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Abstract

The notional amounts outstanding of over-the-counter (OTC) derivatives had
grown exponentially for almost two decades and its rapid growth were mainly
due the increase in OTC interest rate derivatives. As of december 2014, the
total notional amounts outstanding in the global OTC market was 630 tril-
lions USD and the OTC interest rate derivatives represents about 80% of the
market.

Trading with OTC derivatives can lead to significant risks. Especially coun-
terparty credit risk has gained particular emphasis due to the credit crisis in
2007. The aim of this thesis is to determine if it is possible to get realistic
estimations of counterparty credit risk measures as Expected Exposure (EE)
and Potential Future Exposure (PFE) that reflects the "real world” market.
In order to do simulations under the historical P-measure, attempts are made
to approximate the market price of risk and then calculate exposure profiles
for the interest rate derivative Bermudan swaption. The Hull and White
one-factor short rate model is used and all calculations are done using the

Stochastic Grid Bundling Method(SGBM).

Keywords: OTC, Counterparty credit risk, HW1F, Market price of risk,
CVA, Potential Future Exposure, Expected Exposure, Bermudan swaption,

Stochastic Grid Bundling Method, SGBM.
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Chapter 1

Introduction

1.1 OTC Contracts

An Over-the-counter (OTC) contract is a bilateral contract that specifies the
conditions on how a partucular future trade or agreement is settled. Usually
one of the two parts in the contract is an investment bank. This type of
contract is negotiated between the counterparties and the trade occurs with
commodities, financial instuments (including stocks) and derivatives. OTC
derivatives are often refered to as swaps beacause many OTC deals involves
cash flows, or obligations, that are swapped or exchanged between the coun-
terparts at defined intervals[5].

The most common reason for engaging an OTC contract instead of an ex-
change traded contract is that it can be tailored to ones need in contrary
to the exchange traded contracts that is more of an one-size-fits-all type of
contract. Because of that one can tailor this contracts after the special needs
for the trade or agreement it often gives better conditions for a perfect hedge,
to trade larger contracts more efficient and accessing liquidity.

For the derivatives the agreements of the contract is often regulated by the
International Swaps and Derivatives Association, ISDA, which is a trade or-
ganization of participants in the market for OTC derivatives[5].



1.2 OTC Market

The notional amounts outstanding of over-the-counter (OTC) derivatives had
grown exponentially for almost two decades when it stabilized back in 2008.
This rapid growth were mainly due the increase in OTC interest rate deriva-
tives which is the largest asset class of the OTC market. As of december
2014, the total notional amounts outstanding in the global OTC market was
630 trillions USD and the OTC interest rate derivatives represents about
80% of the market i.e. 505 trillions USD [12]. In Figure 1.1, the growth of
the OTC market is illustrated.

Trading with OTC derivatives can lead to significant risks. Especially coun-
terparty risk has gained particular emphasis due to the credit crisis in 2007.
Counterparty risk is the risk that the counterparty at a future date may
default and cannot fullfill the payment obligations that is required by the
contract. Therefore the bank needs to estimate the total risk towards a par-
ticular counterparty and use this estimation when creating a capital buffer
i.e., the capital requirement, to cover for losses due to a default. There are
other ways to limit the risk towards the counterparty for example diversifica-
tion, netting, collateralisation and hedging. All of these methods are focusing
on controlling credit exposure[4].

Even though the term counterparty risk always has been connected to OTC
contracts, there has been a tendency of underestimating this term before the
financial crisis in 2007. This was due to a general market view which was
that large companies were “too-big-to-fail”. The years following the financial
crisis showed that this general view of the market did not reflect the reality
because a couple of those "too-big-to-fail” companies went bankrupt|[4].

A couple of years before the crisis the second Basel Accord, Basel 11, was
published. This is standards and recommendations on banking laws and
regulations issued by the Basel Committee on Banking Supervision. It is
intended to be used as international standards that control how much capi-
tal banks need to hold to be safe against the financial and operational risks
banks face. Although it was established in 2004, it was not implemented in
the major economies until the years around the financial crisis. Due to the
events following the crisis the Basel Committee made an extension of the
Basel 11 accords and published new standards that contains stricter regula-
tions, the Basel 111 accord. These standards are supposed to lead to better
quality of capital, increased coverage of risk for capital market activities and
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Figure 1.1: To show how fast the growth of the different derivatives on the
OTC market has been during the last two decades. Based on statistical data
from BIS.

better liquidity standards. The financial crisis has changed the market view
and increased the concern of counterparty risk and the need for better risk
management when engaging OTC contracts. In the Basel accords, Basel
I and III, there are regulatory standards for risk management, setting up
capital requirements to cover for eventual losses in case of a counterparty
default[1].

In the Basel 11 accord the requirements consist of computing what is gener-
ally referred to as counterparty credit exposure i.e. the amount of money that
can be lost if default occurs. Examples of these measures are the Expected
Exposures (EE) and the Potential Future Exposure (PFE). In the Basel
11T accord the standards require the estimation of Credit Value Adjustment
(CVA) charges. CVA is an adjustment to the price of the derivative to com-
pensate for possible counterparty default. So the value of an OTC contract
is the sum of the risk-free price and the CVA charge[4].



1.3 Description

Aim and framing of questions

From the introduction, it becomes clear why counterparty credit risk is an
interesting matter. This thesis is based on the paper ”Counterparty Credit
Exposures for Interest Rate Derivatives using the Stochastic Grid Bundling
Method” written by P. Karlsson, S. Jain and C. W. Oosterlee[9]. Therefore
the methodology and models used in this paper will be similar or in some
parts identical to the ones used in the underlying paper.

Today, most of the computations regarding exposure profiles are done under
the risk-neutral probability measure along with the pricing of the contracts
although it should be done under the impact of the real world market. Under
real world measure the volatility has a much bigger effect than the drift on
short-term risk exposures|7].

Since risk-related measures often are concerned with relatively long-term ex-
posures it becomes more important to obtain a reasonable estimate of the
real world drift. When moving from the risk-neutral world to the real world,
or vice versa, Girsanov’s theorem shows that the drift of variables changes
but the volatilities remains the same. So in order to change measure we need
estimate theese changes in drift[7].

The aim of this thesis is then to see if it is possible to get realistic estima-
tions of the exposure profiles (EE and PFE) that reflects the "real world”
market, i.e. simulate and estimate the mentioned exposure measures under
the historical P-measure also refered to as the real-world measure. This will
be done for the interest rate derivative Bermudan swaption.

To reach any conclusion regarding the aim of this thesis, the following fram-
ing of questions are to be analyzed:

e How do we know that the models and methods that is used produces

reasonable results during simulations?

e How is the market price of risk affected when the term structure is
fitted to different yield curves?

e Is there a significant difference in results calculated under the risk neu-
tral measure compared to the ones under real world measure?

e What happens during real world simulations for both short-term and
long-term contracts?



Model Assumptions

To simplify computations the following assumptions have been made through-
out the thesis:

e Only future payments are included in the estimations of the exposures.
e Assumes fixing dates and payment dates to be the same in all tenors.

e Assumes that the short rate has relatively short "memory” and by this
assumption make it reasonable to use less amount of historical data in
calculations.

e Assumes that there is no wrong-way risk.!

e For simplicity the future rates, that should be used to calculate the
historical market price of risk, is instead approximated by the 20 year
instantaneous forward rate.

Outline

Chapter 2 will define the one-factor Hull-White interest rate model, in dif-
ferent measures and other concepts that will be used in this model. Chapter
3 describes swaptions as a contract and the pricing of Bermudan swaptions.
Chapter 4 will present the counterparty credit risk concepts that are relevant
to the paper. Chapter 5 explains the Monte Carlo algorithm used for com-
putations, the Stochastic Grid Bundling Method, SGBM. In chapter 6 the
setup and numerical results obtained during simulations will be presented.
In chapter 7 there is a discussion about the results and arguments leading
up to the conclusions in chapter 8.

More about the assumption on no wrong-way risk in the section about CVA.



Chapter 2

Short Rate Model

A short rate model is a model that describes the future evolution of interest
rate by modelling the short rate, also known as the instantaneous short rate.
Some of the first instantaneous short rate models were time-homogeneous and
one-factor models. This means that the short rate dynamics only depends
on constant variables and a Brownian motion. Early models, like Vasicek
(1977) and that of Cox, Ingersoll and Ross (1985), were considered successful
mainly due to their possibility of pricing analytically bonds and bond options.
However since these models only have a finite number of free parameters it
is not possible to calibrate these models to observed market prices[3].

Ho and Lee (1986) were the first to solve this problem by allowing a parameter
to vary deterministically with time. This led to further development of more
advanced models which includes both single and multi-factor’ models that
has one or more time-dependent variables that can be calibrated to market
data.[3]

Before the short rate model that is used in this thesis, Hull and White (1990),
is explained the reader will be introduced to some definitions and concepts
that are of importance to interest rate simulations.

