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Abstract

Integrated modular avionics (IMA) architecture is an emerging concept in the mil-
itary aerospace industry after being successfully implemented in the commercial
domain. The highly modular architecture allows multiple aviation applications to
execute on the same hardware thanks to defined standards by Aeronautical Radio,
Incorporated (ARINC). System architects are responsible for designing and taking
advantage of the IMA architecture to meet the requirements set by the stakehold-
ers. They rely much on experience, system knowledge, and design patterns in their
work.

This thesis aims to find relevant metrics for system architects when develop-
ing IMA architecture in the aerospace industry. A metric survey, with focus on the
aerospace and closely related industries, is conducted and broadened to include soft-
ware and real-time metrics. To find one to three metrics multiple presentations and
screenings are held together with a team of domain experts.

Three metrics are selected: structural complexity using Shannon’s entropy, in-
stability and abstractness metric, and complexity and coupling metric. The metrics
are described in detail and implemented. A small scale system is created to assist
and provide better understanding how and what the metrics are measuring. Whether
the selected metrics are employable for system architects in aerospace industry still
remains to be empirically validated. A proposed validation process is presented for
future work.
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Abbreviations

AFDX Avionics full duplex

APEX Application executive

API Application programming interface
ARINC Aeronautical radio, incorporated
AUTOSAR Automotive open system architecture
COTS Commercial-off-the-shelf

ECU Electronic control unit

DFBW Digital fly-by-wire

IMA Integrated modular avionics

LRU Line replaceable unit

MOTS Military off-the-shelf

MLU Mid-life upgraded

OEM Original equipment manufacturer
PCM Package coupling measurement
RTOS Real-time operating system

SAP Stable abstractness principle

SLOC Source line of code
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1

Introduction

1.1 Motivation

Some of the first aviation instruments to be created were analogue navigational
aids; altimeter, attitude indicator, and radio navigation [Helfrick, 2007]. The ad-
vancements in the electronics domain allowed new technology to be integrated into
the aircraft. Federated architecture followed after the older distributed analogue and
digital architecture. It was developed in the late 1980s, early 1990, and variants of
the architecture is represented in military aircraft operating today e.g. F-16 mid-
life upgrade (MLU), SAAB Gripen and Boeing AH-64 C/D [Moir and Seabridge,
2006].

The concept behind federated architecture is ’one function — one computer”
principle [Bieber et al., 2012]. The computers, called line replaceable unit (LRU),
are located on brackets inside the aircraft and connected through standardised data
buses. The goal is to have the possibility of system reconfiguration while reducing
maintenance and spare parts cost.

In 1995, Boeing, in cooperation with Honeywell, presented the first integrated
modular avionics (IMA) architecture for cockpit functions for the newest 777 air-
craft [Pelton and Scarbrough, 1997; Aleksa and Carter, 1997]. The new highly mod-
ular architecture introduced the ability to have multiple aviation functions execute
on the same hardware. Instead of installing multiple physical computers, one com-
puter could mimic multiple computers through partitioning. Each partition worked
as a virtual computer that could execute aviation applications. The benefits of IMA
spread to other developers and domains. Airbus, together with Thales and Diehl,
proceeded to develop “open IMA” technology for the A380 programme [Butz,
2010]. The automotive industry began to research and develop their own counter-
part. Automotive open system architecture (AUTOSAR) was the result of a joint
initiative by multiple companies [Heinecke et al., 2004].

In the aerospace industry, architects and stakeholders work together to achieve
the requirements set from each domain e.g. software, mechanical, electrical, and
control engineering, within the financial budget. Designing, selecting, and main-
taining a system that is highly modular and upgradable is difficult, especially with-
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Chapter 1. Introduction

out any metrics to verify the work. In the past system architects have relied on
past experience, system knowledge, and design patterns. Metrics can highlight ar-
eas of concern and show how the product is developing over time. They can also
provide useful information that can be helpful when deciding a design. Having sys-
tem attributes such as modularity and upgradeability can increase the market value
since the product can be tailored to fit customer requirements with a minimum of
redesign.

1.2 Challenges

Commercial aviation was early to adopt open architectures, which meant that sup-
pliers could provide commercial off-the shelf (COTS) products to a system that
was standardised. The military domain used proven technology that could work in
the harsh environment they are forced to withstand. While both the military and
commercial aviation developed separate components, it soon became clear that mil-
itary industry could not keep development at the same speed as the commercial
industry which had IT and telecommunications as major driving force for technol-
ogy achievements [Moir and Seabridge, 2006]. Commercial computing was early
to adapt open architectures, whereas military followed along much later.

With IMA architecture there is potential to have a system that is reliable, inter-
changeable, extensible, and modular while keeping costs down. MLUs and updates
can be performed more efficiently without grounding the aircraft for a longer period.
The possibility of having aviation applications management similar to a smartphone
is an interesting aspect since it can reduce the integration and revalidation time.
Creating a system architecture with this in mind is very important since a product’s
life-cycle depends on it.

System architects are responsible for breaking down complex systems into man-
ageable components that engineers from other domains can handle. System archi-
tects are in close cooperation with multiple stakeholders within an organisation to
understand different level of requirements, technologies, and development efforts.

System architects in aerospace industry have throughout the years been relying
on knowledge, design patterns and past experience when designing new system
architectures. For the system architects to agree on a specific architecture, metrics
are important to support the decisions. It should be possible to provide insight of
the system during multiple phases of a product’s life cycle. The usage of metrics in
system architecting is rare, and one of the biggest challenges is to define relevant
metrics that will help the system architects and stakeholders reach their goal.

1.3 Goals and contribution

The thesis aims to evaluate and present metrics that will be beneficial for system
architects and stakeholders when developing new system architectures. The metrics

12



1.4  Methodology

should assist in decision making, be able to track the development of the product,
and highlight areas of concern. The metrics should be applicable during different
phases of a product’s life-cycle. The goal is to provide a detailed description of
how to use and implement the metrics. It also explains how the measurements are
generated and visualised. Since time is a factor, suggestions on how the validation
of the metrics over time is performed will be provided to verify whether the metrics
are useful or not. These findings will hopefully contribute system architects in their
work of development when satisfying requirements with the best design choices.
To sum up, the thesis is aiming to provide answers for the following questions:

Q What metrics exist today within system architecting and how are they used?

Q What metrics are relevant to apply when developing an airborne based IMA
architecture that should have characteristics such as interchangeability, extensi-
bility, and modularity?

Q How should the metrics be validated against the predefined requirements over
time?

1.4 Methodology

Research and implementation

The thesis was divided into several phases, which used different methodologies.
The phases are explained in the order of execution.

1. Survey of metrics within area of interest. To understand the extent of metrics
that are used in system architecture within aerospace industry and surround-
ing industries, the phase was allocated the majority of time. The research also
included real-time and software metrics due to the limited amount within sys-
tem architecture.

2. Production of a long-list. Metrics that were of interest were included into a
long-list. See Metric selection for further requirements for selection.

3. Production of a short-list. Once the long-list was completed every metric
was briefly studied. Metrics from the long-list were evaluated with a team of
domain experts. The metrics that were considered to be useful were included
in the short-list. See Metric selection for further requirements for selection.

4. Selection of 1-3 metrics for implementation. After an in-depth study of the
short-list metrics, the metrics were presented for the same team of domain
experts, however, this time with a better understanding how the metrics are
used and interpreted. Selecting one to three metrics for implementation was
the goal in order to proceed to next phase.

13



Chapter 1. Introduction

5. Implementation of the metrics. The metrics were implemented using high
level, but limited, programming language to illustrate how they can be used.

