LUND UNIVERSITY

THESIS SUBMITTED FOR THE DEGREE OF BACHELOR
OF SCIENCE

CENTRE FOR MATHEMATICAL SCIENCES

Strategies for computing the
condition number of a matrix

Author: Supervisor:
Per Niklas Waaler Claus Fihrer

June 28, 2017

Abstract

The main objective of this thesis is to present the article An estimate of the con-
dition number of a matriz, written by Cline et.al., which describes an algorithm
for obtaining a reliable order of magnitude estimate of the condition number
of a matrix in O(n?) operations. In addition, the thesis introduces an iterative
process for estimating the condition number in the 2-norm with arbitrary pre-
cision. It is a generalisation of the algorithm in the article, and it establishes
a connection between power iteration and the algorithm from the article, and
provides an alternative route to deriving its key equations. Also, the thesis
covers basic theory surrounding the condition number, and for completeness it
includes a brief presentation on Skeel’s condition number which is based on the
article Scaling for numerical stability in Gaussian elimination, written by Skeel
et.al..

Acknowledgements

I would like to thank my thesis supervisor Claus for all his help and his insistence
on understanding everything on a more intuitive level, and my friend Rasmus
Hgier for all his good advice and all his time spent reading my work to weed
out errors.

Contents

Introduction

1 Theory of error sensitivity
1.1 The condition number of a problem
1.2 The induced matrix norm oL
1.3 The condition number of a matrix
1.4 Skeel’s condition number oL
1.5 Difference in terms of scaling

2 Estimating the condition number of A
2.1 Analysis based on the SVDof A
2.2 The power iteration approach
2.3 Convergence of the power iteration algorithm

3 Factorization of A and a strategic choice of b
3.1 A local strategy for picking b
3.2 A look ahead strategy for choosing b
3.3 Choice b when using LU factorization
3.4 Operation counts associated with LU factorization

4 Numerical testing
4.1 Numerical testing using QR decomposition
4.2 Numerical testing using LU decomposition

CONTENTS

Introduction

When solving linear systems of equations it is important to have an idea of how
much accuracy we can expect in our computations. The condition number of a
matrix provides a measurement of how sensitive the solution is to perturbations
of the input data, and this leads to the desire of a cheap way to estimate
it. In the article An estimate of the condition number of a matriz, the authors
introduce an algorithm for obtaining an estimate of the condition number which
reliably indicates its order of magnitude. For the purposes of many applications,
this estimator offers a good balance between computational cost and accuracy,
considering that it is often sufficient to know the order of magnitude of the
condition number.

Chapter 1 is dedicated to presenting the relevant theory. We discuss topics
such as the definition of the condition number of a problem, the significance
of choosing an appropriate norm, and derivations of the condition number of a
matrix. At the end of the chapter we briefly cover Skeel’s condition number,
which is rarely presented in basic textbooks on numerical linear algebra, but is
frequently used in practice.

In Chapter 2, we consider ways of estimating the condition number of a matrix
in an economical way. We derive the equations ATz = b and Ay = x which
allows us to estimate the most costly part of the condition number, namely

|A71|| . We also introduce an iterative algorithm for estimating the condition
number in the 2-norm which is based on power iteration. This algorithm is a
generalisation of the algorithm from the article, and it provides an alternative
way to derive the above equations. A benefit to having this iterative algorithm
is that it provides additional freedom in finding a suitable trade-off between
accuracy and reliability on one hand, and computational cost on the other.

In Chapter 3 we consider the task of choosing the right hand side in the equation
ATz = bin a way that ensures the success of the algorithm. Two main strategies
are presented. One of these is very cheap and simple, but its simplicity comes at
the cost of being somewhat risky, as there is a potential for it to fail completely.
The second strategy is modified so that it is far more dependable, although
more costly.

Finally, in chapter 4 we present the results from numerical testing of some

7

8 CONTENTS

different strategies by testing them on large numbers of randomly generated
matrices. We test the algorithms using both QR and LU decomposition, and
determine which strategy for picking an initial vector b is most successful under
various circumstances.

Chapter 1

Theory of error sensitivity

Whenever we use a computer to estimate a solution of a problem given an input,
we generally want to have some way of measuring how much uncertainty we can
expect there to be in the output. The uncertainty can be due to uncertainty
in the measurements that make up the input data, and it can be due to round-
off errors which are introduced when we convert the data into the computers
floating point number base [2]. The extent to which these errors gets amplified
depends on the mathematical properties of the algorithm we use to compute an
output. Since errors will be present to some extent in virtually all applications,
it is therefore useful to have some way of measuring how sensitive a problem is to
perturbations in the input data, which motivates the question which underlies
the discussions of this chapter: if the input data is perturbed slightly, how much
can it be expected to change the output data?

To make these ideas more explicit, we start by introducing some basic concepts.
For instance, it is useful to specify what we mean when use the word problem.
In our context, a problem is thought of as a map f from some normed vector
space of inputs X to some normed vector space of outputs Y [3]. We have the
option then to look at the behaviour of f globally, but sometimes we are more
interested in the local behaviour of f. We then have a specific input = in mind
and we want to know the behaviour of f in a neighbourhood of z, and so we
consider the effect on the output when we perturb x slightly. When we have
a particular z in mind combined with some problem f we sometimes call it a
problem instance, but it is usually referred to simply as a problem.

We mentioned that the vector spaces are normed. A space being normed means
that it is equipped with some notion of distance between elements of that space.
Choosing a way to measure distance is central when considering issues relating
to numerical stability, as the choice of norm will be used to determine what
is large and small, and what is significant and insignificant. There are many
ways to define distance, besides the familiar Euclidian norm, and which norm is

10 CHAPTER 1. THEORY OF ERROR SENSITIVITY

appropriate to use depends on the problem. For instance, if we are solving the
system Az = b, where b is input data and z is output data, it might be tempting
to just use the 2-norm as a measurement of the perturbation of b. But it might
be the case that the various components of b are measurements of greatly varying
magnitude, and that perturbing one component by some fixed amount repre-
sents a catastrophe in terms of the precision of that measurement(in physics for
instance, the least precise measurement tends to be somewhat of a bottleneck in
terms of precision), whereas perturbing another component by the same amount
would not matter much at all if that measurement is of a comparatively large
order of magnitude.

This consideration is not taken into account with the 2-norm, and so in some
cases it is not a useful way to measure distance. In fact, if we perturb a compo-
nent z; by J, and take the 2-norm of z we will have under the square-root sign
the term (x; + 6)? = 22 + 20 - ; + 62. We can see that the amount by which
the perturbation changes the length of x is determined by the sum 26 - z; + 62,
and for positive x; and dx; the increase in length becomes greater when the
perturbed component x; is large. We see here a disagreement between distance
as measured in the 2-norm and our intuitive notion of distance between two sets
of measurements; intuitively, we think of an error of fixed size as making more of
a difference when the error is in a measurement of small magnitude than when
it is in a measurement of large magnitude, and we would like our definition of
distance to reflect this intuition. Considerations such as these have lead to the
formulation of Skeels condition number, which we will get to later.