2.1 Interest Rate Notations

Let the price at time ¢ € [0,7] of a zero-coupon bond with maturity 7 be
denoted as P(t,T). As defined in [2, Bjork, p.304]:

!'The main difference between a one and multi-factor model is that the diffusion part
of the short rate dynamics is dependent on one respective several Brownian motions.



Definition 2.1. Let0<t< S <T.

(i) The continuously compounded forward rate for [S,T] as seen at time ¢

is defined as
log P(t,T) —log P(t,5)

T-—-S

R(t;5,T) =

(ii) The instantaneous forward rate with maturity 7" at time ¢ is defined as

_Olog P(t,T)

S (2.1)

ft,T) =

(iii) The instantaneous short rate at time t is defined as

r(t) = f(t,1).

2.2 The Market-Price-of-Risk

From [3, Brigo & Mercurio, p. 52] we get that the construction of a suitable
locally-riskless portfolio, as in Black and Scholes (1973), leads to the exis-
tance of a stochastic process. This process depends on the current time and
instantaneous spot rate and not from the maturities of the claims constituting
the portfolio. Such process, which is commonly referred to as market-price-
of-risk, defines a Girsanov change of measure from the real-world measure P
to the risk-neutral measure Q. Let us assume that the instantaneous spot
rate evolves under the real-world measure P according to

dr(t) = p(t,r(t))dt + o(t,r(t)dW?’, (2.2)

where ;1 and o are well-behaved functions and W7 is a P-Brownian motion.
It is possible to show the existence of a stochastic process A so that the
following relation hold for the drift part between P- and (Q-measure and is
given by

pf(tr(t) = pl(tr(t) + At r(t)o (2.3)

which is dependent on r(t) but not on the maturities 7.



2.2.1 The historical Market Price of Risk

One estimate of A is the historical market price of risk[7]. This is a calibration
were the price of risk remains constant through time. This expression for A
is given by

() = =) (2.4)

or

where T indices the rate maturity that the estimate is based on and o is
based on the standard deviation of the daily rate changes in an appropriate
period of time. As mentioned in the part about made assumptions, for sim-
plicity reasons F'(T') is the 20-year instantaneous forward rate? and ry is the
continuously compounded long run average short-term interest rate.
When there is mean reversion two things tend to happen. First the convexity
adjustment used to convert forward prices to future prices is lower so that
the estimate of futures rate, F'(T') is lower. This lowers the market price
of risk. Since forward rates are used instead, the market price of risk will
generally be a higher beacuase of that the convexity adjustment lower future
rates. Second, for a particular value of F'(T') a higher market price of risk
is necessary to increase the expected rate by F(T) — ro. This increases the
estimation of market price of risk.

2.2.2 Time dependent Market Price of Risk

Another estimate of A is as a function of time where we can interpret A(t)
as local prices of risk at different time steps, t. This estimate of the mar-
ket price of risk is obtained from [7] but with a modified estimation of the
volatility. To simplify estimations of the volatility, o will be based on the
standard deviation of monthly returns in an appropriate period of time.

If constructing a tree describing the average historical behavior of the term
structure one can evaluate the market price of risk at each node in each time
step as the difference between the expected short rate and the historical av-
erage short rate. To estimate these local prices of risk, we assume that the
average drift of the short rate at each time is equal to zero in the real world.
This means that, when moving from risk-neutral world to the real world, the

2F(T) should have been the long run average instantaneous futures rate for maturity
T. The long run average instantaneous futures rate is calculated from the long run average
forward rate by making a convexity adjustment.



mean value of the short rate at all times should be equal to the historical
average short rate.|7]

Since the market price of risk, A(¢), will be different here at each time step
they are better refered to as local price of risk.

2.3 Girsanov Theorem

We quote the following theorem, from [13, Aberg, p. 181]

Girsanov Theorem Suppose that the stochastic process g(t, W )is bounded
and adapted on [0, T, W} is a standard P-BM and the process WtQ is given
by

t
W =wl+ / g(s,WF)ds. (2.5)
0

g(t, Wl is called the Girsanov kernel. The process

t 1 t
L= (- [Catswhaw? -5 [ s whs),
0 0

is then a P-MG an so is the product WtQLt. Finally, define the measure Q
by
E@[A] = EPY[AL] (2.6)

Then W is a standard Q-BM on [0,T).



2.4 The Hull-White One-Factor Model

The Hull-White one-factor model (HW1F), is a model of future interest rates.
It is an extension from the Vasicek model mostly because of the poor fitting
of the initial term structure of interest rates. This problem was adressed by
John C. Hull and Alan White in their 1990. There hade been others trying to
extend the Vasicek model’s term-structure earlier but were not regarded as
proper extensions due to lack of mean reversion in the short-rate dynamics.
The need for an exact fit to the currently-observed yield curve, led Hull
and White to the introduction of a time varying parameter in the Vasicek
model. They also considered further extending the model by adding another
timevarying parameter that would fit a given term structure of volatilities.
Such a model, however, may be somehow dangerous when applied to concrete
market situations. That and because of it’s simplicity and tractability is why
the model with only one chosen parameter to be a deterministic function of
time, 0(t), is used amongst many trading desks today|[3].

The HW1F implies a normal distribution for the short-rate process at each
time. The Gaussian distribution of continously-compounded rates then al-
lows for the derivation of analytical formulas and the construction of efficient
numerical procedures for pricing a large variety of derivatives securities, such
as the bermudan swaption. Critisism of the model is that it allows for nega-
tive short-rates and that it is limited in flexibility for modelling yield curve
moments since all points on the yield curve are perfectly correlated[3].

In the underlying article, [9, Karlsson, Jain, Oosterlee], the short-rate model
is defined as a general GSR one-factor model® but then simplified to a HW1F
by making x a constant. However in this paper, we will skip the general GSR
definition and directly define the HW1F model that is later used in the com-
putation part.

3The difference in notation between the definition of the general one-factor GSR (by
P. Karlsson, S. Jain and C. W. Oosterlee) and the definition of HW1F in this paper, will

be that k = a and 6(t) = %.
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2.4.1 Short Rate dynamics under risk-neutral Q-Measure

In HW1F, the short rate 7(t) follows a mean-reverting® process of form
dr(t) = (O(t) — ar(t))dt + cdW (t), (2.7)

where a, o are constants and W a standard Brownian motion. The param-
eters a and o are usually obtaind by calibrating the model to plain vanilla®
option prices. From [3, Brigo & Mercurio| we get that the deterministic drift
function ©(t) is chosen so as to exactly fit the current term structure and
has the form

df(0,1) o?

ot) = a7+ af(0,t) + %(1 — e 20t (2.8)

where f is the instantaneous forward rate defined in equation (2.1). Applying
Ito’s lemma and substituting © with equaqtion (2.8) gives us the following
expression for the short-rate

t t
r(t) = r(s)e =2 +/ e~y @ (u, r(u))du + a/ e~ AW (1) (2.9)

Knowing from [3, Brigo & Mercurio, p. 75] that the HW1F model can be
written in affine term structure and thereby the following relation holds

P(t,T) = E{ {e— S Gy

]-“t} — A(t,T)e”BEDI®), (2.10)

where A(t,T) and B(t,T') are deterministic functions and F; is the filtration
at time ¢ generated by W. The deterministic functions, A and B, that fulfills
the term structure are

_e—a(T—t)

B(t,T)="1

a Y

P*(0,T *(0.48)— 22 (1_e—2at 2
At,T) = %Q(B(M)JC 0)-%(1 )B(LT)?)

4In finance, mean-reversion, is the assumption that the value will tend to move to the
average value over time.

5The most basic or standardized financial instruments on market are reffered to as
plain vanilla.
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Then from [2, Bjork, p.337] we get the closed form of the bond price, P(¢,T),
given as

e .

P* O T * 02 —2at
P(t,T) _ P*((Oa t)) (B(t,T)f*(0,t)— 5= B*(t,T)(1—e 29" )= B(¢,T)r(t))

One of the great advantages of having the expression in closed form is the
possibility to evaluate the short rate at arbitrary time points instead of iter-
ating using small time steps.

2.4.2 Short Rate dynamics under historical P-Measure

The dynamic of () under the risk neutral Q-measure is of the form
dr(t) = (O(t) — ar(t))dt + cdW<(t), (2.11)

where a and o are constants and W a standard Brownian motion under Q.
©(t) is given by equation (2.8).