Metric selection

The selected metrics should be applicable throughout a product’s life-cycle in or-
der to give system architects and stakeholders guidance and a basis for decisions.
The primary goal was to find metrics that are being used by system architects in
aerospace industry but also related industries e.g. automotive, rail, space, nuclear,
and etc., however, the research could be broadened to include software and real-
time metrics depending on the outcome. A team of domain experts, consisting of a
system architects with different background and experience levels from aerospace
industry, were part of the evaluation process. Their opinions weighed heavily when
selecting the presented metrics.

Metric implementation

The selected metrics in the last phase of research are implemented in Matlab. The
implementation should verify that the mathematics behind the metrics are correct
and provide helpful guidance on how to use them. It should also provide the reader
information what input values are needed and how the result should be interpreted.

1.5 Outline

The thesis is outlined in the following order. Chapter 2 presents avionics history and
system architecture with the intention of leading up to IMA architecture. Chapter 3
presents the selection process of the research stage and what metrics that were se-
lected. A more thorough description of the metrics is provided. Chapter 4 presents
the implementation of the metrics with a simple system model providing under-
standability. A basic visualisation is presented as well together with how the metrics
have been validated theoretically and empirically earlier. It suggests how the met-
rics should be validated over time for use in systems architecting. The conclusion
and future work is presented in Chapter 5.
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2

Background

2.1 Avionics

Avionics (from “aviation electronics equipment”) combines two fields of science
that made much advancement in the late 20th century. Among the first aviation
instruments to be created were navigational aids; altimeter, attitude indicator, and
radio navigation. In the 1920s airliners depended on landmarks and good weather
conditions throughout the whole route to perform the flight. Since this also was an
issue for the US army, an investigation was started and came to be known as the
”Blind flight” project. During the project there were attempts to install electronics,
but as Helfrick explains it, ”Electronics of that period were large and heavy, and
the cost for every gram of mass in an aircraft is high.[...]This implies more fuel and
higher rates of consumption. Electrical power requirements rise, calling for larger
generator and battery, hence more weight and larger engine” [Helfrick, 2007].

The post WWII era saw an evolution in the field of electronics. Semi-conductors
proved to have same functionality as the vacuum tubes which introduced the inte-
grated circuits (IC) and microprocessors. These discoveries are considered to have
an important role in aviation electronics since the trade-off between size and com-
putational power for aviation function found common ground. With the transition
from analogue to digital electronics, the amount of ICs increased in aircraft. Sys-
tem architectural concepts played an important role in organising the hardware and
software.

1972 marks the first time in history an aircraft was completely dependent upon
an electrical flight control system (FCS). The project, that was founded by NASA,
used an A-8 Crusader as test bed for development of the new technology called dig-
ital fly-by-wire (DFBW) [Tomayko, 2000]. Instead of having flight controls directly
connected to the hydraulics or through an oscillation dampening computer such as
the ”SPAK” in the Viggen [Flight Manual A/C JA37], the inputs from the controls
were converted into electrical signals which the on board digital computers used
to calculate the movement of the actuators. For this project three computers were
used to calculate the signal from the pilot inputs separately. The output signal to the
actuators was based on the outcome of a vote performed by the computers. Apart
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Chapter 2. Background

from reassuring that the system made the right decision it also added redundancy to
the system in case one computer crashed.

While the technology advancements were made in the field of electronics more
aviation system were implemented on IC. During the 1970s the transition from ana-
logue to digital computers took place. New high-speed buses such as ARINC 429,
MIL-STD-1553, and ARINC 629 were being implemented in a more organised ar-
chitecture in the mid 1980s [Moir and Seabridge, 2006].

From 1988 until the roll out of the first Boeing 777, Honeywell developed, in co-
operation with manufacturers, the first generation airplane information management
system (AIMS) which used the IMA architecture [Morgan, 2007]. Only a set of
system functions were implemented into the AIMS, e.g. primary display functions,
flight management function, airplane condition monitoring function, etc. Boeing’s
analysis of the AIMS on IMA architecture compared to the previous LRU-based ap-
proach showed “’lower recurring costs, lower weight, lower volume, less wiring, and
less power consumption for the IMA architecture” [Pelton and Scarbrough, 1997].

The European manufacturer Airbus took it one step further and developed
”Open IMA” together with Thales and Diehl for the A380 programme. Airbus se-
lected the open ARINC 600 standard over Honeywell for the avionics modules, re-
placed the bus with a commercial standard 100Mbit Avionics Full DupleX (AFDX)
switched Ethernet network, and applied IMA modules to all types of aircraft func-
tions. By creating a market for the open IMA standard costs could be lowered
through competition [Butz, 2010].

The IMA concept is applied in the current generations of commercial aircraft
e.g. Airbus A380, A350, and the Boeing 787. The military industry focused on cre-
ating military off-the-shelf (MOTS) products that the system designers could apply
in the design. The idea was to have the commercial industry support the military
products and provide technology that was needed. However, the commercial indus-
try was moving ahead at a greater pace than the military could handle, thus, forcing
the military industry to consider open IMA approach [Moir and Seabridge, 2006].

2.2 Avionics architecture

Since 1960s the avionics architecture has had an important role. This section will
describe how the architectures have evolved and where we are today.

Distributed analogue architectures

The distributed analogue avionics architecture, Figure 2.1, is implemented in air-
craft designed and manufactured throughout the 1950s and 1960s. The aircraft sys-
tem is composed of interconnected subsystems that are hard wired, making it dif-
ficult to modify or expand. Different types of functions are provided through the
wiring e.g. power supply, sensor signal voltage, and status signal.
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2.2 Avionics architecture
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Figure 2.1 Distributed analogue architecture.

Analogue systems are prone to drift due to issues such as electromechanical
limitations and temperature variations. Together with the size and performance the
system was considered unreliable in that it did not provide accuracy nor stability.
Maintaining and servicing required skill, and while spare parts where decreasing
the cost of repair only increased. There are aircraft manufactured during this era
that are still flying. They have been retrofitted with modern systems to comply
with regulations. However, the number of airworthy aircraft is decreasing due to
the maintenance costs and structural problems.

Distributed digital architectures

The advancements in digital computing during 1960s soon found its potential as re-
placement for the analogue equivalent. Far from the size and computational power
of today’s computers the distributed digital architecture, Figure 2.2, remained un-
changed when introduced in 1970s. Computations could now be performed at a
higher speed and with greater accuracy which resulted in constant performance and
elimination of the drift issues that were in the analogue systems.

During this period the military industry was developing systems along side the
commercial aviation industry. The new bus technology between subsystems reduced
the weight and cost but it was still complicated to add new functions after the aircraft
left the factory. The two half-duplex data buses that were being adopted was the civil
ARINC 429 and the military Tornado serial. The popular ARINC 429 became the
standard in the commercial industry which paved the way for future ARINC stan-
dards in the industry. Boeing 737, 757, 767, Airbus A300, 320, 330, and including
some business jets used a simplified version of this architecture with ARINC 429.
Jaguar, Tornado, and Sea Harrier are military aircraft that used the architecture with
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Figure 2.3 Civil federated digital architecture.

the Tornado serial.

Federated digital architectures

During 1980s and early 1990s the civil federated digital architecture, Figure 2.3, and
the military recognise that avionic applications share similar attributes and have de-
pendencies across the system. Applications that are related by the same domain are
grouped together. The domain can be interpreted as a LRU where each system is an
unit with dedicated task-oriented embedded processor with memory. Systems that
share data within the domain are connected via local data bus. In turn the domains,
or LRUs, share data between each other on higher level using separate data buses.

18



2.2 Avionics architecture

The military industry developed and adopted the new MIL-STD-1553B data
bus and made it available for all members of the North Atlantic Treaty Organisation
(NATO). The civil industry was rather late to adapt the federated concept because
it had invested in the reliable ARINC 429. It was well established for the purpose it
served. While the two different organisations did not agree on implementations and
protocols, a new civil standard emerged which came to be known as the ARINC
629. It had higher bandwidth and support for multiple redundant operations for
safety critical systems, but it was only used in Boeing 777.

