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Abstract 

In Sweden the number of cars per person has increased since the mid-

20
th

 century. With negative impacts on both health and the environment, private 

ownership of vehicles represents one of the major challenges in urban transport. To 

move travelers from privately owned vehicles to public transport has shown to be 

beneficial in reducing carbon emissions. However, in order to create policies that 

attract people towards public transport, data of factors influencing transit choice is 

crucial due to its validation of planning and investments. Previous studies have shown 

that physical proximity to public transport stations is one of the critical factors when 

considering transport choice. Consequently, the aim of this thesis is to analyze novel 

GPS data to investigate the relationship between public transport accessibility and car 

use in Lund and Malmö, Sweden. By modelling this relationship with the spatial 

regression model of Geographically Weighted Regression (GWR), regional variations 

are allowed and investigated. The results in Lund imply a negative association 

between public transport accessibility and car use, thus suggesting that car use 

decreases with a higher public transport accessibility. Furthermore, results in Lund 

indicate that the spatial regression model of GWR is a better fit to the data than the 

non-spatial regression model of Ordinary Least Squares (OLS). In Malmö, on the 

other hand, results imply that public transport accessibility does not have significant 

impact on car use, and suggests that the GWR model is not a better fit to the data than 

the OLS model. Consequently, the results in Lund and Malmö do not coincide. 

Nevertheless, in Lund, where model performance is the highest, results imply that car 

use decreases with a higher public transport accessibility. This study is one of the first 

to use individual GPS data together with spatial analysis to investigate the relationship 

between public transport accessibility and car use. Consequently, this study 

contributes to the literature on the effects of public transport accessibility on car use 

and on the use of local spatial analyses in accessibility studies. Such knowledge can 

be utilized in transport planning to reduce car usage. 
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Sammanfattning 

Sedan 1950-talet har antalet bilar per person i Sverige ökat. Med en negativ påverkan 

på miljön såväl som på människors hälsa, representerar privat ägande av fordon en av 

de största utmaningarna i transportplanering. Att flytta resenärer från privata fordon 

till kollektivtrafik har visat sig fördelaktigt beträffande att minska koldioxidutsläppen, 

dock kräver denna typ av mobilisering politisk styrning. För att skapa effektiv policy, 

som lockar resenärer till kollektivtrafik, krävs information om faktorer som påverkar 

färdmedel, vilket sedan kan användas till att validera detaljerad planering och 

finansiella investeringar. Tidigare studier har visat att tillgänglighet till kollektivtrafik 

är en av de faktorer som har störst påverkan på valet av färdmedel. Därför är syftet 

med denna studie att analysera individuell GPS data för att undersöka förhållandet 

mellan tillgänglighet till kollektivtrafik och bilanvändning i Lund och Malmö. Genom 

att modellera detta förhållande med regressionsmodellen geografisk viktad regression 

(GWR) möjliggörs och analyseras regionala variationer i relationen. Resultaten i 

Lund visar att tillgänglighet till kollektivtrafik har en negativ association med 

bilanvändning, vilket tyder på att bilanvändning minskar med en högre tillgänglighet 

till kollektivtrafik. I Lund visar även resultaten att den rumsliga modellen GWR är 

bättre på att modellera data än OLS, som representerar en icke rumslig linjär 

regressionsmodell. I Malmö har tillgänglighet till kollektivtrafik inte en signifikant 

relation med bilanvändning, och den rumsliga modellen GWR är inte bättre på att 

modellera data än den icke rumsliga modellen OLS. Följaktligen så skiljer sig 

resultaten mellan Lund och Malmö. Men, i Lund där modellen presterar som bäst, så 

tyder resultatet på att bilanvändning minskar med högre tillgänglighet till 

kollektivtrafik. Denna studie är en av de första som använder individuell GPS data 

tillsammans med rumslig analys för att analysera förhållandet mellan tillgänglighet i 

kollektivtrafik och bilanvändning. Följaktligen bidrar denna studie till litteraturen 

angående hur bilanvändning påverkas av tillgänglighet till kollektivtrafik och 

angående användningen av lokala rumsliga modeller i tillgänglighetsanalyser. Denna 

kunskap kan användas vid transportplanering för att minska bilanvändning.  

 

Nyckelord: Physical Geography and Ecosystem analysis, Geographically Weighted 

Regression (GWR), Public transport accessibility, travel survey, GPS data, Car usage 

 

 

 



Acknowledgements 

I would like to give a special THANKS to Finn Hedefalk and Emeli Adell. Thank you 

Finn Hedefalk, for your expertise, commitment and valuable feedback during this 

entire process. And thank you Emeli Adell, for making this thesis possible and 

encouraging this work from beginning to end. Furthermore, I would like to thank Leif 

Linse, Anna Clark and all others at Trivector Traffic that have been involved in the 

process of developing TRavelVU, thank you for allowing me to analyze new and 

unique travel survey data. Finally, I would like to thank friends and family, for 

continuous support and guidance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Contents 

1 Introduction ......................................................................................................................... 1 

1.1 Aim .................................................................................................................. 3 

1.2 Hypothesis ....................................................................................................... 3 

1.3 Study area ........................................................................................................ 3 

2 Background ......................................................................................................................... 5 

2.1 The incentives behind car use ......................................................................... 5 

2.2 GPS in travel surveys ...................................................................................... 7 

2.3 Spatial regression ............................................................................................ 8 

2.4 GWR in accessibility analysis in the transport sector ................................... 13 

3 Data ................................................................................................................................... 14 

3.1 Travel survey data ......................................................................................... 14 

3.2 Data sets ........................................................................................................ 16 

4 Methodology ..................................................................................................................... 18 

4.1 Data structure and visualization .................................................................... 18 

4.2 Definition and calculation of car use............................................................. 19 

4.3 Explanatory variables .................................................................................... 20 

4.4 Statistical analysis ......................................................................................... 23 

5 Results ............................................................................................................................... 24 

5.1 Descriptive statistics ...................................................................................... 24 

5.2 OLS results in Malmö ................................................................................... 30 

5.3 GWR results in Lund..................................................................................... 32 

5.4 GWR results in Malmö ................................................................................. 34 

6 Discussion ......................................................................................................................... 35 

7 Conclusions ....................................................................................................................... 40 

8 References ......................................................................................................................... 41



1 

 

 

1 Introduction 

1.1 Climate change and impacts 
Since the industrial revolution, emissions of anthropogenic greenhouse gases (GHG) 

has continued to increase, in which the 10-year period between 2000 and 2010 is 

responsible for the highest emissions in history. Additionally, the Intergovernmental 

Panel on Climate Change (IPCC) reports that in 2014, greenhouse gas emissions were 

higher than ever (IPCC, 2014). The high levels of carbon dioxide, methane and 

nitrous oxide in the atmosphere has led to an uptake of energy by the climate system, 

a consequence that is a major environmental threat with extensive impact on both 

human and natural systems. Considering the increase in emissions between 2000 and 

2010, approximately 11% originated from the transport sector, which represent a 

sector where the energy demand is highly dependent on technical and urban solutions 

as well as the behavior of people (IPCC, 2014). The observed warming of the 

atmosphere and oceans since the mid-20
th

 century is a consequence of the 

anthropogenic greenhouse gas emissions. The 30-year period between 1983 and 2012 

is likely to be the warmest period in the Northern Hemisphere over the last 1400 

years. Other observed consequences are the decreasing extent of the Arctic sea ice and 

the Northern Hemisphere snow cover as well as the mass loss of the Antarctic and 

Greenland ice sheets, contributing to a global mean sea level rise (IPCC, 2014). 

According to the World Health Organization (WHO) 150 000 deaths per year can 

associated with climate change and greenhouse gas emissions. Future risks include 

flooding from coastal storms, where the number of people at risk is estimated to 200 

million by the year 2080 (Patz et al., 2005). With high confidence, IPCC predicts 

future risks of food and water insecurity, reduced income and the loss of ecosystems 

and biodiversity as a consequence of climate change (IPCC, 2014).  

 

1.2 GHG emissions from the transport sector 
In European cities, approximately 40% of the greenhouse gas emissions come from 

motorized vehicles, where in 2014, approximately 66% originated from passenger 

cars (Alam et al., 2017, Rojas-Rueda et al., 2012). Hence, private ownership of 

vehicles is one of the major challenges in urban transport with negative impacts on 

both health and the environment (Trafikanalys, 2015, Rojas-Rueda et al., 2012). In 

Sweden, the number of cars per person has increased since the mid-20
th

 century. 

Additionally the total mileage for all passenger cars has been increasing from 1999 to 

2008, where the total mileage reached a steady state. However, an increase was 

prominent again in 2014 and if no actions are taken to reduce the car use, the Swedish 

Transport Administration (Trafikverket) predicts that the distance travelled by car will 



2 

 

increase by 25% between 2010-2030 (Trafikverket, 2015, Trafikanalys, 2015). To 

reduce the environmental pollution, the United Nations Environmental Program 

(UNEP) has suggested changes regarding public policies that encourages public 

transport in cities (Rojas-Rueda et al., 2012). Encouraging travelers to use public 

transport as opposed to privately owned vehicles is beneficial in reducing carbon 

emissions; however, such urban restructuration demands political governance and 

planning. To create policies that attract people towards using public transport, data 

regarding factors that influence the transit choice is crucial due to its validation of 

detailed planning and financial investments (Pye and Daly, 2015, Chakrabarti, 2017, 

Steg, 2005).  

