decisions which impact
the ability of the manufacturing function to meet business strategy goals and the
manufacturing task (Leong et al., 1990). Therefore, the decisions made in man-
ufacturing constitute a link between the business strategy and the manufacturing
operations (Ward et al., 2007). The strategic decisions can be categorised into dif-
ferent areas which are constituents of the system with long-term importance for the
manufacturing function (Leong et al., 1990, Choudhari et al., 2010). The decision
areas are in essence a breakdown of the manufacturing strategy, and as such, they
represent the manufacturing organisation’s structure and capabilities (Rudberg,
2002, Ward et al., 2007). Following, the strategic decisions made in the decision
areas determine internal composition and configuration of the manufacturing sys-
tem.

The decisions areas can furthermore be categorised into being structural or in-
frastructural (Wheelwright, 1984). Structural decision areas are strategic in nature
with long-term impacts on the manufacturing organisation and large capital invest-
ments, and can be describe as being the "bricks and mortar decisions of capital
spending” (Leong et al., 1990, p. 114). The infrastructural decision areas are more
tactical and on-going decisions with individually lower capital investments. These
decisions are linked to operational aspects and ”affect the people and systems that
make manufacturing work” (Leong et al., 1990, p. 114). The decision areas them-
selves vary from author to author, however, they have significant overlaps and the
differences are in general the adding and removal of some decision areas. The
perhaps most cited framework of decision categories were suggested by Hayes &
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Wheelwright (1984) and can be seen in table 1.

What the appropriate decisions are regarding performance improvement on a
specific competitive priority is not generic, but is dependent on the configuration
with respect to the decision areas.

Table 1. Strategic decision categories in manufacturing. Adapted from Leong et al. (1990)
and Rudberg (2002), based on Hayes € Wheelwright (1984).

Decision Category Sample of policy areas
Structural

Capacity Amount, timing, type

Facilities Size, location, focus

Vertical integration Direction, extent, balance

Technology Equipment, automation, connectedness
Infrastructural

Production planning and control =~ Computerisation, centralisation, decision rules

Quality Defect prevention, monitoring, intervention
Organisation Structure, reporting levels, support groups
Workforce Skill level, pay, security

New product development

Decision levels

Besides the decision areas, decisions can be categorised into three levels: strategic,
tactical and operational. These levels correspond to the decision’s application,
its impact on different levels of management, as well as the time horizon of the
activity (Gunasekaran et al., 2004, Rudberg, 2002). There exist a limit to the
amount of information a decision-maker can consider, which is proportional to the
planning time-horizon. The product of the time horizon and the volume and detail
of information should therefore optimally remain constant. As a consequence, the
longer the time-horizon of the decision, the smaller the volume and less detailed the
information should be (Rudberg, 2002). In table 2, the characteristics of decisions
with respect to the different levels are described in detail.
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Table 2. Characteristics of different level decisions in manufacturing. Adapted from

Silver et al. (1998).

Category of
decision

Strategic

Tactical

Operational

General types of
decisions

Managerial level
Time-horizon
Level of detail

Degree of
uncertainty

Examples of
decision variables

Plans for acquisition
of resource

Top
Long (2+ years)
Very aggregated
High

e Products to sell

e On which dimen-
sions to compete

e Sizes and location
of facilities

e Nature of resources
e Labour skills

e Nature of produc-
tion planning

e Inventory manage-
ment decisions sys-
tems

Plans for utilisation
of resources

Middle

6 to 24 months
Aggregated
Medium

e Operation hours of
plants

e Work force sizes

e Inventory levels

e Subcontracting
levels

e Qutput rates

e Transportation
modes used

Detailed execution of
schedules

Low
Short range
Very detailed

Low

e What/when to
produce

e On what machine
to produce

e In what quantity
to produce

e In what order to
produce

e Order processing
and follow up

e Material control

3.1.4 Conclusions

Decisions in manufacturing can be broken down into four structural and five infras-
tructural decision areas. The decisions made on these decision areas with respect
to the MCP forms the manufacturing strategy. Depending on the time-horizon, de-
cisions can further be categorised as either strategic, tactical or operational. These
decision categories are associated with different characteristics, such as types of de-
cisions and aggregation levels of information detail and volume. The manufacturing
decision itself can be seen as the selection of values decision variables corresponding
to some relevant attributes of the MCP. Hence, the decision-making process can be
described as the mapping of attributes onto decision variable values. Supporting
the manufacturing strategy, strategic decisions should be made with respect to the
MCP and their relative importance.
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3.2 Manufacturing performance measurement

In a literature-study by Gunasekaran et al. (2004), measuring the performance of
SCM is identified as key for an efficient and effective supply chain. As a repre-
sentation of reality, this is equally true for an effective simulation-based decison
support; the performance of simulated scenarios in manufacturing must be mea-
sured. Melnyk et al. (2004) identifies the need for measuring performance to be:

1) Data refinement. Increasing data volumes through greater span of control
and growing complexity of operations, makes data management increasingly
difficult.

2) Data distilling and information enriching Operations need these functions to
operate effectively and efficiently on a day-to-day basis.

3) Decision-support The action and decisions determine the degree and nature
of value that an operation creates. These actions and decisions can be greatly
influenced by PMs. (p. 211).

Moreover, the general purpose or function of measuring performance can roughly
be summarised to:

1) identify success;

2) identify whether customer needs are met;

3) help the organisation to understand its processes and to confirm what they
know or reveal what they do not know;

4) identify where problems, bottlenecks, waste, etc. exist and where improve-
ments are necessary;

5) ensure decisions are based on facts, not on supposition, emotion, faith or
intuition; and

6) show if improvements planned, actually happened (Parker, 2000).

Since the 1990s, there has been a vast amount of research on performance mea-
surement in general. Much of the research deals with performance measure (PM)
frameworks, performance measurement system (PMS) design, and with the impact
of implementing PMSs in an organisation. Notably, in the last 10 years, much of
the research has been focused on more distinctive applications such as integrating
sustainability and ” green measures” into PMSs. A unified definition of performance
measurement is hard to find. Neely et al. (1995) describe performance measurement
as the process of quantifying action, and identify two dimensions of performance;
effectiveness and efficiency. They define effectiveness as a measure of how well
customer requirements are met, and efficiency as a measure of how economically
the organisation’s resources are utilised with respect to the given effectiveness. On
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this foundation, the following concepts are defined:

1) Performance measurement - the process of quantifying the efficiency and
effectiveness of action;

2) Performance measure (PM) - a metric used to quantify the efficiency and/or
effectiveness of an action; and

3) Performance measurement system (PMS) - the set of metrics used to quantify
both the efficiency and effectiveness of actions (Neely et al., 1995).

There exists much terminological confusion in performance measurement research,
and definitions vary from author to author. However, for consistency and read-
ability, the continuing discussion on performance measuring will be based on the
above definitions by Neely et al. (1995). Hence, when referencing literature using
other definitions of concepts, e.g. metrics instead of performance measures, they
will be translated into the above definitions.

The
environment

Individual
measures

Performance
measurement

Individual
measures

Individual
measures

Individual
measures

Figure 6. Analytic layers of a PMS. (Neely et al., 1995).

The dimensions of performance described by Neely et al. (1995) accentuate
that both external and internal arguments motivates action. This is an important
observation since it implies that PMSs must take a holistic view of the value chain

into consideration to capture both external and internal factors.
A PMS can be studied at three levels (see figure 6), i.e.:

1) the individual performance measures;

2) the set of performance measures - the performance measurement system as
an entity; and

3) the relationship between the performance measurement system and the envi-
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ronment within which it operates (Neely et al., 1995).

In the following part of section 3.2, the key aspects of performance in manufacturing
will be reviewed. Thereafter, the PMS will be studied according to the three levels
described by Neely et al. (1995).

3.2.1 The performance pyramid

Corporate
vision
v . . Business
Objectives Measures / Market | Financial units
@ Business
Customer - A operating
satisfaction Flexibility | Productivity systems
. . Cycle Departments and
Quality Delivery t)i,me Waste work centers
Operations
External Internal
effectiveness effectiveness

Figure 7. The performance pyramid. Adapted from Cross & Lynch (1992).

The organisational hierarchy of manufacturing performance areas as well as their
relationship to internal/external effectiveness, can be studied in the performance
pyramid proposed by Cross & Lynch (1992) (see figure 7). The performance pyra-
mid shows the aggregation of performance measures upwards in the manufacturing
organisation, and the disaggregation of objectives downwards. Like in the content
model for manufacturing strategy in figure 5, the corporate vision (or strategy) is
at the top level, determining where and how to compete. At the second level are
business units (e.g. factories), which encapsulates the companies’ key results, ob-
jectives and measures. Business units’ performance are determined by their ability
to achieve short-term financial targets and long-term growth and market position
targets (Cross & Lynch, 1992). The third level, business operation system, in-
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cludes all internal functions and activities with the objective to develop, produce
and distribute products effectively and efficiently (Cross & Lynch, 1992). Their
performance is measured by the customer satisfaction, flexibility and productivity.
At the bottom level are the drivers of performance, according to Cross & Lynch
(1992). They are directly connected to the operational day-to-day activities, and
the objective and goals on these areas affect the whole organisational performance.
Moreover, as the performance pyramid visually demonstrates, performance mea-
surement is key in translating the corporate vision to reality (Melnyk et al., 2004).

3.2.2 Manufacturing competitive priorities

The performance pyramid proposed by Cross & Lynch (1992) provide a compre-
hensive view of the interrelations of manufacturing performance. However, from a
strategic perspective, manufacturing performance is usually described by the man-
ufacturing system’s performance on a collection of MCP. These are performance
areas which are defined by a consistent set of goals for manufacturing (Leong et al.,
1990). It has been shown that there is a positive correlation between the perfor-
mance on the MCP and the business performance. Thus, manufacturing perfor-
mance should be measured by the results concerning the MCP (Rusjan, 2005).
While the manufacturing capability concern the potential performance, MCP con-
cern the performance important for achieving competitive advantage (Choudhari
et al., 2010). However, the capabilities should be matched with the MCP in order
to achieve environmental fit.

The MCP of the manufacturing system and their relative importance is de-
termined by the business strategy, and thus vary across industries and corpora-
tions (Rusjan, 2005). Literature usually consider five MCP: cost, quality, delivery,
flexibility, and innovativeness (Leong et al., 1990, Miltenburg, 1995)(see table 3).
Although multiple variations are proposed in literature, they all possess great sim-
ilarities to one another. For instance, innovativeness is sometimes excluded and
delivery exchanged with time performance (Neely et al., 1995). According to Neely
et al. (1995), time is the fundamental measure of competitiveness and manufactur-
ing performance. Neely et al. (1995) note that several theories and philosophies
considering time performance such as just-in-time (JIT), optimised production
technology (OPT) with the aim of minimizing throughput time, and throughput
accounting which measure profitability in terms of rate of cash flows. Although,
time performance is usually considered an aspects of the other dimensions rather
than one of its own.
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Table 3. Dimension of manufacturing performance. Adapted from Leong et al.
(1990), Rudberg (2002), and Beamon (1999).

Dimension Subdimension

Description

Cost,

Production and distribution of the product at
low cost

Product quality

The manufacture of products with high quality

f
Quality performance
) The manufacture of products with high
Process quality
conformance
) Dependability Ability meet delivery schedules or promises.
Delivery
Speed of delivery  Ability to react quickly to customer orders.
Ability to react quickly to volume changes of a
Volume . .
given product mix.
Product mix Ability to react quickly to changes in types of
products manufactured.
Delivery Ability to move planned delivery dates forward.
Chanee.over Ability of a process to deal with additions to or
. 1. — V
Flexibility & subtractions from a given product mix.
Modification Ability to. h.andle changes in product
characteristics.
Rerouting Ability to handle machine downtime.
Ability to meet uncontrolled variations in the
Material composition and dimensions of parts being
processed.
) Ability to to deal with uncertainty in delivery
Sequencing ) )
times of raw materials.
Product
k ) Ability to quickly introduce new products
) mnovativeness
Innovativeness
Process
} t : Ability to quickly introduce new processes
mmnovativeness

There are several subdimensions relating to each of the dimensions (Rudberg,
2002, Neely et al., 1995). As with dimensions of MCP there are multiple ways to dis-
aggregate the dimensions into subdimensions. In the following part of section 3.2.2,
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cost, quality, delivery and flexibility performance will be examined closer. Innova-
tiveness performance has been omitted by the authors due to its lack of relevance
in the study.

Cost performance

Due to globalisation, the increased competition has made increasing the productiv-
ity in manufacturing plants a constantly growing concern (Jonsson et al., 2008b).
Optimising the production to achieve cost reductions is imperative to compete with
low-wage countries (Jonsson et al., 2008b). Resource minimisation is therefore one
of the major goals of supply chain analysis (Beamon, 1999). Analysing the cost
performance supports more informed operational and strategic decisions regarding
performance improvement, value creation, scenario analysis, and effective and effi-
cient resource utilisation (von Beck & Nowak, 2000, Pehrsson, 2013, Jonsson et al.,
2008b). By letting managers analyse past performance as well as analyse, motivate
and influence future performance, the information from cost enables managers ”to
make judgements about the financial impact of business decisions for future plan-
ning and the evaluation of available courses of action” (Pehrsson, 2013, p. 62).

”Every action or cessation of action in an organisation consumes eco-
nomic resources and the understanding of how profits and value are
created can be gained through costing”

(Pehrsson et al., 2013, p. 1036).

In alignment with the definition of performance measurement by Neely et al. (1995),
cost performance is defined as how efficiently and effectively input is transformed
to output in the manufacturing function (Pehrsson et al., 2013). Excluding the
distribution, the costs associated with a manufacturing system can be divided into:

1) Manufacturing cost. Total cost of manufacturing, including labour, mainte-
nance, and re-work costs; and
2) Inventory cost. Costs associated with held inventory (Beamon, 1999).

Pehrsson (2013) differentiates manufacturing cost between prime cost and factory
expense. They can in turn be divided into:

1) Prime cost. Resource consumption that can be directly tied to specific articles
and manufacturing processes:
i) Direct labour cost. Cost of labour directly associated with the manufac-
turing of goods.
ii) Direct material cost. E.g. cost of raw materials and components.
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iii) Direct overhead cost. E.g. machine, factory rent and electricity costs.
2) Factory expense. Resource consumption that can not be tied to specific arti-
cles and manufacturing processes:
i) Indirect labour cost. E.g. maintenance, administrative, janitorial and
factory management labour costs.
ii) Indirect material cost. E.g. consumables, disposable tools.
iii) Indirect overhead cost. E.g. R&D, administrative and office expenses,
and selling and distribution expenses (Pehrsson, 2013).

Costs associated with inventory can further be divided into:

1) Inventory obsolescence. Costs associated with obsolete inventory, including
spoilage.

2) Work-in-process. Costs associated with work-in-process inventories.

3) Incoming stock and raw materials. Costs associated with inventories at in-
coming stock level.

4) Finished goods. Costs associated with held finished goods inventories.

5) Backorder/stockout. Cost associated with shortage of inventory accounting
for lost sales/lost production.

6) Service. Costs associated with stock management and insurance.

7) Opportunity cost. Costs associated with warehousing, capital and storage.
(Beamon, 1999, Gunasekaran et al., 2004)

According to Gunasekaran et al. (2004), almost 50% of the current assets con-
sists of inventory in most industries. Together with increasing customer service
requirements large uncertainties in production and demand, this results in inven-
tory management having a big impact on costs. Gunasekaran et al. (2004) further
claim that inventory costs are often negatively correlated with manufacturing cost;
a decrease in inventory cost generally requires shorter lead times and increased flex-
ibility, increasing manufacturing cost (and vice versa). Therefore, they argue that
it is important to measure and evaluate inventory costs in relation to manufacturing
cost in order to minimise total cost.

Both costing and operational data is needed to support decision-making. While
cost performance provides essential information, it is not alone sufficient. A deeper
diagnostic insight and a direct connection to the operations is needed to understand
what drives performance and causes events (Pehrsson, 2013). Beamon (1999) fur-
ther warns about the downfalls to relying on measuring cost performance, noting
the several issues with traditional cost accounting such as lack of relevance of the
cost categories, cost distortion, and inflexibility. Furthermore, she notes that while
the manufacturing system operates under minimum cost, it may still demonstrate
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poor delivery and flexibility performance.

Although the divisions of manufacturing cost into its components and sub-
components can be used as PMs by themselves, Leong et al. (1990) propose a list
of more refined PMs:

1) Unit product cost;
i) Unit labour cost;
ii) Unit material cost;
2) Total manufacturing overhead cost;
3) Inventory turnover;
i) Work-in-process;
ii) Raw material;
iii) Finished goods;
4
)

) Capital productivity;
)

6) Direct labour productivity;
)

Materials yield;

7) Indirect labour productivity (p. 115).

Quality performance

Quality performance measurement has since long been established as not only a
critical success factor for quality management, but also for attaining competitive
advantage (Lockamy III, 1998). Quality performance is commonly divided into
two dimensions: product quality and process quality (Netland & Sanchez, 2014,
Neely et al., 1995). According to Neely et al. (1995), the adoption of total quality
management (TQM) has shifted the quality focus from conformance to specification
to customer satisfaction. Although, they note that in light of this, the commonly
used concepts of statistical process control (SPC) and Motorola’s Six Sigma are
primarily tools for measuring process quality.

Process quality can be defined as ”the quality of the manufacturing processes”
(Netland & Sanchez, 2014, p. 190), traditionally in the terms of conformance to
specification (Neely et al., 1995). Typical PMs for process quality in industries
have been cost of quality and number of defects (Neely et al., 1995). Regarding,
cost of quality, it can be devised into three sub-costs:

1) Prevention costs. Expenses in efforts to prevent discrepancies (e.g. costs of
quality planning, supplier quality surveys, and training programmes);

2) Appraisal costs. Costs expended in the evaluation of product quality and in
the detection of discrepancies (e.g. the costs of inspection, test, and calibra-

50



Chapter 3. Theoretical view

tion control); and
3) Failure costs. Costs expended as a result of discrepancies, and are usually
divided into two types:

i) Internal failure costs. Costs resulting from discrepancies found prior to
delivery of the product to the customer (e.g. the costs of rework, scrap,
and material review); and

ii) External failure costs. Costs resulting from discrepancies found after
delivery of the product to the customer (e.g. the costs associated with
the processing of customer complaints, customer returns, field services,
and warranties) (Neely et al., 1995).

Neely et al. (1995) discuss the concept of "quality is free”, declaring that it
is based on the assumptions that an increased prevention cost will be more than
counterbalanced by the decrease in failure costs in most organisation. They ex-
plain that the quality literature motivates this assumption by the existence of an
optimal level of quality for a given set organisational conditions. Consequently,
the cost of quality is actually the additional cost of the organisation under- or
over-performing. However, Neely et al. (1995) note that there is critique against
this position, targeting the academic rigour of the cost of quality model as well as
the existence of an optimal quality level. They further point out that while many
organisation estimate the cost of quality, the essential flaw is that managers fail to
act upon reducing it.

Regarding product quality, it can be defined as the manufacture of products
with high quality performance (Rudberg, 2002), or the quality of conforming output
(Netland & Sanchez, 2014). Product quality is arguably related to many of the
eight dimensions of quality proposed by Garvin (1987), i.e.:

1) Performance. The products’ primary operating characteristics;

2) Features. Those characteristics that supplement the products’ basic function-
ing;

3) Reliability. The probability of a product malfunctioning or failing within a
specified time period;

4) Durability. A measure of product life, defined as the amount of use one
gets from a product before it breaks down and replacement is preferable to
continued repair; and

5) Aesthetics. How a product looks, feels, sounds, tastes, or smells. (Garvin,

1987).

Many of these dimensions are intangible and are largely related to customer sat-
isfaction. Their relation to the manufacturing performance is vague as the man-
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ufacturing task is arguably to achieve conformance to specification. However, the
reliability and durability are nevertheless affected by the manufacturing system
performance. Due to the dependency on external feedback and qualitative aspects,
the product quality is hard to measure and quantify (Beamon, 1999, Neely et al.,
1995)

Netland & Sanchez (2014) claim that good process quality can be be achieved
without good product quality, and vice versa. They argue that the first case (i.e.
good process quality) would result in an ineffective, but efficient, manufacturing
system which generates poor customer satisfaction. The second case (i.e. good
product quality), would on the other hand result in an effective, but inefficient,
manufacturing system which is distinguished by wasteful processes. However, Neely
et al. (1995) note that a good product quality might reduce external failure costs.
Nevertheless, it is desirable to have high level of both process quality and product
quality (Netland & Sanchez, 2014).

Delivery performance

Delivery performance can be divided into two major sub-dimensions: delivery re-
lz’ability3 and speed of delivery (Neely et al., 1995, Leong et al., 1990). Delivery
reliability is defined as meeting the ability to meet delivery schedules or promises,
i.e. on-time deliveries (Leong et al., 1990). Speed of delivery is rather straightfor-
ward the ability to react quickly to customer orders (Leong et al., 1990), and is as
such closely related to lead times.

The delivery performance affects the customer directly, and is the main decisive
factor of customer satisfaction (Gunasekaran et al., 2004). Therefore, delivery PMs
must not only relate to the organisational goals, but also to the customers’ goals and
values (Beamon, 1999). Gunasekaran et al. (2004) therefore argues that increasing
the delivery performance will increase the competitiveness of the organisation.

Good delivery performance can be achieved by reducing lead time attributes
(Gunasekaran et al., 2004). However, the order lead time, and in extension the
delivery performance, is affected by lead times both downwards and upwards in
the supply chain. However, the scope of this study is only to consider the per-
formance of the manufacturing system, why delivery performance related to e.g.
order handling and distribution will be omitted.

Beamon (1999) provides a sample list of quantitative output PMs, of which

3Delivery reliability and delivery dependability are used analogously. However, the former is
more commonly used in literature.
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several are related to delivery performance:

1)

On-time deliveries. Measures item, order, or product delivery performance:
i) Product lateness. Delivery date minus due date.
ii) Awverage lateness of orders. Aggregate lateness divided by the number
of orders.
iii) Average earliness of orders. Aggregate earliness divided by the number
of orders.
iv) Percent on-time deliveries. Percent of orders delivered on or before the
due date.
Fill rate. Proportion of orders filled immediately:
i) Target fill rate achievement. To what extent a target fill rate has been
achieved.
ii) Average item fill rate. Aggregate fill rate divided by the number of
items.
Backorder/stockout. Measures item, order, or product availability perfor-
mance:
i) Stockout probability. Instantaneous probability that a requested item is
out of stock.
ii) Number of backorders. Number of items backordered due to stockout.
iii) Number of stockouts. Number of requested items that are out of stock.
iv) Average backorder level. Number of items backordered divided by the
number of items.
Customer response time. Amount of time between an order and its corre-
sponding delivery
Manufacturing lead time. Total amount of time required to produce a par-
ticular item or batch.
Shipping errors. Number of incorrect shipments made.
Customer complaints. Number of customer complaints registered. (pp. 283-
284)

The PMs listed above do only consider absolute and relative amount of time or

quantities. However, they provide an exhaustive of depiction of the dimensions of

delivery performance. Gunasekaran & Kobu (2007) remark that there is still a lack

of research on how delivery performance best should be quantified; e.g., whether

it should be measured as relative percentage or an absolute number. If delivery

performance should be measured in the dimensions of time and quantities or in

other dimensions such as cost is further debatable. According to Beamon (1999),

minimum requirements related to the delivery PMs are often specified by organi-

sations. Although, she notes that the value of overachieving those requirements or
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failing on them are rarely considered. For instance, what the added value or cost is
due to early delivery, or the cost of late delivery, is questions that needs to be an-
swered when evaluting the delivery performance (Beamon, 1999). The importance
of these two examples are highlighted by the fact that multiple studies have shown
that the speed of delivery is rated secondary to delivery reliability by customers to
manufacturing organisations (Gunasekaran et al., 2004, Neely et al., 1995).

Flexibility performance

The need for measuring flexibility performance is especially emphasised by Beamon
(1999). As demonstrated in table 3, there are multiple dimensions to flexibility.
The manufacturing function is subjected to uncertainties such as product demand,
manufacturing complications, new products, and supplier shortages. Flexibility can
be considered the ability to handle changes of the circumstances, and is therefore
a measure of stress resiliency of a supply chain system (Beamon, 1999). Thus, the
ability to adapt to schedule and volume changes in a time and cost effective manner
is essential for a successful supply chain management (Beamon, 1999, Gunasekaran
& Kobu, 2007).

Measuring flexibility is however hard (Gunasekaran & Kobu, 2007), and the
reasons why can be expressed in three main factors:

1) the multiple dimensions of flexibility;

2) flexibility is a measure of potential; and

3) flexibility must be applied to other production objectives, such as volume or
delivery (Beamon, 1999).

Item 1) has already been discussed; flexibility is not one aspect, but multiple differ-
ent ones. This implicates that it is not possible to determine the system flexibility
with one measure. However, all aspects of the dimensions listed in table 3 may not
be applicable nor important for every supply chain (Beamon, 1999). Regarding
item 2); while cost, quality, and delivery are measures of actual operational per-
formance, flexibility is a measure of the potential performance. Even if it has not
been demonstrated, the manufacturing system can still possess flexibility (Beamon,
1999). Last, item 3) points out that flexibility is both a qualitative measure and
relative to the current system conditions. Beamon (1999) presents four formulas to
quantify and compute volume flexibility, delivery flexibility, product mix flexibility,
new product flexibility. Next, all four formulas will be presented, exemplifying how
flexibility can be measured.
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Volume flexibility

The formula for volume flexibility, F, € [0,1), by Beamon (1999), which she de-
scribes represent the long-run proportion of demand which can profitably be met by
the manufacturing system. Its inherent flaw is the assumption of normal distributed
demand, which often underestimates the fat tails of true demand distributions. Us-
ing maximum likelihood estimation, F), can be estimated using other distributions.
However, as an indicator for organisations with stable demand, the normal distri-
bution may be adopted successfully as an indicator for volume flexibility.

The formulas are defined as:

o Yeady
pp =L =""F% (3.1)
T 2
UD - SD - T -1 (32)
Omln - D Omax D Omax D Omin D
F,=P S <D< S )=<I>( S, )—q)( S ), (3.3)
where:

e d; is the demand during period ¢, and T is the number of periods;

e D~ N(up, a%) is the assumed normal distributed demand volume;

e O, and Oy« are the minimum and maximum profitable output volume
during any period, respectively;

e F, €[0,1) represents the long-run proportion of demand that can profitably
be met by the manufacturing system considered (Beamon, 1999).

