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Abstract

Throughout this work we investigate a trinification-based grand unification theory (GUT)
with a global family symmetry, as a radiative origin of the Standard Model (SM). We show
that after spontaneous symmetry breaking of the trinification gauge group, we can in theory
construct an effective left-right symmetric model (LRSM) which breaks to the SM gauge group
through radiative breaking induced by the running of the model’s parameters. We further
argue that a low-energy limit of this effective LRSM can accommodate a realistic SM quark
mass hierarchy and Cabibbo mixing. Upon close consideration, however, we show that we
cannot impose a tree-level scalar mass hierarchy at the GUT scale significant enough to justify
the effective LRSM as a physically viable low-energy limit of the trinification model. Thus,
we compute the full one-loop scalar mass spectrum using the effective potential approach,
and search for parameter space points for which such a hierarchy can be imposed at one loop.
Upon implementation of a preliminary random scanning algorithm, no such parameter space
points are found, and we conclude that more advanced scanning techniques are needed in
future studies, and/or additional scalars should be kept in the effective theory.

Populärvetenskapligt sammanfattning

Standardmodellen inom partikelfysik beskriver de kända fundamentalkrafterna och klassi-
fierar alla de experimentellt observerade elementarpartiklarna. Allmänt sett anses den vara
en av de största bedrifterna inom modern vetenskap, tack vare sin förm̊aga att sammanlänka
teoretiska förutsägelser med fenomenologi. Men trots att nästan hela v̊ar först̊aelse av den
subatomära världen ryms i denna modell s̊a ger inte standardmodellen n̊agon beskrivning av
fenomen s̊a som mörk materia, neutrinomassor och gravitation. Dessa luckor i teorin mo-
tiverar fysiker till att söka efter utvidgningar av standardmodellen som kan bidra till en mer
övergripande teori.

Fysiker tror att luckorna i standardmodellen kan förklaras med hjälp av mekanismer och/eller
partikelinteraktioner som inte kan observeras i ett universum med v̊ar nuvarande energiskala.
Därför konstruerar de s̊a kallade ’storförenade teorier’ inom vilka de elementära krafterna
förenas p̊a högre energiskalor. En framg̊angsrik s̊adan m̊aste utvecklas till den observerade
standardmodellen, och inneh̊alla dennes parametrar och symmetrier, när energiskalorna sänks
till de betingelser som r̊ader idag. Därför skulle en s̊adan modell inte bara kunna ge svar p̊a
fr̊agor inom modern vetenskap, utan ocks̊a ge insikt i de högenergiförh̊allanden som r̊adde i
det tidiga universum, ur vilka de nuvarande fysiklagarna uppstod.

I detta arbete föresl̊as ett exempel p̊a en s̊adan storförenad modell. Vi undersöker hur dess
symmetrigrupp, som beskriver teorins till̊atna partiklar och interaktioner, bryts ner till de
inom standardmodellen när energiskalan sänks. Vi utforskar ett antal nyckelfenomen inom
den s̊a kallade trinifikationsmodellen, och använder denna för att förutsäga uppkomsten för
standardmodellens fenomenologi. Slutligen söker vi efter värden av de av modellens parame-
trar, för vilka den utvecklas till en realistisk version av den observerbara standardmodellen.

Sökandet bortom standardmodellen banar väg för lösningar av de m̊anga mysterier inom
modern fysik, vilka är nödvändiga för en djupare först̊aelse av v̊art universum.
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1 Introduction

The Standard Model (SM) is widely considered one of the greatest achievements in mod-
ern science for its ability to correctly match the predictions of theoretical particle physics
to experimentally obtained data. The long awaited discovery of the Higgs boson at CERN
in 2012, almost 50 years after its theoretical prediction in the early 1960’s, proved the true
phenomenological power of the SM to physicists everywhere.

Today, most of our fundamental understanding of the subatomic universe is neatly embedded
in this model. And yet, however adept, the SM still fails to provide a full description of all
predicted and observed phenomena, such as dark matter, neutrino masses, and a fundamental
theory of gravity. Furthermore, from a theoretical point of view, the SM can be considered
rather ad hoc in its nature, compiling together theoretical concepts as a means of explaining
experimental observations. As a theory, it remains unsatisfactory in its inability to justify its
premises and explain the origins of its parameters.

This suggests that the SM cannot be a grand underlying theory incorporating the full physi-
cal laws of nature, but rather exists as an effective theory, applicable at the low-energy scale
of our current observations. The idea of the SM as an effective theory invites us to explore
so-called Beyond Standard Model (BSM) theories as extensions to its boundaries. Further-
more, it entices physicists to search for a grand unified theory (GUT) in which the gauge
interactions of the SM are unified into a single coupling at a corresponding high-energy scale.

Radiative breaking refers to spontaneous symmetry breaking of a model’s gauge group, in-
duced by the renormalization group (RG) evolution of its parameters. As such, radiative
breaking of certain GUT models can provide a natural origin of the SM. However, as a GUT
embodies larger symmetries at high energies, they consist of additional particles and interac-
tion, which lead to compelling arguments for observable phenomena at lower energies.

One such GUT group candidate is the trinification gauge group, [SU(3)]3. It is one of the four
maximal subgroups of the exceptional Lie group E6, and on its own, forms the minimal trini-
fication model, first proposed as a viable GUT candidate by Sheldon Lee Glashow, Howard
Georgi and Alvaro de Rujula, in 1984 [1].

Since then, trinification-based GUT models have become increasingly popular as their low-
energy phenomenology remarkably resembles the SM. For instance, in [2] it is argued that
spontaneous symmetry breaking of the trinification group can provide an account parity vi-
olation in the SM. Furthermore, as is shown in [3] and [4], E6-inspired models can naturally
account of the lightness of right-handed neutrinos, by predicting that their masses originate
from loop interactions with scalars and heavy fermions at the unification scale. Finally, in [5]
it is shown that trinification models are flexible enough to accommodate any quark and lepton
masses and mixing angles, and that their naturally arising baryon conservation provides a
inherent opposition to proton decay.

Although the minimal trinification model makes an attractive GUT candidate, it brings about
several concerns. For instance, it fails to justify the considerable hierarchy between the trini-
fication and electroweak breaking scales, and it contains a large number of free parameters,
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even at high energies. In [6], it is suggested that the latter can be significantly reduced when
Yukawa couplings, in addition to gauge couplings, are unified at GUT scale. After sponta-
neous symmetry breaking of the trinification gauge group, however, many Yukawa couplings
will be allowed under the new symmetry group, and the (RG) evolution of these couplings
can provide and origin of fermion mass hierarchies at lower energies.

With the outlined concepts as motivation, throughout this work we explore whether radia-
tive breaking of a trinification-based GUT model with an added global family symmetry acts
as a possible origin of the SM. This scenario is inspired by a natural reduction from an E8

symmetry, and, as we will see, the addition of the global family symmetry will ensure a single
unified Yukawa coupling at GUT scale. Consequently, this model will maintain the desirable
properties of the minimal trinification model, while significantly decreasing the number of
free parameters at high energies.

We begin by investigating spontaneous symmetry breaking of the model’s trinification gauge
group into the so-called Left-Right Symmetric Model (LRSM). At high energies, the LRSM
will contain a large number of particles, making its full RG evolution difficult to study. Thus,
we will attempt to construct a low-energy limit of the LRSM by tuning the model parameters
in such a way that heavy states can be integrated out at the breaking scale. Then, the aim
of this work is to investigate whether radiative breaking of such a low-scale effective theory
leads to a SM-like model.

In [7], it is shown that at tree-level, radiative breaking from this trinification model to the SM
gauge group is possible upon inclusion of two light scalar multiplets in the effective theory.
Although the resulting theory contains massive particles which can be identified with certain
heavy SM quarks, the remaining unbroken global group prohibits non-zero tree-level masses
for lighter quarks and color neutral fermions. It is further argued that the structure of the
SM Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix emerges naturally as a consequence
of the global family symmetry, when keeping additional scalars in the effective LRSM.

Thus, this work aims to upgrade the effective theory proposed in [7] by keeping additional
scalars light. More specifically, we include a color-singlet, tri-doublet scalar field, which after
induced breaking is hypothesized to split into viable SM Higgs-doublet candidates. In [7] is
argued that correctly engineering the model such that certain masses can again be integrated
out at this breaking scale, will result in an effective theory exhibiting the observable quark
mass hierarchy and CKM mixing of the SM.

After constructing the upgraded low-energy limit of the LRSM, it is matched to the trinifi-
cation model at the breaking scale, and the full set of RG equations describing the running
of the model is calculated. Finally, radiative breaking of the effective theory is studied, and
the properties of the resulting SM-like theory are investigated. As will become apparent,
construction of our upgraded effective LRSM will require the addition of one-loop mass cor-
rections to the scalar sector. Thus, the final aim of this work is to obtain the full one-loop
scalar mass spectrum of the LRSM, and search for physically viable parameters space points
which constitute radiative breaking to a SM-like theory with the proposed features.
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To obtain the one-loop scalar mass spectrum we formulate the effective potential method,
which allows us to use the effective potential of the trinification model to determine loop
corrections to any n-point functions of the theory. Due to the large number of particles at
GUT scale, derivatives of the one-loop effective potential describing such corrections are dif-
ficult to compute. For this objective, we use a set of general analytical expressions for these
derivatives derived from the Coleman-Weinberg effective potential in [8].

Finally, upon determining the one-loop scalar mass spectrum, we can investigate the mass
hierarchy of scalars at the trinification breaking scale. The observation of a natural spitting
between scalars is a clear indication that our constructed effective LRSM is truly a low-energy
limit of the model. This would justify our choice to greatly simplify the investigation of the
RG evolution of the model by considering only the fields in the effective theory.

The content of this work is organized as follows. In Section 2, we outline the main features of
the proposed trinification model. In Section 3, spontaneous breaking of its symmetry group is
investigated, and the resulting (un)broken group generators are found. In Section 4, we obtain
the tree-level particle content of the LRSM, construct the effective theory, and calculate the
matching conditions. In Section 5, the full set of RG equations are found. Throughout Section
6, these are used to study the evolution of the model, and look for parameter space points
which indicate radiative breaking. Finally, in Section 7 we calculate the full one-loop scalar
mass spectrum, and consider the one-loop scalar mass hierarchy at the trinification scale. The
appendices contain further theoretical background information, details of several calculations
throughout this work, and raw results of certain computations.
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2 The trinification model

The first essential part of this work is a thorough formulation of the high-scale GUT model.
Throughout this section, we state the symmetry group, field content, and the Lagrangian of
the trinification model, as well as outline some essential notation used throughout the rest of
this work.

2.1 Symmetry group

The proposed model is non-supersymmetric, and has the trinification gauge group

[SU(3)C × SU(3)L × SU(3)R],

where the labels C, L, R will refer to color, left, and right symmetry respectively throughout
the rest of this work. Here after, gauge groups are denoted with [ ... ], and global symmetries
with {...}.

The trinification group is one of the four maximal subgroups of the exceptional Lie group E6

[SU(3)]3 ⊂ E6,

which has a fundamental 27 representation. Under this symmetry group, fermions and scalars
decompose into three matter fields, and each family can be arranged in a fundamental 27-plet

272727 = (333, 3̄̄3̄3,111)⊕ (111,333, 3̄̄3̄3)⊕ (3̄̄3̄3,111,333). (2.1)

Fundamental and anti-fundamental representations ensure that the trinification model is free
of gauge anomalies1.

The Z3 group, which is the group of all cyclic permutations of C, L, and R, is included. It
permutes scalar, fermion, and gauge fields in the trinification model accordingly, and invari-
ance under these transformations indicates that the three gauge couplings are unified at GUT
scale, such that gC = gL = gR = g.

When breaking to the SM, the [SU(3)C] of the trinification model must remain intact, while
the left and right SU(3) product group should break to the electroweak sector of the SM.
That is, the trinification gauge group should be broken as

[SU(3)C × SU(3)L × SU(3)R]
↓

[SU(3)C × SU(2)L ×U(1)Y].

The spontaneous symmetry breaking of the trinification model is investigated in the following
section.

1An anomaly free theory is ensured when field representations under each [SU(3)] group add to one. For
additional details on anomalies in gauge theories, see for example [9]
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We further extend the model with a global {SU(3)F} family symmetry, such that

[SU(3)C × SU(3)L × SU(3)R] nZ3 × {SU(3)F}. (2.2)

Inspired by supersymmetry, the family group is imposed in such a way that it acts on fermions
and scalars equally. An extended supersymmetric version of the trinification model is pro-
posed in [10].

When considering the full symmetry group, the proposed model originates as the natural
reduction from a E8 symmetry

E8 → E6 × SU(3).

An E8 symmetry can be considered a low-energy remnant of the E8 × E8 gauge group of the
heteroic superstring theory proposed in [11], further motivating the inclusion of the global
{SU(3)F} family symmetry in this model.

2.2 Field content

Under the symmetry group given in (2.2), scalars and fermions decompose into three matter
fields, denoted by L̃, Q̃L, Q̃R and L, QL, QR respectively. There are eight gauge bosons for
each [SU(3)] group, expressed as GC, GL, and GR. Both fermions and scalars in the model
form bi-triplet representations under the trinification gauge group, and tri-triplets under the
full symmetry group.

Throughout this work, we adopt a specific notation for fields. All fundamental represen-
tations are denoted with superscripts and anti-fundamental representations with subscripts.
The indices i, l, r, c are used for family, left, right, and color charges respectively. Capitalized
indices refer to representations in SU(2)-space while lowercase indices refer to representations
in SU(3)-space [7]. The fields content and corresponding representations of the trinification
model, are summarized in Table 1.

Because each scalar and fermion matter field is in a tri-triplet/singlet representation under
the full symmetry group, we can illustrate each with a 3× 3× 3 object. For simplicity we use
3 × 3 matrices, where the [SU(3)L] index, l, denotes the column, and the [SU(3)R] index, r,
denotes the row. The family index is assigned to the matrix as a whole, and the color index
is labeled on each matrix element separately. Using this notation, the scalar sector of the
trinification model is denoted

(
L̃i
)l
r

=


L̃1

1 L̃2
1 L̃3

1

L̃1
2 L̃2

2 L̃3
2

L̃1
3 L̃2

3 L̃3
3


i

,
(
Q̃iR
)r
c

=


(Q̃R)1

c

(Q̃R)2
c

(Q̃R)3
c


i

,
(
Q̃iL
)c
l

=
(

(Q̃L)c1 (Q̃L)c2 (Q̃L)c3

)i
, (2.3)

where i, c = {1, 2, 3}.
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Table 1: Field content and corresponding representations of the trinification model at GUT scale.
Each index a takes on values from 1 to 8, while the indices i, l, r, and c take on values from 1 to 3.
The model has 162 scalar field components, 81 (Weyl) fermions, and 24 gauge bosons.

find this! SU(3)C SU(3)L SU(3)R {SU(3)F} Notation

L̃ 111 333 3̄̄3̄3 333
(
L̃i
)l
r

Scalars Q̃L 333 3̄̄3̄3 111 333
(
Q̃iL
)c
l

Q̃R 3̄̄3̄3 111 333 333
(
Q̃iR
)r
c

L 111 333 3̄̄3̄3 333
(
Li
)l
r

Fermions QL 333 3̄̄3̄3 111 333
(
QiL
)c
l

QR 3̄̄3̄3 111 333 333
(
QiR
)r
c

GC 888 111 111 111 GaC

Gauge Bosons GL 111 888 111 111 GaL

GR 111 111 888 111 GaR

Throughout this work, we will focus mainly on the scalar sector. At the trinification scale,
however, fermions are organized in the same notation as (2.3). Fermions in the trinification
model are left-handed Weyl fermions [7].

2.3 Lagrangian of the scalar sector

For the sake of this work, it is sufficient to consider the Lagrangian of the scalar sector. When
we refer to the Lagrangian of the scalar sector, we refer to terms in the full Lagrangian which
involve interactions with at least one scalar field. The Lagrangian of scalar sector of the
trinification model consists of three essential parts: a gauge term, Lgauge, which contains in-
teractions between the three non-Abelian gauge fields and the scalars in the model, a Yukawa
term, LY, which contains interactions between fermion fields and scalars, and the classical
scalar potential, V (0), which contains scalar self-interaction terms.

Interactions between gauge bosons and scalars are given by kinetic terms in the Lagrangian,
such that

Lgauge = [Dµ(L̃i)lr][D
µ(L̃i)lr]

† + (Z3 permutations), (2.4)

with the covariant derivative given by

Dµ = ∂µ + igT aLG
a
Lµ − igT aRGaRµ. (2.5)

Here, g denotes the GUT scale gauge coupling, and the generators, T a of each [SU(3)] are
defined T a = λa

2 , where λa are the eight Gell-Mann matrices [12].
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Requiring the Lagrangian to be Lorentz invariant yields Yukawa interactions in the trinifica-
tion model of the form

LY = −yεijk
(
L̃i
)l
r

(
QjL
)c
l

(
QkR
)r
c

+ c.c + (Z3 permutations) (2.6)

Here, the Levi-Cevita tensor is necessary for invariance under {SU(3)F}.

Because the global family group acts on scalars and fermions equally, this is the only type of
contraction which can form Yukawa terms in the trinification model. Furthermore, invariance
under cyclic Z3 permutations ensures that each permuted term of LY will have the same cou-
pling, y. This unification of the Yukawa coupling at GUT scale is a key feature of this model,
and significantly reduces the number of free parameters in the theory [7]. As will become
apparent in further sections, after spontaneous symmetry breaking of the trinification model,
the Lagrangian will contain many more Yukawa terms. Thus, the unified coupling, y, “splits”
at the breaking scale, and we will study the RG evolution of these newly emerging couplings.

Finally, by enforcing the Lagrangian to be real, invariant, and renormalizable, the most
general, classical scalar potential can be built out of three parts as follows [7]

V (0) = V1 + V2 + V3, (2.7)

where

V1 = − µ2
(
L̃i
)l
r

(
L̃∗i
)r
l

(2.8)

+ λ1

[(
L̃i
)l
r

(
L̃∗i
)r
l

]2

+ λ2

(
L̃i
)l
r

(
L̃j
)l′
r′

(
L̃∗j
)r
l

(
L̃∗i
)r′
l′

+ λ3

(
L̃i
)l
r

(
L̃j
)l′
r′

(
L̃∗i
)r′
l

(
L̃∗j
)r
l′

+ λ4

(
L̃i
)l
r

(
L̃j
)l′
r′

(
L̃∗j
)r′
l

(
L̃∗i
)r
l′

+ (Z3 permutations)

V2 = + α1

(
L̃i
)l
r

(
L̃∗i
)r
l

(
Q̃jL
)c
l′

(
Q̃∗Lj

)l′
c

(2.9)

+ α2

(
L̃i
)l
r

(
L̃∗j
)r
l

(
Q̃jL
)c
l′

(
Q̃∗Li

)l′
c

+ α3

(
L̃i
)l
r

(
L̃∗i
)r
l′

(
Q̃jL
)c
l

(
Q̃∗Lj

)l′
c

+ α4

(
L̃i
)l
r

(
L̃∗j
)r
l′

(
Q̃jL
)c
l

(
Q̃∗Li

)l′
c

+ (Z3 permutations)

V3 = γ εijk
(
L̃i
)l
r

(
Q̃jL
)c
l

(
Q̃kR
)r
c

(2.10)

+ c.c.

Finally, in addition to the symmetries of (2.2), we can identify two accidental global U(1)
symmetries2 of the Lagrangian, and denoted them by U(1)A and U(1)B. This choice of labels

2Accidental symmetries arise from imposing gauge invariance and renormalizability of a theory. They
are essential tools in BSM physics, because proposed extensions should either also contain the accidental
symmetries of the SM Lagrangian, or, they have to be promoted to fundamental symmetries in the model’s
higher symmetry group [13].
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is motivated by the identification of {U(1)B} symmetry as baryon conservation. The natural
emergence of baryon conservation provides additional motivation for this trinification based
GUT model. We will see that this symmetry remains intact as the trinification model is
reduced to the SM throughout this work [7].

Including the accidental symmetries, the full symmetry group of the trinification model is
given by

[SU(3)C × SU(3)L × SU(3)R] nZ3 × {SU(3)F ×U(1)A ×U(1)B}. (2.11)

3 Spontaneous symmetry breaking in the trinification model

The next aim of this work is to investigate spontaneous symmetry breaking in the trinification
model and obtain the resulting tree-level mass spectrum.

Spontaneous symmetry breaking occurs when a symmetry is valid for the Lagrangian of a
system, but not for its (degenerate) ground state. In quantized theories, the ground state
corresponds to the vacuum of the theory, and the expectation value of a field operator at
the vacuum (VEV) can take on non-zero values [14]. Furthermore, the effects of quantum
fluctuations on the vacuum state are studied using perturbation theory, such that the VEV
of a field operator corresponds to its value at the minimum of the potential, plus higher order
corrections [12]. The effects of such radiative corrections on the vacuum state of the theory
will be revisited in later sections, through the formulation of the effective potential.

In this section, we investigate spontaneous symmetry breaking of the trinification model due
to the classical (leading order) non-zero VEV of one of its scalar components.

3.1 Tree-level minimization conditions

In [7], it is argued that the simplest way to break the trinification model into a SM-like theory
is when only one of its real scalar components obtains a non-zero VEV. More specifically, the

color-singlet scalar,
(
L̃i
)l
r

=
(
L̃3
)3

3
, obtains the VEV, which we will see ensures the [SU(3)L],

[SU(3)R], and [{SU(3)F}] symmetries of the trinification model are broken, while the SU(3)C

gauge group remains intact.