  

1.3 Car use and public transport accessibility  
Previous studies have shown that physical proximity to public transport stations is one 

of the critical factors when considering transit choice. Furthermore, a study made by 

Boarnet et al. (2013) reported reduction in car usage for people living close to public 

transport stations with frequent and reliable public transport (Chakrabarti., 2017, 

Boarnet et al., 2013). Boarnet et al. (2013) used Global Positioning System (GPS) 

receivers to collect information about travel patterns. The GPS receiver represents an 

interesting new data collection method, providing detailed, precise and unbiased data 

compared to traditional travel surveys based on questionnaires (Rasmussen et al., 

2015). However, Boarnet et al. (2013) did not examine regional variations in the 

relationship between car use and the physical proximity to public transport stations, 

which if ignored could cause biased parameter estimates and misleading results (Li et 

al, 2017).  

 

In Sweden, the data collection methods for travel surveys has been limited and to the 

authors knowledge, there have been no studies using individual GPS travel data to 

analyze the relationship between car use and public transport accessibility (Allström 

et al., 2015). This study uses new and detailed GPS data to investigate the relationship 

between public transport accessibility, in terms of walking distance to public transport 

stations, and car use in Lund and Malmö. Additionally, it uses Geographically 

Weighted Regression (GWR) to explore regional variations in this relationship. 

Consequently, this study contributes to the literature on the effects of public transport 

accessibility on car use and on the use of local spatial analyses in accessibility studies. 

Such knowledge can be utilized in transport planning to reduce car usage. 

 

 

 



3 

 

1.4 Aim 

The aim of this study is to analyze GPS travel survey data from people living in Lund 

and Malmö, and thereby investigate the relationship between their level of car use and 

their accessibility to public transport. Additionally, further spatial and socio-economic 

variables with potential impact on car use will be included in the analysis to obtain 

deeper knowledge of the incentives of car use. The aim consists of the following four 

objectives: 

 

1. Define accessibility to public transport and perform a public transport 

accessibility analysis in Lund and Malmö. 

 

2. Identify spatial and socio-economic variables with potential impact on car use. 

 

3. Identify the explanatory variables generating the highest model performance 

when predicting car use in Lund and Malmö, and assess variables with a 

statistically significant relationship with car use by the use of Ordinary Least 

Squares (OLS).  

 

4. Apply a Geographically Weighted Regression (GWR) to model the 

relationship between car use and the explanatory variables. This will generate 

the highest model performance when predicting car use in order to investigate 

spatially varying relationships.  

 

1.5 Hypothesis  

The main hypothesis of this thesis is that the level of car use for the individuals in 

Lund and Malmö is negatively associated with the accessibility to public transport. It 

is also expected that this relationship remains also after controlling for other spatial 

and socio-economic factors. However, because of the diversity within and between 

Lund and Malmö, it is not expected that the relationships between car use and the 

explanatory variables is spatially uniform. Thus, a spatial regression model such as 

the GWR is expected to better predict car use compared to a non-spatial OLS. 

 

1.6 Study area  

The cities of Lund and Malmö, with a population of 82 476 and 280 407 respectively, 

were selected as study areas (Figure 1). The cities are located in the south west of 

Scania and have a population density among the topmost in Sweden. It is common to 

travel between Lund and Malmö municipalities, and the total number of journeys 

between Lund and Malmö are the highest in Scania (SCB, 2013, Ullberg, 2013).
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Lund 

 
Malmö 

         Figure 1. The study areas of Lund and Malmö in the south west of Scania, Sweden. ESRI basemap. 
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2 Background 

This chapter introduces the background of this thesis and consists of the following 

four main parts: (1) the incentives behind car use; (2) GPS in travel surveys; (3) Non-

spatial and spatial regression; and (4) GWR in accessibility analysis. 

 

2.1 The incentives behind car use 

One of the critical factors when considering individuals transport choice is their 

accessibility to public transport, which is recognized as a key criterion when assessing 

transport policies (Benenson et al., 2011). Additionally, research demonstrates strong 

correlations between car use, spatial distribution, transport mode cost and socio-

economic factors such as income, gender, occupation and age ( Chakrabarti., 2017, 

Shen et al., 2016, Bastian and Börjesson, 2015).  

 

2.1.1 Public transport accessibility  

The emphasis of public transport accessibility is based on the fact easy access to 

transport is considered to be more important for individuals than the method of 

transport in question (Benenson et al., 2011). Geographic accessibility measures with 

regard to public transport is widely considered as the ease of interaction between 

people and locations and how easy it is to move from one place to another. These 

measures can be divided into three main types: (1) the physical access to public 

transport stations; (2) the duration of a journey by public transport; and (3) the access 

to a destination via public transport, which is a combination of the first two measures 

(Geurs and van Wee, 2004, Saghapour et al., 2016, Farber and Fu, 2017). The first 

measure is most commonly used to define public transport accessibility, where both 

time and distance can be used as a proxy of physical access to public transport 

stations (Saghapour et al., 2016). The emphasis on the physical access to transit-stops 

is based on the fact that the time it takes to travel to a public transport stop has 

considerable impact on the total travel time and, consequently, has substantial impact 

on what method of transport is chosen (Murray et al., 1998). Accordingly, the greater 

the proximity to a public transport stations, the greater the chance of them utilizing 

the services (Hawas et al., 2016). Research shows that walking is the most common 

way to access public transport stations. Consequently, the walking distance or time to 

a public transport station has been recognized as the most important variable to define 

public transport accessibility (Wibowo and Olszewski, 2005).  Additionally, it has a 

clear concept and is easy to comprehend (Lin et al., 2014). 
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2.1.2 Income  

Income is recognized as a key variable when predicting car use (Shen et al., 2016). 

Research regarding travel trends in Great Britain by Stapleton et al. (2017) showed 

that income explained the travel trends in Great Britain to a great extent, along with a 

rising fuel cost and urbanization. Additionally, Bastian and Börjesson. (2015) 

demonstrated that income and fuel prices explained as much as 80% of the aggregated 

car distances per person in Sweden. Moreover, their results showed that the car 

distances per person was more susceptible to income in municipalities where income 

is low and population density as well as the public transport accessibility is high 

(Bastian and Börjesson, 2015).  

 

2.1.3 Gender 

Gender is recognized as a variable with impact on car use. Scheiner and Holz-Rau. 

(2012) demonstrated that there are gender differences in travel habits even in 

households where there are as many cars as people with a driver’s license. This 

suggests that personal-preferences may play a significant role in travel mode choice. 

These results may be explained by gender norms. Moreover, research regarding the 

car use of men and women are contradictory, where some report that women use cars 

less frequent than men and some report limited gender differences in transport mode 

choice (Scheiner and Holz-Rau, 2012).  

 

2.1.4 Age 

Age is another key socio-economic variable that influences car use though the impact 

of age on car use varies between countries. For example, in Germany retired people 

tend to walk, bike or utilize public transport, whereas in the USA, retired people tend 

to increase their car use (Buehler, 2011). Furthermore, Hagenauer and Hekbich. 

(2017) showed that age is more important than income regarding travel mode choice.  

 

2.1.5 Occupation 

The transport choice is affected by the complexity of the journey, which is affected by 

the occupation, job sector and household tasks of an individual (Scheiner and Holz-

Rau, 2012). Hence, both residence and workplace environments are important 

components when considering the choice of transportation of an individual. In respect 

to the explanatory power of the residence and workplace environments, some argue 

that the workplace environment is of even greater importance, and thus provide a 

higher explanatory power in respect to the transport mode choice  (Shen et al., 2016). 

Best and Lanzendorf. (2005) showed that in Cologne, Germany, students used a car in 

26% of their trips, whereas full time workers used a car in 51.5% of their trips, 
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suggesting that employment increases car use. This could be a response of several 

universities implementing strategies to reduce the use of private cars and increase the 

use other transport modes, thus altering the student workplace environment (Rotaris 

and Danielis, 2015).  

 

2.1.6 Proximity to road infrastructure 

The correlation between road infrastructure and the utilization of motor vehicles is 

widely known, even though the constant growth in both the road network system and 

the regional travel demand has made it hard to assess the actual impact of road 

infrastructure on car use (Zhang et al, 2017). However, Duranton and Turner. (2011) 

show a proportional relationship between extensions of highways and the increase in 

traffic. Multiple studies highlight density and the adaption to pedestrians as key 

factors of roads in respect to mode choice, travel distance and trip frequency (Zhang 

et al, 2017) 

 

2.1.7 Summary 

In summary, public transport accessibility is recognized as one of the most critical 

factors when considering transport choice, partly based on the fact that transport is a 

derived need where ultimately accessibility is what matters (Benenson et al., 2011). 

Additionally, income, preferences, country and the residence and working 

environment represent other factors with an impact on car use. Consequently, 

predicting car use is a complicated matter that is much affected by a person’s lifestyle, 

and thus identifying a set of variables that determines transit mode choice is a 

challenge (Chakrabarti, 2017). Hence, it is relevant to include both public transport 

accessibility and further socio-economic and spatial variables when predicting car use 

(Benenson et al., 2011, Shen et al, 2016). 

