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Abstract

A thermoplastic finite strain model is used to model heat generation due to plastic work.
Isotropic hardening is used, where the mechanical dissipation acts as heat source in the
heat equation. The multiplicative split of the deformation gradient makes it possible
to separate plastic and elastic effects. The model is solved by using the Newmark time
integration scheme with the finite element method using total Lagrangian formulation.
The model is also aimed for implementation with gradient based topology optimization
for finite strains with the objective to maximize the the plastic dissipation. The method
of moving asymptotes (MMA) is used in the optimization to make the problem convex.
The sensitivities required to form the gradient is calculated using the adjoint method
where the sensitivities are derived for the thermoplastic case. Helmholtz’s partial
differential equation is used for regularization and a Heaviside filter is used to make
the topology more precise.
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Chapter 1

Introduction

Topology optimization is today used in the industry as a tool to develop designs
early in the design process for structural problems. The most common objective is to
maximize the stiffness of a structure. The vast majority of the commercial software
for optimization is today restricted to optimizing of structures subjected to small
deformations. In fact, most of the research has been focus on this area and only
a very limited number of works, such as [19], have studied optimization for large
deformations. General conditions such as finite strains is for instance of interest as
large deformation arises in e.g. protective applications where the objective can be to
maximize the mechanical dissipation of the structure. An example of this is in the
automotive industry where deformation zones are used for absorbing energy in order
to protect the passengers.

During large plastic deformations, the mechanical dissipation is converted into heat
which then effect the material properties. In topology optimization, this coupling
effect the final design and it is of interest to investigate this dependency. The aim
of this master thesis is therefore to derive a theoretical framework for implementing
thermoplasticity for use with finite strain topology optimization. The aim is also to
evaluate for what conditions the isothermal assumption in the optimization performed
by [19] is valid and to investigate in which part of a structure the accumulated
temperature leads to changes in material properties, e.g thermal softening.

An associative, isotropic finite strain thermoplastic model is implemented in a finite
element scheme as presented in [14]. Based on the work of [18] the heat generation is
assumed to be a constant fraction of the plastic work. Moreover, it is assumed that
the structure deforms rapidly, and therefore the conduction can be neglected which
enables the temperature to be treated as an internal variable. The total Lagrangian
formulation was used for the mechanical balance laws and solved for by using the
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Newmark time integration scheme. The constitutive equations were integrated using
Euler backward scheme.

In order to use convex programming, a sequence of separable convex approximations
is formed using the method of moving asymptotes (MMA) cf. [16]. As the problem
is path-dependent, so are the sensitivities and this needs special attention which is
dealt with. The sensitivities used for forming the gradient are derived using the adjoint
procedure as presented in [11]. Furthermore, a filter is introduced for regularization
by solving the Helmholtz’s PDE as presented in [10] and a Heaviside thresholding
was used to solve the problem with intermediate designs in the transition from void
material to full material see e.g. [2].



Chapter 2

Thermoplasticity

2.1 Kinematics and multiplicative split

Let the particles in the reference configuration Ω0 ⊂ R3 be labeled by a position vector
X and let φ denote the mapping from the reference configuration to the deformed
configuration x like φ : Ω0 → Ω ⊂ R3. The deformation gradient F = ∂Xϕ maps the
line segment dR in the reference configuration to the line segment dr in the deformed
configuration like dr = FdR. The Jacobian is defined as J = ρ0/ρ = det(F) where
ρ0 and ρ is the density in the reference configuration and the deformed configuration
respectively. In order to measure the deformation and strain, introduce the Cauchy
deformation tensor, C, and the Green-Lagrange strain tensor, E as

C = FT F, E = 1
2(C − 1). (2.1)

For large strains the additive split of the strain tensor can not be used. To separate
the elastic deformation from the plastic, use is therefore made of the multiplicative
decomposition of the deformation gradient F = FeFp (cf. in eg. [8]) where Fe is
the elastic part and Fp is the plastic part. During plastic deformation, Fe describes
recoverable deformation such as reversible distortion of the crystal whereas Fp describes
non-recoverable deformation such as dislocation movements. The deformation gradient
is also split in a volumetric part and an isochoric part as F̄ = J2/3F. The following
two strain measures are also used in the following report

Gp = [FpT Fp]−1 and be := FeFeT (2.2)
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where be is the push-forward of Gp to the current configuration as

be = FGpFT . (2.3)

Time differentiation of 2.2 gives the following expression

ḃe = lbe + belT + Lvbe (2.4)

where the Lie derivative is defined as Lvbe := FĠpFT and the spatial velocity gradient
is defined as l := ḞF−1.

2.2 Free energy and local dissipation

To identify the state of the body, use is made of as set of state variables w = [be, α, θ].
The state variables include the elastic left Cauchy-Green tensor be = Fe(Fe)T as well
as the internal variable α used to model the isotropic hardening and, as will be dealt
with later, the temperature θ. To describe these, together with the entropy, the internal
energy function is introduced as

e =ê(be, α, se), where se := s− sp (2.5)

The Helmholtz’s free energy function is then obtained from the internal energy 2.5 by
a Legendre transformation as

Ψ(w, θ) = e(w, se) − seθ. (2.6)

The Clausius-Plank form of the second law of thermodynamics is

γ := θγloc := θṡ+ τ : D − ė ≥ 0, (2.7)

where γloc is the local entropy production, D is the rate of deformation tensor as
D = 1/2(l + lT ) and τ is the Kirchhoff stress. This is valid assuming positive
dissipation due to heat conduction, i.e. θγcond := −q∇θ/θ ≥ 0. Differentiation of the
free energy function 2.6 and insertion of the time differentiation of the left Cauchy
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-Green tensor be in 2.4 as

Ψ̇ = ∂beΨḃe + ∂αΨα̇ + ∂θΨθ̇ (2.8)
= [∂beΨbe] : [2l + (Lbe)be−1] + ∂θΨθ̇ + ∂αΨα̇. (2.9)

Differentiate the free energy function from 2.6

Ψ̇ = ė− ṡθ (2.10)

and insert this into the dissipation inequality 2.7 to form

γ = [−(s− sp) − ∂θΨ]θ̇ + [τ − 2∂beΨ] : D

+ [2∂beΨbe] : [−1
2(Lvbe)be−1] + [∂αΨ]α̇ + θṡp ≥ 0 (2.11)

If 2.11 is to always hold, the first and second term must be zero, which gives the
constitutive equation

τ = 2∂beΨbe s = sp − ∂θΨbe (2.12)

and the dissipation expression in 2.11 is reduced to

γ = τ : [−1
2(Lvbe)be−1] − ∂αΨα̇︸ ︷︷ ︸

γdef
mech

+ θṡp︸︷︷︸
γdef

therm

(2.13)

The first term γdef
mech is the standard contribution to the dissipation in the purely me-

chanical theory, while the second term γdef
therm is associated with the entropy production.

2.3 Evolution equations and maximum dissipation

In order to define the evolution laws for the internal variables use is made of the principle
of maximum dissipation (see eg. [5] p.60). The classic principle of maximum dissipation
results in associative plasticity. Consider the fixed state (τ , β, θ) in a plastically
deformed structure where β = ∂αΨ. Assume that the intermediate configuration with
be = FGpFT and Fp are known together with the rates Lvbe, α̇, ṡp. Maximization of
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the dissipation gives the evolution equations for be and α as

−1
2Lvbe = λ[∂τf ]be, α̇ = λ∂βf (2.14)

where f is the yield function. For more information about the postulate see eg. [14] or
[7].

2.4 Temperature evolution - The heat equation

Following for example [3], [14] the heat equation governing the temperature influence of
the deformation can be derived using the second and the first law of thermodynamics.
The first law of thermodynamics is a conservation law of energy which yields a coupling
between the mechanical deformation field and the temperature field θ(x, t). The local
form of the first law of thermodynamics in the current configuration is expressed as

ė = τ : D + r − Jdiv(q/J) (2.15)

where r is a heat source and q is the heat flux vector. Substitution of the second law
of thermodynamics 2.7 into the first law of thermodynamics results in

θ(ṡ− ṡp) − γdef
mech = r − Jdiv(q/J) (2.16)

where use is made of ψ̇ = τ : D − γdef
mech − θ̇se which follows from 2.11. Differentiation

of the second constitutive relation 2.12 results in the evolution of the total entropy

θṡ = θṡp + cθ̇ + H (2.17)

where c = −θ∂2
θθΨ and H = −θ[∂θbeΨḃe + ∂θαΨα̇] were introduced. Substituting 2.17

into 2.16 results in the temperature evolution equation as

cθ̇ = [γdef
mech − H] + [−Jdiv[q/J ] + r]. (2.18)

Insertion of Fourier’ law q = −k∇θ in 2.18 results is the heat equation.
Considering the problem at hand, the external heat source is not present i.e. r = 0.