Thus, in this scenario, a single VEV, v, is placed in real component of the
(
L̃3
)3

3
scalar, such

that

(
L̃3
)3

3
=

1√
2

0 0 0

0 0 0

0 0 v


3

. (3.1)

Here, we have used the notation presented in (2.3).
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More specifically, we define the VEV as〈(
L̃i
)l
r

〉
≡ δi3δl3δr3

v√
2
. (3.2)

The minimization condition of the model gives the conditions on a particular parameter of
the theory for which the classical scalar potential, V (0), is ensured to have a local minimum
at the VEV. We define

∂V (0)

∂φi
= Λi(s), (3.3)

and minimize this derivative in the vacuum state as

Λi(s)

∣∣∣∣
φi=〈φi〉

= Λi(S), (3.4)

where

〈φi〉 =

{
v2√

2
for φi =

(
L̃3
)3

3

0 for φi = other
(3.5)

The requirement that Λi(S) = 0 leads to the minimization condition

µ2 = (λ1 + λ2 + λ3 + λ4)v2. (3.6)

Finally, we must verify that the placement of a single VEV in the
(
L̃i
)l
r

=
(
L̃3
)3

3
scalar indeed

corresponds to a global minimum of the classical scalar potential. In [7], the homotopy contin-
uation method3 is implemented to search for parameter space points for which the minimum
of the scalar potential does not correspond to the VEV setting in (3.2). Of the performed
random scan, all points had this scenario as a global minimum of V (0).

Throughout this work, we will continue to define the Λ-basis, as used above, as the gauge
eigenbasis. It is constructed by taking direct nth-order derivatives of the Lagrangian. Here-
after, a lower case label t = {s, f, g}, indicating scalars, fermions, or gauge bosons respectively,
indicates a field dependent derivative. Capital labels T = {S,F,G}, refer to derivatives eval-
uated at the VEV.

3.2 Tree-level particle spectrum

Upon symmetry breaking, the particles in the model will acquire mass. Mass terms in the
Lagrangian correspond to two-point self-interactions. Such terms are isolated by taking the
second derivative of the Lagrangian with respect to desired field, and removing any other non-
contributing n-point terms by setting all other fields to zero [12]. Throughout this section,
we will outline the method used to find the physical masses of particles after spontaneous
symmetry breaking, as well as define important notation used throughout the rest of this work.

3Homotopy continuation methods provide a useful approach to finding the zeros of a function in a globally
convergent manner. A detailed discussion of this method can be found in [15].
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3.2.1 Scalars

To obtain the classical scalar mass-squared matrix in Λ-basis, we take the second derivative
to the scalar fields, such that

∂2V (0)

∂φi∂φj
= Λij(s) (3.7)

To isolate mass terms, all scalars with exception of the
(
L̃3
)3

3
field are set to zero, such that

Λij(s)

∣∣∣∣
φi=〈φi〉

= Λij(S), (3.8)

where, again, (3.5) holds.

Throughout this work, we define the λ-basis as the mass eigenbasis which diagonalizes the
tree-level mass-squared matrices. To go from the gauge eigenbasis to the mass eigenbasis,
scalar fields must be rotated by an orthogonal rotation matrix. The mass-squared matrix
in the λ-basis is then found by taking the second derivative of the potential in terms of the
rotated fields. Alternatively,

O(S)Λ
ij
(S)O

†
(S) = λij(S), (3.9)

where λij(S) is the diagonal mass-squared matrix. Elements on the diagonal correspond to
mass-squared eigenvalues of the scalar fields such that at tree-level

diag{λij(S)} = m2
(S)a. (3.10)

To eliminate µ2, we can insert the minimization condition of (3.6) into the mass matrix.

3.2.2 Fermions

Similarly, fermion masses are found by taking the second derivative of the Yukawa term of
(2.6). However, due to the complex conjugate component, to ensure positive squared-masses
the resulting matrix must be multiplied by its hermitian conjugate [8]. For convenience,
upper case matrix indices {I, J} to refer to fermions, while lower case indices remain for
scalars. Thus,

∂2LY

∂ψI∂ψJ
= M IJ , (3.11)

and the classical fermion mass-squared matrix in the Λ-basis is given by

M∗IKMJ
K = ΛIJ(f). (3.12)

Again isolating mass terms by setting non-VEV acquiring fields to zero defines

ΛIJ(f)

∣∣∣∣
φi=〈φi〉

= ΛIJ(F), (3.13)
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Rotating by a diagonalizing unitary matrix gives

U(F)Λ
IJ
(F)U

†
(F) = λIJ(F), (3.14)

and finally, just as before, physical masses are found as diagonal elements

diag{λIJ(F)} = m2
(F)a. (3.15)

3.2.3 Gauge bosons

In theories with spontaneously broken continuous symmetries, a single massless scalar particle
arises for each broken group generator. These so-called Goldstone bosons can be interpreted
as the additional longitudinal degrees of freedom required to turn a massless gauge field into
a massive spin-1 vector boson [14]. In this way, massive gauge bosons arise as a consequence
of a the acquirement of a non-zero VEV by one or more scalars in a theory.

The gauge boson masses are found, similarly to the scalars and fermions, by taking the second
derivative of the scalar/boson interaction given in (2.4), with respect to each of the gauge
fields, such that

∂2Lgauge

∂Gaµ ∂G
b
ν

= Λab(g), (3.16)

and again in the direction of the VEV,

Λab(g)

∣∣∣∣
φi=〈φi〉

= Λab(G). (3.17)

The Λab(G) matrix is diagonalized and the mass eigenvalues are found as

O(G)Λ
ab
(G)O

†
(G) = λab(G), (3.18)

with again,

diag{λab(G)} = m2
(G)a. (3.19)

3.3 Breaking trinification symmetry

The breaking scheme of the trinification model describes how its symmetry group is broken
by the VEV into the resulting new symmetry group. It is found by considering which group
generators are (un)broken throughout spontaneous symmetry breaking.

Finding all the (un)broken generators and obtaining the full breaking scheme is an extensive
calculation. In this section, we outline the general idea of the method used in this work, by
considering only the gauge part of (2.11). The full set of calculations is included in Appendix
A.
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We examine the (un)broken gauge group generators in the trinifcation model. We will see
that this leads to the following breaking scheme

[SU(3)C × SU(3)L × SU(3)R]
↓

[SU(3)C × SU(2)L × SU(2)R ×U(1)L+R]

Unbroken generators correspond to those which leave the vacuum state invariant upon trans-
formations, even after symmetry breaking [16]. We apply a infinitesimal gauge transformation

on
(
L̃
)l
r

such that4

δ
(
L̃
)l
r

= iωaL
(
T aL
)l
l′

(
L̃
)l′
r︸ ︷︷ ︸

SU(3)L

− iωaR
(
T aR
)r
r′

(
L̃
)l
r′︸ ︷︷ ︸

SU(3)R

, (3.20)

where the minus sign comes from the fact that
(
L̃
)l
r

is anti-fundamental in [SU(3)R]. For
reference, the Gell-Man matrices, given in Appendix B.

Then, the requirement for an unbroken generator becomes δ
〈(
L̃i
)l
r

〉
= 0. Implementing (3.2)

in to (3.20) yields

δ
〈(
L̃i
)l
r

〉
= i

v√
2
ωaL
(
T aL
)l

3
δ3
r − i

v√
2
ωaR
(
T aR
)3
r
δl3, (3.21)

where

δij =

{
1, i = j

0, i 6= j
(3.22)

and equating this to zero gives the condition for unbroken gauge group generator as

0 = iωaL
(
T aL
)l

3
δ3
r − iωaR

(
T aR
)3
r
δl3. (3.23)

Thus, for a gauge group generator to remain unbroken, it must satisfy the above relation.

We investigate for which generators this relation is satisfied. There are non-trivial results in
three cases.

Case 1 : r = 3, l 6= 3 such that: 0 = iωaL
(
T aL
)l

3

−→ Choose l = 1 such that
(
T aL
)1

3
.

In this case, there are non-trivial results for a = 4, 5 giving

(
T 4
)1

3
=

(λ4)1
3

2
=

1

2(
T 5
)1

3
=

(λ5)1
3

2
=
i

2
4This transformation does not act on the family (i) index. Thus, for convenience we leave this index off the

field notations throughout this calculation.
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Applying this, we obtain: 0 = −i(ω4
L + iω5

L). Thus,

iω4
L = ω5

L (3.24)

−→ Choose l = 2 such that
(
T aL
)2

3
.

In this case, there are non-trivial results for a = 6, 7 giving

(
T 6
)2

3
=

(λ6)2
3

2
=

1

2(
T 7
)2

3
=

(λ7)2
3

2
=
i

2

Applying this, we obtain: 0 = −i(ω6
L + iω7

L). Thus,

iω6
L = ω7

L (3.25)

Case 2 : r 6= 3, l = 3 such that: 0 = −iωaR
(
T aR
)3
r
.

Due to symmetry of the Gell-Mann matrices, this case yields the same results as in Case 1,
such that

iω4
R = ω5

R , iω6
R = ω7

R. (3.26)

Case 3 : r = 3, l = 3 such that: 0 = iωaL
(
T aL
)3

3
− iωaR

(
T aR
)3

3
.

In this case there are non-trivial results for a = 8, such that

0 = iω8
L

(
T 8

L

)
− iω8

R

(
T 8

R

)
. (3.27)

Here, we see that under the condition

ω8
L = ω8

R ≡ ω8,

the generator (
T 8

L − T 8
R

)
can be an unbroken generator. For generality, we write this generator as

(
T 8

L + T 8
R

)
, as it

would appear for transformations of fundamental representations.

The
(
T 8

L + T 8
R

)
generator transforms fields as(

L̃i
)l
r
−→ eiω

8
(
T 8
L+T 8

R

)(
L̃i
)l
r

(3.28)
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implying that it corresponds to a remaining U(1)L+R gauge symmetry.

In addition to breaking the trinification gauge group, the global symmetry group of the model
will also undergo spontaneous symmetry breaking due to the non-zero VEV. Finding the un-
broken generators and the new symmetry group is done in the same way as for the trinification
gauge group. The full set of calculations for the breaking scheme can be found in Appendix A.

Combining all obtained algebraic results, the full breaking scheme of the trinification model
as a result of the VEV in (3.1) can be written as

[SU(3)C × SU(3)L × SU(3)R] nZ3 × {SU(3)F ×U(1)A ×U(1)B}

↓

[SU(3)C × SU(2)L × SU(2)R ×U(1)L+R] nZ2 × {SU(2)F ×U(1)X ×U(1)Z ×U(1)B}

with the unbroken group generators

T 1...8
C , T 1...3

L , T 1...3
R , T 1...3

F

TL+R ≡
2√
3

(
T 8

L + T 8
R

)
TX ≡

2√
3

(
T 8

L − T 8
R − 2T 8

F

)
TZ ≡

2

3
(TA +

√
3T 8

F)

Motivated by the apparent symmetry in left and right-space, we will refer to the trinification
model after spontaneous symmetry break as the Left-Right Symmetric Model (LRSM),
throughout the rest of this work.

3.4 Quantum numbers

Finally, we can determine the charges of fields under each symmetry group after spontaneous
symmetry breaking. Due to the principles of charge conservation, knowing the quantum
numbers of the obtained particles under each group is essential in determining the allowed
interactions of the theory. These charges are found by applying the unbroken generators to
the field components.

As obtaining the full set of quantum numbers of all the fields is mathematically extensive,
the general method used is best illustrated through an example. As we will see in more detail
in the following section, scalar fields will have a different representation once trinification has
been broken. Recall from Section 2.2 that the field indices {i, l, r, c} refer to representations
in SU(3)-space while {I, L,R,C} refer to representations in SU(2)-space.
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3.4.1 Example: Color-singlet scalar: U(1)L+R

Throughout this example, we find the charge of the leptonic scalar fields under the U(1)L+R

gauge group of the LRSM.

The corresponding generator, as found in Section 3.3 is given by

TL+R ≡
2√
3

(
T 8

L + T 8
R

)
.

Applying this to
(
L̃I
)L
R

gives

TL+R

(
L̃I
)L
R

=

(
2√
3

)(
1

2

)[
λ8

L

∣∣l′
L
δRr′ − λ8

R

∣∣R
r′
δLl′

](
L̃I
)L
R
, (3.29)

where, again, the minus sign comes from the fact that
(
L̃I
)L
R

is anti-fundamental in SU(2)R.
Using λ8, given in Appendix B, it is clear that for any combinations of L,R where L = R,
this expression reduces to

TL+R

(
L̃I
)L
R

=

(
2√
3

)(
1

2

)[(
1√
3

)
−
(

1√
3

)](
L̃I
)L
R

(3.30)

= 0

Due to the fact that λ8
∣∣1
1

= λ8
∣∣2
2
, combinations where L 6= R will also be 0, indicating that

all field components of
(
L̃I
)L
R

are uncharged under U(1)L+R.

However, the corresponding SU(2)L,R-singlet states will be charged under this group. The
charges for these states are found as

TL+R

(
L̃I
)3
R

=

(
2√
3

)(
1

2

)[
λ8

L

∣∣3
3
δRr′ − λ8

R

∣∣R
r′

](
L̃I
)3
R

(3.31)

=

(
2√
3

)(
1

2

)[(
−2√

3

)
−
(

1√
3

)](
L̃I
)3
R

= −
(
L̃I
)3
R

TL+R

(
L̃I
)L

3
=

(
2√
3

)(
1

2

)[
λ8

L

∣∣l′
L
− λ8

R

∣∣3
3
δLl′

](
L̃I
)L

3
(3.32)

=

(
2√
3

)(
1

2

)[(
1√
3

)
−
(
−2√

3

)](
L̃I
)3
R

=
(
L̃I
)L

3

In conclusion, the charge of color-singlet scaler under U(1)L+R is summarized as
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Field Component U(1)L+R(
L̃I
)L
R

0(
L̃I
)3

3
0(

L̃I
)3
R

−1(
L̃I
)L

3
+1

Similarly, the charges of all field components under any of the symmetry groups of the model
are found.

4 The left-right symmetric model

Throughout the previous chapter, spontaneous breaking of trinification due to the non-zero
VEV of the

(
L̃3
)3

3
scalar component was investigated. The resulting symmetry group of the

LRSM was found to be

[SU(3)C × SU(2)L × SU(2)R ×U(1)L+R]× {SU(2)F ×U(1)X ×U(1)Z ×U(1)B}.

We are interested in determining whether the RG evolution of the LRSM can induce a second
case of spontaneous symmetry breaking, such that this group is further broken down into the
SM gauge group. Due to the large number of particles in the LRSM, calculating the full RG
running is greatly simplified by constructing an appropriate effective field theory (EFT). In
doing so, particles which are heavy compared to others can be integrated out, and we can
focus on a low-energy limit of the LRSM alone.

Throughout this chapter, we first determine the tree-level particle mass spectrum using the
method described in Section 3.2. Secondly, knowledge of the SM is used to construct a
low-energy limit of the LRSM. This EFT becomes the model of interest when investigating
radiative breaking to the SM.

4.1 The tree-level mass spectrum

The tree-level particle masses are obtained using Mathematica. The essential components of
the trinification model are implemented, and the method described in Section 3.2 is applied
to obtain the mass-squared eigenvalues in each sector.

4.1.1 Scalar masses

Upon breaking trinification, the scalar fields split from their tri-triplet representations into
doublet and singlet states in SU(2)L,R,F. This decomposition is given by [7]
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(
L̃i
)l
r

= δiI

[
δlLδ

R
r

(
L̃I
)L
R

+ δlLδ
3
r

(
L̃I
)L

3
+ δl3δ

R
r

(
L̃I
)3
R

+ δl3δ
3
r

(
L̃I
)3

3

]
(4.1)

+ δi3

[
δlLδ

R
r

(
L̃3
)L
R

+ δlLδ
3
r

(
L̃3
)L

3
+ δ3

Lδ
R
r

(
L̃3
)3
R

+ δl3δ
3
r

(
L̃3
)3

3

]
,

(
Q̃iL
)c
l

= δiI

[
δLl
(
Q̃IL
)c
L

+ δ3
l

(
Q̃IL
)c

3

]
+ δi3

[
δLl
(
Q̃3

L

)c
3

+ δ3
l

(
Q̃3

L

)c
L

]
, (4.2)

(
Q̃iR
)r
c

= δiI

[
δrR
(
Q̃IR
)R
c

+ δr3
(
Q̃IR
)3
c

]
+ δi3

[
δrR
(
Q̃3

R

)R
c

+ δr3
(
Q̃3

R

)3
c

]
. (4.3)

As mentioned in Section 3.2.3, each broken generator will lead to the emergence of one Gold-
stone boson which provides the additional longitudinal degree of freedom needed for one
massive spin-1 vector boson. The breaking scheme found in Section 3.3 shows a reduction
from 24 generators of the trinification gauge group, to 15 for the left-right symmetric gauge
group. Thus, the LRSM will have nine massless scalar degrees of freedom, and consequently,
nine massive vector bosons.

Similarly, the reduction from the ten generators of the global {SU(3)F ×U(1)A ×U(1)B}
group, to the six generators of the {SU(2)F ×U(1)X ×U(1)Z ×U(1)B} group, leads to four
so-called global Goldstone bosons. These additional degrees of freedom are not absorbed by
gauge bosons, but rather, remain as scalars in the model. In [7], it is shown that global
Goldstones will decouple at energies much lower than the VEV. The consequence of this will
become apparent in the following sections, when the effective theory is matched to the high-
scale trinification model.

The obtained scalar tree-level mass-squared eigenvalues, as defined by (3.10), are summarized
in Table 2. A name is assigned to each field for future reference throughout this work.

4.1.2 Fermion masses

Using the method in Section 3.2, it is clear that only fermions which couple to the
(
L̃3
)3

3
scalar via the Yukawa term in (2.6) will obtain a mass after spontaneous symmetry breaking
in the trinification model. This is because when taking the second derivative in the direction
of the VEV only terms proportional to the VEV will be non-zero.

The only fields which satisfy this condition are the
(
QIL
)c

3
and

(
QIR
)3
c

fermion fields. Thus,
these twelve fermions will obtain a mass at tree-level, and each of these are found to have the
same mass-squared eigenvalue given by

m2
(F) =

1

2
y2v2. (4.4)

4.1.3 Gauge boson masses

As mentioned in Section 4.1.1, nine gauge fields will become massive vector bosons. Addi-
tionally, the LRSM will have 15 massless gauge fields corresponding to the
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Table 2: The scalar particle content and corresponding mass-squared eigenvalues of the LRSM. Here,(
Q̃ILR±

)c ≡ 1√
2

[(
Q̃IL
)c

3
± εIJ

(
Q̃∗RJ

)c
3

]
. The abbreviation “GS” refers the Goldstone Boson

Name Field Mass222

H̃
(
L̃I
)L
R

−(λ2 + λ3 + λ4) v2

h̃
(
L̃3
)L
R

−(λ3 + λ4) v2

l̃R
(
L̃I
)3
R

−(λ2 + λ3) v2

l̃L
(
L̃I
)L

3
−(λ2 + λ4) v2

Color-Singlet Φ̃s Re
[(
L̃3
)3

3

]
2(λ1 + λ2 + λ3 + λ4) v2

Sector Φs
Im Im

[(
L̃3
)3

3

]
0
 Gauge GSl̃sR

(
L̃3
)3
R

0 ’

l̃sL
(
L̃3
)L

3
0 ’

Φ̃
(
L̃I
)3

3
0 Global GS

Q̃L

(
Q̃IL
)c
L

1
2 [α1 − 2(λ1 + λ2 + λ3 + λ4)] v2

Q̃R

(
Q̃IR
)R
c

1
2 [α1 − 2(λ1 + λ2 + λ3 + λ4)] v2

Colored Q̃LR

(
Q̃ILR±

)c 1
2 [(α1 + α3 ± γ√

2v
)− 2(λ2 + λ3 + λ4)] v2

Sector Q̃sL
(
Q̃3

L

)c
L

1
2 [(α1 + α2)− 2(λ1 + λ2 + λ3 + λ4)] v2

Q̃sR
(
Q̃3

R

)R
c

1
2 [(α1 + α2)− 2(λ1 + λ2 + λ3 + λ4)] v2(

Q̃sL
)
s

(
Q̃3

L

)c
3

1
2 [(α1 + α2 + α3 + α4)− 2(λ1 + λ2 + λ3 + λ4)] v2(

Q̃sR
)s (

Q̃3
R

)3
c

1
2 [(α1 + α2 + α3 + α4)− 2(λ1 + λ2 + λ3 + λ4)] v2

[SU(3)C × SU(2)L × SU(2)R ×U(1)L+R]

gauge group, which remains intact after spontaneous symmetry breaking.

The resulting tree-level mass-squared eigenvalues of the gauge bosons in the LRSM are found
to be

m2
(G4...7

R , G4...7
L ) =

1

4
g2v2 , m2(

1√
2
[G8

L−G
8
R]
) =

2

3
g2v2. (4.5)

4.1.4 Parameter constraints of the LRSM

We can use the obtained expressions of the tree-level particle masses to conclude that the
LRSM is fully described by the parameter space

P
(HS)
LRSM = {λ1...4, α1...4, γ, y, g, v} . (4.6)

Here, the (HS) label refers to “high-scale”, and is included to distinguish this parameter space
from that of the low-scale effective LRSM, which is constructed in the following section.

20



Furthermore, we can formulate an essential set of constraints on these parameters by re-
quiring that the mass-squared matrix of each sector be positive definite. This ensures the
positiveness of the mass-squared eigenvalue of each particle. This requirement places signifi-
cant constraints on the parameter space.

In the scalar sector, the requirement that m2
(S) > 0 leads to the following set of constraints:

(λ2 + λ3 + λ4) ≤ 0 α1 ≥ 2(λ1 + λ2 + λ3 + λ4) (4.7)

(λ2 + λ3) ≤ 0 (α1 + α2) ≥ 2(λ1 + λ2 + λ3 + λ4)

(λ2 + λ4) ≤ 0 (α1 + α3)− |γ|√
2v
≥ 2(λ1 + λ2 + λ3 + λ4)

(λ3 + λ4) ≤ 0 (α1 + α2 + α3 + α4) ≥ 2(λ1 + λ2 + λ3 + λ4)
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Additionally, the requirement that µ2 > 0, needed to break trinification, automatically implies
that

(λ1 + λ2 + λ3 + λ4) > 0, (4.8)

through the minimization condition given in (3.6).