 

2.2 GPS in travel surveys 

Travel surveys are commonly used as a resource in transport planning (Shen and 

Stopher, 2014). Traditional travel surveys often involve time consuming 

questionnaires that require detailed information from the respondent. Consequently, 

the resulting data are only approximations of travel details and are dependent on the 

respondent’s perception of time and distance. Furthermore, the reported trips in 

traditional travel surveys are usually underestimated (Rasmussen et al., 2015, Xiao et 

al., 2015). In response, recent travel surveys have incorporated GPS-receivers to 

collect data, which has resulted in a data collection method with significant 

advantages compared to traditional travel surveys. One of the key benefits is the 

reduction of workload for the respondent, enabling data sampling for a longer period 
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of time (Xiao et al., 2015). Moreover the problem of respondents underestimating 

time is likely to be reduced, because respondents carry the GPS-receiver relatively 

continuously. Additionally, data collected with a GPS-receiver will be unbiased, 

precise and far more detailed compared to traditional travel surveys (Rasmussen et al., 

2015).   

 

2.3 Non-spatial and spatial regression 

The OLS regression represents a global regression technique used to model the linear 

relationship between a dependent variable and one or more independent variables. 

Moreover, the OLS regression model assumes the relationship between the dependent 

and independent variables to be consistent across space, thus it represents a non-

spatial regression model. Since spatial data usually possess regional variations and 

spatial autocorrelation, it is difficult to model spatial data and meet the assumptions of 

an OLS model. (Gao and Li, 2011). To overcome this limitation and generate higher 

model performance when modelling spatial data, the spatial regression model of 

GWR was developed (Fotheringham et al., 2002). GWR accounts for regional 

variations in the data by allowing local rather than global parameter estimates across a 

surface. The fundamentals of the method is that spatial autocorrelation is present 

within the sampled data, thus in GWR, data close to the estimation point i have more 

influence of the continuous function at point i than data further away (Brunsdont et 

al., 1998). GWR model outputs includes coefficient raster surfaces. One coefficient 

raster surface is obtained for each explanatory variable included in the model, and 

represent the change in the dependent variable for every one unit change in the 

explanatory variable, keeping all other variables constant. These coefficient raster 

surfaces could be visualized in maps and utilized to inform region wide and local 

policy (Ali et al., 2007, Fotheringham et al., 2002). Because the OLS regression 

model is an established and widely used model, the emphasis in this section will be on 

the spatial regression model of GWR.  

 

2.3.1 Geographically Weighted Regression 

The complete theory and background of the GWR model is presented in 

Fotheringham et al. (2002). The GWR is an extension of the global regression model, 

presented in Equation 1: 

                                          (1) 

 

where   represents the dependent variable, x is the independent variable,   and   are 

the intercept and slope coefficients, and   represents the error term. The estimator for 
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the corresponding variables is presented in Equation 2 (Fotheringham and Oshan, 

2016): 

              

 

   (2) 

where    is a vector of the global parameters to be estimated, X is a matrix of the 

independent variables and y represents a vector of observations that corresponds to 

the dependent variable. GWR (Equation 3) extends the global regression technique by 

allowing local instead of global parameters to be estimated, hence making it possible 

to model regional variations within the data (Fotheringham et al., 2002):  

 

                                (3) 

 

where         represent the coordinates for every i
th

 point in space, allowing a 

continuous surface of parameter values. The fundamentals of GWR is that spatial 

autocorrelation is present within the sampled data. Therefore, it is assumed that data 

near to point i have more influence regarding the estimation of the continuous 

function at point i than data further away from i. In practice, spatial autocorrelation is 

accounted for by applying a Weighted Least Squares (WLS) to the data. The equation 

for the GWR estimator is presented in Equation 4:  

 

                                     

 

   (4) 

where          represents a matrix that assigns weights to observations based on 

their proximity to point i. Observations close to point i are assigned higher weights, 

which correspond to higher influence on the estimation of the continuous function at 

point i, and observations further away have lower influence and are assigned lower 

weights (Brunsdont et al., 1998). The format of the spatial weighting function as well 

as the number of observations included in the calculation for each spatial location are 

important aspects of GWR. The Gaussian function is a spatial weighting function 

commonly applied in GWR, where the weighting of data will decrease with an 

increasing distance from i according to a Gaussian curve (Equation 5): 

 

         
   

  
  

   (5) 

 

where     is the weight of observation j at point i, d represents the distance from i and 

h represents the size of the kernel or bandwidth. Accordingly, the weight of data will 

decrease with an increasing distance from i until excluded from the calculation when 
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reaching a weight value of zero. There are two types of bandwidths: fixed or adaptive. 

A fixed bandwidth uses a kernel with a fixed size across the study region, resulting in 

a weighting function that is applied equally at every calibration point.  The adaptive 

bandwidth uses an adaptive kernel that increases or decreases in size according to the 

distribution of the data. To select a fixed kernel could potentially cause a problem 

when modelling data that is not evenly distributed, because few observations will be 

included in the calculation in regions where data are sparse. Thus, adaptive kernels, 

with smaller kernels in areas where data are dense and larger kernels in areas where 

data are sparse, can be applied to data with a non-homogenous distribution 

(Brunsdont et al., 1998).  

 

2.3.2 Criticism of Geographically Weighted Regression 

The validity of the GWR method has been discussed, where multicollinearity between 

the independent variables represent one of the major concerns (Páez et al., 2011). 

Literature implies that the GWR method is highly susceptible to the effects of 

multicollinearity between the independent variables. This suggests that the correlation 

between GWR variables are a consequence of multicolliniearity among the 

independent variables; both considering the local variable estimates for all locations 

and the specific variable estimates at each location (Fotheringham and Oshan, 2016). 

Effects of multicollinearity between variables include R
2
 overestimates and unreliable 

parameter estimates. However, research by Fotheringham and Oshan (2016) 

demonstrated that multicollinearity is not a problem in practice, and that the GWR 

method is robust to the effects of multicollinearity. Moreover, literature advocates 

caution when interpreting GWR results from small sample sizes (n ≈ 160), particularly 

when assessing the spatial heterogeneity of data (Páez et al., 2011). Nevertheless, to 

the author’s knowledge, only one study has attempted to assess the effect of sample 

size on GWR model performance. This study, conducted by Devkota et al (2013), 

showed that regardless of the sample size, 88% of the variables included in the 

analysis had a non-stationary relationship with the dependent variable (Mitra L. 

Devkota, 2014).  

 

2.3.3 OLS and GWR model output variables 

An OLS model assumes the relationship modelled to be consistent across space. Thus, 

data with regional variations violate the OLS assumption of global stationarity. The 

Koenkers Breusch-Pagan statistics (BPK) test for heteroscedasticity in the OLS data 

by computing an OLS regression called LM regression (Equation 6) and then 

calculating the sample value of BPK (Equation 7):  
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 ̃       

 

             (6) 

 

    

 

Where  ̃ is a vector of squared OLS residuals, Z is a matrix of observed sample 

values of the independent variables, d is a column of vector coefficients and e 

represent an error term (Honda, 1988). 

 

            (7) 

 

Where R
2 

is the coefficient of determination of the OLS regression and N is the 

sample size. A statistical significant BPK value reveals non-stationarity and violates 

the OLS assumption of global stationarity in the relationship modelled (Honda, 1988). 

Consequently, a statistical significant BPK value indicates that a local regression 

model such as the GWR, allowing the relationship modelled to vary across space, 

would be a better fit to the data than an OLS model (Gao and Li, 2011). To assess and 

compare the performance of the OLS and GWR models, the Adjusted R-squared (R
2
) 

and Akaike information Criterion corrected for small sample sizes (AICc) values may 

be considered. The R
2
 represents the coefficient of determination and measures the 

goodness of fit of the data, with values ranging from 0 to 1. The most general 

definition of the coefficient of determination is presented in Equation 8:  

 

     
       

      
 

   (8) 

 

where SSD is the squares of deviation in a linear regression and the SSDres and SSDtot  

represent the residual square sum and the total square sum, respectively (Tjur, 2009). 

The Adjusted R
2
 (Equation 9) improves the R

2
 by normalizing the numerator and 

denominator according to their degrees of freedom, and hence compensates for the 

number of variables in the model (Ohtani, 2000): 

 

   
                  

     
   

   (9) 

 

with n representing the number of observations in the data sample and k representing 

the number of independent variables included in the analysis. Higher Adjusted R
2
 

values indicate a better model fit, which corresponds to a higher proportion of the 

dependent variable variance being accounted for by the independent variables (Gao 

and Li, 2011). The Akaike information Criterion corrected for small sample sizes 
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(AICc) is a relative measure of model performance, where a smaller AICc value 

between two models that includes the same variables represents higher model 

performance. The definition of AICc is presented in Equation 10: 

 

                 
      

     
  

(10) 

 

where supL is the log-likelihood of the model representing the degree of fit and q is 

the total number of parameters included in the model (Karen, 2008). Generally, when 

comparing two models including the same variables, an AICc value differential of 3 

or more indicates the model with a lower AICc value to be the better model. 