Delivery flexibility

The formula for delivery flexibility Fp is by Beamon (1999, p. 288) ”expressed as
the percentage of slack time by which the delivery time can be reduced” .

The formulas is defined as:

S AL Y (E. — ¢t J L. —E.
S S K R W s R -
2 j-1(Lj —t%) 2 =1Ly —t%)

where:

e t* is the current time period;
e [L; is due date period for job j;
e E; is the earliest time period during which the delivery can be made for job
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J;
o (L;- t*) is the total slack time for job j in the system:;
e (E;—t")is the minimum delivery time for job j in the system (Beamon, 1999).

Product miz flexibility
Beamon (1999) separates between

1) Product miz flexibility range. The number of different products that can be
produced within a given time period; and
2) Product mix flexibility response. The time required to produce a new product

mix.

She defines the formula for product mix flexibility range as:

where N(t) is the number of different product types that can be produced within
the time period t, with ¢ > 0 and N(t) € I" (Beamon, 1999). She defines the
formula for product mix flexibility response as:

szﬂﬁ

where T;; is the changeover time required from product mix ¢ to product mix j,

with T;; > 0,V i # j (Beamon, 1999).

New product flexibility

New product flexibility is equivalent to the the definition of product innovativeness.
Beamon (1999) defines it in terms of the time or cost it takes to introduce a new
product to an existing system. Hence, she offers the definitions:

F,=T,
where T' is the time required to add new products, with T ; 0, and:
F,=C,

where C' is the time required to add new products, with C' > 0 (Beamon, 1999).
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3.2.3 Flow efficiency

Flow efficiency is primarily not a defined performance measure, but rather a prin-
ciple commonly referred to within Lean. It is put in relation to the more known
resource efficiency. Although many manufacturing organisations perform well in
terms of resource efficiency, they may perform badly in terms of flow efficiency.
The result is sub-optimisation, i.e. individual parts of the manufacturing system
are efficient but not the system as a whole (Modig & Ahlstrém, 2012). Figure 8
below shows the separate dimensions of efficiency in this view:

Resource
efficiency
A
Efficient
High islands Ideal state
Efficient
Low Wasteland ocean
Flow
efficiency
Low High

Figure 8. The efficiency matriz. Adapted from Modig & Ahlstrom (2012)

In figure 8, the ideal state is where both flow- and resource efficiency are high.
Focusing solely on resource efficiency, i.e. maximising the utilisation within indi-
vidual processes, may produce high output but still be wasteful in terms of time
(Modig & Ahlstrém, 2012). In principle, flow efficiency is described in terms of
how much of the lead time (or throughput time) in the system that is value-adding.
Hence, flow efficiency in percent can essentially be quantified as:

Lead ti - Waiting ti
Flow efficiency (%) = @ mzeead t;ielng e 100

According to Sundkvist (2014), throughput time in itself can be seen as a flow
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efficiency measure, as well as inventory turnover:

Total tncome

Inventory turnover =
Y Total inventory
where the total inventory includes raw material, work-in-process and finished
goods inventory. The inventory turnover measures how fast materials are consumed
(Sundkvist, 2014).

Sundkvist (2014) further argues that the difference between resource efficiency
and flow efficiency can be described in terms of throughput time (or lead time) and
throughput rate. That is, the former describes the total time it takes for a product
to be processed in the system and is thus an absolute measure of the flow efficiency.
The latter describes how many products that can be produced per time unit, and
is rather a measure of resource efficiency. The trade-off between the two is that
increasing the throughput rate typically increases the throughput time, through
increased WIP. This is closely related to managing bottlenecks, as reducing the
WIP may cause bottleneck processes to ”starve” occasionally, and thus reduce the
whole throughput of the system.

3.2.4 The individual performance measure

The building blocks of a PMS are the individual PMs. To develop a PMS that
fulfils the four characteristics of an effective PMS presented by Beamon (1999), the
characteristics of an effective PM must first be established. This will be covered in
the first part of this section 3.2.4. Due to the more or less infinite number of PMs,
to facilitate a structural approach in developing a PMS that achieves inclusiveness
and consistency, there is a need of categorising PMs. This will be covered in the
second part of the section.

Parker (2000) notes that there is scepticism in organisations towards PMs,
due to the difficulties of measuring the right aspects, comparing like-to-like, and
comparing through time. According to Neely et al. (1995), PMs can be evaluated
through the following questions:

1) What are they used for?
2) How much do they cost?
3) What benefit do they provide?

The following part of this section 3.2.4 will examine the characteristics of PMs
and how they can be categorised.
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Characteristics of manufacturing performance measures

Following the relation between manufacturing performance areas described in sec-
tion 3.2.1, PMs in manufacturing should be chosen with respect to the manufactur-
ing strategy (Beamon, 1999, Parker, 2000, Neely et al., 1995, Melnyk et al., 2004).
Beamon (1999) points out two reasons why this is important; first, it enables man-
agement to determine if strategy goals are met, and second, PMs dictates the focus
of the organisation and can therefore be irrelevant or even counterproductive to
the strategic goals. Regarding the second argument, Parker (2000) adds that PMs
must lead to improvement by encouraging action or behavioural change. To facili-
tate this, it is important that PMs are combined with goals that are realistic and
achievable (Parker, 2000). Comparison with other simulated scenarios or historical
outcomes do indeed give an insight of the relative performance, however, assessing
the objective performance must be done with respect to goals assigned to each
metric or measure.

Another imperative characteristic of PMs that has been highlighted is that they
are understandable (Gunasekaran et al., 2004, Parker, 2000, Neely et al., 1995). If
the users can not understand the PMS, they will not be effectively applied or
neglected.

Categorising Performance Measures

On the top level, performance measures can be divided into qualitative and quan-
titative PMs. However, Gunasekaran & Kobu (2007) argue that there is a need
for more quantitative PMs and that that qualitative PMs should be translated
into quantitative. Beamon (1999) agrees with this position and notes that ” [w]hen
analyzing system performance, qualitative evaluations such as ’good’, ’fair’, 'ade-
quate’, and 'poor’ are vague and difficult to utilise in any meaningful way. As a
result, quantitative performance measures are often preferred to such qualitative
evaluations” (p. 275). Gunasekaran & Kobu (2007) further note that quantities and
qualitative PMs are heavily interdependent, and that understanding their complex
causal relationships between them is essential.

Financial and non-financial performance measures

A further top level breakdown of PMs is the nature of the resource measured,
i.e. between financial and non-financial PMs. Historically, performance measuring
has more less only been solely focused on financial PMs, closely related to cost
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accounting (Gunasekaran et al., 2004, Gunasekaran & Kobu, 2007, Neely et al.,
1995, Beamon, 1999, Parker, 2000). Since the 90s, there has been substantial
critique against the use of financial PMs in performance measurement. The general
arguments against financial PMs are that:

1) they tend to be very insular or inward-looking;
2) they fail to include the less tangible aspects;
3) they are lagging indicators (Parker, 2000).

Especially, the critique has been aimed at the excessive use of and reliance on fi-
nancial PMs.However, there is a consensus among the research community that
financial PMs are indeed necessary. Gunasekaran et al. (2004) argue that it is im-
portant to balance PMs, as financial PMs are important for strategic decisions and
external reporting, while non-financial PMs are better suited for day-to-day control
of operations. This stance of balancing operational and financial PMs is further-
more strongly emphasised in the balanced scorecard performance management tool
proposed by Kaplan & Norton (1992).

In addition to the crude top-level categorisations of PMs described above, there
has been much research on more detailed categorisation frameworks. Many of these
frameworks have vast differences between them, taking on different perspectives on
PMs. In the remainder of this section, the categorisations proposed by Gunasekaran
et al. (2004) and Melnyk et al. (2004) will be discussed. Other notable mentions
include the categorisation by Parker (2000) who distinguishes between outcome,
action, input and diagnostic PMs, and Beamon (1999) who distinguishes between
resources, outcome and flexibility PMs.

Categorisation based on decision level and resource nature

Gunasekaran et al. (2004) propose a framework for performance measures categorise
financial and non-financial PMs into their influence on decision-making in different
levels of management in the organisation. Gunasekaran et al. (2004) assign the
PMs into strategic, tactical, and operational level metrics, arguing that this leads
to a more appropriate performance measurement and fair decisions.

Gunasekaran et al. (2004) defines the PMs corresponding to the different deci-
sion levels accordingly:

1) Strategic. Influence the top level management decisions, very often reflecting
investigation of broad based policies, corporate financial plans, competitive-
ness and level of adherence to organisational goals.

2) Tactical. Deal with resource allocation and measuring performance against
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targets to be met in order to achieve results specified at the strategic level.
Measurement of performance at this level provides valuable feedback on mid-
level management decisions.

3) Operational. Require accurate data and assess the results of decisions of low
level managers. Supervisors and workers are to set operational objectives
that, if met, will lead to the achievement of tactical objectives.(p. 335)

In table 4, these decision level categories are put into the context of nature of
the resource measured, i.e. financial or non-financial.

Table 4. Categorisation of PMs. Based on Gunasekaran et al. (2004)

Description/Examples

Type
Financial Non-financial
Strategic Net. p‘roﬁt V8. productivity ratio, Order lead time
variations against budget
. Supplier cost saving initiatives, de- Effectiveness of master production
Tactical . s
livery reliability schedule
Operational Total inventory, manufacturing Capacity utilisation

cost

Gunasekaran & Kobu (2007) argue that this categorisation leads to better un-
derstanding regarding which PMs should be applied at different levels of the organ-
isation. They further claim that this categorisation will align strategies at different
decision levels so that right decisions can be made, supporting the achievement of
overall goals and objectives of the organisation.

Categorisation based on tense and resource nature

When categorising PMs, Melnyk et al. (2004) base it on what they argue are
two primary attributes of PMs: focus and tense. Focus describes the nature of
the resource observed by the PM, being either financial or operational (or non-
financial). Tense describes the intention of the PM, i.e. whether it is judging
performance outcomes or predicting future outcomes. Based on these attributes,
the PMs can be sorted in a matrix, which can be seen with examples of PMs in
figure 5.

The use of predictive PMs is fairly new (Melnyk et al., 2004), as PMs historically
has been used only "to monitor past performance and stimulate future action”
(Neely et al., 1995, p. 109). However, there is an increasing demand on finding
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Table 5. Categorisation of PMs. Based on Melnyk et al. (2004).

Description/Examples

Type
Financial Non-financial
Outcome  Return on Asset Elapsed lead time
Predictive Overtime cost (predictive for budget # process steps and overruns (pre-

overruns dictive for lead times)

predictive PMs which allows managers to observe trends so that action can be
taken preventivly before events occur (Neely et al., 1995). Regarding predictive
and outcome PMs, the emphasis on use is important as a predictive PM in one
context can be an outcome PM in another. While an outcome use of a PM implies
making inferences on the future performance by studying the past, a predictive
use focuses on preventing problems from occurring by analysing processes that will
impact an outcome (Melnyk et al., 2004). Therefore, the combination of outcome
and predictive use of PMs can effectively be applied by using an aggregated PM
as outcome and one or more of its constituents as predictive.

3.2.5 The performance measurement system

The three key functions of a PMS are control, communication and improvement
(Melnyk et al., 2004). A PMS should allow managers to evaluate and control
the performance of the production system, communicate the result and impact to
the stakeholders, and locate areas of improvement. In order to fully assess the
performance of the manufacturing system and reconfiguration effects, the PMS
needs to offer a complete and accurate representation. In the study by Beamon
(1999), a framework for the selection of performance metrics for manufacturing
supply chains is developed. She defines four characteristics of an effective PMS
(see table 6).

Table 6. Characteristics of an effective performance measurement system. Based on
Beamon (1999).

Property Description

Inclusiveness  Measures all pertinent aspects.

Universality ~ Allows for comparison under various operating conditions.
Measurability 'The data required are measurable.

Consistency  Measures consistent with organisation goals
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The hierarchical categorisation of PMs proposed by Gunasekaran et al. (2004),
with strategic being the highest level, followed by tactical and operational at the
bottom level, requires integration of PMs. In order to avoid sub-optimisation, the
PMs at lower level must aggregate into the higher level, in accordance with the
performance pyramid in figure 7 and consistency characteristic in table 6.

Number of metrics

Using a single measure for an attribute is attractive due to its simplicity. However,
Beamon (1999) points out that they hardly fulfil the characteristics of an effective
performance measurement system, most of them failing to be inclusive. On the
other side of the spectrum, all activities cannot be measured; PMs needs to be
selective and focus on activities which are most important with respect to the
strategic goals (Parker, 2000). To better assess the performance, the PMS should
only include a few key PMs. While being inclusive, the PMs of a PMS should
be the ones that capture the essence of the manufacturing performance. Beamon
(1999) notes that picking a single PM to be representative of a strategic goal might
be difficult in practise.

The performance measurement system environment

It is important to understand that the PMS is not only a set of measures but a
management strategy and methodology in itself. As such, the PMS will interact
with its environment; both the internal environment (the organisation itself) and
the external environment (the market in which the organisation operates) (Neely
et al., 1995). Regarding the internal environment, as organisations operates with
internal goals and incentives, it will always affect how the PMS is perceived and
used. This is often an issue with functional structure organisations, where different
evaluation and reward systems leads to conflicts between functions, e.g. manufac-
turing and marketing (Neely et al., 1995). Neely et al. (1995) further note that
the PMS must not only be consistent with the strategy but also the culture of
the organisation. They exemplify with an organisation with a culture of blame
which introduces a PM which measures defects per operator. It would result in the
operators lying, leading to the PM representing false data with potentially critical
impact on the decisions and actions the organisation pursuits.

The external environment can be divided between customers and competitors,
and there is a necessity that the organisation-wide PMS reflects these elements
(Neely et al., 1995). The former refers to properly considering customer satisfac-
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tion in terms of quality and delivery. The latter element, i.e. competitors, largely
revolves around the ability to benchmark, i.e. ”[to] search for industry best prac-
tices that lead to superior performance” (Neely et al., 1995, p. 106).

3.2.6 Conclusions

Performance measurement is a key activity in organisations which quantifies action
into efficiency and effectiveness. By refining and distilling data, and providing data-
based decision support, performance measurement provides an understanding of the
processes and activities in the manufacturing organisation, therefore enabling both
the identification of problems but also of success.

Manufacturing performance can be observed from two perspectives: The first
one is the manufacturing competitive priorities; cost, quality, delivery, flexibility,
and innovativeness performance. These priorities constitute the key performance
dimensions on which manufacturing organisation can compete. The other per-
spective is the performance pyramid which describes the hierarchical structure of
manufacturing performance. Starting from the crude operational performance di-
mensions, they get aggregated upwards into higher level performance dimensions,
eventually leading to the realisation of the corporate vision.

A performance measure should be chosen by weighing its benefits to its cost.
However, it is imperative that the performance measure is aligned with busi-
ness/manufacturing strategy and fully understood by its users. Performance mea-
sures can further be categorised in several stages. First, between quantitative and
qualitative, of which the latter is universally preferred. Second, performance mea-
sures can be separated by whether they are financial or non-financial, of which the
former have been heavily criticised for their dominance. Together, the individual
performance measures are composite parts of the whole performance measurement
system (PMS). The PMS should be designed from a holistic perspective, taking into
account the environment in which it is used, both internally and externally. Fur-
thermore, it should uphold the characteristics of inclusiveness, universality, mea-
surability, and consistency.

3.3 Simulation

Oren (2009) finds that the concept of simulation has proven to be of great use as
decision support in a variety of different fields and already in the 1970s some 120
areas of application could be distinguished in science and industry. In particular,
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Discrete Event Simulation (DES) as a tool for designing, analysing and improving
manufacturing systems is an extensively applied concept in research and industry
(see for example Negabahn & Smith, 2014).

The following section presents a theoretical foundation for the concept of sim-
ulation. The focus is particularly on the applications of discrete-event simulation
(DES) in manufacturing systems as a decision support tool and for optimising or
improving the system performance.

3.3.1 Discrete-event simulation

A discrete-event simulation model is one which models a system of entities (dynamic
or static), resources, activities, delays and attributed at the basis of time-driven
events causing changes in the system’s state variables. An event can be defined as
an occurrence which causes a change in the state of the system (Banks, 1998).

3.3.2 Discrete-event simulation as decision support

Although the wide range of applications for DES in manufacturing has continued
to grow, AlDurgham & Barghash (2008) argue that it should on a general level pri-
marily be seen as a decision support tool. Such simulation-based decision support
can be applied in several different ways as listen in table 7

Table 7. Types of Uses of Simulation for Decision Support. Adapted from Oren (2009).

1. Prediction of behaviour or performance of the system of interest within the con-
straints inherent in the simulation model (e.g. its ”granularity”)

2. Ewaluation of alternative models, parameters, experimental and/or operating con-

ditions on model behaviour or performance

Sensitivity analysis

Engineering design

Virtual prototyping

Planning

Acquisition (or simulation-based acquisition)

P NSO w

Proof of concept

Why simulation can be used effectively for decision support can be summarised
to four main reasons:

1) A simulation facilitates the understanding of the real system and its be-
haviour.
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2) The actual exercise of building a simulation model reveals previously hidden
relationships and provides a systematic way to analyse the situation.

3) A simulation model can facilitate communication and provide a basis for
discussion.

4) ?What-if” analyses can be carried out, allowing the decision-maker to test
the effects of different alternative scenarios without having to make changes
to the real system. (Semini et al., 2009)

Decision support systems (DSS)

Simulation implemented as a tool for continuous use for scenario testing, ”what-if”
analysis and alike, can be described as a form of Decision Support System (DSS).
Tolk et al. (2009, p. 404) defines Decision Support Systems as: ”[..] informa-
tion systems supporting operational (business and organizational) decision-making
activities of a human decision maker.” When simulation is a feature in such a
system, Tolk et al. (2009, p. 405) separately define Decision Support Simulation
Systems (DSSS) as ”simulation systems supporting operational (business and or-
ganizational) decision-making activities of a human decision maker by means of
modelling and simulation.”

3.3.3 Issues and limitations in simulation models

A simulation model can be seen as the computerised implementation of a conceptual
model, which inevitably is a simplification of the real system. Some sources of
simplifications and assumptions in the model are related to uncertainties about the
phenomena and processes modelled (Reynolds Jr., 2009). An example could be
a sub-process which is assumed to be deterministic when it in fact is stochastic.
Vice versa, some processes could in reality be deterministic but their dynamics so
complex and hard to evaluate that they are modelled as stochastic (referred to as
aleatory uncertainty). There can also be a degree of so-called epistemic uncertainty,
meaning that the stochastic behaviour that is simulated not accurately represents
the real dynamics of the process’ behaviour (Reynolds Jr., 2009). Such issues could
occur when for example the processing time in a machine is assumed to be random
with some probability distribution, but it is difficult to obtain a large enough
amount of data on its behaviour to find a reasonably accurate distribution, or such
a distribution is simply not known.

Even if the above mentioned uncertainties are handled, a central question re-
mains regarding the level of detail included in this model. i.e. its level of abstrac-
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tion, and what level of complexity the simulation model should have in order to
accurately enough represent the real system. Robinsson (2015) argues that an in-
creasing level of complexity (and scope) of the conceptual model pays off in model
accuracy to a certain extent, but never reaches 100 %.

1009} --=--==-=====mm = mmmmm oo mm oo

Model accuracy

X
Scope and level of detail (complexity)

Figure 9. How simulation model accuracy changes with the complexity of the model.
(Robinsson, 2015).

Figure 9 shows that the model will never be completely accurate, no matter the
attempts to capture every detail in the real system. It also shows that increasing
its complexity not only has diminishing returns in terms of model accuracy, at
some point the accuracy will even start to decrease. A suitable level of complexity
is represented with the point x, a point where an increase in complexity requires
great effort but barely increases the accuracy of the model. This point, however,
can be difficult to find (Robinsson, 2015).

In general, the above mentioned modelling issues need to be handled in the
process of verifying and validating the simulation model. A verified simulation
model is one that correctly represents the conceptual model of the system. A
validated simulation model is one that reasonably well represents the real system
(Banks, 1998).

3.3.4 Manufacturing applications

AlDurgham & Barghash (2008) propose a comprehensive and generalised frame-
work for organising the areas of simulation application in manufacturing in a sys-

tematic way.
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Level 1 . . . . )
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Level ITI Tools and approaches:
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Management

Figure 10. Simulation Application Framework for Manufacturing (Macro view).
(AlDurgham € Barghash, 2008).

The framework in figure 10 shows that the application of simulation is con-
nected to different levels of the manufacturing organisation. Level I is the basis
for a simulation project or study, the domain in which there is a certain purpose
of applying simulation. Common examples could be in Lean or JIT projects as a
means of identifying wastes, optimising parameters or testing, designing, improv-
ing or analysing the manufacturing system. Level II entails the common areas of
simulation application, or decision domains; Materials handling, Layout, Schedul-
ing and Manufacturing processes and resources. These are the actual activities,
policies, processes and resources which are studied with simulation, with respect to
the manufacturing strategies and objectives set out. More specifically, the previ-
ous level has put certain constraints and requirements on the Level II area which is
studied in the simulation, specified in ” Checklists” aiming at translating the Level
I domain into actual conditions. Level II applications of simulation can generally
be divided into three main purpose categories:
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1) design a system from scratch,
2) improve system on hand,
3) modify/change system on hand (Re-engineering),

where 1) and 3) typically would be followed by 2) in the form of continuous
improvement. Level Il applications put in turn constraints on the lowest level,
Level III, the case in which simulation is applied to support operational routine
decisions regarding the system on hand. Level I and II typically represent projects
in which simulation is a tool for achieving the goals and conditions specified in Level
I, within one or several decision domains and purpose categories in Level II. An
important observation from Level II is that the decision domains are interrelated
and usually cannot be studied independently in a simulation.

3.3.5 Theory of Constraints, the Japanese lake and bottleneck
detection

Specific applications of DES have been developed, which focus on identifying and
improving bottlenecks in manufacturing systems. Pehrsson et al. (2016) proposes
a method using simulation-based multi-objective optimisation for doing so, which
can be incorporated into the general improvement method Theory of Constraints
(TOC). TOC is based on an iterative effort of identifying and removing constraints
in the system, in order to improve overall throughput. Pehrsson et al. (2016)
uses the method of Simulation-based Constraint Identification (SCI) to simplify
and facilitate the identification step in TOC for complicated systems with moving
bottlenecks. He shows that DES used in combination with other techniques has
shown itself useful to combine with the application of TOC through ranking the
most commonly occurring constraints in the manufacturing system, allowing the
decision-maker to prioritise the most prominent one.

This principle of finding constraining factors in the system has similarities with
Japanese production philosophies, such as the one commonly referred to as the
Japanese lake. According to Farahani (2011) the idea often revolves around reduc-
ing inventory, seen as the water in a lake. With too much water (inventory), the
actual issues and root causes of poor performance, such as bottlenecks, are hidden.

While lowering the water level in the Japanese lake would reveal bottlenecks,
it might be difficult and risky to do so in a real system without knowing the
effects on beforehand. To instead apply a methodology as Pehrsson et al. (2016)
demonstrates, and ”experiment” within a virtual model, the methodology of finding
and removing constraints would not only be more effective (through ranking the
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most prominent ones). Finding the bottlenecks would be done virtually, without
risking to deteriorate the performance of the real system in the process.

3.3.6 Cost modelling

Including cost modelling is required to properly analyse the cost performance of
the manufacturing system. DES has for a long time been used together with
cost models to efficiently cost parts and products, and represents one of the key
application areas for manufacturing simulations (Krishnamurthi et al., 1997).

Modelling the factory expense is generally intricate and might even be con-
sidered unnecessary when optimising the manufacturing system (Jonsson et al.,
2008a). While prime costs such as direct material is quite straightforward to model
as the resources are tied to specific articles and activities, there still needs to be
estimations on how the other manufacturing costs affect the part or product unit
cost. Direct overhead costs, and sometimes even direct labour, needs to be allo-
cated correctly. Depending on how these costs are allocated, the modelled cost
performance can differ greatly.

Costing has been researched for a long time, and is still a highly debated
area(Pehrsson, 2013, Sundkvist, 2014). Historically, when labour was a major part
of the manufacturing cost, overhead cost were allocated based on labour hours
using total absorbation costing (Gunasekaran & Kobu, 2007). Productivity today
depends on capital productivity, which implies that the overhead should rather
be allocated based on machine hours (Gunasekaran & Kobu, 2007). However, the
most commonly used approach in modern simulation applications is activity based
costing (ABC) (Gunasekaran & Kobu, 2007, Jonsson et al., 2008a, Pehrsson, 2013).
The ABC has however sustained heavy criticism due to the complicity of manag-
ing and updating the data required. Kaplan & Anderson (2007) responded to this
criticism by proposing a new way of allocating cost named time-driven ABC (TD-
ABC). Opposite to the crude ABC, TDABC considers unused capacity (Kaplan &
Anderson, 2007). TDABC consists of two steps:

1) Calculating capacity cost rate [cost/resource capacity unit], by;
i) calculating the cost of all resources supplied to a process for a given time
period [total cost]; and
ii) dividing this total cost by the resource capacity available during the
time period [total resource capacity].
2) Estimating the demand for resource capacity that each cost object requires
[resource capacity unit] (Kaplan & Anderson, 2007).
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While the theory allows for resource capacity to be universal, the main approach
suggested by Kaplan & Anderson (2007) is using time. Hence, TDABC requires
first an analysis of the cost of the supplied resource to a process and the time it
is available, and secondly the time consumed in the process by the cost object
(Sundkvist, 2014).

A general principle is that cost models should be able to produce good estima-
tions of cost using as small amount of information as possible (Pehrsson, 2013).
Therefore, there exist multiple specialised cost models depending on the applica-
tion such as for different production process and system design production costing
(Jonsson et al., 2008a). One can further differentiate between microeconomic and
macroeconomic models for estimating manufacturing cost; the former deal with
costing based on how specific process parameters affect the part cost, whilst the
latter are more aggregated and deal with how cycle time, rather than the processes
affecting the cycle time, affect the part cost (Jonsson et al., 2008a).

