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Abstract

The two-Higgs-doublet model is a promising extension of the Standard Model of particle
physics, but it contains a large number of free parameters. With the intention to constrain
this freedom, the model has been studied under different symmetries. In particular, a full
classification of Abelian global symmetries has been presented in 2011. However, breaking
global symmetries spontaneously leads to unobserved Goldstone bosons. This thesis, how-
ever, covers a study of the two-Higgs-doublet model under local gauge symmetries, where
the origin of Goldstone bosons is avoided from the beginning. In order to do this, we
examine the global symmetry classification from 2011 in the context of gauge anomalies,
which provides an important criterion to investigate the consistency of a gauge theory. As
our main results, we find a total of thirteen anomaly-free gauge models that are presented
in detail. In addition, we perform a more in-depth study of the simplest gauge model
we found and demonstrate its ability to provide physical observables in agreement with
experimental data using the example of the CKM matrix.

Populärvetenskaplig sammanfattning

Die Entdeckung des Higgs-Teilchens im Jahr 2012 markiert einen weiteren Meilenstein
in der Erfolgsgeschichte des Standardmodells der Teilchenphysik. Als einziges Elemen-
tarteilchen mit Spin Null ist es essentieller Bestandteil für die vollständige Erklärung der
Teilchenmassen im Rahmen des sogenannten Higgs-Mechanismus.

Der experimentelle Nachweis dieses „Gottesteilchens“ ist nicht nur eine beeindruckende
technische Leistung, sondern er eröffnet auch die Möglichkeit, das Standardmodell um
zusätzliche Higgs-Felder zu erweitern. Die Beschränkung auf ein einzelnes Higgs-Feld ist
zwar ökonomisch, jedoch nicht theoretisch fundiert.

Durch die Vielzahl an potentiellen Wechselwirkungen der zusätzlichen Higgs-Felder mit
den Feldern des Standardmodells, weisen Multi-Higgs-Modelle eine hohe Anzahl an neuen
Parametern auf, die fixiert werden müssen, um physikalische Vorhersagen treffen zu können.

Eine Möglichkeit zur Reduktion der Menge an freien Parametern ist das Auferlegen von
Symmetrien, was nach dem sogenannten Noether-Theorem das Auftreten von Erhaltungs-
größen, also fixierten Parametern, herbeiführt.

In der vorliegenden Arbeit untersuchen wir die Erweiterung des Standardmodells um ein
zweites Higgs-Feld, auch bekannt als 2-Higgs-Dublett-Modell, auf die Möglichkeit der
Auferlegung einer abelschen Eichsymmetrie. Dabei liegt der Fokus auf der Vermeidung
von Symmetrieverletzungen auf dem Quantenlevel, sogenannten Eichanomalien, welche
die Konsistenz der zugrunde liegenden Eichtheorie zerstören würden.
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1 Introduction

The discovery of the Higgs boson at the LHC in 2012 [1], [2] represents a significant con-
firmation of one of the most experimentally tested and verified theories in modern particle
physics: The Standard Model (SM hereafter). Due to its ability to provide reliable predic-
tions of observables with high precision, it is considered one of the biggest achievements of
theoretical physics of the last century.

However, despite its success, there are experimental facts that cannot be explained by the
SM, for instance the lack of a viable dark matter candidate [3], the strong CP problem [4]
or the hierarchy of quark masses [5]. Thus, a broad field of theoretical physics is devoted
to what is known as physics beyond the SM (BSM).

The SM features three generations of fermions. With the first Higgs field experimentally
confirmed, there is no theoretical reason to exclude the existence of multiple Higgs fields.
Hence, there is a big interest in models with extended Higgs sectors [6]. The simplest
one is the prominent two-Higgs-doublet model (2HDM hereafter), where the SM particle
content is extended by a second scalar Higgs field. It provides options for spontaneous
CP violation, baryogenesis, dark matter candidates as well as a solution to the strong CP
problem [7].

A common downside of all multi-Higgs models is the large number of parameters that need
to be fixed in order to make predictions. Thankfully, it is possible to reduce the number of
free parameters by imposing symmetries on the model, which lead to conserved quantities,
as stated in the famous Noether’s theorem [8].

In the case of Abelian symmetries, a full study and classification of physical models for the
quark sector has been done by Ferreira and Silva in 2011 [9]. Starting from imposing the
most general case of a global flavour-dependent symmetry, the resulting Yukawa textures
were derived and presented for discrete and continuous symmetries, respectively.

In conformity with the SM, the 2HDM relies on spontaneous symmetry breaking as the
mechanism to provide masses for the gauge bosons. Having said this, the restriction of
parameters via a continuous global symmetry is problematic, because when spontaneously
broken, a new massless scalar particle appears [10]. However, these so-called Goldstone
bosons have not been observed experimentally.

One possible solution that avoids the appearance of Goldstone bosons is the restriction
of parameters via local symmetries in the framework of gauge theory [4]. Unfortunately,
the consistency of a gauge theory may be spoiled by quantum corrections to the symme-
try, known as gauge anomalies [11]. Thus, any coherent gauge theory has to be free of
anomalies.

In this thesis, we will examine the models presented by [9] in the context of anomalies and
investigate if some of the initially global symmetries can be promoted to gauge symmetries.

The thesis is organised as follows: Section 2 provides the theoretical background needed
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for the understanding of anomalies. We present a full derivation of their origin, as well as
a discussion of the importance of anomalies in the context of the SM.

Throughout section 3, we present the 2HDM in more detail and discuss how the constrained
models were derived from the global Abelian symmetries in [9]. After emphasising the
necessity for gauge symmetries, we present how the models are examined in the context of
anomalies and derive the relevant system of equations that ensures anomaly cancellation.

Section 4 expands on how the cancellation of anomalies is implemented numerically and
represents the main section of the thesis. It is divided into two parts: In the first part, we
present the technicalities and results for a study of the quark sector. In the second part,
the studies are extended to include the lepton sector and more results are presented.

In section 5, we perform a more in-depth study on one of the presented (anomaly-free)
models. We demonstrate its ability to reproduce the CKM matrix as an illustration of the
physical applicability of the models presented in this thesis.

Finally, conclusion and outlook are presented in section 6.
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2 Theory part

2.1 Lie groups and generators

The most relevant groups in physics are Lie groups. Throughout this thesis, the relevant
groups are simple Lie groups, which are characterised by the fact that all elements are
continuously connected to the identity element via

g(x) = e−iΛ(x) with Λ(x) = Λa(x)T a. (2.1)

So there is a set of operators T a which determine the structure of the Lie group and
numbers Λa(x) that parametrise the different group elements.1 The T a are called group
generators. They form a Lie algebra, which means they satisfy the commutation relations[

T a, T b
]

= ifabcT c, (2.2)

where the totally antisymmetric fabc are numbers called structure constants [12]. If all gen-
erators commute, that means all fabc ≡ 0, the Lie group is said to be Abelian. Otherwise,
it is called non-Abelian.2

For our purposes, the Abelian group of interest is U(1), with the generator TU(1) = 1. In
addition, there are two non-Abelian groups of importance, namely SU(2) and SU(3). Their
generators are given as

T jSU(2) =
σj

2
and T aSU(3) =

λa

2
(2.3)

respectively, where σj label the Pauli matrices and λa are the Gell-Mann matrices (for
more details see A.1). This means that their generators are all Hermitian

T jSU(2)

†
= T jSU(2), T aSU(3)

† = T aSU(3) (2.4)

and traceless

Tr
(
T jSU(2)

)
∝ Tr

(
σj
)
≡ 0, Tr

(
T aSU(3)

)
∝ Tr (λa) ≡ 0. (2.5)

2.2 Noether’s theorem and conserved currents

In Lagrangian field theory we have the Lagrangian density L(φ, ∂µφ) that contains the
information about our system. To be more precise, taking the integral over four dimensions
(three spatial and one time component) gives the relevant quantity S, called "action".

S =

∫
L(φa, ∂µφa) d4x (2.6)

1The space-time dependence is not relevant for the general discussion of Lie groups, but will come into
play when we look at Lie groups in the context of gauge groups later.

2We will also encounter products of simple Lie groups, referred to as semisimple Lie groups. Their
elements are still continuously connected and the discussion of this section holds.
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The so-called "principle of least action" states that a system in a given state evolves to
another state along the path of minimal action [10]. This leads to the Euler-Lagrange
equations of motion:

∂µ

(
∂L

∂(∂µφa)

)
=

∂L
∂φa

(2.7)

In classical field theory, every continuous symmetry of a system corresponds to a conserved
quantity, usually called current - a fact that is summarised in Noether’s theorem. The idea
is to look at the infinitesimal case of the symmetry transformation on the fields

φa(x)→ φ′a(x) = φa(x) + ε∆φa(x), (2.8)

where the deformations of the fields ∆φa under the given transformation are regulated
by the infinitesimal parameter ε.3 For the equations of motion to hold (symmetry!), the
Lagrangian must be invariant up to a 4-divergence, which can be written as

ε∆L(x) = L′(x)− L(x)
!

= ε∂µJ µ(x), (2.9)

with J µ(x) being some function. On the other hand, the shift in the Lagrangian under
the symmetry transformation is given by

ε∆L =
∂L
∂φa

(ε∆φa) +

(
∂L

∂(∂µφa)

)
∂µ(ε∆φa)

= ε∂µ

(
∂L

∂(∂µφa)
∆φa

)
+ ε

[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
︸ ︷︷ ︸

=0

∆φa,
(2.10)

where the second term vanishes due to the equations of motion (2.7). Hence, by combining
(2.9) and (2.10), one finds that there is a conserved current

jµ(x) =
∂L

∂(∂µφa)
(x)∆φa(x)− J µ(x) for which ∂µj

µ(x) = 0. (2.11)

2.3 Abelian anomalies

2.3.1 Abelian currents

In order to find the Abelian currents, consider the QED Lagrangian as an example. Using
the standard Feynman slash notation /a := γµaµ with γµ denoting the Dirac matrices (see
appendix A.2), it can be written as

LQED = ψ(i/∂ −m+ e /A)ψ − 1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ, (2.12)

3∆φa denotes the full change under the symmetry, composed of the change in fields and the change in
coordinates. Thus, this discussion is not limited to internal symmetries.
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where Aµ is the Abelian gauge field and the coupling is labelled as e. Amongst others, it
is now possible to construct the following currents:

vector jµ = ψγµψ (2.13)

axial jµ5 = ψγµγ5ψ (2.14)

pseudoscalar P = ψγ5ψ (2.15)

Using the equations of motion (2.7) and the Lagrangian (2.12), it can be checked that

∂µj
µ = 0 and ∂µj

µ
5 = 2imP, (2.16)

so the vector current is indeed conserved; same is true for the axial current in the case of
massless fermions, i.e. m = 0 [11].

2.3.2 Abelian Ward identities

In particle physics, we are dealing with quantised energy, giving rise to quantum fields.
Therefore, we have to find an equivalent to the classical conservation laws (2.16) in quantum
field theory, known as Ward identities.

Considering the derivate of the time ordered product, denoted by the time ordering operator
T (see appendix A.3), of a current jµ(x) and an operator Ô(y) yields the identity

∂xµ

(
T jµ(x)Ô(y)

)
= T ∂xµjµ(x)Ô(y) +

[
j0(x), Ô(y)

]
δ(x0 − y0), (2.17)

where δ(x) labels the one-dimensional Dirac delta function. The last term is known as
Schwinger term [13]. The above identity allows one to study the 3-point functions

〈0|T jµ(x)jν(y)jλ5 (z)|0〉 and 〈0|T jµ(x)jν(y)P (z)|0〉 (2.18)

in momentum space. Defining the amplitudes

T µνλ(k1, k2, q) := i

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµ(x)jν(y)jλ5 (z)|0〉 (2.19)

T µν(k1, k2, q) := i

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµ(x)jν(y)P (z)|0〉 , (2.20)

it can be found by partial integration that, up to a surface term,

qλT
µνλ = −

∫
d4x d4y d4z ∂zλ

(
eik1x+ik2y−iqz

)
〈0|T jµ(x)jν(y)jλ5 (z)|0〉 (2.21)

=

∫
d4x d4y d4z eik1x+ik2y−iqz∂zλ

(
〈0|T jµ(x)jν(y)jλ5 (z)|0〉

)
(2.22)

=

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµ(x)jν(y)∂zλj

λ
5 (z)|0〉+ Schwinger term, (2.23)
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where (2.17) was used in the last step. Neglecting the Schwinger term (for a discussion see
[14]) and using the classical conservation laws from (2.16), it follows that

qλT
µνλ = 2mi

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµ(x)jν(y)P (z)|0〉 = 2mT µν . (2.24)

This relation is known as axial Ward identity. Analogously, it can be checked that, up to
Schwinger terms, the following vector Ward identities hold [11]:

k1µT
µνλ = −

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T ∂xµjµ(x)︸ ︷︷ ︸

=0

jν(y)jλ5 (z)|0〉 = 0

k2νT
µνλ = −

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµ(x) ∂yν j

ν(y)︸ ︷︷ ︸
=0

jλ5 (z)|0〉 = 0

(2.25)

2.3.3 Anomalous Abelian Ward identities

In this section, the Abelian Ward identities, as introduced in (2.24) and (2.25), will be re-
calculated directly by the use of Feynman rules. It will turn out that there are unavoidable
corrections, which means that the currents are not conserved at quantum level. This
phenomenon is called an anomaly. The derivation presented here follows the logic of [11].