Consequently, an AICc value differential of 3 or more between two models indicates 

the model with the lower AICc value to have a better fit to the observed data (Gao and 

Li, 2011). Moreover, the variance inflation factor (VIF) can be used to assess 

multicollinearity between variables in the model and is presented in Equation 11: 

 

      
 

    
  

   (11) 

 

where R
2
 is the coefficient of determination and the      is calculated for one 

independent variable xj, based on the linear relationship between xj and the other 

independent variables. VIF values much greater than 1 indicates multicollinearity 

between the variables in the model, (Vu et al., 2015). Moreover, spatial 

autocorrelation in regression residuals violates OLS assumptions and indicates a 

biased model (Rogerson, 2001). Moran’s I (Equation 12) is one of the most 

commonly used statistics to test for spatial autocorrelation in datasets. 

 

  
                

     
   

  
       (12) 

 

Where N represents the number of data points,                 is the mean value of 

x, and the       
     

     together with Wij are elements of the matrix of spatial 

proximity, M, that show the degree of spatial association between the points i and j. 

Further, Wij=1, j represents 1 if the k nearest neighbours of i and Wij =0 everywhere 

else (Kalogirou and Hatzichristos, 2007). 
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2.4 GWR in accessibility analysis in the transport sector 

Du and Mulley. (2006) were the first to apply Geographically Weighted Regression 

(GWR) in the transport sector when the authors explored spatial variations in the 

relationship between transport accessibility and land values in the United Kingdom. 

Results indicated that the relationship between transport accessibility and land values 

was non-stationary, thus motivating the use of the local regression model of GWR 

that allows regional variations within the data. Du and Mulley. (2006) implied that 

modelling the relationship between transport accessibility and land values with GWR 

led to further knowledge about factors resulting in land value uplift. Additionally, 

Salas-Olmedo et al. (2017) used GWR to explore spatial variations in the relationship 

between the accessibility to green spaces and socio-economic variables in Chilean 

cities. Similar to Du and Mulley. (2006) their data possessed regional variations and 

results indicated that the modelled relationship varied across the city (Salas-Olmedo 

et al, 2017).  
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3 Data  

This chapter introduces the data utilized in this study. Five datasets have been used: 

(1) GPS travel data; (2) questionnaire data; (3) income area data (4) road network 

data; and (5) public transport station data.  

 

3.1 Travel survey data 

Travel survey data represent the basis of the analysis in this study. The travel survey 

data consists of two types of data: (1) GPS travel data; and (2) questionnaire data. The 

GPS travel data represents travel data with spatial association from participants, and 

the questionnaire data represents personal information about participants. Both data 

types were obtained from TRavelVU, an app developed by Trivector Traffic in order 

to collect detailed travel survey data in an efficient way. In total, travel survey data 

from 136 individuals are analyzed in this study, with 67 and 69 individuals living in 

Lund and Malmö, respectively. The 136 individuals were recruited at public transport 

stations in Lund and Malmö or by signing up to donate data after getting in contact 

with Trivector Traffic. Thus, a majority of individuals analyzed in this study are users 

of the public transport system, which introduces a bias in the data (discussed in 

section 6).  

 

3.1.1 GPS travel data 

By collecting GPS-tracks from users, and classifying the tracks as either trips or 

activities, the app collects a wide range of information regarding user activity and 

travel patterns. An event where the user is identified within the same area for a period 

of time is classified an activity, and a journey between two activities is classified as a 

trip. If the app identifies a trip, it classifies the trip with the presumable means of 

transport; such as walking, bike, car etc. The app is able to identify 10 transport 

modes automatically and the user can manually choose from 18 different means of 

transport. The first time an activity is identified at a specific location the user 

categorizes the type of activity, such as work, home, shopping etc. The next time an 

activity is identified at the same location, the app suggests the same activity, but this 

can be modified by the user if necessary. To make sure trips are being classified with 

the correct means of transport, the user approves the data collected for each day and 

can correct trips with an inaccurate classification. Hence, all data included in this 

study have been approved by the user. GPS travel data is obtained in the format of 

GeoJSON, an open standard format that represents geographical features (Butler, et 

al, 2016). 
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3.1.2 GPS travel data in this study 

The GPS tracks analyzed in this study are collected between November the 7
th

 2016 

and February 10
th

 2017; however, the number of trips and time period analyzed varies 

between all users. The data amount and time period analyzed for every individual is 

dependent on numerous of factors; for example, the time period the app has been 

downloaded, how often location services were activated, and how active the user has 

been. Hence, all user datasets will be unique and data amounts will vary considerable 

between users. The average amount of total trips for a user in Lund and Malmö is 

55.24 and 66.61, respectively (Table 1). This could be put in relation to the average 

number of trips/day/person, which is 2.63 in Lund and 2.57 in Malmö (Ullberg, 

2013).  

 

Table 1. The average number of trips per user in Lund and Malmö. 

City Average trips/person Standard deviation 

Lund 55.24 37.62 

Malmö 66.61 

 

70.30 

 

3.1.3 Questionnaire data 

An app questionnaire collecting voluntarily personal information about the 

participants, including age and occupation, represents the basis of the questionnaire 

data. The app questionnaire is attached in Appendix 1.  

 

3.1.4 Questionnaire data in this study 

Information about the user gender, age, main occupation and car accessibility is 

obtained by the app questionnaire (Appendix 1). All questionnaire datasets where 

complete except for the age dataset, in which approximately 40% of the data was 

missing. The management of the missing age data is further discussed in section 4.3.4.  

 

3.1.5 Personal Integrity  

The integrity of the app users is protected by the Swedish integrity law (Swedish: 

personuppgiftslagen), which was implemented in 1998 to avoid infringement of 

personal integrity when managing personal information. One important part of 

personuppgiftslagen is the approval of individuals regarding the management of their 

data (SFS 1998:204. Personuppgiftslag). In TRavelVU, this is accounted for by 

letting the users approve the management of their data before using the app. In respect 

of their personal integrity, the homes of the individuals analyzed in this study are 

mapped on an aggregated level.  
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3.2 Data sets  

The following datasets have been utilized in this thesis: 

 

 GPS travel data provided by the app TRavelVU in the format of GeoJSON, 

converted to point and line shapefiles.  

 Questionnaire data in text format provided by the app TravelVU 

 Income and region data obtained from the Swedish bureau of statistics (SCB), 

representing the total income from employment in a year for individuals over 

20 years old. The income is represented as a median value for sub regions in 

the Lund and Malmö municipalities. The municipality sub areas are called 

Small Areas for Market Statistics (SAMS) and is constructed by SCB.   

 Car and bike road network data obtained from Trafikverket NVDB (Nationell 

vägdatabas)  

 Public transport station data of bus and train obtained from Open Street Map 

(OSM) 

 

The corresponding data format, reference system and data provider is presented below 

(Table 2).  

 

Table 2. The data formats utilized in this study. 

Datasets Format Reference 

system 

Provider 

GPS travel data GeoJSON SWEREF99 Trivector traffic 

Questionnaire data Text  Trivector traffic 

Income area Polygon shapefile SWEREF 99  SCB 

Road network Line shapefile SWEREF 99  Trafikverket 

Public  

transport station 

Point shapefile WGS 84 OSM 

 

3.2.1 Quality of the OSM data 

During a systematic quality analysis of the OSM data in England, results proved that 

OSM data is accurate with an average distance of 6 m between OSM data and data 

from the high-quality geodatabase OSM (Haklay, 2009). Due to diversity in the 

quality of the OSM data worldwide, a visual inspection was implemented to assure 

good quality of the data. Figure 2 and Figure 3 show examples of the visual inspection 

from Malmö and Lund, where the OSM public transport stations were compared to 

the stations in an ESRI basemap. No outliers were identified and results indicated that 

the OSM public transport station data was sufficiently accurate in Malmö and Lund.  
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Figure 2. OSM public transport stations in relation to an ESRI basemap at Botulfsplatsen, Lund. 

 
Figure 3: OSM public transport stations in relation to an ESRI basemap at Södervärn, Malmö. 
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4 Methodology 

The objective of this study is to investigate how public transport accessibility affects 

car use. OLS and GWR models will be implemented, specifying car use and public 

transport accessibility as the dependent and explanatory variables respectively. 

Furthermore, the relationship between car use and income area, age, gender, car 

accessibility, main occupation, distance to the city central and distance to the closest 

highway will be investigated, to obtain further knowledge of incentives of car use. 

Thus, these variables will also be used as explanatory variables in this study. The 

methodology of this thesis consists of four main parts: (1) comments of data structure 

and visualization; (2) computing car use; (3) computing the explanatory variables; and 

(4) the statistical analyses.  

 

4.1 Data structure and visualization 
The following sections introduce the data structure and visualization in this study. 

4.1.1 Data structure 
To explore regional variations in the incentives behind car use in Lund and Malmö, 

the participants needed to be assigned individual information of car use, public 

transport accessibility, age, gender, main occupation, car accessibility, income, 

distance to the city central station and distance to the closest highway. This was 

achieved by creating two point shapefiles, representing the participant residences in 

Lund and Malmö, and classifying each point with information of car use and 

information corresponding to the explanatory variables; because each point 

represented one residence and thus one individual. An example of this is 

demonstrated in Figure 4 below, where each point represent the residence of one 

individual. However, unlike the example below, points in the study was assigned with 

information relating to all explanatory variables, and not just main occupation and 

gender. 