Due to the many benefits of using cost modelling together with simulation
(Pehrsson, 2013, Krishnamurthi et al., 1997), several cost models have been pro-
posed with different approaches.(Jonsson et al., 2008a) presents an extensive and
detailed macroeconomic cost model, which describes how costs is added in every
process to the part cost. The model is intended to be used as a support tool in
combination with a simulation model to analyse the effect of different scenarios on
the part cost (Jonsson et al., 2008a). The model costs the part using a ABC-related
allocation, however only focusing on manufacturing costs. The model requires over
30 parameters, and the researches themselves note that the requirement of accurate
inputs is the main pitfall of the model. They identify parameters such as relative
loss in production rate, downtime rate, scrap rate and setup time to be the most
important while noting that estimating equipment costs is perhaps the greatest
challenge.

Other notable mentions is the model suggested by (Pehrsson, 2013), which is
an incremental aggregated cost model to be used with simulation-based multi-
objective optimisation for computing the running cost of manufacturing system. A
major application of his model is evaluating the impact of investments. Sundkvist
(2014) on the other hand applies TDABC in a framework to analyse how cash
flows are affected by improvements, by investigating the relationship between the
changes in inventory book values and productivity improvements.

No model is however perfect and Beamon (1999) stresses that there are several
pitfalls when modelling costs. Among others, she mentions typical failing factors
as lack of relevance of cost categories, cost distortions due to inadequate allocation
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of overheads, and incorrect assessment of inventory costs. Beamon (1999) further
highlights that cost modelling can easily be insular by exemplifying the importance
of considering the part/material size when modelling inventory cost: A low cost
item may due to its large size occupy much space, and thus effectively be expensive
(Beamon, 1999).

3.3.7 Conclusions

Three main observations from the literature on simulation as a decision support
tool are:

1) application of simulation starts in Level I, i.e. first setting long-term man-
ufacturing goals and then using simulation to design, analyse, improve or
operate the system in order to reach them;

2) simulation itself can only evaluate alternatives. Such evaluations are made
based on a defined set of performance metrics;

3) as with testing improvement alternatives virtually before implementing, sim-
ulation can also be used effectively to detect and analyse bottlenecks e.g. in
the process of applying TOC

4) cost modelling in simulation is intricate and typically requires large amounts
of accurate and updated input data

5) a general principle in cost modelling is being able to produce as accurate
estimations as possible, with the smallest possible amount of input data;

A simulation model can be described as a function representing a specific sys-
tem, which maps a defined set of input parameter values (albeit often stochastic)
to a set of output measures (often also stochastically represented). The specified
values of the input parameters could be described as a ”scenario” to be evaluated
and the quantitative evaluation of such a scenario is the output measures. In order
to be able to meaningfully compare different scenarios, the set of output measures
needs to be carefully defined, as AlDurgham & Barghash (2008) point out. For ex-
ample, as Kadar et al. (2004) note, when comparing different simulated production
schedules it is likely that their performance cannot be unequivocally determined.
Instead, depending on the measured criteria by which the schedules are evaluated
one might get ambiguous results.
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3.4 Theoretical framework

This section covers the development of a theoretical framework, i.e. the Simulation
Application Performance Evaluation Canvas (SAPEC). The framework is based on
a synthesis of the three topics covered in chapter 3, namely; decision-making in
manufacturing, DES as decision-support, and performance evaluation.

3.4.1 Simulation Application Performance Evaluation Canvas
(SAPEC)

The intersections shown in figure 2 can be synthesised and conceptualised in several
different ways. In general, section 3.1 deals with how decisions can be categorised
based on the organisational levels on which they typically are made, on which areas
they concern and on their characteristics. It also notes that the decisions made can
be described as setting values for decision variables in the different decision areas,
based on the competitive priorities set in the manufacturing strategy. Section 3.3
is concerned with the applications of DES, particularly in the context of decision
support. The applications can be defined as both the purpose or type of use of
simulation, and the area within the manufacturing system where it is applied.
Section 3.2 outlines which types of performance measures to apply in different
contexts, their respective properties and in what way they should be applied.

Figure 11 below is a theoretical framework developed by the authors, the Sim-
ulation Application Evaluation Canvas (SAPEC). The SAPEC links the decision-
making domains, performance measure types and DES application areas in order
to create a clearer picture of what leads to a certain set of metrics in the context
of applying DES as decision support. The model itself leaves to the user to specify
exactly which measures to use; instead it functions as a facilitator and point of ref-
erence in which to map out the intended application of simulation in manufacturing
and the stakeholders/decision-makers involved.
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Figure 11. Simulation Application Performance Evaluation Canvas (SAPEC). (Source: Authors’ own work).
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The starting point in figure 11 is the corporate strategy, which forms a set
of competitive priorities. These are a crucial part in forming the manufacturing
strategy, which can be translated into a set of objectives (e.g. reducing costs, im-
proving quality, increasing flexibility or increasing productivity) (see section 3.2.2).
The strategic objectives are primarily a concern at the Strategic decision level,
but are translated into more specific, shorter-term objectives at the other decision
levels; Tactical and Operational. Also, as the arrows at the top illustrate, the
time-horizon of a decision is typically longer for Strategic decisions than for Tac-
tical and Operational, whereas the level of detail in, and volume of, information
needed to support the decision is lower. Note also that the decision levels corre-
spond their own respective category of relevant performance measures. The perfor-
mance measures can however also be divided into financial /non-financial measures
or predictive/outcome measures. These categories can typically and in principle
be organised in parallel with the decision levels as shown in the figure, although
without a clear separator of when to use one or the other. The decision cate-
gory is also relevant in the sense that it typically corresponds to which type of
decision that is made. Structural decisions are defined as long-term and concern
larger investments, typically in physical entities such as new machinery or facilities
whereas Infrastructural decisions are more related to how to operate and utilise
the existing resources (Wheelwright, 1984).

In the defined decision- and performance measurement structure, some relevant
DES decision-support areas can be mapped out.

Resources

This application area refers to Strategic and Structural decisions, such as designing
new, or modifying, equipments or facilities. This area is characterised by a longer
decision horizon, high capital investments and defined as a level of decision-making
typically managed on outcome- and financially oriented measures. Simulation can
aid both in designing new ”greenfield” systems, or in modifying existing systems.
”What is the system supposed to consist of ?”

Management provisions

Management provisions concern high-level decision variables and simulation sce-
narios that are related to the infrastructure of the manufacturing system; i.e.
fundamental principles, conditions and constraints that the manufacturing sys-
tem operates under. Examples can be which products to produce, the size of the
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workforce or the acceptable quality levels. Setting the Management provisions
could have a shorter decision horizon than investing in resources, and thus falls
under Strategic/Tactical decisions. It could therefore be based on a combination
of Financial/Outcome- and Non-financial/Predictive measures. ”What can and
should the system do?”

Processes

The processes within the manufacturing system could be of both Strategic and Tac-
tical concern, and involve both minor modifications or major projects within Busi-
ness Process Re-engineering (BPR). Some decision variables or simulation parame-
ters/scenarios are the processing time in machines, material flows or whether to con-
duct Single-Minute Exchange of Dies (SMED). These type of decisions are also typ-
ically based on a combination of Financial/Outcome- and Non-financial/Predictive
measures. ”How should we use the resources?”

Manufacturing policies

This DES decision support area is a common domain to apply simulation and
involves more detailed principles around how to carry out the processes and activ-
ities in the system. Decision variables and parameters to simulate could be what
dispatching rules to use, re-order points in inventories, safety stock levels, the pro-
duction frequency etc. These decision are typically made on a tactical level and are
not very difficult to change over a reasonably long time, and do not necessarily con-
cern the actual infrastructure of the system. Although their financial implications
and outcomes can vary in size, they are typically based primarily on non-financial
or predictive performance measures. ” What should be the guidelines for operating
the system?”

Execution

This application area concerns the lowest decision level and neither the structure
or the infrastructure of the system, rather the actual operation of it. A single
decision does not apply for very long, as in the case of setting a production plan
for a number of weeks ahead or weekly planning on which batches or orders to run
on which machines, at which times. The performance on this level of the system is
typically difficult to represent in any relevant financial terms and are more focused
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on the flow and workload on the factory floor. ”What should the resources and
workforce do in the near future?”

A general principle of the framework in figure 11 to emphasise is that the choice
of performance measures to apply in a certain application of simulation is affected
by several aspects. Firstly, the manufacturing strategy is what sets the objectives
and therefore determines what is actually relevant to measure at all, what measures
to improve on or what impacts to investigate in a ”what-if” scenario. Secondly, the
decision levels and categories concerned with the scenario simulated may require
different types of information to make a decision. Thirdly, as discussed in section
3.2.5, an important feature of a good PMS is that the measures used on lower levels
are related and aligned with the ones used on higher levels.

Furthermore, what measures that are relevant in a certain simulation appli-
cation may also be affected by whether the purpose of the simulation is to im-
prove/optimise the performance of the system, or if it is conducted as a ”what-if”
simulation to investigate and highlight impacts of a specific scenario. In order to
improve the performance, there needs to be some defined measure(s) to improve
on.

The SAPEC categorises various decision variables and simulation parame-
ters/scenarios into the five main application areas listed above, but they are not
necessarily studied in isolation. As AlDurgham & Barghash (2008) conclude, many
simulation applications in Manufacturing are interrelated. Changing one param-
eter in one application area may well affect the performance in others and an
improvement project involving simulation is likely to study several of them. A
what-if analysis using simulation may also be concerned with studying the impacts
in more than one or a few specific parts of the manufacturing system. Further-
more, if a strategic objective is to for example reduce lead times, and simulation
is applied within a management initiative to achieve that, there could be several
different areas to study. There could also be several different parameters to change,
which all contribute to improving on the primary performance measure.

Finally, an important logic in the SAPEC is that higher-level applications in
the right part of the framework will in many cases need to include lower-level
measures. This is based on, and in line with, the Performance Pyramid in figure
7. For high-level decisions, the most relevant performance measures are aggregated
out of the ones on the lower decision-levels. But it does not necessarily have to mean
excluding their components from the decision-support. If designing a new factory
or layout, aggregated financial measures alone may not provide all the information
needed to evaluate whether a design choice is appropriate or not.
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External view

This chapter presents the data collected from four unstructured interviews. The in-
terviewees were purposively sampled with the criterion of having either theoretical or
practical experience of developing, implementing and/or evaluating production sim-
ulations. The interviewees, i.e. Videsson (2017), Wiklund (2017), Pehrsson (2017)
and Marklund (2017), are described in more detail in table A2 in appendiz A.

4.1 Decision making

Pehrsson (2017) affirmed that support for strategic decisions differ from that for
operational decisions. For operational decisions, the objective is the short-term
removal of constraints and the management of current production challenges, he
noted. Regarding operational investment decisions, they are subsequently focused
on improving the system with the minimum resources. Rather than making an
assessment between multiple objectives, he argued that it is better to focus on
removing constraints in the production when making operational decisions.

At the long-term strategic decision level, Pehrsson (2017) noted that multiple
factors needs to be taken into consideration. These include both external effects
such as world economy changes and technology advancements, as well as prepa-
ration for future decisions in the production system. Compared to operational
investment decisions, he considered it important to focus on more than running
cost, cost of investment and productivity; scalability, reconfigurability and agility
are also important factors to consider.

Videsson (2017), Marklund (2017) and Pehrsson (2017) agreed that information
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for decision support should generally be more detailed on operational level deci-
sions and become increasingly aggregated toward strategic level decisions. Mark-
lund (2017) further emphasised that the information needed for decision support
must be clearly defined with respect to the purpose of doing the simulation. Oth-
erwise, he claimed, you will end up with with too much irrelevant information,
causing information overload. However, Marklund (2017) speculated that a larger
volume of information might be relevant if there exists a key individual at the
organisation with deep knowledge of the operations. This individual may gain
a holistic understanding of the interrelations in the dynamics which he/she can
communicate in a condensed form to decision makers and relevant stakeholders.

4.2 Performance measure properties

In this section, the interviewees’ perspectives on different properties of PMs are
described. This includes the level of aggregation of PMs, the use of relative PMs,
the predictiveness of lagging PMs in a simulation, and the automated generation
of PMs.

4.2.1 Aggregation

Pehrsson (2017) was critical of using aggregated PMs such as OEE or running cost
when comparing simulated actions, stating that it is better to use crude PMs which
are relatively easy to interpret. He emphasised that understanding and analysing
the impact of a simulation can be very complex to begin with. Agreeing with Mark-
lund (2017), he urged the importance of understanding what is actually happening
in the simulation model and what really affects the production system. Pehrs-
son (2017) noted that this is especially critical when there are multiple objectives
to consider in a decision. He further strengthened his position arguing that it is
more valuable studying how the underlying crude PMs correlate and interact then
looking at an aggregated PM.

However, while Pehrsson (2017) was sceptical of using aggregated PMs for com-
parison, he acknowledged that they can be used for confirming that certain criteria
are met, effectively using them as a screening tool. He furthermore confirmed
that it can be valuable getting an insight of the system-wide effect by looking at
aggregated PMs such as lead time and running cost, even in simpler operational
decisions. Perceived isolated issues needs to be put into the context of the whole
production system to provide the understanding of the correlations and interrela-
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tions between parameters in the system (Pehrsson, 2017).

Videsson (2017) was also sceptical towards the use of aggregated PMs. The
issue he identified was that due to their detachment from the direct operational
parameters, they may be hard to evaluate without being put into context. Ex-
emplifying with lead times, he argued that while it is often a highly relevant PM,
decision-makers may find it difficult to understand why decreased lead times is
desirable.

4.2.2 Relativity

Wiklund (2017) further cautioned the use of relative PMs. He pointed out that
while they might seem attractive, many people do in fact have trouble understand-
ing what for example 10% reduced setup time really means. While relative measure
aids the understanding of scale and proportion, absolute measures are closer to re-
ality. Referring to the previous example, Wiklund (2017) suggested that it could
be better to count the actual amount of saved time to use for other activities, or
the actual amount of products produced per time period.

4.2.3 Lagging versus predictive

Pehrsson (2017) verified that PMs, which are normally considered to be lagging,
can in the context of simulation output be predictive of the system performance.
He explained that when simulating scenarios of potential future outcomes, it is
indeed possible to analyse potential future constraints in the production system.
By studying the effect of the scenarios on those parameters, Pehrsson (2017) argued
that it is possible to mitigate the constraining factors and setup the system so that
it is more robust to the future stochastic event spaces.

4.2.4 Automated generation

Pehrsson (2017) claimed that it would be valuable if some PMs would be automat-
ically computed when doing simpler simulations. These PMs should preferably be
a set of standard PMs which informs the user if the performance of the production
system meets the criteria. Pehrsson (2017) argued that finding the correct PMs,
preparing the data, and analysing it, can be too time-consuming in those cases. As
a result, what PMs are used in practice are often constrained, he explained.
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4.3 Simulation application best practice

This section will cover the views on how to best apply manufacturing simulation.
First, it will recount the interviewees options improvements and investment as well
as the use of bottleneck analysis. Next, their view on modelling and measuring
quality and flexibility will be described. Last, it will include a discussion about the
importance of aligning the simulation model and the performance measurement
with the true purpose and the strategy.

4.3.1 Improvements

Pehrsson (2017) described that when initiating improvement projects, it is better
to first use simulation to identify the true deficiencies and constraints in the pro-
duction system. Doing a simulated what-if analysis straight away to find evidence
for a claim risks deciding on a sub-optimal action. He considered it to be more
advantageous finding the the true cause of the problem, rather than confirming or
rejecting a specific scenario. Pehrsson (2017) cautioned that this is a common issue
when initiating the endeavour of using simulation continuously, but noted that it
is probably a necessary transition phase.

Regarding improvements, Marklund (2017) highlighted that one of the most
valuable takeaways of simulating is building the model itself. The process of build-
ing the model requires a deep understanding of every logical detail in the production
system. Hence, inefficiencies in the production system, which else might have been
neglected, can be identified even prior to using the model (Marklund, 2017).

What is an efficient investment depends on the time-horizon of the decision,
according to Pehrsson (2017). When making a decision based on the efficiency of
an investment, it is better to consider a reasonable trade-off between a flexibility
for future changes, running cost, and cost of investment, rather than looking at
cash flows and net present value. Pehrsson (2017) warned that focusing only on
the cash flow when making a decision risks constraining the discretion of taking
the next decision. He argued that it is better to consider a composition of multiple
PMs and assess them when making a decision. Pehrsson (2017) described finding
a flexible investment as optimising against a solution that enables the discretion to
take future actions, instead of optimising against what is currently best and might
soon be outdated. Consequently, the flexibility becomes increasingly important,
the longer the time-horizon of the decision. He argued that this approach will
ensure long-term efficiency of the production.
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4.3.2 Bottlenecks

Both Pehrsson (2017) and Marklund (2017) stated that simulation is best used
for identifying bottlenecks in the production system. (Marklund, 2017) noted that
the interesting dynamics to observe in a simulation model is the material flow; how
buffers are growing, when they are growing, how it depends on the shifts in demand
and the scheduling of the workforce. Bottlenecks can be effectively identified by
investigating the Japanese lake Lof productions systems, e.g. simulating lower
stock levels or capacity (Pehrsson, 2017). According to Pehrsson (2017), the model
he developed for analysing bottlenecks has been the most successful way of studying
production systems using simulation. He emphasised that bottlenecks generally are
the most costly factor of a production system and what limits growth. Identifying
bottlenecks is equally important when not growing, as you want to be able to
maximise the capacity you have dimension for (Pehrsson, 2017). Pehrsson (2017)
further added that when reducing cost, you also need to reduce run-time and
streamline the organisation to the current conditions by removing bottlenecks.
Pehrsson (2017) concludes that enabling the identification of bottlenecks is an
efficient way to find out what needs to be done, without spending much time or
resources on modelling and other tools for analysis.

4.3.3 Modelling and measuring quality

Pehrsson (2017) remarked that DES is not necessarily the best tool to model qual-
ity. He argued that if the goal is to optimise quality parameters, then you should
build a specialised quality model. A simulation model is for instance not the
preferred way to analyse the cost of product quality deficiency stemming from ex-
perienced customer satisfaction, he exemplifies. Pehrsson (2017) suggested that
rather than measuring the quality parameters themselves, it is more interesting to
look at the quality deficiencies effect on the chain of events by measuring its direct
impact on other parameters. He proposed looking at strategies for quality control,
noting that if you can not fix a quality problem at its source, then you can analyse
its impact on the production system.

Although, Pehrsson (2017) acknowledged that process quality can be effectively
modelled in a simulation by adding scrap rates and its inherent stochastic. Wik-
lund (2017) highlighted scrap as highly important, and implies that this impor-
tance may be underestimated by many. Pointing out that it is preferably divided

1High inventory levels that hide the true problems in production such as bottlenecks and quality
issues
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into scrap from the continuous running of machines and scrap from setups and
changeovers, Wiklund (2017) further noted the relation between scrap and batch
levels 2. Due to the random behaviour of scrap levels in each manufacturing pro-
cess, the impact of the system scrap level is hard to forecast (Wiklund, 2017).
Therefore, he argued that it would be highly valuable to model how scrap levels
are affected by the batch sequencing and the performance of the machines.

Pehrsson (2017) further remarked that a simulation tool can be used to study
strategies for quality control. Arguing that the goal is always to identify and correct
the root cause of a quality issue, a simulation model can be used to investigate the
effect of for instance additional inspections.

4.3.4 Modelling and measuring flexibility

Wiklund (2017) noted that there may be no obvious way to measure and quantify
flexibility, although it could possibly be evaluated in a model implicitly by look-
ing at some other measure. He suggested that by observing some other relevant
measure (e.g. cost or delivery performance) while changing some variables (e.g.
volumes, order deadlines or supplier lead times), then it is possible to get some
insight of the flexibility of the production.

Pehrsson (2017) claims that evaluating the flexibility of a production system
using simulation is mainly applicable in the form of stress testing different setups,
i.e. analysing the limits of the system. He exemplifies this with testing the possible
width of the product range. Agreeing on their applicability in simulation, Mark-
lund (2017) regards such stress tests rather as measures of robustness. He further
explains that flexibility in essence is connected to the time it takes to adapt to
different circumstances. Therefore, measuring flexibility in a simulation model will
revolve around time (Marklund, 2017).

Marklund (2017) considered volume flexibility to be the dimension of flexibility
which is probably most easily measured in a simulation model. By observing the ef-
fects on constraints and bottlenecks of ramp-up and ramp-down in the production,
measures can be done on the ability to meet changes in demand (Marklund, 2017).
Measuring product mix flexibility can sometimes be done similarly as volume flex-
ibility, according to Marklund (2017). Although, he added that besides only con-
sidering the constraints of the system as-is, there might be additional requirements
such as investing in new machines. When measuring the flexibility, consideration
must then also be taken into account on how much time it takes for the delivery

?Small batches leads to more setups, which leads to more scrap, and vice versa.
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and setup of the machine (Marklund, 2017). Marklund (2017) explained that these
kind of factors are harder to measure in a simulation model as they will require
additional assumptions to be made as well as modifications to the model itself.
Measuring flexibility in a simulation model is therefore easier when studying the
effects on a factory with fixed conditions, i.e. when the structural properties of the
simulation model are not changed (Marklund, 2017).

4.3.5 Aligning simulation with purpose

According to both Marklund (2017) and Pehrsson (2017), there is in principle
no constraints in what you can simulate. The limitations are rather set by the
complexity of modelling different aspects. Marklund (2017) however stated that
in practice, modelling requires assumptions and simplification to be made. If this
were not the case, the model would become just as complex and hard to interpret
as the reality itself, he added.

When developing the simulation model, it is necessary to understand what the
most important parts of the dynamics are in order to know what to make simplified
assumptions about. The factors that are known to never constrain the system can
be simplified to provide a less complex simulation model, without losing accuracy
(Marklund, 2017). One of the benefits with simulation is the great flexibility of
doing assumptions and not being constrained by mathematical tractability, Mark-
lund (2017) notes. What are the most important parts of the dynamics is however
not static, but depend on the purpose of simulating. Marklund (2017) therefore
cautioned that, before initiating a simulation project, it is essential to know the
true purpose of doing it.

Furthermore, when the simulation model has been developed, consideration
must be taken into what to measure. What you can measure in the simulation
model without making modifications is dependent on how general the model is,
Marklund (2017) noted. He further explained that the inherent flexibility tends
to result in the incorporation of unnecessary and irrelevant details when mod-
elling simulations. However, as the model becomes more general, its complicity
quickly increases, inflicting on the user-friendliness. To obtain the right informa-
tion from the model, it is important to not just doing what you can do, according
to Marklund (2017). Otherwise the decision-makers risk getting information over-
load. Therefore, it is imperative to be precise about the purpose of the simulation
and aligning it with objectives of the user (Marklund, 2017).

Marklund (2017) underlined the importance of understanding that the simu-
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lation model is in fact a model, not the reality. An issue with simulation is that
there are always events which can not be captured by the model, according to
Marklund (2017). He exemplified with different production plans generated by
simulation optimisation; they might have the same aggregated performance, but
at the same time, they might be unequally attractive due external factors that the
production planner knows about. Hence, Marklund (2017) argues that the final
judgement about what is the best course of action can not be made by simulation.
He further underscored that the simulation model will never by itself solve what
needs to be done to improve the production system. Making the decisions, and
suggesting actions on how to achieve a certain objectives, must ultimately be done
by people with in-depth knowledge and understanding of the operations, claimed
Marklund (2017). However, he still emphasised the value that simulation provides
through decision support, learnings of the production dynamics, and understanding
of the implications of decisions on various parameters.

4.4 Performance measurement in simulation

This section will focus on discussing what type of decision support a simulation
should provide, and its implications on what is suitable to measure in a manufac-
turing simulation model. It will especially focus on the conditions of modelling cost
together with a simulation model, including a discussion about potential benefits
and pitfalls.

4.4.1 Selecting performance measures

From a general perspective, Videsson (2017), Pehrsson (2017), and Mark-
lund (2017) agreed that what PMs are relevant depend on the strategic goals and
the objective given the current situation of the organisation. Videsson (2017) exem-
plified by noting that whether the organisation operates with a pull or a push supply
chain strategy will affect what is relevant to measure. Marklund (2017) remarked
that if the manufacturing organisations are in analogous situations, their goals and
objectives are in general similar. He continued with pointing out that there is
always an inherent goal to increase efficiency in production. Therefore, while the
specific PMs might differ, he claimed that there is a finite set of them which are
relevant. Structuring the PMs by simulation application or a similar distribution is
therefore perfectly reasonable as a general classification of PMs (Marklund, 2017).

Pehrsson (2017) and Marklund (2017) both confirmed that what is relevant
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decision support, and in extension what PMs are relevant, also depend on the type
and level of the decision to be made. At the senior management level, the annual
report and its inherent PMs are in focus, and for the factory manager, there are
some aggregated PMs for the specific factory that is interesting, Marklund (2017)
clarifies. These aggregated PMs may then be broken down into different PMs for
production lines and inventories (Marklund, 2017). Consistent with the perfor-
mance pyramid (see figure 7), Marklund (2017) noted that there is a hierarchy of
PMs that on the top level aggregates into profit. By breaking down the profit into
a set of PMs that steers in the same direction, he argued that they will collectively
contribute to an improved performance either independently or through synergis-
tic effects. Marklund (2017) exemplified that inventory turnover ratio and working
capital can together create such leverage effects that will lead to increased profit.
This holds true even without the use of simulation, he concluded.

What decision-support is needed and its relation to different decision levels
is connected to what you simulate, according to Pehrsson (2017). While multiple
PMs might be relevant for a decision type given the strategy and current objectives,
simulation also brings a technical aspect to the selection process. Pehrsson (2017)
argued that which specific PMs to chose also depend on the difficulty of modelling
them. The desired PMs must be weighed against how complex the required data is
to model (Pehrsson, 2017). Viewed from the opposite perspective, the operational
level of the simulation model dictates what PMs you can look at. Videsson (2017)
further added that there are typically multiple input parameters and only a few
output PMs when simulating. This is partly due to that directly measuring the
input parameters serves no purpose (Videsson, 2017). However, the main reason is
that what is measured in the simulation model should be focused on the objective,
according to Videsson (2017).

Marklund (2017) stressed that what is measured should be grounded in what
you want achieve in the operations, and not in the simulation model. He insisted
that there must be an in-depth understanding of the real operations to know what
information is important for improving it and driving it forward. This is the key
for selecting the right PMs, according to Marklund (2017). It is also important
that the decision-makers know which objectives are prioritised, Pehrsson (2017)
added. Ultimately, it is the preferences of the decision-maker that determines the
weighting of different objectives. There are in essence only a few desirable PMs

which are comprehensible and provides an understanding of what really happens
(Pehrsson, 2017).