To obtain the dynamics of 7(¢) under P-measure we use the Girsanov theo-
rem. First we define our Girsanov kernel g(¢, W) as the market-price-of-risk,
A(t,r(t)) from equation(2.3). Before using A as the girsanov kernel we need
to show that \ satisfies the Sufficient Novikov Condition, which states that
a sufficient condition for the Girsanov Theorem is that g(¢, W) satisfies

E [exp{%/ng2(t,W)dt}] < o0.

With the Girsanov kernels®, A, and equation (2.5) we are ready to change
the dynamics of r(¢). To obtain the P-dynamics, we just add and subtract
the integral of A(t,7(t)) which in this differential settings, equation (2.11),
takes the form

dr(t) = (O(t) — ar(t))dt + o (dWO(t) + (t, r(£))dt — A(t, r(t))dt)

= ((O(t) —ar(t)) + aA(t,r(t))dt + o (AW (t) — A(t, r(t))dt)/.

N

—~—
=dWP(t), eq.(2.5)

6The Girsanov kernels are assumed to be bounded since they have been obtained from
the article by Hull, Sokol and White [7].

12



Rewriting this we get the P-dynamics of r(t) as

dr(t) = ((O(t) —ar(t)) + oA(t, r(t))) di + adWF () (2.12)

(.

'

uP (t,r(t)), eq.(2.3)

where W7 is a standard Brownian motion under P. From here on we will
use u” which is defined in equation (2.3).

By applying It6’s lemma to equation (2.12) we will obtain an expression of
the short-rate

¢ ¢
r(t) = r(s)e_a(t_s) +/ e_a(t_“)up(u,r(u))du + 0/ e_“(t_“)dW(u) (2.13)

where u”'(t,r(t)) is the function defined in equation (2.3).
The bond price, P(t,T), for a zero-coupon bond that matures at time 7' > ¢
then must satisfy the PDE of form

oP 1 ,0°P

oP
T Q¢ r(t) -+ 50t H (P =0, (2.14)

T2

with boundary condition
P(T,T)=1.

According to [2, Bjork, p. 70, Proposition 5.6], Feynman-Ka¢ the solution
to the PDE will be given by

P(t,T) = E2 {1 o I

f?} . (2.15)

where ]-"tQ is the filtration at time ¢ generated by W¢.

13



2.5 Simulation scheme of the calibrated HW1F
model

This scheme for simulating the short rate has been provided by my mentor,
Magnus Wiktorsson. In appendix A, one can follow the derivation of the
short rate dynamics that is used to construct this scheme for simulating the
short rate under the Hull-White one-factor model on an equidistant time
grid.
To simulate a trajectory of r on an equidistant time grid with spacing A, the
easiest way is then to define
o2 2

yp = r(kA) — f*(0,kA) — 52 (1 — e_“kA) .
Using Eq. (A.2) we obtain the following recursive relation for y (standard
AR(1) process)

y = 0
ye = a(A)yp—1+ex, k=1,---

a(A) = e 8

2
er € N (0, ;—(1 — eQaA)> k=1,---, and they are all iid.
a

Having generated the sequence

{yk}Zzl

we obtain r as

2

r(kA) = g+ f5(0,kA) + o (1= e *2)? k=1, n.

52 (

This has the advantage that we can change the initial forward curve without
having to re-simulate y.

14



Chapter 3

Interest Rate Swaps and
Swaptions

3.1 Interest Rate Swap (IRS)

An Interest Rate Swap, IRS, is a derivative instrument in which two par-
ties agree to exchange interest rate cash flows, based on a specified notional
amount from a fixed rate to a floating rate or from one floating rate to an-
other. There are many different kinds of IRS and as a part of the OTC
contracts they can be tailored after specific needs of the parties involved.
Most commonly is to use the IRS for hedging or speculating purposes. As
stated in the introduction part of this paper, the total amount of traded
interest rate contracts in the OTC-market was about 505 trillions USD and
of those the swaps stands for a total traded amount of about 381 trillions
USDI[12] [8].

In a fix for floating swap, a payment stream at a fixed rate of interest, known
as the swap rate, is exchanged for a payment stream at a floating rate. The
floating rate are often indexed to a reference rate like the LIBOR rate. These
payment streams are called the legs of the swap, fixed leg and floating leg.
Since the agreement has two counterparties there are two positions of the
contract, payer or receiver. The party that pays at a fixed rate and receives
at a floating is the payer, and the party that pays at a floating rate in ex-
change for fixed rate is the recevier.

15



3.2 Swaptions

A swaption is an option granting the owner the right but not the obligation to
enter into an underlaying swap. Although options can be traded on a variety
of swaps, the term swaption typically refers to an IRS as underlaying swap.
There are two types of swaption contracts, a payer swaption or a receiver
swaption. These are defined the same way as for the swaps i.e, the one with
the right to enter into a swap where they either pay or receives payments at
the swap rate is the owner of the payer- or receiver swaption|[§].

There are three main categories of swaptions, although these contracts may
be derived after customized demands. These standard varieties of swaptions
are:

e European, in which the owner has the right to enter the swap only on
expiration date.

e Bermudan, in which the owner has the right to enter the swap on
multiple prespecified dates.

e American, in which the owner the right to enter the swap on any day
that falls within a range of two predetermined dates.

The participants of these contracts are predominantly large corporations,
banks, financial institutions and hedge funds.

3.2.1 Valuation of Bermudan Swaption

The valuation of the Bermudan Swaption will be defined as in [9, Karlsson,
Jain, Oosterlee].

A vanilla interest rate swap is a contract that allows one to change payments
between two different legs, often a floating leg against a fixed leg. The value
of the forward swap rate S, ,,(t) and swap annuity A, ,,(f) at time ¢ with
payments T, .1, ..., T;, are given by

P(t,T,) — P(t, T, s
Sn,m(t) = ( )14 ( >7 An,m(t) = Z P(ta T‘H-l)’ri?

)

where 7; = T;,1 —T;. Given a lockout i.e.; a no-call period up to time T}, the
Bermudan swaption gives the holder the right, at a set of fixing dates T;,, for
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T, €T ={11,T5,...,T,,—1} to enter into a fixed for floating swap S,, ,, with
fixing date T,, and last payment date T,,. The Bermudan swaption with the
fixed coupon k, exercised at time 7,, corresponds to the payoff given by

where A/ denotes the notional, and ¢ € {—1,+1} the payer or receiver factor
(+1 for a payer and -1 for a receiver swaption). The holder of a payer
Bermudan will pay the fixed swap leg and receive the floating swap leg. The
present value Vy of a Bermudan swaption is the supremum taken over all
discrete stopping times of all conditional expected discounted payoffs, that
is

Vo = B(Tp) sup E [—Un } (3.1)

’ ‘ TheT o B(Tn) ' .

For practical reasons we now choose to work under the spot measure, Q5.
Where we have, B(t) , as the numeraire. B(t) is the discrete version of the
continuously compounded money market account with rolling certificate of
deposit given from

B(t) = P(taﬂ-f—l) H P(TnaTn-l-l)_lvt € (,I;vﬂ-i—l]v

n=0

with corresponding fixed discrete tenor structure 0 = Ty < 177 < --- < Thy.
One of the beneficial reasons to work with the spot measure is that the
numeraire asset B(t) is alive throughout the tenor. This allows for simulating
paths irrespective of tenor which i practical for Bermudan swaptions since
the contract can mature randomly at any of the preset dates in the discrete
tenor structure.

Let EP = E denote the conditional expectation with respect to the measure
induced by B(t). The value at time ¢ of a contract paying V(7T') at time T is

then given by -
V(t) = B(t)E, {BETH )

The option value at an arbitrary time 7}, is the maximum of the intrinsic
value U,, and the conditional continuation value H,, given as

Vn - maX(UTIJ Hn>7 (32>
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where H,, = 0 at maturity 7,,. Further, the continuation value H, is the
conditional expected option value at a future time 7,1 and given by

Vn—i—l :|

B(Ton) (3:3)

H, = B(T,)Er, {
The valuation problem is solved via backward induction starting at the time
of maturity, 7,,, and solved by recursively evaluate (3.2) and (3.3) at each
step until we reach time Ty. Then the value of Vy will be the value of the
Bermudan swaption contract.
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Chapter 4

Counterparty Credit Risk

In this chapter some of the concepts that is of importance to estimate the
counterparty credit risk measure (EE, CVA and PFE) in this paper will be
defined and described.

4.1 Credit Default Swaps

A credit default swap (CDS) is a financial agreement that the seller of the
CDS will compansate the buyer in the event of a loan default or other credit
event. It is often seen as an insurance against the risk of default of some com-
pany, called the reference entity which is not a party in the agreement.[§]

The buyer of a CDS makes a series of payment to the seller and in return the
buyer recieves a payoff from the seller in case of default of the reference entity.
The value of the CDS varies with the credit quality of the reference entity,
which means that it should not only be seen an insurance against default
but as an object for speculation on the credit quality of the reference entity.
This is why the CDS often is used when calibrating the probability of default.