The structure is also assumed to deform rapidly such as the spatial heat flow is small
and therefore can be neglected i.e. q = 0. When the heat flow is neglected it enables
the temperature to be treated as a state variable and not a field variable. Based on
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these two assumptions the heat equation can be approximated as

ρ0cθ̇ = ηγmech (2.19)

where the factor η is introduced as compensation for the neglected terms and γmech =
τ : D − ρ0∂αΨα̇ is the mechanical dissipation expressed in the reference configuration.
This factor is often assumed to be constant between 0.85 − 0.95, a practice that dates
back to the early work of [18]. Many later works have shown this approximation is not
in perfect agreement with experimental findings see eg. [12] where it is concluded that
η depends on the accumulated plastic strain. The variation of η is most significant
for small and moderate strains and since [18] did their experiments for large strain,
this variation was not perceived. The simplifying assumption is still used in most
commercial FE-codes and will also be employed in this work. The total plastic work for
the structure is found by summarizing all the contributions in the structure spatially,
as well as in time like

W p =
∫ T

0

∫
Ω0
γmechdtdV (2.20)

where T is the time when the structure is fully loaded.

2.5 Application:von Mises J2-theory

The theory presented above can be used in a thermomechanical model of J2-flow theory
(von Mises-flow theory) for finite strains as done in [14]. The specific form of the free
energy function in 2.6 is assumed to be

Ψ = T (θ) +M(J, θ)︸ ︷︷ ︸
thermal

+U(J) +W (b̄e)︸ ︷︷ ︸
hyperelastic

+ K(α)︸ ︷︷ ︸
hardening

. (2.21)

The thermoelastic free energy Ψe = T + M + U + W is decoupled from plastic
contribution Ψp = K which includes the hardening variables. This is common practice
for J2-flow metal-plasticity and can be explained physically by the lattice structure
associated with thermoelastic response being close to unaffected by the plastic response.
The hyperelastic model used is isotropic as

U(J) = κ[12(J2 − 1) − ln(J)], W (be) = 1
2µ[tr[b̄e] − 3] (2.22)

where κ is the shear modulus and µ the bulk modulus. These two quantities represent
the volumetric/deviatoric part respectively of the elasticity, a common split of the elastic
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response in metal plasticity. Regarding the first two terms an explicit expression for
these can be achieved if the specific heat capacity c is assumed constant. Differentiating
the free energy function with respect to the temperature, following [14] it follows that

M(J, θ) = (θ − θ0)G(J) (2.23)

where G(J) = −3βU ′(J) describes the models the thermal expansion and θ0 represents
the reference temperature.

With this specific choice of energy function 2.22, the stress can now be calculated
from 2.12 as

τ = 2∂beΨ = pJ1 + dev[τ ] (2.24)

where the stress has been split up into a volumetric part and a deviatoric part as

p := U ′(J) + ∂JM(θ, J) (2.25)
dev[τ ] = 2dev[b̄e∂b̄eW (b̄e)] = µdev[b̄e] (2.26)

To describe the transition from elastic to elasto-plastic response, the von-Mises yield
function is used

f(τ , α, θ) = ||dev[τ ]|| −
√

2
3
(
K̂ ′(α, θ) + σ̂y0(θ)

)
≤ 0 (2.27)

where the initial yield stress σ̂y0 and the hardening function K̂ ′(α, θ), that describes
the isotropic hardening mechanism, are

K̂ ′(α, θ) = ĥ(θ)αm + σ̂y∞(θ)(1 − e−δα). (2.28)

In the expression above ĥ(θ) is the hardening modulus, σ̂y∞(θ) is the saturation
hardening, δ and m are hardening exponents. To introduce a temperature dependence
in the parameters a linear relation is introduced that implies relative small change with
temperature, i.e.

σ̂y0 = σy0 [1 − ω0(θ − θ0)] (2.29)
ĥ = h[1 − ωh(θ − θ0)] (2.30)
σ̂y∞ = σy∞ [1 − ωh(θ − θ0)] (2.31)
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where ω0 and ωh are parameters that describe the temperature influence. This assump-
tion is reasonable for most steels according to experimental findings from e.g. [20].
The hardening function with temperature dependent parameters is thus expressed as

K̂ ′(α, θ) = h[1 − ωh(θ − θ0)]αm + σy∞ [1 − ωh(θ − θ0)](1 − e−δα). (2.32)

Considering the first equation in 2.14. Calculating this with the von Mises yield
criterion and decomposing b̄e into deviatoric and spherical parts, the first flowrule
turns into

Lvbe = −2λJ2/3
[

1
3tr[b̄e]n + ||dev[τ ]||

µ
n2
]

(2.33)

where
n := dev[τ ]/||dev[τ ]||. (2.34)

The second term in the bracket of 2.33 can be neglected following [14] since ||dev[τ ]/µ||
is of magnitude equal to the flow stress divided by the shear modulus (∼ 103). The
result is shown in the first equation in 2.36. The second equation in the evolution
equations in 2.14 with the chosen von-Mises yield function results in the second equation
in 2.36.

By substituting the first evolution equation in 2.14 into the dissipation inequality
in 2.13 using the Kuhn-Tucker condition λf = 0 (see eg. [14]) the thermomechanical
dissipation takes the form

γmech := −τbe−1 · 1
2Lvbe + ∂αΨα̇ =

√
2
3 σ̂(θ)λ. (2.35)

Inserting this into the heat equation 2.19 result in the last equation in 2.36.

FĠP FT = −2∆λ1
3tr(b̄e)n flow rule

α̇ = λ

√
2
3 evolution for α

f = ||dev(τ )|| −
√

2
3(K̂ ′(α, θ) + ŷ(θ)) yield function

θ̇ = η

ρ0c

√
2
3 σ̂(θ)λ Heat equation (2.36)
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2.6 Equilibrium equation

Balance of the linear momentum for a body Ω in the deformed configuration can be
written as ∫

Ω
tds+

∫
Ω
ρbdv =

∫
Ω
ρüdv (2.37)

where t is the traction vector, b is the body force and ü is the acceleration. Applying
Cauchy’s theorem and the divergence theorem

t = σn
∫

Ω
σnds =

∫
Ω

divσdv (2.38)

where σ is the Cauchy stress tensor results in∫
Ω

(σ + ρb − ρü) dv = 0. (2.39)

This holds for arbitrary volume and thus arbitrary point, and the equation of motion
is formed

div(σ) + ρb − ρü = 0. (2.40)

2.7 Virtual work

The strong form in 2.40 isn’t suitable for FE implementation, thus an effort is made
to derive the weak form. Multiplication of the equation of motion with an virtual
displacement δu and integrating this over the deformed configuration results in

∫
v
δuT div(σ)dv +

∫
v
δuTρbdv =

∫
v
δuTρüdv. (2.41)

Using Cauchy’s theorem and inserting the divergence theorem together with Green-
Gauss’s theorem yields

∫
s
δuT tds−

∫
v

1
2(∇δu + (∇δu)T ) : σdv +

∫
v
δuTρbdv =

∫
v
δuTρüdv. (2.42)

If the total Lagrangian description is to be used, the equation needs to be expressed
in the reference configuration. Considering the terms, starting with the body force,
the volume integral and the density can be rewritten as∫

v
ρδuT bdv =

∫
v0
ρ0δuT bdv0. (2.43)
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The term including the traction force and the acceleration is transformed in a similar
way. For the second term, Cauchy’s theorem and Nanson’s formula can be used to
rewrite it to the desired form∫

s
δuT tds =

∫
s
δuT σnds =

∫
s0
δuTJσF−T n0ds0 =

∫
s0
δuT Pn0ds0 =

∫
s0
δuT t0ds0

(2.44)
where F is the deformation gradient and P is the first Piola Kirchhoff stress. If δE□ is
introduced as

1
2(∇δu + (∇δu)T ) = F−T δE□F−1 (2.45)

the second term can be expressed as
∫

v

1
2(∇δu + (∇δu)T ) : σdv0 =

∫
v0
δE□ : S□dv (2.46)

where the second Piola Kirchhoff stress can be written as

S□ = FT τF (2.47)

This results in the virtual work in the reference configuration, suitable for FE-
formulation

V =
∫

V0
ρ0δuT üdV0 +

∫
V0
δE□ : S□dV0 −

∫
S0
δuT t0dS0 −

∫
V0
ρ0δuT bdV0 = 0. (2.48)





Chapter 3

Numerical solution strategy

3.1 Finite element formulation

The virtual work in 2.48 is discretized spatially by the finite element method. Introduc-
ing shape functions N as u = Nû, v = Nv̂, and a = Nâ together with the Galerkin
method results in the FE-formulation

R(û, â) = Mâ + Fint − Fext (3.1)

where δE = B0δû

M =
∫

Ω0
ρNT NdV0, (3.2)

Fint =
∫

Ω0
BT

0 SdV, (3.3)

Fext =
∫

∂Ω
NT t0dS (3.4)

and B0 is associated with the shape function see the Appendix C for more details where
the form functions have been denoted for a 4-node element for convenience, or e.g. [13].
Approximations for â is needed and in this work the Newmark time integration scheme
is used. Using generalized trapezoidal rules the Newmark method leads to

ân+1 = c1ûn+1 − â∗
n â∗

n = c1ûn + c2v̂n + c3ân (3.5)
v̂n+1 = v̂n + (1 − γ)∆tân + γ∆tân+1, v̂∗

n = c4ûn + c5v̂n + c6ân (3.6)

where
c1 = 1

β∆t2 c2 = 1
β∆t c3 = 1 − 2β

2β
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c4 = γ

β∆t c5 = γ − β

β
c6 = ∆t(γ − 2β)

2β
where γ and β are stability parameters that originates from the trapezoidal rule. With
the time approximation above and with dampening not included, the residual 3.1 can
be expressed as

R̃ = c1Mû + Fint − Fext − Mna′ (3.7)

where the velocity and the acceleration increment has been replaced with

a′ = na∗ + d1
nv∗. (3.8)

Integrating this over Gauss-points and elements the result is

n+1R̃ =
∑

Elements

∑
GP

(
c1ρNT Nn+1û + B(n+1û)n+1S − ρNT Nna′

)
J isowweight − Fext.