The requirements that m2
(F) > 0 and m2

(G) > 0 do not place any additional constraints on the
parameter space, as y and g enter the fermion and gauge boson masses quadratically.

Only parameter space points of P
(HS)
LRSM satisfying the conditions in (4.7) will constitute phys-

ical particle masses for the LRSM.

4.2 The low-energy effective theory

Throughout the rest of this work, we wish to investigate the radiative breaking of the LRSM
to a SM-like theory. As can be seen from Table 2, the model contains many massive scalars
which can be grouped into twelve matter fields, greatly increasing the number of parameters
in the full Lagrangian of the LRSM from that of the unbroken trinification model in (2.7). All
of these parameters will run as a function of the energy scale in the RG evolution of the model.

To simplify the investigation, we create an appropriate EFT as a low-energy limit of the
LRSM, by integrating out heavy scalars at the spontaneous symmetry breaking scale5. Es-
sentially, this implies that we remove any particles from the theory which are too heavy to be
produced at lower energies. More specifically, we can discard particles from our theory if their
mass is of the order of the renormalization scale [17]. Once heavy particles are integrated
out, the resulting Lagrangian of the low-scale theory is matched to the original high-scale
Lagrangian. In this way, the low-scale parameters are expressed in terms of high-scale coun-
terparts, and the RG evolution can be studied with significantly fewer fields.

4.2.1 Constructing an appropriate effective theory

As such, the next aim of this work is to create an appropriate low-energy effective LRSM. We
begin by applying knowledge of the SM gauge group and phenomenology to engineer a EFT.
We choose its features such that it will provide a radiative origin for a model which best fits
the SM. We then examine the scalar hierarchy at the trinification breaking scale to determine
if our choice of EFT is physically viable.

In [7] it is shown that an EFT consisting of the h̃ and l̃R scalars, as defined in Table 2, can
undergo radiative breaking to a SM-like theory. This choice of EFT is justified by showing
that physically viable parameter space points can be found such that these fields are light

5In fact, the construction of an appropriate EFT is needed in order to deal with ultraviolet divergences, and
as such, provides a number of additional key advantages for the investigation. For instance, going to the EFT
changes the running of coupling constants from a logarithmic dependence on the masses of heavy particles,
to a logarithmic energy scale dependence. Such details of renormalization theory and EFT’s are beyond the
scope of this work, but can be found in, for example, [17].
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compared to all other scalars.

It is further shown that in addition to successfully yielding the gauge group of the SM, spon-
taneous symmetry breaking induced by the running of this EFT, leads to massive particles
which can be identified with certain heavy SM quarks. However, it fails to break family
symmetry in such a way that non-zero tree-level masses for lighter quarks and color neutral
fermions arise naturally [7].

Thus, throughout this work, we propose an upgraded EFT. The proposed EFT will aim to
keep the l̃R field light, and in addition, include the color-singlet Higgs tri-doublet H̃ field,
instead of h̃. The choice of this particular combination can be motivated by several arguments.

First and foremost, keeping the l̃R field is motivated by the need to ensure that the SM gauge
group will arise from spontaneous symmetry breaking. This means preserving [SU(3)C], and
breaking [SU(2)L × SU(2)R ×U(1)L+R] into the electroweak sector. Furthermore, we need to
break the global {SU(2)F} group, which is also not present in the SM. The l̃R field is a singlet
in C and L-space, and thus, if one of its field components acquires a non-zero VEV, it can
lead to this desired breaking scheme.

Secondly, our choice to keep the H̃ field can be motivated as follows. When spontaneous
symmetry breaking is induced, this field will decompose in a similar way as in (4.1). We
predict that the splitting of this field will yield particles which form viable SM Higgs doublet
candidates. In [7], it is argued that if we can again integrate out heavy particles at this stage,
the resulting effective theory can acquire VEVs which can be identified as the SM-breaking
Higgs VEVs. Upon breaking, this gives promising predictions for the masses of W± and Z0

gauge bosons, the quark hierarchy, and the CKM mixing of the SM.

Finally, it should be noted that the global Goldstone field, Φ̃, must also remain in the particle
content of our proposed EFT. It is massless, but unlike the Goldstone bosons arising from
broken gauge group generators, it is not absorbed by a massive gauge boson.

All other scalars are integrated out, that is, their masses are required to be of the order of
the VEV, v. Finally, the scalar particle content of our proposed EFT is summarized as

H̃ =
(
L̃I
)L
R

(4.9)

l̃R =
(
L̃I
)3
R

Φ̃ =
(
L̃I
)3

3
.

Before continuing, we must determine if this proposed effective LRSM is physically permitted
by the scalar mass hierarchy. That is, we must be able to find parameter space points of

P
(HS)
LRSM such that the H̃ and l̃R scalars are light, while the other scalars have masses O(v).

For this, we define the parameter constraints which must be satisfied by such a point.
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4.2.2 Constraints of the effective LRSM

To further investigate the viability of the proposed effective LRSM, the following parametriza-
tion is introduced

m2
H ≡ −(λ2 + λ3 + λ4)v2 ≡ ξ v2 (4.10)

m2
R ≡ −(λ2 + λ3)v2 ≡ δ v2,

such that

ξ = −λ2 − λ3 − λ4 (4.11)

δ = −λ2 − λ3.

The low energy EFT is then further constructed under the requirement that

δ � 1 , ξ � 1, (4.12)

while the mass-squared eigenvalues of the h̃ and l̃L fields (denoted m2
h, m2

L hereafter) should
be large. This adds the following constraints

−λ3 − λ4 = O(1) , −λ2 − λ4 = O(1). (4.13)

To justify the proposed effective LRSM as a physically viable EFT, parameter space points
must exist which satisfy all of the conditions imposed above.

4.2.3 Discussion of the effective LRSM at tree-level

Upon close consideration of the constraints above, it can be concluded that we cannot impose
the H̃ and l̃R fields to be light compared to others at tree-level. This can be seen directly by
using the masses in Table 2, and re-writing

m2
H =

1

2

(
m2

h +m2
L +m2

R

)
(4.14)

There is no construction in which m2
H � m2

h,m
2
L. Thus, taking H̃ to be light automatically

enforces that other color-singlet scalars be kept light as well.

This conclusion, however, does not hold for the Φ̃s state. As can be seen in Table 2, this field
has a mass dependent on λ1. Thus, it can be integrated out by tuning λ1 to ensure a large
mass in comparison to other scalars. Similarly, we can integrate out all scalars in the colored
sector, as their masses can be fully tuned by values of α1...4.

At this point we can conclude that the proposed effective LRSM does not constitute a viable
EFT as desired. Although we can impose the desired hierarchy between scalars in the colored
and color-singlet sector, as well as integrate out one heavy scalar, Φ̃s, we cannot tune the
masses in such a way that m2

H,m
2
R � m2

h,m
2
L.
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This conclusion holds when considering tree-level masses only. Thus, at this stage, it becomes
significant to hypothesize about the possibility of observing the desired splitting in scalar mass
hierarchy upon inclusion of one-loop mass corrections. At one loop, masses of the color-singlet
scalars will depend on {g, y, γ}, as well as higher orders of these parameters, in addition to
{λ1...4, v}. This suggests that one-loop effects could affect the hierarchy significantly, justify-
ing the choice of light fields in the effective LRSM after all. With this motivation, obtaining
the full one-loop scalar mass spectrum for the LRSM becomes an essential component of this
work.

However, obtaining this mass spectrum is extensive work. Thus, before embarking on this
task, it is well worth investigating whether the effective LRSM successfully breaks to a SM-
like theory, as was hypothesized in the previous section, to begin with. If radiative breaking
to a theory with desirable SM properties is naturally found in the proposed effective LRSM,
then it becomes essential to investigate whether the correct mass hierarchy can be obtained
upon inclusion of one-loop corrections.

Thus, this work is continued under the assumption that the proposed effective LRSM can in
fact exist as a physical low-energy limit of the trinification model, and its RG evolution is
investigated.

4.2.4 Field content and effective Lagrangian

Under this assumption, we continue to construct the effective LRSM. As mentioned, we inte-
grate out all scalars apart from the H̃, l̃R, and Φ̃ states.

Furthermore, in the fermion sector, the heavy Dirac fermions are also integrated out. From
Section 4.1.2, these correspond to the

(
QIL
)c

3
and

(
QIR
)3
c

fields.

Similarly, the heavy massive gauge bosons are integrated out, such that only the gauge fields
of the remaining symmetry group are kept in the effective LRSM.

The total particle content of the effective LRSM is given in Table 3. The charges of fields
under each symmetry group, found with the method described in Section 3.4, are also listed,
such that the allowed interactions can be investigated, and with this, an effective Lagrangian
can be written.

The fermion Lagrangian is found by writing all possible combinations of scalars and fermions
considering the fact that charges must be conserved for each term. Thus, we write
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Table 3: The total particle content of the effective LRSM.

Name Field SU(3)C SU(2)L SU(2)R U(1)L+R {SU(2)F} {U(1)X} {U(1)Z} {U(1)B}

Scalars

H̃
(
L̃I
)L
R

111 222 2̄̄2̄2 0 222 0 +1 0

l̃R
(
L̃I
)3
R

111 111 2̄̄2̄2 −1 222 −1 +1 0

Φ̃
(
L̃I
)3

3
111 111 111 0 222 −2 +1 0

Fermions

H
(
LI
)L
R

111 222 2̄̄2̄2 0 222 0 +1 0

lL
(
LI
)L

3
111 222 111 +1 222 −1 +1 0

lR
(
LI
)3
R

111 111 2̄̄2̄2 −1 222 −1 +1 0

Φ
(
LI
)3

3
111 111 111 0 222 −2 +1 0

Hs
(
L3
)L
R

111 222 2̄̄2̄2 0 111 +2 0 0

lsL
(
L3
)L

3
111 222 111 +1 111 +1 0 0

lsR
(
L3
)3
R

111 111 2̄̄2̄2 −1 111 +1 0 0

Φs
(
L3
)3

3
111 111 111 0 111 0 0 0

QL

(
QIL
)c
L

333 2̄̄2̄2 111 −1/3 222 −1 0 +1/3

QsL
(
Q3

L

)c
L

333 2̄̄2̄2 111 −1/3 111 +1 −1 −1/3

Ds
L

(
Q3

L

)c
3

333 111 111 +2/3 111 +2 −1 +1⁄3

QR

(
QIR
)R
c

3̄̄3̄3 111 222 +1/3 222 −1 0 −1/3

QsR
(
Q3

R

)R
c

3̄̄3̄3 111 222 −1/3 111 +1 −1 −1/3

Ds
R

(
Q3

R

)3
c

3̄̄3̄3 111 111 −2/3 111 +2 −1 +13

Gauge Bosons

GC GαC 888 111 111 0 111 0 0 0

GL GαL 111 333 111 0 111 0 0 0

GR GαR 111 111 333 0 111 0 0 0

GL+R
1√
2

(
G8

L +G8
R

)
111 111 111 0 111 0 0 0

LF(LRSM) = Yα(H̃∗I )RL(HI)LR(Φs) + Yθ(H̃
∗
I )RL(QIL)cL′(Q

s
R)R

′
c ε

LL′εRR′

+ Yβ(H̃∗I )RL(Hs)LR(ΦI) + Yκ(l̃∗RI)
R(lIR)R(Φs)

+ Yγ(H̃∗I )RL(lsL)L(lIR)R + Yλ(l̃∗RI)
R(lsR)R(ΦI)

+ Yδ(H̃
∗
I )RL(lIL)L(lsR)R + Yµ(l̃IR)R(Ds

L)c(QJR)Rc εIJ

+ Yε(H̃
I)LR(QsL)cL(QJR)Rc εIJ + Yν(l̃∗RI)

R(HI)LR(lsL)L
′
εLL′

+ Yζ(H̃
I)LR(QJL)cL(QsR)Rc εIJ + Yπ(l̃∗RI)

R(Hs)LR(lIL)L
′
εLL′

+ Yη(H̃
∗
I )RL(QsL)cL′(Q

I
R)R

′
c ε

LL′εRR′ + Yτ (Φ̃∗I)(Φ
I)(Φs)

+
m2

Φs

2
ΦsΦs

+ c.c. (4.15)

Here, a Majorana mass term for the Φs state arises. For the sake of this work, this term is not
very significant. However, as we will see in the following section, m2

Φs will run as a function

26



of energy, and the RG equations of the other parameters will depend on it.

As predicted, we see that the single unified Yukawa coupling, y, present in the trinification
Lagrangian prior to spontaneous symmetry breaking, has split into 14 parameters, Yα...τ . The
unification of the Yukawa coupling at GUT scale is a unique feature of this model arising as
a consequence of the global {SU(3)F} symmetry, and, as discussed in Section 2, significantly
reduces the number of parameters in the LRSM.

Next, a scalar potential for the effective LRSM can be carefully constructed using the results
in Table 3. Requiring the Lagrangian be real, renormalizable, and Lorentz invariant lets us
write a possible most general scalar potential as

V
(0)

(LRSM) = m2
H|H̃|2 +m2

R|l̃R|2 +m2
Φ|Φ̃|2 (4.16)

+ λa |H̃|4 + λb |l̃R|4 + λc |Φ̃|4

+ λd |H̃|2|l̃R|2 + λe |H̃|2|Φ̃|2 + λf |l̃R|2|Φ̃|2

+ λg
(
l̃I1R

)
R1

(
l̃∗RI2

)R2
(
l̃
I′1
R

)
R′1

(
l̃∗RI′2

)R′2 εI1I′1 ε
I2I′2 εR2R′2

εR1R′1

+ λh
(
H̃I1

)L
R1

(
H̃∗I2

)R2

L

(
H̃I′1

)L
R′1

(
H̃∗I′2

)R′2
L

εI1I′1 ε
I2I′2 εR2R′2

εR1R′1

+ λi
(
H̃I1

)L1

R

(
H̃∗I2

)R
L2

(
H̃I′1

)L′1
R

(
H̃∗I′2

)R
L′2

εI1I′1 ε
I2I′2 εL1L′1

εL2L′2

+ λj
(
H̃I
)L1

R1

(
H̃∗I
)R2

L2

(
H̃I
)L′1
R′1

(
H̃∗I
)R′2
L′2

εL1L′1
εL2L′2 εR2R′2

εR1R′1

+ λk
(
l̃I1R

)
R

(
l̃∗RI2

)R(
Φ̃I′1
)(

Φ̃∗I′2

)
εI1I′1 ε

I2I′2

+ λl
(
H̃I1

)L
R

(
H̃∗I2

)R
L

(
Φ̃I′1
)(

Φ̃∗I′2

)
εI1I′1 ε

I2I′2

+ λm
(
H̃I1

)L
R

(
H̃∗I2

)R
L

(
l̃R
I′1
)
R

(
l̃R
∗
I′2

)R
εI1I′1 ε

I2I′2

+ λn
(
H̃I
)L
R1

(
H̃∗I
)R2

L

(
l̃IR
)
R′1

(
l̃∗RI
)R′2 εR2R′2

εR1R′1

+ λo
(
H̃I1

)L
R1

(
H̃∗I2

)R2

L

(
l̃
I′1
R

)
R′1

(
l̃∗RI′2

)R′2 εI1I′1 ε
I2I′2 εR2R′2

εR1R′1 .

From these results, we can summarize the free parameters of the effective LRSM in a (low-
scale) parameter space. Since the mass-squared of the global Goldstone, m2

Φ, is zero, we
exclude it as a free parameter. With this in mind, we can write

P
(LS)
LRSM = {λa...o, Yα...τ ,m2

H,m
2
R,m

2
Φs}. (4.17)

With the effective LRSM fully constructed, the next aim of this work is to investigate the
RG evolution of its parameters. For this, the Lagrangian of the effective LRSM is matched
to the high-scale trinification model at the renormalization scale at which heavy particles are

integrated out. The free parameters of the low-scale Lagrangian, P
(LS)
3HDM, can then be written

in terms of those existing in the high-scale theory, P
(HS)
LRSM. These expressions will be used as

the initial conditions for the running of model parameters.
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4.3 Tree-level matching conditions

Classically, the matching conditions are found by equating tree-level diagrams at the breaking
scale. As heavy states are integrated out at this energy, the high-scale theory can contain
interactions with particles which are not present in the low-scale theory. Thus, the matching
is done by identifying such interactions, and equating n-point functions between the two the-
ories. Any contributions existing in both theories can be excluded, as they cancel out upon
matching. The matching is done in the zero-external momentum approximation, because the
masses of any propagators will be heavy compared to particles on the diagram legs [18].

In the Yukawa sector, the tree-level matching conditions are obtained straightforwardly by
direct comparison of the Lagrangian of (2.6) and (4.15). Only three low scale Yukawa cou-
plings will have non zero values in terms of the high scale parameters. The results are listed
in Section 4.3.2.

Obtaining the full set of matching conditions in the scalar sector involves extensive calcu-
lations. The general method used throughout this work is illustrated in this section with a
single example.

4.3.1 Example: Tree-level matching conditions for (H̃H̃∗H̃H̃∗)

Consider the 4-point self-interaction term of the Higgs tri-doublet, H̃H̃∗H̃H̃∗, in the low-scale

theory. For this field we adopt the notation
(
H̃I
)L
R

and
(
H̃∗I
)R
L

.

The Feynman diagram of this interaction vertex in the low-scale theory is given by

(H̃I)LR

(H̃∗I )RL (H̃∗I )RL

(H̃I)LR

In the high-scale theory, the diagrams of this interaction are formed using Table 2. By en-
forcing charge conservation in each vertex point, it is clear that the Φ̃s field is the only scalar
existing in the high-scale theory that can act as a propagator in tree-level diagrams. Thus,
in the high-scale theory we must consider the Φ̃sH̃H̃∗ vertex, and, consequently, the corre-
sponding t and s-channel tree-level diagrams.

Fermions cannot act as propagators in this interaction, since there are no such tri-linear
scalar/fermion terms in the Lagrangian. Gauge boson propagators can form interaction ver-
tices with two incoming scalars. However, by expanding Lgauge in (2.4), it is clear that these
are derivative couplings, and will therefore not contribute in the zero external momentum
approximation.

Thus, the matching of this term between the low and high scale theories is illustrated in
Figure 1.
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H̃

H̃∗ H̃∗

H̃

=

H̃

H̃∗

H̃∗

H̃

+

H̃

H̃∗

H̃∗

H̃

+

H̃

H̃∗

H̃∗

H̃

Φ̃s

Φ̃s

Low-Scale Theory High-Scale Theory

Diagram 1 Diagram 2 Diagram 3

Figure 1: Illustration of matching conditions at the breaking scale. In the high-scale theory, three
diagrams contribute.

For the vertex of the diagram in the low-scale theory on the left-hand side of Figure 1, the
scalar Lagrangian of (4.16) gives four contributing terms:

V
(0)

(LRSM) ⊃ λa |H̃|4 (4.18)

λh
(
H̃I1

)L
R1

(
H̃∗I2

)R2

L

(
H̃I′1

)L
R′1

(
H̃∗I′2

)R′2
L

εI1I′1 ε
I2I′2 εR2R′2

εR1R′1

λi
(
H̃I1

)L1

R

(
H̃∗I2

)R
L2

(
H̃I′1

)L′1
R

(
H̃∗I′2

)R
L′2

εI1I′1 ε
I2I′2 εL1L′1

εL2L′2

λj
(
H̃I
)L1

R1

(
H̃∗I
)R2

L2

(
H̃I
)L′1
R′1

(
H̃∗I
)R′2
L′2

εL1L′1
εL2L′2 εR2R′2

εR1R′1 .

We can choose a specific combination of fields, such that we limit ourselves to consider a single
coupling at a time. For instance, taking the field combination, (H̃1)1

1(H̃∗1 )1
1(H̃1)1

1(H̃∗1 )1
1, limits

us to examine only the first term of (4.18), as the other three are zero for this combination
of indices. Thus, the vertex for the interaction of this specific choice of fields, is given by

(H̃1)1
1

(H̃∗1 )1
1 (H̃∗1 )1

1

(H̃1)1
1

= −4iλa

where the factor of four is added in to account for the combinatorics of the four indistinguish-
able fields.

We now examine the three contributing high-scale diagrams of Figure 1 separately.

Diagram 1:

The 4-point interaction vertex of this diagram is determined by terms in the V1 component
of V (0), given in (2.7) and (2.8).
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To determine the contribution of this diagram, we must first investigate which terms in (2.8)
can make up the desired (H̃1)1

1(H̃∗1 )1
1(H̃1)1

1(H̃∗1 )1
1 combination. Each of these terms will affect

the total vertex factor.

We begin by determining if λ1 contributes to this diagram’s vertex . The λ1 term of (2.8)
reads

λ1

[(
L̃i
)l
r

(
L̃∗i
)r
l

]2
→ λ1

(
L̃i
)l
r

(
L̃∗i
)r
l

(
L̃j
)l′
r′

(
L̃∗j
)r′
l′
.

Making the field replacements(
L̃i
)l
r
→
(
L̃I
)L
R

and
(
L̃j
)l′
r′
→
(
L̃J
)L′
R′
,

sets the indices as

i = I , l = L , r = R , j = J , l′ = L′ , r′ = R′,

such that

λ1

(
L̃i
)l
r

(
L̃∗i
)r
l

(
L̃j
)l′
r′

(
L̃∗j
)r′
l′
→ λ1

(
L̃I
)L
R

(
L̃∗I
)R
L

(
L̃J
)L′
R′

(
L̃∗J
)R′
L′

This resulting term is Lorentz invariant, and can make up the desired (H̃1)1
1(H̃∗1 )1

1(H̃1)1
1(H̃∗1 )1

1

combination in the low-scale theory for the case I, L,R, J, L′, R′ = 1. Thus, the coupling λ1

will contribute to the vertex of this term in the low-scale theory.