The amplitudes defined in (2.19) and (2.20) correspond to the Feynman diagrams shown
in Figure 1 and Figure 2, respectively [15]:

q

p

p− k1

p− q

k1

k2

jλ5

jµ

jν

q

p

p− k2

p− q

k2

k1

jλ5

jν

jµ

Figure 1: Contributing Feynman diagrams for T µνλ.

q

p

p− k1

p− q

k1

k2

P

jµ

jν

q

p

p− k2

p− q

k2

k1

P

jν

jµ

Figure 2: Contributing Feynman diagrams for T µν .
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Using Feynman rules (a nice summary can be found in [3]), one finds

T µνλ = −i
∫

d4p

(2π)4
Tr

(
i

/p−m
γλγ5 i

/p− /q −m
γν

i

/p− /k1 −m
γµ
)

+

(
k1 ↔ k2

µ↔ ν

)
(2.26)

as well as

T µν = −i
∫

d4p

(2π)4
Tr

(
i

/p−m
γ5 i

/p− /q −m
γν

i

/p− /k1 −m
γµ
)

+

(
k1 ↔ k2

µ↔ ν

)
, (2.27)

where q = k1 + k2 ensures momentum conservation.

2.3.3.1 Anomalous axial Ward identity

The axial Ward identity is recalculated by substituting the slash identity (A.20) into (2.26).
Given (2.27), the substitution yields

qλT
µνλ = 2mT µν +Rµν , (2.28)

which differs from (2.24) by a correction term

Rµν =

∫
d4p

(2π)4
Tr

(
1

/p− /k1 −m
γ5γµ

1

/p− /q −m
γν − 1

/p−m
γ5γµ

1

/p− /k2 −m
γν
)

+

(
k1 ↔ k2

µ↔ ν

)
.

(2.29)

Since q = k1 + k2, the correction term can be rewritten in a more compact form [13]:

Rµν =

∫
d4p

(2π)4

[
fµν(p− k1, k2)− fµν(p, k2) +

(
k1 ↔ k2

µ↔ ν

)]
, (2.30)

where

fµν(p, k) := Tr

(
1

/p−m
γ5γµ

1

/p− /k −m
γν
)
. (2.31)

In this notation, it can be seen that the correction term arises from a shift in the integration
variable, due to the linear divergence of the integral. Using the result from appendix A.4,
it follows that

Rµν = i2π2(−k1λ) lim
p→∞

pλp2
Tr
(
(/p+m)γ5γµ(/p− /k2 +m)γν

)
(2π)4 [p2 −m2] [(p− k2)2 −m2]

+

(
k1 ↔ k2

µ↔ ν

)
(2.32)

=
i

8π2
(−k1λ) lim

p→∞
pλ
pρ(p− k2)σ

p2
Tr
(
γργ5γµγσγν

)︸ ︷︷ ︸
=−4iερµσν

+

(
k1 ↔ k2

µ↔ ν

)
, (2.33)
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where the trace identity from A.2 is being used. Due to the antisymmetry of the Levi-Civita
symbol (pρpσερµσν = 0), the correction term reduces to

Rµν =
1

2π2
ερµσνk1λk2σ lim

p→∞

pλpρ
p2

+

(
k1 ↔ k2

µ↔ ν

)
. (2.34)

The symmetric momentum limit (also discussed in [10])

lim
p→∞

pλpρ
p2

=
gλρ
4

(2.35)

yields the result

Rµν =
1

8π2
ερµσνk1ρk2σ +

(
k1 ↔ k2

µ↔ ν

)
= − 1

4π2
εµνρσk1ρk2σ, (2.36)

where the minus in the last step arises from the index exchange in the Levi-Civita symbol.
Therefore, (2.28) takes the form

qλT
µνλ = 2mT µν − 1

4π2
εµνρσk1ρk2σ. (2.37)

However, this is not the final result yet. Ambiguity remains in the amplitude T µνλ, because
the choice of the internal loop momentum p is not unique (see Figure 1). Since the integral
in (2.26) is again linearly divergent, we can use the same procedure as for the correction
term.4

Consider a class of loop momentum shifts p→ p+ ai with

a1 = α(k1 + k2)− βk2 and a2 = α(k1 + k2)− βk1 (2.38)

for the first and second diagram in Figure 1 respectively, parametrised by real numbers
α and β. Please note that the two shifts differ only by the interchange k1 ↔ k2, which
matches exactly the difference between the corresponding diagrams and hence is necessary
in order to respect the Bose symmetry.

This class of shifts leads to a class of amplitude differences

∆µνλ(α, β) := T µνλ(α, β)− T µνλ(0, 0) (2.39)

=

∫
d4p

(2π)4

[
fµνλ(p+ a2, q, k2)− fµνλ(p, q, k2) +

(
k1 ↔ k2

µ↔ ν

)]
, (2.40)

where

fµνλ(p, q, k) := Tr

(
1

/p−m
γ5γλ

1

/p− /q −m
γµ

1

/p− /k −m
γν
)
. (2.41)

4The amplitude Tµν is unaffected by such a momentum shift, because the integral in (2.27) is convergent.
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In this notation, it is evident that the above integral has a similar form as (2.31). Conse-
quently, one finds

∆µνλ(α, β) = i2π2a2ξ lim
p→∞

pξp2
Tr
(
(/p+m)γ5γλ(/p− /q +m)γµ(/p− /k2 +m)γν

)
(2π)4 [p2 −m2] [(p− q)2 −m2] [(p− k2)2 −m2]

+

(
k1 ↔ k2

µ↔ ν

) (2.42)

=
i

8π2
a2ξ lim

p→∞

pξpρ(p− q)σ(p− k2)τ
p4

Tr
(
γργ5γλγσγµγτγν

)
+

(
k1 ↔ k2

µ↔ ν

) (2.43)

=
i

8π2
a2ξ lim

p→∞

pξpρpσpτ
p4

Tr
(
γ5γλγσγµγτγνγρ

)
+

(
k1 ↔ k2

µ↔ ν

)
(2.44)

=
i

8π2
a2ξ lim

p→∞

pξpσ
p2

(−4iελσµν) +

(
k1 ↔ k2

µ↔ ν

)
, (2.45)

where the trace identity from appendix A.2 was used. Applying, once again, the symmetric
momentum limit (2.35) and substituting the expression for the shift a2 (2.38) leads to

∆µνλ(α, β) =
1

8π2
a2σε

µνλσ +

(
k1 ↔ k2

µ↔ ν

)
(2.46)

=
1

8π2
[α(k1 + k2)− βk1]σε

µνλσ +

(
k1 ↔ k2

µ↔ ν

)
(2.47)

= − β

8π2
εµνλσ(k1 − k2)σ. (2.48)

It is evident that the above result is independent of α. Consequently, β is the only relevant
parameter for the shift. Combining (2.37), (2.39) and (2.48) yields

qλT
µνλ(β) = 2mT µν − 1

4π2
εµνρσk1ρk2σ −

β

8π2
εµνλσ (k1 + k2)λ︸ ︷︷ ︸

=qλ

(k1 − k2)σ. (2.49)

Because of εµνρσk1ρk1σ = εµνρσk2ρk2σ = 0, the last term may be reduced, thus providing
the final result known as the anomalous axial Ward identity :

qλT
µνλ(β) = 2mT µν − 1− β

4π2
εµνρσk1ρk2σ (2.50)
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2.3.3.2 Anomalous vector Ward identities

In a similar way, one may study the vector Ward identities. Starting from (2.26), one can
apply the slash identities (A.21) to find

k1µT
µνλ =

∫
d4p

(2π)4

[
Tr

(
1

/p−m
γ5γλ

1

/p− /q −m
γν

1

/p− /k1 −m
/k1

)
+ Tr

(
1

/p−m
γ5γλ

1

/p− /q −m
/k1

1

/p− /k2 −m
γν
)] (2.51)

=

∫
d4p

(2π)4

[
Tr

(
γ5γλ

1

/p− /q −m
γν

1

/p− /k1 −m

)
− Tr

(
γ5γλ

1

/p− /k2 −m
γν

1

/p−m

)] (2.52)

=

∫
d4p

(2π)4

[
fλν(p− k1, k2)− fλν(p, k2)

]
, (2.53)

with the definition (2.31). This integral is identical to the first part of (2.30). Hence one
can directly use the result given in (2.36):

k1µT
µνλ(0) =

1

8π2
ερλσνk1ρk2σ =

1

8π2
ενλρσk1ρk2σ (2.54)

The zero indicates that the amplitude is not shifted yet. This is taken care of by substi-
tuting (2.39) and using result (2.48):

k1µT
µνλ(β) =

1

8π2
ενλρσk1ρk2σ −

β

8π2
εµνλσk1µ(k1 − k2)σ (2.55)

From that, one finds the anomalous vector Ward identities, given as

k1µT
µνλ(β) =

1 + β

8π2
ενλρσk1ρk2σ

k2νT
µνλ(β) = −1 + β

8π2
εµλρσk1ρk2σ.

(2.56)

2.3.3.3 Summary

A comparison between the Ward identities given in (2.24) and (2.25),

qλT
µνλ = 2mT µν and

k1µT
µνλ = 0

k2νT
µνλ = 0,

(2.57)

and the relations found directly using Feynman rules, (2.50) and (2.56),

qλT
µνλ(β) = 2mT µν − 1− β

4π2
εµνρσk1ρk2σ and

k1µT
µνλ(β) =

1 + β

8π2
ενλρσk1ρk2σ

k2νT
µνλ(β) = −1 + β

8π2
εµλρσk1ρk2σ,

(2.58)
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reveals that there are correction terms, parametrised by β. More importantly, it is evident
that there is no possible choice of β, allowing for both Ward identities to be satisfied at
the same time. So the anomaly remains for all possible shifts.
Choosing only the axial Ward identity to be anomalous, which means β = −1, yields

qλT
µνλ = 2mT µν +Aµν and k1µT

µνλ = k2νT
µνλ = 0, (2.59)

with the famous Adler-Bell-Jackiw (ABJ hereafter) anomaly [16], [17] in momentum space

Aµν = − 1

2π2
εµνρσk1ρk2σ. (2.60)

2.4 Non-Abelian anomalies

2.4.1 Non-Abelian currents

As an example for the non-Abelian case, consider the Lagrangian

Lnon-Abelian = ψ(i /D −m)ψ with Dµ = ∂µ + igNNµ, (2.61)

where Nµ = Na
µT

a is a non-Abelian field and the coupling is denoted by gN. In a similar
way as in section 2.3.1, the following currents can be constructed:

vector jµa = ψγµT aψ (2.62)

axial jµ5a = ψγµγ5T aψ (2.63)

pseudoscalar Pa = ψγ5T aψ (2.64)

The current conservation for the non-Abelian case has to be checked via the covariant
derivative given in (2.61), which yields

Dµj
µ
a = 0 and Dµj

µ
5a = 2imPa. (2.65)

Thus, the vector current is covariantly conserved; as in the Abelian case, also the axial
current is conserved for m = 0.5

2.4.2 Non-Abelian Ward identities

Analogously to (2.19) and (2.20), defining the amplitudes

T µνλabc (k1, k2, q) := i

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµa (x)jνb (y)jλ5c(z)|0〉 (2.66)

T µνabc(k1, k2, q) := i

∫
d4x d4y d4z eik1x+ik2y−iqz 〈0|T jµa (x)jνb (y)Pc(z)|0〉 , (2.67)

yields the non-Abelian Ward identities in momentum space

qλT
µνλ
abc = 2mT µνabc and k1µT

µνλ
abc = k2νT

µνλ
abc = 0. (2.68)

5The reader may have noticed that there are additional conserved currents, namely jµ = ψγµψ and
also jµ5 = ψγµγ5ψ in the massless case. Despite the similarities with (2.13) and (2.14), these currents do
not hint at a local Abelian gauge symmetry, but result from the fact that the example Lagrangian in
(2.61) features a global symmetry ψ → eiαψ with α = const.
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2.4.3 Anomalous non-Abelian Ward identities

2.4.3.1 Corresponding Feynman diagrams

The amplitudes given in (2.66) and (2.67) correspond to the Feynman diagrams shown in
Figure 3 and Figure 4.

q

p

p− k1

p− q

k1

k2

jλ5c

jµa

jνb

q

p

p− k2

p− q

k2

k1

jλ5c

jνb

jµa

Figure 3: Contributing Feynman diagrams for T µνλabc .

q

p

p− k1

p− q

k1

k2

Pc

jµa

jνb

q

p

p− k2

p− q

k2

k1

Pc

jνb

jµa

Figure 4: Contributing Feynman diagrams for T µνabc.

By the use of Feynman rules, one may recalculate the amplitudes as

T µνλabc = −i
∫

d4p

(2π)4
Tr

(
i

/p−m
γλγ5T c

i

/p− /q −m
γνT b

i

/p− /k1 −m
γµT a

)
+

k1 ↔ k2

µ↔ ν
a↔ b


(2.69)

T µνabc = −i
∫

d4p

(2π)4
Tr

(
i

/p−m
γ5T c

i

/p− /q −m
γνT b

i

/p− /k1 −m
γµT a

)
+

k1 ↔ k2

µ↔ ν
a↔ b

 .