(3.9)

3.2 Non-linear solution procedure

To solve the non-linear equation in 3.7 consider a linearization of the virtual work in
2.48 in the form of a truncated Taylor expansion around the known state n where nu,
nv and na are known

V(u + du,v + dv, δu) = V(u,v, a(v), δu) + d(V(u,v, a(v), δu)) = 0. (3.10)

Here it’s assumed that the structure is in equilibrium in the new state and hence the
incremental virtual work is equal to the former state like

d(V(u,v, a(v), δu)) = −V(u,v, a(v), δu) (3.11)

where the internal incremental virtual displacement is calculated as

d(V(u, δu)) =
(
∂V
∂u

+ γ

β∆t
∂V
∂v

+ 1
β∆t2

∂V
∂a

)
du. (3.12)

In the above expression the incremental acceleration da and the incremental velocity
dv has been substituted according to 3.6 and 3.5.
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An attempt is now made to factorize the equation in an expression including the
incremental displacement as a factor, this can be seen in e.g. [7]. This forms the
incremental virtual work as

d(V(u, δu)) = δaKda. (3.13)

and finally 3.12 using 3.7 results in

Kda = −R̃ (3.14)

If the dampening is neglected, the effective tangent stiffness matrix is express as

K = c1M + KT (3.15)

where the tangent stiffness matrix can be expressed as

KT =
∫

v0
BT

0 DB0dv
0 +

∫
v0

HT
0 RH0dv

0. (3.16)

D is the incremental relation between the second Piola-Kirchhoff stress tensor and the
Green’s strain and can be expressed as

dS□ = D : dE□ (3.17)

where the derivation of the algorithmic tangent stiffness can be seen in appendix C
together with the H0 and R matrices. The total stiffness matrix (3.15) and the internal
force is in the FEM-program calculated on element level and than assembled into a
global stiffness matrix, global force matrix respectively as

K =
nelem⋃
e=1

Ke Fint =
nelem⋃
e=1

Fe
int (3.18)

The structural problem in 3.14 is solved using a Newton-Raphson iteration scheme,
see e.g. [7]. The use of isoparametric elements are used and integration is done using
Gauss points see eg. [13].
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3.3 Integration of Constitutive equations and the
radial return method

To calculate the internal forces, the stresses need to be calculated in the new state
and following, also the internal state variables. The evolution of the plastic flow, ie.
the stresses and the internal state variables are given from the evolution laws and the
yield function as in 2.36. Using the backward Euler method to integrate, the evolution
equations become

1C = n+1F(n+1GP −n GP )n+1FT + 2∆λ1
3tr(n+1b̄e)n+1n flow rule (3.19)

n+1α−n α = ∆λ
√

2
3 evolution for α (3.20)

2C = f = ||dev(n+1τ )|| −
√

2
3(K ′(n+1α, n+1θ) + ŷ(n+1θ)) yield function (3.21)

3C =n θ −n+1 θ
η

ρ0c

n+1
σ̂(n+1θ)(n+1α− nα) Heat equation (3.22)

where ∆λ =n+1 λ −n λ. C = [1C, 2C, 3C] is the local residual and this denoting is
later used in the optimization section.

Define a trial elastic state, remembering dev[τ ] = µdev[b̄e] from 2.26, as

b̄e,trial := F̄nGpF̄t, (3.23)
dev[τ trial] := µdev[b̄e,trial], (3.24)

f trial := ||dev[τ trial]|| −
√

2
3[K̂ ′(αn, θ) + ŷ(θ)]. (3.25)

θtrial = nθ (3.26)

In this trial elastic state, the yield function indicates if the state is in the plastic
region or not,

• f trial < 0 - Elastic respons. Stresses and ISV are updated as dev[n+1τ ] =
dev[τ trial], n+1w = wtrial, ∆λ = 0

• f trial > 0 - Plastic response, ∆λ > 0

For plastic response, i.e. f trial > 0 a way to calculate the plastic material behaviour
is necessary. Calculating the trace of the flow rule in 3.19, it’s concluded that

tr(n+1b̄e) = tr(b̄e,trial). (3.27)
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holds. The deviatoric part of the flow rule 3.19 yields

dev(n+1τ ) = dev(τ trial) − 2µ∆λ1
3tr(b̄e,trial) dev(τ )

||devτ ||︸ ︷︷ ︸
n

(3.28)

The expression for the deviatoric part of the stress contains the unknown ∆λ. To
find this, insert 3.28 into the yield function 3.26 which is equal to zero when plastic
deformation occurs

f := ||dev[τ trial]|| −
√

2
3µtr(b̄e,trial)dα−

√
2
3[K̂ ′(n+1α, n+1θ) + ŷ(n+1θ)] = 0 (3.29)

The yield function contains the unknown n+1α and the temperature n+1θ thus one
variable needs to be eliminated. This is done by considering the heat equation in
3.22. With approximation for the mechanical work, the temperature can be expressed
explicitly like a function of n+1α, ie. n+1θ(n+1α) and thus n+1α can be solved for in
the yield function with Newton-Raphson’s algorithm see Appendix A.1. The resulting
n+1α is then inserted into the deviatoric part of the flow rule 3.28 and the stress is
known.

To update the deviatoric part of b̄e, the expression for the deviatoric stress 2.26 is
used

dev[n+1b̄e] = 1
µ

dev[n+1τ ]. (3.30)

This, together with the volumetric part that is known from 3.27 is used when updating
b̄e.





Chapter 4

Optimization

In this work, the goal is to find the structure that absorbs as much energy as possible
when loaded. The objective function is thus chosen as the discretized plastic work
referring to 2.20

W p =
M∑

n=1

∫
Ω0
σy(n+1α, n+1θ)(n+1α−n α)dV (4.1)

where n is the time steps tn and M is the total number of time steps to reach the
prescribed load. The optimization problem of the plastic work is written as

O :

 min −W p(ϕ) = W p(Mŵ(ϕ),M−1 ŵ(ϕ), ...,0 ŵ(ϕ),ϕ)
s.t. : gV = ∑nelm

e=1 ρ0V0ec0e −m ≤ 0
(4.2)

where the design variable ϕ(X) = ϕe is the density field which consists of the piece
wise constant density ϕe that is constant in each element. ŵ is provided by solving the
residuals

R̃(nû(ϕ),n−1 û(ϕ), nŵ(ϕ),n−1 ŵ(ϕ), nϕ) = 0, n = 1, 2, ...,M (4.3)
C(nû(ϕ),n−1 û(ϕ), nŵ(ϕ),n−1 ŵ(ϕ), nϕ) = 0, n = 1, 2, ...,M (4.4)

remembering from 3.19 and 3.21 C being the local residual. The formulation in 4.2 is
called a nested formulation since the equilibrium constraint have been written as a
function of the design variables. This problem can be solved by several optimization
procedures where a breakdown consists of gradient based optimizers and non gradient
based optimizers such as the response surface-based method as in e.g. [9]. For problems
with large degrees of freedom it is known that the response surface-based methods
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become inefficient, and a gradient based optimization technique is therefore chosen.
The problem at hand is non-convex and since this is a basic requirement for use of
convex programming (see eg. [1]) a convex approximation is therefore required. The
method used is the method of moving asymptotes (MMA), cf. [16] where the gradients
of the constraints and the objective function is used to make the problem convex.

4.1 Material interpolation and regularization

In order to make the density either take values 1 or 0, a non-linear interpolation is
introduced for the material parameters in the constitutive model. This is to make
intermediate designs further from optimum, i.e. penalize designs with lots of element
densities between 0 (void) and 1 (full material). The RAMP scheme has been chosen
according to [15] and, for example, the shear modulus is penalized as

κ(c) = κ0 + ρ

1 + q(1 − ρ)(κ1 − κ0) (4.5)

where the ρ is the physical volume fraction field, κ1 represents the bulk modulus at full
material, κ0 is a value close to zero, in order to avoid numerical problems. To control
the level of penalization, the parameter q is introduced. In the same way as for κ, µ,
H, σy0 and σy∞ are also penalized using RAMP. The mass matrix is also penalized like

M =
∫

Ω0
ρ0(ρ)NT NdV (4.6)

To obtain a mesh independent solution and to avoid checkerboard patterns see
e.g.[1] filters are introduced. In addition, to obtain a clear distinction between void
material phase and full material, a Heaviside thresholding technique is used. The
continuous density variable ρ̃ ∈ [0 1] is introduced to describe the full material, ρ̃ = 1,
and the void phase, ρ̃ = 0. The field of ρ̃ is given from the design variable ϕe via the
Helmholtz’s equation see [10]

−R2∆0ρ̃+ ρ̃ = ϕ (4.7)

where ∆0 is the Laplacian, and R is the filter radius. In order to remove intermediate
designs a Heaviside thresholding filter is introduced, see e.g. [2]

ρ = tanh(βHωH) + tanh(βH(ρ̃− ωH))
tanh(βHωH) + tanh(βH(1 − ωH)) (4.8)
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where βH and ωH are parameters describing the steepness of the Heaviside function.