 

ID Car use Employed Woman  

1 25% 1 0  

2 37% 0 0  

3 8% 1 1 a) 

b) 

Figure 4. Example of the individual data structure in this study, where a) 

represents attributes to each residence b).  
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4.1.2 Data visualization 

Due to the personal integrity of the individuals analyzed in this study, individual data 

is presented on an aggregated level using Thiessen polygons. The Thiessen polygons 

are derived from the topological relationship between points in the Euclidean plane, 

where one polygon is created for each point in the dataset. The size of a Thiessen 

polygon depends on the dataset point distribution, because the area of a Thiessen 

polygon is associated with the closest point in respect to the Euclidean distance. 

Figure 5 shows an example of a Thiessen polygon created by a point set. Due to the 

formula of the Thiessen polygons, small polygons correspond to a dense distribution 

of points and large polygons correspond to a sparse distribution of points in that area 

(Mu, 2009). Hence, the residence density in this study is represented by the area of the 

Thiessen polygons, where a large area represents sparse distribution of participant 

residences and a small area represents a dense distribution of participant residences. 

In respect to this analysis, multiple residences with very high proximity would 

represent data visualization that is considerably less aggregated than when residences 

are sparse. However, there were no such residences in this study.    

 
Figure 5. Thiessen polygon created by 

points P1, P2, P3, P4, and P5. 

  

4.2 Definition and calculation of car use 

In order to investigate the relationship between car use and the explanatory variables, 

the participants needed to be assigned with individual information corresponding to 

their level of car use. In practice, this analysis was computed by converting the GPS 

travel data format from GeoJSON to shapefile, making it possible to import the data 

into the GIS software ArcGIS10.3.1 and analyze the travel data for all participants. 

Further, the individual level of car use referred to as Car use, was computed by 

applying Equation 13 on all participants’ data: 
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(13) 

where No. of car tripsi represents the number of trips that are classified as car trips for 

person i, No. of total tripsi represents the total number of trips, with any mean of 

transport, for person i and Car usei represents the car use value for person i. Hence 

Car use for each individual represents a percentage value, in which a higher 

percentage correspond to a higher level of car use. Considering the example in Table 

3, person i would be classified with a car use value of 33% would he possess the 

example data. 

 

Table 3. Example of GPS travel data of person i. 

Individual No. of car tripsi No. of total tripsi Car usei 

i 50 150 33% 

 

4.3 Explanatory variables  

The main explanatory, or independent, variable, of interest in this study is public 

transport accessibility. Other explanatory variables are gender, main occupation, car 

accessibility, age, income, distance to the city central station and distance to the 

closest highway. The following sections describe the variables that were not obtained 

from the app questionnaire: public transport accessibility, income area, distance to the 

city central station and distance to the closest highway. Additionally, definition of age 

is presented below due to missing questionnaire data. Data of main occupation, car 

accessibility and gender are obtained from the app questionnaire (Appendix 1) and are 

simply based on the participants answer.  

 

4.3.1 Definition and calculation of public transport accessibility 

In this study, the physical relationship between an individual’s home and their closest 

public transport station is used to define public transport accessibility. More 

specifically, public transport accessibility is defined by the walking time by road from 

an individual’s home to their closest public transport station. This data was obtained 

by performing a public transport accessibility analysis in ArcGIS10.3, using Service 

area in the Network analysis extension. This application computes the distance or 

travel time to certain facilities by road by utilizing a point layer and road network as 

input data. Before utilizing Service area, each road segment in the road network was 

classified with the time in minutes it would take to walk from one end of the road 

segment to the other, using Equation 14: 
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Ti=
       

    
    

 

    (14) 

where Lengthi represent the length of road segment i in km, 4.68 represents the 

walking velocity in km/h and Ti represents the minutes it would take to walk from one 

end of a road segmenti to the other (Pachi, 2005). The walking time to public transport 

stations was computed using the service area tool and allowing the public transport 

stations to represent facilities. By setting walking time thresholds to 30 seconds, 

walking time polygons were created for every 30 second increase in the walking time 

to a public transport station (Figure 6).  

 

 
Figure 6. Walking time polygons from a public transport station 

 

Each participant was thereafter assigned a public transport accessibility value based 

on the spatial overlap of their residence and the walking time polygons. Because the 

residence in Figure 6 overlaps with the walking time polygon of 2 minutes, the 

individual in this residence would be classified with a public transport accessibility of 

2 minutes. This indicates that it takes between 2 and 2.5 minutes to walk from their 

residence to the closest public transport station.  

 

4.3.2 Definition and calculation of income area 

In this study, income is defined as the the total income from employment in a year for 

individuals over 20 years old, represented as median values for sub regions in 

municipalities. Based on income thresholds obtained from SCB, the income areas 

were categorized into low (<158’011 SEK), medium-low (158’012-268’312 SEK), 
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medium-high (268’313-446’641 SEK) and high (>446 641 SEK) (SCB, 2009). In 

practice, shapefiles representing income of sub regions in the municipalities were 

imported to ArcGIS10.3.1 and each region was classified to possess a low, medium-

low, medium-high or high income. Each individual was assigned an income category 

based on the income classification of their residence region. Hence, income is 

presented on an aggregated level and the classification of each individual is based on 

the income of their region of residence.  

  

4.3.3 Definition and calculation of distance to city central stations and closest 

highway 

The Euclidean distance between the residence of the individuals and the city central 

stations and closest highway was used as definition of distance in this study. This 

corresponds to the straight line between the residence of the individuals and the city 

central station and closest highway. Consequently, the Euclidian distance in km was 

used to calculate the variables: Distance to Malmö C, Distance to Lund C and 

Distance to highway, representing the distance to the city central stations and closest 

highway in Lund and Malmö.   

 

4.3.4 Definition and calculation of age  

The proportion of the individuals with missing age data was approximately 40%. 

Individuals with missing age categories were assigned an age based on the age 

distribution of the sample population, by utilizing weights. The weights were 

calculated for each unique age in the population, and represented the proportion of the 

age population with that unique age. Considering the example in Table 4, 10%, 20%, 

50% and 20% of the data obtained have an age of 20, 25, 30 and 35, respectively. The 

assignment of age was based on the weights; hence, the chance of being assigned an 

age of 35 would be 20% considering the age population in table 4. Further, age in 

Lund was categorized in to the groups: <25, 26-30, 31-35, 36-52 and >52, and age in 

Malmö was categorized in to the groups: <25, 26-30, 31-35, >35. This categorisation 

was based on the age distribution in Lund and Malmö, which is why the age groups 

are not exactly the same on both cities.  

 

Table 4. Example of an age population. 

Individual Age Weights 

i1 20 10 

i2 25 20 

i3 30 50 

i4 35 20 



23 

 

   

4.4 Statistical analyses 

In this study, the global regression model Ordinary Least Squares (OLS) and the local 

regression model Geographically Weighted Regression (GWR) were applied to 

explore the incentives behind car use. Separate models are estimated for Lund and 

Malmö, whereas the variables included in both analyses are the same, apart from the 

age classes 36-52 and >52 years which is applied in Lund exclusively and the age 

class of >35 that are applied in Malmö exclusively. The input data format were two 

point shapefiles, holding information about the dependent variable of car use and the 

explanatory variables included in the analysis: public transport accessibility, age, 

gender, main occupation, car accessibility, income, distance to the city central and 

distance to the closest highway.  

 

4.4.1 OLS regression models 

The Exploratory Regression tool in ArcGIS 10.3.1 runs OLS regression analysis on 

all possible combinations of the input variables in order to find a properly specified 

OLS model (Rosenhein et al, 2011). Consequently, the Exploratory Regression tool 

was used to identify the explanatory variables generating the highest model 

performance when predicting car use in Lund and Malmö respectively; both in respect 

to the adjusted R
2
, AICc, BPK and VIF values. The variables generating the highest 

model performance in both cities were included in OLS models in Lund and Malmö, 

respectively, to estimate the explanatory variables with a statistically significant (p 

<0.05) relationship with car use in both cities. By including the same variables in 

separate models for Lund and Malmö, potential differences regarding the incentives 

behind car use could be detected between the cities. 

 

4.4.2 GWR models 

To explore regional variations in the relationships modelled, GWR was applied to the 

explanatory variables generating the highest model performance in Lund and Malmö, 

respectively. When specifying the properties for the GWR model, the kernel type was 

set to adaptive to account for a heterogeneous distribution of data points in Lund and 

Malmö.  Further a Gaussian kernel was used, representing a kernel where the 

weighting of data will decrease with an increasing distance from i according to a 

Gaussian curve. AICc was used to select the optimal number of neighbors, which was 

set to 30 at both locations.  
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5 Results  

This chapter introduces the results in this study and consist of five main parts: (1) 

descriptive statistics; (2) OLS results in Lund; (3) OLS results in Malmö; (4) GWR 

results in Lund; and (5) GWR results in Malmö.  

 

5.1 Descriptive statistics  

The participant mean and standard deviation values regarding the non-categorical, 

continuous, data in Lund and Malmö are presented in Table 5 and Table 6, 

respectively.  