The new bus technology reduced the wiring in the aircraft. This lowered the
weight of the aircraft and cost when performing upgrades since no new wiring was
necessary. Further advancements in electronics field added support for software re-
programming of systems in LRUs. Maintainability increased drastically and up-
grades could be performed over night.

Integrated modular avionics

The federated architecture has distributed computing where each application is em-
bedded to a task-oriented computer. It has separate processing, internal buses, point-
to-point wiring between the computers and sensors/effector. The logic of the sys-
tem is represented physically in the architecture. IMA architecture replaces much
of the physical hardware in federated architecture with virtual hardware. Figure 2.4
shows an example how an IMA architecture can be designed. Instead of having dis-
tributed computing, IMA creates virtual systems using general-purpose processors
with shared resource computing. Data exchange between applications is provided
by an upgraded network based COTS Ethernet technology that supports real-time
features for safety-critical applications. The AFDX is specified in ARINC 664.
Apart from providing full duplex AFDX also includes redundancy, determinism,
and high speed performance.

Virtual systems demand robust partitioning of the shared resources. Under no
circumstances may an application.

 impact the resource when another partition is processing it.
* access the memory belonging to another partition.
« affect the I/O resources of another partition.

It is the task of the real-time operating system (RTOS) to avoid these mishaps. The
necessary features are defined in ARINC 653 [Prisaznuk, 2015]. The application
executive (APEX) is an application programming interface (API) defined in AR-
INC 653 that establishes one of the most important attributes, separation between
software and hardware in the system.
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3

Metrics

3.1 Survey of metrics

Aboutaleb and Monsuez mention that development of system architecture is
unique for every project and therefore conducting an exhaustive metrics survey is
hard [Aboutaleb and Monsuez, 2016]. System architects tend to rely on design pat-
terns, experience and intuition but IMA architecture development has a high in-
fluence from software development. The lack of metrics from the field of system
architecture presented an option to widen the scope of the survey and investigate if
metrics for system quality attributes could be applied.

System quality metrics that measure modularity, abstraction, and maintainabil-
ity among others were used as search key words. Books on design of software archi-
tecture, system engineering, and metrics in software engineering were examined to
investigate the usage of metrics in different stages of development [Cervantes and
Kazman, 2016; Bass et al., 2012; Kan, 1995]. Fundamental computer program and
system design metrics were examined [Yourdon and Constantine, 1979]. Because
IMA is relying on hard RTOS, real-time metrics were also investigated in order
to perform real-time analysis as early as possible in development. Every potential
metric that was of interest were collected in a long-list, Appendix A. Below are
the metrics included in the long-list. A short description for each metric provides a
small insight into what they measure.

* Coupling and cohesion [Yourdon and Constantine, 1979]
Describes the concept of inter respective intra relationship between compo-
nents.

 Package coupling measurement [Gupta and Chhabra, 2009]

Measures coupling between components within a software package.

* Semantic decoupling [Navarro et al., 2010]

Measures the coupling of mappings between specifications and design prin-
ciples.
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22

McCabe’s cyclomatic complexity [McCabe, 1976; Kan, 1995]

Measures complexity by distinguishing the number of linearly independent
paths.

Halstead’s complexity [Qutaish and Abran, 2005]

Measures the complexity of a software using properties from the source code.

Complexity (Fan-in x Fan-out)?> [Henry and Kafura, 1981]

Measures the complexity in regards to how many inputs a procedure needs
respective how many outputs goes out.

Software design complexity [Card and Agresti, 1988]

Measures the design complexity through functions that measure the local and
structural complexity.

Structural complexity using Shannon’s entropy [Aboutaleb and Monsuez,
2016]

Measures the structural complexity of a higraph based design using Shan-
non’s entropy.

Work-effort [Albrecht and Gaffney, 1983]

Measures work-effort for a software project using function-points and source
line of code (SLOC).

Complexity metrics for service-oriented systems [Zhang and Li, 2009]

Propose a set of complexity metrics for service-oriented infrastructures.

Flexibility, complexity, and controllability [Broniatowski and Moses, 2014]
Measures a systems complexity using existing flexibility metrics. A control-
lability metrics is proposed since flexibility comes with a cost of decreased
control of the system.

Abstraction level of design patterns [Kubo et al., 2007]

Measures and indicates the relative abstraction level of each design pattern
used.

Instability and abstractness metrics [Almugrin et al., 2014]

Measures the instability of classes within a package to conclude which should
be abstracted. The abstractness metrics measures the abstractness level of a
package.

Reliability, maintainability, and availability analysis [Gillespie et al., 2012]

Avionics architecture analysis methodology for predicting the need for redun-
dancy based on failure rate and domain expert opinions.



3.1 Survey of metrics

Dependency analysis [Nord et al., 2014]

Measures architectural dependency to reduce cost of safety testing and up-
grade in safety-critical systems.

Predicting maintainability with coupling [Perepletchikov et al., 2007]
Measures structural coupling of design artefacts to predict maintainability for
service-oriented designs.

Complexity and coupling [Durisic et al., 2013]

Measures the impact of changes to complexity and coupling in software sys-
tems.

Modifiability [ Yau and Chang, 1988]

Measures the modifiability of a program module.

Structural distance [Nakamura and Basili, 2005]

Measures two points in development of software architecture highlight the
changes between.

Modularity designed architecture [Ghasemi et al., 2015]

Measures modularity of a designed architecture.

Modularity service architecture [Voss and Hsuan, 2009]

Decomposes the architectural model to evaluate to what degree of modularity
can be used across the system.

Execution time and performance [Stewart, 2006]

Measures execution time and performance in embedded real-time systems.

Execution time and execution jitter [Bril et al., 2008]
Measures execution time and execution jitter for hard ,single processor, real-
time tasks under fixed-priority pre-emptive scheduling.

Schedulability [Kim et al., 2015; Grigg and Audsley, 1999; Chen and Du,
2015; Vestal, 2007; Yao et al., 2016; Pathan, 2014]

— Schedulability bound analysis for IMA partitions [Grigg and Audsley,
1999].

— Schedulability and timing analysis for IMA systems [Chen and Du,
2015].

— Pre-emptive scheduling analysis of mixed-critical systems with varying
execution time [Vestal, 2007].
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— System-level scheduling analysis of mixed-criticality traffics in avionics
network [Yao et al., 2016].

— Fault-tolerant and real-time scheduling analysis for mixed-criticality
systems [Pathan, 2014].

— Timing analysis of mixed-criticality hard real-time applications imple-
mented on distributed partitioned architectures [Marinescu et al., 2012].
— Response-time analysis for mixed-criticality systems [Baruah et al.,
2011].
Quality [Elhag and Mohamad, 2014]

Measures the quality of service-oriented design to reduce cost and implemen-
tation work.

¢ Reliability [Gaudan et al., 2008]

Measures internal risk level of using object-oriented technologies to cut costs.

* Reliability and risk [Schneidewind, 1996]

Analysis the reliability and risk for safety critical software.

¢ Reliability - pragmatic approach [Chandran et al., 2010]

Measures system reliability with different reliability models which take sys-
tem architecture into account.

 Scalability [Jogalekar and Woodside, 2000]

Evaluates the scalability of distributed systems.

* Stability [Yau and Collofello, 1985]

Measures design stability to indicate potential "ripple effects” when modify-
ing the program in design level phase.

3.2 Selected metrics

A short-list, Appendix B, was created after screening the long-list together with
the team of domain experts. The metrics were presented briefly with only a couple
of sentences that described their intention. The ones that stood out and caught the
attention of the team were discussed prior to any selection.