Following the same procedure for the λ2 term, we get

λ2

(
L̃i
)l
r

(
L̃j
)l′
r′

(
L̃∗j
)r
l

(
L̃∗i
)r′
l′(

L̃i
)l
r
→
(
L̃I
)L
R

and
(
L̃j
)l′
r′
→
(
L̃J
)L′
R′
,

such that

λ2

(
L̃i
)l
r

(
L̃j
)l′
r′

(
L̃∗j
)r
l

(
L̃∗i
)r′
l′
→ λ2

(
L̃I
)L
R

(
L̃J
)L′
R′

(
L̃∗J
)R
L

(
L̃∗I
)R′
L′
.

Again, this resulting term is Lorentz invariant and can freely take on the desired index com-
bination. Thus, λ2 also contributes to the vertex at the low energy scale.

When examining the λ3 term of (2.8), it is clear that it is identical to the λ2 term upon
interchanging the indices r and r′. Due to symmetry about these indices, λ3 will contribute
in the same way as λ2.

Similarly, the λ4 term is identical to the λ3 term upon interchanging i and j. Thus, it will
also contribute to the vertex of Diagram 1.

As no other terms in (2.7) can form L̃L̃∗L̃L̃∗-like terms, we can conclude that the first dia-
gram is given by Figure 2. This is the first contribution to the low-scale vertex of Figure ??.
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(H̃1)1
1

(H̃∗1 )1
1

(H̃∗1 )1
1

(H̃1)1
1

= −4i (λ1 + λ2 + λ3 + λ4)

Figure 2: Contribution of Diagram 1 in the high-scale theory. The factor 4 is included to account
for the combinatorics of the H̃ fields.

Diagram 2:

Next, the second diagram of Figure 1 is considered. For this, we begin by finding a general
expression for the Φ̃sH̃H̃∗ vertex, and then using this to determine the contribution of the
second diagram to the (H̃1)1

1(H̃∗1 )1
1(H̃1)1

1(H̃∗1 )1
1 term.

To find this vertex, we repeat the process described above for this combination of fields. This
is done by setting one of the fields components to Φ̃s −→ Re

[(
L̃3
)3

3

]
, and determining which

terms in (2.8) can sustain the additional H̃H̃∗ combination. As the Φ̃s is the field which
obtains a VEV according to (3.1), it can be expanded as such.

Thus, again starting from the λ1 contribution to the vertex, it is found that

λ1

(
L̃i
)l
r

(
L̃∗i
)r
l

(
L̃j
)l′
r′

(
L̃∗j
)r′
l′
−→ λ1

(
L̃I
)L
R

(
L̃∗I
)R
L

(
L̃3
)3

3

(
L̃∗3
)3

3
(4.19)

−→ λ1H̃H̃
∗
(

1√
2

)2

[(φ+ v)(φ∗ + v)]

−→ λ1

2

[
H̃H̃∗φφ∗ + H̃∗φv + H̃H̃∗φ∗v︸ ︷︷ ︸

find me!

= 2vH̃H̃∗Re[φ]
find me!

= 2vH̃H̃∗Φ̃s

+H̃H̃∗v2
]

Repeating this process for the λ2,3,4 terms in (2.8), it quickly becomes clear this field combi-
nation cannot be formed in another way. Thus, the λ1 term is the only contribution, and the
vertex Φ̃sH̃H̃∗ is given by Figure 3.
Using this vertex, the mass-squared eigenvalue of Φ̃s from Table 2, and the p2 → 0 approxi-
mation, the contribution of the second diagram is given in Figure 4.
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Φ̃s

H̃

H̃∗

= −2ivλ1

Figure 3: Vertex of the H̃H̃∗Φ̃s interaction existing in the high-scale theory. The factor of two is
included to account for the combinatorics of the two H̃ fields.

(H̃1)1
1

(H̃∗1 )1
1

(H̃∗1 )1
1

(H̃1)1
1

=
(
− 2ivλ1

)
i

−2(λ1+λ2+λ3+λ4)v2

(
− 2ivλ1

)Φ̃s

Figure 4: Contribution of Diagram 2 in the high-scale theory.

Diagram 3:

Due to symmetry of incoming and outgoing particles, Diagram 3 gives the same contribution
as Diagram 2.

Combining the results of the three diagrams, the matching as illustrated in Figure 1 for the
(H̃1)1

1(H̃∗1 )1
1(H̃1)1

1(H̃∗1 )1
1 term becomes

−4iλa = −4i (λ1 + λ2 + λ3 + λ4) +
2i(−2iλ1v)2

−2(λ1 + λ2 + λ3 + λ4)v
, (4.20)

such that

λa = (λ1 + λ2 + λ3 + λ4)− λ1
2

(λ1 + λ2 + λ3 + λ4)
. (4.21)

Using the parameterization introduced in (4.11), the expression above can be Taylor expanded,
and finally written as

λa = −2ξ + O(ξ2) (4.22)

4.3.2 Tree-level matching results

The full set of matching conditions can be obtained by repeating the method illustrated by
the example above for each λa...o in (4.16).

The results of the tree-level matching conditions in terms of the parameterization introduced
in (4.11) are given below. All O(ξ2, δ2) and higher are excluded.
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Scalar Matching Conditions:

λa = −2ξ λf = 0 λk = 0

λb = −2δ λg = 1/2 δ λl = 0

λc = 0 λh = 1/2 δ λm = −2(λ2 − ξ + δ)

λd = 2δ λi = −1/2 (λ2 − ξ + δ) λn = 2(λ2 + ξ)

λe = 2ξ λj = 1/2 (λ2 + ξ) λo = 2(δ − ξ)

Yukawa Matching Conditions:

Yε = Yµ = −Yξ = y

The results of the tree-level matching conditions summarized above, are essential components
of the rest of this work. We use these expressions to map the low-scale parameter space

P
(LS)
LRSM to the high-scale parameter space P

(HS)
LRSM at the trinification breaking scale, such that

P
(LS)
LRSM

∣∣∣∣
µVEV

= {λ2, δ, ξ, y, g, v}. (4.23)

Here we have used the parameterization in (4.10). In the following section, the β-functions,
which describe the RG evolution of the model, are found. The parameters will run start-
ing from the trinification breaking scale, down to lower energies. In this way, the matching
conditions provide the initial conditions for the running of the LRSM. As we will see, the

β-functions, will depend solely on the parameters of P
(LS)
LRSM, as defined in (4.17).

When analyzing the tree-level matching condition results, we can further motivative our
previous decision to include one-loop corrections to the model. At tree-level, several scalar
couplings, and all but three Yukawa couplings, are zero. Additionally, since ξ and δ are small
valued parameters according to the constraints of the effective LRSM outlined in Section
4.2.2, the low scale couplings proportional to these parameters are also only a small off-set
from zero. Upon including one-loop corrections to the matching conditions in both the scalar
and fermion sectors, this will no longer be the case, and the initial conditions for the RG
running can change considerably. This can have significant implications for the RG evolution
of the model, and thus for the observation of radiative breaking to the SM. The addition of
one-loop corrections to the matching conditions is discussed in Section 8.

Another important result is that each coupling in (4.16) to the global Goldstone, Φ̃, is matched
to zero. Thus, this field decouples at the matching scale6.

6For a more detailed discussion of this decoupling, refer to [7].
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5 RG evolution of the LRSM

In conclusion thus far, spontaneous symmetry breaking of the trinification model was investi-
gated, and an appropriate low-energy effective LRSM was formulated. The high-energy theory
was matched to the low-energy theory at the breaking scale, providing the initial conditions
for the RG running of the model parameters. The next aim of this work is to calculate the
full set of β-functions of the effective LRSM. These will be used to investigate the radiative
breaking of the model.

The β-functions of the model form a set of coupled differential equations arising from infinite
counterterms used in renormalization [19]. They describe the logarithmic dependence of a
parameter, g, on the energy scale, µ, and are defined as [20]

β(g) =
∂g

∂log(µ)
. (5.1)

Due to the large number of parameters in P
(LS)
LRSM, the β-functions of the effective LRSM are

mathematically elaborate and difficult to manually compute. Thus, throughout this work,
they are obtained using the software package PyR@TE (“PYton Renormalization group equa-
tions At Two-loops for Everyone”) [21].

For the sake of this, work RG equations at one-loop are considered only. This is sufficient
as a starting point, and more complicated two-loop runnings can be investigated in further
research.

5.1 Obtaining β-functions with PyR@TE

PyR@TE consists of a set of Python routines which generate the one or two-loop RG equations
for all parameters, given a certain input model. Upon downloading the full software package,
PyR@TE automatically exports the results to LATEX and Mathematica.

We begin by implementing the effective LRSM. Firstly, the full symmetry group is encoded
by naming and identifying each part of the total product group. The system files are written
in such a way that they understand the transformation properties of each group. We continue
constructing the model file by adding in the particle content, taking care to split scalars into
real and complex components. We specify that the fermions of the model are Weyl fermions,
and implement the charges of the fields under each symmetry group.

Next, V
(0)

(LRSM) and LF(LRSM), given in (4.16) and (4.15) respectively, must be written into
the PyR@TE model file. Because their terms involve contractions of indices corresponding to
three different SU(2) groups, and not all terms involve the same type of contraction (e.g. they
are contracted by Kronecker deltas, Levi-Cevita tensors, or both), correctly programming the
Lagrangian in PyR@TE is relatively complicated.

The difficulty lays in constructing different contractions from pre-defined PyR@TE invariants
stored in the PyR@TE database. In (4.16), we have written a possible most general potential
using contractions that best suit the field notation applied throughout this work. That is, we
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have written it in a form which we find easiest to read and use in calculating the matching
conditions. PyR@TE , however, does not share the same notations, and we need to carefully
write our specific contractions in terms of PyR@TE invariants. Thus, a thorough understanding
of the invariants structure of PyR@TE is required. This structure, along with the method used
to construct PyR@TE syntax throughout this work, is outlined with the following example.

5.1.1 Example: constructing contractions from PyR@TE invariants

The method of constructing general contractions from pre-defined PyR@TE invariants is out-
lined by first adopting the following notation:

• Define A,B, ... as labels of a given SU(2) group.

• Define the PyR@TE pre-defined invariant with a number n = {1, 2, ...} such that, for
example, the first listed invariant for the SU(2)A gauge group is given as IA1.

• Define lower-case letters {a, b, . . .} as labels of the fields to be contracted, such that in
a quartic operator, the first field carries the a-index, the second the b-index, etc.

• The labels {1, 2} are added on the field labels {a, b, . . .} to denote the first and second
field component of an SU(2)-doublet, respectively.

The pre-defined invariants are called up in the PyR@TE database by specifying the represen-
tation of the given term. If we examine, for example, a quartic coupling transforming under
a single SU(2)A group, this representation corresponds to 2× 2̄× 2× 2̄2× 2̄× 2× 2̄2× 2̄× 2× 2̄. For such a term, the
PyR@TE dictionary then yields the following two invariants [21]:

IA1 = a1b1c1d1 + a1b1c2d2 + a2b2c1d1 + a2b2c2d2

IA2 = a1b1c1d1 − a1b1c2d2 + 2a2b1c2d1 + 2a1b2c1d2 − a2b2c1d1 + a2b2c2d2

Specific contractions can be written as linear combinations of these two invariants. For
instance, we can create the following contractions:

IA1 = a1b1c1d1 + a1b1c2d2 + a2b2c1d1 + a2b2c2d2

= (a1b1 + a2b2)(c1d1 + c2d2)

=
[
a1 a2

] [b1
b2

] [
c1 c2

] [d1

d2

]
≡ δabδcd (5.2)

IA1 + IA2 = 2(a1b1c1d1 + a1b2c1d2 + a2b1c2d1 + a2b2c2d2)

= 2(a1c1 + a2c2)(b1d1 + b2d2)

= 2
[
a1 a2

] [c1

c2

] [
b1 b2

] [d1

d2

]
≡ 2δacδbd (5.3)
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IA1 − IA2 = 2(a1b1c2d2 − a1b2c1d2 − a2b1c2d1 + a2b2c1d1)

= 2(a1d2 − a2d1)(b1c2 − b2c1)

= 2
[
a1 a2

] [ 0 1
−1 0

] [
d1

d2

] [
b1 b2

] [ 0 1
−1 0

] [
c1

c2

]
≡ 2εadεbc (5.4)

If we now wish to construct terms containing contractions between two groups, we add a
second SU(2)B and create combinations of invariants IA1, IA2, IB1, IB2.

More specifically, suppose we have a term in the Lagrangian of the form

λFaF
∗
b FcF

∗
d ε
ad
A ε

bc
A ε

ad
B ε

bc
B

Using (5.4), it is clear that

εadA ε
bc
A ε

ad
B ε

bc
B =

1

4
(IA1 − IA2)(IB1 − IB2)

=
1

2
[IA1IB1 − IA2IB2]− 1

4
[(IA1 + IA2)(IB1 + IB2)]

=
1

4
[2IA1IB1 − 2IA2IB2 − IA1IB1 − IA1IB2 − IA2IB1 − IA2IB2]

=
1

4
[IA1IB1 − IA2IB2 − IA1IB2 − IA2IB1] (5.5)

Such a term is implemented into the Python script in PyR@TE by specifying the invariant
numbers as the Clebsch Gordon coefficient for each term in (5.5) and adding the normalization
factor. Thus, the correct implementation for the example above would be

{Fields : [[F,F*,F,F*],[F,F*,F,F*],[F,F*,F,F*],[F,F*,F,F*]],

CGCs: {A: [1,2,1,2], B:[1,2,2,1]}, Norm : [1/4, -1/4, -1/4, -1/4]},

Manually finding each term is extensive and inefficient. Thus, a Mathematica code is created
by defining this PyR@TE invariant structure and solving for each desired contraction. In this
way, the syntax for each term in (4.16) and (4.15) is found and implemented.

5.2 Results

Once the scalar potential and fermion Lagrangian of the effective LRSM are correctly imple-
mented into PyR@TE , the one-loop RG equations for the parameters are found. The resulting
full set of RG equations for the couplings λa...o, the Yukawa’s Yα...τ , and the fermion singlet
Majorana mass term (discussed in Section 4.2.4), are presented in Appendix D.

For radiative breaking, the running of the mass parameters of the two scalars in the effective
LRSM are essential. They will be used throughout later sections, and are thus included here.
They are found to be
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(4π)2βm2
R

= m2
R

(
20λb − 8λg − 9/2 g2

R − 6g2
LR

)
(5.6)

+ 2 m2
R

(
|Yκ|2 + |Yλ|2 + 3|Yµ|2 + 3|Yν |2 + 2|Yπ|2

)
+ 16 m2

H

(
λd + λm + λn + λo

)
− 4 |mΦ|2|Yκ|2

(4π)2βm2
H

= 48 m2
H

(
3/4 λa + λh + λi + λj

)
(5.7)

− 9/2 m2
H

(
g2

R + g2
L

)
+ 2m2

H

(
4|Yα|2 + |Yβ|2 + |Yγ |2

+ 3|Yε|2 + 3|Yη|2 + 3|Yζ |2
)

+ 2 m2
R

(
8λd + 8λn + 8λm + 8λo

)
− 4|mΦ|2|Yα|2

From the results above, we can see that the running of the scalar mass-squared parameters
is highly dependent on many parameters of the LRSM. Each parameter, in turn, runs inde-
pendently, making it challenging to find solutions the β-functions analytically.

Furthermore, we can make some statements about the scale at which gauge couplings in
the trinification model are unified, by examining the running of each gauge couplings in the
LRSM. They are found as

(4π)2βgc =− 19

3
g3

c (4π)2βgL =− 2

3
g3

L (5.8)

(5.9)

(4π)2βgR =− 1

3
g3

R (4π)2βgLR =
124

9
g3

L+R

These are ordinary differential equations, which can be solved analytically using known phe-
nomenological SM values. The running of the gauge couplings is generalized as

β(g) =
A

(4π)2
g3. (5.10)

Using the definition of β(g) given in (5.1), this becomes a separable differential equation and
has the solution

1

2g2
=

A

(4π)2
ln(µ) + C, (5.11)

where C is an integration constant which can be determined using known values of the cou-
pling constants at the SM energy scale.

To determine the GUT scale at which all the gauge couplings unify, we begin by making
the assumption that the running of the gauge couplings is not drastically changed at each
symmetry breaking point. That is, we assume the RG running to be smooth over the boundary
between the trinification model and the LRSM, as well as over the breaking boundary between
the LRSM, and the resulting SM-like theory. Known values from the SM can then be used
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as boundary conditions. We take the energy scale of the SM to be roughly the mass of the
Z-boson, and used the fact that gauge couplings must equate at the GUT scale, to write a
system of equations which, when solved, yields the following expression for the energy of the
GUT scale

µGUT = µSM exp

[
4π2

(AC −AL)

(
1

gC

∣∣2
µSM

− 1

gL

∣∣2
µSM

)]
. (5.12)

Then, applying the following known from phenomenology [22]

gC

∣∣
µSM

= 1.18 , gL

∣∣
µSM

= 0.65 , µSM ≈ mZ ≈ 91 GeV,

with the values of AL and AC coming from the results given in (5.8) such that

AC = − 19/3 , AL = − 2/3,

we find that the GUT scale lays at about

µGUT ≈ 2.1× 1012 GeV.

With this, the following value of the unified gauge coupling in the trinification model is found

g
∣∣
µGUT

≈ 0.61

It should be noted that this is a very rough calculation. Not only is the assumption that
parameters run smoothly at each breaking scale not necessarily true, some fields should be
integrated out at these intermediate scales. This would change the β-functions of the other
parameters. Thus, the result above is only a rough estimate of the GUT scale.

Finally, the expressions in (5.8) along with the results above is plotted in Figure 5, allowing
us to examine the behavior of each gauge coupling as the energy scale changes.

In Figure 5, the running of gL+R and gR has been plotted, even though these gauge couplings
are not present in the SM. When the LRSM undergoes radiative breaking to the SM gauge
group, these couplings will combine to form the SM hypercharge gauge coupling. In [7], it is
shown that the U(1)Y gauge coupling is related to gL+R and gR by

gY =
2gRgL+R√
4g2

L+R + g2
R

(5.13)

6 Radiative breaking to the SM

The next aim of this work is to investigate whether or not the effective LRSM undergoes
radiative breaking to a SM-like theory, as hypothesized in Section 4.2.1. We approach this
task by first theoretically predicting the simplest scenario in which this occurs. Then, we
investigate whether it is possible to tune the model parameters such that breaking occurs
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Figure 5: Running of the gauge couplings in the LRSM. Couplings are unified at the GUT scale
µGUT. Couplings of gL and gC match SM values at the corresponding energy scale of the mass of the
Z-boson.

in this way. In other words, we search for physically valid parameter space points for which
spontaneous symmetry breaking is induced and the model breaks naturally to SM-like theory,
preserving along the way, the phenomenological SM features discussed in Section 4.2.1.

6.1 Symmetry breaking in the effective LRSM

We begin by considering a possible breaking scheme. In order to break to the SM, part of
the LRSM’s gauge group must be reduced to U(1)Y hypercharge. More specifically,

[SU(2)R ×U(1)L+R] −→ [U(1)Y] (6.1)

The simplest way in which such breaking occurs is if the
(
L̃2
)3

2
component of l̃R acquires a

non-zero VEV, thereby breaking the symmetry of the potential [7]. That is,

〈(
L̃I
)3
R

〉
≡ δI2δR2

ρ√
2

=
1√
2

(
0 0

0 ρ

)
(6.2)

This field component can acquire a non-zero VEV if its mass-squared parameter runs to a
negative value. In other words, radiative breaking can occur when m2

R(µ) < 0.

We further find the minimization condition for which the scalar potential, V
(0)

LRSM, has a
minimum at this VEV. Repeating the method in Section 3.1, the minimization condition is
found by enforcing
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∂V
(0)

LRSM

∂φi

∣∣∣∣∣
φi=〈φi〉

= 0, (6.3)

where now

〈φi〉 =

{
ρ√
2

for φi =
(
L̃2
)3

2

0 for φi = other
(6.4)

This leads to the minimization condition

−m2
R = λb ρ

2. (6.5)

Upon breaking, the l̃R and H̃ fields undergo a decomposition, similar to that in (4.1). Thus,
the physical particle mass spectrum will reflect a splitting in these two fields. Physical masses
are obtained by taking the second derivatives of the scalar potential, applying the mini-
mization condition above, and diagonalizing the resulting matrix to find the mass-squared
eigenvalues. The resulting particle spectrum is given in Table 4.

Table 4: Splitting of the l̃R and H̃ fields after spontaneous symmetry breaking in the effective LRSM.

Name Field Mass222

l̃R →

{
l̃R1

(
L2
)3

2
2λb ρ

2

l̃R2

(
L1
)3

1
2λg ρ

2

H̃ →



H̃1

(
L2
)L

2
m2

H + 1
2λd ρ

2

H̃2

(
L2
)L

1
m2

H + 1
2(λd + λn) ρ2

H̃3

(
L1
)L

2
m2

H + 1
2(λd + λm) ρ2

H̃4

(
L1
)L

1
m2

H + 1
2(λd + λn + λm + λo) ρ

2

In addition, in [7] is it shown that the breaking of [SU(2)R ×U(1)L+R] into SM hypercharge
by the VEV defined in (6.2), leads to three three massive gauge bosons which can be identified
with the SM W± and Z0. There masses are found to be

W ′± =
1

4
g2

Rρ
2 , Z ′0 =

(
gL+R +

1

4
g2

R

)
ρ2 (6.6)

From the particle spectrum, we see that the Higgs tri-doublet field, H̃, splits into four left-
doublets, while the l̃R field splits into two singlet states. The next step is to create a second
effective theory by again integrating out heavy fields at the breaking scale of O(ρ). The par-
ticle content of this EFT should directly lead to the observed spectrum of the SM for a given
symmetry breaking scheme.