4.2 Probability of Default

The probability of default, PD, is a financial term describing the probability
of a counterparty defaulting in a particular time horizon. These probabilities
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are either obtained as real, P, or risk-neutral, QQ, default probabilities. These
different kinds of default probabilities are used in different types of analyzes.
Often when pricing or calculating the change of price of a financial contract
due to default probabilities, the risk-neutral method is used to account for
the market price of risk. When calculating for potential future losses from
default, real-world default probabilities are used. [4]

The default probabilities for a given counterparty is usually bootstrapped
from a quoted CDS. Basel /1] states that ”Whenever a CDS spread is not
available, the bank must use a proxy spread that is appropriately based on
rating, industry and region of a counterparty”. Some calibration methods
that are used to estimate PD are from CDS spreads or bond spreads (if
traded and quoted in the market), from a rating transition matrix (normally
given by credit rating agencies or institutions) and from proxies such as stock
price or reported fundamental data. In this paper we will define PD(t) under
the risk-neutral Q-measure since we will use PD(t) to price the CVA. Let 7¢
be the counterparty’s default time and the probability that the counterparty
C' defaults before time t can then be expressed as PD(t) = Q(7¢ < t). We
define the default probabilities as

PD(t) = 1 — el Jor®) (4.1)

where the probability factor v(t) is called the hazard rate or instantaneous
credit spread. The hazard rate can be interpreted as the probability that the
counterparty defaults in dt years given that it has not defaulted so far. [9]

4.3 Expected Exposure

Let V'(t) be the default-free value of a contract 7 at time ¢. Then the exposure
of this one contract is given by

E(t) = max(V",0).
The value of a portfolio consisting of N contracts towards a specific counter-
party C' at time ¢ can be written as

N

Ve(t) = Z Vi(t).

i=1
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The portfolio exposure E(t) against a counterparty C' is then given by the
portfolio value
E(t) = max(Vg,0).

Since one never gain on a counterparty default, the exposure is always posi-
tive. Let 7¢ denote the counterparty’s default time. The expected exposure
EE(t) can now be defined as

EE(t) = E[BE(#)|t = 7¢].

And the risk-neutral discounted expected exposure, £ E*(t) is then expressed
as ()
t

EE*(t) = B(0)-EY | =Lt = 7o | | 4.2

(0= 505 | 0= (12

where E is the expectation with respect to the spot measure Q® and the

numeraire is the discrete version of the continous compounded money market

account with rolling certificate of deposit, B(t).

4.4 CVA

Credit Value Adjustment can be seen as the price of or as a measure of the
market value of counterparty credit risk towards a specific counterparty. The
CVA is a measure that adjusts the risk-free price of the derivatives to account
for the counterparty credit risk. CVA is defined as

CVA= Prisk—free - Priskya (43)

where C'V A is the adjustment between the risk-free price, Pig,— free and the
risky (true) price, P,sy, of the derivative. CVA has become one of the main
focuses in the Basel III accord and trading desks today are required to es-
timate CVA charges towards each of their counterparties. The CVA might
differ between different counterparties due to different conditions in terms
of risk, this means that there will be different prices of a derivative for each
counterparty.

When estimating CVA there are mainly two directions, unilateral and bi-
lateral CVA. Unilateral CVA only considers the counterparties risk while
bilateral CVA accounts for the credit quality of both parties. Both these
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charges are calculated with Monte Carlo methods. Unilateral CVA requires
2 factors, the market and the counterparty credit, and an assumption on a
single correlation between the two factors. When calculating the bilateral
CVA one need to account for the own credit risk as well, which means that
there are 3 factors and a 3x3 correlation matrix between the factors. In this
paper, as mentioned before, we will only focus on the unilateral CVA but the
methods presented can be extended towards bilateral CVA.

CVA is computed as the integral over all points in time of the discounted
expected exposure given that the counterparty defaults at that time, multi-
plied with the default probability and the Loss Given Default, i.e. one minus
the recovery rate Ro. Mathematically, the unilateral CVA is given by

TR [E®
CVA=(1-Re)- B(O)/ E [—6@ — TC)] dt, (4.4)
o LB@)
where 0 is the Dirac delta function, E is the expectation with respect to the
spot measure Q7 and T is the maturity of the instrument within the portfolio
with the longest maturity.
We will further assume that there i no wrong-way risk. ISDA defines the
wrong-way risk as "the risk that occurs when exposure to a counterparty is
adversely correlated with the credit quality of that counterparty” . In short
it arises when default risk and credit exposure increases together, this co-
dependence will increase the CVA on the forward contract and will make the
CVA higher than when the effects were independent. Making this assumption
will simplify the calculations for CVA and it means that we assume that
exposure and default probability is independent. With this CVA now can be
expressed as
TR [E®
CVA=(1- Re)- B(0) / E {—‘t _ Tcl E[(t — ro)ldt. (45)
o LB({)
The second expectation in the integrand above is recognized as the default
probability function PD(t). So we rewrite the CVA as
TR [E®
CVA=(1-Re)- B(O)/ E [—‘t = TC:| dPD(t). (4.6)
o LB@)
If we define a discrete grid 0 = Ty, < T} < --- < T, = T of observation
dates and recognize that the integrand expectation part actually is the risk-
neutral discounted expected exposure EFE*(t). Equation (4.6) can now be
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approximated by

CVA=(1- Re) NZ_I EE*(T,) - (PD(Toy) — PD(T))).  (4.7)

n=1

Equation (4.7) can be seen as a weighted average of the risk-neutral dis-
counted expected exposure with the weights given by the default probabili-
ties. The most complex part of the CVA estimation is the evaluation of the
exposure. There are guidelines for how to simulate market scenarios and how
many simulations required to get a satiesfied value of CVA in the sense of
convergence. With American Monte Carlo methods a large number of mar-
ket scenarios of factors such as yield and inflation curves, FX rates, equity
and commodity prices, credit spreads etc. are simulated.

4.5 Potential Future Exposure

Potential Future Exposure (PFE) is a measure of counterparty risk or credit
risk and it is often refered to as sensitivity of risk with respect to market
prices. It should be seen as an upper bound on a confidence interval for
future credit exposure.
For a given date ¢ and some confidence level a, PF'FE, is the maximum
exposure of a contract or portfolio with a high degree of statistical confidence
a defined as

PFE,(t) =inf{z : P(FE(t) < x) > a}, (4.8)

where P is the real-world probability measure.
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Chapter 5

Stochastic Grid Bundling
Method

5.1 Background of the SGBM

The pricing of American-style contracts can be complicated i.e., contracts
in which the holder can choose the time of exercise. The traditional valua-
tion methods, such as lattice- or tree based techniques are often impractical
due to the curse of dimensionality, and are therefore mainly used on low-
dimensional cases. More attractive methods are simulation methods. They
are based on stochastic sampling of paths of the underlaying state vector and
converges in proportion to the square root of the number of paths that are
generated, independent of the dimension of the problem. [11]

In the case of American-style contracts an optimal exercise policy has to be
determined via a dynamic programming approach. The difficulty then arises
in combining the forward evolution of simulated paths with the backward
induction of dynamic programing. [11]

Several simulation-based methods which combines Monte Carlo path gener-
ation and dynamic programming techniques have been developed over the
years. Amongst these methods, there are a class of regression-based meth-
ods. In 2012 Jain and Oosterlee derived the regression-based method called
Stochastic Grid Method, SGM. This method consists of elements from the
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Least Squares Method (LSM) !, the Stochastic Mesh Method (SMM)? and
stratified state aggregation along the pay-off method 3. [10]

SGM follows the dynamic programming style of SMM by recursively com-
puting the option price backwards in time. The functional approximation
of the option price at a given time step is used to compute the price at the
previous time step which is obtained using regression. An advantage of this
method is that the dimensionality of the problem is reduced using the pay-
off as a mapping function. In comparance with LSM, for which the basis
functions used for regression grows fast with the dimensions of the problem,
the number of basis functions in SGM is independent of the dimensions of
the problem. [10]

Another approach is based on approximating the transition probabilities
using either bundling, partitioning or quantization of the state space. or
computing weights to approximate these conditional probabilities, as in the
stochastic mesh method. The bundling approach was introduced by James
A. Tilley.[11]

In 2013, Jain and Oosterlee further developed the stochastic grid method into
a method that is a hybrid of regression- and bundling- based approaches, the
Stochastic Grid Bundling Method, SGBM. It uses regressed value functions
together with bundling of the state space to approximate continuation values
at different time steps. To make the algorithm less computationally expen-
sive, the bundling in SGBM is used to cluster grid points.[11]

5.2 General Summary of the SGBM

The steps involved in the SGBM algorithm will be stated and described as
in Jain and Oosterlee (2013). [11]

'by Francis A. Longstaff and Eduardo S. Schwartz can be found in Valuing American
options by simulation: A simple least-squares approach, The Review of Financial Studies
Vol. 14, Iss. 1 (2001), pp. 113-147

2by Mark Broadie and Paul Glasserman can be found in A stochastic mesh method
for pricing high-dimensional American option, Journal of Computational Finance 7 (July,
2004), pp. 35-72

3by Jérome Barraquand and Didier Martineau can be found in Numerical valuation of
high-dimensional multivariate American securities, Journal of Financial and Quantitative

Analysis. Vol. 30, Iss. 3 (Sept, 1995), pp. 383-405
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Step I: Generating grid points

The grid points are generated by simulating N independent copies of sample
paths with all of them starting from the same initial state Ry, { R, (n), ..., R, (n)},
n =1,..., N, of the underlying process R;. The n-th grid point at time step t,,

is then Ry, (n) with n =1, ..., N. If the underlying process is in closed form

it can be simulated directly otherwise an appropriate discretization scheme
should be applied to generate the sample paths.