A smaller study was conducted on the metrics from the short-list to further inves-
tigate how they are implemented, what they measure, and whether they could be
useful for system architects in the aerospace industry. The metrics from the short-
list underwent an additional screening with the team. Eventually, in order to find
one to three potential metrics that could be implemented. Three metrics were se-
lected for implementation that showed possible applicability during different stages
of product’s life cycle and manageable implementation:
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3.2 Selected metrics

1. Structural complexity using Shannon’s entropy [Aboutaleb and Monsuez,
2016]

2. Instability and abstractness [Almugrin et al., 2014]

3. Complexity and coupling [Durisic et al., 2013]

The first metric measures the structural complexity of the system design using a
higraph for system modelling and Shannon’s entropy for measuring. This metric
is still undergoing research but has great potential to provide structural complexity
measures during early phases of a project when selecting between different designs
for given requirements. In large projects it can identify the most complex archi-
tectural design. The second metric, instability and abstractness, is software metric
based on R.C. Martin’s previous work [Almugrin et al., 2014]. The instability metric
measures both instability and stability simultaneously, that is “stability is the lack
or absence of instability” [Almugrin et al., 2014]. Instability of an element e indi-
cates how affected it is when changes are made to other elements in a system. High
instability value suggest that element e have many elements that it depends on. The
third metric measures complexity and coupling. The metrics ,which are result of a
study in the automotive industry, are based on Henry and Kafura’s “’fan-in fan-out”
concept and Gupta and Chhabra’s package coupling metrics (PCM).

Metric 1: Structural complexity using Shannon’s entropy

While still under research, the structured complexity metric was selected due to abil-
ity to estimate structural complexity of a design which can be of huge importance
when comparing different options for the system. The measurement depend on a
good model that represents the system of interest. This will give the designers and
stakeholders a common picture of system and possibility to point out issues regard-
ing it. The system is modelled using higraph [Aboutaleb and Monsuez, 2016; Harel,
1988; Grossman and Harel, 1997]. The structural complexity is then measured from
the higraph model using Shannon’s theory of information, entropy.

The higraph is “a combination and extension of graph and Euler/Venn dia-
grams[...]. They are formed by modifying Euler/Venn somewhat, extending them
to represent Cartesian products, and connecting the resulting "blobs’ by edges or
hyperedges.” [Grossman and Harel, 1997]. It other words a higraph is an extended
graph that includes depth (hierarchy) and orthogonality (partitioning).

Definition Higraph
A higraph is defined as a tuple H = (B, E, p,II) where:

— B is the set of blobs (nodes).
— E is the set of edges.

— p is the hierarchy function where each b € B assigns its set of sub-blobs, p(b).
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— II is the orthogonality (partitioning function) defined as IT: B — 258 A
blob b € B can partition its sub-blobs into 7, (b), m2(b), ..., m, () subsets. The
union of all partitions U}_, m;(b) should give the same result as p(b).

Aboutaleb and Monsuez define five higraph-based transformations that should
be used when constructing a higraph; generalization, aggregation, decomposition,
refinement, and filtering [Aboutaleb and Monsuez, 2015a]. The transformation pro-
duces a model higraph and a type higraph. The model higraph is a representation of
the real system that is being designed. The type higraph is created from the model
higraph and represents the partitioning within the system. Both higraphs are vital
for the metric as they both have attributes that affect the structural complexity.

Definition 1 Generalization
— Let Mp be a type higraph.
— Let M be a model higraph.

— Let g : M — Mp a morphism that associates to each element (object, flow,
attribute) x of the model higraph M to its type, with M, the model type
higraph.

o VxeM,g(x) € M

e VxeM,g(p(x)) C p(gx))
e Vi € My, g(IL (x) C p(t)

Mn = (B;E;p;II) is a higraph where:

e E=0
o VxB,II(x) = p(x)

Definition 2 Aggregation
— Let M be a model higraph.
— Let x be a model node.
— Let y; be model nodes such that y € p(x).

— The aggregation function f,,, maps a set of elements y; to a single element x:

fagg : M — M such that fuee(y1, .., ¥|p(x)|) = X

This function is used to represent an object as a black box, without its chil-
dren. The inverse function is the decomposition function.
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Definition 3 Decomposition
— Let M be a model higraph.

Let x be a model node.

— Let y; be a model nodes such that y € p(x).

The decomposition function fz,. maps a single element x to a set of elements
Yi:

fdee : M — M such that fge.(x) = {y17~-~a)’|p(x)\}'

This function is used to represent an object as glass box, with its children.
The inverse function is the aggregation function.

Definition 4 Refinement
— Let M be a model higraph.

— Let x, y be two model nodes. An element x is said to be refined by an element
y if X contains y, i.e.:

e yep(x)
This transformation allows refining an element in the model.
Definition 5 Filtering

— The model views are obtained by filtering the type higraph. Thus, there exists
a filtering function that can be applied: filtering. The model views are ob-
tained by filtering the type higraph. A filter function is a function f : M — V,
where My is the type higraph and V is a model view, which either preserves
nodes in the type higraph or removes them.

o V C Mp
e p(V) Cp(Mn)

This transformation allows extracting a view containg elements of the model,
that are of the same type, and their decomposition.

After creating the higraph it is possible to extract basic metrics such as the size,
depth, and width. This will later be useful when measuring the structural complex-

1ty.
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Definition Size
— The size of a higraph H = (B, E,p,II) is defined as (|B[;|E|)

e |B| is the number of blobs (nodes).

e |E| is the number of edges.
Definition Depth
— The depth of a higraph H = (B, E, p,II) is defined as:
— Let x be a top blob that has no parent and let y be a nested blob such that:

e Jk, such thaty € pk (x), where k is the number of levels between x and
y.

e The depth dp of a blob y is k and the depth Dp of the higraph H is
maxyep(dpy).

Definition Width
— The width of a higraph H = (B, E, p,II) is defined as:

e Let x € B be a blob.

e The width w of a blob x is p(x) and the width W of the higraph H is
maxyep(Wy).

In order to understand how Shannon’s entropy is applied to measurement of the
structural complexity is it necessary to follow the logic that the authors used. The
first step is to define the entropy.

Definition Shannon’s entropy
Let X be a set of discrete random variables with values x1,x3,...,x, with x; having
probability p;; (1 < i < n). Shannon’s entropy H is defined as:

n

H(X)=—Y pilogapi 3.1)
i=1

The entropy of a higraph model M is dependent on the number of blobs and edges,
the hierarchy and the orthogonality [Aboutaleb and Monsuez, 2016]. However,
Shannon’s entropy is used to provided information about the complexity. The en-
tropy of the higraph model M is retrieved the following way:

H = Hg + Hg + Hp + Hyy (3.2)

Every element in Equation 3.2 measures the complexity separately with Shannon’s
entropy. The result is then added to represent the total structural complexity.
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Hp (blobs)

Hp = H(B) = —logx(1/|B|) = log>(|B|) (3.3)

Hpg (edges)

Hy = H(E) = —2loga(1/|E|) = 2log,(|E|) (3.4)
Equation 3.4 takes into account the head and the tail of the edge.

H, (hierarchy)

N=1Y |p() (3.5)

xeM

Hp = —2l0g>(1/|N|) = 2log>(IN|) = 2log>( Y, |p(x]) (3.6)
xXeM

Hry (partitioning)
Partitioning is performed by grouping blobs of same type into common sub-
set. Measuring the complexity of Hyy is rather complicated and involves cre-
ating a new type higraph Mgy that is associated with the original higraph M.
The complexity is measured on the new higraph Hry, Hp = H (Mn).

e Let My be a type higraph.

e Let M be a model higraph.

e Let g: M — My be a morphism that maps each element from higraph
model M to its type in higraph Mpj.

e The new higraph My can be described as Hr = (Buy, Emy, P, I1) with
following properties:

¢ Epp, = 0, there are no edges.
o Vx € By, I1(x) = p(x), all elements are the same type.