We propose a three-Higgs-doublet model (3HDM), formulated by integrating out both the l̃R1

and l̃R2 fields, in addition to the H̃4 Higgs doublet. In [7], it is argued that the electroweak
gauge group of the 3HDM can be broken further into electromagnetism of the SM, when
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one component of each left Higgs doublet acquires a VEV. The resulting particle spectrum
incorporates a realistic SM mass hierarchy for quarks and the heavy gauge bosons, as well as
the correct form of the CKM mixing matrix7.

With the promising features of the 3HDM in mind, we investigate whether the discussed
breaking scenario is physically viable for the effective LRSM, and if so, whether we can find
a region of the parameter space which justifies the choice of the 3HDM as an ETF. We begin
by outlining the set of constraints must be satisfied by viable parameter space points. We
can then create a parameter scanning algorithm which tests for each of these constraints.

6.2 Parameter constraints for radiative breaking

As was discussed in Section 4.3.2, the low-scale parameters of the effective LRSM can be
matched to high-scale parameters at the GUT breaking scale, µ|VEV. The running is started
from this scale, and the values of parameters at a certain energy can be found by solving their
respective β-functions, using the mapping in (4.23) as the initial conditions. In this way,
values of the high-scale parameters fully determine radiative breaking in the effective LRSM,

and we will thus scan for physically viable points of P
(HS)
LRSM.

To be considered physically viable, points of P
(HS)
LRSM must pass the following tests and con-

straints:

1. First, for vacuum stability in both the trinification model and the effective LRSM, mass-
squared eigenvalues of all particles must be positive. This places the same constraints

on P
(HS)
LRSM as given in (4.7). We further require the masses-squared in Table 4 to be

positive at the LRSM breaking scale, µ ∼ O(ρ).

2. Second, we impose that perturbation theory should be applicable in both the trinifica-
tion model as well as the effective LRSM. This places perturbativity constraints on the
values of the couplings such that ∣∣∣∣λ2

i

4π

∣∣∣∣ ≤ 1 (6.7)

3. Third, in order for the
(
L̃2
)3

2
scalar component to acquire a non-zero VEV, radiative

breaking must be induced by the running of m2
R to a negative value, while the m2

H

parameter remains positive at the breaking scale.

4. Fourth, the particle spectrum after spontaneous symmetry breaking, summarized in
Table 4, must exhibit the correct mass hierarchy to justify integrating out the l̃R1, l̃R2,
and H̃4 fields for the 3HDM. As we will see in the following section, this corresponds to
requiring the mass ratio between light and heavy states to be small.

73HDM’s have been considered throughout literature as extensions to the more widely studied 2HDM ex-
tension of the SM. They have a rich phenomenology, and have for instance been shown to be able to incorporate
dark matter candidates, provide an explanation for CP violation, and predict SM particle hierarchies. For an
overview of 3HDM physics see [23].
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5. Finally, the running must be terminated when any particles obtain a mass of the order
of the renormalization scale, such that they can be integrated out accordingly. This
occurs when ∣∣m2(µ)

∣∣
µ2

≈ 1 (6.8)

For convenience, logarithmic plots are used, and the following parameterization is in-
troduced

t ≡ log10(µ) (6.9)

such that the requirement for termination of the running in (6.8) becomes

∣∣m2(t)
∣∣ ' 102t = µt (6.10)

The final constraint on the parameter space is that spontaneous symmetry breaking
must be induced before the running is terminated. Any points for which this is not the
case are discarded.

Taking each of these constraints into account, physically viable parameter space points of

P
(HS)
LRSM are found by implementation of a scanning algorithm.

6.3 Scanning the parameter space with simulated annealing

The parameter space P
(HS)
LRSM is scanned for points which satisfy the outlined conditions by

implementation of a simulated annealing (SA) algorithm. In this section, we first outline the
general principles of SA, and then apply the algorithm to our specific model.

SA is a technique for finding the global minimum of a given function in a multi-dimensional
parameter space. It resembles a steepest decent methods, and allows for the “tunneling”
between barriers which could otherwise hinder this search [24].

We interpret the function to be minimized as the energy function, E({xi}) of a given system,
where {xi} is a parameter space point describing the physical state of this system. If we
imagine the system to be in contact with a thermal source of temperature T , the goal of the
SA algorithm is to slowly decrease the temperature until it is approximately zero, at which
point the energy function is minimized, and the corresponding parameter space points are
found [24].

The general method of SA is outlined in more detail, as follows:

• Being at a given input parameter space point {x0}, and implement it into the defined
energy function E({x0}) of the system.

• A small and random change R is made such that x′0 = x0 +R, and E({x′0}) is computed.
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• The change is either accepted or rejected based on a probability defined by

P (x1 = x′0) = e−β[E({x′0})−E({x0})] (6.11)

where β = 1
T is the inverse temperature. A change will be accepted if P ({x1}) < 1. The

exponential factor will be greater that one if E({x′0}) < E({x0}). Thus, for high values
of T , the change will almost always be accepted, while for lower values, the change will
be accepted only if it represents a favorable one.

• These steps are repeated many times while systematically lowering T until the energy
function is minimized. This occurs when the change in E({x′0}) becomes smaller than
the random change R.

The SA scanning algorithm is implemented in Python , and modified for the purpose of this
work.

6.3.1 Implementation in Python

We begin by encoding the initial and final values of T , along with the step size between each
run over which the SA is carried out. Additionally, a domain for the random values from
which each parameter should be chosen is specified, based on a prediction of their physical
range of values.

Furthermore, the mass-squared expressions of Table 4 are defined. β-functions of each param-
eter are called in from the PyR@TE results file, and the matching conditions found in Section
4.3.2 are specified as initial values. We set initial and final values of t, as defined in (6.9), and
specify the step size over which the running should be calculated. A loop is created which
re-calculates the running for each parameter space point used.

Next we require an appropriate energy function. A correctly constructed energy function
will return a large constant value for parameter space points which do no satisfy the listed
constraints, and return a smaller value, the “better” the suggested point. In this way, as
the output of the energy function decreases, the algorithm steers towards more promising
parameter space points.

We begin by making the following definitions:

m2
{X} = m2

R1 ‖ m2
R2 ‖ m2

H1 ‖ m2
H2 ‖ m2

H3 ‖ m2
H4 ‖ m2

W± ‖ m
2
Z0 , (6.12)

mmin =
∣∣min

{
m2

R1,m
2
R2,m

2
H1,m

2
H2,m

2
H3,m

2
H4,m

2
W± ,m

2
Z0

}∣∣ (6.13)

mmax = max
{
m2

R1,m
2
R2,m

2
H1,m

2
H2,m

2
H3,m

2
H4,m

2
W± ,m

2
Z0

}
,

r1 =
min

{
m2

H1,m
2
H2,m

2
H3,m

2
H4

}
min

{
m2

W± ,m
2
Z0

} (6.14)

r2 =
min

{
m2

H1,m
2
H2,m

2
H3,m

2
H4

}
max

{
m2

R1,m
2
R2,m

2
W± ,m

2
Z0

}
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Defining a parameter space point {xi} ∈ P
(HS)
LRSM, we choose the following energy function

E ({xi}) =



10, if ρ2, λb < 0

5 + 1
5 mmax

[
mmin − 2

(
m2

R1 +m2
R2

)]
, if m2

{X} < 0

2r1 + r2, other

(6.15)

This energy function effectively excludes parameter points where ρ2 < 0 and/or λb < 0,
which violate the condition that m2

R is positive just after spontaneous symmetry breaking,
by returning the relatively high value 10. It further searches for points where at least one
Higgs doublet is light. Points which satisfy ρ2 < 0 and λb < 0 are passed through, and
minimum and maximum masses are found. The output is determined by the ratio of these
masses. Depending on how well they satisfy the mass positivity of m2

H1...4
and m2

R1,2
, and

how successful they are in satisfying the mass hierarchy conditions outlined in Section 6.2,
the energy function will be larger or smaller. In this way, its output effectively steers towards
“beter” parameter space points. Thus, when the obtained masses and the ratios between
them reflect the desired scalar mass hierarchy, the energy function outputs a lower value. It
this way, the algorithm finds not only points which satisfy the constraints, but also the ones
which are “most successful” in doing so.

The implemented algorithm carries out the following parameter scanning procedure:

1. Choose a random high scale parameter space point of P
(HS)
LRSM, denoted by {x(HS)

i }
according to the set bounds.

2. Test if {x(HS)
i } satisfies the vacuum stability and perturbativity constraints of the trini-

fication model. If all constraints are satisfied, accept the point.

3. For an accepted point, apply the matching conditions to get expressions of the low-scale

parameters {x(LS)
i } in terms of the high-scale {x(HS)

i }.

4. Implement these as initial conditions for the running of m2
H and m2

R. Run the masses
down and terminate when one satisfies the condition in (6.10).

5. At the termination point, test if the value of m2
R is negative while m2

H is positive. This
is necessary for a minimum as defined in (6.2), and the correct breaking scheme will
occur. If these conditions are met, pass the point through.

6. Use the accepted point {x(LS)
i } to compute masses of m2

H1...H4 , m2
R1,R2 , and the value

of ρ2. Accept the parameter point if all are positive, indicating vacuum stability after
breaking of the LRSM.

7. For an accepted point {x(LS)
i }, use these obtained masses as inputs for computing the

energy function E({x(LS)
i }) .
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8. Make a random change in the high scale parameters, {x(HS)
i }, repeat the matching and

running procedures, and compute E({x(LS)
i })

9. Accept or reject the change in parameters based on the value of P ({x(LS)
i }), as defined

in (6.11).

10. Repeat while stepwise decreasing the value of T

11. Stop the process when ∆E({x(LS)
i }) < ε, where ε is a specified small valued parameter

The resulting output file contains a set of physically viable points in P
(HS)
LRSM for which radia-

tive breaking occurs, and for which the 3HDM is justified as a low-energy limit of the effective
LRSM.

Using the SA algorithm, points for which radiative breaking occurs are found. For instance,
one such point is given by

{δ = 2.32×10−12, ξ = 2.1×10−7, λ1 = 0.27, λ2 = −7.78×10−5, y = 1.97, g = 0.61, v = 1012 GeV}.

It can be concluded that there exist viable parameter space points for which spontaneous
symmetry breaking is induced, and the 3HDM can be justified as a low-energy limit of the
effective LRSM. A more complete picture of the resulting SM-like theory and its parameters,
can be found by determining the (un)broken generators and the resulting symmetry group,
as was done for the LRSM in Section 3. For the sake of this this part of this work, however,
we are interested in verifying the possibility of radiative breaking, by proving that physically
viable parameter space points exist. Before continuing to construct the resulting theory, we
must first further justify the effective LRSM as a viable low-energy limit of the trinification
model.

As discussed in Section 4.2.3, we cannot impose a natural hierarchy between the H̃ and l̃R
fields and the other color-singlet scalars when taking only tree-level masses into account.
Thus, the next aim of this work is to include one-loop corrections to the scalars of the LRSM,
in the hope that these will increase the masses of the other fields enough, such that they are
heavy compared to H̃ and l̃R. This means they can be integrated out, and thus, that the
proposed effective LRSM is a low-energy limit of the trinification model at one-loop.

7 The one-loop scalar mass spectrum

With the conclusions presented in the previous section, the final aim of this work is to deter-
mine the full one-loop scalar mass spectrum for the LRSM at the GUT scale, and determine
whether the correct scalar hierarchy to support the effective LRSM can be naturally obtained
upon inclusion of these corrections.

For scalars, the one-loop mass spectrum can be obtained using the effective potential method.
Obtaining the full spectrum for such a complex model is both mathematically and compu-
tationally extensive. We will build upon the file used to calculate the tree-level masses in
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Section 3.2. However, before discussing the computational methods used, a thorough under-
standing of the theory behind the effective potential method is essential.

7.1 The effective potential method

In Section 3.2, spontaneous symmerty breaking due to the non-zero VEV of a single scalar
component in the trinification model was investigated. For the calculation of tree-level par-
ticle masses, the classical potential was minimized and leading order effects were considered
only.

However, in quantized field theories, fluctuations arising from some arbitrary external source
can act on the vacuum and generate the spontaneous breakdown of symmetries or, in theories
where there are already broken symmetries, shift the expectation value of the vacuum state.
Additionally, such fluctuations will induce a particle’s self energy, which forms a contribution
to a particle’s mass due to interactions with this fluctuating vacuum [25].

To observe the effects of quantum fluctuations, the effective potential is introduced. The
effective potential considers higher order radiative corrections as perturbations on the classical
potential. To understand the connection between the effective potential and the one-loop mass
spectrum, we begin by developing a formalism.

7.1.1 Formalism of the effective potential

In the functional methods description of quantum field theory, n-point correlations functions
can be described by a generating functional, Z, which is dependent on an external source of
quantum fluctuations, J(x). The details of this formalism are outlined in Appendix C.

Similarly, we can define a generating functional W [J ] in the following way

Z[J ] = eiW [J ] =

∫
Dφ ei[S(φ)+Jφ)], (7.1)

where S(φ) is the classical action, and the path integral is defined in (C.2) of Appendix C.1.

Upon examining this definition closely, and using the expression in (C.2), we can interpret
W [J ] as the vacuum energy as a function of the external source, J .

By taking the functional derivative of W with respect to J , a so-called classical field is defined
as

φc(x) ≡ ∂W

∂J(x)
=

1

Z[0]

∫
Dφei[S(φ)+Jφ)]φ(x). (7.2)

Physically, this represents a weighted average over all the possible fluctuations. We further
define the effective action as the Legendre transformation of W [J ] such that

Γ[φc] = −W [J ]−
∫
d4yJ(y)φc(y), (7.3)
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with the result that the functional derivative of the effective action after some calculus yields
the condition

∂Γ(φc)

∂φc(x)
= −J(x). (7.4)

From this, we can analyze the meaning of the effective action. It’s first functional derivative
returns the quantum fluctuations on the vacuum state. In other words, this first derivative
gives the radiative corrections to the classical VEV.

Furthermore, if we set the external source to zero, indicating that there are no interactions
between particles and the vacuum, the relation

∂Γ(φc)

∂φc(x)
= 0 (7.5)

is obtained. Assuming that the vacuum is invariant under translations in spacetime, then
φc(x) (which, as concluded earlier, is a solution to the VEV representing a weighted average
over all possible fluctuations) is independent of x. Thus, we can define the effective potential
as

Γ[φc] = −Veff(φc)

∫
d4x, (7.6)

where the integral over spacetime will be a constant. With this definition, the result of (7.5)
will reduce to

∂Veff(φc)

∂φc(y)
= 0. (7.7)

Solutions to this expression are values of the VEV in the absence of any external sources.
Thus, when “switching off” quantum fluctuations, the VEV is found by minimization of the
potential just as in Section 3.2. It this case, the effective potential simply reduces to the
classical potential, V (0) [26].

Combining (7.4) and (7.6), it can be concluded that the effective potential is by definition a
function of which the minimization gives the true vacuum state of the quantum field theory.

Furthermore, in Appendix C.3, it is shown that n-point correlation functions can be found
by taking the nth functional derivative of the generating functional. Using (C.9) and the
definition of the classical field given in (7.2), we derive n-point one-particle irreducible (1PI)
Feynman diagrams by taking nth-order derivatives of the effective potential.

More specifically, the effective potential is equal to the classical potential plus the sum of all
1PI connected vacuum graphs, such that is can be written as

Veff = V (0) + εV (1) + ε2V (2) + ε3V (3) + ... (7.8)

=
∑
n

εnV (n).
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where ε = ~
(4π)2

, and the label on each component V indicates the number of loops considered

in the related order correction on the vacuum.

With this, it can be concluded that the ith-derivative of V (n), with respect to φi, gives the
nth-order loop correction to any scalar i-point function of our theory. In other words, this
corresponds to the zero-external momentum contribution, arising from interactions with the
fluctuating vacuum alone, to a general one-loop diagram with i scalar external legs. This will
be the central idea used throughout the rest of this work to obtain the scalar one-loop mass
spectrum [12].

7.1.2 The Coleman-Weinberg effective potential

In this work we restrict ourselves to the inclusion of first order corrections to the effective
potential only, such that we consistently eliminate any O(ε2) or higher arising throughout
calculations accordingly.

The formalism developed in the previous section can be used to write an expression for
the one-loop effective potential. This was first done for a simple massless scalar theory by
Sidney Coleman and Erick Weinberg. In [27] they showed that radiative corrections can
generate spontaneous symmetry breaking in theories for which classical tree-level effects do
not indicate such breakdowns. Furthermore, they developed the one-loop Coleman-Weinberg
effective potential given by [27]

V
[1]

eff (φ) = V (0)(φ) + εV (1)(φ) (7.9)

= V (φ)− i

2

∫
d4p

(2π)4
log

[
p2 − V ′′(φ)

]
,

where V ′′(φ) are the field dependent scalar masses obtained for the massless scalar theory by
taking the second derivative of the classical potential in terms of each field.

Before generalizing the one-loop Coleman-Weinberg effective potential into a form which can
be applied to the trinification model, it is worth considering the massless scalar theory of
[27] in an example, to further understand the connection between derivatives of the effective
potential and corrections to n-point functions.

7.1.2.1 Example: massless scalar theory in the effective potential method

Consider the massless scalar theory with the Lagrangian

L =
1

2
(∂µφ)2 −

[1

2
m2

0φ
2 +

γ

3!
φ3 +

λ

4!
φ4 +

ρ

5!
φ5 + ...

]
. (7.10)

Then the one-loop Coleman-Weinberg effective potential is given by (7.9) where

V ′′(φ) = m2
0 + γφ+

1

2
λφ2 +

ρ

6
φ3 + ... ≡ m(φ)2, (7.11)
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are the field dependent masses. Here, m2
0 are the tree-level mass-squared terms.

To determine, for example, the one-loop corrections to scalar 3-point functions, we take the
third derivative of the one-loop contribution to the effective potential, V (1) such that we have

∂3V (1)

∂φ3

∣∣∣∣∣
φ=〈φ〉

=
i

2
ρ

∫
d4p

(2π)4

(
i

k2 −m(φ)2

)
(7.12)

+
3i

2
γλ

∫
d4p

(2π)4

(
i

k2 −m(φ)2

)2

+ λ3i

∫
d4p

(2π)4

(
i

k2 −m(φ)2

)3

In general, for one-loop Feynman diagrams in the p→ 0 we can write

φi φi ∝
∫

d4k
(2π)4

i
k2 − m2

i
(k + p)2 − m2

=
p→0

∫
d4k
(2π)4

(
i

k2−m2

)2
p p

k

k + p

Recalling that derivatives of the effective potential give corrections to n-point correlation
functions in the p→ 0 approximation, we can match each term in the summation of (7.12) to a
corresponding 1PI Feynman diagram. Thus, the expression of the third derivative corresponds
diagrammatically to:

3+ +

Figure 6: One-loop corrections to scalar 3-point functions in the massless scalar theory. Here, the
factor of three before the second diagram is included to account for the combinatorics of external
scalars. The 5-point vertex of the first diagram is proportional to ρ, the 4-point vertex of the second
diagram is proportional to γ, and all 3-point vertices’s are proportional to λ

By comparing (7.12) to Figure 6 above, it is clear that the third derivative of the one-loop
correction to the effective potential yields the sum of all zero-external momentum one-loop
corrections to the 3-point functions of the theory.
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7.2 One-loop scalar masses in the LRSM

With the developed effective potential method as a viable approach for determining one-loop
corrections to n-point functions, we can apply this formalism to the scalars of the LRSM to
obtain the full one-loop mass spectrum at the GUT scale.

For any scalar in the model, the one-loop mass is the sum of its tree-level (bare) mass with
all possible one-loop corrections arising from interactions with the fluctuating vacuum as the
particle transitions from an initial state to a final one. Diagrammatically, for scalars in the
LRSM this is illustrated as

=

+ + +

× ×

+ + +

Figure 7: Diagrams contributing to the one-loop mass for scalars in the LRSM

Before the full scalar one-loop mass spectrum for the LRSM can be calculated, the one-loop
effective potential of (7.9) must be put into a form which is applicable to this model.

7.2.1 Renormalized one-loop contribution

As mentioned, the effective potential is the classical potential plus the sum of all 1PI connected
vacuum graphs. The topology of the one-loop 1PI connected vacuum Feynman diagram does
not contain an interaction vertex. Thus, V (1) depends only on the field-dependent squared
masses.

In the example of the massless scalar theory, the Lagrangian involved only scalar self-interaction
terms, and thus the field dependent masses were functions of φ alone. For more complex mod-
els, such as the one studied throughout this work, the Lagrangian will also contain interactions
between scalars and other particles (fermions and vector bosons) described by cubic and quar-
tic couplings. Because each type of particle can run as a propagator in loop diagrams, the
one-loop contribution to the effective potential should sum over all types of particles present
in the model.

Furthermore, the integral in the Coleman-Weinberg effective potential in (7.9) contains ultra-
violet divergencies. Thus, renormalization theory should be applied by introducing countert-
erms and setting a cutoff value over which to integrate. After renormalization, the effective
potential will be independent of these, since in any dimensional regularization scheme, the
divergences are automatically canceled [28].
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Considering all interactions in the Lagrangian, the renormalized one-loop contribution to the
effective potential can be re-written as

V (1) =
1

4

∑
T

(−1)2sT(2sT + 1)Tr[Λ2
(t)(logΛ2

(t) − kT)], (7.13)

where the sum over T is a summation over all types of particles in the theory, such that
T = {S,F,G} for scalars, fermions, and gauge bosons respectively. Λ2

(t) are the field depen-
dent mass-squared matrices for each particle type, and taking the trace ensures we consider
only terms corresponding to 2-point self interactions [8].

Furthermore, sT is the spin of each field of type T, and we introduce the notation

log(m2) ≡ log

(
m2

Q2

)
, (7.14)

where Q2 is the renormalization scale. Finally, kT depends on the renormalization scheme.
For the sake of this work, we use the MS, and the value of kT for each type of particle is8

kT =

{
3
2 , if T = S, F
5
6 , if T = G

(7.15)

7.2.2 Derivative formulas of the one-loop effective potential

As can be seen in (7.13), at one-loop, field dependent masses enter into the potential as matrix
logarithms. Taking nth-order derivatives of such an expression to determine one-loop correc-
tions to n-point functions becomes significantly difficult, unless we evaluate it at a certain
minimum.