1.1 The condition number of a problem

A concept which is of great importance when discussing matters concerning error
sensitivity, and which will eventually lead us to the definition of the condition
number of a matrix, is the condition number of a problem f, denoted x. It
comes in two forms, the absolute condition number and the relative condition
number. The former deals with the absolute size of the perturbation. We shall
only cover the relative condition number here, as it is more commonly used in
numerical analysis [3], and hereafter it will be referred to simply as the condition
number.

If f is a function from a normed vector space X to a normed vector space Y,
and T represents the perturbed input so that Z = = + dz, then the condition
number of f at x can be defined as

. "relative distance between f(Z) and f(x)”
k= lim sup > : : - T (L.1)
5=0 ||52/<6 relative distance between z and x

see [2], where we assume that ||0z| # 0, and where by relative we mean relative
to || f(x)] and ||z|| respectively. To avoid cluttering up notation, we sometimes

1.2. THE INDUCED MATRIX NORM 11

use || - || without specifying the norm by an index. The norm that is intended
can be read from the context, so when we write || f(z)||, we mean ||f(x)|),
hence the norm can be inferred by asking which space the element belongs to.
Now, if we let 0f = f(Z) — f(x), then this can be expressed as

k=lim sup WIS@] (1.2)

60 5z1<s [|6z(l/llz]l
With this definition at hand, we turn our attention to finding the condition
numbers related to problems involving system of equations, which we will in
turn use to define the condition number of a matrix. Note that there are several
ways to view the equation Az = b in terms of what to consider as input and
output. For instance, we can view x as output, and then consider the effect
of perturbing both A and b simultaneously, or we can perturb just A or just b,
which is sometimes done for simplicity. Often, b will contain measurements, and
A will be a matrix of coefficients that reflects the physical laws or properties that
characterize the physical system under observation, and it is therefore useful to
consider perturbations to both or either of these.

As an example, when applying Kirchhoff’s rules in order to determine how the
currents will flow in an electrical circuit, we will obtain a system of equations
equivalent to the matrix equation Ax = b, where the components of A are
determined by the circuits resistances (and the directions of the currents in the
circuit) as well as how the circuits are connected, b is determined by the voltages
of the emf sources and how the circuits are connected, and x is the vector of
unknown currents. In this case we can expect there to be uncertainty in the
data that goes in to both b and A, and so ideally we want to consider the effect
of introducing perturbations to both when we compute the condition number of
the problem. Note that if we consider the problem in this way, the elements of
the input space would be matrix-vector pairs, which raises the question of how
to define distance between such objects. Note also that some of the elements
of A and b will be exact zeros, and as such they should not be considered as
measurements, which are susceptible to errors. This means that it would be
inappropriate to include perturbations to these elements in our error-sensitivity
analysis, as this yields an overly dramatic estimate of the error sensitivity(the
reason that it becomes larger is that we are maximizing the relative perturbation
over a larger set of input perturbations). The subjects of how to deal with exact
zeros and how to define distance between matrix-vector pairs are addressed in
the section on Skeel’s condition number.

1.2 The induced matrix norm

Before we proceed further in discussing the condition of problems related to
solving linear systems of equations, we will quickly go through the definition of

12 CHAPTER 1. THEORY OF ERROR SENSITIVITY

the induced matrix norm, as it is necessary to know in order to understand the
definition of the condition number of a matrix.

If Ais an m x n matrix, and || - ||,y and || - ||n) are the norms of the domain
and range of A respectively, then the induced matrix norm ||Al[(,) is defined
as

1Az]| (m
Al) == sup =2 = max || Az () (1.3)

cern [|Z]|(n) iy

Intuitively, if we take on the view that A is an operator that operates on x,
and then think of A as stretching or compressing = as it operates on it (also
changing its direction of course, but in this definition only changes to length are
relevant), one can think of this norm as the largest factor by which A can scale
up the length of any vector x that lies in its domain.

1.3 The condition number of a matrix

Now we are ready to set an upper bound on the condition numbers of various
problems relating to systems of equations, and these results will lead naturally
to a definition of the condition number of a matrix. Deriving the upper bounds
rather than the actual condition numbers is motivated by the fact that they are
simpler, and therefore cheaper to compute than the actual condition numbers.

We simplify notation at this point by dropping the limit in the definition of
the condition number, and simply consider the supremum over all infinitesimal
perturbations of the input, similar to how we sometimes consider the derivative
of a real valued function at x as the change in output value relative to the
infinitesimal change in input value. We also assume that A is invertible, and
that the norm of the output space is the same as the norm of the input space.
If we consider first x as input with b as output and A held fixed (hence we only
consider perturbations in b), and if 6b is the perturbation that corresponds to a
perturbation in input dz, we get

Wi/l 11]
k =sup = sup =
P sal e~ NP a] o]
| Asz] [A=) .
suplAOZL AT a1y
R T |

Note that if we swap the roles of z and b and consider b as input and x as
output, then we have essentially the same problem as before, with the roles of
A and A1 interchanged. Hence we would end up with the same bound.

1.4. SKEEL’S CONDITION NUMBER 13

This bound also turns up when we consider A as input and x as output, with b
held fixed. Let § A be the perturbation in A, and let dx the resulting perturbation
in . We then have (A + dA)(x + dx) = b. Since the double infinitesimal
0 Adx will become vanishingly small in size relative to the other terms for small
perturbations, we drop it, and obtain Az + Adx + §Ax = b. After subtracting
b = Az and multiplying by A~! on each side, we get é2 = —A~ 1§ Az. Taking the
norm on each side yields ||0z| = [[A716A4 x| < ||A7Y|[|6Az| < [|A7L||GA]||=||
(where we use the fact that ||Az| < ||A]|||z|| twice). Finally, using this upper
bound for ||z, we compute

[/l _ (A= - HOAL - [l=[1)/ 1]

sup < = [A7 - Al
sa [|6A[/[|Al [[6Al/]| Al

Which is the same bound as before. Note that in this case the norm of the input
space is the induced matrix norm.

Since this bound turns so often, it is defined as the condition number of A,
denoted k(A). Note that it is independent of x and b, and it can be considered
a property of A which gives us information about the tendency of A and A~!
to amplify errors in the vectors they operate on. In the following we will use
the notation x(A);, where | indicates the norm we are using.