In slight contrast with Pehrsson (2017), Marklund (2017)argued that it is pre-
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sumably not valid to claim that the selection of PMs is special for simulation. He
claimed that simulation is just a tool for testing the effects of improvements, but
what is measured in a simulation could also be measured in the factory. Further-
more, when evaluating the performance of an improvement after its implementa-
tion, the same type of operational measures would be relevant as when testing it in
the simulation (Marklund, 2017). Explaining his standpoint, he stated that in the
end, the same PMs must be implemented in reality as in the simulation to enable
managing the operations according to them. Wiklund (2017) agreed, and further
commented that when modeling with measures in general, it is important that they
can be validated against real data.

However, Marklund (2017) added that it is possible to measure parameters in
a simulation model which might be difficult to measure in reality. The major dif-
ference he pointed out was the time factor: Some impacts, such as a change in
inventory levels, might take years in reality before their impact is noticed on cer-
tain parameters. Although, with simulation, these effects can be seen within hours.
Simulation therefore makes it more convenient to follow up changes than in real-
ity (Marklund, 2017). Furthermore, Marklund (2017) affirmed that the simulation
model can facilitate the measurement of parameters that support the decision-
making, but are neglected during implementation. On the shop floor, the com-
plicity or resource demand of measuring these parameters might not outweigh the
knowledge they contribute (Marklund, 2017).

Marklund (2017) further regarded simulation as a learning process, and that
initially identifying the best PMs might be hard. Through experience, the increased
understanding of what the simulation is capable of will aid the user in identifying
PMs which were initially neglected (Marklund, 2017). However, Marklund (2017)
stated that when this threshold of knowledge is reached, the user would most likely
have found all the relevant PMs. Thereafter, the continued learnings will rather
be about understanding the dynamics of how these PMs are affected by different
decisions, he concluded.

4.4.2 Cost modelling and financial performance as decision sup-
port

This subsection covers the external view interviewees responses regarding cost mod-
elling and the use of financial PMs (especially different aspects of cost) as decision
support for manufacturing simulations. First, it describes the benefits, then the
issues, and last, the alternatives to using financial PMs.
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Why financial data might be desirable

Pehrsson (2017) noted that financial information is often desired when making a
decision. He highlighted that including cost models can provide a huge support
for adding credibility to capital budgeting when trying convince management on
an investment decision. According to Pehrsson (2017), it would be outstanding
to connect financial data to a simulation model if it is well documented, easy
accessible, and transparent in the organisation. However, he pointed out that this
is rarely the case.

Marklund (2017) considered cost to be an attractive PM to use for comparison.
He described that when deciding between actions with different trade-offs, there
is a risk of comparing apples and oranges. In order to compare different actions,
Marklund (2017) claimed that there needs to be some kind of translation between
their cons and benefits. He explained that one way of solving the problem is
using a multi-objective optimisation with different weights which are connected
to the simulation model. Another way is translating the simulated operational
performance of the actions into monetary terms in a cost model (Marklund, 2017).
When translating multiple performance dimensions to one, costing is the general
approach in the industry, according to Marklund (2017). In the end, increasing
the profit is what matters, he affirmed. However, he noted that an increased profit
ultimately breaks down into the performance on different operational parameters.

Issues with cost modelling and financial performance measures

Although the arguments varied, there was a general consensus among the inter-
viewees that costing has many pitfalls while its benefits are limited. According to
Pehrsson (2017), finding the detailed data to map the operational costs is hard.
Acknowledging the models developed by Jan-Erik Stahl and his team, he con-
firmed that there indeed exists excellent, detailed economic models. However, his
experience was that such models are impossible to use in practice, due to their ex-
tensive data requirements. In order to connect the economic data to the simulation,
Pehrsson (2017) argued that either the models need to be more easily operated or
approximations need to be found.

Complicity of setting cost parameters

Wiklund (2017) believed that there is no apparent and simple way to translate
operational parameters and events into cost. Noting that it can be difficult to do
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in practice, he suggested that high utilisation rates for example can be priced using
a factor representing the probability for overtime or a set of factors connected to
master plan adherence. Wiklund (2017) added that setup times are often quantified
in financial terms °. Although, he indicated that the accuracy of the estimate or
assumption is usually not critical; it is merely some assumed cost of non-value
added time. He further pointed out that setup time is not always the same as
changeover time, and that the start-up scrap rates may also be different in the
different cases.

Marklund (2017) agreed that it is generally hard to set costs on production
events. Cost of sourced material and services is obviously well-known in an or-
ganisation, but the unit holding cost or the cost of quality in terms of goodwill
and future effects are for instance much harder to determine (Marklund, 2017). He
explained that adequately setting the cost parameters will therefore require much
effort as well as maintenance to keep them up to date. Marklund (2017) stressed
that if the cost parameters are not correctly validated, cost is a very dangerous PM
to use for drawing comparative conclusions.

Marklund (2017) further cautioned that cost modelling is subjected to the con-
cept of garbage in - garbage out. Wiklund (2017) alluded to this subject, explaining
that cost modelling typically requires a set of assumed standard cost parameters.
Knowing the true cost of some operational events can be difficult since they in
turn may depend on multiple different factors which are hard to estimate (Wik-
lund, 2017). Marklund (2017) stressed the importance that the translation to cost
is done properly, i.e. that the pricing of different parameters is not done arbitrar-
ily. If the cost parameters are set more or less arbitrarily, it will result in arbitrary
comparisons due to inaccurate skewness in the weighting (Marklund, 2017). He
exemplified two cost parameters that are typically the subject of arbitrary cost
modelling; 1) cost of setups, affecting the manufacturing cost, and 2) the holding
cost rate, affecting the inventory cost. Wiklund (2017) continued on this list, ex-
emplifying 3) stock-out costs, which are affected by lost sales, extra cost of express
delivery, etc.

Marklund (2017) noted that if the evaluation of the actions are made using one
specific cost dimension and the same cost parameter value, then one incorrect input
parameter may not be an issue. The offset from the true parameter value will affect
both scenarios proportionally : However, if one cost PM is to be balanced against

3Quan‘cifying setups in financial terms is for instance required for computing economic order
quantity (EOQ).
4E.g., if inventory cost is the observed PM and the holding cost rate are equal for the scenarios
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other PMs with different cost parameters, then it matters how these parameters
are set (Marklund, 2017). Even if only one cost parameter is incorrect, it will affect
the total cost and misrepresent the performance of the scenarios with potentially
decisive impact, Marklund (2017) warned.

Usability of measuring the financial impact of improvements

Regarding modelling the financial impact of production improvements, Wik-
lund (2017) explained that it is typically dependent on the situation. He exemplified
with the financial impact of an efficiency improvement generating higher through-
put: Regarding the direct financial impact of higher throughput, there must exist
a demand that can swallow it, otherwise it is not meaningful to calculate the value
of the extra output (Wiklund, 2017). Nevertheless, Wiklund (2017) argued that an
efficiency improvement can be beneficial indirectly even if it is not generating more
sales immediately. He explained that it can generate free time for operators to do
other things; in a Lean organisation this could for example be employee training
or work with continuous improvement efforts. Concluding, Wiklund (2017) stated
that saving time is always relevant to some extent, but mostly when occupation in
the factory is high.

Pehrsson (2017) believed that, if the product range is small with few variants,
the positive impact of an improvement could be measured with running cost by
using the simulation together with a running cost model. However, if product
range of the production flow is wider and more complex, he considered it better to
measure the positive impact in terms of master plan adherence and minimum lead
times. He concluded that the latter might even be better in both cases as it gives
a truer and more straightforward depiction of the impact of the actions. If the
actions makes it possible to produce efficiently in the system, then it is probably
profitable in the sense of running cost as well.

Last considerations on cost

Marklund (2017) maintained that even if correctly translated financial PMs are
implemented, they should still be used in conjunction with non-financial PMs.
However, he made a final point regarding the benefits of using costing with a sim-
ulation model. By analysing both financial and non-financial PMs of simulations,
discrepancies from the real-world impacts can be made visible (Marklund, 2017).
This setup can be used successfully to identify incorrect cost parameters used both
inside and outside the simulation model, according to Marklund (2017).
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Last, Marklund (2017) declare that monetary terms are generally not prefer-
able to measure on the shop floor, but rather quantities, time, availability and
other parameters that can be physically measured. Transforming such operational
measures into financial measures and indicators will generate great uncertainties in
how they are actually quantified (Marklund, 2017). Pehrsson (2017) summarised
by stating that cost models are often not necessary; it is often quite straightfor-
ward knowing whether or not a decision is profitable by studying the operational
measures.

Alternative to modelling cost

Rather than using an inadequate translation to an aggregated financial PM, Mark-
lund (2017) considered it better to focus on operational measures and weigh PMs
of different dimensions by mapping out their interrelations.

Pehrsson (2017) noted that the manufacturing objective is always the same;
produce what has been planned or ordered with the minimum resources. Instead of
looking at aggregated cost, he argues that it is more effective to analyse bottlenecks
and other constraints in the production. According to Pehrsson (2017), you can
always assume that if you lower your WIP, you will lower working capital. If the
production works according to plan, efficiency is not lost (so that run-time needs
to increase) and deliveries are done in time, then removing constraining factors in
the production will always be the most profitable option (Pehrsson, 2017).

Relating to simulation, Pehrsson (2017) explained that you can simulate what-
if scenarios, or optimising towards minimising and redistributing buffer space, to
achieve a lean buffer capacity. This will result in an efficient production system
with minimised working capital as well as revealed constraining factors. Working
in parallel with bottleneck analysis will therefore ensure optimal efficiency given
the current conditions, according to Pehrsson (2017). This will in turn always have
an indirect positive impact on the financial parameters (Pehrsson, 2017).
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Conceptual Analysis

This chapter will analyse the conditions for decision support and performance mea-
surement in manufacturing simulation. The basis of this chapter are the findings
from the theoretical view and the external view. The chapter will cover both analysis
and discussion on the material from each view separately and conjointly, highlight-
ing both agreements and disagreements between the views. Furthermore, it will
present the authors view on the topics, including inferences made and additional
considerations.

5.1 Simulation and decision-support

The section will discuss how a simulation model and its corresponding PMS should
be designed to provide decision support, by facilitating knowledge creation. It will
cover the relation between simulation-based decision support and the knowledge
pyramid, and present potential pitfalls of simulation models.

5.1.1 Simulation and knowledge creation

Simulation and its application in manufacturing can be viewed from many different
perspectives; this study has so far presented some of them in for example table 7
and section 3.3.4. In the view of simulation as decision support, whether in a
Decision Support System (Decision Support Simulation System) or on its own, it
can be connected to the knowledge-based view of decision-making. Figure 12 below
proposes the role of simulation in this view.
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Simulation as decision-support
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Figure 12. Simulation as support in knowledge-based decision-making. Based on
(Holsapple, 2008)

As discussed in section 3.1.1, one step in the process of arriving at a decision
regarding a set of alternative actions (or courses of action) is to evaluate their
implications. Simulation can be a tool for that, as shown in figure 12 above. The
question remains, however, how such implications should be described in order for
the decision-maker to be able to compare them and ultimately arrive at a decision.

Since the decision-maker compares the alternatives’ implications on the basis
of purpose, goals, constraints and pressures, it appears a reasonable claim that
the simulation-based decision support should in some way be connected to these.
Connected to the pressures, the information it provides should be relevant to the
individual decision-maker’s situation. Regarding purpose, the purpose of mak-
ing a decision in a certain decision area, should be the purpose of simulating.
The information that the simulation tool provides, should also be aligned with
organisational- and/or individual goals in a certain decision area. Finally, for the
constraints that the decision-maker faces, the simulation-based decision support
should indicate whether they are violated or not, or at least provide the informa-
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tion needed to evaluate that.

In extension, any form of decision support, including simulation-based, should
provide information aligned with the four considerations above. If for example:

1) cost reduction is an important goal;
2) keeping costs low is an objective or a pressure on the decision-maker;

3) low cost is in fact a constraint; or

4) the purpose of making a decision in the first place is to lower (or keep low)

cost,

then the simulation-based decision support should include these aspects. Either
by effectively evaluating them, or at least by providing knowledge on how they are
affected.

Decisions in this view are per definition based on knowledge, or more specifically
the ”progression of knowledge”. It therefore follows that simulation in the form
of decision-support should in some way facilitate this progression. A modification
can be made of figure 4 on page 37, highlighting the role of simulation in this
progression.

Knowledge ofincreasing'—— Evaluate Decision L
usability and relevarice Choice Decision-maker
for a decision setting
(sense making) <. Weigh Judgment
ST e
------------------------------------------------------ Bt
nsi . .
g . Simulation
Design i«<—as decision-
Structured Information support
Selec Information -
Intelligence <+ simulation model
Data :

Figure 13. Simulation-based decision-support in knowledge progression. Based on
Holsapple (2008) (In turn based on Simon (1960), Van Lohuizen (1986))

In figure 13, it should be noted that it cannot be universally and exclusively
postulated which roles in the knowledge progression that a simulation model in
itself, or a DSSS, can and should have in different cases. It depends heavily on what
type of simulation model that has been developed, as well as what the decision-
support tool is designed to be. However, the simulation model in itself is merely
a technical application which generates and gathers Data on a variety of different
variables. The simulation model’s output could in extension be referred to as
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selected Information in the knowledge progression.

In order for a simulation application to provide any progression in the knowledge
states, and thus constitute actual decision-support, a reasonable claim is that it
should encapsulate more of the knowledge progression by itself. Merely generating
data or information in large quantities, is not likely to support the decision-maker.
On the contrary, it might even subject him/her to information overload, as dis-
cussed in section 3.1.1, and through that instead preclude any decision from being
made whatsoever. The decision support tool could therefore facilitate the step of
analysing the information into Structured information and possibly also synthesise
it into Insights. However, as was deduced in section 3.3.7, simulation is in principle
not a decision-maker in itself and a decision-support tool is probably not able to
move any further than the Design phase on its own. At a reasonably complex level
(e.g. without Artificial Intelligence), it is not capable of providing any judgement
on the insights nor making the actual decision. In other words, the technical ap-
plication should meet the human decision-maker somewhere half-way in terms of
creating the knowledge required to make a decision.

5.1.2 Simulation, learning and understanding

The application of simulation as decision-support in knowledge-based decision-
making can be seen as condensing data on the manufacturing system’s performance
in a certain simulated scenario, into relevant decision-support. This is therefore
mainly concerning how to measure the implications and how to present them to
the decision-maker. However, this type of scenario evaluation only captures one
of the benefits of using simulation as decision-support highlighted by Semini et al.
(2009) in section 3.3.2. The other benefits revolve more around how simulation can
improve understanding of the real manufacturing system and how it can be used
as an analysis or communication tool.

In the external view on simulation, Marklund (2017) suggested that the perhaps
best way simulation can be used as decision-support is to create understanding of
how the system’s dynamics work to affect performance. He also noted that the
process of building the model itself often creates a large portion of that learning.
This was much in line with Pehrsson (2017), who claimed that bottleneck analysis
in his experience appears to be the perhaps best way to use simulation as decision-
support.

It can be concluded that evaluation of alternatives is not the only way to ap-
ply simulation for decision-support, and perhaps not even the application with the
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highest potential benefit. Instead of merely showing the decision-maker the per-
formance of the manufacturing system in one specific scenario, with one large set
of specified input parameters on a few performance objectives, simulation might
be able to provide insights as to which parameters to adjust in order to improve.
Marklund (2017) noted that simulation in the end is not able to provide the final
answer on the most appropriate course of action, but as Pehrsson (2017) suggested,
it might be able to reveal the true causes of issues and the improvement areas with
the highest potential. It has also been shown in literature that structured method-
ologies such as the Theory of Constraints and philosophies such as the Japanese
lake effectively can be applied through simulation. The synergies not only regard
the automatised detection developed by Pehrsson (2013), but also through the
fact that the systematic but sometimes experimental approach can be applied in a
virtual environment and not on the real system.

5.1.3 Aggregation, integration and modelling issues

After considering the role of simulation in the knowledge-based view of decision-
making and knowledge progression, one should consider how to go from a simulation
model generating data or information, to a useful decision-support tool.

Given that the decision-maker would select the alternative with the best overall
performance in his or her decision area, one way could to be through Aggregation.
This would mean increasing the relevance by aggregating the performance data
on several areas in the simulated system, into one or a few overall performance
measures. In other words, aggregation can also be described as the amount of
output parameters per the amount of input parameters. This type of aggregation
can in principle be in two forms; Information aggregation and Time aggregation.

Information aggregation describes to what extent the DSSS is holistic and bun-
dles performance in individual parts of the simulated system into some form of
overall performance. The decision-maker is likely to be more interested in whether
the performance of the whole simulated system is high or low, rather than whether
several individual parts are.

Time aggregation refers to whether the DSSS tool generates few or many evalu-
ations of performance in the simulated time period. An example could be whether
it shows the average occupation in a buffer, or its development over time. A
decision-maker could be more interested in one or the other, or they could both be
important.

When building the simulation model, one should also consider what ”overall
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performance” really entails. This can be described as the level of Integration. In-
tegration can further be described in two different dimensions; Vertical integration

and Horizontal integration.

Vertical integration refers to the inclusiveness of the simulation model. In
extension it describes how much of the actual system that the decision-support
tool considers. A reasonable level of vertical integration means considering an
adequately large part of the actual system, in the simulation model from start.
Again, the decision-maker may be more interested in whether the performance of
the whole, actual, system will be high or low, rather than whether the performance

of the simulated parts of the system is.

Horizontal integration refers to what dimensions or types of performance the
DSSS considers. This is related to the objectives and dimensions of performance
in the simulated system, that the decision-maker is interested in, and thus what

the decision-support tool should capture.

A

Aggregation

| Process A |'>| Process B | | Process C

Integration

Figure 14. Aggregation and integration of measures and simulation model in a DSSS

Figure 14 above shows the principles of aggregation and integration by ex-
emplifying two consecutive processes with an arbitrarily large set of performance

measures on each.

The third process, which in reality follows after them, might be affected by the
performance of the previous two, but is not included in the model. The boundary
of the vertical integration is thus set around Process A and B. The number and
types of measures used on the simulated processes describes the horizontal inte-
gration. The level of information aggregation is to what extent several measures
are aggregated to a few in the DSSS tool. The level of time aggregation can be
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described as whether the measures reflect some average over the whole simulated
time period, or several sub-periods, or single, continuous snapshot-measures of the
system performance over time.

Translation

It should be noted that the measures Al, A2, ..., in figure 14 are not necessarily
the same type of measure (e.g. time, cost or efficiency). Furthermore, Process A
may be completely different from Process B, as they for example could describe a
production line and a warehouse. Therefore, the measure B1, B2, ..., could also
be completely different from A1, A2, ..., etc. The implication of this is that in
order to aggregate the measures A, B and AB from their respective components,
one would need to find a translation between them. If they are closely related,
then the translation could be quite straightforward. If they are for example average
machine utilisation and service level respectively, it is most likely more difficult.
This will be further discussed in section 5.2 below.

Integration and objective alignment

The level of integration determines what the DSSS tool evaluates, and on what
attributes. Therefore, in order for the decision-maker to effectively be able to
make a judgement about what the tool presents, it is important that the level
of integration reflects his/her objectives. If the decision-maker is interested in
improving the productivity, while keeping WIP and inventory low, the level of
horizontal integration should cover these measures. In terms of vertical integration,
it is not enough to set the boundary only around a production line, it also has
to consider the warehouse. The need for aligning the simulation model with its
purpose and the objectives of the user was firmly stressed by both Pehrsson (2017)
and Marklund (2017). If these are multifaceted, the level of integration becomes
higher, as well as the amount of data and information within the model. In order
to avoid information overload, a higher level of integration is likely to require more
aggregation as well.

The integration trade-off

Despite the need to capture all of the decision-maker’s objectives, a high degree
of integration could become problematic, as the scope of the simulation model
would increase. As Robinsson (2015) has shown, not only would this increase
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require substantial effort while giving small payoff in model accuracy, at some
point the accuracy might deteriorate completely. Another issue is where to draw the
boundary of what peripheral parts of the system to include. Although the decision-
maker might have a clearly defined area of responsibility, it can be questioned why
he or she should ignore the effects that changing the system might have on other
parts of the Supply Chain. Looking too narrowly may cause sub-optimisation
and/or silo thinking (see section 3.2.5), but the boundary nevertheless has to be
drawn somewhere.

The aggregation trade-off

Aggregation can to some extent be described as a question of what the DSSS tool
ultimately should do with the data that the actual simulation generates. If the
simulation model generates a time-log of virtual products entering and leaving a
modelled warehouse, one aggregation would be the average inventory level. If the
modelled system consists of several warehouses and buffers, a further aggregation
could be the total average amount of inventory or WIP in the system during the
simulated time period.

From the external interviews, some scepticism was however expressed towards
a high degree of aggregation as basis for evaluation (Pehrsson, 2017), (Mark-
lund, 2017), (Videsson, 2017). It appears that aggregation in itself may conceal
what the actual issues are in the system, as well as detach the evaluation from
the actual behaviour of the system. Pehrsson (2017) noted that aggregated mea-
sures should function as criteria in solution screening, rather than evaluations for
comparison of alternatives.

Regardless of whether the aggregation is made in the form of cost mod-
elling/financial measures or some operational measure, it seems to be the subject of
a trade-off. On one hand, it appears to be desirable and to some extent necessary
in order to provide a progression in the knowledge states, and thus provide usable
and interpretable decision-support. On the other hand, aggregation seems to have
the drawback of a loss of detail. A loss of detail in a DSSS can have at least two
consequences.

First, it hinders one of the benefits of simulation highlighted by Semini et al.
(2009) as well as expressed by Marklund (2017) and Pehrsson (2017); namely the
learning and understanding of system behaviour.

Second, it risks making a decision-support tool something of a ”black-box”.
The more processing the application does of the simulation data and the less it
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shows of the actual simulation process, the more questions the decision-maker is
likely to raise regarding its accuracy. That is, the perceived credibility of the DSSS
tool outputs could decrease. Particularly in the case of cost modelling, the actual
accuracy in itself also risks being low, due to the complexity of building, validating
and maintaining such a model (Pehrsson, 2017), (Marklund, 2017). Conclusively,
depending on how the aggregation is done, there might also be a loss of actual
credibility if reality proves the model wrong.

5.1.4 Summary

With the knowledge-based decision-making model as basis, one should consider
both the level of aggregation and the level of integration when using simulation as
decision-support. In principle, it appears that:

1) High degree of integration is difficult to achieve and may lead to losses of
accuracy due to complexity

2) Low degree of integration may lead to sub-optimal decisions and silo-thinking

3) High degree of aggregation may lead to loss of credibility, understanding
(black-box) and learning

4) Low degree of aggregation may lead to information overload and loss of
decision-support relevance

Figure 15 is proposed for visualising how aggregation and integration should be
considered jointly, with respect to the identified issues listed above.
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Figure 15. Aggregation-Integration Matriz (AIM). A mapping matrix with integration and
aggregation as separate dimensions.

5.2 Measuring manufacturing performance in a simu-
lation model

The key difference between performance measurement in a real system and on a
simulation model is the conditions for measurability. The technological properties
of a simulation model offer both limitations and possibilities in terms of measura-
bility. The three significant differences between the performance measurement in
a simulation and in real systems are the factors of time and resources and mea-
surability due to modelling complexity. In the following part of the section, these
differences as well as their implications will be highlighted and discussed in detail.

5.2.1 The time factor

The arguably most important difference in measurability is that reality is subjected
to time; without a forecasting tool, it is not possible to measure what has not yet
happened. It is however possible to look backwards and draw inductive conclusions
on what will happen in the future based on historical outcomes, although it is
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impossible to be sure that history will repeat itself. Furthermore, the reliance on
historical data only takes you that far; if you want to predict what will happen
under new conditions or during unprecedented events, then the historical data
will not be sufficient. Due to the complexity of a manufacturing system, with its
inherent stochastics and tangled interdependencies, it is practically impossible to
make any accurate predictions without an advanced forecasting tool.

On the other hand, a simulation model can effectively predict and measure
future possible outcomes, as it is able to manage the manufacturing system’s com-
plexity. It is however important to note that a simulation model is not a time-
machine. It can only predict what is ltkely to happen given the conditions that
are modelled. Hence, the more accurate the model, the better the prediction. The
trade-offs between accuracy and complexity is discussed in section 3.3.3. How-
ever, as Marklund (2017) noted, simplifications can be made on factors known to
never constrain the system performance without loosing accuracy. Nevertheless, as
Marklund (2017) pointed out, the simulation model is a only model, and will never
reach an accuracy that truly represents reality. Furthermore, the manufacturing
system operates in an external environment, which will lead to events happening
which the model cannot take into consideration.

Besides the possibility of measuring potential future outcomes, the time fac-
tor gives rise to questions regarding the tense of the PMs. Are PMs lagging or
predictive when they are measured as future outcomes in a simulation model? Ac-
cording to Pehrsson (2017), normally lagging PMs can indeed be considered to be
predictive when applied on the output of a simulation. Moreover, if they can be
considered as predictive, the historical critique against financial PMs for being lag-
ging (Parker, 2000) is arguably invalid when applied in a DSSS. This opens up for
a higher relevance for financial PMs when designing a PMS for the DSSS. However,
the critique that financial PMs often are very insular and inward-looking, as well
as missing to include less tangible aspects (Parker, 2000), is not mitigated by the
change of tense.

The claim that outcome PMs can be considered as prognostic in a DSSS should
not be misinterpreted as that they make predictive PMs redundant. The outcome
PMs are only prognostic of what potentially will happen in the simulated time-
frame, not of what happens thereafter. It is possible to argue that if it is desirable
to study what happens after the simulated time-frame, one can just do another
simulation with a longer time-frame. However, returning to the issue regarding
the accuracy of the model; the further you simulate in the future, the greater
will the impact of the discrepancies between the reality and the model be. When
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accuracy is of relative high importance, these discrepancies will matter, rendering
the simulated far future outcomes unreliable. Simulating over a long period is
not even applicable in all cases; for instance, when simulating a production plan
stretching over two weeks, it is not meaningful to look further in time than the
plan itself. However, measuring predicative on the implications on for example
the next production plan might still be important. Predictive PMs may also be
used to illuminate the progress of reaching objectives which might be far away in
the future, which might be highly pertinent on short-horizon simulations (Melnyk
et al., 2004).