 

Table 5. Descriptive statistics regarding the non-categorical data in Lund. 

Variable Mean  Standard deviation  

Car use (%) 25% 25% 

Public transport  

accessibility (sec) 

6.8 min 4.07 min  

Distance to Lund C (km) 4.02 km 1.72 km 

Distance to highway (km) 2.18 km 1.42 km 

 

Table 6. Descriptive statistics regarding the non-categorical data in Malmö. 

Variable Mean Standard deviation 

Car use (C, %) 18% 18% 

Public transport  

accessibility (sec) 

3.4 min 2.15 min 

Distance to Malmö C (km) 4.01 km 1.75 km 

Distance to highway (km) 2.19 km 1.28 km 

 

Lund has a higher average Car use of 25% compared to the average Car use of 18% 

in Malmö. Considering Income area in both cities, income is slightly higher in Lund 

where 51% of the users have a medium-high or high income in contrast to Malmö 

where the corresponding proportion is 23%. Moreover, Car accessibility is higher in 

Lund where 73% of the users have access to a car always or sometimes, compared to 

56% in Malmö. In contrast, the mean walking time to a public transport station, 

Public transport accessibility, is twice as high in Lund compared to Malmö, with 3.4 

min in Malmö and 6.8 min in Lund. The Public transport accessibility standard 

deviation is 4.07 and 2.15 in Lund and Malmö, respectively. This suggests that Public 

transport accessibility deviates twice as much from the mean in Lund than in Malmö. 
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The distribution of the participants regarding the categorical, Boolean (0, 1), data in 

Lund and Malmö is presented in Table 7 and Table 8, respectively.  

 

Table 7. Descriptive statistics regarding 

the categorical, Boolean, data of the 67 

participants in Lund. 

 Table 8. Descriptive statistics regarding the 

categorical, Boolean, data of the 69 

participants in Malmö. 

Variable Participant distribution  Variable Participant distribution 

Income area    Income area  

-Low 27%  -Low 15% 

-Medium-low 22%  -Medium-low 62% 

-Medium-high 43%  -Medium-high 20% 

-High 8%  -High 3% 

Gender    Gender   

-Female 64%  -Female 60% 

-Male 36%  -Male 40% 

Car accessibility    Car accessibility  

-Always 49%  -Always 19% 

-Sometimes 24%  -Sometimes 37% 

-Never 27%  -Never 44% 

Main occupation    Main occupation  

-Student 40%  -Student 46% 

-Employed 60%  -Employed 54% 

Age    Age   

<=25 years 16%  <=25 years 20% 

26-30 years 25%  26-30 years 31% 

31-35 years 18%  30-35 years 19% 

36-52 years 24%  >35 years 30% 

>52 years 16%    

 

Maps displaying the distribution of the variables (Table 5, Table 7) in Lund are 

presented in Figure 7. It is evident that Car use (a) is low or non-existent in areas 

where Car accessibility (b) is defined as never, and high where Car accessibility is 

defined as always.  Public transport accessibility (c), derived by the public transport 

accessibility analysis, ranges between 0-9 minutes in most of Lund. However, in the 

east side of the city, in areas around Östra torn, Public transport accessibility ranges 

between 12-22 minutes. This can be put in relation to a high level of Car use (a) in 

this area.   
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(a) Car use (b) Car accessibility  

  

(c) Public transport accessibility  (d) Age 

  

(e) Main occupation (f) Gender 
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(g) Income area 

 

(h) Residence density of participants 

  

 

Figure 7. Maps of car use, car accessibility, public transport accessiblity, age, main occupation, gender, income 

area and residence density of participants in Lund.  

 

Maps that show the distribution of the variables in Malmö (Table 6, Table 8) are 

presented in Figure 8. The association between Car use (a) and Car accessibility (b) is 

not as prominent in Malmö as it is in Lund (Figure 7). Considering the Public 

transport accessibility (c), it is relatively uniform across Malmö, ranging between 0-6 

minutes. In respect to the Income area (g) there is a prominent contrast between the 

east and west of the city, in which the income in the west side of Malmö are much 

higher.   

 

(a) Car use (b) Car accessibility  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

 

(c) Public transport accessibility 

 

 

(d) Age 

  

(e) Main occupation (f) Gender 

  

(g) Income area (h) Residence density of participants 

  

Figure 8. Maps of car use, car accessibility, public transport accessiblity, age, main occupation, gender, income 

area and residence density of participants in Malmö. The light blue areas in the maps represent water.  
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5.1.1 OLS results in Lund 

Accessibility to public transport seems to have a relatively strong impact on car use in 

Lund. Considering the robust probability value below 0.05, Public transport 

accessibility possesses a statistically significant (p < 0.05) relationship with Car use. 

(Table 9). The positive coefficient value of Public transport accessibility indicates 

that car use will decrease with a higher accessibility to public transport. More 

specifically, the coefficient values represent the change in Car use for every one unit 

change in the explanatory variable, holding all other variables constant. Thus, the 

Public transport accessibility coefficient value of 0.02 indicates that with every 30 

second increase in walking time to a public transport station, car use increases with 

2%. 

 

Table 9.  Variables generating the highest model performance in Lund. Statistically 

significant coefficients (p < 0.05) are denoted with an asterisk.  

Variable Coefficient Robust 

Probability 

Robust 

standard error 

VIF 

Public  

transport 

accessibility  

0.0162 0.0427* 0.0078 1.2132 

Distance to Lund C 0.0606 0.0002* 0.0155 1.3285 

Distance to highway  0.0287 0.0694 0.0155 1.1293 

Male -0.0544 0.3043 0.0525 1.1519 

Always or sometimes 

access to a car 

0.1689 0.0004* 0.0454 1.1958 

 

Moreover, Distance to Lund C and Always or sometimes access to a car are also 

statistically significant. The Distance to Lund C coefficient of 0.06 indicates that for 

each 1 km increase in distance to Lund C, car use increases with 6%. The Always or 

sometimes access to a car coefficient value of 0.17 indicates that if car accessibility 

changes from never to sometimes or always, car use increases with 17%.  The 

explanatory variables that generate the highest OLS model performance when 

predicting Car use in Lund are Public transport accessibility, Distance to Lund C, 

Distance to highway , Male and Always or sometimes access to a car.  

 

The Adjusted R
2
 value for the OLS model is 0.41, indicating that 41% of the car use 

in Lund can be explained by the explanatory variables included in the model (Table 

10). 
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Table 10.  Lund OLS results  

No. of Observations R
2
 Adjusted R

2
 Koenker (BP) statistics AICc 

67 0.4585 0.4141 0.02874* -21,92 

 

The AICc value of the OLS model is -21.92 and the VIF values are all close to 1, 

indicating no multicollinearity between the variables included in the OLS model. The 

Koenker (BPK) value of 0.03 is statistically significant which implies that the 

relationship modelled is non-stationary and violates the OLS assumption of global 

stationarity (Gao and Li, 2011). Since the relationships modelled are non-stationary, 

the robust probability and standard error values represent the significance and 

efficiency of each explanatory variable (Table 10). 

 

The results of testing the OLS residuals for spatial autocorrelation measured by 

Moran’s I are presented in Table 11. The z-score of 1.09, compared with the critical z-

score of 1.96, reveals the distribution of the OLS residuals not to be statistically 

significant clustered or dispersed, indicating that the OLS residuals are randomly 

distributed and that the OLS model is not misspecified and there are no explanatory 

variables missing.  

 

Table 11. Lund Moran’s  I results 

 

 

5.2 OLS results in Malmö 

Results in Malmö demonstrate no significant effects of accessibility to public 

transport on car use.  Solely Distance to Malmö C has a robust probability value 

below 0.05 and is statistically significant at the 5% level (Table 12). The association 

between Distance to Malmö C and Car use, indicates a decrease in car use with an 

increase in distance to Malmö C. More specifically, the Distance to Malmö C 

coefficient of -0.02 indicates that if distance to Malmö C increases with 1km, car use 

decreases with 2%. Additional variables possess Robust probability values greater 

than 0.05, and are not statistically significant at the 5% level.  

 

 

 

 

 

 

Critical z-score z-score p-value 

1.96 1.09 0.28 
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Table 12. Variables generating the highest model performance in Malmö. Statistically 

significant coefficients (p <0.05) are denoted with an asterisk. 

Variable Coefficient Robust Probability Robust  

standard error 

VIF 

Public  

transport 

accessibility  

0.0112 0.4507 0.0148 1.0855 

Distance to Malmö C -0.0232 0.0359* 0.0108 1.2987 

Employed -0.0842 0.0585 0.0437 1.1280 

Low income 0.1125 0.1142 0.0702 1.1266 

 

The explanatory variables that generate the highest OLS model performance when 

predicting Car use in Malmö are Public transport accessibility, Distance to Malmö C, 

Low income, Employed and Low income.  

 

The adjusted R
2
 value for the OLS model is 0.05, indicating that 5% of the car use in 

Malmö can be explained by the explanatory variables included in the model (Table 

13).  

 

Table 13. Malmö OLS results. 