Besides giving an estimate to the accuracy in our solution, x(A) can also be used
as a way to detect potential errors that have been made. For instance, a matrix
which is "nearly invertible” (imagine for instance taking a triangular matrix
with a zero on the diagonal and perturbing the zero by a small amount) tends
to be highly ill conditioned, and an extremely large condition number could
be a sign that A in its pre-converted form (before having its entries converted
to floating point numbers) was actually singular, but due to round-off errors
introduced in the conversion it has become invertible.

1.4 Skeel’s condition number

As useful as k(A) is, it has its drawbacks. In either of the derivations we have
presented, note that we did not put up any restrictions on the perturbations
of x or b other than their lengths. This is a rather unrealistic assumption,
since in practice the matrices we are working with often have structural zeros,
which are exact, and as such, they will not contain any measurement error. In
addition, the conversion of input data to the computers floating point number
base leads to errors that are of the same relative size as the datum they perturb
[2], hence any perturbation to a structural zero is unrealistically large given
these two considerations. Another issue with x(A) is the norm used to measure
the size of perturbations; in the discussion on norms we touched on how the 2-
norm (or the the 1-norm for that matter) does not always measure the size of a

14 CHAPTER 1. THEORY OF ERROR SENSITIVITY

perturbation in an appropriate way, in particular when the various components
are measurements that vary greatly in magnitude, and it is blind to the physical
units that we are using. Considerations like these have led to the formulation of
another condition number called Skeels condition number, denoted Cond(A4, x),
which we will cover here briefly.

In its derivation [2], the effect of perturbing both A and b simultaneously is
considered, with = as output, and we use as our metric the largest relative
perturbation of the components of A and b, i.e. the smallest number ¢ > 0 s.t.

lai; — aij| < €laiz|, Vi,j (1.4)

and

|bi — bi| < elbs|, Vi (1.5)

Using this metric effectively restricts the set of perturbations over which we
maximize the relative perturbation, since for any € > 0 the perturbation in an
exact zero is bounded by 0. Also, it measures distance entirely in terms of
relative component-wise error which means that it is meaningful regardless of
the physical units of the measurement data. It also is a neat solution to the
problem of how to measure distance between elements of the form (A, b).

We will not include the derivations of Cond(A) as it takes us beyond the scope
of this thesis. By using definition 1.1 one can show that the condition number
of the problem where A and b are inputs and z is output - using our newly
defined measure of distance - is given by

_ AT A=) + [AH[b][loo

[E41PS

Cond(A4, z) (1.6)

where the notation | - | used on arrays signifies that the arrays are component-
wise non-negative, but otherwise the same as the array inside the modulus sign.
If we hold b fixed, then the we have

_ A Al e

[l oo

Cond(A, x) (1.7)

To simplify matters further, we can define Skeels condition number as the max-
imum over all ||z« = 1. Since |A~1||A| has only non-negative components, the
ratio is maximized by setting = = (1,1,,1)T. Since [[|[A7Y|A4]|(1,1, ..., D)T|||
= |||A7|A||| s, We get that

Cond(A4) = [[|A~]| Al - (1.8)

1.5. DIFFERENCE IN TERMS OF SCALING 15
1.5 Difference in terms of scaling

Another important way in which the two condition numbers differ is in how they
behave in terms of scaling. Scaling in this context means to multiply A by a
diagonal matrix D from the left. As we will show, Cond(A) is invariant to scaling
of A, whereas the difference in k(A) can in some cases be made arbitrarily large
by scaling A. This is a considerable disagreement between the two estimates of
stability, and we may wonder whether or not invariance to scaling is a desirable
property, and why the two condition numbers respond so differently to scaling.

That Cond(A) is invariant to scaling is clear from its definition: if we scale A by
a diagonal matrix D, we get that Cond(DA) = |||(DA)"Y|DA]|| = [||A7Y|A||| =
Cond(A)(multiplying a matrix from the left by D scales row i by d;, and multi-
plying A~! from the right by D~ scales column j by 1/d;, hence these scaling
factors will cancel out upon multiplication). The fact that x(A) is not invariant
to scaling can be illustrated by scaling row 3 of the 3 x 3 identity matrix by a
factor €, resulting in the matrix

100\ /100 100
A=1010|[o 1 0]=[0o10 (1.9)
00 ¢/ \0 01 00 e

Let us compute x(A’)s. To compute || A’||2, we find the vector z of length 1 that
maximizes ||A’z||3. This is a straight-forward maximization problem subject to
the constraint o2 + 23 + 22 = 1, and if we solve it we find that a maximizer is
T = (%, %,O)T7 hence ||A'||2 = ||z]l2/||bll2 = 1. By the same method we also
find that ||(A")~!||2 = 1/e. Hence k(A)s = 1-1/e = 1/e, which can be made
arbitrarily large by choosing e sufficiently small. This number is a reflection of
the fact that - given that we measure the sizes of the perturbations in the 2-
norm - the system Ax = b is highly sensitive to perturbations in Assz, x3 and b3
due to the small size of ¢, provided that we place no restrictions on the direction
(that is, the size of the components relative to each other) of the perturbation
vectors we consider.

So how do we account for the fact that the two estimates vary so dramatically in
this regard? This has to do with the different ways in which distance is measured
in each condition number. In the 2-norm, if we perturb a small component with
a small perturbation dz; (here, small means small relative to ||z||2) then ||éz||2
will be small, as we have touched on before, and so the perturbation will be
measured as being small. Hence we get a large perturbation of output resulting
from a small perturbation of input, and are therefore given the impression that
the system is sensitive to perturbations. However, if we measure the size of the
same perturbation using the metric of relative component-wise perturbation(as
we do in Skeel’s condition number), the same perturbation will be measured as
being very large if the perturbation is large relative to x;. Consequently, the
two norms can give very different impressions of the perturbation sensitivity of

16 CHAPTER 1. THEORY OF ERROR SENSITIVITY

A. Another reason for the disagreement is that in x(A) we are maximizing the
relative perturbation over a larger set of perturbations, since in Cond(A) we are
effectively placing the restraint that perturbation of exact zeros are not allowed.

Chapter 2

Estimating the condition
number of A

In this chapter we cover the main subject of this thesis, which is the question
of how to estimate k(A). Given that x(A4) = ||A||||[A7L]|, our efforts to estimate
(A) can be broken down into the task of estimating ||A|| and ||A~!||. Com-
puting ||A]| in the 1-norm or infinity norm is particularly simple as it is just a
matter of finding the column vector (in the case of the 1-norm) or row vector
(in the case of the co norm) with the largest 1-norm. We do not know A~!
however, and although computing it would yield an exact estimate (ignoring
round-off errors), this would be too expensive to be worthwhile as it is a task
that requires O(n3) operations, especially considering that in many applications
only an order of magnitude estimate is required.