(2.70)

2.4.3.2 Non-Abelian anomalous axial Ward identity

A comparison with the Abelian case amplitudes, (2.26) and (2.27), reveals that the first
terms in (2.69) and (2.70) differ only by a factor of a trace of three generators. Hence, it is

12



not necessary to derive the anomalous corrections for the non-Abelian case from scratch,
but one may adapt the general form of the corrections for the Abelian case, (2.36) and
(2.47), yielding

qλT
µνλ
abc (0) = 2mT µνabc(0) +Rµν

abc and T µνλabc (β)− T µνλabc (0) = ∆µνλ
abc (β), (2.71)

with the unshifted correction

Rµν
abc = Tr

(
T bT aT c

) 1

8π2
ερµσνk1ρk2σ +

k1 ↔ k2

µ↔ ν
a↔ b

 (2.72)

= −Tr
(
{T a, T b}T c

) 1

8π2
εµνρσk1ρk2σ (2.73)

and the amplitude difference imposed by the loop momentum shifts, defined in (2.38),

∆µνλ
abc (β) = Tr

(
T aT bT c

) 1

8π2
[αk1 + (α− β)k2]σε

µνλσ +

k1 ↔ k2

µ↔ ν
a↔ b

 (2.74)

= −Tr
(
T aT bT c

) β

8π2
εµνλσ(k1 − k2)σ + commutator terms (2.75)

= −1

2
Tr
(
{T a, T b}T c

) β

8π2
εµνλσ(k1 − k2)σ + commutator terms. (2.76)

In analogy to (2.49), one finds the anomalous axial Ward identity for the non-Abelian case:

qλT
µνλ
abc (β) = 2mT µνabc −

1

2
Tr
(
{T a, T b}T c

) 1− β
4π2

εµνρσk1ρk2σ + commutator terms (2.77)

2.4.3.3 Non-Abelian ABJ anomaly

Following the argumentation in section 2.3.3.3, it is convenient to shift the anomaly to the
axial Ward identity only (which is precisely why the vector identities were skipped in the
above derivation). Choosing β = −1 in (2.77) yields the final result:

qλT
µνλ
abc = 2mT µνabc +Aµνabc + commutator terms (2.78)

It can be shown that the commutator term are not relevant [18]. Thus, one finds the
non-Abelian ABJ anomaly in momentum space (see also the Abelian result (2.60))

Aµνabc = −τabc
2π2

εµνρσk1ρk2σ, where τabc :=
1

2
Tr
(
{T a, T b}T c

)
. (2.79)

This trace factor τabc will turn out to be the relevant quantity for our study of anomalies
in the remainder of this thesis.6

6The trace factor τabc is zero in so-called vector-like models, where left-handed and right-handed
fermions couple symmetrically, so their contributions cancel (see for instance the QCD anomaly in (2.92)).
Furthermore, there are "safe groups", for which the trace factors are automatically zero. Examples of safe
groups in four dimensions are SU(2), SO(2n + 1), SO(4n) with integer n ≥ 2, as well as the exceptional
groups E(6) and E(8) [11].
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2.5 Importance of Anomalies

The significance of anomalies depends on the nature of the symmetry that they are violat-
ing. There are two cases to consider.

Global anomalies: Anomalies that violate a global symmetry are useful in the sense that
they give rise to physical observables. The most prominent example is the decay of a pion
into two photons (see Figure 5):7

q

k1

k2

π0

γ

γ

Figure 5: Decay π0(q)→ γ(k1)γ(k2) with q = k1 + k2.

Since it clearly corresponds to the triangle graphs in Figure 4, this decay is determined by
the ABJ anomaly (2.79).8

Gauge anomalies: In contrast to global anomalies, anomalies arising in the context of
gauge symmetries are quite harmful to the gauge theory. It can be shown that in the
presence of gauge anomalies renormalisability is lost [21]. In addition, the S-matrix may
no longer be unitary [22]. Thus, in order to have a consistent gauge theory, there must not
be any gauge anomalies.

2.6 Anomalies in the Standard Model of particle physics

As highlighted by the discussion in the last chapter, gauge anomalies spoil the consistency
of a quantised perturbative gauge theory like the SM. However, we will see that the SM
particles contribute to the relevant triangle graphs in such a way that all anomalies vanish.
First, the SM gauge group and the relevant part of the SM Lagrangian are introduced.
Afterwards, the anomaly cancellation will be discussed in detail.

2.6.1 Particle content and Electroweak Lagrangian of the Standard Model

The SM shows a symmetry under the semisimple gauge group

SU(3)c × SU(2)L × U(1)Y (2.80)

7The decay via a triangle diagram was first discussed by Steinberger in 1949 [19].
8It should be mentioned that the ABJ anomaly determines this decay only up to leading order. More

details may be found at [20].
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composed of the local gauge groups associated with QCD (SU(3)c), electroweak interactions
(SU(2)L) and QED (U(1)Y), respectively [15]. The SM particles, formed by quarks, leptons
and the Higgs particle, are arranged in multiplets or singlets under these simple groups.

Table 1 lists the SM particles and their representation under the gauge group (2.80). We use
the following notation: qL denotes the left-handed quark doublet, lL the left-handed lepton
doublet, uR and dR are the right-handed quark singlets, corresponding to weak isospin
"up" and "down" respectively, and eR labels the right-handed charged lepton singlet. For
each particle, the upper index i = 1, 2, 3 labels the generation. Last but not least, the
scalar Higgs boson is denoted by Φ.

SU(3)c SU(2)L U(1)Y

qiL =

(
uiL
diL

)
3 2 +1

6

liL =

(
νiL
eiL

)
1 2 −1

2

uiR 3 1 +2
3

diR 3 1 −1
3

eiR 1 1 −1

Φ 1 2 +1
2

Table 1: SM particle content and representations under the gauge groups.

The electroweak Lagrangian is given as [15]:

Lew = LF + LH + LG + LY − V (φ). (2.81)

LF contains the gauge-covariant derivatives of the fermion fields

LF = −i
(
qL /DqL + lL /DlL + uR /DuR + dR /DdR + eR /DeR

)
, (2.82)

with the covariant derivative given in the following way:9

Dµ = ∂µ − ig1BµTU(1)Y − ig2W
j
µT

j
SU(2)L

− ig3G
a
µT

a
SU(3)c (2.83)

The gauge couplings for U(1)Y, SU(2)L and SU(3)c are labelled as g1, g2 and g3, respectively.
Using the generators from section 2.1 and the particle content in Table 1, the covariant

9This is a shorthand notation. In fact, the covariant derivative is different for each field. The second
or third term are only present, if the the field acted on has a non-zero hypercharge under SU(1)Y or a
non-singlet representation under SU(2)L, respectively.
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derivative can be written explicitly as

DµqL ≡
(
∂µ − i

g1

6
Bµ − i

g2

2
σjW j

µ − i
g3

2
λaGa

µ

)
qL

DµlL ≡
(
∂µ + i

g1

2
Bµ − i

g2

2
σjW j

µ

)
lL

DµuR ≡
(
∂µ − i

2

3
g1Bµ − i

g3

2
λaGa

µ

)
uR

DµdR ≡
(
∂µ + i

g1

3
Bµ − i

g3

2
λaGa

µ

)
dR

DµeR ≡ (∂µ + ig1Bµ) eR,

(2.84)

with the Pauli matrices σj and Gell-Mann matrices λa as defined in appendix A.1.

The covariant derivatives of the Higgs field are contained in LH as

LH = (DµΦ)†(DµΦ) with DµΦ ≡
(
∂µ − i

g1

2
Bµ − i

g2

2
σjW j

µ

)
Φ, (2.85)

where Φ =

(
φ+

φ0

)
denotes the Higgs doublet.

The gauge contribution part is labelled as LG and has the form

LG = −1

4
Ga
µνG

aµν − 1

4
F j
µνF

jµν − 1

4
BµνB

µν , (2.86)

where

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ + g3f
abcGb

µG
c
ν

F j
µν ≡ ∂µW

j
ν − ∂νW j

µ + g2f
jklW k

µW
l
ν

Bµν ≡ ∂µBν − ∂νBµ,

(2.87)

with the structure constants as given in (A.2) and (A.6).

Finally, the Yukawa couplings of the Higgs field and the fermions are contained in LY:

LY = −qLΓΦdR − qL∆Φ̃uR + lLΠΦeR + H.c. with Φ̃ := iσ2Φ∗ (2.88)

2.6.2 Anomaly cancellation in the Standard Model

In order to check for gauge anomalies, we will study the triangle graphs like in section 2.4.3
and calculate the trace factors τabc as defined in (2.79). There are three types of generators
for the three parts of the gauge group:

T a3 := T aSU(3) ⊗ 1SU(2) ⊗ 1U(1) (2.89)

T a2 := 1SU(3) ⊗ T aSU(2) ⊗ 1U(1) (2.90)

T a1 ≡ T1 := 1SU(3) ⊗ 1SU(2) ⊗ TU(1) (2.91)
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The anomaly triangle graphs may now contain one of the three types of these generators
at each vertex. However, the order at which one puts the generators at the vertices is
irrelevant, so, a priori, there are ten potential triangle anomalies.

In the following, we will label the triangle graphs by the groups participating. For in-
stance, the anomaly denoted by [SU(3)]2 × U(1) corresponds to the generator assignment
in Figure 6.

U(1)

SU(3)

SU(3)

T c
1 ≡ T1

T
a/b
3

T
b/a
3

Figure 6: Triangle graph and generator assignment for the [SU(3)]2 × U(1) anomaly.

Five of the anomalies vanish trivially, because the generators of SU(3) and SU(2) are
traceless (see appendix (A.6)). The remaining ones will be discussed here.

At each graph, only particles with non-singlet representations under all the participating
groups will enter.10 The final value of the anomaly is acquired by summing over all the
contributing particles and their degrees of freedom.

Due to different chirality, right-handed particles will enter with an overall minus sign
compared to the left-handed particles ([21] for more details). Using the SM particle content,
as given in Table 1, one finds11

[SU(3)]3 ∝
∑
d.o.f.

Tr
({
T a3 , T

b
3

}
T c3
)

=

= Tr
({
T a3 , T

b
3

}
T c3
) 3∑
i=1

(
3 · 2︸︷︷︸
qiL

−(3 · 1︸︷︷︸
uiR

+ 3 · 1︸︷︷︸
diR

)
)
≡ 0,

(2.92)

[SU(3)]2 × U(1) ∝
∑
d.o.f.

Tr
({
T a3 , T

b
3

}
T c1
)

=

= Tr
{
T a3 , T

b
3

} 3∑
i=1

(
1

6
· 2︸︷︷︸
qiL

−
(

2

3
· 1︸︷︷︸
uiR

+

(
−1

3

)
· 1︸ ︷︷ ︸

diR

))
≡ 0,

(2.93)

10In the case of U(1), this means non-zero hypercharge.
11The scalar Higgs field does not enter the anomaly equations. This is due to the fact that only fermionic

loops lead to linear divergent integrals as (2.26) or (2.69). Replacing the fermionic propagators i
/p− /m by

scalar ones i
p2−m2 , as it would be for the Higgs field, yields convergent integrals, hence no contribution to

the anomaly.

17



as well as

[SU(2)]2 × U(1) ∝
∑
d.o.f.

Tr
({
T a2 , T

b
2

}
T c1
)

=

= Tr
{
T a2 , T

b
2

} 3∑
i=1

(
1

6
· 3︸︷︷︸
qiL

+

(
−1

2

)
· 1︸ ︷︷ ︸

liL

)
≡ 0

(2.94)

and [U(1)]3 ∝
3∑
i=1

[(
1

6

)3

· 3 · 2︸ ︷︷ ︸
qiL

+

(
−1

2

)3

· 1 · 2︸ ︷︷ ︸
liL

−
((

2

3

)3

· 3 · 1︸ ︷︷ ︸
uiR

+

(
−1

3

)3

· 3 · 1︸ ︷︷ ︸
diR

+ (−1)3 · 1 · 1︸ ︷︷ ︸
eiR

)]
≡ 0.

(2.95)

As mentioned before, SU(2) is a safe group, which means that the [SU(2)]3 anomaly is
zero, independent from the particle content. This can be seen directly, since

[SU(2)]3 ∝
∑
d.o.f.

Tr
({
T a2 , T

b
2

}
T c2
)

=

=
∑
d.o.f.

Tr
(
1SU(3) ⊗

{
T aSU(2), T

b
SU(2)

}
T cSU(2) ⊗ 1U(1)

)
=

=
∑
d.o.f.

Tr
(
1SU(3)

)
Tr
({

T aSU(2), T
b
SU(2)

}
T cSU(2)

)
Tr
(
1U(1)

)
=

=
∑
d.o.f.

Tr
(
1SU(3)

)
Tr
(1

8

{
σa, σb

}︸ ︷︷ ︸
=2δab12

σc
)

Tr
(
1U(1)

)
∝ Tr(σc) ≡ 0,

(2.96)

where the definition of the generators for SU(2) (2.3) and the vanishing trace of the Pauli
matrices have been used (see also appendix A.1).