5.2.2 The resource factor

Marklund (2017) commented that what is relevant to measure in a simulation model
is equivalent to what is relevant to measure in the real system. While this might
be true, what is relevant to measure does not necessarily correspond to what can
practically be measured. The data which can be measured in a real system is in
practice limited by the organisation’s resources, as it requires physical equipment or
actual people to measure all data (Marklund, 2017). The consequence is that what
PMs are used in the real system must be prioritised by weighing their individual
benefits in terms of knowledge contribution against the cost of measuring them
(Neely et al., 1995).

A simulation model does not require physical measurement, and is therefore not
subjected to the limitation of resources. On the contrary, it is possible to measure
every operational parameter included in the model automatically with the press
of a button. As a result, the relevant PMs which in the real system are neglected
due to the complicity or cost of measuring them, can be measured in a DSSS. This
implies that the only consideration to what PMs to select is their benefit.

While this is theoretically true, the complexity of accurately modelling certain
aspects and parameters in the manufacturing system renders the notion practically
false. The selection of PMs for a simulation model hence becomes a matter of
balancing the individual benefit of a PM with the complexity of modelling it, rather
than considering the cost. It is however important to note that no matter how high
the perceived benefits are, some aspects are extremely complex to model in a DES.
In practice, there will always be aleatory uncertainties and external factors which
are excluded in the model. This is often due to that they are so complicated to
understand and measure in reality, that there is no reliable data to model on.
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5.2.3 Measurability of performance dimensions

This section covers an analysis of the measurability of the manufacturing perfor-
mance dimensions; cost, quality, delivery and flexibility. It will discuss general
findings and point out what subdimensions are appropriate to model and hence to
measure in a simulation.

Cost performance

Cost performance is the primary competitive priority in more or less all manufac-
turing organisations. This undeniably makes measuring cost performance a high
priority. There has been major criticism on the use of financial PMs' in PMSs. It
is however important to point out that this criticism is directed towards relying
to heavily on them, due their characteristics of being inward looking, exclusive
of intangible aspects and 1agging2 (Parker, 2000). It is undisputed that financial
PMs are necessary in an organisation’s PMS, and their ratio should be in balance
with non-financial PMs. In any for-profit corporation, financial performance can
be considered as the most aggregated measure of performance, and the ultimate
objective (Marklund, 2017). Therefore, financial measures are typically desired by
decision-makers (Pehrsson, 2017).

The suitability of financial PMs do however depend on the level of the decision-
maker; it is more important at strategical level decisions than at the operational
level. The basis of this difference is obviously related to the responsibility areas
connected to the different decision levels. Recollecting the performance pyramid
(see figure 7 on page 45), the financial performance area is located at the business
unit /factory level. It is generally the business unit top managers that have financial
objectives towards the corporate head-quarters, and as such have incentives of using
financial measures.

The aim of this study is however to determine what benefits and issues are equal
and what differs for the real world practice of performance measurement and in
a simulation-based decision support. Cost modelling has been highly favoured by
the advancement of DES, although, it still remains a highly complex and difficult
matter. Furthermore, using cost as a means of evaluating the manufacturing system
performance of simulated scenarios has been questioned. Cost has been questioned

'"When discussing financial PMs in the context of simulation, different measures of cost is
generally what is intended. Therefore, the two concepts will be used interchangeably.

2Recalling the discussion on the time factor in section 5.2.1, the criticism of financial PMs
being lagging is not valid in the context of simulation.
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on two fronts; both for the properties of financial measures and for the difficulty to
model cost in a reliable way. In the following part, these two fronts will be analysed
and discussed in greater detail.

Financial performance measures

It appears that given a valid cost model, generating aggregated financial measures
in a simulation, can provide valuable information to a decision-maker in evaluat-
ing the results of a simulation. However, although financial measures are highly
relevant as decision-support, several issues arise:

1) they are subjected to the aggregation trade-off;
2) they may conceal the actual issues in the operations; and
3) the knowledge they provide is blunt, even if they are accurate.

Regarding item 1), the key benefit of using cost PMs is that they are understood
by everyone in the manufacturing organisation. Furthermore, not only is it best
practice, but cost is arguably the only performance dimension to which all other
dimensions can be translated to (to a certain degree) on the bottom line. Hence, it
can be used to effectively compare different scenarios with different conditions and
performance trade-offs. These benefits are all due to the aggregation of cost PMs.
There are however several negative consequences with cost due to the aggregation.
This is especially the case when considering the use of a total cost PM. While cost
itself is universally understood, it is arguably important to understand what costs.
Not only does a too aggregated cost PM hide what drives the cost, it also prevents
the identification of costs that might be more easily mitigated than others.

As pointed out in item 2), the aggregation of cost, and especially a dominant
focus on cost PMs, conceal why processes cost. Even a valid cost model is not per-
fect, and it should not be expected that a cost model will generate cost predictions
that necessarily are realised. Without knowing the background dynamics of the
cost PMs, they will lose credibility when the forecasts do not match outcome. The
essence of both item 1) and 2), is that cost PMs risk damaging the understanding of
the manufacturing system, which according to Marklund (2017) is the key benefit
of using a simulation model. One should therefore consider carefully what the level
of aggregation should be. It is clear that some level of aggregation is needed and a
way around the aggregation trade-off could be to extract, process and present both
aggregated measured and non-aggregated measures. That way, the decision-maker
can see both an estimate of the overall performance as well as the dynamics lead-
ing to it. This is much in line with the suggestions of both Pehrsson (2017) and
Marklund (2017).
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Furthermore, despite being highly relevant evaluation criteria, financial mea-
sures should be used jointly with operational measures according both to theory
(see section 3.2.4), Pehrsson (2017), and Marklund (2017). The combination of
financial and non-financial PMs have synergistic benefits. As concluded, profit is
the long-term goal of all for-profit organisations. Every process, action and deci-
sion will eventually have a financial effect on the bottom line results. By gaining
an understanding of how they impact reaching the goal is highly advantageous.
However, consideration should be taken so that the use of cost does not lead to
short-termism in reaching cost reductions at the expense of long-term cost perfor-
mance. Last, item 3) is closely related to the limitation posed by cost modelling,
which is discussed in the next part. It mainly regards the fact that financial PMs
do not consider less tangible aspects such as customer satisfaction, goodwill, and
multiple flexibility aspects.

Cost modelling

There are two basic facts that need to be considered when regarding validity of a
simulation-based cost estimation:

1) a simulation model can not represent reality in full accuracy; and
2) a cost model can never represent the true costs in full accuracy.

The bottom line is that a simulation-based cost model will never produce a fully
accurate prediction of the true costs. When the simulation model is lacking in
accuracy, the aggregation property of cost can result in that the inaccuracies of
the cost are leveraged. Even if the cost model is accurately modelled, a crude
simulation may still distort the cost PMs to a degree that the accuracy of the
measures are too insufficient to be used constructively.

The difficulties of accurately modelling cost can be summarised to be that they:

1) require a large amount of accurate input data;
2) are difficult to build;

3) are difficult to validate; and

4) are difficult to maintain.

Concerning item 1), it is a shared property among all cost models that they require
large amount of data, which can make them practically too complicated too feed
to be valuable (Pehrsson, 2017). However, the problem with accuracy might be
just as big a problem. It is crucial that the input parameters are correct for the
model to be valid. A possible solution to easily obtaining financial data would be to
integrate the model with the organisations ERP system or some financial system.
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While this might solve the problem, the integration might be technically complex,
if not impossible in many cases.

What is an input parameter to the cost model varies, as the parameter might
itself be modelled and it is rather the parameters’ components that are the inputs.
If an input to the model requires prior modelling and estimations, such as setup
cost and holding cost rates, then it is crucial that they are done accurately. Feeding
the model with inaccurate data will result in inaccurate cost estimation, that might
have critical effects on the decision-maker’s evaluation (Marklund, 2017).

The issue with correct input parameters is connected to item 2). Even if the
inputs are fairly correct, it all comes down to how the model is built. The main
difficulty of building the model is allocating the overhead costs and other factory
expenses (Marklund, 2017)(Wiklund, 2017). How this is done differs greatly be-
tween different cost model approaches, however the trend is towards derivatives
of TDABC, using time as the main driver of cost. This is arguably a valid strat-
egy when organisations are implementing a Lean philosophy. While possibly more
accurate approaches of tying indirect costs to products exist, such as the use of
machine learning and neural networks, they are also much more complex to build.
Nevertheless, all cost models have their pros and cons, and it is easier to argue
that some models are poorer than others, rather than stating which one is the
best. What cost model to finally use is also dependent on the simulation model, as
it must include all the input parameters required for the cost model.

Regarding item 3), the issue with validating a cost model largely stems from
the issue of overheads and factory expenses as well. How indirect costs are affected
by an action can seldom be accurately traced due to the complexity of the manu-
facturing system. There are furthermore many intangible effects that neither the
simulation model nor the cost model can capture in a satisfying way. Finally, con-
cerning item 3), the cost model is difficult to maintain. Just as with the simulation
model, the cost model needs to be kept updated to be valid. This regards both
keeping the input parameters updated, but also the model itself when processes in
simulation model changes. The maintenance of having the right costs for material,
depreciation etc. requires continuous work if not automatically updated, e.g. by
integrating an ERP system to the cost model.

Concluding remarks

A conclusion is that cost is a highly sought after PM, with high relevance for manu-
facturing organisations and with multiple benefits regarding its usability. However,
the applicability of cost PMs stands and falls with the quality of the cost model
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and its input parameters. If the quality of the model or the input parameters are
failing, then cost and financial PMs should not be used as a basis for evaluation of
manufacturing simulations.

However, a crude cost model might arguably still be valuable as a means of
gaining a holistic understanding. If the model is simplified so that it is mainly
based on prime costs that can be more easily validated, the cost model can serve as
a tool of providing a sense of the cost proportions of different actions and decisions.
An 7in the ballpark” estimate of the cost can hence be highly valuable in bridging
the understanding between the operations and the finance department, as well as
making lower level managers more aware of the cost impact that their operational
decisions have.

Quality performance

Out of the two subdimensions of quality, i.e. product quality and process quality,
it is the latter which is more suitable to model and hence measure in a simulation
model of a production system (Pehrsson, 2017). Modelling product quality is hard
and requires consideration of external factors such as experienced customer satis-
faction. While measuring the performance and features can be done objectively,
those measures do not serve any purpose when evaluating the manufacturing per-
formance. The effect that the product quality in terms of reliability and durability
has on goodwill, and in extension on future sales, could be included in a simulation
model. The effect on demand could be included in a forecasting demand model
connected to the simulation model, or by modifying the demand distribution. How-
ever, the estimation of the impact of goodwill is likely arbitrary, and largely based
on assumptions.

A simulation model can however be effectively used to measure process quality.
The main application of measuring quality performance in a simulation model is by
studying internal failure, such as scrap, rework and waste (Pehrsson, 2017)(Wik-
lund, 2017). Scrap levels are of major concern in modern manufacturing organisa-
tions, both for reducing costs and waste reduction; the latter being a key theme of
Lean for increasing the production flow. It is however important to note that the
scrap level distributions are input parameters in a simulation model. As such, if
the scrap rates are modelled with one-state distributions, the scrap rate will only
be dependent on the processes throughput, and the value of measuring it rather
limited. If the scrap rate distributions are different for different product types,
then another dynamic will be added as the product mix will affect the scrap levels
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as well. Furthermore, if multiple-state distributions of the scrap rates are added,
differentiating between continuous running, setups and changeovers, then the scrap
levels also become dependent on both batch sizes and scheduling. The true value
of simulating scrap levels arises when it reaches the level of complexity including
multiple dependencies. Due to stochastic behaviour of scrap levels, predicting how
dependencies such as batch sizes affect them is highly complicated in reality. On
the contrary, modelling scrap rates with flexible distributions, as well as rework and
waste, can be quite easily adapted into a simulation model, making it an excellent
tool for measuring quality in terms of internal failure.

Pehrsson (2017) also recognised the possibility of studying quality control
strategies in terms of product appraisal in a simulation model. This can for in-
stance be done through what-if analysis by measuring the impact on the internal
and external failures of inserting additional inspections, calibrations or tests in the
model. Hence, it is very much possible to observe the effects of multiple dimensions
of process quality in a simulation model. Although, if the aim is to optimise the
process quality, it is better to use a specialised quality model than a general model
of the manufacturing system. A DES quality model is furthermore not necessarily
the best option (Pehrsson, 2017).

According to the literature, process quality is generally measured as number
of defects (mean time between defects) and cost of quality, or by using techniques
and methods associated with SPC and Six Sigma. Rather than directly measuring
the quality performance in a simulation model, it might be even more interesting
to measure its effect on other parameters (Pehrsson, 2017). Scrap levels affect
the amount of waste and number of reworks in the system, thus having an im-
mediate effect on the throughput rate of the processes and workflow variability.
In turn, this affects manufacturing cycle time, master plan adherence, inventory
levels, etc., ultimately affecting the cost performance, delivery performance, and
flexibility performance. Depending on the objectives and the competitive priorities,
process quality might therefore be more interesting to study indirectly in terms of
other performance dimensions.

Delivery performance

Measuring the delivery performance in a simulation model is similar to measuring
it in a real system. However, this is only true to an extent. The basis of this claim
is that manufacturing performance only represent one side of delivery performance.
The other part, i.e. the distribution of the products from the FGW to the customer
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is not covered by it. While it is perfectly possible to simulate the distribution
of goods, it is preferably done in a special model. Including distribution in a
model for the manufacturing system makes it too complex, at least if the purpose
is to observe the processes in some detail. Hence, the measurability of delivery
performance is not limited by simulation in general, but rather by a simulation
model of a manufacturing system. In the end, it is possible to argue that the loss
of the external perspective renders delivery performance less important in the case
of simulating manufacturing performance.

The measurability of delivery performance in a manufacturing simulation model
will be highlighted in this analysis by going through the list of delivery PMs pro-
vided by Beamon (1999) in section 3.2.2. The first measures revolve around on-time
deliveries. Clearly, when excluding the distribution processes from the model, it is
not possible to measure on-time deliveries in a meaningful way. A more relevant
measure is rather shipped on-time (SOT), defined as an order ready for shipment
from the FGW in full quantity, on-time. Modifying the PMs suggested by Beamon
(1999) for on-time deliveries, the PMs related to SOT could be:

1) Order lateness. Shipment date minus shipment due date.

2) Awerage lateness of orders. Aggregate lateness divided by the number of
orders.

3) Awerage earliness of orders. Aggregate earliness divided by the number of
orders.

4) Percent on-time shipments. Percent of orders shipped on or before the ship-
ment due date.

SOT could be considered as the manufacturing performance prerequisite for on-
time deliveries. However, it is important to underline that the external customer
factor is excluded, i.e. the delivery to the customer. Another consideration is to
how orders are simulated. It is common, and arguably easier, to directly simulate
shipments; i.e. using a distribution or a given schedule of shipments, orders are
”shipped” from the FGW in the model directly when placed. Hence, in such models,
the shipment due date is equal to the order placement date, and backorders occur
instantly when the full quantity of an order is not present in the FGW. When this
is the case, on-time delivery is not meaningful to measure.

Moreover, how the model is designed and hence what is measurable is largely
dependent on whether the manufacturing system operates with a make-to-order or
a make-to-stock strategy. SOT is for instance arguably more relevant for a make-
to-order strategy. At the same time, a make-to-order strategy more or less implies
that orders are explicitly modelled for the simulation model to accurately depict the
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real system. SOT is on the other hand not as important as master plan adherence
(MPA) for a make-to-stock strategy, why explicitly modelling orders might not be
important.

Regarding the measures for fill rate, backorder/stockout, and manufacturing
lead time, they are all applicable in a simulation model of the manufacturing sys-
tem, and can be measured as in the real system. Measuring customer response
time needs to be modified similarly to on-time deliveries; instead of measuring
the time between an order is placed until its delivery, it is only possible to regard
time between an order is placed until it is shipped. The last two PMs suggested
by Beamon (1999), i.e. shipping errors and customer complaints, are however not
possible to capture in a simulation model of the manufacturing system. The former
due to the lack of inclusion of the distribution in the model, and the latter for the
same reasons as with measuring product quality; it is neither possible to capture
customer responses in a meaningful way in a DES model.

Flexibility performance

Flexibility performance is arguably the most ambiguous and multi-faceted dimen-
sion of the manufacturing performance. Not only does flexibility itself disintegrate
into multiple subdimensions, it can not be measured in terms of actual performance
but only as potential performance (Beamon, 1999). As a result, flexibility can only
be observed when reacting to uncertain events. Based on these properties, simu-
lation is indisputably an excellent tool to evaluate the flexibility performance of a
manufacturing system: By simulating what-if scenarios of uncertain events, such
as machine break-downs, demand peaks, delayed raw material deliveries, etc., it is
possible to observe what happens if one of these events would occur without doing
costly tests on the real system.

However, not all dimensions of flexibility are equally easily measured using a
simulation model. Those dimensions that only need to consider changes to the
flow such as volume, delivery, rerouting, material and sequencing flexibility are
generally easier to measure than product mix, change-over, and modification flexi-
bility, which might require consideration on changes to the structure of the system3
(Pehrsson, 2017), (Marklund, 2017). For instance, when a new product is intro-
duced, it might be sufficient to include an estimated increased changeover-time and
scrap-rate, but it may also be necessary to buy a new machine. Then, the time of
e.g. delivery, installation, and training of staff needs to be considered. This can be

%See table 3) on page 47 for descriptions of the flexibility dimensions.
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done either by including it generically into the model, reacting to some stochastic
process which replaces a machine occasionally when a new product is introduced, or
by modelling the specific event. To measure these dimensions of flexibility will thus
potentially require either a more complex model or the specific modelling of the
structural changes. Furthermore, these structural changes will have to be based on
assumptions of their time consumption, which might negatively affect the accuracy
of the measures.

While it is possible to simulate all kinds of uncertain events, it is hard to actu-
ally measure how the system performs in terms of flexibility (Gunasekaran & Kobu,
2007) Wiklund (2017). Without relating it to other performance dimensions, flex-
ibility itself is a qualitative measure, describing how well the system handles the
uncertainties. In fact, flexibility describes the level of deviation from the usual
operational performance caused by the uncertainties. Not only is the simulation
output from DES quantitative, but to assess this deviation, the flexibility perfor-
mance dimensions need to be translated into quantitative measures to observe it.
The collective view from theory and the external view is that the translation is
done by studying the effect on other PMs, such as time, cost and delivery perfor-
mance. Hence, the flexibility dimensions can be measured e.g. as the time it takes
to return to normal inventory levels, the change in on-time deliveries, or the added
cost due to overtime hours.

There are however multiple more ways to measure the flexibility dimensions.
Beamon (1999) presents four formulas on how to measure volume, delivery, product
mix, and new product flexibility (see section 3.2.2 on Flexibility performance).
These formulas are of course only a selection of all existing formulas for measuring
different flexibility dimensions. However, as examples and a basis for discussion,
the continuing part on flexibility performance will discuss the applicability of the
formulas on a simulation model.

Volume flexibility

The formula for volume flexibility measures the ”long-run proportion of demand
that can [profitably| be met” (Beamon, 1999, p. 286). As such, the volume flexi-
bility is measured in percentage rather than a physical unit such as time, amount
or cost. It further defines the volume flexibility as dynamic, depending the relation
between capacity and demand : Moreover, it is important to note that there is an
emphasis on long-run proportion, i.e. it implies the relevance of volume flexibility

4Notably, if the simulation model excludes the demand and only studies the manufacturing
output, then this formula is not usable.
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on strategic decisions.

Regarding the PMs applicability in a DSS, the formula requires two input pa-
rameters:

1) D: the demand during T periods, either as:
i) d;: the demand during period ¢, for T' number of periods; or
ii) the distribution of D; and
2) Omin and Opay: the minimum and maximum profitable output volume during
any period.

If the demand is integrated in the simulation, then this input is already available
for the user. Regarding O,,;, and O,,.«, depending on the complexity of the manu-
facturing system, these parameters can be difficult to estimate without the use of a
simulation. However, if the simulation model is connected with a cost model, these
parameters can with relative ease be estimated by simulating different volumes and
comparing the total cost with sales.

Delivery flexibility

The formula for delivery flexibility measures ”the ability to move planned delivery
dates forward” (Beamon, 1999, p. 288) as the percentage of slack time of which the
delivery time can be reduced. The formula can be advantageously used in DSSS
to evaluate the flexibility of production plans. By knowing the delivery flexibility
of a plan and a system, it is possible to know what service level is reasonable to
agree on with the customers.

Product mix flexibility

Beamon (1999) divided product mix flexibility into product mix flexibility range
and product mix flexibility response. The former is a measure of ”the number of
different product types that can be produced within a time period” (p. 289). This
measure is somewhat crude and does not take into consideration the volume of
each products produced and the profitability. However, using estimations of the
minimum profitable output volume (Op,) from the the computation of volume
flexibility, it is possible to use the simulation in order to compute how many dif-
ferent products can be produced without breaking the limit of minimum profitable
output volume.

Regarding product mix flexibility response, i.e. ”the time required to produce
a new product mix” measured by ”the changeover time required from product mix
i to product mix j” (Beamon, 1999, p. 289), this can be measured in a simulation
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model as well. However, the authors argue that this computation is probably not

benefited by the use of a simulation model.

New product flexibility

The formula for new product flexibility is again crude, defined as ”either the time
or cost required to add new products to existing production operations” (Beamon,
1999, p. 289). As with product mix flexibility response, the authors question
whether this is benefited by using simulation.
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Internal view

This chapter contains the viewpoints from the interviews of internal stakeholders in
various positions and roles at Company X, together with observations from meet-
ings and discussions. A description of the types of interviewees can be found in
section 2.5.1 and for more details of the interviews, see appendix A, table A1. The
interview material is presented in the form of three main topics and respective sub-
topics. These correspond roughly to the structure of interviews, although it varied

depending on the roles of the interviewees.

6.1 Observations from Pilot Project at Factory 1

The observations from the visit at Factory 1 and meetings with stakeholders both
from the factory and the simulation project team, can be organised as follows:

1) Purpose and applications of simulation
2) Evaluating simulation results

6.1.1 Purpose and application of simulation

At Factory 1, there were three main application areas for the DSSS. Firstly, it
would play a significant role in planning decisions through providing the ability
to on a continuous basis test different production plans based on a master plan
stretching over several months. This eventually would develop into a simulation-
based optimisation tool rather than just a means of experimentation. There were
also purely experimental purposes for the tool in two other main decision areas;
Layout design/Investments and Product miz.
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The need for a simulation- and optimisation-based tool proved to be multi-
faceted. The main aspects were:

1) improve cost-efficiency and productivity (key business objectives)

2) improve the coordination between manufacturing, FGW operations and in-
ventory management

3) simplify the task of planning production in the complex manufacturing system

Another important aspect, was the need to be able to respond to changing
conditions, both in the business environment and from new strategic objectives
from the central organisation. Questions were raised regarding how ”fit” the factory
would be to produce a certain product, in relation to other factories and in relation
to the current strategic priorities. Also, the experimentation functionality could
provide valuable decision support in case the manufacturing strategy for example
were to shift from cost-efficiency to flexibility or vice versa.

6.1.2 Evaluating simulation results

One major aspect of the simulation project, and one of the major subjects of this
thesis, was how the tool ultimately would be able to provide valuable, interpretable
and credible decision support, rather than crude simulation output data. There
was consensus among the project stakeholders that this would be more strongly em-
phasised in this simulation project compared to previous ones, to ensure usefulness
of the tool. In addition, it became evident that in order to couple the simulation
model (referred to as the simulator) with an optimisation algorithm (referred to
as the optimiser), there would need to be embedded in the model, a performance
evaluation to optimise against.

The stakeholders were generally open-minded about what could be appropriate
performance measures, but their experience from previous simulation projects had
been that simulation results can be:

1) difficult to interpret,

2) difficult to trust,

3) difficult to compare

4) mutually contradicting, and
5) difficult to act upon.

Their intuition was that one part of the solution was to include financial PMs,
and potentially a ”total cost” of a scenario. There was a particular focus on manu-
facturing costs and inventory costs. Their view was that this would make simulated
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alternatives easily interpretable for anyone and comparable ”euros-to-euros”. Fur-
thermore, the long-term goal for the DSSS was to implement similar ones at other
factories in the company’s supply chain. Cost was argued to be a simple and
universal benchmarking point between factories.

Another observation was that the tool was intended for use by a few, or perhaps
one key stakeholder; the superuser. The primary stakeholder for the intended
decision areas supported by the tool was the Planning Manager, who would receive
training on the tool and become the superuser. He would through the tool receive
decision support and/or optimised production plans for his own planning decisions
and be provided with information on the planning decisions’ joint implications on
the factory floor, as well as on the FGW operations and inventory levels. Also, the
tool itself should include some form of visualisation of the results, e.g. a dashboard,
to make it a user-friendly decision support tool.

6.2 Manufacturing priorities and challenges

From a general company life cycle perspective, Company X is currently in a shift
between a growth phase and a maturity phase (HQ: Proj. Engineer, 2017). The
competition from external suppliers is also becoming stronger. This has several
implications in relation to running the manufacturing operations. An earlier focus,
which is evident particularly from the viewpoints of factory-based stakeholders,
was building capacity for growing volumes. In many of the factories, this mindset
of securing capacity to deliver is still outspoken, partly depending on their cur-
rent demand situation. Now that the company is moving into the maturity phase,
there is a growing interest for, and focus on, efficiency. There has traditionally also
been a strong emphasis on costs, which according to the interviewees, both at the
Headquarters and at the factories, persists. However, the cost focus is materialised
in different ways at different factories, namely as either resource efficiency or flow
efficiency, the latter a more recent priority. Quality was also mentioned as impor-
tant by all the factory representatives, but mainly by referring to the cost of poor
quality or scrap levels.