The ease with which we can compute ||Al|; makes it tempting to compute the
condition number in the 1-norm. It is not immediately obvious how to estimate
| A=Y]|; however. The approach presented in The condition number of a matriz
is in essence to construct a right hand side in Az = b in a way that tends to
maximize the ratio ||z||/||b]|, which then yields a lower bound estimate as we see
from

A=l _ =]l

[=
el 1]

(2.1)

Finding a strategy for maximizing this ratio appears to be easier to do in the
2-norm, since they are related to the singular value composition of A, abbrevi-
ated to SVD; a factorization we give a brief introduction to later. Due to the
simplicity offered by working with the 2-norm, one approach to obtain a 1-norm
estimate is to find a vector pair b and z which maximizes equation 2.1 in the
2-norm, and then simply compute the quotient in terms of the 1-norm instead.

17

18 CHAPTER 2. ESTIMATING THE CONDITION NUMBER OF A

This - as one might expect, and which we will show examples of later - leads to
a less accurate estimate, but one which also seems reliable in the sense that it
reliably indicates the correct order of magnitude of the condition number.

2.1 Analysis based on the SVD of A

Now that we have an overarching idea on how to to estimate || A~!|;, we proceed
to do a more in-depth analysis by using the SVD of A. This factorization is
highly useful in that it helps us investigate under what conditions ||z||2/||b||2
is maximized. In the SVD, a matrix A is factorized into the product ULV,
where U and V are orthogonal with columns denoted u; and v; respectively,
and where X is a diagonal matrix. The values on the diagonal of X are called
singular values of A and are denoted ¢;. By convention they are always non-
negative, and they are ordered according to size, with the largest, oy, sitting at
the upper end of the diagonal. The reason why the SVD is so useful to us is due
to the fact that oy = ||Al|2 and 0,1 = ||A~!||o. The latter equation follows from
the first since A=! = VX ~1UT, from which we can see that the largest singular
value of A=1 is o, ! (since o, is the smallest singular value of A). Another useful
property is revealed by AT = VXUT, which shows us that A and AT have the
same singular values and hence the same condition number.

There is a neat geometrical interpretation which might be helpful for gaining an
intuitive understanding of why the SVD is related to x(A)s: any m X n matrix
A maps the unit sphere in R™ to a hyper-ellipse, and the singular values are
the lengths of its semi-axes [3]. As an example, imagine that we transform the
unit circle in R? via a 2 x 2 matrix C' with a very large condition number in
the 2-norm. The fact that x(A)s is large means that o; >> o, hence the unit
circle gets mapped to a highly eccentric ellipse. A consequence of this is that
two vectors which are close to each other on the unit circle could be mapped to
two vectors of very different lengths, hence the sensitivity to perturbations.

With these facts at hand, we turn our attention again to the ratio ||z||/||b|.
Since what we are looking for, o1 and o, !, are linked so intimately to the SVD
of A, a promising place to start our analysis is to express A in terms of its SVD,
and then expand b in terms of the basis {u;} or {v;}(it will become obvious
which choice is suitable). Now, note that

Az =USVTz =10 (2.2)

from which we see that

r=VyUuTte. (2.3)

2.1. ANALYSIS BASED ON THE SVD OF A 19

Observe that the multiplication U”Tb yields a vector where the elements are
formed by computing the inner products u! b, which suggests that matters are
simplified by expressing b in in terms of the basis {u;}, since u]u; equals 1 if
i = j, and 0 otherwise. So we let

b= 5|l Zaiui, Za? =1 (2.4)

Inserting this expression for b into equation 2.3, and letting e; denote the unit
vector where the i’th component equals 1 and all other components equal 0, we
obtain

z=VST U au; = [BVETD aze;

=[bIvy- S fez = [l > = 7'01 (2.5)

We can now express the ratio 2.1 in a more revealing way:

Nl _ [1bllv/3o (/i) (ar/03)
i, e O 20

This expression is clearly maximized when all the weight is given to the term
with the largest coefficient 1/0,,, i.e. when a,, =1 and «; = 0 for i # n. From
equation 2.6 it seems plausible (assuming that o; are randomly chosen) that
llz||/||]| is of the order ||A~Y||2, unless we get unlucky and «, is particularly
small. Note also that the probability of the ratio indicating the right order of
magnitude increases when o,, is very small relative to the other ¢;, which implies
that A is ill-conditioned.

The most important information we gather from equation 2.6, howerever, is that
||| /]|6]| provides a good estimate when w,, is well represented in the right hand
side b of our equation; that is, when u,, has a coefficient that is large relative
to the coefficients of all the other u;. A natural next step then is to try to
construct a b where u,, is well represented.

Taking a look at x as expressed in equation 2.6, note that v, is likely to be
well represented in x due to the presence of the o; in the denominators since
ol > of L for i # n. It is tempting to exploit this amplification of v, by
somehow using x as a new right hand side. The only complication is that
it is v,, not w,, that is scaled up. Adjusting for this turns out to be quite
simple however. To see how, notice that if we were to carry out the above
SVD analysis using AT instead of A (recall that both matrices have the same
condition number), nothing would change fundamentally; the only difference
would be that the roles of U and V (and thus also the roles of the vectors u;

20 CHAPTER 2. ESTIMATING THE CONDITION NUMBER OF A

and v;) are interchanged, since AT = VXU?T. Hence the z that we obtain in
equation 2.3 would be a suitable right hand side of the system ATy = .

We can now summarize the strategy for estimating o, ! and ||A7!||;: first solve
Ax = b for x, where x is then tailored to be a suitable right hand side for the
system ATy = x, then proceed to solve for y, and finally compute the ratio
llyll/l|lz|| which will be the estimate of either ||[A~1||; or ||[A~!||2 depending on
which norm we use. If we want a 1-norm ratio we compute (||z||1/[|b|l1) - || All1-

Note that computing the analytical expression of the ratio ||y||/||z| is completely
analogous to how it is done for ||z||/|[b]|. Since («a;/c;) are the coefficients in
the right singular vector expansion of x just like «a; are the coefficients in the
right singular vector expansion of b, it follows by analogy that we only need to
substitute «; with «;/0; in the expression for ||z||/||b||, and thus we get that
lyll/llz]] = v/>_(a;/c?)?. Observe also that there is nothing preventing us from
first solving A2 = b and then solving Ay = z; this merely amounts to swapping
the roles U and V in the preceding arguments, and so the steps are analogous.