In order to complete the discussion, one should also add gravitational anomalies, where all
particles with non-zero mass enter. Gravity acts as a SO(4) group, so the corresponding
generators are traceless (see appendix A.6). This implies that the only two non-trivial
anomalies are [gravity]2 × U(1) and [gravity]3. However, it can be shown that purely
gravitational anomalies occur only in 4n + 2 dimensions, with n ∈ N (for a detailed
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discussion see [14]). Thus, in four dimensions, there is only one gravitational anomaly:

[gravity]2 × U(1) ∝
3∑
i=1

[
1

6
· 3 · 2︸ ︷︷ ︸
qiL

+

(
−1

2

)
· 1 · 2︸ ︷︷ ︸

liL

−
(

2

3
· 3 · 1︸ ︷︷ ︸
uiR

+

(
−1

3

)
· 3 · 1︸ ︷︷ ︸

diR

+ (−1) · 1 · 1︸ ︷︷ ︸
eiR

)]
≡ 0

(2.97)

As a final remark of this section, please note that not only do all the anomalies cancel, but
they cancel without performing the summation over the family index i. This means that
the anomalies cancel for each generation of particles individually, which is an important
feature of the SM.12

12In fact, incomplete gauge anomaly cancellation was one of the hints that led theoretical physicists to
the prediction of the top quark, before it was discovered experimentally in the mid 90’s [23].
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3 Abelian symmetries in the 2HDM

3.1 The two-Higgs-doublet model in more detail

For the discussion of the 2HDM, we will restrict out attention to the Yukawa sector.
Starting from the SM Yukawa Lagrangian (2.88), one finds its general form in the 2HDM

LY2HDM = −qL(Γ1Φ1 + Γ2Φ2)dR − qL(∆1Φ̃1 + ∆2Φ̃2)uR − lL(Π1Φ1 + Π2Φ2)eR + H.c.,
(3.1)

with the two Higgs doublets

Φ1 =

(
φ+

1
1√
2

(v1 + (ρ1 + iη1))

)
and Φ2 =

(
φ+

2
1√
2

(v2 + (ρ2 + iη2))

)
, (3.2)

where v1/2 denote the complex vacuum expectation values (VEVs hereafter) of Φ1/2, re-
spectively. They are related to the SM VEV v via

|v1|2 + |v2|2 = |v|2 = (246 GeV)2. (3.3)

The corresponding Yukawa matrices are labelled Γ1/2, ∆1/2, Π1/2. Accordingly, after elec-
troweak spontaneous symmetry breaking, the mass matrices for down and up type quarks
are given as

Md =
1√
2

(v1Γ1 + v2Γ2) and Mu =
1√
2

(v∗1∆1 + v∗2∆2). (3.4)

Both mass matrices can be bi-diagonalised as

V †dLMdVdR = Dd =

md

ms

mb

 and V †uLMuVuR = Du =

mu

mc

mt

 , (3.5)

with the quark masses for downmd, strangems, bottommb, as well as for upmu, charmmc

and top mt. The unitary matrices VdL, VdR and VuL, VuR correspond to the transformation
from flavour to the mass basis for the left- and right-handed quarks in down and up sector,
respectively:13

dL → VdLdL dR → VdRdR uL → VuLuL uR → VuRuR (3.6)

At this point, it is convenient to define the two Hermitian matrices

Hd := MdM
†
d =

1

2

(
|v1|2Γ1Γ†1 + |v2|2Γ2Γ†2 + v1v

∗
2Γ1Γ†2 + v∗1v2Γ2Γ†1

)
(3.7)

Hu := MuM
†
u =

1

2

(
|v1|2∆1∆†1 + |v2|2∆2∆†2 + v∗1v2∆1∆†2 + v1v

∗
2∆2∆†1

)
, (3.8)

13These transformations have to be unitary in order to keep the kinetic terms of the Lagrangian canonical.
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which are diagonalised by only one matrix each:

V †dLHdVdL = D2
d and V †uLHuVuL = D2

u (3.9)

In order to be consistent, the transformation from flavour to mass basis also has to be ap-
plied to the derivative terms of the fermions in the Lagrangian (2.82).14 As a representative,
consider the −iqL /DqL term, which contains

− g2√
2
uLγ

µW+
µ dL with W+

µ :=
W 1
µ − iW 2

µ√
2

(3.10)

(see [24] for more details). Given the unitary transformations to the mass basis (3.6), one
finds

− g2√
2
uLγ

µW+
µ dL → −

g2√
2
uLγ

µW+
µ VCKMdL, (3.11)

where VCKM denotes the famous Cabibbo–Kobayashi–Maskawa (CKM) matrix, given as

VCKM = V †uLVdL. (3.12)

3.1.1 Abelian global symmetries in the 2HDM quark sector

The most general Abelian global symmetry in the 2HDM quark sector is a flavour-dependent
U(1) symmetry, given by the transformation (no Einstein summation convention)

qkL → eiαqkqkL
dkR → eiαdkdkR

ukR → eiαukukR
Φ1 → eiαϕ1Φ1 Φ2 → eiαϕ2Φ2, (3.13)

parametrised by the global parameter α. The charges are denoted as ϕ1, ϕ2 for the Higgs
doublets and qk, dk, uk label the family-dependent quark charges with k = 1, 2, 3. Consider,
for example, the first term of the Lagrangian (3.1). It transforms as

−qLΓ1Φ1dR ≡ −Γjk1 qjLΦ1d
k
R → −Γjk1 eiα(−qj+dk+ϕ1)qjLΦ1d

k
R. (3.14)

Any term that is present in the Lagrangian has to be invariant under the symmetry trans-
formations. This implies that the complex entries of the first down sector Yukawa matrix
can only be non-zero, if the phases imposed on the corresponding term cancel:15

Γjk1 6= 0 only if eiα(−qj+dk+ϕ1) = 1, ∀α ⇔ −qj + dk + ϕ1 = 0 (3.15)

The same argument goes for the other terms and Yukawa matrices in (3.1), so one may
conclude:

Imposing a symmetry of type (3.13) fixes the non-zero Yukawa entries.

14This part of the 2HDM Lagrangian is identical to the SM.
15We have chosen to work with continuous symmetries, only. For a study of also discrete symmetries

(i.e. discrete values of α), the condition reads α(−qj + dk + ϕ1) = m · 2π with integer m.
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Each pattern of non-zero entries in the Yukawa matrices imposed by the symmetry (textures
hereafter) reduces the amount of free parameters for the corresponding model. This is
crucial for the in-depth study of a theory, because less parameters improve the ability of
a model to provide predictions of physical observables. These predictions may then be
tested, thus allowing for a verification of the model.

3.1.2 Finding physically relevant textures for the quark sector

For the quark sector, there are a priori 318 possible Yukawa textures.16 However, in 2011
Ferreira and Silva [9] demonstrated that the amount of physically relevant textures is
significantly smaller, as will be presented in the following.

As a starting point, consider a matrix that contains the nine quark phase differences under
transformation (3.13) for the down sector of the Yukawa Lagrangian (3.1)

Θdown :=

−q1 + d1 −q1 + d2 −q1 + d3

−q2 + d1 −q2 + d2 −q2 + d3

−q3 + d1 −q3 + d2 −q3 + d3

 . (3.16)

This matrix corresponds to the phase combination presented in (3.14) and (3.15), but
without the Higgs phase. We will refer to it as the phase matrix of the down sector.
Analogously, one may define the phase matrix for the up sector in the form of

Θup :=

−q1 + u1 −q1 + u2 −q1 + u3

−q2 + u1 −q2 + u2 −q2 + u3

−q3 + u1 −q3 + u2 −q3 + u3

 . (3.17)

With these definitions in mind, one can study different symmetries by imposing constraints
on the charges. The idea is to create equal entries in the phase matrices, because the
patterns formed by these equal entries will contain the non-zero textures of the Yukawa
matrices. This may be more easily understood when looking at a simple example.

Consider, for instance, the case

q1 = q2 = q3 and d1 = d2 6= d3. (3.18)

The corresponding phase matrix for the down sector is given as

Θdown|q1=q2=q3, d1=d2
=

−q1 + d1 −q1 + d1 −q1 + d3

−q1 + d1 −q1 + d1 −q1 + d3

−q1 + d1 −q1 + d1 −q1 + d3

 . (3.19)

16For the down sector, each of the nine entries has three possibilities. It is either zero, non-zero in Γ1 or
non-zero in Γ2. A similar counting can be applied to the up sector. Because both sectors are independent,
there is a total of 39 · 39 possibilities.
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It is evident that, in this case, there are only two different quark phases for the down
sector: −q1 + d1 and −q1 + d3. These two phases may now be set equal to minus the two
Higgs charges, for instance

−q1 + d1 = −ϕ1 and − q1 + d3 = −ϕ2, (3.20)

which implies that in the overall phases for the corresponding entries cancel, as discussed
for the example case (3.15). Consequently, the patterns of the equal entries match the
non-zero textures of the down Yukawa matrices, namely

Γ1 =

x x 0
x x 0
x x 0

 and Γ2 =

0 0 x
0 0 x
0 0 x

 , (3.21)

where x labels a general complex entry of any value. Please note that these entries may
be all different, but not zero. Of course, one may have chosen the opposite Higgs charges
for phase cancellation in (3.20), i.e. ϕ1 ↔ ϕ2. Still, the phase matrix would contain the
Yukawa textures presented in (3.21), only with the switch Γ1 ↔ Γ2.

In a more general case (more different charges), the symmetry may impose more than two
textures on the phase matrix, which allows for more than two identifications of the Higgs
charges. However, many "equal entry" patterns give unphysical results when used as non-
zero textures for the Yukawa matrices, which is what has been studied by [9] and will be
discussed briefly in the remainder of this section.

In order to ensure that the textures are physically valid, two conditions were applied. First,
any combination of two textures (for the two Higgs doublets respectively) that led to at
least one massless quark was ruled out.17 The mathematical formulation of this constraint
is that both mass matrices (3.4) have to have a non-vanishing determinant, which reads18

detMd

!

6= 0 and detMu

!

6= 0. (3.22)

As a second condition, the textures had to allow sufficient quark mixing. For this purpose,
it was checked that there are no block-diagonal structures in the CKM matrix (3.12).

Applying these two conditions allowed [9] to reduce the number of textures to 246.

3.2 Promoting the global symmetries to a gauge symmetries

Unfortunately, the reduction of free parameters via the additional U(1) symmetry (3.13)
and the corresponding texture choices, as discussed in section 3.1.1, comes with a price:

17Due to the strong hierarchy of quark masses, one might want to work in the approximation of massless
down and up quarks, when compared to bottom and top quarks, respectively. However, this was not
considered in the original analysis of [9] and is likewise omitted from the discussion of this thesis.

18The notation ! indicates that the relation does not apply in general but is imposed as a condition. In
other words, we demand the determinant to be non-zero.
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Spontaneous symmetry breaking, as presented in the beginning of section 3.1, is an essential
part of the 2HDM. In analogy to the SM, it is this very mechanism that provides masses for
the gauge bosons [3]. However, any spontaneously broken global symmetry gives rise to a
massless Goldstone boson (see appendix A.7), which has not been observed experimentally.

There are two ways to deal with this problem. One option is to add a soft breaking term,
that violates the symmetry. The underlying idea is that the theory is still renormalisable
if the symmetry breaking term has a dimension less than 4 [25].

A more elegant way is to promote the global symmetry to a gauge symmetry with a
massive gauge boson. The degree of freedom provided by the massless Goldstone boson
is then absorbed into the longitudinal polarisation of the gauge boson [10]. However, this
also promotes initially global anomalies to gauge anomalies. As highlighted in section 2.5,
gauge anomalies spoil the consistency of a theory and one has to make sure that they
cancel.

In this thesis, we will study the 246 textures, as found by [9], in the context of gauge
anomalies and see if they allow for anomaly cancellation.

3.2.1 Extended gauge group and anomaly equations

The gauge group is an extension of SM gauge group by the added U(1)′ group:

SU(3)c × SU(2)L × U(1)Y × U(1)′ (3.23)

Consequently, the covariant derivative becomes (see also SM case (2.83))

Dµ = ∂µ − ig1BµTU(1)Y − ig2W
j
µT

j
SU(2)L

− ig3G
a
µT

a
SU(3)c − ig′1B′µTU(1)′ , (3.24)

where g′1 denotes the gauge coupling for the new U(1)′ gauge group.

The full particle content and representations under the extended gauge group (3.23) are
listed in Table 2.

SU(3)c SU(2)L U(1)Y U(1)′

qiL =

(
uiL
diL

)
3 2 +1

6
qi

liL =

(
νiL
eiL

)
1 2 −1

2
li

uiR 3 1 +2
3

ui

diR 3 1 −1
3

di

eiR 1 1 −1 ei

Φ1,2 1 2 +1
2

ϕ1,2

Table 2: Particle content for SM× U(1)′. U(1)′ charges are family-dependent.
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In accordance with the global symmetry transformation (3.13), the charges of the particles
under this U(1)′ group are also family-dependent. The symmetry transformations are given
by19

qkL → eiα(x)qkqkL
dkR → eiα(x)dkdkR

ukR → eiα(x)ukukR
lkL → eiα(x)lk lkL ekR → eiα(x)ekekR, (3.25)

with the family index k and the - now space-time dependent - parameter α(x). Further-
more, the two Higgs doublets transform as

Φ1 → eiα(x)ϕ1Φ1 and Φ2 → eiα(x)ϕ2Φ2. (3.26)

As demonstrated in section 2.6.2, there are no anomalies in the SM. Consequently, only
anomalies with at least one participating U(1)′ have to be investigated. Removing the
trivially cancelling anomalies yields a total of six relevant anomalies

[SU(3)]2 × U(1)′ ∝ A331′ [SU(2)]2 × U(1)′ ∝ A221′

[U(1)]2 × U(1)′ ∝ A111′ [gravity]2 × U(1)′ ∝ Agg1′

U(1)× [U(1)′]2 ∝ A11′1′ [U(1)′]3 ∝ A1′1′1′ ,

(3.27)

with the anomaly coefficients given as

A331′ =
3∑
i=1

(2qi − ui − di) A221′ =
3∑
i=1

(3qi + li)

A111′ =
3∑
i=1

(qi + 3li − 8ui − 2di − 6ei) Agg1′ =
3∑
i=1

(6qi + 2li − 3ui − 3di − ei)
(3.28)

and

A11′1′ =
3∑
i=1

(
q2
i − l2i − 2u2

i + d2
i + e2

i

)
A1′1′1′ =

3∑
i=1

(
6q3
i + 2l3i − 3u3

i − 3d3
i − e3

i

)
.

(3.29)

Setting all anomaly coefficients to zero yields a set of up to six independent equations.
This is what will be referred to as the anomaly equations.

19No Einstein summation convention.
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4 Implementation of anomaly cancellation into the 2HDM
and resulting models

The following section covers the preliminary considerations and details on how the anomaly
cancellation was implemented numerically for the models extracted from [9]. We start with
an investigation of the quark sector and end with a similar study for the combined quark
and lepton sector. Many of the technical details apply for both parts, so they are discussed
extensively for the "quarks only" scenario and covered more concisely in the combined
"quarks and leptons" case.