No. of Observations R
2
 Adjusted R

2 Koenker(BP) 

statistics 

AICc 

69 0.1103 

 

0.0546 0.0096* -36.6040 

The VIF values close to 1 indicate that there is no multicollinearity between the 

variables included in the OLS model. The Koenker (BPK) value of 0.009 is 

statistically significant at the 5% level and reveals the relationship modelled to be 

non-stationary, thus violating the OLS assumption of global stationarity (Gao and Li, 

2011). Since the data have a non-stationary structure, the Robust probability and 

standard error values represent the significance and efficiency of the explanatory 

variables (Table 13).  

 

The results of testing the Malmö OLS residuals for spatial autocorrelation measured 

by Moran’s I are presented in Table 14. The z-score of 0.16, compared with the 

critical z-score of 1.96, reveals the distribution of the OLS residuals not to be 

statistically significant clustered or dispersed, indicating that the OLS residuals are 

randomly distributed and that there is no explanatory variables missing in the model.  
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Table 14. Malmö Moran’s  I results. 

 

 

5.3 GWR results in Lund  

The relationship between Car use and the explanatory variables that generated the 

highest OLS model performance when predicting car use in Lund were modelled 

using GWR. These variables included Public transport accessibility, Distance to Lund 

C, Distance to highway, Male and Always or sometimes access to a car. Regression 

coefficient surfaces representing the change in Car use for every one unit change in 

the explanatory variables, holding all other variables constant, were obtained using 

GWR. The following regression coefficient surfaces show statistically signiciant 

explanatory variables in Lund; Public transport accessibility, Distance to Lund C and 

Always or sometimes access to a car (Figure 9). The regression coefficient map of 

Public transport accessibility (b) display the change in Car use for every 30 sec 

increase in walking distance to a public transport station across Lund. It is evident that 

public transport accessibility has a higher impact on car use in the east than in the 

west side of Lund, with coefficient values of ranging from 0.02 in the east to 0.01 in 

the west. In the east side of Lund, in areas such as Östra torn and Mårtens Fälad, 

Public transport accessibility coefficients reach 0.02, indicating a 2% increase in car 

use for every 30 second increase in walking time to a public transport stop. In areas 

around Lund C, Allhelgonakyrkan and west of the railway Public transport 

accessibility have lower influence on car use and a 30 second increase in walking time 

to a public transport stop generates a 1% increase in car use.   

(a) Locally weighted R2 values (b) Public transport accessibility 

  

 

 

 

 

 

 

 

 

Critical z-score z-score p-value 

1.96 0.16 0.87 
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(c) Distance to Lund C (d) Always or sometimes access car 

  

Figure 9. Maps of the locally weighted R2 values and the regression coefficient surfaces of the statistical 

significant at the 5% level explanatory variables in  Lund obtained by the GWR model: Public transport 

accessibility (sec), Distance to Lund C (km) and Always or sometimes access to car (Boolean).  

  

The regression coefficient map of Distance to Lund C (c) display the change in Car 

use for every 1 km increase in Distance to Lund C. It is evident that the highest 

influence of Distance to Lund C is seen in the east side of Lund, in areas such as Östra 

torn and Mårtens Fälad. In these areas, coefficient values reach 0.07, which indicates 

that an increase in the distance to Lund C with 1 km would increse car use with 7%. 

The lowest influence of Distance to Lund C is seen in areas around Lund C, 

Allhelgonakyrkan, Gunnesbo and Klosters Fälad. In these areas, an increase in 

distance to Lund C with 1 km would increase car use with 2%. The regression 

coefficient  map of Always or sometimes access to a car (d) display the change in Car 

use if car accessibility change from never to always or sometimes. Always or 

sometimes access to a car has the highest influence on car use in the south east side of 

Lund, in areas such as Linero, Gastelyckan and Mårtens fälad. In these areas, 

coefficient values reach 0.18, indicating that a change of car accessibility from never 

to sometimes or always would increase car use with 18%. Always or sometimes 

access to a car has lower influence on car use in the north west side of Lund, in areas 

such as Nöbbelöv, Gunnesbo and Klosters fälad. Coefficient values in these areas 

ranges between 0.12 and 0.13, indicating that a change in car accessibility from never 

to always or sometimes would increse car use with 12-13%.  

 

The locally weighted R
2
 values obtained by the GWR model (Figure 9 (a) indicates 

how well the explanatory variables included in the GWR model predicts car use 

across Lund. With R
2
 values ranging from 0.22 to 0.51, it is evident that the GWR 

model performance varies across Lund, with the most prominent contrast between the 

east and west side of the city.The highest GWR model performances, with R
2
 values 

of 0.48-0.51, are found in the east side of Lund in areas such as Östra Torn and 
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Mårtens fälad. The lowest model performances, with R
2
 values between 0.22-0.25, are 

identified around Lund C and on the west side of the railway, in areas such as  

Klosters fälad and Pilelyckan.. Thus, the explanatory variables included in the GWR 

model are better at predicting car use in the east than in the west side of Lund 

 

The adjusted R
2
 value of the GWR model is 0.44 (Table 15), compared with the 

adjusted R
2
 value of 0.41 for the OLS model (Table 10). This indicates that 44% of 

the car use in Lund can be explained by the explanatory variables included in the 

model. The AICc value of the GWR model is -21.38, which is similar to the OLS 

model AICc value of -21.92 (Table 10). The residual squares of the GWR model is 

1.92 and represents the sum of the squared residuals in the model, where residuals are 

the difference between an observed y value and the GWR estimated y value.   

 

Table 15. GWR results in Lund. 

No. of Observations R
2
 Adjusted R

2
 AICc Residual squares 

67 0.5337 0.4388 21.3781 1.9210 

 

5.4 GWR results in Malmö  

The relationship between Car use and the explanatory variables that generated the 

highest OLS model performance when predicting car use in Malmö was modelled 

using a GWR. These variables include Public transport accessibility, Distance to 

Malmö C, Low income, Employed and Low income (Table 13). The regression 

coefficient surface of the statistically signiciant explanatory variable Distance to 

Malmö C (b) is obtained by the GWR model and represent the change in Car use for 

every one unit change in the explanatory variable, holding all other variables constant 

(Figure 10). Thus, the regression coefficient map of Distance to Malmö C (b) shows 

the change in car use if distance to Malmö C increases with 1 km. The continously 

negative coefficients values across Malmö imply that an increase in the distance to 

Malmö C will decrease car use across Malmö. The highest impact of Distance to 

Malmö C is observed in areas around Malmö C and Stortorget, where coefficient 

values implies a 3% decrease in car use with a 1 km increase in distance to Malmö C. 

Low impact is seen in areas around Fosie and Slottstaden, where coffiecient values 

implies a 2-3% decrease in car use with a 1 km increase in distance to Malmö C.   
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(a) Locally weighted R2 values (b) Distance Malmö C  

  

Figure 10. Maps of the locally weighted R2 values and the regression coefficient surface of Distance to Malmö 

C (km) representing the one statistical significant at the 5% level explanatory variable in  Malmö obtained by 

the GWR model. The light blue areas in the maps represent water.  

 

The locally weighted R
2
 values (a) obtained by the GWR model indicates how well 

the explanatory variables included in the GWR model predict car use across Malmö. 

With R
2
 values ranging from 0.10 to 0.16, the GWR model performance varies across 

Malmö; with the most prominent contrast between the north east and south east side 

of the city.The highest GWR model performance, with R
2
 values of 0.14-0.16, are 

found in the south east side of Malmö in areas around Fosie. The lowest model 

performance, with R
2
 values around 0.10, are found in the north east side of the city in 

areas around Malmö C and Stortorget. Accordingly, the explanatory variables 

included in the GWR model are better at predicting car use in the south east than in 

the north east side of Malmö.  

 

The adjusted R
2
 value for the GWR model is 0.04, compared with the adjusted R

2
 

value of 0.05 for the OLS model (Table 16). The GWR adjusted R
2 

value of 0.04 

indicates that 4 % of the car use in Malmö can be explained by the explanatory 

variables included in the model. In contrast, the R
2
 value of the GWR model is 0.15, 

compared to the OLS R
2
 value of 0.11 (Table 13). 

 

Table 16. GWR results in Malmö.  

No. of Observations R
2
 Adjusted R

2
 AICc Residual squares 

69 0.1543 0.0427 -33.9760 1.8615 

 

The AICc value of the GWR model is -33.97, compared with the OLS model AICc 

value of -36.60, representing a decrease in the AICc value with 2.63, when moving 

from the OLS to the GWR model. The residual squares of the GWR model is 1.86 and 

represents the sum of the squared residuals in the model.  
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6 Discussion 

The main hypothesis of this study was that a higher level of public transport 

accessibility would decrease car use and that this relationship would remain when 

controlling for further spatial and socio-economic variables. Furthermore, the 

relationship was not expected to be spatially uniform, thus a spatial regression model 

such as the GWR was expected to better predict car use compared to a non-spatial 

OLS. Consequently, the results obtained in Lund indicate some support for the 

hypothesis; both in respect to the impact of public transport accessibility and in 

respect to the model performance of the spatial GWR model. The results in Lund 

demonstrated that car use is negatively associated with public transport accessibility 

and that the spatial regression model of GWR was a better fit to the data than the non-

spatial regression model of OLS. This highlights the importance of using a global 

regression model to assess statistically significant relationships and the use of a local 

regression model to examine regional variations within the data; revealing spatial 

patterns that were not identified by the global model. These results coincide with the 

suggestions by Fotheringhamn et al. (2002), implying that the local GWR model 

would generate higher model performance than a global model when modelling 

spatial data. On the other hand, results in Malmö do not indicate support for the main 

hypothesis of this study, considering that accessibility to public transport does not 

have a significant impact on car use in Malmö. Furthermore, the spatial GWR model 

was not a better fit to the data in Malmö than the non-spatial model of OLS. 