2.2 The power iteration approach

It turns our that there is another approach we may take to arrive at the equations
ATz = b and Ay = 2. This approach is based on an algorithm called power
iteration, in fact the algorithm we will develop will essentially be power iteration
with the addition of what can be viewed as in between steps, and the estimator
derived previously will turn out to be the result of running one iteration of this
algorithm. This method can be used to obtain an estimate of o, ! as well as o1,
and so this algorithm can be used to obtain a 2-norm estimate of x(A).

Power iteration is a very simple iterative process for estimating the largest
eigenvalue of a matrix B and its corresponding eigenvector. It essentially in-
volves taking some vector zg and repeatedly multiplying it from the left by B
(in practice we normalize at the end of each iteration for stability). The se-
quence of vectors {z;} will then converge to an eigenvector, provided that its
two largest eigenvalues are not equally large. If we instead wish to find the
smallest eigenvalue of B, we can perform inverse power iteration where we re-
peatedly multiply by B! instead of B. The eigenvalue estimate at each step is
computed by taking the Rayleigh quotient

2L Bzy,

T
Zk' 2k

r(A, z;) = (2.7)

which is an eigenvalue estimator that approximates the eigenvalue \; when the
corresponding eigenvector ¢; is dominant in zj [3].

To get a sense how k(A)s and eigenvalues are connected, we can notice a similar-
ity between eigenvalues and singular values; both can be found on the diagonal

2.2. THE POWER ITERATION APPROACH 21

of a diagonal matrix which is located between two orthogonal matrices in a
factorization of A. This similarity is due to the fact that the SVD is a gener-
alization of eigenvalue decomposition so that it can be applied to all matrices,
not just symmetric ones. In fact, when A is symmetric, its eigenvalues are its
singular values. The problem is that A is not always going to be symmetric.
However, the matrices ATA and AAT are symmetric, and we will show next
that o? are their eigenvalues. This means that we can compute both o7 and
o, ! by performing power iteration or inverse power iteration on either of these
matrices.

For now we will focus the estimation of ¢, 1, and then return to the estimation
of o1 at the end of the chapter. To this end, we start out by writing out the
following expressions:

(ATA) = (wvxutusv)Tt = ve2yT (2.8)
(AAT = (UxvTvsuh)~ =ux—2UT.

The diagonal elements of ¥72 are o 2. We know from elementary linear algebra
that if we can express a matrix B on the form B = QDQ7 - where D is diagonal
and (@ is orthogonal - then the column vectors of @) are the eigenvectors of B, and
the diagonal elements of D are the corresponding eigenvalues. Therefore, we can
see in the above equations that (ATA)~! and (AAT)~! both have eigenvalues
o, 2 and eigenvectors v; and u; respectively.

We first use the same notation that we used earlier, with the vectors z,y and
b, in order to make it clear that we end up with the same equations. Later we
adopt new notation which is more convenient for expressing the entire algorithm.
So, let b be the initial vector to start of the power iteration where we apply the
matrix (AT A)~L. In the first step we solve the equation

y=(ATA) " < AT(Ay) =b. (2.10)

If we let = Ay, then we first solve ATx = b, and then proceed to solve Ay = x
for y. At this point there are two estimates we may compute, which is made
clear when we express y and z in terms of the singular vectors of A. Letting
b=>" a;v;, we get that

—(ATA) =V VT S =S Yy, 2.11
y=() VyTvV Zav Zafv (2.11)
and o o
_ _ T Loy — bl
x=Ay=U%V ~Za—?vz_zmuz. (2.12)

In the expression for y the presence of o7 in the denominators increases the
probability that v, will dominate the expression, which is also the eigenvector

22 CHAPTER 2. ESTIMATING THE CONDITION NUMBER OF A

of (AT A)~! corresponding to the eigenvalue o, 2. Hence we are likely to obtain
a good estimate of o2 from Rayleigh quotient

ATA) ™y yTATI ATy (ATTy)TATTy
yTy yTy yTy
Tz |z
=T " Il =

(AT)y = L

where we have set ATz = y. This introduces a new system to solve, and if we
wish to avoid the additional computation, equation 2.12 indicates that we could
instead settle for a Rayleigh quotient involving x for a cheaper but less accurate
estimate. Now it is u, - an eigenvector of (AAT)~! - that is likely to be well
represented, and so we get an estimate of o,,2 from the Rayleigh quotient

T Ty—-1 —1,.\T -1 T 2
T((AAT)_l,x):x (AA) x: (A 'T) A x:M_ Hy”

Tz zTx 2Tr |z

(2.14)

Obtaining the cheaper of the two estimates is then a matter of solving ATz = b
and Ay = z, and then computing ||y||/||z||, which are the same equations that
we encountered in the previous section.

Now, we could keep going to obtain a finer estimate. To this end, we will
change notation, and present the first few steps in order to make the pattern
clear. Using the notation Ay, = yr_1 when k is even, and ATy, = y,_1 when
k is odd, we get

yo = (ATA)lyy & ATAy =y & ATy =y (2.15)

and so we solve the equations ATy; = yo and then Ays = y;. In the next
iteration, we similarly have

ya=(ATA) gy & ATAys =y (2.16)

from which we obtain the equations A”ys = 3, and Ay, = y3. Continuing in
this fashion, we get the following sequence of equations

2.2. THE POWER ITERATION APPROACH 23

ATZJ1 = Yo
Ay =y

ATys =12
Ays = y3

Ayor = Yar—1

Al yopi1 = yor

The vector y; is then obtained from y,_; via the recurrence relation y, =
A~Ty,. 4 (with k referring to the iteration we are in, so starting at k = 1) when
k is odd, and y, = A~'yr_1; when k is even. To make clear which Rayleigh
quotients to use for each yi, we observe that

Y1 = A_Tyo = UE_lVT . Zaivi = Z&ul
o

(07 (07

%Ui = Ef;

4 %

ys = ATy, = USVT . x5, = 20y,
o; o

K2

yo = A"l =VETIUT .2

U

Yo = L—57U;
02k ?

i

&%)
Yokt1 = Xy U
g

From this we gather that the Rayleigh quotients when & is odd has the form

ya (AAT) Yy yfATTA g (AT) TA e [yl

yryi yryk yrys (w2

and similarly when k is even we get

yr (ATA) ty yf AT A Ty (A Ty)TA Ty kg |

yryn yryi Yy [y |2

24 CHAPTER 2. ESTIMATING THE CONDITION NUMBER OF A

[l I
lyr—11l"

Hence the estimate at step k is obtained by computing

If we instead want to estimate o1, we start out the iteration with the equation
yo = AT Ayy. The arguments leading to the sequence of equations that follow
from this are analogous to those in the previous derivation, and if we fill out
the details we obtain the formulas

yr = ATyp_1, K even
Yk = AYr—1, k odd

As before the estimations of oy at step k are obtained by computing ||yx|l/||yk—1]|-
Note that this process fails if yo has no component along v, that is if yI v, = 0.
Letting yo be a random vector is a simple way to ensure that the probability
for this happening is virtually zero. This does not mean however that we can
not be unfortunate and get a yy which is nearly orthogonal to v,, which would
result in slow convergence. In Chapter 3 we discuss ways to choose yy in such
a way as to prevent this kind of worst case scenario from happening.