The newly created higraph needs to be evaluated the same way as the original
higraph model M in Equation 3.2, thus:

Hyy = H(Buy) +H(Emy) +Hp (Mn) + Hn (M) 3.7
Since the type higraph My is purposely without edges and partitions, Equa-

tion 3.7 can therefore be rewritten as:

Hyy = H(Byy) +0+42loga( Y. [p(x)])+0 (3.8)

xEMm
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OO
@)

Figure 3.1 Dependency graph G.

Finally, the structural complexity for a system design using higraph is retrieved
from the following Equation:

H = log>(|B]) +2log:(|E|) +2log2 (Y, |p(x)]) +loga2(|B|) +2l0ga( ) p(x)])
XEB xeMp
3.9

Metric 2: Instability and abstractness

Knowing which applications have high instability value can be an indication of sen-
sitivity when modifying the system. The article presents an modified version of R.C.
Martin’s instability metrics. The authors also present an abstractness metric which
following the stable abstractness principle (SAP) should make highly responsible
classes abstract since many concrete classes are depended upon them. However, in
aircraft system architecture applications have interfaces which they communicate
through, making them abstract already by design and not applicable for the task at
hand.

The metric is based on software packages but for the sake of our implementa-
tion these packages will instead be considered as applications. This can, however,
be applied to other domains as well. The chain of measurements needed to get in-
stability value is as follow, “received dependency value” — responsibility value”
— “relative responsibility value” — “instability value”.

Prior to any measurement is the creation of a directed dependency graph G =
(N,E), where: N=1,...,nis the set of nodes. E = C N, x N, is the set of unidirectional
edges. An edge, or a dependency, is defined so that the tail node depends on the
node which it points at, Ny — Ny. An simple dependency graph G is constructed
and shown in Figure 3.1.

An M x M adjacency matrix is created where the dependency graph is repre-
sented. Every dependency or every edge has the value of 1 and 0 where there is no
dependency. Table 3.1 illustrates the adjacency matrix with all of the dependencies.
The outgoing dependencies need to be evenly distributed hence normalising the ad-
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Table 3.1 An example of an initial adjacency matrix.

>
o3]
(@!
W)
tr
eS|
Q
as)

—| | Q| | ™| | Q) | >
OO O = O =] =~
(=] Nl el He] He) Ren) B Neo) N en]
(=] Nl Fol o] o] Rl ) Fol Fo]
(=] Nl el o] ) Fo) fe) Nl N
(=] Nl Fol ol Rl Rl B Nl N
(=] Nl Kol el B Rev) Neo) He) N en]
(=] Nl el He) B Re) Beo) Neo) N an]
(=] Nl Feol H o) Je) Ren) Ba) el B
(=] Nl g el He) Re) Beo) He) N as]

Table 3.2 An example of an normalised adjacency matrix.

A B CD E F G H I
A 0 0O 0 0 0O ©0 0 1 0
B I 0 0 0 0 0 0 0 0
C 1/3 1/3 0 0 1/3 0 0 0 0
D I 0 0 0 0 ©0 0 0 0
E 0 0 0 0 0 1/2 1/2 0 0
F 1 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 1
H 0 0 0 0 0 ©0 0 0 0
I 0 0 0 0 0 0 0 0 0

jacency matrix, Matrix 3.1, before conducting any measurements. Matrix 3.2 is the
result of the normalisation. The dependencies are normalised between the values 0
and 1.

Measuring received dependency value of a node:

N)) *Nj.Weighl(i)) (3.10)

D
D(N;) = ZNjEN,‘ ( d deg+(Nj)

Here:

D(N;) = Received dependency value of Node N;.

D; = Set of modules depending upon Node N;.

Dy (Pj) = Initial dependency value which is 1.

P;.Weight (i) = While the initial dependency value is 1, the algorithm can be ad-
justed to add weight to a dependant node.

det™ (N;) = Total number of outgoing dependencies of Node N;.

Assuming that no weight is added, each node’s received dependency value is the
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sum of the respective column.
The proportional responsibility is based on the following equation:

R(N;) = @3.11)

Here:

R(N;) = Responsibility value of Node N;.

D(N;) = Received dependency value of Node N;.

|Dy| = Total number of the dependent nodes in the system which is all the nodes
excluding the sink modules. Sink is a node that does not have any outgoing depen-
dencies.

To normalise the responsibility between 0 and 1, we calculate the relative responsi-
bility as follows:

R (Ny) = R (3.12)
Rmax
Here:
R'(N;) = The relative responsibility of Node N;.
R(N;) = Responsibility value of Node N;.
Ryax = The maximum responsibility value of node in the system.
Lastly, to measure instability, the following formula is used:
(1= (R'(Nj) %0
I(]\/'I) _ ZNJEDi( ( ( /) )) (313)

deg=(N;) +degt(N;)

Here:

I(N;) = Instability of Node N;.

D! = Set of nodes that Node N; depends on.

R'(N;) = The relative responsibility value of Node N;.

d = The dependency factor with a default value of 0.5. Setting the dependency
factor to value of one means that the most responsible node will have no effect on
the stability of the dependant node.

deg™ (N;) = Total number of incoming dependencies of Node N;.

deg™ (N;) = Total number of outgoing dependencies of Node N;.

Metric 3: Complexity and coupling

Metric 3 is not a newly defined metric but rather improved version of existing design
metrics. The authors behind Metric 3 conducted a metric study in the automotive
industry and concluded that two metrics were significantly reliable for minimising
cost and complexity in development of system architecture. Henry and Kafura’s
complexity metric "fan-in fan-out” to measure complexity and Gupta and Chabbra
PCM for measuring coupling [Henry and Kafura, 1981; Yourdon and Constantine,
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Table 3.3 Example of the weights used in the automotive industry. Source [Durisic
etal., 2013].

type of signal weight

intra-sub-system 1
inter-sub-system 1.3
inter-domain 1.8

1979; Gupta and Chhabra, 2009]. The authors also define two software develop-
ment views of the system; logical view and deployment view. The logical view is
used for software design whereas deployment view is used for mapping software
components to hardware. All the metrics can be used in both views except for the
weighted equation which differs.

Complexity. Henry and Kafura defined their complexity metric the following way:

C(i) = (fin(i) x four(i))* (3.14)

”fin” represents total number of modules calling module i and ’fout” represents total
number of calls module i is making to other modules. It is then squared to punish
any kind of bidirectional dependency.

Complexity in Metric 3 takes complexity attributes such as hierarchical levels of
signals and timing constraints into account when modifying “fan-in fan-out” metric.
The exponent is removed, due to unreasonable amplifications, and the modified
metric is defined as:

C(i) = (cin(i) x cout(i)) (3.15)

C(n) = ic(i) (3.16)

Distributed software systems in automotive industry often have different suppliers
and having components with two-way dependencies is therefore far more dangerous
than one way and thus, the complexity is zero if there is only one way dependency.

A graph, representing the system dependency, is created and edges are weighted
in correlation to what type of signal is transmitted between the nodes in the real sys-
tem e.g. intra-sub-system signals, inter-sub-system signals, and inter-domain sig-
nals. The weight equation, Equation 3.17, is define as:

!
w(s,s') = Ztype(sigAHS/(i)) (3.17)

i=1

The equation defines the weight of an edge as the sum of all signals / sent
between component s and s” with corresponding weight to signal type i. An example
of the value used in the study in the automotive industry is presented in Table 3.3.
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The weighted equation for deployment view focuses on intra-computer and
inter-computer signals with timing constraints. MaxAge is the maximum allowed
time a signal can get from s to 5.