Along with the increasing interest for flow efficiency comes also manufactur-
ing flexibility. On this matter there seemed to be somewhat diverging views.
HQ: Proj. Engineer (2017) emphasised it as the way forward as the market con-
ditions are changing. Also FAC3: Tech. Manager (2017) mentioned flexibility as
a priority, as the particular factory faces smaller volumes and a greater product
diversity to handle. FAC4: Prod. Planner (2017) was on the other hand ambiva-
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lent towards flexibility, claiming that their production is already fairly flexible and
that increasing it would have negative impacts on the efficiency. His main concern
instead regarded having enough capacity and productivity to meet the demand,
while having several constraints and moving bottlenecks in the production.

All interviewees at the Headquarters and most factory representatives in-
dicated a strong focus on bottom line results, at the factories. Meanwhile,
HQ: BA, Ind. Strat. (2017) and HQ: Proj. Engineer (2017) both emphasised that
some factories are somewhat lagging in the shift towards flow efficiency and flexibil-
ity. The former argued that historical growth has meant that some factories have
been preoccupied with capacity and availability, sometimes leading to higher costs.
When costs and efficiency had been on the agenda, Company X has sometimes
seen competitors outperforming them, despite less resources and smaller volumes.
HQ: Proj. Engineer (2017) highlighted that many of these factories had been grow-
ing in non-competitive, almost a monopoly-like markets, which he proposed as one
likely explanation for this.

In contrast, HQ: Tech. Dev. Manager (2017) claimed that there is a fairly
good alignment among the factories, and with the Headquarters, on the current
manufacturing strategy, the priorities and the ”way we work”. He however pointed
out that there might be some discrepancies as to where they are headed in a few
years time. HQ: BA, Ind. Strat. (2017) also noted the efforts that had taken place
to improve efficiency, mostly had been concerned with resource efficiency, including
a strive towards maximising utilisation.

6.3 Performance measures and information-based
decision-making

The internal view on performance measurement can be summarised as highly
outcome-oriented. The decision-making can however not be described as measure-
driven, especially not on tactical/operational levels in the organisation. Although
it was typically mentioned a number of different measures used and reported on
daily, monthly and yearly basis, most interviewees at the factories considered only
one or a few of them as particularly relevant in their roles. In fact, many were not
really concerned with performance measures and claimed to be relying more on
principles, experience and knowledge about what works well and what does not,
based on the current business situation of the factory.

It should furthermore be noted that many interviewees at the factories had
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difficulties in explicitly answering questions regarding the role of performance mea-
surement in decision-making. Often, they merely referred to ”information” or
7aspects” of performance, which will also be evident in section 6.4 below.

6.3.1 Financial and non-financial performance measures

Among the interviewees, the views on financial and non-financial PMs, as well as
the link and balance between them, were diverse. HQ: BA, Ind. Strat. (2017) em-
phasised that most decision-makers have a distinct financial mindset. He further
suggested that there might be a high acceptance across the company for using finan-
cial PMs, as most decision-makers arguably are more experienced and accustomed
with relating to financial numbers. He further noted that for a person working with
Supply Chain Management, the level of focus on financial issues appears somewhat
unusual. Moreover, HQ: BA, Ind. Strat. (2017) expressed a need for bridging the
gap between those who understand finance, and those who understand logistics
and production.

As evident from the simulation project at Factory 1, financial evaluations of
simulated scenarios had been discussed extensively as a desirable information-base
for decision-making. HQ: Proj. Engineer (2017) highlighted specifically the run-
ning cost. He also observed that collecting information needed to calculate these
financial measures, such as the cost of inventory, is difficult today. In addition, as
interest had grown for flexibility in the production, he sought means to evaluate
and measure flexibility, as well as knowledge about how to increase it.

HQ: Tech. Dev. Manager (2017) acknowledged the existence of a financial mind-
set mentioned by HQ: BA, Ind. Strat. (2017), and further argued that applying
financial on lower decision levels than the strategic, could be beneficial. His argu-
ment was two-folded. First, it would mean that decision-makers to a higher extent
would be "speaking the same language”. Second, he explained that it would be
good for creating a sense of proportions, meaning that decision-makers would be
able to relate financial magnitudes better. He exemplified with a hypothetical case
in which a mid-level technical manager would refuse to purchase a new set of useful
tools for technicians at the cost 5 euros, due to a tight maintenance budget. The
decision might have been different if the financial impact of decreasing the machine
downtime by 50 % through better tools had been evident. However, several inter-
viewees believed that the link between operational- and financial measures is not
very clear.

HQ: BA, Ind. Strat. (2017) reasoned that it perhaps would be difficult to draw
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anything more specific than a ”dashed arrow” from an operational scorecard to a
P&L-statement, but that such an arrow in fact could be desirable. He emphasised
that the mere understanding of financial impacts from operational decisions, rather
than any specific numbers, could improve decision-making significantly. He added
that the accuracy of such numbers is likely to be low in a simulation model, and
for credibility and acceptance purposes, one should probably choose measures that
can be verified. Although, he suggested that some connections between operations
and finance might be quite "hard-wired”.

FAC3: Tech. Manager (2017) also had the opinion that there is no straight
line from operations to finance, although some connection most certainly exists.
He explained that the connection is dependent on the business situation; if ca-
pacity exceeds the demand, improved throughput or efficiency in the factory does
not necessarily result in an improved financial bottom-line, even though such im-

provements may still be beneficial. However, he argued that Quality is in fact
"hard-wired”:

7[...] it’s mot a direct link between operational efficiency and financial
performance. But if we’re talking about quality, then it’s direct money
in the pocket.”

On the operational side, both HQ: BA, Ind. Strat. (2017) and
HQ: Tech. Dev. Manager (2017) deemed Overall Equipment Effectiveness (OEE)
an important and useful measure. One reason, they argued, is that it to a
quite large degree is implemented, understood and followed in the factories.
HQ: BA, Ind. Strat. (2017) believed it has a clear meaning, as most decision-makers
in the factories can relate both to the measure itself, and its efficiency-based com-
ponents.

However, he saw that as it had been used as an indicator of efficiency, the focus
had sometimes been too narrow and not been aggregated on several machines.
HQ: Tech. Dev. Manager (2017) saw potential in some form of aggregated OEE as
a means of avoiding sub-optimisation. Most interviewees at the factories confirmed
that OEE is either one of the Key Performance Indicators (KPIs) on the shop floor,
or is about to be implemented as one.

In general, the main operational measures mentioned were mostly related to
quantities (total, percentage or per time unit), availability, capacity, utilisation
and quality(total scrap/rejects or percentage).
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6.3.2 Information type and detail

All interviewees at the Headquarters argued that there were clear differences in
the type, and particularly the detaul, of information and PMs relevant for decision-
making on different organisational levels. HQ: Proj. Engineer (2017) claimed that
the actual PMs could in many cases in fact be quite aligned over the levels, but
that the main difference would be their level of detail.

HQ: Tech. Dev. Manager (2017) explained that closer to the operational level,
the decision-making is very much based on current information available. Decisions
had to be made fast and be based on quick analyses, whereas on the strategic
level, a decision’s information-base could ”tumble around” for some time before
the decision was finally made.

HQ: BA, Ind. Strat. (2017) reasoned that information generated by simulation
should probably be distributed similarly as in real operations, namely with mea-
sures such as planning accuracy, WIP, availability and alike. On the strategic level,
he claimed that the measure structure typically resembles the Profit & Loss (P&L)
statement, and he did not see any clear differences to the structure in the case of
applying simulation.

FAC2: Tech. Engineer (2017) argued that although most measures probably
would be the same in the case of using simulation, some of them could in fact be
different when they had a simulation tool in front of them. He also argued that
the detail and accuracy of the information-base for decisions related to the design
of operations, is more important than those related to the size of the investment in
design projects. He explained that the impact of "one million up or down” in the
investment would eventually be dwarfed by one operator too much in continuous
operation, calling for more measures and information on the operational level in
the case of applying simulation.

FAC3: Tech. Manager (2017) claimed that they were using too many measures,
implying that most of them were not central components in his decision-making.
He listed a selection of measures from his monthly report amounting to over 30
performance measures (referred to as KPIs), categorised into Material, Opera-
tions, Supply Chain, etc. Some of them were further divided on factory-, line- and
equipment level.

In relation to applying simulation, FAC3: Tech. Manager (2017) argued that the
organisational level and function for which simulation would constitute decision-
support, there would definitely be differences as to which information that would be
relevant to which decision-makers. He argued that it would be interesting for him
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see the impacts of scenario over a longer period of time, whereas his subordinates
for example in the planning department would rather be interested in which batches
to plan in which order, for the upcoming week.

6.4 Simulation application areas

This section is organised according to the intended main areas of application for
simulation at Company X, as identified by HQ: Proj. Engineer (2017) and the
authors. These also correspond to the stated scope of the simulation project at
(pilot) Factory 1, although most interviews were not conducted with stakeholders
at Factory 1.

6.4.1 Production design and investments

Depending on the roles and experiences of the interviewees, they either had view-
points on the role of a DSSS in different application areas or referred entirely to
decision-making in their own responsibility areas.

Greenfield factory design projects and layout design in existing factories are
the main areas in which simulation have been applied before. FAC2: Tech. Engi-
neer (2017) has no experience with simulation, but has been involved in several
such design projects before. He believed that, despite his limited knowledge of
simulation, it has the potential to help him improve the accuracy of his analyses.

From the design perspective, he saw that perhaps the largest benefit of applying
simulation in his role is to improve the understanding of moving bottlenecks by
studying the system over time, as well as seeing the upper and lower limits on
different variables. This would already in the design phase provide him with the
information to modify and optimise the design to achieve the best conditions for
high performance, while making sure that it would fulfil capacity requirements.
Currently, he relies solely on his experience, simpler Excel-models and some paper
calculations.

Apart from improved bottleneck analysis, he saw a potential to gain informa-
tion on what the optimal batch sizes would be, which also would impact other
design parameters such as the size and capacity of buffers or machines. The main
principle of making design choices he described as ”fit to production needs”, mean-
ing a logical production flow, short distances (minimum transportation), minimum
labour, sufficiently little space consumed and sufficient production speed. He de-
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scribed that a design choice is typically based on an evaluation of whether it is
”enough” for the expected volumes. He explained:

"When I design the buffers, then I always try to find the most critical
item or most critical production case. From a volume point of view. I
take the case with the biggest output, biggest volume, and design from
that. Good or bad, this is how I do it. So I know that the size 1is
enough.”

This issue was also related to whether the design would be feasible over time.
FAC2: Tech. Engineer (2017) claimed he could rarely rely solely on some estimated
average capacity requirement, as it depends on future volumes and may vary over
time. Some form of ”worst-case” analysis combined with common sense is therefore
needed, he explained. Flexibility was also mentioned as something he considers in
the design choice, referring to the robustness and ability to produce in critical
situations, such as machine breakdowns.

FAC1: Planning Manager (2017), who does have experience from previous sim-
ulation projects, emphasised the benefit of using simulation in design cases or
investments as being able to introduce variables in the analyses of production per-
formance, not possible to study otherwise. More specifically, he mentioned the
possibility to study buffer- and machine performance more in detail, including oc-
cupation, WIP-evolution, bottleneck analysis and line balancing.

FAC1: Fin. Manager (2017) also has experience from design projects where sim-
ulation studies has been part of the decision-support. The focus had mainly been
on securing the ability to deliver a wide product range, therefore simulation had
been used to study buffers, equipment and product mixes to dimension adequate

capacity at minimum investment.

FAC3: Tech. Manager (2017) has no experience from simulation, but argued
that simulation’s potential role in investment decisions could be to gain more insight
into whether an investment decision is good or bad, but perhaps even more to
"know what he is investing in”. He added that this would include evaluating the
investment both on strategic- and on shop-floor level.

From the interviews at the Headquarters, a slightly more holistic view was
presented. HQ: Tech. Dev. Manager (2017) argued that the by far most important
aspect when stakeholders at factories evaluate investments, is payback time and
costs. This partly has its explanation in a strong cost focus around the whole
company, he believed. Although he saw a healthy degree of patience in longer-
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term investment results, there is sometimes a tendency of shortsightedness and
focus on quick bottom line results.

Another observation he made was that in smaller investments or improvement
initiatives, decisions are sometimes made quite ad hoc and that there is not always
easy to isolate and evaluate the specific effects afterwards. In addition, he also
saw a degree of sub-optimisation. He believed some units tend to adjust their
parameters with focus on their own results, while that not necessarily is beneficial
in a wider value chain perspective.

HQ: BA, Ind. Strat. (2017) also saw instances of sub-optimisation, such as look-
ing to narrowly on maximising the performance on individual machines, leading to
excessive buffers between them. In contrast, he exemplified that there are other
factories producing boards, which have completely integrated production lines with
virtually no buffers. For these factories, he stated that in a simulation project one
would be forced to study everything and not specific parts in isolation. Other-
wise, this kind of sub-optimisation occurs. Both HQ: BA, Ind. Strat. (2017) and
HQ: Tech. Dev. Manager (2017) argued that one major benefit of using simulation
is to capture the dynamics of, and build understanding in, interrelated manufac-
turing processes.

6.4.2 Planning and operations

All the stakeholders interviewed with responsibilities for production planning or
daily operations had very limited experience from simulation, or none at all. They
did however mention similar decision-making challenges in their roles, for which
they saw benefits of improved decision-support. Especially FAC4: Prod. Plan-
ner (2017) emphasised the difficulty of dealing with the complex system and trying
to meet high demand under a variety of constraints, in combination with unforeseen
events.

In response to what made it so complicated to make a good plan, he stated:

”[There are] many different aspects and things that we actually don’t
have any control over. For example, suppliers’ ability to deliver, [ma-
chine/ breakdowns, etc. We can adjust the plan for some breakdowns,
but when machine breaks down it’s always happening in the worst pos-
sible moment. Sometimes you might be expecting it, but it is impossible
to plan for.”

He added that it sometimes is often a question of deciding which constraints
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that are the most significant at the moment. Furthermore, it sometimes proves
impossible to meet the demand and that the plans are often subjected to changes
over time. The highest priority according to him is to meet the demand, but also
to do so at the lowest possible cost.

FAC4: Prod. Planner (2017) further proposed that simulation could be of great
help to him if it would allow him to easily compare whether a production plan
and its volume, is feasible. He was also interested in better ways to compare and
analyse the effects of changeovers between products.

FAC2: IT Specialist: Fin. Dept. (2017) explained that a high priority is to
maximise the utilisation in the packaging department. He too noted that plans
often change as time progresses, based on the current status of the production.
(FAC1: Planning Manager, 2017) also found constraints and interrelated processes
as challenging in production planning. He described the aim of the planning depart-
ment as to level out production while meeting delivery to packaging department.
They try to achieve this by incorporating the constraints already in the master
plan.

FAC3: Prod. Planner (2017) mentioned that information on sequences and se-
tups would aid him in the planning process. However, he noted that his priorities
when making planning decisions are very dependent on the situation, for example
whether the demand is high or low. When demand is high, the efficiency and capac-
ity to deliver are important to consider. According to him, this would for example
mean that large batches are desirable. But currently, as mentioned in section 6.2,
the volumes in Factory 3 are often below capacity and demand diversity is growing.
This makes them aim for smaller batches and more flexibility in the production.

In general, the planning stakeholders all described decision-making as a quite
difficult task. This is in line with the experience of HQ: BA, Ind. Strat. (2017),
who suggested that there could actually be even larger monetary benefits to gain by
improving in this area of the operations, than for design projects and investments.
FAC2: Tech. Engineer (2017) also pointed out that the investment is after all only
made once, whereas poorly designed operations would build up significant costs
over several years.

Related to this, FAC2: IT Specialist: Fin. Dept. (2017) also emphasised that
the accuracy in information provided by the DSSS for planning purposes would
need to be much higher (around + 5%), than for analysing investments or strategic
scenarios (where perhaps only + 30% accuracy would suffice, or at least be as good
as one could reasonably expect).
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6.4.3 Product mix

Most of the interviewees with planning roles were unable to provide any clear
opinion on how simulation could aid in evaluating whether a particular product
should or could be produced in the factory or not. However, (FAC2: IT Spe-
cialist: Fin. Dept., 2017) viewed the issue of running ”complicated” and ”non-
complicated” products in the same factory as problematic.

FAC4: Prod. Planner (2017) mentioned that one of the main restraints he con-
siders in the planning process is to avoid too many colour changes in the lacquer-
ing department, as these changeovers are time-consuming. As described above,
FAC3: Prod. Planner (2017) too emphasised the impact of changeovers on produc-
tion efficiency and planning. FAC1: Planning Manager (2017) expressed that he
sees as an important part of the implementation of a simulation tool at Factory 1,
the possibility to get better understanding of the impact of changing the product
mix. In fact, that is one of the main focus areas.

HQ: Tech. Dev. Manager (2017) described the process of assigning products to
specific factories as a quite quick and intuitive process. He argued that there are not
one or a few parameters that are studied, but rather an overall assessment, in which
the factories’ product cost calculations are one part. Other aspects considered are
more based on the situation, such as which products that are to be phased out in
the near future, the factories’ current free capacity, their current product mixes
and various supply risks associated.

HQ: BA, Ind. Strat. (2017) argued that one of his current priorities is to improve
the possibility to benchmark between factories, partly to be able to make this type
assessments more effectively and simulation could be one part of it. Previously,
there had however been some resistance among some of the factories, possibly be-
cause it could decrease their autonomy and might affect the volumes for some of
them negatively. He also saw historical explanations to why certain factories run
certain products today, but argued that there could be benefits of more ”specialisa-
tion” of the factories in the future. This could for example mean that high volume
products are to be run in factories well adapted to such production and vice versa,
instead of today’s more ad hoc way of assigning products to factories.

6.5 Simulation as decision-support

As mentioned above and in section 2.5.1, many of the interviewees at Company X
have little or no experience from simulation. In the interviews, most of them did
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however have opinions on decision-support in general and on what type of data
or knowledge that is lacking today, or that could improve the decision-making.
The expressed views were either related to some experience from simulation or a
hypothetical case in which a simulation tool were to be developed.

Many interviewees expressed decision-making challenges in their roles that were
similar in nature. To which extent they emphasised them, and in which functional
terms they related to them, were the main differences. In total, four decision issues
can be distinguished from the interviews. Table 8 below presents them, together
with references to the interviewees who most explicitly expressed them.

Table 8. Identified decision-making issues and the respective stakeholders most explicitly
supporting them in interviews.

Identified issue Stakeholder support

8.1 Understanding process relations — FAC3: Tech. Manager (2017)
and constraints FAC1: Planning Manager (2017)
FAC4: Prod. Planner (2017)
FAC2: Tech. Engineer (2017)
HQ: Tech. Dev. Manager (2017)
HQ: BA, Ind. Strat. (2017)

8.2  Dealing with variability FAC2: Tech. Engineer (2017)
FAC3: Tech. Manager (2017)
FACI1: Planning Manager (2017)

8.3  Lack of holistic view or HQ: Proj. Engineer (2017)
inclusiveness FACI1: Planning Manager (2017)

HQ: BA, Ind. Strat. (2017)
HQ: Tech. Dev. Manager (2017)

8.4  Data versus information and HQ: Proj. Engineer (2017)
knowledge FAC3: Tech. Manager (2017)
FAC2: IT Specialist: Fin. Dept. (2017)
FAC1: Planning Manager (2017)

In Table 8, Issue 8.1 was highlighted on different levels and from different or-
ganisational perspectives, namely by strategy, management, design, and planning
stakeholders. Different factories and their respective operations, were different
in terms of the level of complexity in the flow, from a process logic perspective.
Factory 1 is for example more flow oriented than Factory 3, which according to
FAC3: Tech. Manager (2017) is also significantly less spacious, has a more diverse
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product mix and no finished goods warehouse.

However, several factory representatives expressed similarly the difficulty of un-
derstanding how one part of the dynamic system is affected by changes to another,
as well as predicting the effects of operational and planning decisions in general.
Related to this, FAC3: Tech. Manager (2017) illustratively stated:

”You would have to be Nostradamus to predict what happens in this
process.”

In particular, FAC4: Prod. Planner (2017) struggled with making sure capacity
was not exceeded when making production plans, despite a number of different
constraints in the system.

From a factory design perspective, concerns regarded mainly finding appropri-
ate values on design parameters, such as buffer sizes, and how to handle moving
bottlenecks (FAC2: Tech. Engineer, 2017). FACI1: Planning Manager (2017) ar-
gued that one of the main benefits of simulation is, by studying the whole system
and its interconnected processes, to figure out the best overall flow, rather than
looking at parts of the system in isolation. This view was supported by both
HQ: Tech. Dev. Manager (2017) and HQ: BA, Ind. Strat. (2017). He also argued
that one could see simulation as either to optimise within given constraints, or to
evaluate/experiment with scenarios. The latter would involve removing or signif-
icantly altering constraints, although he saw no immediate or principal difference
regarding how to use it.

Issue 8.2 was described by FAC3: Tech. Manager (2017), member of the man-
agement team at the argued more ” customer-driven than planning-driven” Factory
3, as problematic when making decisions about a few years ahead. He noted that
most predictions and forecasts are expressed with averages, while he in reality is
more interested in the variations. Moreover, he argued that it would perhaps be
more relevant for decision-makers to know what would happen when reality devi-
ates from the plan; i.e. the consequences and the robustness of the system.

FAC2: Tech. Engineer (2017) emphasised as one of his main concerns in design
factories and layout, the issue of seeing FAC1: Planning Manager (2017) further
noted that what is most relevant is to see the behaviour of the system, rather than
overall capacity and performance.

Mainly by interviewees at the Headquarters, and somewhat ambiguously, Issue
8.3 was described as one of the drivers for exploiting simulation. An earlier problem
in simulation projects, had been a lack of knowledge about the aggregated effects on
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the system and in extension the overall benefit (bottom line result) of the initiative
(HQ: Proj. Engineer, 2017), (FAC1: Planning Manager, 2017).

HQ: BA, Ind. Strat. (2017) argued that many initiatives had been too isolated,
and sometimes the general view on performance in the factories as well. One effect
has been a strong focus on improving the performance on machine level while
overlooking the effects on the system as a whole. Some factories had for instance
been trying to minimise setup times and maximise utilisation and efficiency on
machines by running large production batches. What they had not considered
sufficiently, was the effects on the finished goods stock and Work-in-process.

HQ: Tech. Dev. Manager (2017) proposed incorporating more simultaneous
objectives into improvement efforts, such as for example improving the productivity
while keeping WIP a reasonably low levels.

Finally, Issue 8.4 is related to a strong sense among most interviewees to keep
things simple. Among stakeholders with experience from simulation, their view was
that previous simulation projects had not provided outputs in the form of decision-
support, but rather data. Even decision-makers with quite extensive knowledge and
experience about operations management had been having a hard time evaluating
whether to go forward with an initiative or not.

HQ: Proj. Engineer (2017) emphasised the importance of interpretable sim-
ulation outputs for decision-makers in different roles and with different level of
knowledge. In addition, he argued that usable decision-support from simulation
should provide the ability to easily compare the impact of a solution or scenario
with something else.

FAC2: IT Specialist: Fin. Dept. (2017) was reluctant towards whether more
information to support decision-making would make things easier. He did how-
ever see the value of DSSS in a more distilled format, possibly as suggestions.
FAC3: Tech. Manager (2017) argued that they in fact have quite accurate and rel-
evant information when making decisions. He nevertheless agreed that they could
benefit from introducing more, or at least other types, of information generated by
simulation. That is, if the model can be trusted and if there is a balance between
using data and the experience/intuition of the decision-maker.

In general, most of the different stakeholder roles had different views on what
would constitute relevant decision-support to them. However, some of them argued
that a DSSS should provide similar and aligned information on production perfor-
mance measures regardless of whether it was related to planning, layout design or
other things. In addition, most interviewees believed that for decision-support, the
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information’s level of detail would be higher for decisions of a more operational
nature. Finally, several interviewees suggested that on the operational level, the
time perspective was highly relevant. This refers to evaluating performance and

behaviour over time.
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This section uses the theoretical view in combination with the conceptual analysis
to further analyse the internal view on simulation as decision-support, decision-
making and performance measurement in different decision areas. The aim is to
answer the research questions and fulfil the purpose of the thesis, both in general
and specifically for Company X.

7.1 Addressing the decision-making issues

As was mentioned in section 6.3, the interviewed stakeholders did not appear to
be measurement or data-driven in their decision-making. Several of them stated
explicitly their scepticism towards more data to facilitate their decision-making.
Rather than interpreting this as an expression of a certain culture (the sample
size would in any case be too small for such a claim), it indicates that they have
previously experienced a gap in the knowledge-progression pyramid. This is further
strengthened by observations from the project at Factory 1, namely that they had
been having trouble interpreting and making decisions based on simulation results

before.

There is therefore a need to bridge this gap, all while considering the specifi-
cally highlighted decision-making issues in table 8 on page 129. As was concluded
in section 5.1.3, Integration and Aggregation are important considerations when at-
tempting to use simulation as decision-support. This section therefore aims to find
how they relate to the specific issues found at Company X, which will provide a ba-
sis for how they should measure performance in simulation-based decision-support.
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7.1.1 Understanding process relations and constraints

The first observation that can be made around this issue is that it is related to the
level of vertical integration. In order to understand and evaluate how connected
processes affect each others’ performance, one would need to include a sufficiently
large share of them. It may also require an adequate level of horizontal integra-
tion, as processes may affect each other in different ways. In order to avoid too
high complexity, some degree of simplifications will however be needed. It may be
quite obvious what parts of the system that are unrelated, or least related, but it
nevertheless has to be done carefully as some processes may affect each other more
than expected. For the level of horizontal integration, a high number of different
measures may be extracted without adding too much complexity, and the same
logic of not disregarding too much applies. However, as Pehrsson (2017) noted,
there are in reality not too many measures that are in fact relevant, and these
should be aligned with the objectives of the decision-maker.

In terms of information aggregation and time aggregation, how to address
this decision-making issue ought to be dependent on application area and decision-
level. As shown in table 2 on page 42, the operational level typically requires
more detailed information than the strategic. This view was further supported
by several interviewees. However, FAC3: Tech. Manager (2017) who is a member
of the management team at Factory 3, expressed concerns about too aggregated
information in the form of averages. As mentioned in section 6.5, FAC1: Planning
Manager (2017) was interested in seeing the behaviour of the simulated system even
on a more strategic level, similar to what FAC2: Tech. Engineer (2017) expressed
from a factory design perspective.