In the following we will refer to this method for obtaining estimates of o1 or

o1 as the power iteration algorithm, abbreviated to PIA.

2.3 Convergence of the power iteration algorithm

If we are going to use PIA for estimating x(A), it is important to investigate
how quickly we can expect it to return an estimate of acceptable accuracy.
Unfortunately, a well known disadvantage of power iteration is that its rate of
convergence can be quite slow. If A\; and Ay are the largest and second largest
eigenvalues of A respectively then

A = A1l = O((|Al/[M])?), (2.17)

see [3]. Keep in mind that this is referring to the normal power iteration algo-
rithm as opposed to the algorithm we just derived, and the increase in accuracy
with each iteration k£ that equation 2.17 indicates is for us only obtained with
every second iteration we perform.

It might be tempting to use the Rayleigh quotient at each step in order to
make shifts to speed up the rate of convergence, as is done in Rayleigh quotient
iteration. The problem with this approach is that it ruins the simplicity of
the algorithm. In practice - as we will discuss later - factorization of A into a
QR or LU decomposition is done simultaneously as we compute the condition
number, which reduces most of the computation down to solving triangular
systems of equations. Shifting by a constant p would then result in that matrix

2.3. CONVERGENCE OF THE POWER ITERATION ALGORITHM 25

no longer being triangular, which means that the algorithm would require O(n?)
operations, and here we are looking specifically for algorithms that require O(n?)
operations. If accuracy was essential however, it might be preferable to use this
approach instead, given that Rayleigh quotient iteration is much faster; it triples
the number of digits of accuracy with each iteration [3].

Although the rate of convergence is slow for power iteration, the PIA is sped up
by the fact that the eigenvalues in our case are o7 or 1/07, which means that
the inaccuracy of the estimate at each even-numbered step k is proportional
to (|oa|/|o1|)** or (|on|/|on_1])** respectively. Hence, if we are estimating o,
then adding two steps of iteration reduces the error by a constant factor =
(lo2|/]o1])*. Also, when A is ill conditioned these ratios will tend to be larger,
which further speeds up the rate of convergence. The fact that the convergence
is slow for well conditioned matrices is not a big issue. The worst thing that
can happen if xk(A) is small is that we underestimate it by a large factor(since
we are computing a lower bound), but this is not catastrophic since the matrix
is well conditioned anyway. It would be problematic however if there was a
substantial risk of significantly underestimating x(A) in cases where it is very
large, but the likelihood of this becomes smaller the more ill-conditioned A is,
which is a reassuring.

26 CHAPTER 2. ESTIMATING THE CONDITION NUMBER OF A

Chapter 3

Factorization of A and a
strategic choice of b

The computational cost associated with a strategy for computing x(A) is an
important aspect to consider when deciding how to estimate it. In practice -
since x(A) is normally computed in relation to some system (or systems) that is
to be solved - it is sensible to combine computation of x(A) with either QR or
LU factorization of A. We would need to perform such factorization in any case,
and so we might as well take advantage of it when estimating x(A). In terms
of estimating x(A), QR factorization is particularly appealing, since we then
only have to work with one of the factors, namely the upper triangular matrix
R. This is because R has the same condition number as A in the 2-norm, as
becomes apparent when we look at the SVD of R: R = QTA = (QTU)ZVT. In
the following 2 sections we will assume that a QR factorization is available to
us for simplicity.

3.1 A local strategy for picking b

Besides from using factorizations to improve efficiency, we also have the oppor-
tunity to speed up the rate of convergence by making a good choice of initial
vector b = yg. We should expect an algorithm which does this to be very sim-
ple if it is going to be worthwhile, since it might otherwise be better to simply
generate its components randomly, and then add an extra iteration in the PIA.
Given the emphasis on simplicity, an appealing idea is to compute the compo-
nents of b successively as we solve RTz = b. In each equation we solve for one
component z;, and in that equation only one component of b, b;, is present.
We then have the freedom to choose b; in such a way that it promotes growth
in ||z|l2. In order to keep the algorithm cheap, we restrict our choice of each

27

28CHAPTER 3. FACTORIZATION OF A AND A STRATEGIC CHOICE OF B

b; to two choices: +1 and —1. When solving the i’th equation, we then have
Tii%; = —T1;81 —T2iT2—...—Ti_1,;T;—1E£1. A simple way to make this choice is to
compute x; for each choice, which we denote a:j and z; , and choose whichever
sign maximizes |z;|. In the following this strategy will be denoted as the local
strategy, abbreviated to LS.

A drawback of this strategy is that it is blind to the effect that a choice will have
on subsequent equations. If we are dealing with randomly generated matrices,
this is very unlikely to cause severe issues. As an example, if the elements of
R are random numbers that are uniformly distributed over the interval (—1,1),
then the larger the modulus of each z, 1 < k < j, the greater the likelihood
that x; will be large, since we see from

j—1
—Ip
k=1

that the first 7 — 1 terms of the sum are independent random numbers each
uniformly distributed on an interval (f%, %) The wider these intervals are,
the more likely that the modulus of the sum is large, since its variance then
increases and its probability density function becomes more spread out. This
demonstrates that the strategy, given a random matrix, will be successful on
average, and has virtually zero probability to generate a ”worst case b”, i.e. a

b which is orthogonal to v,,.

The problem, however, is that in practice matrices are not generally random.
Often they have a particular structure, and this structure could be such that our
strategy fails completely. To demonstrate this, consider the following example
[1]. Let

1 0 00
0 1 00

L (3.2)
~k k01

When computing z; and xo, our strategy so far offers no way to determine the
sign of by and bs. Let us arbitrarily decide that the default choice is the positive
sign, in which case 1 = 1 and x5 = 1. But then it becomes immediately clear
that k& will not appear in equations 3 or 4 due to cancellation, and hence will
have no influence on the estimate of the condition number. This is a problem,
as we see when we consider how ill conditioned R is when k is large: || R|loc =
|RY|0o = 1+ 2k.

The situation can be somewhat remedied by generating at each step a random
number 6 between 0.5 and 1, and choosing between +6 instead of +1. Then
the probability of getting the kind of exact cancellation of terms as in the above
example becomes practically zero, though we can still run into situations where

3.2. A LOOK AHEAD STRATEGY FOR CHOOSING B 29

vy, is poorly represented, which would correspond to the terms nearly cancelling
out. Note, however, if k is large we can still be confident that this randomized
version of the strategy will work well, since we only need to avoid exact cancel-
lation in order to ensure fast convergence in the cases where A is ill-conditioned.
In the following this modified version of LS will be denoted RLS, as in "ran-
domized local strategy”.