! . . MaxAge(si /(1
w(s,s') = l;type(szgm/(z)) x <1.5 - goé()‘j;:s ( ))> (3.18)

The graph is complete when all of the edges have weights related to their type
of signal. The modified complexity metric, Equation 3.15, is then redefined to in-
clude signal weight. Equations 3.20 is inserted into Equation 3.15 to form the Equa-
tion 3.21.

cout(s) = Z w(s',s")
s' s"ESA(s' 8" \w)EDAS'=s (3.20)
cin(s) = Z w(s',s") .
s' s €SN (s’ 5" \w)EDAs" =s

The cout and cin of a component s is therefore sum of all incoming weighted de-
pendencies multiplied with the sum of all outgoing weighted dependencies, Equa-
tion 3.21.

C(s)= Z w(s',s") x Z w(s', ") (3.21)

s' s €SA(s' 5" \w)EDAS' =s s's"ESN(s' 8" \w)EDAs" =s
Every component’s complexity is then summed to get a total for the system.

=Y C(s) (3.22)

seS

Coupling. PCM calculates coupling between two packages of the same hierar-
chical level i [Gupta and Chhabra, 2009]. It is the dependencies between compo-
nents within the different packages that is measured. Equation 3.23 defines cou-
pling between two packages p/, and pé as total number of depend upon relationship
r between components e; and e; of all hierarchical levels added with respective for
depended relationships.

n m n m
COMP(P,”P;, Z Z r l+1 l+1 Z Z l+1 l+1 (323)
i=1j=1,j#i Jj=li=1,i

PCM value for package P! is defined in Equation 3.24. The value is retrieved by
through coupling, Equation 3.23, between package P(f and other packages of same
hierarchical level.

t
PCM(P))= Y Coup(P.,P}) (3.24)
b=1Ab#a
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Inspired by PCM, the authors have modified the Equation 3.23 to instead measure
the weighted dependencies between the packages. In order to realise this, the ear-
lier created graph with the weighted edges is used. Figure 3.2 illustrates two pack-
ages, level i, that contain applications and sub-packages, denoted level i+1. The
sub-package has an application which belongs to level i+1.

level i

level i level i+1

level i+1 tevel i+1 > Clevel i+1

Figure 3.2 Two packages with applications and sub-packages on different hierar-
chical levels.

Coup(p,p') = ) w(s,s') + )y w(s,s")
s,8'€SN(s,s'\w)EDAsEpAs'ep’ 5,8’ ESA(s,s,w)EDNsEpAS'EP’

(3.25)

By using the constructed graph with weighted edges, the PCM equation, Equa-

tion 3.23, is redefined to Equation 3.25 that takes the weighted edges w as relation-

ship between components instead of . The PCM value for a package is obtained

through Equation 3.26 which sums all coupling values between package p and other
packages of same hierarchical level.

PCM(p) = Z Coup(p',p") (3.26)

pl.p"€PAp=p'
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4

Implementation and
Validation

4.1 Prerequisites

IMA architectures are highly complex with dependencies throughout the whole sys-
tem. To model the system with high detail is complicated and requires knowledge
of the product being developed. The system models in the thesis are inspired by
IMA architecture and should be treated as example rather than guidelines when im-
plementing the metrics. The metrics are implemented in high level programming
language. It should be emphasised that language has limited programming envi-
ronment and that the implementations can be optimised using a more appropriate
programming language. To illustrate the implementation and usage, a small scaled
system, Figure 4.1, is designed to assist and provide better understanding what the
metrics are measuring throughout the chapter. The theory should also be applicable
to large scale systems.

Prior to any implementation, the selected metrics were assessed to establish
which input values are necessary to produce measurements. All of the metrics rely
on graph based solution on which measurements are conducted. Metric 2 and Met-
ric 3 use directed graphs for representing the dependencies between system compo-
nents. Metric 1 uses higraph when modelling the system. In order to avoid possible
misrepresentations of the system between different graphs, the solution is to rely on
one graph which will satisfy all three metrics. Having the higraph and directed graph
complement each other enables all three metrics to share common input values. The
edges defined in higraph could be weighted in order to satisfy Metric 3 properly. The
edges in Metric 3 are weighted in regard to type of signal. The weights should be
set by system architects in cooperation with stakeholders and engineers, however,
for this implementation no weights are defined. Every edge has a weight of 1 and the
directed graph can be used in all metrics without any modification. Modelling the
system is done with higraph and the dependencies are defined with a directed graph.
The graphs can be represented through two dimensional matrices, meaning that all
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Figure 4.1 Graphical view how the test bed can be installed in an aircraft.

metrics have a valid input parameter. Metric 3 needs additional information in or-
der to measure coupling; module list. Due to limited programming environment,
components within a package are represented through a list.

4.2 Test bed

For the purpose of visualising the system and its functions, Figure 4.1 illustrates the
test bed and how a system architecture can be designed for a small aircraft. The three
modules, computers, run a total of 10 applications. As an example, Module 1 could
be responsible for the controls, Module 2 for radio, radar, and displays, and Module
3 for the engine. The modules are running applications on six separate partitions.
The system architecture of the aircraft is first modelled with a tree graph, Figure 4.2.
The graph shows which applications are assigned to respective partitions.

By following the higraph-based transformation, the tree can be transformed into
a higraph, Figure 4.3. As the partitions in higraph are not blobs they are not mod-
elled in the tree graph, Figure 4.2. The type higraph can not be transformed the
same way as the model higraph, from a tree graph. Type higraph is a product of the
model higraph which defines encapsulation of blobs. The corresponding tree graph
for a type higraph would likely have the layout presented in Figure 4.4.

Both higraph and type higraph must be transformed into matrix form, Table 4.1
respective Table 4.2, to conduct measurement.

Metric 2 and Metric 3 are relevant only if there are dependencies between ap-
plications. 16 unique edges were randomly generated, spanning through the whole
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Cmodule 1 Cmodule 2  module 3

\ |
1] .

Figure 4.2 Test bed. Graph representation of the system.

system
module_3 module_2 module_1
partition_1 partition_3 | partition_2 | partition_1 partition_2 partition_1

Figure 4.3 Test bed. Higraph representation of the system model.

system. In comparison to IMA architecture development, the domain experts sug-
gest a producer-consumer design pattern since the applications are executed in a
hard real-time environment with strict constraints. Part of the applications in the
test bed are considered consumers; they are depended upon other applications. An-
other part are producers that have applications that depend upon them. Exceptional
applications are both producers and consumers; they depend on other applications
while they are depend upon. The system model with dependencies, Figure 4.5, cor-
respond to the system dependency matrix in Table 4.3. From the defined system the
following data is extracted:

* System model with dependencies, Figure 4.5, provides the dependency ma-
trix, Table 4.3.

* The model higraph, Figure 4.3, provides both a matrix representation of the
higraph and the type higraph model, Table 4.3 respective Table 4.2.
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Coois>

mod_1_part 1> < mod_L_part 2 > < mod_2_part 1 > mod 2 part 2> <_mod 2 part 3 > < mod 3 part 1 >

Figure 4.4 Test bed. Tree representation of the type higraph.

Table 4.1 Test bed. Matrix representation of the model higraph of the system sys-

tem.
Child
Parent system module 1 module2 module3 appl app2 app3 app4 appS app6 app7 app8 app9 appl0
system 0 1 1 1 0 0 0 0 0 0 0 0 0 0
module 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
module 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0
module 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1
app 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
app 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* The model higraph, Figure 4.3, provides two additional lists; the partition list,
Table 4.4, and the module list, Table 4.5. The focus in this thesis is on module
level which means that the partition list, Table 4.4, is omitted.
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Table 4.2 Test bed. Matrix representation of the type higraph of the system.