4.1 Quark sector only

In this section, we will only study the quark sector of the Yukawa Lagrangian. Although the
anomaly equations simplify in the absence of leptons, this does not mean that generality
is lost. In fact, any of these models can trivially be extended by a lepton sector, as will be
discussed in the end of section 4.1.7.

4.1.1 Lagrangian and anomaly equations for the quark sector

For our study of the quark sector, the Yukawa Lagrangian (3.1) simplifies:

LY2HDM|quarks = −qL(Γ1Φ1 + Γ2Φ2)dR − qL(∆1Φ̃1 + ∆2Φ̃2)uR + H.c. (4.1)

In the absence of leptons (li = ei = 0,∀i), the anomaly equations imposed by (3.28) and
(3.29) reduce to a set of five independent equations:20

0
!

= A331′ =
3∑
i=1

(2qi − ui − di) ≡
1

3
Agg1′

0
!

= A221′ =
3∑
i=1

3qi

0
!

= A111′ =
3∑
i=1

(qi − 8ui − 2di)

0
!

= A11′1′ =
3∑
i=1

(
q2
i − 2u2

i + d2
i

)
0

!
= A1′1′1′ =

3∑
i=1

(
6q3
i − 3u3

i − 3d3
i

)



⇔



0
!

=
3∑
i=1

qi

0
!

=
3∑
i=1

di

0
!

=
3∑
i=1

ui

0
!

=
3∑
i=1

(
q2
i − 2u2

i + d2
i

)
0

!
=

3∑
i=1

(
2q3
i − u3

i − d3
i

)

(4.2)

20Using the same notation as before, the symbol !
= emphasises that the equality is imposed as a condition

at this point. In other words, we want all anomaly coefficients to be zero (anomaly cancellation).
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4.1.2 Using textures as a starting point

In order to implement all potential models, we extracted the textures from [9] that corre-
spond to continuous symmetry transformations. Discrete symmetries were neglected. This
yielded a total of four classes, given by the general form of the phase matrices:

Class I: Θ =

 a b c
a− 2θ b− 2θ c− 2θ
a− θ b− θ c− θ

 ⇒ 8 independent texture pairs (4.3)

Class II: Θ =

a b c
a b c
a b c

 ⇒ 4 independent texture pairs (4.4)

Class III: Θ =

 a b c
a b c

a+ θ b+ θ c+ θ

 ⇒ 6 independent texture pairs (4.5)

Class IV: Θ =

 a b c
a b c

a− θ b− θ c− θ

 ⇒ 6 independent texture pairs (4.6)

At this, a, b, c are free parameters. Class III (4.5) and IV (4.6) show up as two distinct
classes, because in their derivation [9] kept only one Higgs charge as a parameter θ while
the other one was fixed to be zero.

In our analysis, however, we did not fix the Higgs charges (in fact any of the charges) but
started from the textures. One might say that we inverted the procedure of [9]. There,
one started with the most general symmetry, imposed charges and derived the physical
textures. What we did instead is, we used their final textures (which have to correspond to
a symmetry, because that is what they were derived from in the first place) and checked,
if they give enough freedom for the charges to solve the anomaly equations.

This implies that class III (4.5) and IV (4.6) are identical for us, because they feature
the same textures, only derived from different charge assignments. Within each class, any
two texture pairs may be combined to serve as the down and the up Yukawa textures.
Consequently, we considered 82 + 42 + 62 = 116 texture combinations as our potential
models.

4.1.3 Numerical procedure to rule out models

The computations of this thesis were done in Mathematica 11.21

Similar to [9], we started out with the phase matrices (3.16) and (3.17) in their most general
form. As our first step, the constraints imposed by the Yukawa textures were derived for
each model and applied to the phase matrices. Correspondingly, this meant that some of
the - initially free - charges were constrained.

21Wolfram Research, Inc., Mathematica, Version 11.0, Champaign, IL (2016).
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Using the constrained charges, the anomaly equations (4.2) were applied to each model
in two steps. First, only the linear anomaly equations were solved. In the next step, the
quadratic and cubic equations were solved, thus providing up to six solutions.

After each step, the derived relations between the charges were applied to the phase matri-
ces (3.16), (3.17) and we checked if the original textures were still present. This is necessary,
because some solutions might cause other entries to take values equal to (minus) one of
the Higgs charges, which would then correspond to a different model.

In order to finally distinguish between "good" and "bad" models, an additional condition
was applied: Based on a group theoretical argument, the solution to the anomaly equations
has to allow all charges to be rational numbers.22

In summary, only if the anomaly equations (4.2) could be solved with rational charges and
if, under this solution, the phase matrices still contained the initial textures, a model was
classified "good". All other models were ruled out.

Example of a "good" model: Consider the textures

Γ1 :

x 0 0
0 x 0
0 0 x

 Γ2 :

0 0 x
0 0 0
0 x 0

 ∆1 :

x 0 0
0 0 x
0 x 0

 ∆2 :

0 0 0
0 x 0
x 0 0

 . (4.7)

• Imposing the textures as equal entries on the phase matrices (3.16) and (3.17) yields

−q1 + d1 = −q2 + d2

−q1 + d1 = −q3 + d3

−q1 + d3 = −q3 + d2

 ⇔


q1 = q2 + 2d1 − 2d3

q3 = q2 + d1 − d3

d2 = −d1 + 2d3

(4.8)

for the down sector and

−q1 + u1 = −q2 + u3

−q1 + u1 = −q3 + u2

−q2 + u2 = −q3 + u1

 ⇔


q1 = −q2 + 2q3

u1 = −q2 + q3 + u2

u3 = q2 − q3 + u2

(4.9)

for the up sector. Substituting relations (4.8) and (4.9) into the corresponding phase
matrix yields

Θdown|textures =

−q2 − d1 + 2d3 −q2 − 3d1 + 4d3 −q2 − 2d3 + 3d3

−q2 + d1 −q2 − d1 + 2d3 −q2 + d3

−q2 + d3 −q2 − 2d3 + 3d3 −q2 − d1 + 2d3

 (4.10)

Θup|textures =

 −q3 + u2 q2 − 2q3 + u2 2q2 − 3q3 + u2

−2q2 + q3 + u2 −q2 + u2 −q3 + u2

−q2 + u2 −q3 + u2 q2 − 2q3 + u2

 . (4.11)

22This is because the U(1)′ group can only be compact, if none of the charges is irrational [26]. Please
note that the restriction to rational charges equates to integer charges, if some suitable normalisation is
chosen.
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Accordingly, the patterns formed by the equal entries are:

Θdown :

x 0 0
0 x 0
0 0 x

 ,

0 0 x
0 0 0
0 x 0

 ,

0 0 0
0 0 x
x 0 0

 ,

0 0 0
x 0 0
0 0 0

 ,

0 x 0
0 0 0
0 0 0

 (4.12)

Θup :

x 0 0
0 0 x
0 x 0

 ,

0 x 0
0 0 0
0 0 x

 ,

0 0 0
0 x 0
x 0 0

 ,

0 0 0
x 0 0
0 0 0

 ,

0 0 x
0 0 0
0 0 0

 (4.13)

• The next set of constraints is derived from the fact that the phase matrices are not
independent: Entries that correspond to Γ1 and ∆1 have to match the first Higgs
charge and are therefore equal (up to a minus sign, due to the complex conjugation
of Φ̃1, as defined in (2.88)). Same for the entries corresponding to Γ2 and ∆2. Thus,
there are two more equations that can be applied to the phase matrices:

Θdown|combined text. =

 1
2
d3 − 1

2
u2 2q2 − 1

2
d3 − 3

2
u2 q2 − u2

−2q2 + 3
2
d3 + 1

2
u2

1
2
d3 − 1

2
u2 −q2 + d3

−q2 + d3 q2 − u2
1
2
d3 − 1

2
u2

 (4.14)

Θup|combined text. =

 −1
2
d3 + 1

2
u2 q2 − d3 2q2 − 3

2
d3 − 1

2
u2

−2q2 + 1
2
d3 + 3

2
u2 −q2 + u2 −1

2
d3 + 1

2
u2

−q2 + u2 −1
2
d3 + 1

2
u2 q2 − d3

 (4.15)

• As the next step, the anomaly equations come into play. Before solving them, the
conditions derived from the textures are substituted into the expressions for the
anomaly coefficients (4.2), which in this case yields

A331′ = 0 A221′ =
9

2
(d3 + u2) A111′ = −3

4
(d3 + 5u2) (4.16)

A11′1′ =
3

4
(d3 − u2)(5d3 + 7u2) A1′1′1′ = −27

4
(d3 − u2)(d2

3 − u3
2). (4.17)

Please note that, for this very example, the A331′ coefficient is already zero due to
the texture constraints.

As explained in the beginning of this section, the anomaly equations are solved
stepwise. Solving the linear equations (4.16) for vanishing coefficients yields

d3 = u2 = 0, (4.18)

which imposes the phase matrices

Θdown|comb. text.+ linear anomalies =

 0 2q2 q2

−2q2 0 −q2

−q2 q2 0

 (4.19)

Θup|comb. text.+ linear anomalies =

 0 q2 2q2

−2q2 −q2 0
−q2 0 q2

 . (4.20)
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• As a final step, the quadratic and cubic anomaly equations (4.17) have to be solved.
In this example, however, both coefficients vanish automatically (substitute (4.18)
into (4.17)) and do not impose additional constraints. Consequently, the final phase
matrices are given in (4.19) and (4.20) already.

The patterns formed by the equal entries are still given by (4.12) and (4.13), which
means they contain the original Yukawa textures (4.7). Thus, it is a "good" model.

Example of a "bad" model: Consider a slightly different set of textures

Γ1 :

x 0 0
0 x 0
0 0 x

 , Γ2 :

0 0 x
0 0 0
0 x 0

 , ∆1 :

0 0 0
0 0 x
0 x 0

 , ∆2 :

x 0 0
0 x 0
0 0 0

 . (4.21)

• Jumping straight to the phase matrices after imposing the constraints derived from
the textures and the relations between the phase matrices, one finds:

Θdown|combined text. =

 1
2
d3 − 1

2
u2 2q2 − 1

2
d3 − 3

2
u2 q2 − u2

−2q2 + 3
2
d3 + 1

2
u2

1
2
d3 − 1

2
u2 −q2 + d3

−q2 + d3 q2 − u2
1
2
d3 − 1

2
u2

 (4.22)

Θup|combined text. =

 −1
2
d3 + 1

2
u2 q2 − d3 2q2 − 3

2
d3 − 1

2
u2

−2q2 + 1
2
d3 + 3

2
u2 −q2 + u2 −1

2
d3 + 1

2
u2

−q2 + u2 −1
2
d3 + 1

2
u2 q2 − d3

 (4.23)

At this stage, the equal entry patterns of Θdown are of course identical to (4.12). The
patterns of Θup are given as:

Θup :

0 0 0
0 0 x
0 x 0

 ,

x 0 0
0 x 0
0 0 0

 ,

0 x 0
0 0 0
0 0 x

 ,

0 0 0
x 0 0
0 0 0

 ,

0 0 0
0 0 0
x 0 0

 ,

0 0 x
0 0 0
0 0 0


(4.24)

• After substituting the constraints that follow from the textures (4.21) into the anomaly
coefficients (4.2), the linear equations read

A331′ = q2 −
1

2
(d3 + u2) A221′ =

9

2
(d3 + u2) A111′ =

1

12
(16q2 − 53u2 − 17d3).

(4.25)

When solved for vanishing coefficients, one finds

q2 = d3 = u2 = 0. (4.26)
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At this point already, the Yukawa textures are lost, since imposing (4.26) on the
phase matrices yields

Θdown|comb. text.+ linear anomalies =

0 0 0
0 0 0
0 0 0

 (4.27)

Θup|comb. text.+ linear anomalies =

0 0 0
0 0 0
0 0 0

 . (4.28)

Consequently, the non-linear anomaly equations do not even have to be checked and
the model is classified "bad".

4.1.4 Categorisation of models via the number of different charges

The resulting models may be categorised by the number of different charges in the three
generations of each particle type.23 A priori, there are three cases (all equal, two different
or all different) for qi, di and ui, respectively. This allows us to divide the models into 27
categories.

However, it turns out that not all categories are possible. In order to have invertible mass
matrices, the combined textures of Γ1 and Γ2 have to contain at least one non-zero entry
in every row and every column.24 Same argument goes for ∆1 and ∆2. Consequently, the
phase matrices’ entries which correspond to the two Higgs charges have to satisfy the same
condition.

As we will demonstrate in the following, this forbids any category that contains a sector,
where the left-handed charges are all equal and right-handed ones all different, or vice
versa. Similar to the example in section 3.1.2, consider a case where again all left-handed
charges are equal to some charge, denoted as q. This imposes the following structure on
the phase matrix for the down sector:

Θdown|qi=q =

−q + d1 −q + d2 −q + d3

−q + d1 −q + d2 −q + d3

−q + d1 −q + d2 −q + d3

 (4.29)

In this form, it is evident that the phase matrix splits into columns of equal entries. In
case of three different right-handed down charges di, any assignment to the Higgs charges
will correspond to only two of the three columns. In other words, at least two of the di
have to be equal in order to find one entry in each column and each row that corresponds
to either of the two Higgs doublets.

23Different charges does not mean that they are independent. It might very well be that some charges
are proportional to the same free parameter, but with different coefficients in front.

24Requiring the mass matrix to be invertible is equivalent to the condition of a non-zero determinant in
(3.22) and ensures that all quarks are massive.
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A similar analysis can be done for the up sector, where the Θdown would split into columns,
instead. Furthermore, one may also exclude cases where either of the right-handed charges
are all equal while there are three different left-handed charges. This is because it would
lead to a splitting of one of the phase matrices into rows of equal values.
We checked carefully that neither of these four cases occurs in any of the 116 models. On
top, we verified that all the remaining categories were covered (for a summary, see Table 3).

number of
different
charges

(dR, uR)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

qL

1

2

3

Table 3: Categorisation via number of different charges. Dark cells are forbidden, due
to non-invertible mass matrices. Grey cells correspond to the categories covered by the
textures in [9].