3.2 A look ahead strategy for choosing b

As was mentioned earlier, a weakness of the strategy discussed so far is that
it is entirely local, which is why we ran into trouble in the previous example.
A natural next step then, is to find a strategy that has some kind of ”look
ahead” feature built into it. At step 4, we cannot know which choice of sign
will be optimal, one reason being that we cannot at that point compute r;;x; =
7121+ ... +15-1,2;_1 + bj for i < j < n, since we do not know the value of x;
for j > 4. But if we are less ambitious, we can make the choice of b; which tends
to maximize the part of each such sum (in terms of its absolute value) that we
can compute, namely the sum of the first ¢ terms: ri;x1 + ... + 72, We can
then proceed to make our choice of b; according to whichever choice maximizes
the sum

1—1 n 7
> rkimk bl + YD gl (3.3)
k=1

i+1 k=1

The first part of this expression ensures that the effect on |rj;z;| is taken into
account, and the second part of the expression takes into account the effect on
the remaining n — ¢ equations. With this strategy, we will avoid the unfortunate
scenario we encountered in our example regardless of how we choose the sign
for the k’s in RT since - if k is large enough - the algorithm will choose the sign
which does not lead to the cancellation of the terms involving k.

This strategy is more costly than the first one. In the first strategy, the cost
is approximately the same as when we solve the system for a given b; for each
row we are adding one extra multiplication and addition to the workload when
we compute xj' and z; , and for large n, this cost is negligible compared to the
cost of computing the first ¢ — 1 terms in 22;11 ri; o for each z;. So for large
n, the cost of the first strategy is approximately n? flops, about the same as the
cost of solving a triangular system of equations in a regular way.

So far we have been discussing how to choose b in a way so that we get a
good estimate of 0,1, but the ideas that we have discussed applies also when
computing || A||2, since the success of the PIA relies on u; being well represented,
which will be the case when z is large. The difference in how to apply of the
growth-promoting strategies in each case is a matter of details.

30CHAPTER 3. FACTORIZATION OF A AND A STRATEGIC CHOICE OF B

Let us now compute the cost of the new strategy. Consider the ¢'th iteration
where we compute ;. The bulk of the workload lies in computing >, _; rx;Zx
for all i < 7 < n, so we will do n — ¢ such computations. But since ;21 +
T9j%2 + ... + 1_1,;@;—1 was computed in the previous iteration for each j, we
only count the cost associated with adding the new term r;;x; to the sum for
each j. For each computed value x:r and x; we will perform two operations (1
multiplication and 1 addition), so 4 operations in total for each j. And so, the
number of flops in iteration ¢ is ~ 4(n — 7). Summing together, we get

n

nn n2 n
24(71—1'):4{712—%}:4@2—7—5):2n2—2n (3.4)
i=1

The factor by which the cost goes up with the ”look ahead strategy”, which
in the following will be denoted LAS, can now be computed. Ignoring the
first order term, we get that 27%2 = 2, and so this strategy is roughly twice
as expensive as the LS. If we are using the QR decomposition and perform
two iterations to obtain an estimate, the overall increase in work is by a factor
2:;::‘22 = % = 3/2 = 1.5. At this point we may note that the cost of choosing
b by the LAS is about the same as the cost of an extra iteration, and so we may
wonder if we gain more accuracy by using the cheaper RLS for choosing b, and
then use the work we save in doing so to perform an extra iteration in the PIA.
We return to this speculation in Chapter 3, where we test it numerically.

3.3 Choice b when using LU factorization

Before we get to how to choose b when we have an LU factorization, where L is
lower triangular and U is upper triangular, we consider which equations we must
solve now that we have a different factorization. The fact that we have a different
factorization of A does not change our overall strategy; as before, we may obtain
an estimate by solving the systems ATz = b and Ay = z, and then compute
llyll/||z]|. Concerning the first equation, we have (LU)Tz =b < UYLz =b.
So, letting z = LTz, we solve

to obtain x. Next we have Ay =z < LUy = z. Letting Uy = w, we solve

Lw=z (3.7)
Uy=w (3.8)

After which we can compute ||y||/|=]-

3.4. OPERATION COUNTS ASSOCIATED WITH LU FACTORIZATION31

It is less obvious how to go about choosing b in this case than it was when we
had an QR factorization, since we now have two factors instead of one. The
overall objective is still the same; we are looking to find a strategy for choosing
the components of b in such a way so as to promote growth in the size of x.
The strategy suggested in the article is to choose b such that z becomes large
in equation 3.6, and hope that this will result in a large . However, as of yet
we have no assurance that this will be the case. In the QR case this was not an
issue, since the choices of b; were designed to ensure large components of x, or
atleast avoid the worst case scenario where b is orthogonal to v,, or nearly so.
In practice, the strategy of choosing b such that z becomes large was successful,
in fact it was about as successful as it was in the QR case when tested on a
large number of random matrices of various sizes.

This raises the question of why it was so successful. We can get some intuition
for this by considering the following; due to the way row pivoting is done in
the factorization of A, the ill-condition of A tends to be mostly reflected in the
matrix U [1], and therefore U tends to be more ill-conditioned than L. The fact
that U is ill-conditioned helps us promote growth in the length of z in the first
step, and the fact that L is well conditioned helps us keep the advantage we
gained in the first step.

To illustrate this point, consider the cases where L is well conditioned and
o1/opn ~ 1, with o1 and o0, being the largest and smallest singular values of L
respectively. In the extreme case when o1 /0, = 1, the unit ball gets mapped to
a hyper ellipse where all the semi-axes have the same length, and so the image
of the unit ball under L is a scaled version of the unit ball. This means that, if
o1/oyn, = 1, it does not matter which direction z has in terms of how its length
will be altered when multiplied by L~T, and so we maximize ||z|» by choosing
b such that ||z||2 is maximized. The more general point is that - given that
U is more ill-conditioned than L - the first step is more important in terms of
determining the length of = than the second step, and therefore the strategy of
picking a b such to maximize ||z||2 is expected to be successful on average.