In [8] general analytic expressions for derivatives of the effective potential with respect to
any number of classical scalar fields applicable in any 4-dimensional renormalizable theory,
are derived. The use of these expressions instead of taking direct derivatives of (7.13) will
allow us to evaluate one-loop contributions while keeping the field dependence throughout
the calculation. The formulas hold in the zero-external momentum approximation.

For the sake of this work, we will consider the first and second derivative formulas for the
one-loop effective potential. The derivation of these expressions is mathematically extensive,
and can be fully found in [8].

The first derivative formula gives the tadpole truncated at one loop. It is given by [8]

∂iV
[1]

eff = Λi(s) + ε Oj(S)i

∑
T

(−1)2sT(1 + 2sT)

2
m2

(T)aλ(T)a
a
j

(
log m2

(T)a − kT +
1

2

)
, (7.16)

8In MS each divergent term (arising from loops in Feynman diagrams) plus a constant is absorbed into
counterterms. The same constant is used for each divergence, and the different kT values for each particle
type arise from the loop intergral in each case. The values of kT in (7.15) are derived in [28]. For a detailed
discussion of the MS renormalization scheme, see [29].
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The second derivative formula essentially sums over all the one-loop scalar 2-point functions
allowed by the theory. It is given by [8]

∂klV
[1]

eff = Λkl(s) + ε O(S)
i
k
O(S)

j
l

∑
T

(−1)2sT(1 + 2sT)

2
S{ij}

[
λab(T)iλ(T)baj

(
f

(1)
(T)ab − kT +

1

2

)

+ λa(T)aijm
2
(T)a

(
log m2

(T)a − kT +
1

2

)]
. (7.17)

Here, λ(T) gives cubic or quartic couplings in the mass-eigenbasis, depending on if they are
labeled with 3 or 4 indices respectively. Additionally, O(S) is the scalar rotation matrix as
defined in (3.9).

Λi(s) is the field dependent first derivative of the classical potential, as defined in (3.3). Λkl(s)
the tree-level field dependent scalar mass matrix, as defined in (3.7), and m2

(T)a are the tree-
level mass eigenvalues of each particle of type T, as defined throughout Section 3.2.

Furthermore, S{ij} is a symmetry operator which symmetrizes with respect to the scalar in-
dices i, j.

Throughout the derivation of (7.16) and (7.17) given in [8], a set of tensors f
(k)
(T) are defined.

Their components are given by

f
(k)
(T)a1...aN

≡
N∑
x=1

m2k
(T)ax

log m2
(T)ax∏

y 6=x

(
m2

(T)ax
− m2

(T)ay

) . (7.18)

To implement the second derivative formula of (7.17), we need to compute f -tensors of rank
2, and of the order k = 1. This results in four expressions given by

f (1)(x, y) =



1 + log(0), if x = 0, y = 0

log(x), if x 6= 0, y = 0

log(y), if x = 0, y 6= 0

1 + log(x), if x = y 6= 0
x log(x)

(x−y)+y log(y)
, if a 6= y 6= 0

(7.19)

where x, y are inputted mass-squared eigenstates m2
(T)a for each type (T) summed over in

(7.17). The ambiguity in the first case, arising from the log(0), is tackled by substituting a
small, non-zero constant, σ, into the logarithm, such that we set log(0)→ log(σ). As can be

seen in (7.17), such terms will cancel out of each component of the ∂klV
[1]

eff matrix.

The derivative formulas in (7.16) and (7.17) are valid only in the p2 → 0 approximation in
which the scalar particles on the external legs in the diagrams are considered light compared
to particles propagating in the loop [8].
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We can justify that this approximation is valid of the sake of this work. As was discussed
in Section 4.2.3 we can integrate the colored scalars of Table 2 out of the effective LRSM
at tree-level by tunning the values of α1...4. Thus, we are really only interested determining
if one-loop contributions will influence the mass hierarchy in the color-singlet sector in such
a way that the H̃ and l̃R fields are light compared to the others. As each of these fields is
light at tree-level, and the largest contributions to their one-loop masses arises from diagrams
with at least one heavy loop propagator, the p2 → 0 approximation is a good one for the
color-singlet scalars of this model.

Finally, (7.16) and (7.17) can be implemented to obtain the full scalar one-loop mass spectrum
for the LRSM at GUT scale. The process computationally extensive due to the large number
of scalars, fermions, and gauge bosons in the trinification model. As such, it involves several
essential components and steps that should be outlined with care.

7.2.3 Tri-linear couplings

Tri-linear couplings involved in scalar mass-corrections correspond to coefficients of cubic
scalar field terms in the Lagrangian. As such, they are found by taking third derivatives. As
can be seen in Figure 7, tri-linear couplings exist between scalars/scalars, scalars/fermions,
and scalars/bosons9. Thus, in the Λ(gauge)-basis, tri-linear couplings are defined as

∂Λij(t)

∂φk
= Λijk(t) , (7.20)

and physical couplings are isolated by evaluating in the VEV such that

Λijk(t)

∣∣∣∣
φi=〈φi〉

= Λijk(T). (7.21)

Above, (3.5) defines 〈φi〉, t and T again denote the type of particle such that t = {s, f, g},
T = {S,F,G}, and the term Λij(t) refers the the expressions given in (3.7), (3.12), and (3.16)
respectively.

The resulting Λijk(T) expressions are a 3-dimensional tensors with dimensions corresponding to

the number of derivatives taken such that10

[
Λijk(S)

]
= 162× 162× 162 (7.22)[

ΛIJk(F)

]
= 81× 81× 162[

Λabk(G)

]
= 24× 24× 162.

Upon implementation of these tri-linear couplings into (7.17), they must first be rotated into
the λ(mass)-basis. This is done using the rotation matrices O(S), O(F), O(G) given in (3.9),
(3.14), and (3.18) respectively, according to the following formula

9Recall, we use the indices {i, j, k, l} for scalars, {I, J} for fermions, and {a, b} for gauge boson, as defined
throughout Section 3.2.

10Recall, the trinification model has 162 scalar components, 81 Weyl fermions, and 24 gauge bosons.
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λpqr(T) =
r∑

k=1

q∑
j=1

p∑
i=1

Or(S)k
O(T)

q
j
O(T)

p
i

Λijk(T). (7.23)

Due to the relatively large sizes of the Λijk(T) and O(T) matrices, the computation of these
couplings in Mathematica is extensive. To optimize the code, we simplify by summing over
index values of O(T) for which the product with Λ(T) elements will be non-zero. Applying
the summation over only such index values, requires us to implement a section of code which
first locates non-zero elements of O(T), and then maps each of these, along with their position
in the matrix, to a vector. We then substitute the indices i, j, k in (7.23) in for the position
indices indicated by this vector, and sum over only those values.

With this optimization, the tri-linear scalar/scalar (S), scalar/fermion (F), and scalar/boson
(G) couplings can all be expressed in 3-dimensional tensors in the mass-eigenbasis, denoted
by λpqr(T).

7.2.4 Quartic couplings

Similarly, quartic couplings are found by taking fourth derivatives of the Lagrangian. Math-
ematically, this corresponds to taking the derivatives of Λijk(t) to a fourth scalar such that

∂Λijk(t)

∂φl
= Λijkl(t) (7.24)

and again

Λijkl(t)

∣∣∣∣
φi=〈φi〉

= Λijkl(T) (7.25)

Due to the fourth index, the dimensions listed in (7.22) increase each by a ×162 to form
4-dimensional tensors.

To obtain couplings the λ-basis, the components are rotated according to

λpqrs(T) =
s∑
l=1

r∑
k=1

q∑
j=1

p∑
i=1

O(S)
s
l
O(S)

r
k
O(T)

q
j
Op(T)i

Λijkl(T) (7.26)

Again, due to the extreme size of the Λijkl(T) tensors, the computational complexity limits
the ability for quartic couplings to be calculated in Mathematica directly. The code must
again be optimized in order to significantly reduce the number of components to be calculated.

For this, we implement the same technique as in the previous section, and sum over only
element indices in (7.26) which will yield non-zero values. Secondly, we use the symmetric

properties of each Λijkl(T) to our advantage.

In the scalar sector, it is straightforward to see that Λijkl(S) , is fully symmetric under inter-

changes of scalar indices, as any order in which we take derivatives of V (0) will give the same
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coupling. For the same reason, the Λabkl(G) tensor is symmetric under exchanges of a, b and k, l.

Similarly, the ΛIJkl(F) tensor is fully symmetric under exchanges of the scalar indices k, l. Futher-

more, we can show that ΛIJ(f) is Hermitian using the definition of (3.12), and the fact that

M IJ is symmetric, such that

ΛIJ(f) = M∗IKMK
J

= M∗KIMK
J

= MK
JM∗KI

= Λ∗JI(f)

As a result, ΛIJkl(F) = Λ∗JIkl(F) .

The symmetric properties of these tensors are used to optimize the code. We create a 4-
dimensional tensor with zero’s as elements for each Λ(T)-quartic coupling tensor, and calculate
only the non-zero components in the upper half of these tensors. We then create a function
which maps any element with swapped indices to its symmetric counterpart, and places this
into the lower half of the corresponding tensor. In this way, we build the full Λ(T)-quartic
coupling tensors, without having to compute every element individually.

7.2.5 The first derivative formula

Once the tri-linear and quartic couplings of each type have been stored and saved, they can
be called up for use in the first derivative formula given in (7.16).

As the Λi(s) component of (7.16) has already be computed in Section 3.1, we are interested

solely in determining the one-loop contribution to ∂iV
[1]

eff arising from the fluctuation on the
vacuum. Thus, we implement

∂iV
(1) = Oj(S)i

∑
T

(−1)2sT(1 + 2sT)

2
m2

(T)aλ(T)a
a
j

(
log m2

(T)a − kT +
1

2

)
. (7.27)

The result will be a vector of 162 dimensions with one non-zero component corresponding to
the correction to the classical VEV as defined in (3.2). This component is solved analytically,
and found to be
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∂VEVV
(1) =

1

2

[
1

9
g4v3

{
27 log

(
g2

4

)
+ 24 log

(
2g2

3

)
− 17

}
(7.28)

+ 6v3 (α1 + α2 + α3 + α4) [α1 + α2 + α3 + α4 − 2(λ1 − λ2 − λ3 − λ4)]{
log

(
1

2
[α1 + α2 + α3 + α4 − 2(λ1 − λ2 − λ3 − λ4)]

)
− 1

}
+ 24α1v

3 [α1 − 2 (λ1 + λ2 + λ3 + λ4)]{
log

(
1

2
[α1 − 2 (λ1 + λ2 + λ3 + λ4)]

)
− 1

}
+ 12v3 (α1 + α2) (α1 + α2 − 2 (λ1 + λ2 + λ3 + λ4)){

log

(
1

2
[α1 + α2 − 2 (λ1 + λ2 + λ3 + λ4)]

)
− 1

}
+ 12v3 (λ1 + λ2 + λ3 + λ4)

2 {log (2 [λ1 + λ2 + λ3 + λ4])− 1}
− 16v3 (λ2 + λ3) (λ1 + λ4) {log ([λ2 + λ3])− 1}
− 16v3 (λ1 + λ3) (λ2 + λ4) {log ([λ2 + λ4])− 1}
− 16v3 (λ1 + λ2) (λ3 + λ4) {log ([λ3 + λ4])− 1}
− 32v3λ1 (λ2 + λ3 + λ4) {log ([λ2 + λ3 + λ4])− 1}

− 12v3y4

{
log

(
y2

2

)
− 1

}
+

[
6

(
− κ√

2
+ α1 + α3

)
(
−
√

2κ+ (α1 + α3)− 2 [λ1 + λ2 + λ3 + λ4]
)]

{
log

[
1

2

(
−
√

2κ+ (α1 + α3)− 2 [λ1 + λ2 + λ3 + λ4]
)]
− 1

}
+ 6

(
κ√
2

+ (α1 + α3)−
(√

2κ+ (α1 + α3)− 2 [λ1 + λ2 + λ3 + λ4]
))

{
log

(
1

2

(√
2κ+ (α1 + α3)− 2 [λ1 + λ2 + λ3 + λ4]

))
− 1

}]
.

In this result we have applied several substitutions for convenience. Firstly, the renormal-
ization scale is set at the same order as the classical VEV, v. This amounts to making the
substitution Q2 → v2 where Q is the renormalization scale, entering the first derivative in the
logarithms under the definition of (7.14). Secondly, µ2 is eliminated by applying the classical
minimization condition of (3.6). Finally, we have made the substitution κ = γ

v . With these
manipulations, the above result neatly shows the tree-level mass-squared expression of each
scalar, as listed in Table 2, the fermions, and gauge bosons, entering the logarithms and con-
tributing to the one-loop the correction to the VEV.

To ensure that expressions have been correctly implemented into the code, and thus that our
results are reliable, several checks can be made. The first essential check involves comparing
the result of (7.28) with the result when taking the first derivative of (7.13) to the classical
VEV directly. We assign a numerical value to each parameter and apply them to both the
resulting derivative and (7.28). We ensure that these numerical values coincide.
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7.2.6 One-loop tadpole condition

Once the implementation of the first derivative formula has been checked with this method,
the one-loop tadpole condition of the model can be found. As explained in Section 7.1.1,
quantum fluctuations shift the classical VEV, such that the vacuum state at first order is
given by

v + εω, (7.29)

where v is the classical VEV, ω is this shift, and ε is defined in (7.8).

By definition, the one-loop tadpole condition is found by minimizing the one-loop effective
potential. It is found by requiring that

∂V
[1]

eff

∂φ

∣∣∣∣
v+ε ω

= 0. (7.30)

Expanding the one-loop effective potential, we obtain

∂V (0)

∂φ

∣∣∣∣
v+ε ω

+ ε
∂V (1)

∂φ

∣∣∣∣
v+ε ω

= 0. (7.31)

The one-loop tadpole condition is then found by expanding this expression to the first order
in ε and requiring each coefficient in the expansion to be zero.11

Starting from the first term in (7.31), we insert (7.29) into the result of (3.3) and expand.
This gives

∂V (0)

∂φ

∣∣∣∣
v+ε ω

= −µ2 v + (λ1 + λ2 + λ3 + λ4) v3︸ ︷︷ ︸
ε0
(0)TP

+ 2v2ω(λ1 + λ2 + λ3 + λ4)︸ ︷︷ ︸
ε1
(0)TP

ε. (7.32)

We then isolate the zeroth order in ε by taking ε→ 0. Only the first term in (7.31) will con-
tribute in the zeroth order expansion in ε, as the second term, concerning the derivative of the
one-loop contribution to the effective potential, enters as a multiple of ε. Thus, minimization
of the zeroth order in ε coefficient gives

ε0(0)TP
= 0 −→ µ2 = (λ1 + λ2 + λ3 + λ4) v2, (7.33)

which, as expected, corresponds to the tree-level minimization condition given in (3.6) for a
stable vacuum at v.

To obtain the minimization condition in the first order of ε, the second term in (7.31) must
also be considered. Since it enters as a multiple of ε, and as terms of O(ε2) are to be discarded,
it is sufficient to expand this term in v. Thus, we define the coefficient in ε arising from the
second term in (7.31) as

∂V (1)

∂φ

∣∣∣∣
v

= ε1(1)TP
. (7.34)

11Throughout calculation in this section we consistently discard O(ε2).
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Combining (7.32) and (7.34), the coefficient of the first order in ε is given by

ε1TP = ε1(0)TP
+ ε1(1)TP

. (7.35)

Finally, requiring ε1TP = 0, and solving for ω gives the one-loop tadpole condition for a stable
vacuum at (7.29). The result of the one-loop tadpole condition is given in Appendix E.

7.2.7 The second derivative formula

We continue by implementing the second derivative formula in (7.17). As the Λkl(s) matrix has

already been computed, it is again sufficient to implement only the rotated V (1) contribution
to the effective potential, such that

∂klV
(1) = O(S)

i
k
O(S)

j
l

∑
T

(−1)2sT(1 + 2sT)

2
S{ij}

[
λab(T)iλ(T)baj

(
f

(1)
(T)ab − kT +

1

2

)
(7.36)

+ λa(T)aijm
2
(T)a

(
log m2

(T)a − kT +
1

2

)]
.

By closely studying the expression above, we see that the computation of the second deriva-
tives involves a summation over both a, and b, applied to the summation over T for each type
of particle. As such, the resulting matrix will contain 162 × 162 components, each of which
is calculated by taking two summations over 162 indices each. Finally, the entire matrix is
rotated over all the non-zero components of O(S). Thus, the computation of all the compo-

nents of ∂klV
(1) is strenuous, and obtaining results can require several days of computing time.

Once all the second derivative of the one-loop contribution to the effective potential have
been computed and saved in a table, we can once again perform checks on the code to ensure
that our results are reliable. Firstly, we can perform the same type of check as in the previ-
ous section, by comparing the direct second derivative of (7.13) with respect to v, with the
component of ∂klV

(1) which corresponds to the second derivative of the scalar obtaining the
classical VEV. From Section 3.1, this is the

(
L̃3
)3

3
field. We apply a numerical rule to each,

and ensure they have the same value.

This idea can be used to further check the results. For instance, we can implement additional
“toy” VEV’s in other scalar fields. If we place two different VEV’s in two differing scalar
components, then we can check the corresponding off-diagonal term of ∂klV

(1) where k 6= l.
With this, numerous checks can be performed for several cases.

7.2.8 One-loop mass terms

Finally, the one-loop mass spectrum can be obtained by adding the one-loop mass correction
terms in the second derivative matrix, ∂klV

(1), to the tree-level mass terms of Λij(s), found in

Section 3.2. This will give the full one-loop mass-squared matrix in the gauge(Λ)-basis, with
components defined by (7.17). The diagonalization of this matrix will yield the full scalar
one-loop mass-squared eigenvalues at GUT scale, in the p2 → 0 approximation.
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The one-loop mass spectrum is given by the second derivative of the full one-loop effective
potential, evaluated at the shifted vacuum of our theory, defined by (7.29). Thus,

∂2V
[1]

eff

∂φi∂φj

∣∣∣∣
v+ε ω

=
∂2V (0)

∂φi∂φj

∣∣∣∣
v+ε ω

+ ε
∂2V (1)

∂φi∂φj

∣∣∣∣
v+ε ω

. (7.37)

We again expand in power of ε. The only term contributing to the zeroth order in ε will come
from the first term expansion in v such that

∂2V (0)

∂φi∂φj

∣∣∣∣
v

= ε0(0)M
. (7.38)

Clearly, this is equivalent to the tree-level mass-squared matrix obtained in Section 3.2. Thus,
we make the replacement

ε0(0)M
= Λij(S).

The first term in (7.37) also contributes in the first order expansion of ε. This coefficient is
found by expanding it in v + εω and extracting the coefficient in front of ε. We denote this
coefficient by ε1(0)M

.

Similarly, the second term of (7.37) gives a contribution to the first order in ε. Just as before,
we realize that this term enters as a multiple of ε and thus

∂2V (1)

∂φi∂φj

∣∣∣∣
v

= ε1(1)M
. (7.39)

This expression is equivalent to evaluating the result of (7.36) at the classical VEV, v, and
applying the classical minimization condition in (3.6).

The one-loop contribution to the masses is then

Λij
(1)
(S) = ε1(0)M

+ ε1(1)M
. (7.40)

Finally, we implement the one-loop tadpole condition given in Appendix E into this loop
contribution term, and we can write the scalar one-loop mass-squared matrix in the Λ-basis
as

Λij
[1]
(S) = Λij(S) + εΛij

(1)
(S). (7.41)

The resulting matrix, Λij
[1]
(S) has 162 × 162 elements. Each non-zero element is an extensive

mathematical expression, logarithmically dependent on the masses of any particles allowed
to run in the loop of the corresponding 2-point function. They are, as such, not included for
reference in this section.

In order to obtain physical mass-squared eigenvalues, the Λij
[1]
(S) matrix must be diagonalized

into to λ-basis. Due to the extensive and lengthy nature of these expressions, analytical dig-
italization is computationally impossible. Thus, we must apply a numerics to obtain a final
mass hierarchy for the scalar sector of the LRSM.

59



7.3 Numerical results for the one-loop mass spectrum

Once each one-loop mass has been found as an element of Λij
[1]
(S), the task of determining

the scalar mass hierarchy of the LRSM can be continued. The final aim of this work is to

implement a parameter scanning algorithm which searches for physical points of the P
(HS)
LRSM

parameter space, which support the existence of the effective LRSM as a low-energy limit
of the trinification model. That is, we search for points which impose a naturally occurring
hierarchy between the one-loop masses of the Higgs tri-doublet, H̃, and the bi-doublet, l̃R
and the other color-singlet scalars in the top portion of Table 2.

7.3.1 Random point parameter scan

A preliminary parameter scan is constructed via an algorithm which passes randomly chosen
parameter space points through systematically upon successfully satisfying defined conditions.
Firstly, random real values between {−1...1} are chosen for each λ1...4, α1...4, and y such that
they satisfy the perturbativity requirement of (6.7).

The chosen parameter space point is then first required to pass a positivity test which en-
sures that the tree-level masses-squared eigenvalues of all particles are positive. In addition to
securing vacuum stability, this ensures the real nature of any logarithmic terms in the compo-

nents of Λij
[1]
(S), thus preventing imaginary numbers arising as physical one-loop mass-squared

eigenvalues. In conclusion, the first conditions on the chosen parameter space point are given
in (4.7). These inequalities are reduced to a set of possible parameter solutions, which are
implemented as the first requirement for passing a given point through.

Points which pass this first part of the positivity test are further input into the components

of the Λij
[1]
(S) matrix. Each mass term is computed numerically, and the resulting matrix is di-

agonalized. This gives a numerical scalar one-loop mass-squared matrix, which now describes
physical mass-squared eigenstates. The final step in the positivity test, is to ensure that these
are positive as well for the given parameter space point.