Step II: Option value at terminal time

The option value at terminal time, tj;, is given by
VtM (RtM) = maX(U<RtM)7 0)

where U(Ry,,) is the intrinsic value. This relation is used to compute the
option value for all grid points at the final time step.

The next three steps are subsequently performed for each time step, t,,, m <
M recursively, moving backwards in time starting from ¢,,.

Step III: Bundling

The grid points at ¢, are bundled into B;,,_,(1),..., B, _,(v) non overlap-
ping sets or partitions. We will use the Recursive bifurcation algorithm* for
partitioning but there are other approaches that can be used for partitioning.

Step I'V: Mapping high-dimensional state space to a low-
dimensional space

Corresponding to each bundle By (3),8 = 1,...,v, a parametrizied value

function Z : R? x R¥ s R. This function assigns computed values Z(R;,,, afm)

B

to state Ry, . Here aj € RX is a vector of free parameters. The objective

then is to choose, for each t,, and 3, a parameter vector o’ so that

tm

tm

Z(Rt'rn? atﬂm) ~ ‘/tm(Rtm)'

4For a description of the Recursive bifurcation algorithm see Appendix B
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This can be done by representing Z(R;,,, afm) as linear combination of basis
functions using regression. Doing this will give us the following expression

q
Z(Ri,, ap,) = Vi, (Ri,) % Y @inGi(tm) (5.1)
i=0
where (; is a set of q basis functions, ¢; : R? z R¥ — R and constants Q-

Step V: Computing the continuation and option values
at tm—l

The continuation values for
Rtm—l (n) € Btm—l(ﬂ)? n = 1, vy N, ﬂ = 1, U,

are approximated by
i (Rey () = B | 20 )| Rrs ()]

The approximated option value, V}m_l, are then given by

‘/\/tmfl = maX(U(Rtmfl)’ Htmfl (Rtmfl(n)))

5.3 SGBM to calculate EE, CVA and PFE

Once the approximated values, V,,, have been obtianed through the regres-
sion it is time to compute the exposure. This is done as described in the
underlying article by Karlsson, Jain and Oosterlee. [9]

The exposure, E,(t,) at time ¢,, is calculated using the law of iterated ex-
pectations, given as

Vn+1 (tn+1>

E,.(t,) = B(t,)E [ Bltns)

X(0)

% C(tns), X (tn)} X (tn)] (5.2)

where X(t,) is grid points. To simplify, we rewrite this expression and de-
compose it into two parts that needs to be computed by the SGBM. First

= B(t,)E [JE [
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we will compute the expected option value, refered to as inner expectation,
given by

ﬂm:EF%%%g\wwmxmﬂ (53)

In the second step we will compute the exposure, refered to as the outer
expectation, given by

Eo(tn) = B(t,)E {Z(z&n) ‘ X(tn)} . (5.4)

So to compute equation (5.3) and (5.4) we need to numericly approximate
Zn(t,). One way to do this, is by condition V41 (t,11) on X(¢,) and then use
bundling®. This is a method to partition the state space into non-overlapping
regions, so that each point in space can be identified to lie in exactly one of
the bundled regions. The idea behind bundling is that for a large set of paths
use the fact that neighbouring paths will have a similar continuation values.
One can therefore perform local-averaging over nearby paths.

The goal is to construct bundles by generating K replications of the underlay-
ing asset path and their grid points, X (t,,w). Here wy, represents the k-th
path, n =1,..., N and k =1, ..., K. Then one need to bundle them at each
time point, t,, into a, (K) non-overlapping sets, B%(t,) = (B'(t,), ..., B*(t,)),
with a threshold, b, (K), on the number of path points in each set or bundle.
Defining the s-th bundle at time ¢, as

B(t) = { X (tay )+ X (b i) — 32 < X (b)) — b2 Y1 < € < an(K)},
(5.5)

for k =1,..., K, where u is the mean of the points in B*(t,). For a deeper

knowledge and description of the the recusive bifurcation algorithm that is

used for bundling turn to Appendix B.

So to compute the inner expectation, equation (5.3), we approximate Z,, onto

a polynomial subspace where the value are linear combinations of the basis

functions. This is done by regression on the option values at t, for those

paths that originate from the bundle containing X (¢, wy). So we express Z,,

as in equation (5.1), that is

q

Zn(tn7wk) - Zai,nCi(tnywk)7 (56)

=0

®Bundling was introduced by Tilley and then extended to higher dimensions in State
Space Partitioning Method (SSPM) by Jin, Tana and Sun.
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for k € B(t,, wy) and the following residual is to be minimized

. 2
min Z (Zn(tn,wl) — Vu(tn, wl)> )
“ lEB(tn7’wk)

To compute the outer expectation i.e. the approximate of the exposure,

A

E,(t,, wy), at time ¢, for the path wy, is then given by

A

Vi1 (g1, wi)
B<tn+1 ) wk)

A

En(tn, wk) = B(tn, wk)IE

‘B(tn,wk)] (5.7)

where bundle B(t,,wy) is the set of path-indices of path that lies in the
bundle containing X (t,,wy). If combining the relation in equation (5.3) and
(5.7) we can rewrite the expression for the approximated exposure as

A

q
1 tn , W
En(tna wk) = B<tna wk’) Z ai,n]E [%
i=0 nrh

Bt wk)] L (58)

In the computation of the exposure we have decomposed the problem into two
parts, the inner- and the outer expectation. We use T-forward measure, with
corresponding expectation ET and T-maturity zero coupon bond P(t,T) as
numeraire, to express the outer expectation in closed form and the with the
advantage that it decouples the payoff V(T') from the numeraire and takes
the discount factor out of the expectation i.e.

V(t) = B()E, {ggﬂ

= P(t,TEl' [V(T)].

As mentioned earlier one benefit with the spot measure compared to the
T-forward measure is that the numeraire asset B(t) is alive throughout the
tenor and therefore allows for simulating paths irrespective of tenor. This
is one reason for computing the inner expactation under spot measure with
regression.

Since both the spot- and T, ,1-forward coincides over the intervall [¢,,, ¢, 1] we
can use hybrid measure when calculating the exposure. We can once again
rewrite the expression for the approximated exposure under these hybrid
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measure as

q az nC@( n+1, wk)

B(tn+17 wk)

q
Z ai,nCZ’ (tn+17 wk)
1=0

Eo(ty,wy) = B(tn,w,)E [

Bt )

= P(ty, tpir, wy) ET

B(tn, wk)]

q
= Pltn, tnsr,wi) Y a; BT {gi(tnﬂ, wi) | B(tn, wk)} .

1=0

Once we have calculated the approximate exposures at each time ¢,, we can
approximate the expected exporure at each time step as the mean of expo-

sures. Given as
K
n E tna wk
k

and then further we get the approxnnatlon of the discounted expected expo-
sure as

n(tn,
ZB to, wy) Znln k)

(tna wk) 7

where k =1, ..., K are the number of generated paths. We are then ready to
compute the CVA and PFE according to equation (4.7) and (4.8).

5.4 Summary of the SGBM

For clarity, a summarize of the steps of SGBM algorithm that will be used for
the computation of both the inner- and outer expectation, which is needed
in order to further compute the counterparty credit risk measures.

First step: Approximation of the Mapping Functions,
L.

1. Generate K paths, wy, ..., wg,, from the underlying dynamics.

2. For each time point, t,, and path, wy, for n = 1,...,. N — 1 and k =
1,..., Ky compute the state variable, X(¢,,wy) and the terminal time
option values V,,(,, wg).
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3. Moving backwards in time, for each n = N — 1,...,1, perform the
following scheme.