4.2 Sensitivity analysis

The gradients of a functional are called sensitivities. Remember that in the case of
plasticity, the deformation is path dependent and the computation split up to into
time steps. When optimizing the structure, the entire path needs to be included and
following, the derivatives in all time steps need to be calculated. The sensitivities can
be calculated either numerical or analytically, where the latter is preferable for accuracy.
When calculating analytical, the direct method can be used if the number of design
variables are small however, for larger systems the adjoint method for coupled transient
problems presented in [11] is significantly more computational efficient. The main
features of this method is to introduce an augmented objective function by substituting
a two terms consisting of a product of an adjoint variable and the discretized mechanical
balance law 4.3 an an adjoint variable and the discretized evolution laws 4.4. By doing
this, the implicit response sensitivities can be entirely eliminated from the expression
of the sensitivities.

4.2.1 Numerical differentiation

Using the forward difference method, the sensitivity can be calculated

∂Wp(ϕ)
∂ϕj

≈ Wp(ϕ + hej) −Wp(ϕ)
h

(4.9)

where ej = 1 for index j on the design variable and ej = 0 otherwise. This is to be
done for each design variable.

4.2.2 Adjoint method

The sensitivities of the objective function with respect to the design variable are

DW p

Dϕe

=
M∑

n=1

(
∂W p

∂nw

Dnw

Dϕe

)
+ ∂W p

∂ϕe

(4.10)

The implicit derivatives Dnw/Dϕe are computationally costly to calculate. These can
be eliminated using the adjoint method. Introduce an augmented objective function
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Ŵ p with the adjoint variables λ,γ,λû,λv̂

Ŵ p =W p(Mŵ(ϕ),M−1 ŵ(ϕ), ...,0 ŵ(ϕ))

−
M∑

n=1

M−n+1λR̂(nû(ϕ), nw(ϕ),ϕ)

−
N∑

n=1

M−n+1γC(nû(ϕ),n−1 û(ϕ), nw(ϕ),n−1 w(ϕ),ϕ)

−
N∑

n=1

M−n+1λû

(
n−1û(ϕ) + ∆ntn−1v̂(ϕ) + 1 − 2β

2 ∆nt2n−1â(ϕ) + β∆nt2â(ϕ) − nû(ϕ)
)

−
N∑

n=1

M−n+1λv̂

(
n−1v̂(ϕ) + (1 − γ)∆ntn−1â(ϕ) + γ∆ntâ(ϕ) − nv̂(ϕ)

)

Because the residual of the mechanical balance law 4.3 and the evolution equations
4.4 are equal to zero and 3.5 and 3.6 hold for û and v̂, the augmented objective
function is equal to the normal objective function i.e. Ŵ p = W p. Note also that
the derivative of the augmented objective function equals the objective function, i.e.
DW p/Dϕe = DŴ p/Dϕe since the derivative of 4.3, 4.4 and the third and fourth term
3.5 and 3.6 being equal to zero. Differentiation of the augmented objective function
with respect to the design variable leads to the expression

DŴ p

Dϕe

= ∂W p

∂ϕe

+
M∑

n=1

(
∂W p

∂nw

Dnw

Dϕe

)

−
M∑

n=1

(
M−n+1λ

)T
[
∂nR̂

∂nû

Dnû

Dϕe

+ ∂nR̂

∂nw

Dnw

Dϕe

+ ∂nR̂

∂ϕe

]

−
M∑

n=1
(M−n+1γ)T

[
∂nC

∂nû

Dn−1û

Dϕe

+ ∆tn
Dn−1v̂

Dϕe

+ 1 − 2β
2 ∆nt2

Dn−1â

Dϕe

+ β∆nt2
Dâ

Dϕe

+ ∂nC

∂nw

Dnw

Dϕe

+ ∂nC

∂n−1û

Dn−1û

Dϕe

+ ∂nC

∂n−1w

Dn−1w

Dϕe

+ ∂nC

∂ϕe

]

−
M∑

n=1
(M−n+1λû)T

[
Dn−1û

Dϕe

+ ∆tn
Dn−1v̂

Dn−1ϕ̂e

+ ∆tn
Dn−1v̂

ϕe

+ 1 − 2β
2 ∆t2n

Dâ

Dϕe

− Dû

Dϕe

]

−
M∑

n−1
(M−n+1λv̂)T

[
Dn−1v̂

Dϕe

+ (1 − γ)∆tn
Dnâ

Dϕe

+ γ∆tn
Dnâ

Dϕe

− Dnv̂

ϕe

]
.

(4.11)
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This can be split into an explicit term DŴ p
E/Dϕe and an implicit term DŴ p

I /Dϕe

where the implicit term contains all the implicit derivatives that will be eliminated

DŴ p

Dϕe

= DŴ p
E

Dϕe

+ DŴ p
I

Dϕe

, (4.12)

DŴ p
I

Dϕe

=
M∑

n=1

(
DŴ p

I

Dϕe

)
λ

+
M∑

n=1

(
DŴ p

I

Dϕe

)
λû

+
M∑

n=1

(
DŴ p

I

Dϕe

)
λv̂

+
M∑

n=1

(
DŴ p

I

Dϕe

)
γ

, (4.13)

DŴ p
E

Dϕe

= ∂W p

∂ϕe

−
M∑

n=1

(
λ(M−n+1)

)T ∂nR̃

∂ϕe

−
M∑

n=1

(
γ(M−n+1)

)T ∂nC

∂ϕe

−
(
D0â

Dϕe

)T
1 − 2β

2 ∆t21
(
∂1C

∂1û

)T
Mγ + 1 − 2β

2 ∆t21Mλû + (1 − γ)∆t1Mλv̂


−
(
D0v̂

Dϕe

)T
∆t1

(
∂1C

∂1û

)T
Mγ + ∆t1Mλû + Mλv


−
(
D0û

Dϕe

)T
(∂1C

∂1û

)T
Mγ +

(
∂1C

∂0û

)T
Mγ − Mλu

−
(
D0w

Dϕe

)T (
∂1C

∂0w

)T
Mγ

(4.14)

where the implicit part is written in a compact form where the subindex λ represent
the implicit contribution from the third term in 4.11, the λû represent the contribution
from the fourth term etc. Rearranging 4.11 in order to get the implicit derivatives as
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factors to the terms in an expression the result is

DŴ p
I

Dϕe

= −
M−1∑
n=1

(
∂Dnâ

∂Dϕe

)T {
β∆t2n

(
∂nC

∂nû

)T

γM−n+1 + β∆t2n(M−n+1)λû + γ∆tnM−n+1λv̂

+ 1 − 2β
2 ∆t2n+1

(∂n+1C

∂n+1û

)T
M−nγ + λû

+ (1 − γ)∆tn+1
M−nλv̂

}

−
M−1∑
n=1

(
∂Dnv̂

∂Dϕe

)T {
∆tn+1

(
∂n+1C

∂n+1û

)
M−1γ + ∆tn+1

M−nλû + M−n+1λv̂ − M−nλv̂

}

−
M−1∑
n=1

(
∂Dnû

∂Dϕe

)T {(
∂nR̃

∂nû

)T

M−n+1λ + M−nλû + M−n+1λû

+
(∂n+1C

∂n+1û

)T

+
(
∂n+1C

∂nû

)T
M−nγ

}

−
M−1∑
n=1

(
Dnw

Dϕe

){
−
(
∂W p

∂nw

)T

+
(
∂nR̃

∂nw

)T

M−n+1λ +
(
∂nC

∂nw

)T
M−n+1γ

+
(
∂n+1C

∂nw

)T
M−nγ

}

−
(
DM â

Dϕe

)T {
β∆t2M

(
∂MC

∂M û

)T
1γ + β∆t2M 1λv̂

}

−
(
DM v̂

Dϕe

)T {
− 1λv̂

}

−
(
DM û

Dϕe

)T {(
∂MR̃

∂M û

)T

1λ − 1λû

}

−
(
DMŵ

Dϕe

)T {
−
(
∂W p

∂Mw

)T

+
(
∂MR̃

∂Mw

)T

1λ +
(
∂MC

∂Mw

)T
1γ

}
. (4.15)

The task is now to eliminate the implicit derivatives by setting the factor with the
brackets to zero. Starting with the last terms in step N , more precisely DûN/Dϕe and
Dv̂N/Dϕe the brackets are set to zero like