4.1.5 Invariance under permutations

Before presenting the results of our studies for the quark sector, it is necessary to discuss the
independence of different models. In fact, many texture pairs are related by permutations
of columns or rows or both. In this section, we will discuss the physical consequences and
conclude, in which cases the related models may be considered equal.
When comparing models, the four down and up textures have to be treated as a whole.
Any permutation from the left, i.e. any permutation of rows, has an impact on observables.
However, permuting the qL charges in the same way corresponds to a simple relabelling.
For example, consider a permutation of the first and second row in all Yukawa matrices of
the "good" model (4.7), i.e.

Γ1 =

x 0 0
0 x 0
0 0 x

→ Γ′1 =

0 x 0
x 0 0
0 0 x

 , ... (4.30)

This implies that the Yukawa Lagrangian (3.1) changes as25

−Γ11
1 q

1
LΦ1d

1
R − Γ22

1 q
2
LΦ1d

2
R − ...→ − Γ′21

1︸︷︷︸
=̂Γ11

1

q′2L Φ1d
1
R − Γ′12

1︸︷︷︸
=̂Γ22

1

q′1L Φ1d
2
R − ... (4.31)

25Please note that no fixed values are assigned to the Yukawa entries in this discussion, which allows us
to identify terms before and after the permutation.
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It is evident that the Lagrangian is identical, if q1 = q′2 and q2 = q′1. This, however,
corresponds to nothing but a permutation of the first and second left-handed charge in the
original model.

Analogously, column permutations leave the Lagrangian invariant, if the right-handed
charges are permuted in the same way. The difference is, however, that right-handed
charges are singlets and therefore independent for down and up sector. This implies that
one may perform different column permutations on the down sector than on the up sector.
As long as the right-handed charges are permuted accordingly, the models are equal.

Throughout the remainder of this thesis, any "good" model is presented by its textures
and the charges derived from the anomaly equations. If the numerical procedure led to a
second model that - up to the permutations described above - featured identical textures
and derived charges, the models were regarded as equal and are presented only once.

4.1.6 Possible models for the quark sector

For the quark sector, models that allow for anomaly cancellation cover only three of the
17 possible categories, as presented in Table 4. Remarkably, these models fall only into
the categories with the same number of different charges for each of the three types of
particles.

number of
different
charges

(dR, uR)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

qL

1 Q1

2 Q2

3 Q3

Table 4: Categorisation of Table 3, highlighting the models that already allow for anomaly
cancellation with quarks only (green cells).

The textures and charges that correspond to the highlighted categories are listed in the
following. For a more compact notation, the charges are arranged in vectors denoted ~xp,
where the label p = q, d, u,Φ corresponds to the charges qi, di, ui and ϕa, respectively.

Quarks only category Q1:

Γ1 :

x x x
x x x
x x x

 Γ2 :

0 0 0
0 0 0
0 0 0

 ∆1 :

x x x
x x x
x x x

 ∆2 :

0 0 0
0 0 0
0 0 0


~xq = (0, 0, 0) ~xd = (0, 0, 0) ~xu = (0, 0, 0) ~xΦ = (0, free charge)

(4.32)
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Please note that, in this model, the first Higgs doublet is SM like. All SM particle U(1)′

charges are zero and the only field that transforms is the added Higgs doublet. However,
since it does not couple to the quark sector at all, it may take any charge under U(1)′.
This model is usually referred to as the Inert Higgs Model or Inert Doublet Model [7],[27].

For the two remaining categories, the charges are proportional to one free parameter. Thus,
this "free charge" may be absorbed into the definition of the coupling in g′1 (3.24). Hence
we present only the numerical factors in front.26

Quarks only category Q2:

(i)
Γ1 :

x 0 0
x 0 0
0 0 0

 Γ2 :

0 x x
0 x x
x 0 0

 ∆1 :

0 0 0
0 0 0
x x 0

 ∆2 :

x x 0
x x 0
0 0 x


~xq = (1, 1,−2) ~xd = (−2, 1, 1) ~xu = (1, 1,−2) ~xΦ = (3, 0)

(4.33)

(ii)
Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xq = (1, 1,−2) ~xd = (1, 1,−2) ~xu = (−2, 1, 1) ~xΦ = (0,−3)
(4.34)

Finally, the category with three different charges for each particle type.

Quarks only category Q3:

(i)
Γ1 :

x 0 0
0 x 0
0 0 x

 Γ2 :

0 0 x
0 0 0
0 x 0

 ∆1 :

x 0 0
0 0 x
0 x 0

 ∆2 :

0 0 0
0 x 0
x 0 0


~xq = (−1, 1, 0) ~xd = (−1, 1, 0) ~xu = (−1, 0, 1) ~xΦ = (0,−1)

(4.35)

(ii)
Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xq = (−1, 1, 0) ~xd = (−1, 0, 1) ~xu = (−1, 1, 0) ~xΦ = (1, 0)
(4.36)

As a general feature of the "quarks only" models, we see that in each of them all quark
types share the same set of charges, up to permutations.

4.1.7 Origin of the zero Higgs charge and extension to the lepton sector

Another characteristic shared by the "quarks only" models (4.32) to (4.36) is that one of
the Higgs charges is always zero. This can be understood in the following way:

In each of these models, there is at least one Yukawa matrix that features a diagonal of
non-zero entries. For any entry on the diagonal, the corresponding Higgs charge ϕa has to
cancel the difference between the left-handed quark charge qi and the right-handed quark
charge of the same family di or ui, depending on the sector.

26Please remember that we do not present all column and row permutations explicitly (see section 4.1.5).
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As an example, consider model (4.35). The non-zero diagonal is featured in Γ1. The
corresponding phases for each entry have to cancel, which implies the following three
equations:

−qi + di + ϕ1 = 0 with i = 1, 2, 3 (4.37)

Adding the three equations yields

−
3∑
i=1

qi︸ ︷︷ ︸
=0

+
3∑
i=1

di︸ ︷︷ ︸
=0

+3ϕ1 = 0 ⇒ ϕ1 = 0 , (4.38)

where the first two anomaly equations from (4.2) were used.

A similar argument may be applied if the non-zero diagonal is featured in one of the other
Yukawa matrices, including the up sector (see third equation in (4.2)). Thus, there is
always one zero Higgs charge.

It is important to note that the zero Higgs charge is a direct consequence of the anomaly
equations, while in [9] this was taken as an assumption. However, for our study of models
with charged leptons in section 4.2, we will see that, in general, both Higgs charges are
non-zero.

As a final remark for this section, it needs to be emphasized that the zero Higgs charge is
what allows for a trivial extension of these models to the lepton sector. In fact, the leptons
can be added by allowing SM like couplings to the Higgs doublet with zero charge and
forbidding any couplings to the other one. In doing so, the leptons keep the zero charges
under U(1)′ that were imposed in the beginning of section 4.1, so everything is consistent.

Consequently, the models presented in (4.32) to (4.36) are not limited to quarks only but
may serve as models for the full particle content.

4.2 Quarks and charged leptons

In this section, we repeat the studies of section 4.1, but without the restriction to the quark
sector. Instead, the full particle content, as presented in Table 2, is considered.27 Thus,
the relevant Yukawa Lagrangian is given in (3.1).

27Please note that we do not include right-handed neutrinos for this analysis.
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4.2.1 Anomaly equations for quarks and charged leptons

Starting from the anomaly coefficients (3.28) and (3.29), one may derive a set of six inde-
pendent anomaly equations:

0
!

= A331′

0
!

= A221′

0
!

= A111′

0
!

= Agg1′

0
!

= A11′1′

0
!

= A1′1′1′


⇔



3∑
i=1

li
!

= −3
3∑
i=1

qi

3∑
i=1

di
!

= −2
3∑
i=1

qi

3∑
i=1

ui
!

= +4
3∑
i=1

qi

3∑
i=1

ei
!

= −6
3∑
i=1

qi

0
!

=
3∑
i=1

(
q2
i − l2i − 2u2

i + d2
i + e2

i

)
0

!
=

3∑
i=1

(
6q3
i + 2l3i − 3u3

i − 3d3
i − e3

i

)

(4.39)

Compared to the "quarks only" case (4.2), there are six additional parameters while the
number of equations increased by only one. This implies more freedom for possible solutions
and we expect to find more "good" models as a consequence.

4.2.2 Numerical procedure for quarks and charged leptons

The numerical procedure is highly similar to what was presented in sections 4.1.2 and
4.1.3, so we will present the shared methods fairly quickly focus on the supplementary
technicalities, when considering the full particle content.
After extracting and imposing the constraints from the quark textures, the extended
anomaly equations (4.39) are solved to provide up to six solutions. If any of these so-
lutions keeps the original textures unspoiled, the model is classified as "interesting".
Due to their contribution the anomaly equations, the lepton charges li and ei are con-
strained by the conditions that were derived from the quark sector. However, requesting
sufficient couplings of the Higgs fields in the lepton sector imposes additional constraints,
as we will discuss in the following.
In analogy to the phase matrices for down and up sector (3.16) and (3.17), we define a
phase matrix for the lepton sector:

Θlepton :=

−l1 + e1 −l1 + e2 −l1 + e3

−l2 + e1 −l2 + e2 −l2 + e3

−l3 + e1 −l3 + e2 −l3 + e3

 (4.40)
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Based on the discussion of section 4.1.2, it is evident that the equal entry patterns of the
lepton phase matrix (4.40) provide the possible textures for the lepton Yukawa matrices
Π1, Π2, as introduced in (3.1).

In accordance with the quark mass matrices (3.4), the lepton mass matrix after electroweak
spontaneous symmetry breaking is given as

Me =
1√
2

(v1Π1 + v2Π2). (4.41)

Since all charged leptons are massive, this matrix has to be invertible. As discussed in
section 4.1.4, this implies that the combined textures of Π1 and Π2 have to feature at least
one entry in every column and every row. This is precisely the origin of the additional
constraints we are about to derive.

In order to take the above condition into account, one has to impose a minimal combined
texture of Π1 and Π2. There are six possibilities, given asx 0 0

0 x 0
0 0 x

 ,

x 0 0
0 0 x
0 x 0

 ,

0 x 0
x 0 0
0 0 x

 ,

0 x 0
0 0 x
x 0 0

 ,

0 0 x
x 0 0
0 x 0

 ,

0 0 x
0 x 0
x 0 0

 . (4.42)

However, all these structures are related by permutations. In section 4.1.5, we discussed
that all these texture permutations correspond to the same model, if the charges are per-
muted accordingly. Since permutations in the lepton sector are independent from permuta-
tions in the quark sector, we can choose one structure without the loss of generality. Thus,
we have the freedom to impose the diagonal structure as the minimal combined texture.

This diagonal structure must be featured as a pattern in the lepton phase matrix (4.40),
formed by entries corresponding to the two Higgs charges. This leads to four subclasses,
given by:28

−Θlepton =

ϕ1

ϕ1

ϕ1

 ,

ϕ1

ϕ1

ϕ2

 ,

ϕ1

ϕ2

ϕ2

 or

ϕ2

ϕ2

ϕ2

 (4.43)

In accordance with (3.20), the minus sign on the left ensures cancellation of the overall
phase of this entry. Please note that the off-diagonal entries are left empty, because there
are no constraints on them (in fact, some of them might be equal to either of the Higgs
charges, as well).

The numerical implementation was done in form of a loop: Each of the four subclasses pro-
vides three equations (three diagonal entries). These additional constraints were imposed
separately on the "interesting" models, splitting each of these into four submodels.

28There are priori eight subclasses, since each of the three diagonal entries may correspond to either of
the two Higgs doublets. However, the four classes presented here are sufficient, since the remaining four
correspond to permutations of the second and third case and are therefore equivalent.
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Finally, the same criteria as in the "quarks only" case were applied (see section 4.1.3). If
the original quark Yukawa textures were still present as equal entry patterns in the quark
phase matrices and if the solutions allowed for fractional charges, a submodel was classified
"good". Otherwise, the model was ruled out.

4.2.3 Possible models for quarks and charged leptons

In order to present the results for quarks and charged leptons, we will use again the
categorisation via the number of different charges that was introduced in section 4.1.4.

It turns out that all the "good" models, found by the numerical procedure presented in
the last section, feature three different lepton charges for li and ei, respectively. Thus, it
is convenient to list only the number of different quark charges, which corresponds to how
we presented the "quarks only" models in Table 4. On this basis, find the "quarks and
charged leptons" models that allow for anomaly cancellation categorised in Table 5, along
with the "good" models for the quark sector that can be trivially extended to the lepton
sector (see sections 4.1.6 and 4.1.7).29

number of
different
charges

(dR, uR)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

qL

1 Q1 L1

2 L2 L′2 Q2 L3 L′3

3 (L4) L5 L′5 Q3

Table 5: Extension of Table 4 by the "quarks and charged leptons" models that allow for
anomaly cancellation (blue cells). The latter feature always three different charges for li
and ei, respectively.

As opposed to the results from section 4.1.6, the charges of the newfound models are given
in terms of not one but two parameters. However, in analogy to the "quarks only" case, one
of these free charges may be absorbed into the coupling g′1 (3.24). We chose to normalise
the first left-handed quark charge, i.e. q1 = 1. Consequently, the models here are presented
with one free parameter, labelled as x.30

Similar to the quark charges, the left- and right-handed lepton charges are arranged in
29Because of the latter reason, the good "quarks only" textures were not studied again for the extended

particle content. It is therefore interesting to note that no additional models were found within the
categories, where all particle types feature the same number of different charges.