Child

Parent system module I module2 module3 mod I-part1 mod I-part2 mod 2-part I mod 2-part2 mod 2-part3  mod 3-part 1
system 0 1 1 1 0 0 0 0 0 0
module 1 0 0 0 0 1 1 0 0 0
module 2 0 0 0 0 0 0 1 1 1 0
module 3 0 0 0 0 0 0 0 0 0 1
mod 1-part 1 0 0 0 0 0 0 0 0 0 0
mod 1-part 2 0 0 0 0 0 0 0 0 0 0
mod 2-part 1 0 0 0 0 0 0 0 0 0 0
mod 2-part 2 0 0 0 0 0 0 0 0 0 0
mod 2-part 3 0 0 0 0 0 0 0 0 0 0
mod 3-part 1 0 0 0 0 0 0 0 0 0 0
system
module_3
partition_1

module_1
partition_2
app_2
partition_
app_3

Figure 4.5 Test bed. Higraph representation of the system model with edges.

4.3 Approach
Metric 1

Measuring the structural complexity with Shannon’s entropy requires the system
model matrix, Table 4.1, system type matrix, Table 4.2 and dependency matrix,
Table 4.3. Equation 3.2 defines that entropy is calculated for every element of the
higraph definition and Equation 3.8 defines how to calculate the entropy of the type
higraph, Hry. Algorithm 1 defines how Metric 1 is implemented. The system model
matrix provides the total amount of blobs and dependency matrix provides the total
amount of edges. Blobs and edges are calculated by summing the system model
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Table 4.3 Test bed. Matrix representing the dependencies between applications.

Dependon | . . . . . .
Application appl app2 app3 app4 app5 app6 app7 app8 app9 appl0
app | 0 0 0 0 0 0 0 0 0 0
app 2 1 0 1 0 0 0 0 0 0 0
app 3 0 0 0 0 0 1 0 0 0 0
app 4 0 0 0 0 0 1 0 0 1 1
app 5 1 0 0 0 0 0 1 1 0 1
app 6 0 0 0 0 0 0 0 0 0 0
app 7 0 0 0 0 0 1 0 1 0 0
app 8 0 0 0 0 0 1 0 0 1 1
app 9 0 0 0 0 0 0 0 0 0 0
app 10 1 0 0 0 0 0 0 0 0 0
Table 4.4 Testbed. Partition list.

partition applications

mod I-part 1 app 1

mod 1-part 2 app 2, app 3

mod 2-part 1 app 4

mod 2-part 2 app 5

mod 2-part 3 app 6

mod 3-part 1 | app 7, app 8, app 9, app 10

Table 4.5 Test bed. Module list.

module applications
module 1 app 1, app 2, app 3
module 2 app 4, app 5, app 6

module 3 | app 7, app 8, app 9, app 10

matrix respective dependency matrix. Calculating total number hierarchies requires
a call to the custom function hierarchy. The hierarchy function can be viewed as
summing the amount of sub-blobs each blob has. This is implemented by checking
for each row which column number has the value of, 1. When discovered, the entire
row of the column number is summed and added to hierarchy result. Measuring the
entropy on the elements in the type higraph is based on same technique as higraph
but without taking edges and Hpy into account.

Using the test bed, the structural complexity is generated by calculating the
entropy for the higraph system model and the entropy for the type higraph. The
result from Metric 1 using test bed values is the following:

* |B| - 13 blobs.
* |E| - 16 edges.
. Z |p(x)] - 10 hierarchy.
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Algorithm 1 Metric 1

procedure STRUCTURE COMPLEXITY

(system_matrix, system_type_matrix,dependency_matrix)
blobs < Y (system_matrix)

edges < Y (dependency_matrix)

rho < hierarchy(system_matrix)

blobsy < Y (type_matrix)
rhog < hierarchy(type_matrix)

H <« logy(|blobs|) + 2loga(|edges|) + 2loga(|rho|) + loga(|blobsy|) +

2logs (|rhog|)

return H

function HIERARCHY (matrix)

for each row i in matrix do
for each column j in matrix do
if matrix(; ;) equals 1 then
value < value + Y (matrix,g,))

return value

* (Type higraph) |B| - 9 blobs.

* (Type higraph) Z |p(x)| - 6 hierarchy.

The result avoid a result of negative infinity, log»(0) equals —inf, the specific

parameter which holds the value of 0 must be excluded from the equation. The
values obtained from the input parameters are inserted into Equation 3.9 and the
structural complexity is retrieved:
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Metric 2

While Metric 2 consists of two metrics, instability and abstractness, only the former
is relevant in this thesis which is defined in Algorithm 2. The latter metric measures
the abstractness of a package and as mentioned earlier, communication between
applications in the IMA architecture is performed through abstract interfaces that
each application own. Hence, the abstractness metrics is redundant. The only data
necessary to calculate the instability of the applications is the dependency matrix
e.g. the test bed Table 4.3. Prior to performing any calculations on the dependency

Algorithm 2 Metric 2
procedure INSTABILITY(dependency_matrix)
normalised_matrix <— normalise_dependency(dependency_matrix)
received_dependency < Y .o1umns(normalised_matrix)

D, + [Y.(received_dependency)]
for each value val in received_dependency do
proportional_responsibility < val / D,

Rinax < max(proportional_dependency)
for each value val in proportional_responsibility do
relative_responsibility <— val /Ry

for each application app in dependency_matrix do
for each application app_dep that depends on application app do
numerator <—
Y.(1 — (relative_responsibility,p,_dep X dependency_factor))
instability,,, < numerator/ Y. dependenciespp

return instability

function NORMALISE_DEPENDENCY (matrix)
for each row i in matrix do
neW_Matrix <= matrix,y, (i / L(matrix,g,)

return new_matrix

matrix, it needs to be normalised between value O and 1. The custom function nor-
malise_dependency takes the dependency matrix as input parameter, calculates the
sum of a row and divides each column on the specific row with the row sum. The
normalise matrix is depict in Table 4.6.

Received dependency. As mentioned in Chapter 3, the instability value is acquired
through multiple equations. The received dependency value, Equation 3.10, is cal-
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Table 4.6 Test bed. Matrix representing evenly distributed dependencies between

applications.
Depend on

Application appl app2 app3 app4 app5 app6 app7 app8 app9 applO
app 1 0 0 0 0 0 0 0 0 0 0
app 2 1/2 0 1/2 0 0 0 0 0 0 0
app 3 0 0 0 0 0 1 0 0 0 0
app 4 0 0 0 0 0 1/3 0 0 1/3 1/3
app 5 1/4 0 0 0 0 0 1/4 1/4 0 1/4
app 6 0 0 0 0 0 0 0 0 0 0
app 7 0 0 0 0 0 1/2 0 1/2 0 0
app 8 0 0 0 0 0 1/3 0 0 1/3 1/3
app 9 0 0 0 0 0 0 0 0 0 0
app 10 1 0 0 0 0 0 0 0 0 0

culated by summing each column of the normalise matrix in Table 4.6. The result
of received dependency is obtained in Table 4.7.

Proportional responsibility. The proportional responsibility, Equation 3.11, uses
the values retrieved from received dependency equation. Every value is divided by
the total number of dependent applications, D,. Dependent applications in the de-
pendency graph, Figure 4.6, are those who are not defined as sink and not dependent
on other applications. The result of the proportional responsibility is obtained in Ta-
ble 4.7.

Relative responsibility. The relative responsibility, Equation 3.12, divides each
value with the highest proportional responsibility value, Ry,,. The Ry,q, value for
the test bed system system is 0.3095. Table 4.7 presents the result for the relative
responsibility.