1λû =
(
∂NR̃

∂N û

)T

1λ, (4.16)

1λv̂ = 0. (4.17)
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Continuing at the last step, DN â/Dϕe and NDw/Dϕe are eliminated by solving the
system of equations for 1λ and 1γ like

β∆t2M
(
∂NC

∂Nw

)
1γ =

[
β∆t2N 1λû + γ∆tNλv̂

]
(
∂NR̃

∂Nw

)T

1λ +
(
∂NC

∂Nw

)
1γ =

(
∂W p

∂Nw

)T (4.18)

rearranging, the first equation yields that 1λ can be expressed explicitly

β∆N t2

(
NK̃

)T 1λ = β∆t2M N

N Γ︷ ︸︸ ︷[ (
∂W p

∂Nw

)(
∂NC

∂Nw

)−1 (
∂NC

∂N û

)]
(
∂NC

∂Nw

)
1γ =

(∂W p

∂Nw

)T

−
(
∂NR̃

∂Nw

)T

1λ


(4.19)

where Γ is called the pseudo load vector and K̃ is the effective tangent stiffness matrix.
After 1λ has been calculated, insert this in the second equation in 4.19 to get 1γ. Now
the implicit derivatives in the last step has been eliminated, and the implicit derivatives
in the remaining time steps

DM−n+1û

Dϕe

,
DM−n+1v̂

Dϕe

,
DM−n+1â

Dϕe

,
DM−n+1w

Dϕe

(4.20)

are to be dealt with. Starting with the first two terms they are eliminated by solving


λû =
(
∂M−n+1R̃

∂M−n+1û

)T

λ +
(
∂M−n+2C

∂M−n+2û

)T
n−1γ +

(
∂M−n+2C

∂M−n+1û

)T
n−1γ +n−1 λû,

λv̂ = −
(

∂W p

∂M−n+1v̂

)T

+ ∆tN−n+2

(
∂N−n+2C

∂N−n+2û

)T
n−1γ + ∆tN−n+2

n−1λû + n−1λv̂

(4.21)



26 Optimization

and proceeding, the last two terms are eliminated in similar fashion


β∆t2N−n+1

(
∂M−n+1C

∂M−n+1û

)T
nγ = −

[
1 − 2β

2 ∆tN−n+2

{(
∂N−n+2C

∂N−n+2û

)T
n−1γ + n−1λû

}

+ β∆t2N−n+1
nλû + (1 − γ)∆tn−1

N−n+2λv̂ + γ∆tN−n+1
nλv̂

]
,(

∂M−n+1R̃

∂M−n+1w

)T

nλ +
(
∂M−n+1C

∂M−n+1w

)T
nγ = −

−
(

∂W p

∂M−n+1w

)T

+
(
∂M−n+2C

∂M−n+2w

)T
n−1γ


(4.22)

which can be rearranged to

(
N−n+1K̃

)T
λ = −(β∆t2N−n+1)−1N−n+1Γ(λû,λv̂)(

∂M−n+1C

∂M−n+1w

)T
nγ = −

−
(

∂W p

∂M−n+1w

)T

+
(
∂M−n+2C

∂M−n+2w

)T
n−1γ

(
∂M−n+1R̃

∂M−n+1w

)T

nλ

 .
(4.23)

with the pseudoload vector

N−n+1Γ(λû,λv̂) = −
[

1 − 2β
2 ∆tN−n+2

(
∂N−n+2C

∂N−n+2û

)T
n−1γ

+
(

1 − 2β
2 ∆t2M−n+2 + β∆t2N−n+1

)
n−1λû + (1 − γ)∆tN−n+2

n−1λv̂ + γ∆tM−n+1
nλv̂

]

+ β∆t2M−n+1

({[(
∂M−n+2C

∂M−n+2w

)(
∂M−n+1C

∂M−n+1w

)−

1
(
∂M−n+2C

∂M−n+1w

)]T

+
(
∂M−n+2C

∂M−n+2w

)T

+
(
∂M−n+2C

∂M−n+1w

)}
n−1γ −

[(
∂W p

∂M−n+1w

)(
∂M−n+1C

∂M−n+1w

)−1 (
∂M−n+1C

∂M−n+1û

)]T)
(4.24)

All the implicit terms are now eliminated so that DŴ p
I /Dϕe = 0 and thus the only

non zero term is the explicit term 4.14, i.e.

DŴ p

Dϕe

= DŴ p
E

Dϕe

(4.25)
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4.3 Sensitivities of large strain thermoplasticity

In the previous section the adjoint method was explained. All the necessary derivatives
in the section, i.e. in 4.15 are here derived based on [6] but modified to fit the
thermomechanical model. The outer residual is repeated here as

n+1R =
∑

Elements

∑
GP

(
c1ρ0(ρ)NT Nn+1û + B(n+1û)n+1S − ρNT Nna′

)
J isowweight −Fext.

(4.26)
When differentiating, the external force is independent of the state variables and the
displacements, along with a′ that is known from the previous step. In the following
section the internal force will be differentiated followed by the first term in the residual
containing the mass matrix. The outer residual and the local residual are tensors
that are quite cumbersome to express in matrix format, therefore the tensor notation
explained in eg. [4] is utilized. Inserting be = F GpF T from 2.3 in the flow rule, the
local residual C = [1C, 2C, 3C] from 3.19 - 3.22 formulated for plasticity, elasticity
respectively is in index notation

If plastic response

n+1C =



n+1(1Cij) = n+1f̄n
ikb̄

e
kl

n+1f̄jl −n+1 b̄e
ij −

√
2
3∆αn+1b̄e

tt
n+1nij flow rule

n+1(2C) = µ
√

n+1dxy
n+1dxy −

√
2
3(K ′(n+1α, n+1θ) + σ̂y(n+1θ)) yield function

n+1(3C) =n θ −n+1 θ + η

ρ0c

n+1
σ̂(n+1θ)(n+1α− nα) Heat equation

n+1w =


n+1b̄e

ij

n+1α

n+1θ

(4.27)

If elastic response
n+1C =

{
n+1(1Cij) = n+1f̄n

ikb̄
e
kl

n+1f̄jl −n+1 b̄e
ij flow rule

n+1w =
{

n+1b̄e
ij

(4.28)
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where the relative deformation gradient is defined as fij := n+1F−1
ik

nF−1
kj , and it’s

volume preserving variation as f̄ij := n+1F̄−1
ik

nF̄−1
kj . The deviatoric part of sij in index

notation has been introduced as dij.

4.3.1 Derivatives of outer residual

The outer residual in 3.9 can be rewritten by replacing the second Piola-Kirchhoff with
the Kirchhoff stress as sij = FisτtsFjt which results in

n+1(Fint)γ =
∑

Elements

∑
GP

Bγ
ij(n+1ûβ)n+1F−1

is
n+1τts

n+1F−1
jt J

isowweight. (4.29)

The superscript in Greek letters like γ, β in 4.29 is the degree of freedom for one
element as this is assembled into the global system see eg. [13]. α is also used as index
here and is not to be confused with the internal variable α.

Beginning with the outer residual, the derivatives with respect to the current
time step n + 1 are here presented briefly. First, the derivative with respect to the
displacement is considered i.e.

∂n+1(Fint)γ

∂n+1ûα
=
(
∂Bγ

ij(n+1ûβ)
∂n+1ûα

n+1F−1
is

n+1τst
n+1F−1

jt (4.30)

+Bγ
ij(n+1ûβ)∂

n+1Fis

∂n+1ûα
n+1τst

n+1F−1
jt (4.31)

+Bγ
ij(ûβ)n+1F−1

is

∂n+1τst

∂n+1ûα
n+1F−1

jt (4.32)

+Bγ
ij(n+1ûβ)n+1F−1

is
n+1τst

∂n+1F−1
jt

∂n+1ûα

)
J isowweight. (4.33)

Considering the third term, the stress can be split up according to 2.24. The deviatoric
part is not dependent directly on the displacement

∂n+1τij

∂n+1ûα
=
∂n+1(dev(τij) + 1

3τppδij)
∂n+1ûα

= ∂n+1(pJδij)
∂n+1ûα

. (4.34)

Differentiating the hydrostatic part in 2.25, and the deformation gradient yields

∂n+1τij

∂n+1ûα
= (κn+1J2 + (θ − θ0)(

−3βκ
2 [1 − 1

n+1J2 ]))n+1C−1
st B

α
st(n+1ûβ)δij (4.35)

∂n+1F−1
ij

∂n+1ûα
= −n+1F−1

ik
n+1F−1

lj

∂Nα
k

∂Xl

. (4.36)
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where δij is the Kronecker’s delta. For plastic response the derivative of the outer
residual with respect to the internal variables are

∂n+1(Fint)γ

∂n+1w
=



∂n+1(Fint)γ

∂n+1b̄e
ab

= Bγ
ij(n+1ûβ)n+1F−1

is µI
dev
stab

n+1F−1
jt J

isowweight

∂n+1(Fint)γ

∂n+1α
= 0γ

∂n+1(Fint)γ

∂n+1θ
= Bγ

ij(n+1ûβ)n+1F−1
is (−3βκ[n+1J + 1

n+1J
]δij)n+1F−1

jt J
isowweight

(4.37)

For elastic response it reduces to

∂n+1(Fint)γ

∂n+1w
=


∂n+1(Fint)γ

∂n+1b̄e
ab

= Bγ
ij(n+1ûβ)n+1F−1

is µI
dev
stab

n+1F−1
jt J

isowweight

∂n+1(Fint)γ

∂n+1θ
= Bγ

ij(n+1ûβ)n+1F−1
is (−3βκ[J + 1

J
]δij)n+1F−1

jt J
isowweight

(4.38)

where the deviatoric part of is Iijab

Iijab = 1
2(δiaδjb + δibδja) Idev

ijab = Iijab − 1
3δabIijab. (4.39)

The derivatives with respect to the previous time step n are also needed.