(a)

(b)

Bundle the grid points at ¢,,_; into a distinct bundles, except for
to which is the starting point of alla paths, using the recursive
bifurcation algorithm.

Using regression to compute the mapping function, Z3,s =1, ..., a,
given by equation (5.6). Using the option values V,,(t,) at all the
time points t, with paths that originates from the s-th bundle,
B*(t,—1) at time ¢,_1.

Second Step: Estimate the Counterparty Credit Risk
Measures.

1. Generate a new set of K, paths, w}, ...,w’KQ, from the underlying dy-

namics in order to compute new state variables X (t,,,w,) and the ter-
minal time option values Vj,(t,, w;,).

2. Moving backwards in time, for each n = N — 1,...,1, perform the
following scheme.

(a)

(b)

(c)

Bundle the grid points at ¢, ; into a distinct bundles, except for
to which is the starting point of alla paths, using the recursive
bifurcation algorithm.

Compute the approximate exposures, E, (tn, w;g) for the grid points
that lies in bundle s, at time t,, using equation (5.8) for those
paths for which X (¢,41,wy) belongs to the bundle B*(t,), for
s = 1,...,a. Use the regressed functions, Z,,1(t,+1), obtained
from the first step of simulation.

Compute the EE,(t,), EE(t,) and PFE,(t,) for the grid points
in bundle s at time t,, for those paths for which X (¢,1, w;c) be-
longs to the bundle B*(t,), for s = 1, ..., a.

3. The CVA charge is then approximated as in equation (4.7). (Only for
the R-dynamics generated under the risk-neutral measure, Q, since it
is a matter of pricing.)
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5.5 Remarks on the SGBM

e The CVA, EE and PFE could all be evaluated directly from the first
step of the algorithm if needed, for reasons like computer power. By
decomposing the simulation in two steps, where we first obtain the
mapping function Z,, and then on a fresh set of generated paths ap-
proximate the risk measures, we make sure that we get unbaised values
when using our mapping functions to a new set of paths. [9]

e Some of the difficulties in American Monte Carlo methods lies in the
choice of the regression variables, so it is crucial to choose a suitable set
of explanatory variables and parametric functions. In this framework
this can be considered to be a combination of both art and science.
Usually the basis functions are selected based on the problem and relies
on human experience. They are often chosen such that they represent
the most salient properties of a given state. [11]
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Chapter 6

Results

This chapter will start of with a description of the setup in the simulations
and then later on present some results of the simulations.
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Figure 6.1: Upper left: The interpolated instantaneous forward rates ob-
served in the market from AAA-rated euro area central government bonds
on January 2, 2009. Upper right: observed on January 2, 2014. Lower left:
observed on January 2, 2017. Lower right: The default probability function,
PD(t) = 1 — et Jo W) with hazard rate v(t) = 0.05.
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6.1 Setup for simulation

In all the simulations, the market information are represented as a 1-dimensional
state variable X (¢), and the short rate r(¢) has been simulated under the dy-
namics of the HW1F model, described by equation (2.7). For simplicity the
parameters a and o were chosen to be constants while the model parameters
otherwise has been calibrated to the initial zero coupon bond prices observed
in the market Januari 2, 2009, 2014 or 2017. The probability of default func-
tion, PD(t), has been calculated from equation (4.1) with v(¢) = 0.05. See
Figure 6.1 for an illustration of the observed yield curves and PD(t).

For the regression part, in the SGBM algorithm, a third order polyno-
mial with the short rate as basis functions is choosen. This means that
equation(5.1) is approximated by the following equation

Zn(tn, afn) ~ Vo(Ry,) =~ ag + arr(t,, afn) + agr(t,, afn)Q + azr(ty, afn):”.

The computation of the continuation value in equation (5.8) requires the
computation of

E [T(tm w/ﬂ)q|fr(tn—1’ wk)] )

for ¢ = 1,2,3. In order to compute the expected value of the basis functions
in the equation above one need to use the moments for the short rates, more
about these in appendix C.

In all simulations the Bermudan swaption is considered exercisable once a
year. Simulations has been done for the two different values of the constant
parameters a = 0.01,0.02 and ¢ = 0.01,0.02. The strike was in the under-
laying article set to respresent different states of Moneyness, i.e. the spot
vs. strike ratio of 80%, 100% and 120%. The same states is used in this
thesis but with a minor adjustment on the strike that represents the states
of moneyness 80% and 120%.

The short rates are simulated with monthly time steps. In the first step of
SGBM we simulate K; = 4096 different paths for the different years to ma-
turity, 7' = 5, 10, 15, 20. These short rates are simulated using the Mersenne
twister pseudo random number generator in matlab. These generated paths
are then used to estimate the the regressed functions. In the second step
of the SGBM we generate Ky = 8192 paths using quasi Monte Carlo Sobol
paths. These paths then uses the regressed functions to estimate the swap-
tion value, EE, PFE and CVA charges.
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The values are then compared with the ones obtained in the underlaying pa-
per and used in some sense to validate if the simulations computes reasonable
values. These values are presented in appendix D.

In both the first and second step of the SGBM, the bundling at each time
step is done by the recursive bifurcation algorithm into 8 bundles, this is
further described in appendix B. The reported values are always obtained
from the second step of the SGBM algorithm. The prices are reported in
basis points and the notional amount used is N' = 10.000.

6.2 Valuation and CVA

The values and CVAs for the bermudan swaption with maturities T = 5, 10
years that has been computed during simulations, with the setup presented
in previous section, can be found in Table E.1 in appendix D. In this table the
computed values are compared with the ones presented in the underlaying
paper, and used in some sense to validate or verify if the simulation provides
reasonable values.

In Figure E.1, appendix D, the computations for the exposure profile is pre-
sented together with approximate values from the underlying article.
Further on, in Table E.2 the deviation between each simulated value and the
ones from the underlying article is presented, both as basis points and as a
percentage deviation. Table 6.1 provides a summary on the results presented
in appendix D.

Deviation from value in underlying article
Maturity Price CVA

5 Years | 3.71 (0.58%) | 0.34  (0.47%)
10 Years | 38.87 (2.42%) | 1.90  (0.82%)

Table 6.1: The table shows the mean deviation from the values in the un-
derlying article in both basis points and percentage as a summary of the
subfocus. For a full view of the deviation go to appendix D.
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Summary of Confidence intervals
Maturity | Price CVA
5 Years | (100%) (75%)
10 Years | (58%) (50%)

Table 6.2: The table shows the percentage of simulated values that includes
the underlying article values in its confidence interval at the significance level
a = 0.05. The confidence intervals are not presented in the report but could
easily be calculated with the values presented in the tables in appendix D.

6.3 Market Price of Risk

i of Market Price of Risk (Jan 1989-Dec 2008) i of Market Price of Risk (Jan 1994 - Dec 2013)

i of Market Price of Risk (Jan 1997 - Dec 2016)
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Figure 6.2: Each graph shows the three different estimations of the market
price of risk at three different dates. These estimates has been evaluated
from simulating 500.000 short rates and historical data going back 20 years.

For the simulations done under the historical or real-world measure, P,
one need to try to estimate the market price of risk, A\. As described earlier
this will be done in two ways, with the historical- and the time dependent
market price of risk.

In the process of estimating the historical market price of risk, the assumption
that a reasonable used amount of years with historical data would be 20
years.! This makes the historical market price of risk constant even though

LAll data on historical short rates are collected as the mean historical short rate in
the Euro area, which includes 19 contries. Although with the exception of the data from
before 1994 which is the short rate of France. This one was choosen since it was the closest
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the maturities changes since the used amount of historical data is the same.
For the time dependent or local market price of risk there is less amount
of historical data?, only going back 18 months. This amount of historical
data is used to compute the average shortrate for the last 18 months and
then constantly moving from historical towards simulated data with each
timestep. This estimation of the "moving” average is done in two different
ways, as a regular average and as a weighted average. Calculated according
to these formulas
17

1
Regular average = 18 ;T(tlg_i),
1 5 11 17
Weighted average = 1—8(w0(; r(tis—;)) + wl(zb; r(tig—i)) + wg(%: r(t18-:))).
Where the weights wy = % and with £ = 0,1,2,..,n — 1 periods of 6-

months intervals. The monthly historical data is denoted as r(t13_;) where
1 = 1,...,18 is the index of the months. This is the two different time de-
pendent market prices of risk. The weighted average method is constructed
with the assumption that the most recent monthly values of the short rate
should impact the average short rate the most.

6.4 Exposure Profiles

The main focus of this thesis is to analyse the exposure profiles computed
under risk neutral measure agianst the ones computed under the real world
impact. To make the result easier to oversight a little more narrow approach
has been chosen, i.e. only for the swaptions with maturities 7" = 5, 20 years
and at each maturity with parameters a = 0.01 and o = 0.01.