Next, we identify which states correspond to the H̃ and l̃R fields after diagonalization, and
implement a requirement that these masses be no more than one tenth the size of other scalar
masses. This is achieved by defining a function which compares the one-loop mass term to
the tree-level scalar mass in the limit ε → 0. Using the known tree-level mass expression
from Table 2 specific fields can be identified, and the same function can then require the
corresponding numerical one-loop masses to be small compared to the others.

Parameter points which pass this final requirement are exported to a data file. They are
physically viable parameter space points for which the desired scalar mass hierarchy in the
effective LRSM is observed.

7.3.1.1 Results and discussion

Although the scanning algorithm outlined in the previous section is run for ∼ 8×107 randomly
generated points, not a single parameter space point with satisfies the full set of constraints is
found. The difficulty lays in passing the second test which requires the low mass ratio between
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color-singlet states. Although they are still relatively rare when considering the large number
of attempts, points which pass the positivity test can be found.

Although the lack of physically viable parameter space points obtained by this scanning algo-
rithm makes it tempting to conclude at this stage that the desired hierarchy of the effective
LRSM is mathematically prohibited, the ineffectiveness of the scanning design should be taken
into careful consideration. The scanning algorithm has no feedback mechanism or bias which
steers in towards more promising parameter values. As such, the random number generator
could altogether miss small regions of the parameter space in which physically viable points
lay.

To test the reliability of the scan, we can run the same algorithm, but this time requiring that
the masses of the h̃ and l̃R fields be no more than one tenth that of the other scalar masses.
As previously discussed, in [7] it is shown that the parameters of the trinification model can
be tuned in such a way that these states are light compared to others at tree-level. Thus, we
expect that, if our parameter scan is working correctly, and assuming the one-loop effects do
not spoil the hierarchy, it should find physically viable parameter space points for this scenario.

Once the scan is run, it can be concluded that this random points algorithm finds roughly 1 in
1000 points which satisfy the conditions of the proposed EFT in [7]. In addition to indicating
that the scan seems capable enough to find points for this scenario, the results proves that
one-loop mass contributions do not spoil the imposed scalar mass hierarchy in the effective
theory proposed in [7]. With this, we can further justify the EFT in [7] at one-loop.

With the scan working, at least for one scenario, we can tune the algorithm to see under which
conditions physically viable parameter space points for our proposed EFT can be found. This
involves softening the perturbativity constraints by increasing the range of values of the cou-
plings, and/or increasing the required mass ratio between light and heavy scalars.

Upon several manipulations of the code, the scanning algorithm still fails to produce param-
eter space points. We move to further soften the scanning requirements by removing some
of the scalars from the second test completely. For instance, we remove the requirement that
l̃R be light, and simplify the scan to consider only the Higgs tri-doublet. Furthermore, we
increase the ratio between masses such that m2

H is required to be at no more than one third
of the mass of each other scalar. Still, the scanning algorithm fails to produce a single viable
point.

One interesting representation of the data we can look at, is the points passing the positivity
test. These parameter space points ensure vacuum stability of the trinification model, and
ensure the positiveness of the one-loop mass-squared eigenvalues of our scalars. We recall the
relation in (4.14) of Section 4.2.3 which essentially prohibited the possibility that

m2
H � m2

h , m
2
L,

at tree-level. We can plot the same relation, now at one-loop, and look for points for which
lay away from the line given by the relation

61



m2
H

(1)
=

1

2

(
m2

h
(1)

+m2
L

(1)
+m2

R
(1)
)
. (7.42)

Any points which do not satisfy this relation can be further investigated as they may provide
insight into one-loop effects which can possibly, but not necessarily, imply that m2

H,m
2
R �

m2
h , m

2
L.

We find parameter space points which pass the positivity test apply them to calculate the one-
loop masses for each scalar field. To best represent the obtained data, we plot the deviation
from the tree-level requirement obtained at one-loop, defined as

% deviation =

∣∣∣∣∣∣
m2

H
(1) −

[
1
2

(
m2

h
(1)

+m2
L

(1)
+m2

R
(1)
)]

m2
H

(1)

∣∣∣∣∣∣× 100, (7.43)

against the one-loop mass-squared of the Higgs tri-doublet. The resulting data is plotted in
Figure 8.
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Figure 8: Percentage deviation from the tree-level mass-squared relation in (4.14) at one-loop.
Throughout the scan, v → 1, and squared-masses are expressed in units of 1/v2

The data in Figure 8 presents a significant result. Although percentage deviations are small,
they take on non-zero values. This implies that at one-loop, the expression of (4.14) no longer
holds, indicating that at the very least, one-loop effects can have some effect on the trinifi-
cation scale scalar mass hierarchy. In fact, we see that deviations can reach up to 10% of

m2
H

(1)
. However, as the random scanning algorithm still fails to produce points for which the

mass ratio between H̃, l̃R and h̃, l̃L is acceptable enough to justify integrating out particles
at the GUT scale, a further analysis is needed before any hard conclusions can be made. For

62



instance, a first step in future research could be to examine points which indicate relatively
large deviations in more detail.

As a final attempt to implement this scan for our purpose, we can limit it to consider only
the region of the parameter space for which the tree-level masses of the color-singlet scalar
states are zero. Limiting ourselves to considering only this case essentially lets us examine
the effect of one-loop mass contributions alone. Upon considering tree-level masses only, the
correct mass hierarchy could not be observed. Thus, we argued that one-loop contributions
could push up the masses of some scalars enough to make them heavy in comparison to the H̃
and l̃R. We now tune the scan to consider this one-loop offset without the tree-level masses,
and and look for points for which the offsets of the H̃ and l̃R fields are very small compared
to the others.

Theoretically, this is done by removing the positivity constraints and setting λ2,3,4 = 0, while
assigning 0 < λ1 ≤ 1. From Section 4.2.3, λ1 enters only in the mass of the Φ̃s state, and thus,
this particle can be tunned independently of the others. However, the code identifies each
fields after diagonalization of the numerical one-loop mass matrix by comparing the one-loop
mass to the tree-level mass as ε → 0. So, in practice we set each each coupling to a small
valued parameter, and we remove the mass ratio requirements completely.

After briefly examining the resulting mass-squared off-sets, no apparent trends are found. Be-
cause tree-level masses still constitute a significant contribution to the physical masses of the
particle, we would require that the ratio between the one-loop mass offsets of light and heavy
states be even smaller than when considering the full physical mass. No such trends are found.

With this final attempt, we can conclude that the random point algorithm is unsuccessful in
finding points which support the mass ratio required by our effective LRSM.

8 Conclusion

Throughout this work, a trinification based GUT model with an added global {SU(3)} family
symmetry was investigated. This model is proposed in [7] as a radiative origin of the SM.

We showed that spontaneous symmetry breaking of the trinification model leads to the LRSM.
Based on a set of predictions inspired by [7], we constructed a low-energy limit of the LRSM
consisting of the tri-triplet, H̃, and the bi-doublet, l̃R, scalars. We further showed that this
effective LRSM can undergo radiative breaking due to the running of m2

R to a negative value,
and that the 3HDM effective theory can be constructed by further integrating out heavy states
at the breaking scale. Motivated by the results of [7], we argued that the 3HDM can break
into U(1)EM, and predicted a realistic SM quark hierarchy and CKM mixing. In summary, we
showed that if the effective LRSM can exist as a low-energy limit of the trinification model,
then it can be relatively simply broken down to the SM gauge group and account for certain
SM phenomenology.
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However, we concluded that although we can tune the model parameters such that colored
scalars and the Φ̃s state are heavy compared to the other scalar fields, we cannot impose a
natural hierarchy between H̃, l̃R and h̃, l̃L when considering tree-level masses at the GUT
scale. Thus, we constructed the effective potential method using a set of general expressions
for the derivatives of the effective potential, found in [8], and used it to calculate the one-loop
scalar mass spectrum in the p2 → 0 approximation. Upon including one-loop mass correc-
tions, we searched for physically viable points for which the scalar hierarchy proposed in the
effective LRSM can be imposed. We thereby attempted to rescue the effective LRSM, and
justify it as a simple and elegant radiative origin of the SM.

Using the results presented throughout this work, we can make several conclusions. First
and foremost, we can conclude that with the random scanning algorithm outlined in Section
7.3.1, we are unable to find any points which pass both the positivity test, as well as support
the imposed mass-squared ratio between heavy and light scalars in the effective LRSM. Due
to the random nature of the scan, we cannot conclude at this point that no such parameter
space points exist. Although we test the algorithm for the mass ratio proposed in the EFT in
[7], for which the desired mass hierarchy is observed already at tree-level, the results of this
test do not let us draw significant conclusions about the capabilities of our scan. They do,
however, let us conclude that our desired scalar hierarchy scenario is significantly more rare
than that investigated in [7]. Ever so, it remains possible that the scan simply misses regions
of the parameter space which satisfy our conditions. The results of the scanning algorithm
applied to the EFT of [7], do, however, lead to the conclusion that a scalar hierarchy between
the h̃, l̃R and the H̃, l̃L states is preserved at one-loop.

With this conclusion, we can discuss several key points for further research. Firstly, a more
intelligent scanning algorithm should be designed. For example, a program similar to the
simulated annealing algorithm used in Section 6 can be implemented by defining the ratio
between light and heavy scalars, and determining which region of the high-scale parameter
space minimizes this ratio. In this way, we can not only determine for which parameter space
points we can achieve a small mass ratio, but we can also investigate how close to the desired
hierarchy we can get. As a second step, a even more sophisticated algorithm can be imple-
mented. For example, a we can design a genetic algorithm, which are commonly implemented
to generate high-quality solutions to optimization and search problems.

Before continuing to discuss further extensions of this work, it is worth noting the implications
of the results. If a more intelligent parameter scan still fails to find regions of the parameter
space for which we can justify the effective LRSM, it still does not imply that it cannot be a
low-energy limit of the trinification model. It would, however, indicate that there is no nat-
ural splitting in the hierarchy of color-singlet scalars at the GUT scale, and prohibit us from
integrating out the h̃ and l̃L fields. We would have to further investigate if such a splitting
does occur at lower energies by keeping all four color-singlet scalars in the EFT. This would
significantly complicate the matching conditions and RG running of the model. However, it
is suggestible that this can still lead to an observable splitting at lower energies, allowing us
to integrate out fields as done in this work at that scale, and preserve the breaking scheme to
the 3HDM.
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Furthermore, this study can be extended by considering one-loop corrections to the matching
conditions in both the scalar and fermion sectors. As was seen in Section 4.3.2, many tree-
level Yukawa and scalar couplings were zero or close to zero. Adding one-loop corrections
could significantly affect these matching conditions, and thereby shift the initial conditions
for the running of these parameters. In the fermion sector, one-loop corrections to n-point
functions must be found diagramatically. In the scalar sector, however, one-loop corrections
to 3, 4-point functions can be computed with the third and fourth derivative formulas given
in [8]. Throughout this work, it was attempted to apply these formulas to the trinification
model, but calculations were hindered by limited computing time and power. Thus, in further
studies, significant optimizations should first be considered.

On a final outlook, if a naturally occurring scalar hierarchy remains unobserved even with
extensions of this work, it can motivate the consideration the supersymmetric version of the
trinification model, proposed in [10]. In this model, a distinct splitting between scalar mass
terms can be observed at the GUT scale at tree-level, and several heavy fields from other
sectors can be integrated out at high energies. These effects, as well as several other key
features discussed throughout [10], suggest that the supersymmetric trinification model may
provide a more favorable topic of research.
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Appendices

A Full trinification breaking scheme

Throughout this Appendix the calculations of the breaking scheme of the trinification model
are continued from Section 3.3.

In addition to breaking the trinification gauge group [SU(3)C × SU(3)L × SU(3)R], the global
symmetry group of the model will also undergo spontaneous symmetry breaking upon place-
ment of the VEV. Finding the unbroken generators and the new symmetry group is done in
the same way as in Section 3.3 for the gauged trinification group.

Each must still satisfy the condition in (3.23), however, throughout this calculation, the i
index should not be suppressed, adding a third transformation term to the condition for
unbroken generators, such that

0 = iωaL
(
T aL
)l

3
δ3
rδ
i
3 − iωaR

(
T aR
)3
r
δi3δ

l
3 + iωaF

(
T aF
)i

3
δl3δ

3
r (A.1)

The case l = 3, r = 3, i 6= 3 yields the relation

0 =
1

2
ωa for a = 4...7

such that just as before, the {SU(3)F} symmetry is broken into a {SU(2)F} where

T 1...3
F

remain unbroken generators.

The next, and more algebraically complex, case to consider is when l = r = i = 3. For this
case, (3.23), with and added i index, is given as

0 = iωaL
(
T aL
)3

3
− iωaR

(
T aR
)3

3
+ iωaF

(
T aF
)3

3
(A.2)

which becomes the condition to satisfy for unbroken generators. Using

T 8 =
λ8

2
=

1

2
√

3

1 0 0

0 1 0

0 0 −2

 (A.3)

we obtain the condition

ω8
L − ω8

R + ω8
F = 0 (A.4)

which, if its met, indicates that some generator which is a linear combination of T 8
L , T 8

R, and
T 8

F will remain unbroken.

Using the results of the previous calculations, which indicate that the T 8
L+R generator remains

unbroken, we satisfy the condition above by introducing the following definitions:
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ω8
L = ωL+R + ωX , ω8

R = ωL+R − ωX

The corresponding unbroken generators are found by expanding the infinitesimal transforma-
tion in terms of these definitions, such that

ω8
LT

8
L + ω8

RT
8
R + ω8

FT
8
F = ω8

LT
8
L + ω8

RT
8
R + (ω8

R − ω8
L)T 8

F (A.5)

= ω8
L(T 8

L − T 8
F) + ω8

R(T 8
R + T 8

F)

= (ωL+R + ωX)(T 8
L − T 8

F) + (ωL+R + ωX)(T 8
R + T 8

F)

= ωL+R (T 8
L − T 8

F)︸ ︷︷ ︸
unbroken:

TL+R ∝ (T 8
L + T 8

R)

+ ωX (T 8
L − T 8

R − 2T 8
F)︸ ︷︷ ︸

unbroken:

TX ∝ (T 8
L − T

8
R − 2T 8

F)

Finally, to obtain the full breaking scheme the accidental global U(1)A and U(1)B symmetries
must be included. As mentioned in Section (2.3), the U(1)B symmetry, referring to the
conservation of baryon number, should remain intact when breaking to a SM-like theory.
Adding the U(1)A symmetry into (A.2), we obtain the condition

0 = iωaL
(
T aL
)3

3
− iωaR

(
T aR
)3

3
+ iωaL

(
T aL
)3

3
+ iωATA δl3δ

3
rδ
i
3 (A.6)

Examining again the case l = r = i = 3, this condition leads to

1√
3

(ω8
L − ω8

R + ω8
F)︸ ︷︷ ︸

ωZ

+ω8
A = 0 (A.7)

such that we need to satisfy

ω8
A −

ωZ√
3

= 0 (A.8)

to obtain an expression for an unbroken generator.

Repeating the same process of re-parameterization and algebraical expansion as in (A.5)
yields the result:

TZ ≡
2

3
(TA +

√
3T 8

F)
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B Gell-Mann matrices

The Gell-Mann matrices are a set of linearly independent traceless Hermitian matrices.
Throughout this work, they are used as the 8 generators of the SU(3)-space, such that
T a = λa

2 . As such, they are essential in the calculations performed in Section 3.3 and Ap-
pendix A, and are given by

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0


findme!!!

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


(B.1)
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C Functional methods in quantum field theory

In this section we examine the quantization of scalar fields using the method of generating
functionals. This formulation is essential in quantizing particles after symmetry breaking in
quantum field theories. Additionally, it will prove essential to this work because we require a
solid formalism in which to construct the effective potential. The effective potential is used
to obtain the full scalar one-loop mass spectrum throughout Chapter 7.

C.1 Path integral formulation

In the path integral formulation of quantum mechanics we compute the transition amplitudes
of particles as a sum over the infinite trajectories which are quantum mechanically allowed.
We define the path integral by dividing the total time of transition, T , into small intervals of
duration ε, and then integrating over the spatial coordinate, qk, of each interval. Thus,

∫
Dq(t) ≡ 1

C(ε)

∏
k

∞∫
−∞

dqk
C(ε)

(C.1)

where C(ε) is a constant [12].

Using this expression, we can write the probability amplitude for a particle to propagate from
and initial state qI to a final state qF using the unitary time evolution operator as

〈
qF|e−iHT |qI

〉
=

∫
Dq(t)ei

∫ T
0 dtL(q̇,q) (C.2)

Essentially, the expression above indicates that the scattering amplitude of the system is given
by the integral over all possible paths such that the initial state is qI and the final state is qF

[26].

C.2 Correlation functions

In quantum field theory, we study interacting theories in which the Hamiltonian

H = H0 +Hint (C.3)

can be studied as a perturbation, Hint, on a free theory, H0. We define the vacuum state of
the free theory as |0〉 with E0 = 0 and the vacuum state of the interacting theory as |Ω〉 with
EΩ 6= 0. Instead of systems of particles we now study quantum fields, which correspond to
particles once the theory has been quantized.

Correlation functions then describe the probability of transition from the vacuum state in the
far past to the vacuum state in the far future, in the presence of some external source which
disturbs the vacuum. They are the Green’s functions of the system, and are defined as the
vacuum expectation value of time ordered product of fields. Thus, the n-point correlation
function is defined as
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〈
φ(x1)...φ(xn)

〉
≡
〈
Ω|Tφ(x1)...φ(xn)|Ω

〉
(C.4)

≡Gn(x1...xn)

We consider a theory with a single scalar field, φ, and add the effect of a coupling to the
external source, J(x), such that

L(φ, ∂µφ) −→ L(φ, ∂µφ) + J(x)φ(x) (C.5)

For a free theory, the two-point correlation function is given by the Feynman Propagator,
defined as

〈
0|Tφ(x)φ(y)|0

〉
=

∫
d4p

(2π)4

ie−ip·(x−y)

(p2 −m2 + iε)
(C.6)

=DF (x− y)

To calculate higher order correlation functions for the interacting theory, however, we need to
relate the correlation functions defined in (C.4) to the expectation value of the fields on the
free vacuum |0〉, which are significantly easier to compute. This results in a general expression
for computing correlation functions using path integrals, as

〈
φ(x1)...φ(xn)

〉
=

∫
Dφ ei

∫ T
−T L[φ] φ(x1) ... φ(xn)∫
Dφ ei

∫ T
−T L[φ]

(C.7)

C.3 Generating functionals

Alternatively, we can introduce a function, Z, dependent on the source, J , which acts as a
generating functional of the correlation functions.

We define the generating functional integral of a correlation function in the presence of the
external source as

Z[J ] =

∫
Dφ ei

∫
d4x(L[φ]+Jφ) (C.8)

The functional derivative relates the change in the functional at hand, to the change in a
function on which the functional depends. Correlation functions can thus be found by taking
the functional derivative of Z[J ], such that

1

in
1

Z[0]

(
∂n

∂J(x1) ... ∂J(xn)

)
Z[J ]

∣∣∣∣∣
J=0

=
〈
φ(x1)...φ(xn)

〉
(C.9)

Mathematically, a generating functional is the sum over the series expansion which expresses
any infinite sequence of numbers as coefficients. Thus, another way to write the above relation
between the generating functional and the n-point correlation functions in a field theory is
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Z[J ] = Z[0]
∞∑
n=0

in

n!

∫
d4x1 ... d

4xn Gn(x1, ... , xn) · J(x1)...J(xn) (C.10)

In Section 7.1.1, we use the functional above to construct the effective action, which allows us
to connect the functional methods formalism described throughout this Appendix to renor-
malization theory. For this, it is important to realize that the coefficients in the expansion of
the generating functional are the connected Green’s functions. Gn is the sum of all connected
Feynman diagrams with n external lines [12].