∂n+1(Fint)γ

∂nûα
= 0γα (4.40)

If n is a step with plastic response, the derivative of the outer residual with respect to
the internal variables is

∂n+1(Fint)γ

∂nw
=



∂n+1(Fint)γ

∂nb̄e
ab

= 0γα

∂n+1(Fint)γ

∂nα
= 0γ

∂n+1(Fint)γ

∂nθ
= 0γ

(4.41)

If n is a step with elastic response the derivative is

∂n+1(Fint)γ

∂nw
=
{
∂n+1(Fint)γ

∂nb̄e
ab

= 0γα (4.42)
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Considering the mass matrix, differentiating this part with respect to the displace-
ments results in

∂n+1

∂n+1ûα

(
c1ρ0(ρ)NδγNδβ

n+1ûβJ
isowweight

)
= c1ρ0(ρ)NδγNδαJ

isowweight. (4.43)

4.3.2 Derivatives of the local residual

Considering the local residual, if step n+ 1 has elastic response there is no hardening
i.e. n+1α = nα and the yield function isn’t necessary, nor possible to solve (f ≤ 0 for
elastic response). Considering the heat equation, another consequence of the elastic
response is that there will be no evolution of the temperature, i.e. n+1θ = nθ and the
only equation needs solving for in the local residual is the flow rule C1 as seen in 4.28.
Therefore the derivative when n+ 1 has elastic response reduces to

∂n+1C

∂n+1w
=
{
∂n+1(1Cij)
∂n+1b̄e

ab

= Iijab (4.44)

When differentiating with respect to the previous time step n the derivatives differ
depending on the combined response of time step n and n+1. If n+1 and n has elastic
response the only state variable to differentiate with respect to is the left Cauchy-Green
tensor which results in

∂n+1C

∂nw
=

{
∂n+1(1Cij)
∂nb̄e

ab

= n+1f̄ia
n+1f̄jb. (4.45)

If the state n has deformed plastically, the local residual needs to be differentiated
with respect to all the state variables as

∂n+1C

∂nw
=



∂n+1(1Cij)
∂nb̄e

ab

= n+1f̄ia
n+1f̄jb

∂n+1(1Cij)
∂nα

= 0ij

∂n+1(1Cij)
∂nθ

= 0ij.

(4.46)

If the step n + 1 is plastic, all the equations in the local residual needs to be
considered as in 4.27. Differentiating this in the current time step then results in
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∂n+1C

∂n+1w
=



∂n+1(1Cij)
∂n+1b̄e

ab

= −
√

2
3∆α

(
δab

n+1nij + n+1b̄e
tt

∂n+1nij

∂n+1b̄e
ab

)
− Iijab

∂n+1(1Cij)
∂n+1α

= −
√

2
3

n+1b̄e
tt

n+1nij

∂n+1(1Cij)
∂n+1θ

= 0ij

∂n+1(2C)
∂n+1b̄e

ab

= µn+1nab

∂n+1(2C)
∂n+1α

= −
√

2
3
(
ĥ(θ)mαm−1 + σ̂y∞

)
∂n+1(2C)
∂n+1θ

=
√

2
3
(
hωhα

m + σy∞ωh(1 − e−δα) + σy0ω0
)

∂n+1(3C)
∂n+1b̄e

ab

= 0ab

∂n+1(3C)
∂n+1α

= η

ρ0c
n+1σ̂y0(θ)

∂n+1(3C)
∂n+1θ

= −1

(4.47)

where nij is the index notation of n that is explained in 2.34 and the differentiation
with respect to the left Cauchy-Green tensor is

∂n+1nij

∂n+1b̄e
ab

=
√

1
n+1de

cd
n+1de

cd

(
Idev

ijab − n+1ne
ab

n+1ne
ij

)
(4.48)

Considering the differentiation with respect to previous time step, if n and n+ 1 both
are plastic the local residual is the plastic one described in 4.27 and the derivation has
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to be done for all the state variables as

∂n+1C

∂nw
=



∂n+1(1Cij)
∂nb̄e

ab

= n+1f̄ia
n+1f̄jb

∂n+1(1Cij)
∂nα

=
√

2
3

n+1b̄e
tt

n+1ne
ij

∂n+1(1Cij)
∂nθ

= 0ij

∂n+1(2C)
∂nb̄e

ab

= 0ab

∂n+1(2C)
∂nα

= 0
∂n+1(2C)
∂nθ

= 0
∂n+1(3C)
∂nb̄e

ab

= 0ab

∂n+1(3C)
∂nα

= − η

ρ0c
σ̂(n+1θ)

∂n+1(3C)
∂nθ

= 1.

(4.49)

Continuing in similar fashion, if step n is elastic the full local residual needs to be
differentiated with respect to the left Cauchy-Green tensor as

∂n+1C

∂nw
=



∂n+1(1Cij)
∂nb̄e

ab

= n+1f̄ia
n+1f̄jb

∂n+1(2Cij)
∂nb̄e

ab

= 0ab

∂n+1(3Cij)
∂nb̄e

ab

= 0ab.

(4.50)

The derivatives of the local residual with respect to the displacement are also
necessary for finding the gradient and for plastic response in time step n + 1 the
derivative is

∂n+1C

∂n+1ûα
=



∂n+1(1Cij)
∂n+1ûα

= ∂n+1f̄ik

∂n+1ûα
nb̄e

klf̄jl + n+1f̄ik
nb̄e

kl

∂n+1f̄jl

∂n+1ûα

∂n+1(2C)
∂ûα

= 0α

∂n+1(3C)
∂ûα

= 0α

(4.51)
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and if no plastic deformation has occurred in n+ 1 the result is

∂n+1C

∂n+1ûα
=

{
∂n+1(1Cij)
∂n+1ûα

= ∂n+1f̄ik

∂n+1ûα
nb̄e

klf̄jl + n+1f̄ik
nb̄e

kl

∂n+1f̄jl

∂n+1ûα
(4.52)

where the differentiation of the relative deformation gradient is

∂n+1f̄ij

∂n+1ûα
=
( nJ

n+1J

)1/3 ∂Nα
i

∂Xk

nF−1
kj − 1

3
n+1f̄ij

n+1C−1
st B

α
st(n+1uβ). (4.53)

Considering differentiation with respect to the displacement for the previous time
steps the derivative is

∂n+1C

∂nûα
=



∂n+1(1Cij)
∂nûα

= ∂n+1f̄ik

∂nûα
nb̄e

klf̄jl + n+1f̄ik
nb̄e

kl

∂n+1f̄jl

∂nûα

∂n+1(2C)
∂nûα

= 0α

∂n+1(3C)
∂nûα

= 0α.

(4.54)

if the response is plastic. If the response in n+ 1 is elastic the derivative is

∂n+1C

∂nûα
=

{
∂n+1(1Cij)
∂nûα

= ∂n+1f̄ik

∂nûα
nb̄e

klf̄jl + n+1f̄ik
nb̄e

kl

∂n+1f̄jl

∂nûα
(4.55)

where the derivative of the relative deformation gradient is

∂n+1f̄ij

∂nûα
= 1

3
n+1f̂ij

nCst
−1Bα

st(nûβ) − n+1f̄is
nF−1

lj

∂Nα
s

∂Xl

. (4.56)

4.3.3 Implicit derivatives of the objective function

The total plastic work defined in 4.1 is a summation of the plastic work in each time
step

Wp = · · · +
(
K ′(n+1α, n+1θ) + σ̂y0(n+1θ)

)
(n+1α− nα)J isowweight

+
(
K ′(n+2α, n+2θ) + σ̂y0(n+2θ)

)
(n+2α− n+1α)J isowweight + . . . (4.57)

where

K ′(n+1α, n+1θ) = h[1−ωh(n+1θ−θ0)]n+1αm+σy∞ [1−ωh(n+1θ−θ0)](1−e−δn+1α) (4.58)
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cf. in 2.32. Note that the objective function does not depend on the displacement,
therefore only the derivatives with respect to the internal variables and the density are
required. In the following section only the non-zero derivatives are presented Starting
with the internal variables, differentiating the objective function with respect to b̄e

results in


∂G

∂n+1b̄e
ij

= 0ij

∂G

∂n+1α
=
{
∂K ′(n+1α, n+1θ)

∂n+1α
(n+1α− nα) +K ′(n+1α, n+1θ)

−
(
K ′(n+2α, n+2θ) + σ̂y0(n+2θ)

)}
J isowweight

∂G

∂n+1θ
= −

(
hωh

n+1αm + σy∞ωh(1 − e−δn+1α) + σy0ω0
)

(n+1α− nα)J isowweight

(4.59)

if both step n+ 1 and n+ 2 have plastic response where

∂K ′(n+1α, n+1θ)
∂n+1α

= ĥ(n+1θ)mn+1αm + σ̂y∞(n+1θ) · (1 + δe−δn+1α). (4.60)

(4.61)



∂G

∂n+1b̄e
ij

= 0ij

∂G

∂n+1α
=
{
∂K ′(n+1α, n+1θ)

∂n+1α
(n+1α− nα) +K ′(n+1α, n+1θ)

}
J isowweight

∂G

∂n+1θ
= −

(
hωh

n+1αm + σy∞ωh(1 − e−δn+1α) + σy0ω0
)

(n+1α− nα)J isowweight

(4.62)

Note that in the last step-term in 4.57, n+ 1 = M , n+2 doesn’t exist.