It can further be noted that many interviewees had constraints and bottlenecks
as their main concerns, which according to Pehrsson (2017) is a very suitable area to
apply simulation. Whether specific tools and features for sophisticated bottleneck
analysis are built into the DSSS or not, it therefore seems that its level of integration
and aggregation should not obstruct such knowledge from being created. Thus, the
level of integration should be high enough to include all potential bottlenecks and
the level of aggregation should be low enough to reveal them. In line with section
5.1.2, a major benefit to reap from simulation is learning and understanding the
dynamics of the real processes.

Conclusively, to address this issue it is important to capture an adequately
large part of the system and its performance, through integration. What is a
suitable level of aggregation seems to depend on the decision-level and decision-
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areas simulated. For operational decisions, much suggests that high aggregation
may be inappropriate due to the bluntness of the knowledge produced. Even for
higher-level decisions, it also seems that too high a level of aggregation might be
obstructive for some decision-makers.

7.1.2 Dealing with variability

This decision-making issue is most evidently related to the level of time aggregation.
As previously mentioned in 7.1.1 above, several interviewees were interested in
variation and dynamics. FAC3: Tech. Manager (2017) was mainly interested in the
implications of deviations from the expected. FAC2: Tech. Engineer (2017) felt a
need for better knowledge about what actual minimum capacity would be needed
over time, rather than designing the buffers, machines etc, based on averages. By
the time of the interview, he instead usually based the design on the worst case.
This mindset was not only evident in relation to factory design cases, but also in
planning and operations. Many interviewees showed a tendency to ”safeguard”
against variability and uncertainty through conscious yet deliberate over-sizing or
overestimation. This could be connected to historical growth and a strong focus
on capacity to deliver discussed in section 6.2.

Analogous to what was discussed in section 7.1.1 above, in order to better
reveal the dynamics and to better balance capacity, the levels of integration and
aggregation should be carefully set. Too low a level of integration may fail to
capture important dynamics. Too high a level of information or time aggregation
may conceal the true causes of issues and bottlenecks, or the cases in which they
occur, preventing them from being properly resolved. In a design situation, this
may cause a treatment of symptoms through even more over-sizing of e.g. buffer
space, or unnecessarily expensive equipment, or poorly balanced production in
general. In planning and operations, it could cause excess inventory /WIP, activity
slack time or poorly balanced capacity.

7.1.3 Lack of holistic view or inclusiveness

Looking too narrowly or disregarding relevant parameters and parts of the manufac-
turing system was highlighted mainly from the interviewees at the Headquarters as
evident in previous improvement efforts. This is inherently a strategic concern and
can be referred to as nearsightedness, namely in terms of process myopia and per-
formance myopia. Process myopia would mean for example disregarding the FGW
when ”optimising” production efficiency (e.g. through large batches). Performance
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myopia would mean focusing too much on individual aspects of performance, such
as investing in a machine with high production speed while failing to consider its
flexibility (e.g. the changeover time).

The link between these two concepts and integration is somewhat evident.
In order for decision-making in design cases and improvement efforts to be more
holistic and inclusive, so must a DSSS tool supporting such decisions. Thus, to
mitigate process myopia the level of vertical integration must be sufficiently high.
To avoid performance myopia, the level of horizontal integration should be high
enough.

Regarding the level of aggregation, a reasonable claim is that a fairly high degree
of information aggregation is needed for the decision-maker to actually evaluate
whether an improvement or design choice is beneficial for the system as a whole.
As mentioned in section 6.5, this explicitly argued to be one of the main drivers
for implementing simulation-based decision-support.

7.1.4 Data versus Information and Knowledge

As was mentioned in the introduction to this section, this issue is related to bridging
the gap in the knowledge progression pyramid (see figure 4 on page 37 and figure
13 on page 95).

It seems apparent that aggregation is a means of condensing crude data and
information from a simulation model, through a DSSS tool, to make it more inter-
pretable and relevant for the decision-maker, as concluded in section 5.1.3. How-
ever, analoguos to what was discussed above in section 7.1.1, this decision-making
issue was not specifically related to a decision or simulation application area. Thus,
the level of aggregation is likely to be different in different application and decision
areas, as well as on different decision levels. In certain cases, such as bottleneck
analysis, too high aggregation may in contrast to information overload instead cre-
ate an information deficit. It should also be pointed out that progressed knowledge
does not necessarily have to mean fewer and more inclusive measures of perfor-
mance, it can mean a better understanding of the processes simulated.

7.1.5 Appropriate levels of integration and aggregation

As evident from the discussion above, what would be appropriate levels of inte-
gration and aggregation not only depends on the targeted decision area. It could
also depend on the most prevalent of the decision-making issues or challenges at
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hand. Using the developed Aggregation-Integration Matrix (AIM) in figure 15 on
page 102, the decision-making issues identified at Company X can be related to the
appropriate levels of integration and aggregation suggested in the analysis above.
The issues are enumerated in accordance with table 8 on page 129, i.e.;

1) Understanding process relations and constraints
2) Dealing with variability

3) Lack of holistic view or inclusiveness

4) Data versus Information and Knowledge
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Figure 16. Suggested levels of integration and aggregation on the identified
decision-making issues at Company X, using the Aggregation-Integration Matrixz (AIM).

7.2 Designing a PMS for a DSSS at Company X

This section covers an analysis and discussion of how PMSs should be designed for
DSSSs at Company X. It start with a discussion on how Company X’s manufactur-
ing competitive priorities should relate to design, and continues with a suggested
approach on how to mitigate aggregation trade-offs.
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7.2.1 Priorities and Performance dimensions

It was evident in the interviews that cost is an important consideration in almost
all the decisions made. Most of the interviewees discussed the interview topics at
least partly from a financial point of view, even issues on a quite detailed opera-
tional level. This indicates a cost-conscious and financial mindset, as was pointed
out by HQ: BA, Ind. Strat. (2017) and others at the Headquarters, and which is
also explicitly mentioned in Company X’s own description of ”culture and values”.
The cost-conscious and financial mindset is likely also what has led to the focus on
resource efficiency; expensive equipment and personnel simply need to be utilised
at maximum capacity. Consequently, when capacity utilisation has been high and
ability to deliver a strong priority, it is not surprising that many investments and
improvement efforts have revolved around how to produce more at the lowest pos-
sible cost.

Company X is moving into the maturity phase with increasing competition and
eventually more stable volumes, as well as higher product diversity. As they do,
focus seems to have shifted, at least strategically, more towards flow efficiency and
flexibility. On this basis, there may be a need to complement the financial mindset
with more elaborate methods and principles in pure Supply Chain Management.
As HQ: BA, Ind. Strat. (2017) suggested, the financial and the operational side
should try to meet in the middle.

Much evidence suggests that managing a manufacturing system, or an entire
supply chain predominantly from a financial perspective, is problematic. The bene-
fits of the financial measures themselves are however evident, both from theory, the
internal stakeholders and the external view. Therefore, a combination of financial
and non-financial PMs appears the most suitable for simulation-based decision-
support at Company X. The appropriate balance between them is most likely
dependent on the application area, as shown by the theoretical framework in figure
11 on page 74.

However, given the financial mindset at Company X and the need to bridge the
financial-operational gap mentioned by HQ: BA, Ind. Strat. (2017), a slight drift
of the appropriateness of financial measures may be needed. In other words, some
financial measures may be relevant on lower levels in this case, than they would
be otherwise. This could for example mean that simulation outputs in the form of
labour hours consumed, average inventory level or alike, are translated into their
respective financial value.

Flow efficiency tends to be measured in units of time (such as cycle time or
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cead time) or percent (such as aggregated OEE or percentage of Non-value added
time) and not financially, although it certainly has implicit financial impacts. Im-
proving flow efficiency revolves largely around finding specific instances and sources
of long waiting time, bottlenecks and high WIP, which means that the knowledge
provided by the DSSS needs to be quite specific and detailed. Meanwhile, as
HQ: BA, Ind. Strat. (2017) remarked and which is much in line with theory, the
idea of flow efficiency is to look at the system in a broader perspective, i.e. with
higher degree of integration. Flow efficiency is integrated in itself, which also means
that it would need to be considered on multiple decision levels, decision areas and
on different time horizons.

Flexibility, as was described in section 5.2.3 under Flexibility performance, is
multifaceted and reflects potential rather than actual performance. Some of the
dimensions of flexibility can be calculated respectively using the models by Beamon
(1999). However, as they are defined by different units of measure (cost, time,
percent, units etc), there is no apparent way to aggregate multiple dimensions into
one single measure of flexibility. Given the expressed aim of improving flexibility
at Company X, it seems reasonable that at least one or a few flexibility measures,
for example of those proposed by Beamon (1999), should be included in a DSSS or
simulation model.

Summary

The primary strategic considerations identified in the interviews can be summarised
as:

1) Cost efficiency: Strategic focus and modus operandi at Company X

2) Flexibility: New market situation, uncertain future and higher product di-
versity

3) Flow efficiency: Reduce sub-optimisation and safeguarding

7.2.2 Measurement breakdown structure

Given the financial mindset at Company X, it may be possible to mitigate some
of the bluntness and ”black-box” issues of aggregated financial performance mea-
sures, by simply using them in parallel with their respective financial- and non-
financial components. This can even create synergies between the benefits of
low and high aggregation respectively. In accordance with the suggestion by
HQ: BA, Ind. Strat. (2017), this is a way of creating the ”dashed arrow” between
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detailed operational measures and their financial impact.

Building a PMS in the form of a breakdown structure is also much in line with
the way the Performance Pyramid is built up (see figure 7 on page 45). Aggregated
outcome PMs could for instance be used in conjunction corresponding predictive
PMs. This would furthermore be in line with the design of the theoretical frame-
work, in which operational applications of simulation/DSSS exclude higher-level
measures but tactical/strategic do not exclude lower-level measures.

However, some issues remain. First, the accuracy of the aggregated measures is
not improved by merely displaying its components. Second, the issue of ”informa-
tion overload” not only remains, it might become even worse due to an even higher
aggregation of measures and thus a higher volume of information. Moreover, an
aggregation will in many cases consist of numerous assumptions (e.g. when aggre-
gating inventory levels into total inventory cost, there would need to be assump-
tions regarding stock-out cost, holding cost rate, lost sales etc (Wiklund, 2017)).
If the aim is to display all the information about how the aggregated measure is
built, these assumptions might also need to be displayed, increasing the volume of
information further.

7.3 Selection of performance measures

This section first discusses the findings from the empirical view, specifically focusing
on the general relation between application areas identified and measures to choose.
Thereafter, a simplified cost model to use in simulation is proposed by the authors.
Lastly, the three application areas are discussed more in detail, and one PMS is
suggested for each of them.

7.3.1 Applications and measures

The specified areas of application for simulation/DSSS at Factory 1’s pilot project
are Design & Investments, Product Mix and Planning & Operations. These can be
related both to the Performance Pyramid in figure 7 on page 45, and the theoretical
framework in figure 11 on page 74. In the former, one important note is that the
three application areas mainly consider the internal effectiveness, i.e. the right side
of the pyramid. The exception may however be that deliverability to some extent
can be captured by a DSSS. In the theoretical framework, the three application
areas can be mapped somewhat accurately to the strategic, tactical and operational
decision-levels.
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Design & Investments are strategic, structural decisions, concerning resources
and may be irreversible for a long time period. Product mix decisions are infras-
tructural decisions and may have a fairly long time horizon but are more easily
reversed within a reasonable time frame. Planning & Operations concerns the left
part of the figure, i.e. non- or infrastructural decisions on a tactical/operational
level. These decisions fall within the categories manufacturing policies and execu-
tion.

As AlDurgham & Barghash (2008) note, most of the application areas of simu-
lation in manufacturing are interrelated, meaning that it is not possible to separate
them entirely from each other. It should be noted that product mix is merely a
sample of management provisions. Altering the product mix could also induce
resource decisions (e.g. the decision to expand the product mix may require in-
vesting in new machines or altering the layout). The authors have for the sake
of simplicity categorised it into management provisions. Likewise, when simula-
tion is applied for decision-support regarding resources, such as in factory design
decisions, what product mix to run may well be an important aspect to include.
Another important note is that a DSSS as defined by Tolk et al. (2009), regards a
decision-support tool based on a simulation model representing an actual and ex-
isting manufacturing system. Thus, greenfield factory design decisions should not
be seen as applications of DSSS, but rather as individual simulation projects since
the simulation model to build a DSSS upon would need to be built from scratch.

7.3.2 A simplified simulation cost model

In this section an example of crude cost model is presented that is built on TDABC.
The example is supposed to offer an intuition on how a simple model could be
constructed that would generate an estimation of costs that is in the ballpark for
Company X.

The demonstration is made using one product (X), which passes through the
manufacturing system in following processes:

1) Raw material inventory
2) Process A
3) Buffer

4) Process B
5) FGW

Note that in reality, process A might be several consecutive processes. If the
processes are similar in their characteristics or highly integrated, it is possible to
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observe them as one. In the following part of subsection 7.3.2, an example is
provided of how the manufacturing cost and inventory costs for the system above
could be modelled together with a simulation model.

Manufacturing cost

The premises of this is translating costs to hourly rates as briefly described in
section 3.3.6. An example of this would be to compute a time equation for the
cost/time rate (PCR;) of a specific process (i):

.tot

PCR; = m + Tpigne ¥ CRIEM, (7.1)

where

° C'l-tOt cost of all resources supplied to process ¢ during a time period t, e.g.

labour, maintenance, electricity, and depreciation costs;

° CAPfOt is the total available hours of process ¢ during the time period ¢, e.g.
all shift hours.

° C'R?ight is an extra penalty hourly cost rate for extra costs inflicted by night
shifts, e.g. marginal labour cost.

® T ,iene is an indicator function that is equal to 1 during night shift, 0 otherwise.

Then, the partial manufacturing cost for one unit after process A is:
MFCY™ = PCRAT,, (7.2)
and the partial component value of product X after process A is:

V)};artial _ RMX + MFC?{artial
= RMx +PCRATA. (73)

The total manufacturing cost for one unit after process B is:

MFCY' = MFCY™ " + PCRpTy
= PCR,Ty + PCRgTg, (74)
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and the finished product X value is:

Vy = VPl L PCRpT
tot

= RMx + MFCX
= RMx + PCRATy + PCRBTER. (7.5)
Where:
e ('R, is the hourly cost rate at process A;

T, is the time the raw material is processed in process A;
RM is the raw material value for product X;
CRpg is the hourly cost rate at process B;

Tp is the time the partial component spends in process B;
Note that the process time 7' should be in the same time unit as the cost rate C'R.

The time-logs from a simulation output can be used to determine 7'y and T,
by observing the time stamps when a component enters and exits the process. This
time would effectively capture the time (and hence the cost) of rework as well. The
extra cost of night shift would be captured by the time stamps indicating that
the process was done during a specific time interval (e.g. 7pm to 6am) as defined
in the indicator function. Cost of waste is furthermore just the component value
after the process (M F C’g(artial or M FCy) when it enters the ”waste bin” plus some
potential cost for waste management.

Inventory cost
Now, consider the inventory costs for product X in this system.

The raw material, WIP, and FGW holding costs for the product X can be
calculated as

T
ICRy(T) =) [N (t) = NY"(t = 1)| RMxhy" (7.6)
t=1
T .
ICwp(T) =y |Nx'7(t) = Ny 'O (e = )| Ve ny " (7.7)
t=1
T
ICpew(T) =) [Nx" (1) = Nx (£ = 1)| Vichx ™" (7.8)

~
1l
—_

where,
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e T is the number of time units observed, i.e. number of days, weeks, months
or years
e t €{0,...,T} is a specific time unit observed, i.e. day, week, month or year

Nx(t) is the amount of product X in the corresponding inventory at time ¢.

hx is the holding cost rate for product X and its components for the observed
time unit.

A measurement of Nx(t) would be done at the beginning of each time period ¢,
e.g. every 7th day morning at 7am. The shorter the total time observed time of the
simulation, the more granular should the time unit be. If for instance two weeks
are simulated, then the time unit should be days. It should further be noted that
the holding cost rates are usually expressed as annual cost rates. If the observed
time unit is not years, but e.g. days, weeks or months, then the holding cost rates
have to be converted accordingly:

hmonthly _ (1 + hannual)(1/12) _ 1)
hweekly _ (1 + hannual)(1/52) _ 1)

hdaily _ (1 + hannual)(1/365) _ 1)

The holding cost rate should preferably be product/component group specific, re-
flecting their unique attributes such as size, sensitivity to deterioration, etc. In
addition to the holding cost, a backorder penalty cost for the FGW is also ad-
vised. This cost should capture the penalty cost as described in the service-level
agreement (SLA) and a potential additional cost for reputational damage. The
backorder penalty should be activated when an order could not be shipped on-time
in full, i.e. when an order is moved to a queue in the model.

7.3.3 Design & Investments
Objectives and performance dimensions

This application category can in essence be divided into three subcategories in
accordance with those identified by AlDurgham & Barghash (2008), varying in
Scope;

1) Design system from scratch (i.e. greenfield/brownfield design)
2) Modify system on hand (i.e. re-design)
3) Improve system on hand

Initiatives within 2) and 3) are smaller in scope as they regard an existing
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factory and may be connected to a specific need or situation to resolve (such as
increased volumes, worn-out equipment or new products). However, little in the
interviews suggested that the overall objectives would be very different.

As Beamon (1999) has stated, it is important that the PMS reflects all the
relevant aspects for the decision at hand. Including all relevant aspects is highly
related to three of the identified decision-making issues:

1) understanding process relations and constraints
2) dealing with variability
3) lack of holistic view or inclusiveness

All of these are relevant concerns in design/re-design and improvement deci-
sions. The mapping in figure 16 on page 137 suggests that adequately high inte-
gration is needed to solve them. It also appears intuitively correct that designing
a new system, re-designing an existing one or improving its performance, requires
considering many aspects. This essentially means that large parts of the theoretical
framework in figure 11 on page 74 would need to be covered simultaneously.

Furthermore, in decisions of this sort, several stakeholders at Company X ex-
pressed a need to be able to compare different solutions or designs against each
other, or at least against some criteria. This is somewhat related to the fourth
identified decision-making issue, namely Data versus Information and Knowledge.
For comparison, the results from a simulation model would need to be distilled to
some extent, through aggregation.

Evaluating and finally deciding upon a system design or improvement based
on a few aggregated measures might be effective. But designing the system from
the start, or re-designing it if simulation results are not satisfactory, is likely to
require more detailed information. A way of satisfying the universality criterion
while maintaining enough details is to use a form of measurement breakdown struc-
ture as described in 7.2.2 above. On the other hand, that approach does not solve
the all issues with aggregation/integration and might create new ones (e.g. infor-
mation overload). It appears that it would be difficult to capture and display all
the complexity with designing, re-designing or improving a system, in only a few
aggregated measures by themselves.

The authors therefore suggest running simulation as decision-support in two
phases, using different measures. The first phase primarily revolves around un-
derstanding the dynamics of the system, in order to design it in accordance with
the operational objectives Flow efficiency and Flexibility. In the second phase, the
design is evaluated financially using the simplified cost model described in section

145



7.3. Selection of performance measures

7.3.2 and its long-term flexibility is evaluated. This appears to be necessary, in
order to consider the three identified overall objectives in section 7.2.1 without
creating increasing aggregation, integration, scope and the number of measures
too much. The logic between the design phase and the evaluation phase is itera-
tive. When a design solution is deemed well-functioning from an operational point
of view, it is then scrutinised more strategically in the evaluation phase. If the
solution is believed to be inappropriate, it returns to the design phase.

Measures

Table 9. Samples of performance measures for design and investment simulations at
Company X

Objective PM Unit Structure Tense
High flow Flow efficiency % Aggregated Outcome
efficiency WIP Units/ Space/ Buffer/ product  Predictive/
Time breakdown Outcome
go Lead time Time Product Outcome
3 breakdown
A
Internal Re-routing Delta unit Aggregated Predictive
flexibility flexibility cost/lead time
Sequencing Delta product Aggregated Predictive
flexibility unit cost/lead
time
Cost Product unit cost  Euros Product Outcome
breakdown
=
-8 External Volume flexibility % Aggregated Predictive
E flexibility
®
FE Product mix/ Delta unit costs/  Product Predictive
changeover lead time/ flow breakdown
flexibility efficiency

High flow efficiency

Flow efficiency can be measures both in absolute- and relative terms. In absolute
terms, throughput time (or lead time) can be measured as the total time it takes
for a product to go through the simulated system. This measure includes both the
value-adding processing time in machines, and waiting time in buffers/inventory.
A relative measure for the flow efficiency as the percentage of value-adding time
can then be measured by calculating:
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Average throughput time — Average time in buffer

— _
ow efficiency (%) Average throughput time

The throughput time should be considered an outcome measure, as it may
be an objective in itself. The flow efficiency is on the other hand predictive of
financial performance through for instance lower WIP and inventory. They are,
however, aggregated both in time and in information, although they could be dis-
aggregated on different products or product families/categories. The third measure
is suggested in order to compensate for the bluntness of the other two. Since the
Design phase corresponds to operational /tactic decision-levels, there is a need to
understand the specific dynamics and causes of the results, namely the overall flow
efficiency. The flow efficiency is strongly related to the amount of WIP in the
system, which is why WIP is also displayed in order to create understanding of the
relation.

Cost

The selected cost parameter is Unit cost, calculated using the simplified cost model
described in section 7.3.2. The purpose of using the unit cost is to relate the
quantity produced to the costs induced by a specific design case simulated. The
unit cost will differ between different products, meaning that the measure should
be dis-aggregated or displayed in a breakdown structure. Although a decision-
maker might be interested in the ”total” cost in a design scenario, the authors
proclaim that this may not be meaningful in a design case without account for
the total quantity which is produced in the simulation. If total cost is nevertheless
desired, for example in a business case, it can simply be multiplied with the quantity
produced. Strict attention should however be paid to the fact that it is based
on a simplified model, and might become misleading if used explicitly in capital
budgeting.

Internal flexibility

The internal flexibility should be considered in the Design phase, with the pur-
pose of building it into the system from scratch. This might be less relevant if the
design case is more of an improvement or a smaller modification of the system,
rather than if it is a large greenfield project. It is however still important, since
even single changes (such as replacing machine, modifying buffers etc) could impact
the internal flexibility. Two measures are suggested; Re-routing flexibility and
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Sequencing flexibility. These correspond to how well the designed system han-
dles machine breakdowns and failed supplier deliveries respectively, as described
by Beamon (1999) in section 3.

Both of these measures can be seen as inherent in the design, but could be
measured implicitly by evaluating the impacts of machine breakdowns and failed
supplier deliveries on other performance measures, ceteris paribus. The authors
suggest that they are evaluated by measuring the relative, aggregated impact on
Unit cost and Throughput time. This means that these measures would need two
or more evaluated simulation scenarios, in order to be calculated. However, a
simulation model is likely to be designed with account for machine breakdowns
(such as in the pilot project at Factory 1) as well as failed supplier deliveries. This
study does not focus on the design of simulation models, nor modelling of raw
material warehouses, but these measures can and should be evaluated.

For re-routing flexibility, the approach could be to calculate the difference in
unit cost and throughput time in one scenario excluding machine breakdowns,
with one including them. Likewise for sequencing flexibility, the differences are
calculated between a scenario with infinite supply of raw materials and one with
occasional (stochastic) failed supplier deliveries. The results will be absolute or
relative measures showing how sensitive the designed system is to these events,
both of which were mentioned by factory stakeholders as problematic and difficult
to foresee.

External flexibility

The external flexibility is the second consideration in the Evaluation phase, and can
be seen as whether the seemingly well-performing solution appears robust towards
long-term, external uncertainties. Two measures are selected; Volume flexibility
and Product mix/Changeover flexibility. The first is relevant since it is meant to
take into account that a design decision might be irreversible for a long time period
and based on uncertain future volumes. Even if a design choice has been evaluated
as beneficial in financial and operational terms, it might be sensitive to volume
changes. Evaluating its volume flexibility may lead to better designs which are
more robust over time. In addition, it allows for more informed decisions instead
of the tendency identified at Company X to ”safeguard” against uncertainty.

Calculating volume flexibility can be done using the approach by Beamon (1999)
in equation 3.3.

Product mix/Changeover flexibility can be separately evaluated using the same
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approach as described in section 7.3.5 below.

7.3.4 Planning & Operations
Objectives and performance dimensions

The PMS for Planning & Operations applications is designed with respect to the
overall objectives in section 7.2. The specific suggestions and examples of perfor-
mance measures in Planning & Operations is based on its more specific functional
goal; producing and delivering the right quantity at the right time. This objective
is well expressed in terms of delivery performance. The operational performance
of a specific simulated production plan, can on one hand be described by whether
it was possible to achieve. On the other hand, one also needs to measure whether
shipment orders could be fulfilled and/or whether demand could be fulfilled.

Apart from the delivery performance achieved in the simulation, some level of
flexibility is required. The chosen production plan and production setup should
have some margin built in, since they tend to be changed over time. Furthermore,
since the simulation model itself is based on various assumptions, the uncertainty
of plans increases further and through that also the need to measure flexibility.

In addition to delivering the right quantities in the right times, it is important
to do so efficiently. Particularly, the interviews at the Headquarters indicated that
focus should be on flow efficiency, rather than resource efficiency.

The objective of producing and delivering the right quantity at the right time
does not in itself necessarily require any financial measures or cost dimensions.
But given that a DSSS includes the simplified cost model described in section
7.3.2, some crude cost measures can be calculated. Although the simplified model
in itself is no predictor in itself, it allows for comparison between different planning-
or operational decisions, and is a means of relating a certain level of operational
performance to its impact on the financial side. This is a way of satisfying the
specific wish at Company X to measure financial impacts of planning decisions.

Measures

The selected measures for DSSS applications in Planning & Operations is displayed
in table 10 below.
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Table 10. Samples of performance measures for Planning € Operations simulations at

Company X
Objective PM Unit Structure Tense
Delivery Plan adherence % Aggregated Outcome
performance gy rate/Service % Disaggregated Outcome
level (FGW)
Shipping on-time Amount /% Disaggregated Outcome
(SOT)
Flexibility Delivery % Aggregated Predictive
flexibility
Free capacity/ % Aggregated Predictive
Utilisation
High flow Flow efficiency % Aggregated Outcome
efficiency WIP Units/Space/Time  Breakdown Predictive
Lead time Time Product Outcome
breakdown
Cost Unit costs Furos Product Outcome
breakdown
Prime cost Furos Aggregated Predictive
Inventory cost Euros Aggregated Predictive

Delivery performance

Three measures are selected in order to reflect delivery performance. Plan adher-
ence is used to display how well the plan was fulfilled in the simulation. The goal is
to measure whether the plan is suitable and feasible for the manufacturing system,
and should be as close to 100 % as possible. Lower than 100 % indicates that
the planned quantity was not met by the manufacturing system. The implication
can be that either expensive overtime is needed to fulfil it, or that demand cannot
be met. Above 100 % means overproduction, leading to excessive finished goods
inventory. Consequently, plan adherence should be seen as an outcome-oriented
measure. Furthermore, it is aggregated both in the information- and the time
dimensions and defined as:

Output quantit
Put g y x 100

Plan adherence (%) = Planned quantity
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The plan adherence essentially deals with the question ” Were the planned quan-
tities produced, at the right times?”