Figures (6.3)-(6.8) shows all the computed values through time for the expo-
sure measures PF Esy, FE and PF FEgsy. In all figures, the exposures under
risk neutral Q measure is denoted with ”"+” and compared with the three
models simulated under the historical or real-world P-measure, denoted with

70”. All simulations are done with observed yield curves from the 2 january
2009, 2014 and 2017.

to the Euro data.
2This is because of the assumption mentioned in the begining about the short rate
having short memory.
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Figure 6.3: The three graphs shows exposure profiles for the three different
market prices of risk at 2 january 2009. From left: historical MPoR, local
MPoR with regular average and the local MPoR with weighted average.
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Figure 6.5: The three graphs shows exposure profiles for the three different
market prices of risk at 2 january 2017. From the left: historical MPoR, local
MPoR with regular average and the local MPoR with weighted average.
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Figure 6.4: The three graphs shows exposure profiles at 2 january 2014.
From the left: historical MPoR, local MPoR with regular average and the
local MPoR with weighted average.
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Figure 6.6: The three graphs shows exposure profiles for the three different
market prices of risk at 2 january 2009. From the left: historical MPoR, local
MPoR with regular average and the local MPoR with weighted average.
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Figure 6.7: The three graphs shows exposure profiles for the three different
market prices of risk at 2 january 2014. From the left: historical MPoR, local
MPoR with regular average and the local MPoR with weighted average.
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Figure 6.8: The three graphs shows exposure profiles for the three different
market prices of risk at 2 january 2017. From the left: historical MPoR, local
MPoR with regular average and the local MPoR with weighted average.
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Chapter 7

Discussion

Starting with the subfocus of the thesis, which is to validate the algorithm
and determine a suitable setup for the parameters of the models. Amongst
the values obtained during simulations more than half of the values, 64.5%,
were inside a reasonable deviation i.e. less than 1% from the underlying
article values. Only 35.5% of the values differ more from the ones in the
underlaying paper. A good measure of the deviation would be if more than
50% of the simulated values have a confidence interval includes the comparing
values at some signaficance level, i.e. it can not be said with total certainty
that the values do differ. The confidence intervals with significance level at
a = 0.05 states that 34 of the 48 simulated values can not with certainty be
said to differ from the ones in the underlying article.

Although there are some values that differ a little to much from the ones
compared with and that the standard deviation of the values are a bit to
high T have decided to accept the simulated values since more than half of
the values can not be said to differ with total certainty. The deviation of the
simulated values are most likely a result from a number of uncertainties or
unknown factors that follows from the underlying article. Such as setting of
the random number generators, the interpolation of the yield curves, the size
of the time steps used in the simulations of the short rate, the bundling tech-
nique and access to data used for model setup. All theese factors could be a
cause for deviation from the values in the underlying article. This deviation
will also most likely grow with the increasing number of computations that
comes with contracts that are longer. This would explain why the deviations
are larger in the 10 year contracts compared to the 5 year contracts.

Figure (6.2) shows the three different attempts of approximating the market
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price of risk for the three different yield curves. In all of the three graphs
the historical market price of risk is constant. It is affected both by the yield
curve value at T' = 20 and also by the twenty years of historical rates leading
up to the time for computations. This means that the size of the historical
market price of risk will mostly be decided by the prediction of the twenty
year forward rate. The part affected by the long term historical short rate
will not differ that much since it is computed from historical long-term av-
erage.

Studying the two time dependent approximations of the market prices of risk,
which is reffered to as local prices of risk, one can see from Figure (6.2), that
the differencies is that the one based on regular average of the last 18-months
is less stable than the one based on a wieghted average of the last 18-months.
In all of these graphs the local prices of risk are negative near zero and in
some sense tend to increase as the shape of the yield curve. If the yield curve
is growing fast, so is the value of the local price of risk.

This approximations is done by continously comparing the simulated rates
with a historical mean of the short rate. In this thesis I have choose to make
the assumption that the short rate doesn’t have a memory and therefore only
based the historical data on the last eighteen months. This might be the rea-
son why the local prices of risk stabilizes a few years into the simulations.
If the historical data were based on a longer periods of time this stabilizing
period would in most cases also be longer.

Observing the PFE plots, see Figure (6.3)-(6.8), one can directly see that
the differences between simulations done in risk neutral measure and the
real world measure follows the graphs of market prices of risk, from Figure
(6.2).

From the market prices of risk that are derived from 2009 yield curve, one can
see in Figure (6.2a) that most likely only the historical market price of risk
will impact the real world simulations. The PFE plots for both the short-
term and the long-term contracts, see Figure (6.3) and (6.6), shows that it is
only from the historical market price of risk we can observe a visible impact
on the real world values.

Moving on to the plots from the 2014 yield curve, Figure (6.4) and (6.7),
one can detect a larger real world impact from both the historical- and the
two time-dependent market prices of risk. Just as mentioned in previous
part about the market price of risk, it shows clearly that in the short-term
contracts there are impact all the way throughout the contract but for the
long-term contract the impact decreases with time as the two time-dependent
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market prices of risk stabilizes around zero somewhere near year 10.

Finaly studying the PFE plots from the 2017 yield curve, see Figure (6.5)
and (6.8). In both these sets of PFE plots there is just a very small impact
from the time-dependent market price of risk that is approximated with a
regular average. This effect is also only visible for a about 10 years, that
means througout the short-term contract and for about half way through
the long-term contract.

The effects I did notice for the short-term compared to the long-term con-
tracts are that there was more impact on the short-term contracts than the
long-term contracts from the two time-dependent market prices of risk. And,
the constant historical market price of risk has the impact spread out evenly
over time.
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Chapter 8

Conclusions

To summarize this thesis and the three attempts of approximating the mar-
ket price of risk. Going through the results from the simulations it becomes
clear that all of the three approximations has drawbacks that makes them
no good to use.

If I start with the historical market price of risk, it has a huge drawback as it
is constant and that it doesn’t adapt to changes in the market through time.
Both the two time-dependent approximations of the market price of risk did
combine the forward- and historical data better than the historical market
price of risk. Then after a few years it did stabilize around zero which only
made it active for a part of the contract. It is not very realistic that the mar-
ket price of risk would not change more for the second part of the contract.
That quality, to only impact on the short-term contract, is a drawback since
many interest rate derivatives are long-term contracts.

My conclusion is that these approximations of the market price of risk are
not complex enough to capture all the market factors that impacts on both
short-term and long-term. These appriximations might be seen as a start of
something to further develop into a multi-factor model, where one could try
to capture and combine the market factors that can impact both on short-
term and long-term interest rates. The three approximations that were an-
alyzed in this thesis could be used in combination as an extra safety margin
towards exposure and as a way of gaining more insight or a hint of how the
impact from the market is changing.

For a very long time, the focus of research have been on the risk-neutral
measure because of its role in pricing of derivatives. During the last years,
focus have started to change direction towards risk management and that
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have also led to the realization that the real-world measure should be given
more attention. This is why I gained interest in this topic and I think it
will be a topic that only will gain more interest over the years to come since
risk management is getting more and more important amongst banks and
institutions all over the financial world.
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Appendix A

Derivation of short rate
dynamics

From [2, Bjork, p. 335, Eq. 22.36] we have that
dr(t) = (0(t) — ar(t))dt + odW(1).

Solving this we obtain that
t t
r(t) = e~ p(s) —|—/ e“(t“)e(u)du—l—/ oe” VAW (u). (A1)

The problem now is to evaluate the integral

t
/ e~ W0 (u)du

for the case where 6 is calibrated to the initial forward curve f*(0,-).
From [2, Bjork, p. 336, Eq. 22.44] we have that

2

T
50, 7) = e Tr(0) + e~ TV ()du — 2 (1 — e=9T)?,
0 2a?

We can then rewrite this relationship to obtain
2

0—2 (1 - e_“T)Q —7(0).

2a

T
/ e™O(u)du = e f*(0,T) + e**

0
Evaluating this for T'=1¢ and T' = s and taking the difference we obtain
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2 2

t
au __at px at o —at\2 as f* as g —as)2
/s e™O(u)du = e f*(0,t)+e 20 (1—e ) —e™f*(0,5)—e 207 (1—e*)".

Finally by multiplying both sides with e~ we obtain
2

/t e_a(t—u)e(u)du _ f*(O, t)—e_“(t_s)f*(o, S)+U— ((1 o e—at)Q . e—a(t—s) (1 . €_a5)2> '

2a?