4.3.4 The explicit term

The explicit term, cf. 4.14, requires the derivatives with respect to the design variable
ϕe. The RAMP interpolation introduced in section 4.1 makes the material properties
κ, µ dependent on the density. From the same section it was concluded that the filtered
and thresholded density could be expressed as c = H(c̃(ϕ)). When differentiating with
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respect to the design variable this must be taken into account

∂(Fint)γ
ij

∂ϕ
=
∂(Fint)γ

ij

∂ρ

∂ρ

∂ρ̃

∂ρ̃

ϕ
=
(
∂µ

∂ρ
de

ij − ∂κ

∂ρ

[
[J2 − 1] − (θ − θ0)(3β[J + 1

J
])
]
δij

)
∂ρ

∂ρ̃

∂ρ̃

ϕ
(4.63)

where ∂µ/∂ρ and ∂κ/∂ρ comes from differentiation of 4.5

∂µ

∂ρ
= 1 + q

(1 + q(1 − ρ))2 (µ1 − µ0)

∂κ

∂ρ
= 1 + q

(1 + q(1 − ρ))2 (κ1 − κ0).

For the local residual the derivatives are

∂n+1(1Cij)
∂ϕ

= 0ij (4.64)

∂n+1(2C)
∂ϕ

=
[
∂µ

∂ρ

√
d̄e

ij d̄
e
ij

−
√

2
3
(∂h
∂ρ

[1 − ωh(n+1θ − θ0)]n+1αm + ∂σy∞

∂ρ
[1 − ωh(n+1θ − θ0)](1 − e−δn+1α)

+ ∂σy0

∂ρ
[1 − ω0(n+1θ − θ0)]

)]∂ρ
∂ρ̃

∂ρ̃

∂ϕ
(4.65)

∂n+1(3C)
∂ϕ

=
(
η

ρ0c

∂σy0

∂ρ
[1 − ω0(n+1θ − θ0)]

)
∂ρ

∂ρ̃

∂ρ̃

∂ϕ
(4.66)

where

∂σy0

∂ρ
= 1 + q

(1 + q(1 − ρ))2 ((σy0)1 − (σy0)0)

∂σy∞

∂ρ
= 1 + q

(1 + q(1 − ρ))2 ((σy∞)1 − (σy∞)0)

∂h

∂ρ
= 1 + q

(1 + q(1 − ρ))2 (h1 − h0)

Considering the mass matrix, differentiating this with respect to the design variable
results in

∂n+1

∂n+1ϕ

(
c1ρ0(ρ)NδγNδβ

n+1ûβJ
isowweight

)
= c1NδγNδβ

n+1ûβJ
isowweight

∂ρ0(ρ)
∂ρ

∂ρ

∂ρ̃

∂ρ̃

∂ϕ
(4.67)

where
∂ρ0(ρ)
∂ρ

= 1 + q

(1 + q(1 − ρ))2 ((ρ0)1 − (ρ0)0). (4.68)
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4.4 Remarks about sensitivities

The sensitivities corresponding to the thermomechanical model are derived in the
previous section. Because of time-limitation, these sensitivities are not implemented
in the FE-program, instead to save time, the sensitivities from the quasi static elasto-
plastic model used in [19] are used. The objective function and the solution to the
equilibrium problem corresponds to the thermomechanical problem though. These,
approximated sensitivities, are then compare to a numerical sensitivities using numeric
differentiation, explained in section 4.3. A ratio between the numerical differentiated
objective function ∂Wp(ϕ)/∂ϕj and the analytically calculated approximation was used
for comparison. The thermomechanical model is also compared to the unmodified
model in elasto-plastic model [19].



Chapter 5

Results

The model is tested on a structure as presented in figure 5.1. On the right and left side,
the structure has fixed prescribed displacement, and a prescribed displacement in a
cone shape is applied in the middle. The structure measures 20mm in width and 5mm
in height. The material parameters are chosen as to match those of steel as in table 5.1.
The reference temperature is chosen as room temperature and the parameters that

κ µ σy0 h σ∞0 δ ρ θ0 ω0 ωh β
164 80 400 18 715 16.9 7800 293 2 ·10−3 1 ·10−3 1.5·105

GPa GPa MPa MPa MPa kg/m3 K K−1 K−1

Table 5.1 Material properties for steel

determine the temperature influence is also data for steel, and can be found in e.g. [17].
They are chosen as a linear approximation in the temperature region 273 - 373 K. The
thermal expansion coefficient β was chosen according to [3]. This, together with the
specific heat c are assumed to be temperature independent for the temperature range
considered. The RAMP penalization parameters were chosen as q = 6 for κ, µ, h, σy0

and ρ. For the initial flow stress, a slightly lower penalization at q = 4 were chosen

20 mm

5 mm

Fig. 5.1 Double clamped beam used to illustrate the model.
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according to [19]. The Newmark stability parameters were kept constant at γ = 0.5
and β = 0.25 for stability.

A comparison of the sensitivity from the isothermal problem presented in [19] versus
the numerical differentiated sensitivity is seen in table 5.2. The comparison is made as
a ratio between the differentiated objective function with respect to the design variable
∂Wp/∂ϕe for the two computed sensitivities.

Displacement 0.008 0.3 0.8 2.5
Error percentage 0.0024 % 0.041% 0.3142% 14.86 %

Table 5.2 Comparison of the thermomechanical model using the sensitivities in [19]
versus the numerically differentiated sensitivities for some prescribed displacement

For the case with the thermomechanical model using the sensitivities of [19], the
deformation for 0.8mm prescribed displacement can be seen in figure 5.2. Here the
use of symmetry can be seen, and the right part of the structure is presented. The
accumulated temperature is shown in figure 5.3 together with a plot of the plastic work
in each element, figure 5.4. The total plastic work versus the MMA-iterations can be
seen in figure 5.5.
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Fig. 5.2 Deformed topology for thermomechanical model with 0.8mm prescribed
displacement in middle of structure
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Fig. 5.3 Generated temperature in the structure using the thermomechanical model
with 0.8mm prescribed displacement

Considering larger displacements, the structure was also subjected to a prescribed
displacements of 2.5mm as shown in figure 5.6. For comparison, the isothermal version
presented in [19] was also computed, see figure 5.7.

The temperature for prescribed displacement can be seen in 5.8 together with the
plastic work for each element (figure 5.9) and the progress of the total plastic work as
function of MMA - iterations (figure 5.10). A temperature increase of 30°C represents
a lowered yield stress by 6% ie. from 400MPa to 376MPa.
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Fig. 5.4 Generated plastic work in the structure using the thermomechanical model
with 0.8mm prescribed displacement

0 10 20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35
Objective function

MMA iter

Fig. 5.5 Generated plastic work in the structure using the thermomechanical model
with 0.8mm prescribed displacement
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Fig. 5.6 Deformed topology for ther-
momechanical model with 2.5mm pre-
scribed disp.
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Fig. 5.7 Deformed topology, isothermal
model with 2.5mm prescribed disp.

0 0.002 0.004 0.006 0.008 0.01

−3

−2

−1

0

1

2

3

4

5

6

x 10
−3 Temperature: theta−theta

0

 

 

0

5

10

15

20

25

Fig. 5.8 Generated temperature in the structure using the thermomechanical model
with 2.5mm prescribed displacement
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Fig. 5.9 Generated plastic work in the structure using the thermomechanical model
with 2.5mm prescribed displacement
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Fig. 5.10 Total generated plastic work in the structure using the thermomechanical
model with 2.5mm prescribed displacement



Chapter 6

Discussion

Comparing the sensitivities in 5.2 it can be seen that for small displacements for the
double clamped beam, the isothermal sensitivity from [19] can be used, however, it can
be clearly seen that if greater displacement are to be used such that large amount of
plastic work is produced, the thermomechanical model needs to be implemented into
the sensitivities. This can be done using the adjoint method derived in [19] with the
modification as suggested in section 4.3.

The temperature distribution in figure 5.8 is focused around fixed boundary condi-
tions at the sides of the structure and where the prescribed displacements in the middle
is located. In these area the properties of the material will change and eg. thermal
softening can be observed.