30Please remember that we present the models up to column and row permutations (see section 4.1.5).
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vectors denoted ~xl and ~xe, respectively. With that being said, the anomaly-free models for
the "quarks and charged leptons" case are given as:

Quarks and charged leptons category L1: Two models with ~xq = (1, 1, 1).

(i)

Γ1 :

x x 0
x x 0
x x 0

 Γ2 :

0 0 x
0 0 x
0 0 x

 ∆1 :

0 x x
0 x x
0 x x

 ∆2 :

x 0 0
x 0 0
x 0 0


~xd =

(
2− x, 2− x,−10 + 2x

)
~xu =

(
12− 2x, x, x

)
~xl =

(
1− x, x− 7,−3

)
~xe =

(
2− 2x,−6, 2x− 14

)
~xΦ =

(
x− 1, 11− 2x

)
(4.44)

(ii)

Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xd =
(
− 3− 2x, x, x

)
~xu =

(
2− x, 2− x, 4 + 2x

)
~xl =

(
− 5− x, x− 1,−3

)
~xe =

(
− 6, 2x− 2,−10− 2x

)
~xΦ =

(
2x+ 7, 1− x

) (4.45)

The following two models show up as two different categories, but are in fact highly con-
nected. Since they share the same set of textures and feature identical left-handed charges
~xq, we present them together.

Quarks and charged leptons category L2: ~xq = (1, 1,−3
2
x− 2)

(i)

Γ1 :

x x x
x x x
0 0 0

 Γ2 :

0 0 0
0 0 0
x x x

 ∆1 :

x x 0
x x 0
0 0 0

 ∆2 :

0 0 0
0 0 0
0 0 x


~xd =

(
x, x, x

)
~xu =

(
2− x, 2− x,−4− 4x

)
~xl =

(
x− 1,−5− x, 6 +

9

2
x
)

~xe =
(

2x− 2,−6, 7x+ 8
)

~xΦ =
(

1− x,−2− 5

2
x
)

(4.46)

Quarks and charged leptons category L′2: ~xq = (1, 1,−3
2
x− 2)

(ii)

Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xd =
(

2 + 2x, 2 + 2x,−4− x
)

~xu =
(
− 2x,−2x,−2x

)
~xl =

(
1 + 2x,−7− 2x,

9

2
x+ 6

)
~xe =

(
2 + 4x,−6, 4 + 5x

)
~xΦ =

(
2− 1

2
x,−1− 2x

)
(4.47)
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In as similar way, we present the connected categories L3 and L′3.

Quarks and charged leptons category L3: ~xq = (1, 1,−1
2
− 3

4
x)

(i)

Γ1 :

x x 0
x x 0
0 0 0

 Γ2 :

0 0 x
0 0 x
x x 0

 ∆1 :

0 x 0
0 x 0
x 0 0

 ∆2 :

x 0 0
x 0 0
0 0 x


~xd =

(1

4
x− 3

2
,
1

4
x− 3

2
, x
)

~xu =
(

2− x, 7

2
− 1

4
x,

1

2
− 7

4
x
)

~xl =
(
x− 1,

5

4
x− 1

2
,−3

)
~xe =

(
2x− 2,

9

4
x− 3

2
,
1

4
x− 11

2

)
~xΦ =

(5

2
− 1

4
x, 1− x

)
(4.48)

Quarks and charged leptons category L′3: ~xq = (1, 1,−1
2
− 3

4
x)

(ii)

Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xd =
(1

2
x− 1,

1

2
+

5

4
x,−5

2
− 1

4
x
)

~xu =
(3

2
− 5

4
x,

3

2
− 5

4
x, 3− 1

2
x
)

~xl =
(1

2
+

7

4
x,−2 +

1

2
x,−3

)
~xe =

(9

4
x− 3

2
, x− 4,

5

4
x− 7

2

)
~xΦ =

(
2− 1

2
x,

1

2
− 5

4
x
)

(4.49)

The following two models of category L4 were classified "good" in our scan.

Quarks and charged leptons category L4: ~xq = (1,−1
5
− 3

5
x, 2

5
− 3

10
x)

(i)

Γ1 :

0 0 0
0 0 0
x x 0

 Γ2 :

x x 0
0 0 x
0 0 0

 ∆1 :

0 0 0
0 0 0
x x 0

 ∆2 :

0 0 x
x x 0
0 0 0


~xd =

(4

5
x− 2

5
,
4

5
x− 2

5
,
1

5
x− 8

5

)
~xu =

(6

5
− 7

5
x,

6

5
− 7

5
x,

12

5
− 4

5
x
)

~xl =
(
x− 1,

4

5
x− 7

5
,

9

10
x− 6

5

)
~xe =

(9

5
x− 12

5
,
8

5
x− 14

7
, 2x− 2

)
~xΦ =

(4

5
− 11

10
x,

7

5
− 4

5
x
)

(4.50)

(ii)

Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xd =
(
− 3

5
+

2

5
x,−3

5
+

2

5
x, x
)

~xu =
(

2− x, 2− x, 4

5
− 8

5
x
)

~xl =
(
− 7

5
+

4

5
x, x− 1,−6

5
+

9

10
x
)

~xe =
(
− 12

5
+

9

5
x, 2x− 2,−14

5
+

8

5
x
)

~xΦ =
(

1− x, 8

5
− 7

10
x
)

(4.51)

40



However, a closer look reveals that both quark mass matrices, as defined in (3.4), feature
a block-diagonal structure. In fact, the non-zero entries form the patterns

Md|L4
=

x x 0
0 0 x
x x 0

 and Mu|L4
=

0 0 x
x x 0
x x 0

 , (4.52)

which leads to block-diagonal Hermitian combinations Hd (3.7) and Hu (3.8):31

Hd|L4
=

x 0 x
0 x 0
x 0 x

 and Hu|L4
=

x 0 0
0 x x
0 x x

 (4.53)

At this point, one can argue that a block-diagonal structure in both Hermitian matrices,
like in (4.53), will lead to unitary diagonalising matrices that are parametrised by only one
phase each. As a result, the CKM matrix (3.12) will be parametrised by only two angles.
However, the general unitary CKM matrix is parametrised by three angles (and the CP
phase) [28], so the textures are not sufficient.

A similar analysis can be done for case (ii) in category L4. Consequently, both models do
not provide sufficient quark mixing and are therefore unphysical.

The final two connected categories are given as:

Quarks and charged leptons category L5: ~xq = (1,−2− 3
2
x,−1

2
− 3

4
x)

(i)

Γ1 :

0 0 0
0 0 x
x x 0

 Γ2 :

x x 0
0 0 0
0 0 x

 ∆1 :

0 0 0
0 0 x
0 x 0

 ∆2 :

x 0 0
0 x 0
0 0 0


~xd =

(3

2
+

7

4
x,

3

2
+

7

4
x, x
)

~xu =
(1

2
− 7

4
x,−5

2
− 13

4
x,−4− 4x

)
~xl =

(11

2
+

17

4
x, 2 +

5

2
x,−3

)
~xe =

(15

2
+

27

4
x, 4 + 5x,−5

2
+

7

4
x
)

~xΦ =
(
− 2− 5

2
x,−1

2
− 7

4
x
)

(4.54)

Quarks and charged leptons category L′5: ~xq = (1,−2− 3
2
x,−1

2
− 3

4
x)

(ii)

Γ1 ↔ ∆2 and Γ2 ↔ ∆1

~xd =
(7

2
+

11

4
x,

1

2
+

5

4
x,

1

2
x− 1

)
~xu =

(
− 3

2
− 11

4
x,−3

2
− 11

4
x,−3− 7

2
x
)

~xl =
(13

2
+

19

4
x, 2x+ 1,−3

)
~xe =

(15

2
+

27

4
x, 2 + 4x,

11

4
x− 1

2

)
~xΦ =

(
− 5

2
− 11

4
x,−1− 2x

)
(4.55)

31As before, x denotes a general complex entry.
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5 Reproducing the CKM matrix for an example model

In this section, we will study one of the "good" models in more detail and investigate its
ability to provide a CKM matrix that matches the experimental values. For this purpose,
we chose the model presented in category Q3 (4.35), because, out of the "quarks only"
models, it features the least amount of non-zero Yukawa entries.32 This means that it has
the least amount of free parameters and hence should be the easiest to solve.

As mentioned in section 3.1, it is convenient to work with the Hermitian matrices Hd (3.7)
and Hu (3.8), rather than attempting to find the mass matrices Md and Mu (3.4), directly.
Due to their Hermiticity, they feature three invariants under diagonalisation, namely

Tr (Hf) ≡ Tr
(
D2

f

)
= m2

1 +m2
2 +m2

3 (5.1)
detHf ≡ detD2

f = m2
1m

2
2m

2
3 (5.2)

(TrHf)
2 − Tr(H2

f )

2
≡ (TrD2

f )2 − Tr(D4
f )

2
= m2

1m
2
2 +m2

2m
2
3 +m2

1m
2
3, (5.3)

where the quark masses are given as (m1,m2,m3) = (md/u,ms/c,mb/t) for the label f = d/u,
respectively.

5.1 Down sector

The textures given in (4.35) impose the general structure of the mass matrix for the down
sector

Md =

z1 0 z2

0 z3 0
0 z4 z5

 with complex numbers zj = rje
iαj , (5.4)

where the Einstein summation convention does not apply for the latter equation. The
phases αj can be removed via two diagonal matrices, by defining

M ′
d :=

eiβ1 eiβ2

eiβ3

Md

eiγ1 eiγ2

eiγ3

 (5.5)

=

r1e
i(α1+β1+γ1) 0 r2e

i(α5+β1+γ3)

0 r3e
i(α2+β2+γ2) 0

0 r4e
i(α4+β3+γ2) r5e

i(α3+β3+γ3)

 . (5.6)

It is evident that the six parameters β1/2/3 and γ1/2/3 can be chosen in such a way that
they cancel the five different phases α1/2/3/4/5, yielding

M ′
d =

r1 0 r2

0 r3 0
0 r4 r5

 with real numbers rj > 0,∀j. (5.7)

32Together with model (4.36), of course.
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Please note that removing the phases in this way is consistent, as long as one redefines the
bi-diagonalising matrices (3.5) as

V ′†dLM
′
dV
′

dR = V †dLMdVdR = Dd, (5.8)

which, by making use of (5.5), implies33

V ′dL :=

eiβ1 eiβ2

eiβ3

VdL and V ′dR :=

e−iγ1 e−iγ2

e−iγ3

VdR. (5.9)

In accordance with (3.7), one may define the Hermitian matrix H ′d = M ′
dM

′†
d . Using (5.7),

it can be seen that it features the following invariants under diagonalisation:

TrH ′d = r2
1 + r2

2 + r2
3 + r2

4 + r2
5 (5.10)

detH ′d = r2
1r

2
3r

2
5 (5.11)

(TrH ′d)2 − Tr(H ′2d )

2
= r2

1r
2
3 + r2

1r
2
4 + r2

1r
2
5 + r2

2r
2
3 + r2

2r
2
4 + r2

3r
2
5 (5.12)

Combining (5.1) to (5.3) and (5.10) to (5.12), yields a set of three equations:

m2
d +m2

s +m2
b = r2

1 + r2
2 + r2

3 + r2
4 + r2

5 (5.13)
m2

dm
2
sm

2
b = r2

1r
2
3r

2
5 (5.14)

m2
dm

2
s +m2

sm
2
b +m2

dm
2
b = r2

1r
2
3 + r2

1r
2
4 + r2

1r
2
5 + r2

2r
2
3 + r2

2r
2
4 + r2

3r
2
5 (5.15)

This allows one to express three of the rj in terms of the other two and the down-type
quark masses, for instance:

r2(r1, r3,md,ms,mb) =
1√
2

√√√√A±
√
A2 + 4m2

b

(
m2

d

r2
1

− 1

)
(m2

s − r2
1)(1− εr1)

r4(r1, r3,md,ms,mb) =
1√
2

√√√√B ∓
√
A2 + 4m2

b

(
m2

d

r2
1

− 1

)
(m2

s − r2
1)(1− εr1)

r5(r1, r3,md,ms,mb) =
mdmsmb

r1r3

,

(5.16)

where

A = m2
3

(
1− m2

dm
2
s

r2
1r

2
3

+ εd + εs − 2εr1

)
(5.17)

B = m2
3

(
1− m2

dm
2
s

r2
1r

2
3

+ εd + εs − 2εr3

)
(5.18)

εd =
m2

d

m2
b

εs =
m2

s

m2
b

εr1 =
r2

1

m2
b

εr3 =
r2

3

m2
b

. (5.19)

33In general, this re-phasing is not consistent, because it has an impact on the (complex) CP phase
inside the CKM matrix. However, in the end of this section, we will only be interested in the absolute
values of all entries.
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Since the quark masses are known from experiment, the above equations allow one to
reduce the number of free parameters for M ′

d to only two. Thus, we may conclude:

M ′
d = M ′

d(r1, r3) (5.20)

5.2 Up sector

After removing the phases in the same way as for the down sector, we find the mass matrix

M ′
u =

s1 0 0
0 s2 s3

s4 s5 0

 with real numbers sj > 0, ∀j. (5.21)

The Hermitian matrixH ′u = M ′
uM

′†
u features the following invariants under diagonalisation:

TrH ′u = s2
1 + s2

2 + s2
3 + s2

4 + s2
5 (5.22)

detH ′u = s2
1s

2
3s

2
5 (5.23)

(TrH ′u)2 − Tr(H ′2u )

2
= s2

1s
2
2 + s2

1s
2
3 + s2

1s
2
5 + s2

2s
2
4 + s2

3s
2
4 + s2

3s
2
5 (5.24)

Using (5.1) to (5.3) and (5.22) to (5.24), one may again express three of the sj in terms of
the other two and the up-type quark masses, for instance:

s2(s1, s3,mu,mc,mt) =
1√
2

√√√√C ±
√
C2 + 4m2

t

(
m2

u

s2
3

− 1

)
(m2

c − s2
3)(1− ξs3)

s4(s1, s3,mu,mc,mt) =
1√
2

√√√√D ∓
√
C2 + 4m2

t

(
m2

u

s2
3

− 1

)
(m2

c − s2
3)(1− ξs3)

s5(s1, s3,mu,mc,mt) =
mumcmt

s1s3

,

(5.25)

where

C = m2
t

(
1− m2

um
2
c

s2
1s

2
3

+ ξu + ξc − 2ξs3

)
(5.26)

D = m2
t

(
1− m2

um
2
c

s2
1s

2
3

+ ξu + ξc − 2ξs1

)
(5.27)

ξu =
m2

u

m2
t

ξc =
m2

c

m2
t

ξs1 =
s2

1

m2
t

ξs3 =
s2

3

m2
t

. (5.28)

In analogy to the down sector, there are only two free parameters remaining after substi-
tuting the experimental values of the quark masses. Hence, we can conclude:

M ′
u = M ′

u(s1, s3) (5.29)
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The above equation and the result from the down sector (5.20) imply that there is a total
of four free parameters for the two mass matrices M ′

d and M ′
u. For each choice of r1/3, s1/3,

the Hermitian combinations H ′d and H ′u are fully determined, hence are their diagonalising
matrices V ′dL, V ′uL.