3.4 Operation counts associated with LU factor-
ization

Estimating the condition number using an LU decomposition is more costly than
it is with a QR factorization, since it doubles the number of triangular systems
to solve per iteration in the PIA. It is therefore tempting to always use the
QR decomposition, but we must keep in mind that the condition number will
typically be computed in combination with one or more systems of equations
that are to be solved, and it is considerations with regards to these computations
that determines which factorization is used. Also, since QR factorization costs
~ 4/3 - n3 flops whereas LU factorization costs only ~ 2/3 - n3 flops [1], we

32CHAPTER 3. FACTORIZATION OF A AND A STRATEGIC CHOICE OF B

are better of with an LU factorization even if our only goal is to estimate the
condition number - given that the number of iterations is not to high - since the
part of the process where we estimate x(A) is only O(n?), and thus for large n
the overall cost associated with estimating x(A) will be dominated by the cost
of the factorization.

Chapter 4

Numerical testing

4.1 Numerical testing using QR decomposition

There are many ways to obtain an estimate of x(A) depending on which norm
we are using, such as the number of iterations in the PIA, and the strategy
for choosing b. If accuracy is an important aspect, then we can compute a
2-norm estimate, since we have the tools to reach arbitrary precision in that
case. If computational cost is the most important aspect, we can settle for a
I-norm estimate, since the cost of computing || A||; exactly is only n? flops. If
we then use two iterations in the PIA, using RLS to choose b, then this brings
the total cost down to n? 4+ 2n? = 3n2, which is about as cheap as we can make
it and still get a reliable order of magnitude estimate. To test the quality of
this estimate, 500 random! 50 x 50 matrices where generated, and then for each
such matrix we computed the relative deviation: ICStimatC(:((:))ll)_“(A)l‘ . The
relative deviation was greater than 1 for 7 out of the 500 matrices generated,
and the highest such value was 1.52. Hence this method is successful in terms
of indicating the correct order of magnitude. Note that the accuracy we can
get in the 1-norm estimate is limited by the fact that the vector pair y and =
that maximizes |ly||2/||z||2 need not be the same pair of vectors that maximizes
llyll1/||z|l1, hence we can’t improve accuracy indefinitely by just adding more
iterations the way we can with a 2-norm estimate. Also note that we got a
relative deviation greater than 1, which might seem impossible since we should
have that |estimate(x(A)1) — k(A)1] < 1 given that our estimate is a lower
bound, but we must keep in mind that we are actually obtaining a lower bound
on k(R); which may very well be larger than x(A);; equality between these two
holds only in the 2-norm.

1By random we mean that the components where uniformly distributed on the interval
[-1,1].

33

34 CHAPTER 4. NUMERICAL TESTING

Next we consider the two different strategies for estimating o, ! that were men-
tioned at the end of section 3.2; one strategy where we use LAS combined with
2 iterations, and one where we use RLS combined with 3 iterations. These are
of interest given that both use approximately the same number of flops. We
will refer to these strategies simply as the 2-iterations strategy and 3-iterations
strategy respectively. 3000 random matrices of dimension 20 x 20 where gener-
ated, and for each matrix we computed an estimate using the 2-iterations and
3-iterations strategy. For 87% of the matrices, the 3-iterations strategy resulted
in a better estimate, with the average of the ratio estimate(o,*)/o, 1 - which
we refer to as the success ratio - being 0.96, and the smallest such ratio being
0.22. For the 2-iterations strategy the corresponding values where 0.92 and 0.09
respectively, and similar results where obtained for matrices of various sizes.

The two strategies were also tested on the matrix from the example in section
3.1 with & = 1000, and the average success ratio was 0.99979 using the 3-
step strategy, and 0.999996 using the 2-step strategy. We also computed 100
estimations for this matrix with the 3-step strategy to see how likely it was to
generate a bad estimate (since we have added an element of randomness into
the process), and out of the 100 iterations the smallest success ratio was 0.9967,
hence the modified version of LS seems to cope very well in this situation. Based
on these results, it appears that out of the strategies for estimating o, ' that
require around 3n? flops, the best one is the 3-iterations strategy.

4.2 Numerical testing using LU decomposition

First we wanted to test how well the two strategies for picking the components
of b were now that we are using an LU factorization. To this end, we generated
4000 random matrices of dimensions 40 x 40 matrices and estimated o, for each
using RLS and LAS, using 2 iterations of the PIA in each case, and we obtained
an average success ratio of 0.87 and 0.89 respectively, the smallest success ratios
being 0.07 and 0.12 respectively, and with the LAS being more successful 54%
of the times, hence LAS performed slightly better. We also wanted to see how
much we would gain if we instead of using 2 iterations and LAS, we used the
RLS and add an extra iteration, and so we tested using 3 iterations combined
with RLS. The average success ratio was 0.96, which is a 7% increase in average
accuracy compared to the strategy of performing 2 iterations combined with the
LAS, and the cost of this improvement is an additional n? flops. A 7% increase
in the average success ratio for an additional n? flops seems like a decent trade-
off given the fact that we are only increasing the amount of work by a factor of
6n?/5n? = 6/5 = 1.2, not including the factorization cost of course.

The exact same strategies were tested on their ability to estimate 0. When
comparing RLS against LAS we found that LAS was more successful 75% of
the times, and the average success ratios where 0.74 and 0.79 respectively, a
larger performance difference than when we estimated o, . Performing RLS

4.2. NUMERICAL TESTING USING LU DECOMPOSITION 35

combined with 3 iterations gave an average success ratio of 0.82, which is only
marginally better than the result we got when using 2 iterations combined with
the LAS. In contrast to when we where estimating o,,!, it seems that the LAS
is preferable to using RLS.

Finally we generated 4000 matrices of dimension 40 x 40, and estimated k(A)y
and £(A); for each. For each A we used 3 iterations combined with RLS to
estimate o, !, and 3 iterations combined with LAS to estimate o, which adds
up 6n2 + Tn? = 13n? flops to estimate x(A)z. To estimate x(A); we used
3 iterations combined with RLS to estimate ||A~!||;, which together with the
computation of ||A[|; then adds up to 6n2 + n? = 7n? flops to estimate r(A);.
When estimating x(A)2 we got that the average success ratio was 0.80, and
the smallest success ratio was 0.11. Estimating x(A4); we got that the average
success ratio was 0.44, the smallest success ratio was 0.06, and 0.43% of the
estimations had a success ratio below 0.1. Although the average success ratio
was much lower for the 1-norm estimate, the lowest success ratio was not that
much lower given the fact that it only uses 7n? flops as opposed to the 13n? flops
used to estimate x(A)2. Hence the 1-norm does indeed seem to be a suitable
choice when an order of magnitude estimate is all that is required.

36

CHAPTER 4. NUMERICAL TESTING

Bibliography

[1] Alan K Cline, Cleve B Moler, George W Stewart, and James H Wilkinson.
An estimate for the condition number of a matriz, volume 16. SIAM, 1979.

[2] Robert D Skeel. Scaling for numerical stability in Gaussian elimination,
volume 26. ACM, 1979.

[3] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
Siam, 1997.

37