In the project, the simplest temperature dependency have been implemented for
the material parameters like the initial yield stress σy0 , the saturation stress σ∞0 and
the hardening modulus h. The linear approximation could easily be replaced by a more
realistic, complex approximation. For the constant specific heat c, this could also be
temperature dependent. For austentic stainless steel c is almost linear as shown in
[17], so perhaps a linear approximation would be ideal. This could be done with some
slightly modification of the free energy function as c is defined by this as c = −θ∂2

θθΨ.
The approximation that heat conduction does not take place due to rapid deforma-

tion needs to be investigated as well. How fast must the deformation occur in order for
this to still make a good approximation and how does viscous effects effect the result?
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Appendix A

Local solution

A.1

The integrated heat equation with approximation for mechanical work in section 3.3

n+1θ − nθ = η

ρ0c
ŷ0(n+1α− nα) = η

ρ0c
y0(θ0)[1 − ω0(n+1θ − θ0)](n+1α− nα) =

η

ρ0c
y0(θ0)[1 + ω0θ0](n+1α− nα) − η

ρ0c
y0(θ0)ω0

n+1θ(n+1α− nα)

yields an explicit expression for θ(α)

n+1θ(nα, n+1α) =
nθ + η

ρ0c
y0(θ0)[1 + ω0θ0](n+1α− nα)

1 + η
ρ0c
y0(θ0)ω0(n+1α− nα) (A.1)

Taylor expansion of yield function around state n+1 updates the state

f = f + ∂f

∂α
dα (A.2)

where dα is solved for. The derivative of A.1

∂n+1θ

∂n+1α
=

η
ρ0c
y0(θ0)[1 + ω0θ0]

1 + η
ρ0c
y0(θ0)ω0(n+1α− nα)−

−
nθ + η

ρ0c
y0(θ0)[1 + ω0θ0](n+1α− nα)

1 + η
ρ0c
y0(θ0)ω0(n+1α− nα)

2

· η

ρ0c
y0(θ0)ω0



48 Local solution

∂n+1K ′

∂n+1α
= h(θ0)[1 − ωh(n+1θ − θ0)] − h(θ0)ωh

∂n+1θ

∂n+1α
+

+ y0,∞(θ0)[1 − ωh(n+1θ − θ0)]δ−δ
n+1α − y0,∞(θ0)ωh

∂n+1θ

∂n+1α
(1 − e−δn+1α)

∂n+1ŷ0

∂n+1α
= −y0(θ0)ω0

∂n+1θ

∂n+1α



Appendix B

Derivation of the algorithmic
stiffness tensor

In order to preserve the second order convergence rate of the Newton-Raphson algorithm
the continuum tangent stiffness needs to be replaced by the algorithmic tangent stiffness
(3.17) that relates the stresses to the strains in the discretized system. Beginning by
integrating the stress-strain relation

SAB = ∂SAB

∂Ekl

dEkl (B.1)

using the backward Euler method results in

(2)SAB =(1) SAB + ∂SAB

∂Ekl

∣∣∣∣∣
(2)

dEkl (B.2)

where the derivative is rewritten with the Kirchhoff stress as

∂SAB

∂Ekl

∣∣∣∣∣
(2)

=
∂(F−1

Ai τijF
−1
Bj )

∂Cst

∂Cst

∂Ekl

=
∂(F−1

Ai F
−1
Bj (dev(τij) + 1

3tr(τ)δij))
∂Cst

∂Cst

∂Ekl

. (B.3)

From 3.28 the deviatoric part can be split up in a trial stress and back stress. The
result is a stress in three terms like

∂SAB

∂Ekl

∣∣∣∣∣
(2)

=
∂(F−1

Ai F
−1
Bj (

1
dev(τ trial

ij ) −
2

2µ̄∆λnij +
3

1
3tr(τ)δij))

∂Cst

∂Cst

∂Ekl

(B.4)
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The first terms is differentiated as 1 :

∂

∂Cst

(
−2/3J

[
nGp

AB − 1
3C

n
xyG

p
xyC

−1
AB

])
= ...

= F−1
si F

−1
tj

[
||dev(τ trial)||

(
nainaj − 1

3δij

)
+ µtr(b̄e,trial)

3 nij

]

The derivative of the second term is 2 :

∂Sab

∂Cst

= ∂

∂Cst

(
µ̄∆λµ

||devτ trial||

[
J2/3(Gp,n

ab − 1
3CxyG

p,n
xy C

−1
ab )

])
=

= −F−1
ai F

−1
bj F

−1
sx F

−1
ty

[
µ̄β3nijnxy + µ̄β4nijdev(naxnay)−

− β1

(
µ̄[Iijxy − 1

3δijδxy] − ||dev(τ trial)||
3 [nijδxy + δijnxy]

)]

with

β1 = 2µ̄∆λ
||dev(τ trial)

β2 = 2
3

||dev(τ trial)||
µ̄

∆λ(1 − 1
β0

)

β3 = β2 + 1
β0

− β1

β4 = ||dev(τ trial)||
µ̄

(
1
β0

− β1

)

and the third term is 3

∂

∂Cst

(
CAB

1
3tr(τ trial)

)
= ...

F−1
Ap F

−1
Si F

−1
tu F

−1
Bv

[
1
3tr(τ trial)1

2(δpiδuv + δuiδpv) +
(
κJ2 + (θ − θ0)(−3βκ

[
J

2 − 1
2J

]
)
)
δuiδpv

+ ∂θ

∂α

∂α

∂∆λ
1

2β0

([
1 − 2||dev(τ trial)||

3µ̄ ∆λ
]
niuδpv + ||dev(τ trial)||

µ̄
dev(nainau)δpv

)]

where ∂αθ is denoted in appendix A.1



Appendix C

Matrices in FE-formulation

If plain strain is considered, a matrix format of the second-Piola Kirchhoff stress tensor
and Green-Lagrange’s tensor is introduced to suit computer implementation

S =


Sxx

Syy

Sxy

 δE =


δExx

δEyy

δExy

 .

If all the elements in the Green-Lagrange’s strain in terms of displacements is expanded
the result is

δE =


∂δux

∂xo

∂δuy

∂yo

∂δux

∂yo + ∂δuy

∂xo

+


∂ux

∂xo
∂δux

∂xo + ∂uy

∂xo

∂δuy

∂xo

∂ux

∂yo
∂δux

∂yo + ∂uy

∂yo

∂δuy

∂yo

∂δux

∂xo
∂ux

∂yo + ∂ux

∂xo
∂δux

∂yo + ∂δuy

∂xo

∂uy

∂yo + ∂δuy

∂xo

∂uy

∂xo

 (C.1)

Introducing

∇̃o =


∂

∂xo 0
0 ∂

∂yo

∂
∂yo

∂
∂xo

 ∇̄o =



∂
∂xo 0

∂
∂yo 0
0 ∂

∂xo

0 ∂
∂yo


(C.2)

and

A(u) =


∂ux

∂xo 0 ∂uy

∂xo 0
0 ∂ux

∂yo 0 ∂uy

∂yo

∂ux

∂yo
∂ux

∂xo

∂uy

∂yo

∂uy

∂xo

 (C.3)
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this yields that the variation of the Green-Lagrange’s strain can be written in a
compact way

δE = ∇̃0δu + A(u)∇̄δu (C.4)

The surface traction, the body force, the displacement and the arbitrary displacement
in matrix form are

u =
ux

uy

 t0 =
t0x
t0y

 b =
b0

x

b0
y

 δu =
δux

δuy


Discrete approximation of the displacement field and variation of displacement field

can be achieved by using form functions for, for example four node elements as

u =
N1(x0)
N2(x0)

 û = N(x0)û δu = N(x0)δû

where N are the form functions.
Inserting this into the variation of the Green-Lagrange’s strain (C.4) yields

δE = (Bl
0 + A(u)H0)δû = B0δû (C.5)

where

Bl
0 = ∇̃0N and H0 = ∇̄0N.

Inserting the form functions for e.g. a 4-node element on element level, these matrices
are explicitly written as

Ble
o =


∂N1
∂xo 0 ∂N2

∂xo 0 ∂N3
∂xo 0 ∂N4

∂xo 0
0 ∂N1

∂yo 0 ∂N2
∂yo 0 ∂N3

∂yo 0 ∂N4
∂yo

∂N1
∂yo

∂N1
∂xo

∂N2
∂yo

∂N2
∂xo

∂N3
∂yo

∂N3
∂xo

∂N4
∂yo

∂N4
∂xo

 (C.6)

He
o =



∂N1
∂xo 0 ∂N2

∂xo 0 ∂N3
∂xo 0 ∂N4

∂xo 0
∂N1
∂yo 0 ∂N2

∂yo 0 ∂N3
∂yo 0 ∂N4

∂yo 0
0 ∂N1

∂xo 0 ∂N2
∂xo 0 ∂N3

∂xo 0 ∂N4
∂xo

0 ∂N1
∂yo 0 ∂N2

∂yo 0 ∂N3
∂yo 0 ∂N4

∂yo

 . (C.7)
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