Consequently, the CKM matrix (3.12) is determined by the same four parameters:

V ′CKM(r1, r3, s1, s3) = V ′†uL(s1, s3)V ′dL(r1, r3) (5.30)

Please note that the above expression for the CKM matrix differs from the original defi-
nition (3.12) only by a re-phasing of the entries (see (5.9)). Thus, the absolute values are
identical and provide a physical quantity the can be compared to the experimental data,
as we will present in the next section.

5.3 Parameter regions for a good CKM matrix

Starting from the derived analytic expressions for the mass matrices (5.16) and (5.25), we
extracted conditions for the parameters. This was done by imposing a clear mass hierarchy

md � ms � mb and mu � mc � mt, (5.31)

respectively, and requesting the arguments of all square roots to be positive. This yielded
the upper limits

r1 < ms, r3 < mb and s1 < mc, s3 < mt. (5.32)

For our study, we limited our attention to the subclass, where also s3 < mc. Setting up a
parameter scan with these limits, revealed a promising parameter region at

r1 ∼ md, r3 ∼ ms and s1 < mc, s3 < mc. (5.33)

An example point we found is

r1 = 0.00328897 GeV r3 = 0.112908 GeV

s1 = 0.249161 GeV s3 = 0.0263323 GeV,
(5.34)

which leads to a CKM matrix with the absolute values given as (see (5.30))

|VCKM|example ≡ |V ′CKM|example ≈

0.97339 0.22914 0.00357
0.22906 0.97231 0.0462
0.00712 0.0458 0.99892

 , (5.35)

where the following numerical values of the quark masses were used (taken from [28]):

md = 0.0048 GeV ms = 0.095 GeV mb = 4.18 GeV

mu = 0.0023 GeV mc = 1.275 GeV mt = 173.21 GeV
(5.36)
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When compared to the experimental data

|VCKM|experiment ≈

0.97427 0.22536 0.00355
0.22522 0.97343 0.0414
0.00886 0.0405 0.99914

 , (5.37)

we see that, besides the 31, 23 and 32 component which differ by almost 20 %, 13 % and
12% respectively, the values are within 2 % deviation.34

We would like to end this section by emphasising that, for time reasons, we did not per-
form a full numerical study. However, the region presented in (5.33) seems promising
enough to serve as a starting point for even better results with smaller deviations from the
experimental data.

34The experimental values are taken from [28].
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6 Conclusion and outlook

Starting from the flavour-dependent Abelian symmetries in the 2HDM studied by [9],
we investigated the option to handle the unobserved Goldstone bosons by promoting the
continuous global symmetries to gauge symmetries. In order to do this, we scrutinised the
derived Yukawa textures in the context of gauge anomalies and isolated the ones which
allow for anomaly cancellation under the new gauge group.

This was done in two steps: First, we focussed our attention to the quark sector, where
we derived three distinct categories of models that exhibit anomaly cancellation without
the necessity to include leptons. The categorisation is based on the number of different
charges for each particle type. Each of these models may be trivially extended by a lepton
sector and is therefore adaptable to the full particle content.

Second, we extended our studies to include the lepton sector. Due to the additional degrees
of freedom, this provided an extra of eight models, where quarks and leptons have to enter
the anomalies in order to allow cancellation. In analogy to the first scan, these eight models
could be divided into four distinct groups.

In summary, it can be said that imposing anomaly cancellation in the presented way
reduced the number of models from initially 116 to 13 only (up to permutations). For each
of these models, we presented the Yukawa textures and charges of all particles under the
new gauge symmetry in detail, so they may be used for future studies.

Furthermore, we presented an in-depth study of one example model and demonstrated its
ability to reproduce the absolute values of the CKM matrix within a maximum deviation
of less than 20 % from the experimental data (significantly less in other entries). In our
parameter scan, we discovered a promising region for the four model parameters. We
consider it auspicious enough to provide even better results and to serve as a starting
point for a full numerical study in the future.
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A Appendix

A.1 Pauli matrices and Gell-Mann matrices

Following the convention of [11], the Pauli matrices denoted as σj for j = 1, 2, 3 are given
as

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A.1)

Correspondingly, the structure constants of the SU(2) generators (2.3) are equal to the
three-dimensional Levi-Civita symbols

f jkl = εjkl :=


1 jkl = even permutation of 123
−1 jkl = odd permutation of 123
0 else.

(A.2)

The anticommutator of two Pauli matrices is given as{
σj, σk

}
= 2δjk12, (A.3)

where δjk denotes the Kronecker delta, defined as

δjk :=

{
1 j = k

0 j 6= k.
(A.4)

The Gell-Mann matrices labelled λa for a = 1, ..., 8 are given as:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


(A.5)

The corresponding structure constants for the SU(3) generators (2.3) are given by

fabc =


f147 = −f156 = f246 = f257 = f345 = −f367 = 1

2

f123 = 1

f458 = f678 =
√

3
2

zero otherwise.

(A.6)
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A.2 Dirac matrices

The Dirac matrices γµ for µ = 0, 1, 2, 3 and the additional γ5 in Dirac-Pauli representation
[3] are

γ0 =

(
12 0
0 −12

)
γi =

(
0 σi

−σi 0

)
γ5 ≡ iγ0γ1γ2γ3 =

(
0 12

12 0

)
, (A.7)

where σi are the usual Pauli matrices. The Dirac matrices and γ5 satisfy

{γµ, γν} = 2gµν14 and
{
γ5, γν

}
= 0, (A.8)

with the metric tensor given as

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.9)

In addition, the Dirac matrices obey the following trace identity [29]

Tr
{
γ5γµγνγλγργσγτ

}
= 4i

(
gµνελρστ − gµλενρστ + gνλεµρστ

+ gρσεµνλτ − gρτεµνλσ + gστεµνλρ
)
,

(A.10)

which reduces for γσγτ = (γ0)2 = 14 to

Tr
{
γ5γµγνγλγρ

}
= 4iεµνλρ, (A.11)

with the four-dimensional Levi-Civita symbol

εµνρσ =


1 µνρσ = even permutation of 0123
−1 µνρσ = odd permutation of 0123
0 else.

(A.12)

A.3 Time ordering

Time ordering is denoted by the operator T . One has to distinguish between products of
bosonic and fermionic nature, due to the different (anti-)commutation relations [10]. In
the bosonic case, we have

T φA(x)φB(y) = θ(x0 − y0)φA(x)φB(y) + θ(y0 − x0)φB(y)φA(x), (A.13)

whilst in the fermionic case we find

T ψA(x)ψB(y) = θ(x0 − y0)ψA(x)ψB(y)− θ(y0 − x0)ψB(y)ψA(x), (A.14)

with the Heaviside step function θ(x) =

{
0 x ≤ 0

1 x > 0.
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A.4 Shifting linear divergent integrals in Minkowski space

Consider a shift in the integration variable x → x + a of linear divergent integral in n
dimensions

∆n(a) =

∫
dnx (f(x+ a)− f(x)) (A.15)

=

∫
dnx (aµ∂µf(x) + aµaν∂µ∂νf(x) + ...) . (A.16)

Applying the Gauss theorem yields [11]

∆n(a) = aµ lim
R→∞

Rµ

R
Sn−1(R)f(R), (A.17)

with Sn−1(R) denoting the surface of an (n− 1)-dimensional sphere with radius R. In four
dimensions, we have S3(R) = 2π2R3. Thus, we find

∆4(a) = 2π2aµ lim
R→∞

RµR
2f(R). (A.18)

Careful, this is the result for 4D Euclidean space. However, it can be turned into the
Minkowskian case via x4 = ix0 [21], which means an overall factor i has to be added.
Consequently one finds

∆Minkowski(a) = i2π2aµ lim
R→∞

RµR
2f(R). (A.19)

A.5 Feynman slash identities

In order to derive the anomalous axial Ward identity, the following slash identity is used:

/qγ
5 = γ5(/p− /q −m) + (/p−m)γ5 + 2mγ5 (A.20)

The following two identities are used in the derivation of the anomalous vector Ward
identities:

/k1
1

/p−m
= 1− (/p− /k1 −m)

1

/p−m
1

/p− /q −m
/k1 = −1 +

1

/p− /q −m
(/p− /k2 −m)

(A.21)
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A.6 Trivial anomaly cancellation

Consider two simple non-Abelian groups G and G′ with traceless generators

Tr (T aG) ≡ 0 and Tr (T aG′) ≡ 0 (A.22)

and the Abelian group U(1) with the generator TU(1). They form a semisimple symmetry
group G×G′ × U(1) with three types of generators:

T̃ aG := T aG ⊗ 1G′ ⊗ 1U(1) (A.23)

T̃ aG′ := 1G ⊗ T aG′ ⊗ 1U(1) (A.24)

T̃ aU(1) ≡ T̃U(1) := 1G ⊗ 1G′ ⊗ TU(1) (A.25)

Keeping in mind that Tr(A⊗B) = Tr(A)Tr(B), one finds

G2 ×G′ ∝
∑
d.o.f.

Tr
({
T̃ aG, T̃

b
G

}
T̃ cG′

)
=

=
∑
d.o.f.

Tr
({
T aG, T

b
G

}
⊗ T cG′ ⊗ 1U(1)

)
=

=
∑
d.o.f.

Tr
({
T aG, T

b
G

})
Tr (T cG′)︸ ︷︷ ︸
≡0

Tr
(
1U(1)

)
≡ 0,

(A.26)

G×G′ × U(1) ∝
∑
d.o.f.

Tr
({
T̃ aG, T̃

b
G′

}
T̃ cU(1)

)
=

= 2
∑
d.o.f.

Tr
(
T aG ⊗ T bG′ ⊗ TU(1)

)
=

= 2
∑
d.o.f.

Tr (T aG)︸ ︷︷ ︸
≡0

Tr
(
T bG′

)︸ ︷︷ ︸
≡0

Tr
(
TU(1)

)
≡ 0

(A.27)

and G× [U(1)]2 ∝
∑
d.o.f.

Tr
({
T̃ aU(1), T̃

b
U(1)

}
T̃ cG

)
=

=
∑
d.o.f.

Tr
(
T cG ⊗ 1G′ ⊗

{
TU(1), TU(1)

})
=

=
∑
d.o.f.

Tr (T cG)︸ ︷︷ ︸
≡0

Tr (1G′) Tr
({
TU(1), TU(1)

})
≡ 0.

(A.28)
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A.7 Goldstone’s theorem

The Goldstone’s theorem states that any spontaneously broken continuous global symmetry
gives rise to a massless boson, usually referred to as Goldstone boson.

Following the proof of [10], consider a general Lagrangian

L = terms with derivatives− V ({φa}), (A.29)

with fields φa(x). Each field can take a constant value φa0 that minimises the potential, so

∂V

∂φa

∣∣∣∣
φa(x)=φa0

= 0. (A.30)

Taylor expansion around the minimum yields

V ({φa}) = V ({φa0}) +
∂V

∂φa

∣∣∣∣
φa0︸ ︷︷ ︸

=0

(φa − φa0) +
1

2

∂2V

∂φa∂φb

∣∣∣∣
φa0 ,φ

b
0︸ ︷︷ ︸

=m2
ab

(φa − φa0)(φb − φb0), (A.31)

where the eigenvalues of m2
ab correspond to the masses of the fields. They are all positive,

because V ({φa0}) is a minimum. Consider further a continuous symmetry transformation
in its infinitesimal form φa → φa + ε∆φa with the infinitesimal parameter ε. In the special
case of only constant fields, the derivatives in (A.29) vanish, so the potential itself has to
be invariant under the transformation. This means that

V (φa)
!

= V (φa + ε∆φa) ⇔ ∆φa
∂V

∂φa
!

= 0. (A.32)

Taking the derivative with respect to φb and replacing the fields {φa} by their constant
values {φa0} yields

0 =
∂∆φa

∂φb
∂V

∂φa

∣∣∣∣
{φa0}︸ ︷︷ ︸

=0

+ ∆φa
∂2

∂φa∂φb
V

∣∣∣∣
{φa0}︸ ︷︷ ︸

m2
ab

(A.33)

Because the symmetry is spontaneously broken by the ground state, ∆φa|{φa0} 6= 0 has to
be an eigenvector of m2

ab with eigenvalue zero, which corresponds to a massless particle.
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