We then plug this into (A.1) to get that

r(t) = [70,t) + ;TLQ (1 — e_at)2 + ealt=s) (r(s) — f7(0,s) — ;—(12 (1 — e_“5)2>
+/t oe AW (u). (A.2)
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Appendix B

Market-implied default
probabilities

This section will be about finding an approximate relation between CDS and
the hazard rate in order to approximate market-implied default probabilities.
As mentioned, in the section about default probabilities , the hazard rate ~
defines the probability of default in an infitely small interval dt, with condi-
tion on no prior default before time u, as v,dt. The hazard rate is related to
the cumulative default probability from

Fluy=1-5(u)=1—e"", (B.1)

here we have assumed a constant hazard rate. From [4, Gregory, Appendix
6B] we get that an approximate relation between the hazard rate and the
CDS premium is

M’ (B.2)
(1 - Re)

where X¢pg is the CDS premium(as percentage) and R¢ is the assumed re-
covery rate(also in percentage). This approximation assumes that the CDS
curve is flat i.e., the CDS premiums for all maturities are equal.

If we combine equation (B.1) and the approximate relation in equation (B.2)
we can derive an approximate relation between the cumulative default prob-

ability and the CDS premium at a certain maturity T(X&P9) as

~

x&PS XZQDS

F(T)=1—¢ Tra)" ng - 2T
() € ¢ (1_RC>

T. (B.3)
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Equation (B.3) generally works as a good approximation of market-implied
default probabilities although to compute the probabilities acurately one need
to solve numerically for the correct hazard rate, assuming a certain underly-
ing functional form.
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Appendix C

Bundling - Recursive
Bifurcation Algorithm

If bundling K grid points at time ¢, given by X (t,, wy), where k = 1, ..., K
then following steps are performed recursively.

1. Start by computing the mean of the given set of grid points at time %,

1 &
Hy, = Z;X(tmwk)-

2. Bundling the grid points is done by dividing the grid points into two
groups, depending on whether the grid points, price of the underlying
asset, is greater than or less than the mean of the grid points, mean of
the underlying asset pricees, for that given set of grid points:

Bl<tnawk) = 1(X(tn, wg) > ),
for k =1,..., K,. B(t,,w;) then returns true when the state value is
greater than the mean, pf, and belongs to bundle 1. B?(t,,w;) then

returns true when the state value is less than or equal to the mean and
belongs to bundle 2.

3. Each bundle can be split again by returning to step 1, until they are
the right size or until there enough bundles.
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Appendix D
Moments for the HW1F

Let My(s,t) = E[r(t)¥|s] be the k-th moment. The three first moments for
the HW1F is given by,

2

Mi(t,s) = f*(O,t)—|—;—az(l—e_“tA)Q—l—e_“AY(s) (D.1)
My(t,s) = Mf(s,t>+‘2’—a(1—e—2aﬂ) (D.2)

Ms(t,s) = M;(s,t) 4+ 3M(s,t)(My(s,t) — Mi(s,1)). (D.3)

The formulas for the moments has been derived in colaboration with my
mentor Magnus Wiktorsson.
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Appendix E

Validation of simulated data

Sim 5 Year(Q-measure) vs article values
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The SGBM-data for the 5 year swaption under Q-measure
Parameters Results from simulations Results underlying article

MN a o | Price CVA Price CVA

0.8 0.01 0.01|471.57 (4.76) 51.60 (0.20) 477.30 (0.1732) 51.70 (0.0144)
1.0 0.0l 0.01 |542.04 (5.04) 58.42 (0.20) 548.12 (0.1827) 58.58 (0.0140)
1.2 0.01 0.01|595.50 (4.98) 63.37 (0.21) 599.25 (0.1824) 63.41 (0.0141)
0.8 0.01 0.02|733.33 (9.05) 76.61 (0.33) 736.43 (0.4557) 76.31 (0.0347)
1.0 0.01 0.02 | 801.68 (8.95) 82.53 (0.32) 801.25 (0.4585) 82.29 (0.0327)
1.2 0.01 0.02 | 848.42 (8.40) 86.58 (0.32) 846.78 (0.4973) 86.45 (0.0337)
0.8 0.02 0.01|469.86 (4.55) 51.35 (0.18) 471.07 (0.1776) 51.06 (0.0149)
1.0 0.02 0.01|538.92 (5.55) 58.13 (0.21) 542.15 (0.1792) 57.99 (0.0140)
1.2 0.02 0.01 |591.07 (4.58) 63.15 (0.19) 593.49 (0.1783) 62.86 (0.0132)
0.8 0.02 0.02|726.78 (8.14) 75.87 (0.34) 723.13 (0.4520) 75.03 (0.0347)
1.0 0.02 0.02 | 793.76 (8.84) 81.75 (0.33) 788.16 (0.4595) 80.96 (0.0343)
1.2 0.02 0.02|841.70 (8.61) 85.86 (0.32) 833.95 (0.4567) 85.13 (0.0324)

The SGBM-data for the 10 year swaption under Q-measure
Parameters Results from simulations Results underlying article

MN a o | Price CVA Price CVA

0.8 0.0l 0.01| 954.29 (10.32) 177.26 (0.61) 947.3 (0.2326) 175.04 (0.0340)
1.0 0.01 0.01 |1167.10 (10.92) 212.32 (0.69) 1187.0 (0.2355) 215.55 (0.0346)
1.2 0.01 0.01 | 1362.86 (10.99) 244.41 (0.62) 1367.7 (0.2259) 245.44 (0.0327)
0.8 0.01 0.02 | 1502.30 (17.94) 284.08 (1.12) 1584.1 (0.5393) 283.59 (0.0747)
1.0 0.0l 0.02 | 1736.63 (20.17) 321.33 (1.25) 1805.5 (0.5513) 319.16 (0.0760)
1.2 0.01 0.02 | 1888.92 (18.63) 344.76 (1.21) 1966.0 (0.5317) 344.73 (0.0691)
0.8 0.02 0.01 | 939.61 (9.69) 173.81 (0.60) 921.2 (0.2283) 170.12 (0.0337)
1.0 0.02 0.01 | 1151.08 (9.89) 209.00 (0.68) 1162.7 (0.2170) 211.08 (0.0324)
1.2 0.02 0.01 | 1348.73 (10.25) 241.42 (0.51) 1345.0 (0.2367) 241.23 (0.0344)
0.8 0.02 0.02 | 1464.06 (16.41) 275.71 (1.12) 1529.5 (0.5057) 273.61 (0.0717)
1.0 0.02 0.02 | 1705.70 (15.55) 313.36 (0.95) 1752.3 (0.5428) 309.44 (0.0763)
1.2 0.02 0.02 | 1853.08 (17.13) 336.81 (1.02) 1914.2 (0.5630) 335.13 (0.0729)

Table E.1: The simulated values and CVAs for the bermudan swaption with 5
and 10 years maturity. The calculations was done with 4096/8192 simulated
paths for the first/second pass of the SGBM-algorithm.
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Validation of the SGBM-data for 5/ 10 year bermudan swaption under Q-measure
Parameters Deviation from value in underlying article

MN a o | Price 5Y CVA 5Y Price 10Y CVA 10Y
0.8 0.0l 0.01 |573 (1.20%) 0.10 (0.19%) 6.99 (0.74%) 222 (1.27%)
1.0 0.01 0.01 |6.08 (1.11%) 0.16 (0.27%) 19.90 (1.68%) 3.23 (1.50%)
1.2 0.01 0.01 |3.75 (0.63%) 0.04 (0.06%) 4.84 (0.35%) 1.03 (0.42%)
0.8 0.01 0.02 |3.06 (0.42%) 0.30 (0.39%) 81.80 (5.16%) 0.49 (0.17%)
1.0 0.01 0.02 | 043 (0.05%) 0.24 (0.29%) 68.87 (3.81%) 2.17 (0.68%)
1.2 0.01 0.02 |1.64 (0.19%) 0.13 (0.15%) 77.08 (3.92%) 0.03 (0.008%)
0.8 0.02 0.01 |1.21 (0.26%) 0.29 (0.57%) 18.40 (2.00%) 3.69 (2.17%)
1.0 0.02 0.01 |3.23 (0.60%) 0.14 (0.24%) 11.62 (1.00%) 2.08 (0.99%)
1.2 002 001 | 242 (0.41%) 0.29 (0.46%) 3.73  (0.28%) 0.19 (0.08%)
0.8 0.02 0.02 |3.65 (0.50%) 0.84 (1.12%) 65.44 (4.28%) 2.10 (0.77%)
1.0 0.02 0.02 |560 (0.71%) 0.79 (0.98%) 46.60 (2.66%) 3.92 (1.27%)
1.2 002 0.02 | 7.75 (0.93%) 0.73 (0,86%) 61.12 (3.19%) 1.68 (0.50%)
Average deviation | 3.71 (0.58%) 0.34 (0.47%) 38.87 (2.42%) 1.90 (0.82%)

Table E.2: In the table all the deviations, in basispoint and percentage, from
the values in the underlying article.
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