In conclusion, we can define n-point correlations functions of any quantum field theory using
the generating functional integral, Z[J ]. This functional expresses the correlation functions
as coefficients in an expansion in powers of J .
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D Full RG equations of the effective LRSM

D.1 Running of Yukawa couplings

(4π)2βYπ =

(
− 9

2
g2
L − 3g2

LR −
9

4
g2
R + 4|Yπ|2 + 3|Yµ|2 + 2|Yν |2 + |Yβ |2 + |Yδ|2 + |Yκ|2 + |Yλ|2

)
Yπ

(4π)2βYν =

(
− 9

4
g2
R − 3g2

LR −
9

2
g2
L + 3|Yµ|2 + 2|Yπ|2 + 5|Yν |2 +

1

2
|Yα|+ |Yκ|2 + 2|Yγ |2 + |Yλ|2

)
Yν

(4π)2βYβ =

(
− 9

4
g2
R −

9

4
g2
L + |Yδ|2 + 4|Yβ |2 + |Yγ |2 +

1

2
|Yτ |2 + |Yλ|2 + |Yπ|2 + |Yα|2 + 3[|Yζ |2

+ |Yη|2 + |Yε|2 + |Yθ|2]

)
Yβ

(4π)2βYτ =

(
2|Yκ|2 + |Yτ |2Yτ + |Yλ|2 + 4|Yα|2 +

3

2
|Yτ |2 + 2|Yβ |2

)
Yτ

(4π)2βYγ =

(
− 9

4
g2
L − 6g2

LR −
9

4
g2
R + |Yα|2 + 3|Yη|2 + 3|Yζ |2 +

1

2
|Yκ|2 + |Yδ|2 + 3|Yθ|2

+ 2|Yν |2 + |Yβ |2 + 3|Yε|2 + |Yγ |2
)
Yγ

(4π)2βYκ =

(
− 9

4
g2
R − 3g2

LR|Yτ |2 + 3|Yµ|2 + |Yγ |2 + |Yλ|2 + 2|Yπ|2 + 4|Yα|2 + 5|Yκ|2 + 2|Yν |2
)
Yκ

(4π)2βYλ =

(
− 3g2

LR −
9

4
g2
R + |Yκ|2 +

1

2
|Yτ |2 + 3|Yλ|2 + 3|Yµ|2 + 2[|Yδ|2 + |Yβ |2 + |Yν |2 + |Yπ|2]

)
Yλ

(4π)2βYδ =

(
− 9

4
g2
R + |Yγ |2 −

9

4
g2
L + 3|Yη|2 − 6g2

LR + |Yπ|2 + |Yβ |2 + |Yα|2 + 3|Yζ |2 + |Yλ|2

+ 4|Yδ|2 + 3|Yθ|2 + 3|Yε|2
)
Yδ

(4π)2βYζ =

(
− 9

4
g2
L −

9

4
g2
R −

2

3
g2
LR − 8g2

c + |Yβ |2 + 3|Yθ|2 + |Yα|2 + |Yγ |2 + 3|Yθ|2 + 3|Yη|2 + |Yδ|2

+ 3|Yε|2 + 4|Yζ |2
)
Yζ

(4π)2βYη =

(
− 2

3
g2
LR −

9

4
g2
R −

9

4
g2
L − 8g2

c + 3[|Yζ |2 + |Yθ|2 + |Yε|2] + |Yα|2 + |Yδ|2 + |Yγ |2

+ |Yβ |2 + 6|Yη|2
)
Yη

(4π)2βYε =

(
− 9

4
g2
L −

9

4
g2
R −

2

3
g2
LR − 8g2

c +
1

2
|Yµ|2 + 6|Yε|2 + 3|Yη|2 + |Yγ |2 + 3|Yθ|2 + |Yβ |2

+ |Yα|2 + 3|Yζ |2 + 3|Yη|2 + |Yδ|2
)
Yε

(4π)2βYα =

(
− 9

4
g2
R −

9

4
g2
L + |Yδ|2 +

11

2
|Yα|2 + 3|Yθ|2 + 2|Yκ|2 + |Yτ |2 + |Yβ |2 + 3|Yε|2 + 3|Yζ |2

+
1

2
|Yν |2 + 3|Yη|2 + |Yγ |2

)
Yα

(4π)2βYθ =

(
− 2

3
g2
LR −

9

4
g2
R − 8g2

c −
9

4
g2
L + |Yα|2 + |Yδ|2 + 3[|Yη|2 + |Yε|2] + |Yγ |2

+ |Yβ |2 + 6[|Yθ|2 + |Yζ |2]

)
Yθ

(4π)2βYµ =

(
− 8g2

c −
5

3
g2
LR −

9

4
g2
R + 6|Yµ|2 + |Yη|2 + |Yκ|2 + 2|Yν |2 + 2|Yπ|2 + |Yλ|2 + |Yε|2

)
Yµ
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D.2 Running of quartic couplings

(4π)2βλa = 96λaλj + 2λ2
e + 4λeλl + 128λhλi − 9λag

2
L + 4λ2

l + 8λ2
n + 16λ2

o + 12λa|Yζ |2

− 2|Yγ |4 + 4λa|Yβ |2 + 320λ2
j − 2|Yα|4 + 4λa|Yδ|2 + 12λa|Yθ|2 + 8λdλn + 96λaλi + 8λdλo

+ 320λ2
i + 128λiλj +

3

4
g2
Lg

2
R − 9λag

2
R + 4λ2

d +
9

8
g4
L + 12λa|Yε|2 + 320λ2

h +
9

8
g4
R + 8λdλm

− 6|Yη|4 − 6|Yε|4 − 2|Yδ|4 − 6|Yζ |4 + 128λhλj + 16λnλo − 2|Yβ |4 + 4λa|Yα|2 − 6|Yζ |4

+ 48λ2
a + 4λa|Yγ |2 + 8λ2

m + 8λmλn + 96λaλh + 12λa|Yη|2 + 16λmλo

(4π)2βλb = 32λ2
b − 16λbλg + 32λnλo − 12λbg

2
LR + 3g2

LRg
2
R − 2|Yκ|4 + 4λb|Yλ|2 + 8λb|Yν |2 − 6|Yµ|4

− 4|Yπ|4 + 16λdλm + 32λmλo + 6g4
LR + 4λb|Yκ|2 + 12λb|Yµ|2 + 8λ2

d + 16λ2
m + 16λdλo

+ 16λ2
n − 2|Yλ|4 + 16λdλn + 16λ2

g − 9λbg
2
R +

9

8
g4
R + 4λ2

k + 32λ2
o + 8λb|Yπ|2

+ 16λmλn − 4|Yν |4

(4π)2βλc = 8λ2
e + 8λ2

k − 2|Yτ |4 + 16λ2
l + 24λ2

c + 16λeλl + 4λc|Yτ |2 + 16λmλn − 4|Yν |4

(4π)2βλd = − 6λdg
2
LR + 2λd|Yβ |2 + 4λeλk + 6λd|Yµ|2 − |Yβ |2|Yλ|2 + 32λaλm + 192λhλo − 3|Yε|2|Yµ|2

+ 6λd|Yθ|2 − |Yδ|2|Yπ|2 − 32λgλo − 3|Yµ|2|Yε|2 + 20λbλd + 8λkλl − |Yα|2|Yν |2 + 48λdλh

+ 2λd|Yλ|2 + 4λd|Yπ|2 + 8λ2
n − |Yγ |2|Yν |2 + 96λhλn − |Yκ|2|Yγ |2 − |Yγ |2|Yν |2 − |Yδ|2|Yπ|2

+ 2λd|Yα|2 + 6λd|Yη|2 + 48λdλj − |Yγ |2|Yκ|2 + 16λbλm − |Yπ|2|Yβ |2 − 16λgλm

− |Yα|2|Yν |2 +
9

4
g4
R − |Yλ|2|Yδ|2 − |Yδ|2|Yλ|2 − |Yπ|2|Yδ|2 − 9λdg

2
R − |Yλ|2|Yβ |2 + 6λd|Yε|2

+ 2λd|Yγ |2 − |Yλ|2|Yβ |2 + 4λ2
d + 96λhλm + 96λjλn − |Yγ |2|Yν |2 + 32λjλm − |Yλ|2|Yδ|2

− |Yκ|2|Yα|2 − |Yν |2|Yα|2 + 16λbλn + 48λdλi −
9

2
λdg

2
L + 64λjλo + 96λiλm − |Yπ|2|Yβ |2

− 16λgλn − |Yδ|2|Yπ|2 − |Yν |2|Yγ |2 − 3|Yµ|2|Yε|2 + 16λbλo − 3|Yµ|2|Yε|2 − |Yβ |2|Yπ|2

− |Yα|2|Yκ|2 − 8λdλg + 32λiλn + 64λiλo − |Yλ|2|Yβ |2 − |Yδ|2|Yλ|2 + 32λaλn

− |Yα|2|Yκ|2 + 36λaλd − |Yγ |2|Yκ|2 + 32λaλo − |Yν |2|Yγ |2 + 2λd|Yκ|2 − |Yα|2|Yκ|2

+ 4λd|Yν |2 + 32λ2
o − |Yν |2|Yα|2 + 2λd|Yδ|2 + 8λ2

m − |Yγ |2|Yκ|2 + 6λd|Yζ |2

(4π)2βλe = 32λaλl + 32λjλl − |Yα|2|Yτ |2 + 36λaλe + 8λcλl + 8λdλk + 96λiλl + 16λkλm

+ 2λe|Yβ |2 + 6λe|Yη|2 + 12λcλe + 6λe|Yε|2 − |Yβ |2|Yτ |2 + 4λ2
e + 6λe|Yζ |2

+ 96λhλl + 8λkλn −
9

2
λeg

2
L − |Yβ |2|Yτ |2 + 2λe|Yδ|2 − |Yα|2|Yτ |2 + 48λeλh + 48λeλi

+ 2λe|Yτ |2 + 8λ2
l + 2λe|Yα|2 + 16λkλo − |Yτ |2|Yα|2 − |Yτ |2|Yβ |2 + 48λeλj + 6λe|Yθ|2

− |Yα|2|Yτ |2 − |Yβ |2|Yτ |2 −
9

2
λeg
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R + 2λe|Yγ |2

(4π)2βλf = + 4λf |Yπ|2 − |Yκ|2|Yτ |2 + 6λf |Yµ|2 − |Yτ |2|Yλ|2 −
9

2
λfg

2
R − |Yλ|2|Yτ |2 − 16λfλg

− Yτ |Yκ|2Yτ + 2λf |Yκ|2 + 4λf |Yν |2 − 6λfg
2
LR + 2λf |Yλ|2 + 2λf |Yτ |2

+ 4λbλf + 12λcλf + 8λfλk
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(4π)2βλg = 12λg|Yµ|2 + 3g2
LRg

2
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1

2
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n −
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5

4
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|Yν |4 + 4λg|Yκ|2
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2
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k + 16λnλo − 9λgg
2
R

− 5

8
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m + 16λmλo

(4π)2βλh = 4λh|Yγ |2 −
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|Yη|2|Yε|2 + 24λaλh − 32λhλj −
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l − 9λhg
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|Yζ |2|Yθ|2 −

9

32
|Yθ|2|Yζ |2 +

5

32
|Yγ |4 +

5

32
|Yδ|4 +

15

32
|Yζ |4

+
5

32
|Yα|4 + 4λh|Yδ|2 +

15

32
|Yε|4 + 12λh|Yε|2 − λ2

m − 2λmλo − λ2
n

− 2λnλo − 9λhg
2
R − 32λ2

i − 32λ2
j +

15

32
|Yζ |4 + 4λh|Yα|2 +

15

32
|Yη|4

+ 12λh|Yζ |2 + 64λiλj + 12λh|Yθ|2

(4π)2βλi = 4λi|Yα|2 −
1

2
λ2
l −

3

16
g2
Lg

2
R − 32λhλi + 12λi|Yε|2 − 2λ2

o + 64λ2
i

− 9λig
2
R +

5

32
|Yβ |4 − 9λig

2
L + 4λi|Yγ |2 +

5

32
|Yγ |4 +

5

32
|Yδ|4 +

15

32
|Yζ |4

− 32λiλj −
9

32
|Yε|2|Yη|2 +

5

32
|Yα|4 − 32λ2

h + 64λhλj +
15

32
|Yε|4

− 9

32
|Yη|2|Yε|2 + 4λi|Yβ |2 − λ2

m − 2λmλo −
3

32
|Yζ |2|Yθ|2 + 4λi|Yδ|2

+ 12λi|Yθ|2 − 32λ2
j + 12λi|Yη|2 +

15

32
|Yζ |4 + 12λi|Yζ |2 +

15

32
|Yη|4 + 24λaλi

− 3

32
|Yθ|2|Yζ |2

(4π)2βλj = − 32λhλj − 9λjg
2
L + 4λj |Yγ |2 + 64λ2

j − 2λ2
o +

5

32
|Yβ |4 + 12λj |Yε|2 + 12λj |Yζ |2 + 24λaλj

− 9

32
|Yζ |2|Yθ|2 + 4λj |Yδ|2 +

3

8
g2
Lg

2
R −

9

32
|Yθ|2|Yζ |2 +

5

32
|Yγ |4

+
5

32
|Yδ|4 + 4λj |Yα|2 +

15

32
|Yζ |4 − 32λiλj +

5

32
|Yα|4 − 32λ2

h − 9λjg
2
R

+
15

32
|Yε|4 + 64λhλi + 12λj |Yη|2 − 32λ2

i − λ2
n − 2λnλo

+
3

32
|Yε|2|Yη|2 +

15

32
|Yζ |4 + 4λj |Yβ |2 +

15

32
|Yη|4 + 12λj |Yθ|2

+
3

32
|Yη|2|Yε|2
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(4π)2βλk = 8λeλn + 8λeλo + 4λk|Yν |2 + 2λk|Yτ |2 + 12λbλk + 8λcλk + 2λk|Yλ|2 + 8λlλn

− 1

2
|Yτ |2|Yκ|2 + 8λdλl −

1

2
|Yκ|2|Yτ |2 + 8λeλm + 6λk|Yµ|2 + 4λk|Yπ|2

+ 2λk|Yκ|2 −
1

2
|Yκ|2|Yτ |2 + 8λdλe + 12λ2

k −
1

2
Yτ |Yκ|2Yτ

− 6λkg
2
LR −

9

2
λkg

2
R

(4π)2βλl = + 2λl|Yα|2 +
1

4
|Yτ |2|Yβ |2 + 16λjλl +

1

4
|Yβ |2|Yτ |2 + 8λeλl −

9

2
λlg

2
L +

1

4
|Yα|2|Yτ |2

+ 2λl|Yγ |2 + 6λl|Yζ |2 +
1

4
|Yα|2|Yτ |2 + 4λaλl + 2λl|Yτ |2 − 8λkλm

+ 2λl|Yβ |2 + 4λcλl − 48λhλl +
1

2
|Yβ |2|Yτ |2 + 2λl|Yδ|2

+
1

2
|Yβ |2|Yτ |2 − 48λiλl + 8λ2

l + 6λl|Yε|2 −
9

2
λlg

2
R + 6λl|Yη|2

+ 6λl|Yθ|2 − 8λkλo

(4π)2βλm = +
1

2
|Yπ|2|Yδ|2 +

1

4
|Yα|2|Yκ|2 +

1

4
|Yν |2|Yγ |2 +

3

2
|Yµ|2|Yε|2 + 2λm|Yλ|2 +

1

4
|Yγ |2|Yκ|2

+
1

2
|Yν |2|Yα|2 +

3

2
|Yµ|2|Yε|2 +

1

2
|Yγ |2|Yκ|2 + 32λjλo − 9λmg

2
R

+
1

4
|Yδ|2|Yλ|2 − 48λiλm + 2λm|Yκ|2 +

1

2
|Yα|2|Yν |2 +

1

2
|Yν |2|Yα|2

+
1

4
|Yβ |2|Yπ|2 + 16λjλm +

1

2
|Yδ|2|Yπ|2 +

1

2
|Yλ|2|Yβ |2 +

1

2
|Yκ|2|Yγ |2

− 96λhλo − 4λkλl +
3

4
|Yε|2|Yµ|2 − 32λiλo + 2λm|Yβ |2

+
1

4
|Yβ |2|Yλ|2 + 2λm|Yα|2 +

1

4
|Yγ |2|Yν |2 +

3

2
|Yµ|2|Yε|2 + 6λm|Yη|2

+
1

2
|Yγ |2|Yκ|2 −

9

2
λmg

2
L + 6λm|Yε|2 + 6λm|Yµ|2 +

1

2
|Yλ|2|Yβ |2

+
1

4
|Yδ|2|Yπ|2 + 8λdλm +

1

4
|Yδ|2|Yλ|2 + 6λm|Yζ |2 +

1

4
|Yα|2|Yκ|2

+ 4λbλm − 48λhλm +
1

2
|Yδ|2|Yπ|2 + 2λm|Yγ |2 + 16λnλo + 2λm|Yδ|2

+
1

4
|Yπ|2|Yβ |2 + 6λm|Yθ|2 +

1

4
|Yα|2|Yν |2 + 4λm|Yν |2 +

1

2
|Yλ|2|Yβ |2

+ 4λaλm + 8λgλm + 16λgλo + 8λ2
m − 6λmg

2
LR + 4λm|Yπ|2
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(4π)2βλn = 6λn|Yε|2 + 4λn|Yπ|2 +
1

2
|Yπ|2|Yβ |2 − 32λjλo +

1

4
|Yα|2|Yκ|2 +

1

4
|Yν |2|Yγ |2 +

1

4
|Yγ |2|Yκ|2

− 6λng
2
LR +

1

4
|Yγ |2|Yν |2 + 6λn|Yη|2 +

1

2
|Yν |2|Yα|2 +

1

2
|Yλ|2|Yδ|2

+ 6λn|Yµ|2 +
3

2
|Yµ|2|Yε|2 + 8λ2

n + 2λn|Yα|2 + 2λn|Yκ|2 + 6λn|Yθ|2

+
1

2
|Yπ|2|Yβ |2 + 6λn|Yζ |2 +

1

4
|Yλ|2|Yβ |2 +

1

2
|Yν |2|Yα|2 +

1

4
|Yβ |2|Yπ|2

+ 8λdλn +
1

2
|Yκ|2|Yγ |2 − 96λhλo +

3

4
|Yε|2|Yµ|2 +

1

4
|Yβ |2|Yλ|2

+
1

2
|Yδ|2|Yλ|2 − 48λhλn +

1

4
|Yγ |2|Yν |2 + 4λbλn +

3

2
|Yµ|2|Yε|2

+ 2λn|Yγ |2 +
1

4
|Yλ|2|Yδ|2 − 48λjλn +

1

2
|Yγ |2|Yκ|2 + 4λn|Yν |2

+
1

4
|Yδ|2|Yπ|2 + 4λaλn +

1

4
|Yδ|2|Yλ|2 +

1

4
|Yδ|2|Yπ|2

+
3

4
|Yµ|2|Yε|2 + 8λgλn − 9λng

2
R +

1

4
YπYδYλYβ + 32λiλo

+
1

4
|Yγ |2|Yκ|2 +

1

4
|Yα|2|Yν |2 −

9

2
λng

2
L +

1

4
|Yα|2|Yκ|2 + 16λiλn

+
1

4
|Yα|2|Yν |2 + 2λn|Yλ|2 −

1

4
YλYβYπYδ + 16λgλo + 2λn|Yβ |2

+ 16λmλo + 2λn|Yδ|2

(4π)2βλo = − 1

8
|Yβ |2|Yπ|2 −

1

4
|Yν |2|Yα|2 + 6λo|Yζ |2 −

3

8
|Yµ|2|Yε|2 + 2λo|Yα|2 −

1

8
|Yα|2|Yκ|2

+
1

8
YνYαYκYγ −

3

4
|Yµ|2|Yε|2 + 2λo|Yδ|2 −

1

8
|Yβ |2|Yλ|2

+ 48λhλo −
1

8
|Yπ|2|Yβ |2 −

1

8
|Yγ |2|Yκ|2 − 16λiλo −

1

8
|Yα|2|Yκ|2

− 8λgλo + 6λo|Yε|2 + 2λo|Yγ |2 −
3

4
|Yµ|2|Yη|2 −

9

2
λog

2
L

− 3

4
|Yµ|2|Yε|2 −

3

8
|Yη|2|Yµ|2 + 2λo|Yκ|2 −

1

4
|Yν |2|Yα|2 + 8λdλo

− 16λjλo −
1

8
YκYγYνYα − 9λog

2
R −

1

8
|Yγ |2|Yκ|2 + 4λo|Yν |2

− 1

8
|Yα|2|Yν |2 + 2λo|Yβ |2 + 6λo|Yη|2 + 4λbλo −

1

8
|Yν |2|Yγ |2

+ 4λaλo − 6λog
2
LR + 2λo|Yλ|2 −

1

8
|Yγ |2|Yν |2 −

1

4
|Yδ|2|Yπ|2

− 1

8
|Yα|2|Yν |2 −

1

8
|Yδ|2|Yλ|2 + 16λnλo + 6λo|Yµ|2 −

1

8
|Yλ|2|Yβ |2

+ 32λ2
o + 6λo|Yθ|2 −

3

8
|Yη|2|Yµ|2 + 8λmλn −

1

8
|Yδ|2|Yλ|2

− 1

4
|Yκ|2|Yγ |2 + 4λo|Yπ|2 −

1

4
|Yγ |2|Yκ|2 + 16λmλo −

3

8
|Yε|2|Yµ|2

D.3 Running of the Majorana mass term

(4π)2βmΦ =
(
3|Yκ|2 + 2|Yτ |2 + 5|Yα|2

)
mΦ
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E One-Loop tadpole condition

The one-loop tadpole condition for a stable vacuum given by (7.29) is found throughout
Section 7.2.6. It is calculated in Mathematica and found to be

ω =
v

36 (λ1 + λ2 + λ3 + λ4)
(E.1)

{(
17g4 − 27g4log

(
g2

4

)
− 24g4log

(
2g2

3

)
+ 108y4

(
log

(
y2

2

)
− 1

)

+ 9

[
− 3

(
log

[
1

2

(√
2κ+ α1 + α3 − 2[λ1 + λ2 + λ3 + λ4]

)]
− 1

)
(√

2κ+ 2[α1 + α3]
)(√

2κ+ α1 + α3 − 2[λ1 + λ2 + λ3 + λ4]
)

− 6

(
log

[
1

2
(α1 + α2 + α3 + α4 − 2[λ1 + λ2 + λ3 + λ4])

]
− 1

)
(α1 + α2 + α3 + α4) (α1 + α2 + α3 + α4 − 2(λ1 + λ2 + λ3 + λ4))

+ 16 (log [(λ2 + λ3)]− 1) (λ1 + λ3)(λ1 + λ4)

+ 16 (log [(λ2 + λ4)]− 1) (λ1 + λ3)(λ1 + λ4)

+ 16 (log [(λ3 + λ4)]− 1) (λ1 + λ3)(λ1 + λ4)

+ 32 (+log [(λ2 + λ3 + λ4)]− 1)

λ1(λ2 + λ3 + λ4)− 12 (−1 + log [2(λ1 + λ2 + λ4)]) (λ1 + λ2 + λ3 + λ4)2

− 3

(
−1 + log

[
1

2

(√
2κ− α1 − α3 + 2[λ1 + λ2 + λ3 + λ4]

)])
(√

2κ− 2(α1 − α3)
)(√

2κ− α1 − α3 + 2[λ1 + λ2 + λ3 + λ4]
)

− 24

(
−1 + log

[
1

2
(α1 − 2[λ1 + λ2 + λ3 + λ4])

])
α1[α1 − 2(λ1 + λ2 + λ3 + λ4)]

− 12

(
−1 + log

[
1

2
(α1 + α2 − 2[λ1 + λ2 + λ3 + λ4])

])
(α1 + α2)[α1 + α2 − 2(λ1 + λ2 + λ3 + λ4)]

] ) }

where we have made the substitution κ = γ
v .
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