The delivery performance of the simulated plan in relation to the demand can
be reflected either by a service level measure (e.g. order fill rate), and shipments
"on time, in full” (SOT). Fill rate as service level measure in the DSSS can be
defined as:

Backordered quantity
x 100

SL (%)= (1~ Demanded quantity

This measure should also be considered as an outcome-oriented measure. It is
aggregated in time to describe overall service level performance during the simu-
lated time period, but could be dis-aggregated on different products or product
families/categories to better reveal which products that are problematic. It aims a
describing ” Was the finished goods warehouse replenished with the right quantities,
at the right times?”

Shipping on time (SOT) can in turn be defined in the DSSS as:

Orders fulfilled on time, in full

Total number of orders

SOT (%) = x 100

SOT is also aggregated in time and indicates how large share of the orders
that were filled and shipped no later than the due date. Plan adherence, Service
level and SOT may be interchangeable or mutually exclusive depending on the
preferences of the decision-maker, and may also depend on whether the factory
runs primarily Make-To-Order or Make-To-Stock. Note also that both fill rate and
SOT require a simulation model that keeps track of orders, and not just quantities.

Flexibility

Flexibility should in Planning & Operations be measured in two dimensions, one
more elaborate than the other. Delivery flexibility can be measured according
the quite elaborate formula by Beamon (1999), described in section in equation
3.4 on page 55. This type of flexibility represents the actual flexibility ”status”
of the system at any given moment, namely in terms of slack time or ”average
time margin”. In extension, it answer the question ”How much short-term safety
time-margin did the system have on average?”

Having free capacity can be seen as another means of being flexible to sudden
changes to the plan, although it is slightly less elaborate. It could however quite
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easily be measured by a simplified formula suggested by the authors, based on how
far the bottleneck process on average was from maximum utilisation during the
simulated period:

Free capacity (%) = (1 — max(uq, us, . .., u,)) X 100,
a

(3

where u; is the average utilisation for the sequential process i,7 € {1,...,n}.

High flow efficiency

Flow efficiency in Planning & Operations is suggested to be measured in the same
way as in Design & Investments, using the same measures (see High flow efficiency
in section 7.3.3 above).

Cost

Cost is included in Planning & Operations in order to create better understand-
ing between operational- and financial performance. The Unit cost measure is
suggested for creating the relation between the output volume and the induced
cost, and can again be measured using the simplified cost model in section 7.3.2.
However, to further increase understanding of the impact of planning decisions on
cost, the authors suggest that aggregated prime cost and inventory cost should
also be measured. In addition, it may mitigate the risk of ”over-planning” in order
to decrease the unit cost, as the total prime- and inventory costs will be affected
negatively and the essential purpose or planning decisions is not to produce the
maximum quantities, it is to produce the right quantities.

7.3.5 Product mix
Objectives and performance dimensions

Applying simulation/DSSS for the purpose of testing the impacts of different prod-
uct mixes is somewhat different to the cases described in sections 7.3.3 and 7.3.4.
First, the specific goals of doing so can vary significantly in different situations.
Second, it is not tied to a specific function or organisational level. However, the
objectives ought to be aligned with the strategic considerations in section 7.2;
Cost efficiency, Flexibility and Flow efficiency. Essentially, the product mix ”what-
if” analyses using simulation can be seen as evaluations of the product mix- or
changeover flezibility described by Beamon (1999), by means of evaluating the im-
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pacts on Cost efficiency and Flow efficiency. Therefore, the same measures as above
can be used, and should, for the sake of consistency.

Measures

Table 11. Samples of performance measures for product mixz simulations at Company X

Objective PM Unit Structure Tense

Cost Unit cost % Product Outcome
aggregated

High flow Flow efficiency % Aggregated Outcome

efficiency Lead time Time Product Outcome
breakdown
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Chapter 8

Conclusions

In this final chapter, conclusions from the results and the following discussions
is presented. First, a brief summary is presented of the research questions, the
research process and the findings of the study. Following, the overall conclusions
are presented, addressing how the key findings relates to the research purpose and
how the research questions have been answered. Moreover, the contributions and
implications of this study are commented. In the last section, recommendations on
future research are discussed.

8.1 Overview of the Study

This section summarises the main parts of this study, in chronological order.

The first part of this study was the theoretical view in chapter 3, which exam-
ined the three main research topics within Manufacturing and their intersections:

1) Decision-making and support (section 3.1)
2) Performance measurement (section 3.2)
3) Discrete-event simulation (section 3.3)

With the literature as a foundation, chapter 3.4 presented a comprehensive
theoretical framework in figure 11 (page 74) meant to aid the analysis of the external
and internal views on the topics.

In chapter 4, the views of the external interviewees from the unstructured in-
terviews were presented in a neutral, topic-based and narrative manner.

Chapter 5 constituted a conceptual analysis, analysing the theoretical view fur-
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ther and related it to the external view. In section 5.1.1, discrete-event simulation
was related to the knowledge-based view on decision-making. Then in section 5.1.3
the concepts of integration and aggregation in simulation-based decision-support
were introduced, together with a mapping matrix (AIM) relating them to each
other.

Section 5.2 deals with the identified differences in performance measurement in
the real world versus in a simulation model or DSSS, thus targeting RQ1.

Finally, section 5.2.3 discussed how the Manufacturing Performance Dimensions
can be measured in simulation/DSSS models with the purpose of answering RQ2.

In chapter 6, the views of the internal interviewees from the semi-structured
interviews were presented similar manner as the external view. The final part,
section 6.5, extracted and distilled the general decision-making issues found, i.e.
the issues that should be targeted by the simulation-based decision-support.

Finally, chapter 7 discussed the empirical findings, connecting them to the the-
oretical view and findings from the conceptual analysis with the aim of addressing
?7?. Section 7.1 uses the Aggregation-Integration Matrix (AIM), developed in sec-
tion 5.1.3, to address the decision-making issues found in 6.5. Section 7.2 outlines
the relevant performance dimensions to capture, with respect to the situation of
Company X, and suggested a performance measurement system divided into the
three main application areas: Design & Investments, Planning & Operations, and
Product Mix.

8.2 Findings

This section presents the findings of the study. First, the general findings related
to the research topics are presented and discussed, followed by specific findings and
discussions constituting the answers to the research questions

8.2.1 Addressing Research Question 1

To recapitulate, the first research question of this study was:
What specific conditions does simulation-based decision-support put on the
selection of performance measures and the design of a PMS, as opposed to

performance measurement in a real system?

The following findings relate to using simulation as decision-support in general:
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1) simulation can support decision-making in multiple different ways, through
providing knowledge difficult or impractical to acquire otherwise

2) knowledge created by a simulation model/DSSS can aid decision-making in
other ways than evaluating scenarios.

3) simulation and even a DSSS can only evaluate specific scenarios, it is up to
the decision-maker to weigh and judge performance dimensions when they
are subjected to trade-offs

4) the complexity of simulation is two-folded; it can capture the real system in
a realistic way, but the outputs can cause confusion if not distilled properly
in a PMS

5) The role of performance measurement in simulation-based decision-support
can be described in terms of aggregation and integration

6) The level of aggregation and integration in simulation-based decision-support
should be set carefully (see figure 15), to avoid:

i) Sub-optimisation/Silo-thinking (too low integration)
ii) Information overload (too low aggregation)
iii) ”Black box” problems/Lack of understanding and credibility (too high
aggregation)
iv) Complexity /Loss of accuracy (too high integration and aggregation)

7) Aggregation and integration should be aligned with the specific issues that
the decision-maker faces, i.e. his/her specific needs in terms of detail and
scope of the decision-support

Regarding simulation in itself, it is important to note that it is very useful
to analyse and improve manufacturing systems, but it should be seen as support
for the decision-maker, who naturally maintains a crucial role. Simulation-based
decision-support should be aimed at improving the quality of decision-making, as
well as simplifying the task itself, through addressing the issues that decision-
makers face. If decision-makers struggle with understanding complexity and the
long- and short-term impacts of decisions in the manufacturing system, then it
is important to avoid making it worse by generating a vast amount of data or
unstructured information. Instead, it is preferable if the tool can provide some
parts of the analysis by itself and thus meet the decision-maker halfway. Integration
and aggregation are two concepts which describe in what dimensions the simulation
model /DSSS operates. Going too far in either direction can deteriorate its practical
usability or decrease the quality of the decisions made, or both.

The following findings are built on those previously presented and apply specif-
ically for designing a PMS for simulation/DSSS:
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1) a PMS should, both in reality and in simulation-based decision-support, sat-
isfy:
i) Inclusiveness (sufficient integration)
ii) Universality (sufficient aggregation)
iii) Measurability (the captured performance dimensions should be possible
to model and measure, meaningfully and accurately enough)
iv) Consistency (aligned with organisational goals)
2) The inclusiveness and consistency criteria seem to require a mix of financial-
and non-financial measures
3) Financial measures appear to be most relevant on higher decision-levels, but
can be included in a simulation model/DSSS model
4) To calculate financial measures, a cost model needs to be constructed. Such
cost models typically:
i) require a significant amount of accurate, accessible and up-to-date input
data
ii) include numerous simplifications and assumptions, in addition to those
already made in the simulation model

The simulation-specific criteria on the PMS used in a simulation-based decision-
support application, can be expressed in the general properties of an effective PMS
outlined by Beamon (1999). Appropriate levels of integration and aggregation are
the means to satisfy inclusiveness and universality. Specifically, the inclusiveness
criterion not only concerns what to measure, but also the scope of the underlying
simulation model. Furthermore, the chosen levels of these should be addressing
the specific decision-making issues faced by a certain decision-maker in a certain
decision- and application area. The consistency criterion appears to apply analo-
gously for PMSs in general and simulation modelling/DSSS specifically; the purpose
and objectives are what ultimately defines what is relevant to measure.

Measurability is related to the specific benefits and modelling issues with simu-
lation, which make some performance dimensions more easy to measure and others
more difficult. This study has shown that there are differences to measuring a real
system, as described in section 5.2. First, the time factor describes how the simu-
lation model in a sense is capable of estimating future outcomes, given a certain set
of input parameters and a valid simulation model. The implication on performance
measurement is that the measure tense of some measures can essentially be seen
as having shifted from ”outcome” to ”predictive”, as the simulation model/DSSS
tool in a some ways can be seen to prognosticate the outcome. For longer-period
simulations, traditionally outcome-oriented measures may therefore have higher
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relevance, as the opposite would mean a evaluating a scenario of measures that are
still only predictive. However, the predictive measures together can be important
to capture performance dimensions not possible to include in the simulation.

The resource factor emphasises that the traditional measurement trade-off of
benefit versus cost, can be seen to shift towards benefit versus modelling complex-
ity. In other words, as the simulation model can measure what is modelled by the
click of a button, the trade-off lies in building a model with a wide enough scope
(integration) to measure what is of interest. In addition, several dimensions of per-
formance can be particularly difficult (or impossible) to model and measure, such
as product quality and customer satisfaction. Despite the differences of practical
nature, what is relevant to measure is dependent on the manufacturing competitive
priorities and objectives, as with performance measurement in manufacturing in
general.

Conclusively, the general claim within the field of performance measurement
that a mixture of predictive and outcome-oriented measures (and financial /non-
financial) is preferable, appears to apply also in simulation. The most prominent
difference in selecting performance measures in simulation versus in reality, appears
to be what ultimately can be modelled and measured, with or without substantial
effort.

8.2.2 Addressing Research Question 2

The second research question in this study was:

What performance measures should be selected in a PMS in Simulation-based
decision-support, depending on the areas of application?

This study finds that the selection of performance measures in a PMS for
simulation-based decision-support should be aligned with:

1) the organisational goals and objectives in the simulated decision-area, and in
extension the purpose of simulating

2) the decision-making issues and knowledge gaps for decision-makers in the
simulated decision-area

The first conclusion is somewhat analogous to performance measurement in
general, e.g. the structure of the Performance Pyramid in figure 7 on page 45. The
second is more specific to the intended purpose of supporting the decision-maker
and most likely relevant regardless of whether or not the decision-support tool is
based on simulation.
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As the PMS should be aligned with the purpose and objectives of using sim-
ulation/DSSS, three different PMSs were developed in tables 9, 10 and table 11.
These correspond to the specific application areas identified by Company X: De-
sign & Investments, Planning & Operations and Product Mix. They have some
differences in content, but are all aligned with the identified strategic objectives
(or manufacturing competitive priorities) identified at Company X:

1) Cost efficiency
2) Flexibility
3) Flow efficiency

Regarding knowledge gaps and in extension the specific needs of the decision-
maker, four common decision-making issues has been identified at Company X:

1) Understanding process relations and constraints
2) Dealing with variability

3) Lack of holistic view or inclusiveness

4) Data versus Information and Knowledge

These were mapped into the Aggregation-Integration Matrix (AIM) developed
in section 5.1.3, suggesting appropriate levels to solve them. They are not overlap-
ping, which means that there may be no unique levels that can fully mitigate with
all of them. In addition, they were not equally emphasised on different decision
levels, meaning that a PMS should be separately displayed in different situations
and on different decision levels.

Given the findings above, the suggested sets of performance measures found in
tables 9, 10 and 11 are adapted to decision-levels and specific applications, address
the identified decision-making issues and are aligned with the overall objectives
identified. These constitute the response to RQ2 and are discussed further in the
sections below.

Design & Investments

The authors suggest a two-phased approach for this application area, as seen in
table 9. The reason for this was that Factory or Layout design changes, or im-
provement initiatives in general, may require to be evaluated both on an opera-
tional/detailed level and on a strategic/holistic level. Both of these views ought to
be difficult to achieve in one single set of performance measures, given the condi-
tions and criteria outlined in this study.

In addition, the two-phased approach with financial- and long-term flexibility
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evaluation can to some extent remedy the identified issue of ”safeguarding” in
design choices, as the decisions would become more fact-based.

Planning & Operations

The flexibility dimension is included in this application area, even though it might
be considered an inherent property of a manufacturing system, rather than some-
thing that can be affected substantially on the short-term. There are however, as
shown, flexibility dimensions which do apply, also on the short-term.

One of the manufacturing objectives identified is improving flexibility, and it
was also mentioned by several interviewees that unanticipated events are challeng-
ing within planning. Moreover, as simulation models are simplified and built on
many assumptions, the need for evaluating the flexibility of a certain production
plan increases further. Even if a DSSS tool provides information on the impacts
of different production plans, albeit both financially and operationally, it almost
certainly will not capture the true probability of such impacts. Or vice versa, the
risk of reality to turn out differently, due to supplier delivery failures, operators on
sick leave etc.

Product Mix

The product mix application area is, as discussed, not a functional application area
in itself. The impacts of changes to the product mix at a certain factory will most
certainly occur in many different parts of the manufacturing system. Therefore,
the measures suggested should not be seen as static in any way, they are mere
suggestions meant to serve as simple criteria. If the effects on cost measures or
flow efficiency are not too high, a certain product mix can be seen as qualified for
further study.

Again, the cost model suggested is highly simplified and does not provide infor-
mation accurate or detailed enough to conduct product costing. Even if substantial
effort was put into developing a more sophisticated model, it is far from certain
that it would provide any better calculations than those used today.

It might be more effective for Company X to develop some criteria on which
products to produce where, based on principles and factories with ”strategic pro-
files”. One such principle could be to produce ”simple”, high-runner products in
certain factories focusing on that task, and more diverse product portfolios with
volatility and low volume, in others. Assigning products to factories exclusively
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based on capacity and volume, may lead to short-termism and sub-optimality. This
type of principle can be complemented with simulation, as a means to evaluate suit-
ability of a product mix through the PMS suggested, but the overall assessment
includes several considerations not covered by this study.

8.2.3 Concluding remarks

Since cost models can be difficult to achieve reasonable accuracy in, a simplified one
was proposed in section 7.3.2. This model is proposed as a means of calculating the
cost measures in the PMSs suggested. A simulation model is no predictor in itself,
due to various assumptions and simplifications. Moreover, the cost model adds
another layer of uncertainty in the decision-support. The cost measures themselves,
should therefore be used mainly for ”screening” and rough comparisons between
scenarios, rather than predictions of financial performance.

Company X expressed that translating operational measures into financial im-
pacts is attractive to better be able to evaluate whether to go forward with a
simulation-based decision. It most certainly is, but one important conclusion to
draw from this study is that performance in manufacturing is multi-faceted. Even
if future financial performance may be the ultimate goal, it is in reality difficult
to manage an organisation solely on the basis of financial performance. Some di-
mensions of performance are not possible to express in financial numbers, although
decisions to improve them most certainly can have financial impacts, implicitly.
First, the complete dynamics of financial impacts from operational performance
improvements may be close to impossible to foresee. Second, some decisions may
have significant long-term financial impacts which do not materialise during the
simulated time-period, and which stem from factors not even included in the model.
This is why Company X is advised to pay attention to the fact that the model is in
fact a model, most evidently so regarding the cost measures. The authors however
believe that the cost model, together with the other suggested measures together
can provide a link between financial and operational performance. In the end,
when building a business case for an investment or improvement partly based on
simulation results, there will most often be more aspects to consider than financial
measures and estimates.

According to the authors’ experiences within the fields of Supply Chain Man-
agement, Logistics and Manufacturing, much revolves around trade-offs. If all
sides of those trade-offs could be translated with moderate accuracy into financial
numbers, they would be optimised and no longer constitute real trade-offs. Some
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trade-offs are distinct (such as batch sizes, setup costs and inventory) and may
be optimised, others are more diffuse (such as efficiency versus flexibility). Many
improvement methods in the latter, revolve largely around principles presumably
leading to long-term performance. They typically focus on improved customer sat-
isfaction, less waste of time and resources etc., rather than trying to predict the
financial impacts of specific decisions, in specific situations.

8.3 Recommendations for Company X

Based on the findings above, together with the selected PMSs in the different
application areas, some general recommendations can be formed for Company X.

1) Use a simplified cost model for screening solutions, rather than decision cri-
teria

2) Adopt a TOC or japanese lake strategy, focusing on system constraints, when
simulating for continuous improvement

3) Tailor Aggregation & Integration for the decision-making issues in the simu-
lated decision-areas

4) Integrate all aspects that are possible constraining factors when building the
simulation model

5) Align what to measure and model with strategy and purpose

The first recommendation recognises the benefits of using financial measures
and costs, but also the complexity and difficulty of building a valid and accurate cost
model. The benefits may be reaped without having to build a highly sophisticated
cost model, which would be likely to have quite poor accuracy anyway. The second
recommendation is related to the benefits highlighted by Pehrsson (2017), i.e. that
using simulation to find and target bottlenecks is one of its main benefits. There
also appears to be a synergy between such improvement methods and the use
of simulation, as they can be automated and to a large part done virtually before
implementing changes. The third recommendation emphasises that in order for the
simulation-based decision-support to actually be of any use to the decision-maker,
it should be addressing his/her actual decision-making issues and knowledge gaps.
The fourth concerns the fact that too low integration can be an issue, namely
by leading to sub-optimisation, disregard of important factors and/or failure to
capture important dynamics in the system.

Finally, what to measure in the simulation is determined by what the tool
actually models. In order to capture what is relevant for the decision-maker and
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for the organisation as a whole, the model and measures need to be grounded in
what is intended to be achieved. Therefore, both the design of the model and the
selection of what to measure should be aligned strategy and purpose, as well as
lower-level objectives in the decision-areas simulated.

8.4 Contribution and implications for research

The main contribution to research of this study is a comprehensive conceptual and
practical view on the role of performance measurement in manufacturing simula-
tions and simulation-based decision-support. It presents the concepts of integra-
tion and aggregation and relates them to identified decision-making issues found
at Company X, but can essentially be used in multiple different ways and in other
settings. In addition, it applies previous research on performance measurement in
the context of simulation, highlighting analogies, discrepancies and specific consid-
erations which need to be paid attention to.

8.5 Recommendations for further study

This study could be followed by multiple different research projects. The first and
most obvious suggestion is to study the implementation, and continuous use, of
simulation-based decision-support in the application areas studied. This would
provide more knowledge on practical issues and additional aspects targeting the
usability. Also, research could be conducted focusing on making results visual in
the most effective way.

Another key area which requires further study, is how to develop reasonably
accurate cost models which are simple to develop and use, preferably with high
degree of automation. Related to this, one particular area to study is whether it is
possible to connect DSSS tools and cost models to financial, business intelligence
and/or ERP systems. This could for instance provide updated and accurate finan-
cial data automatically, thus mitigating the common issues experienced before of
acquiring input data.
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Appendix A

List of personal interviews

Appendiz A contains a listing of all interviews conducted in the study, divided by
internal interviews at Company X and external interviews.

A.1 Internal interviews at Company X

The interviews conducted at Company X are listed in table A1. Due the request of
anonymity by Company X, all names of the interviewees at the organisation have
been anonymised as well. The real name of the interviewees were instead exchanged
by a code name identifying the affiliation and interview number corresponding to
the specific affiliation, i.e.:

1) Factory interviews: FAC [Factory number|: [Position (shortened)]
2) Corporate headquarters interviews: HQ: [Position (shortened)]

Some of the interviews were conducted in groups of two, which can be recognised
by the entries containing two positions. As the interviews were conducted simul-
taneously, the name of the interview were set as one.
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A.1. Internal interviews at Company X

Table A1. List of interviews conducted at Company X ordered by the date of interviewing.

Name Affiliation Position Date of
interview
FAC 2: Fin. Dept: IT Factory 2 IT Specialist - 7 April 2017
Specialist Financial Dept.
FAC 1: Planning Factory 1 Planning manager 12 April 2017
Manager
FAC 1: Fin. Manager Factory 1 Financial Manager 12 April 2017
FAC 3: Tech. Manager Factory 3 Technical Manager 19 April 2017
FAC 3: Prod. Planner Factory 3 Production Planner 19 April 2017
FAC 2: Tech. Engineer Factory 2 Technical Engineer 20 April 2017
HQ: Ind. Strat.: BA Headquarters Business Analyst - 24 April 2017
Industrial Strategies
HQ: Tech. Dev. Manager Headquarters Technology 24 April 2017
Development
Manager
FAC 4: Prod. Planner Factory 4 Production Planner 26 April 2017
HQ: Proj. Engineer Headquarters Project Engineer 10 May 2017
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A.2 External interviews

The interviews conducted externally (i.e other than at Company X) are listed in
table A2.

Table A2. List of external interviews ordered by the date of interviewing.

Name Affiliation Position Date of
interview
Erik Videsson Implement Management, 18 April 2017
Consulting Consultant -
Group Operational Strategy
Per Wiklund AstraZeneca Capital Project 20 April 2017
Manager
Leif Pehrsson Volvo Car Director 8 May 2017
Corporation Manufacturing
Research & Concepts
Johan Marklund Faculty of Professor at the 9 May 2017
Engineering Division of Production
(LTH), Lund Management
University

171



172



Appendix B

Sample of interview questions

Appendiz B contains a sample of the questions addressed to the interviewees dur-
ing the semi-structured interviews for the internal view. The questions are listed
categorised into different topics.

Stakeholder profile

What is/are your:
1) worktitle;

[\

organisational level (reports to);

w

working role;

W

responsibility areas;

(SN

)
)
)
) decision mandate (what type of decisions do you make);
) areas/functions impacted; and

)

\]

experience in investment and/or improvement projects? (If yes, what was
your role?)

View on simulation

8) What is your previous experience with simulation/simulation projects?
9) How could simulation be used to improve or analyse your responsibility areas?
10) Could you give some examples of areas/parameters in the production where
simulation could be useful for improvement? What would you like to improve?
11) What are the disadvantages/challenges of using simulation as decision-
support as you see?
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Performance and performance measurement

12)
13)

14)
15)

16)
17)

18)

Are your personal performance measured by any PMs? If yes, what PMs?
Do you measure and evaluate the performance of your responsibility areas by
any PMs? If yes, what PMs?
How does performance measurement differ between your and others respon-
sibility areas up and down in the organisation?
Which PMs do you consider to be the most important for your responsibility
area and the production system in general?
What is hard to measure now that you would like to measure if you could?
What type of PMs do you see as relevant for your responsibility area and the
production system in general?
i) Financial versus non-financial /operational PMs?
ii) Outcome versus predictive (action/input/diagnositc) PMs?
Depending on the organisation level:
i) Do you think the type of PMs change , e.g. more aggregated and more
financial the higher level?
ii) Do you think the number of measures change, e.g. fewer measures at
higher level?

Improvements

19)

20)

21)
22)

23)

Have you proposed any improvement ideas to your managers? If yes, what
kind of information did they want/request in order to decide whether to
implement it or not?

Have people proposed improvement ideas to you? If yes, what information or
data did you want/request in order to know whether you should implement
it or not?

How do you measure the benefits and costs of improvement efforts?

What do you typically focus on in your improvement efforts? And what are
you most interested in improving? (E.g. cost, productivity, quality, speed,
flexibility.)

Do you typically try to improve areas with direct impact on performance or
the underlying causes/drivers of performance?

Decision-making

24)

How would you describe your decision-making? E.g. rational, intuitive, emo-
tional, detail-oriented, information-driven, holistic, short-term /long-term, etc
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25)

26)

27)
28)

29)

30)

How would you describe other peoples decision-making, at Company X and
at the factory?
What information and data do you want/need to make your decisions on

i) new machines, equipment, layout;

) new procedures or processes;

) planning or scheduling;
iv) batch sizes;

) inventory; and

) product mix.
Do you measure in some way what the outcome was?
Do people you work with typically require a lot of information in order to
make a decision? What kind of information?
Are there any specific kinds of information that you would have liked to see
if you could get them to make better decisions?
How do you think the information needed for a decision is affected by the
level of the decision-maker?
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