Consequently, the results in Lund and Malmö do not coincide. Nevertheless, in Lund, 

where the model performance is the highest, results imply that car use decreases with 

higher public transport accessibility.  

6.1 Comparing results in Lund and Malmö 
OLS results in both Lund and Malmö implied the data to possess regional variations, 

thus motivating the use of the spatial regression model of GWR to allow regional 

variations within the data (Gao and Li, 2011). Comparing the OLS and GWR models 

in Lund and Malmö, there are differences both in respect to model structure and 

performance. Additionally, results vary in respect to modelling the same data with the 

global regression model of OLS and the local regression model of GWR. The 

explanatory variables possessing a statistically significant relationship (at the 5% 

level) with Car use in Lund was Public transport accessibility, Distance to Lund C 

and Always or sometimes access to a car. Both the variables of Public transport 

accessibility and Distance to Lund C concerns the physical proximity to public 

transport stations, thus the association between these variables show support for the 

theory that transport is a derived need; where ultimately public transport accessibility 

is what matters (Benenson et al., 2011). However, in Malmö, public transport 
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accessibility does not have a significant impact on car use and solely the distance to 

Malmö C has a statistically significant relationship with car use. Furthermore, this 

relationship implies that car use decreases with an increase in distance to Malmö C 

and contradicts the results obtained in Lund regarding this relationship. In respect to 

model performance, it is higher in Lund where both the OLS and GWR models 

generated adjusted R
2
 values greater than 0.4, compared to adjusted R

2
 value of 0.04 

and 0.05 in Malmö. However, these results are hard to compare due to variations in 

the model structure between the cities. Moreover, modelling the data in Lund with 

GWR compared to OLS generated higher model performance in respect to the 

adjusted R
2
 value increasing from 0.41 to 0.44. In Malmö, the adjusted R

2
 value 

decreased from 0.05 to 0.04 when moving from OLS to GWR, however, the R
2
 value 

increased from 0.11 to 0.15. These results are contradictory, thus it is difficult to 

assess which model that is better at predicting Car use in Malmö.  

6.1.1 Causes of varying results in Lund and Malmö 

A large proportion of the variation in model performance between Lund and Malmö 

may be a consequence of data limitations. One such limitation was the selection of 

participants. This selection may be biased because participants were either recruited at 

public transport stations or decided to donate their data; potentially due to an interest 

of the transport sector. Another limitation was related to the car accessibility. The 

initial objective of this study was to only analyze data from car owners and thus 

analyze the car use of people with larger transport mode choice. However, due to a 

limited amount of data, all participants’ data was included in the analysis, regardless 

of car accessibility. Consequently, 27% and 44% of the participants in Lund and 

Malmö, respectively, do not have access to a car. One way to account for this problem 

was to include the variable of Car accessibility in the regression analysis. However, 

because information about car accessibility is obtained by respondents answering the 

question “do you have access to a car?” there is room for individual interpretation, 

and individuals might have interpreted it in different ways. Hence, Car accessibility 

might not entirely reflect the real car accessibility of the respondents, something that 

may affect the model performance. Thus, in Malmö where Car accessibility is not 

statistically significant at the 5% level, the reliability of the variable is doubtful. 

Considering that Bastian and Börjesson. (2015) demonstrated that income and fuel 

prices explained 80% of the aggregated car distances per person in Sweden, it is 

unexpected that variables representing income in this thesis are not statistically 

significant neither in Lund nor in Malmö. A reason for this result might be that 

income is presented at an aggregated level and represents the average income for the 

residence region of an individual. This may level out the effect of income in this 

study, and perhaps results would have been different if income data represented the 
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actual income of each individual. Furthermore, correlations between car use and age 

might not have been detected due to the assignment of age which potentially produced 

biased results. However, the variations in model performance between Lund and 

Malmö may also be a consequence of an actual difference regarding the incentives 

behind car use in both cities, and might indicate that the incentives of car use are 

context dependent. Moreover, variations in model performance could be due to 

differences in the accessibility to public transport in both cities. Because the mean 

walking time to a public transport station is twice as high for the participants in Lund 

compared to Malmö, perhaps the accessibility to public transport in Malmö is at a 

level where it does not have a significant impact on car use.  

 

6.2 Spatial patterns  
Except for generating higher model performance, one of the key benefits of utilizing 

the GWR model was the computation of coefficient raster surfaces that displayed the 

relationship between car use and each explanatory variable exclusively (Fotheringham 

et al., 2002). By analysing the coefficient surfaces of the variables possessing a 

statistically significant relationship with car use, it is possible to detect trends and 

inform both local and region wide policy (Ali et al, 2007). In Lund, the highest GWR 

model performance was identified in the east side of the city, where Car use is high, 

participant density is high and the Public transport accessibility coefficients are the 

highest. In this area, results imply that an increase in Public transport accessibility 

with 30 seconds increase Car use with 2%. Thus, to decrease car use in Lund, one 

could increase the accessibility to public transport stations by constructing new public 

transport stations, particularly in the east side of the city. Moreover, the GWR model 

performance in Malmö is highest in the south east side of the city, in areas with both 

high and low Car use.  The statistically significant relationship between car use and 

Distance to Malmö C implies that Car use decreases with an increase in Distance to 

Malmö C. Since this represents the one statistically significant relationship in Malmö, 

it is difficult to suggest measures to reduce car use in Malmö.  

 

6.3 Further study 
To generate higher model performance when predicting car use in Lund and Malmö, 

individual income data and a variable assessing the time travel time to work with car 

in relation to public transport can be included in future studies. Because income is 

recognized as a key variable when predicting car use and explained as much as 80% 

of the aggregated car distances per person in Sweden, individual income data would 

presumably generate high performance if included in the analysis (Shen et al., 2016, 

Bastian and Börjesson, 2015). Additionally, including two variables that represent the 
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time and cost it would take to travel to work with car in relation to public transport 

would presumably generate a more realistic model; because journeys to and from 

work represent the largest proportion of journeys in Scania and transport cost is an 

important aspect in travel mode choice (Chakrabarti., 2017, Ullberg, 2013). 

Furthermore, combined with the expansion of the number and data amount of 

participants, results would be less biased and trustworthy.   
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7 Conclusions 

The aim of this thesis was to use Ordinary Least Squares (OLS) and Geographically 

Weighted Regression (GWR) to investigate the relationship between car use and the 

accessibility to public transport in Lund and Malmö. The results in Lund demonstrate 

that car use is negatively associated with the accessibility to public transport and that 

the spatial regression model of GWR generated the highest model performance when 

predicting car use. Furthermore, the highest model performance in Lund was obtained 

in the east side of the city where car use is high, participant density is high and the 

influence of accessibility to public transport is the highest. Thus, to decrease car use 

in Lund, one could increase the accessibility to public transport; particularly in the 

east side of the city. Results in Malmö show that accessibility to public transport does 

not have a significant impact on car use and that the spatial regression model of GWR 

was not a better fit to the data than the OLS. Thus, it difficult to suggest any measures 

to reduce car use in Malmö. Consequently, the results in Lund and Malmö do not 

coincide. However, in Lund, where the model performance is the highest, results 

imply that car use decreases with a higher public transport accessibility. The reasons 

for variations between the cities, both in model performance and the explanatory 

variables that generates the highest model performance, are difficult to assess and 

emphasizes the need for future studies of the relationship between public transport 

accessibility and car use in Lund and Malmö. Furthermore, it highlights the need for 

similar studies in multiple cities, to conclude major variables with an impact on car 

use.  

 

This study represents one of the first studies to use individual GPS data along with 

spatial regression analysis to explore how public transport accessibility affects car 

use, a beneficial method in multiple ways. The study demonstrated the benefits of 

utilizing detailed individual GPS data, both in respect to model performance and by 

allowing spatial analysis of the data. Moreover, this study underlines the importance 

of using global non-spatial analysis to determine statistically significant relationships 

and the use of local spatial analysis to examine regional variations in the relationship 

between car use and public transport accessibility; revealing spatial patterns that were 

not identified by the global model. Additionally, it was beneficial to select two study 

areas, generating the opportunity to compare results and obtain deeper knowledge of 

the incentives of car use. Consequently, this study contributes to the literature on the 

effects of public transport accessibility on car use and on the use of local spatial 

analyses in accessibility studies. Such knowledge can be utilized in transport planning 

to reduce car usage. 
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APPENDIX 1.  

App questionnaire 

 

Are you a man or woman? 

 

Man Woman Other gender identity Prefer not to answer 

    

In what year were you born? 

 

 

What is your primary occupation? 

 

 Employed Student Other 

 

 

Do you have access to a car? 

 Always Sometimes Never 
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