Instability. The instability, Equation 3.13, can now be calculated. For demonstra-
tion purposes the value of the dependency factor, 0, is set to 0.5. ”Setting the depen-
dency factor () to one means that depending on the most responsible package will
have no effect on the stability of the dependent package” [Almugrin et al., 2014].
Algorithm 2 divides the instability equation into two steps because it simplifies the
measurement. The instability equation, Equation 3.13, has a sum in the numera-
tor which is then divided by all of dependencies, both outgoing and incoming, in
consideration for the application being measured. Outgoing and incoming depen-
dencies are calculated from the test bed dependency matrix, Table 4.3. Outgoing
dependencies are equivalent to summing the rows and incoming dependencies are
equivalent to summing the columns for each application. The result of instability,
and previous, equations are presented in Table 4.7.

44



4.3  Approach

Figure 4.6 Test bed. Dependency graph for Metric 2.

Table 4.7 Test bed. Presenting all result from equation leading up to instability

value.
: application | 2 3 4 5 6 7 8 9 10
equation
received dependency 1.75 0 0.5 0 0 2.1667  0.25 0.75  0.6667 0.9167
proportional responsibility | 0.25 0 0.0714 0 0 0.3095 0.0357 0.1071 0.0952 0.1310
relative responsibility 0.8077 0 0.2308 0 0 1.00  0.1154 0.3462 0.3077 0.4231
instability 0 0.7404 025 0.7115 0.7885 0 0.4423  0.4269 0 0.1490

Metric 3

The third metric consists of two metrics; complexity and coupling. The two met-
rics need the test bed dependency matrix. Additional data is necessary for coupling
since if can be applied to different hierarchy levels of the system. The partition and
module list for the test bed, Table 4.4 and Table 4.5, provide the information which
enables the measurement. Algorithm 3 and Algorithm 4 define the implementation
for complexity and coupling which only set out to measure complexity between
applications and PCM between modules.

Complexity. The modified Henry and Kafura’s “fan-in fan-out” complexity met-
ric, Equation 3.15, multiplies all outgoing with all incoming dependencies of each

45



Chapter 4. Implementation and Validation

Table 4.8 Test bed. Complexity.

‘ application |\ » 3 4 5 6 7 8§ 9 10
metric

complexity /001 00 0 2 6 0 3

application. The automotive industry considers bidirectional dependencies to cause
more complexity than one directional, thus, the value is zero if either incoming or
outgoing dependencies are zero [Durisic et al., 2013]. Similar to Metric 2, the out-
going dependencies from each application are retrieved by summing the rows and
incoming by the columns of the dependency matrix, Table 4.3.

Algorithm 3 Metric 3
procedure COMPLEXITY (dependency_matrix)
for each application app in dependency_matrix do
complexity,p, < Y. dependencies ugoing X Y. dependenciesincoming

return complexity

By summing row and column of the square dependency matrix and storing the
values in two different vectors, the complexity can be measured in one for-loop by
multiplying the same indices from each vector. Complexity measurement for the
system is presented in Table 4.8.

Coupling. The metric is based on Gupta Chhabra’s PCM and while Metric 3
defines a weighted value between the dependencies, for the implementation in the
thesis, the weight is set to 1 regardless of type of signal. The weights should be set
by system architects and developers to highlight critical connections. The values are
acquired through tests and experiments.

In this implementation, the measurements are conducted on module level using
Table 4.5. However, by using partition list, Table 4.4, PCM can be measured on
partition level. The first column in Table 4.5 is removed so only the application
numbers are left on each row.

Algorithm 4 Metric 3
procedure COUPLING(dependency_matrix,module_list)
for each application app in module mod from module_list do
for each application app_dep from dependency_list not in mod do
couplingmoq < Y. dependencies

app,app_dep)
return coupling

The coupling value for each module is acquired by calling the translated PCM
equation, Equation 3.25. The result is displayed in Table 4.9.
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Table 4.9 Test bed. Coupling.

' module 1 2 3
metric

coupling 13 9 38

Table 4.10 Test bed. Summary of the result.

metric | description value
1 structural complexity 26.6841
2 Y application instability 3.5087
3 Y complexity 12
3 Y coupling (modules) 20
nl ]
08+ -
S 06" -
k)
2o4- -
oL |
1 2 3 4 5 6 7 8 9 10
Application #

Figure 4.7 Test bed. Visualising instability through bar graph.

4.4 Visualisation

Results from the measurements are acquired in numerical format. Small scale sys-
tems, e.g. test bed, are comprehensible. Creating larger systems and more complex
requires the metrics to assist the analysis to become more effective and efficient.
Visualising the results through charts and graphs can provide the users with better
overview of the system and manageably identify areas of concern. Visual repre-
sentation of the results can be useful but Metric 1, which only outputs one value,
is better represented numerically. This section provides examples of visualisation
techniques for different metrics. Metric 2 and Metric 3 are visualised through graphs
and charts. Metric 1, which is presented numerically in Table 4.10, will not be visu-
alised graphically. The result from all metrics, Equation 4.2, Table 4.7, Table 4.8,
and Table 4.9 are summarized in Table 4.10.

Instability value has a range between 0 < x < 1. The result from instability mea-
surement is displayed in Figure 4.7. The numbers in x-axis correspond to applica-
tion with same value, e.g. app_#. Complexity value has a range between 0 < x < oo,
The result from complexity measurement is displayed in Figure 4.8. Like instabil-
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Figure 4.8 Test bed. Visualising complexity through bar graph.

ity, the numbers in x-axis correspond to applications. Instability and complexity are
evaluating applications based on the dependency between them and while the re-
sults of the metrics can be display in individual figures, combining them into one
provides a possibility for effective assessment. Figure 4.11 represents the instability
and complexity result.

Coupling can be display the same way as instability and complexity, Fig-
ure 4.10. However, the bar chart does not display between which modules cou-
pling is the highest. Figure 4.11 solves the issue by having a graph with weighted
edges between package of interest. The weights are the actual coupling values be-
tween two entities. While the Figure 4.10 and Figure 4.11 are showing coupling
on module level, it can easily be altered to measure coupling between other system
components of same hierarchical level.

4.5 Interpretation

Understanding the metrics and interpreting the result is an important corner stone
of the validation process. Knowing what is being measured and interpreting the re-
sult can help users evaluate whether the metrics are appropriate for the task at hand.
Metric 1 is currently being researched. Although couple of examples have been
presented in the articles, none of them succeed in presenting explanation how the
metric should be interpreted [Aboutaleb and Monsuez, 2016; Aboutaleb and Mon-
suez, 2015b; Aboutaleb and Monsuez, 2015a]. Metric 2 is a modified C.R. Martin
metric. Martin defines stability not as "likelihood of the package changing” but as a
package that other packages depend upon. Making changes in a stable package may
affect many other packages. The instability metric inverts the logic and points out
which packages are affected when others are modified. The higher the instability
value, the higher are the chances that the package will be subject to changes. Val-
ues that have zero instability value are considered very stable packages. Metric 3
measures both complexity and coupling. The metrics are effective when comparing
between releases. An increase in complexity or coupling is an alert for the users that
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area is in need of attention. However, good knowledge about the system is required
because more complexity or coupling does not necessary equals problem.

4.6 Validation

Theoretical & empirical validation

Majority of the researched metrics in this thesis have been validated both theoreti-
cally and empirically by other authors. This holds true for both Metric 2 and Met-
ric 3. However, Metric 1, which measures the structural complexity with Shannon’s
entropy, is recently defined and still being researched. Understanding and interpret-
ing the result has not been described and although the authors of the metric have
defined the rules for modelling and measuring, there has not been conducted any
theoretical nor empirical validation [Aboutaleb and Monsuez, 2016; Aboutaleb and
Monsuez, 2015b; Aboutaleb and Monsuez, 2015a].

Metric 2 is based on R.C. Martin’s metrics for instability and abstractness. Re-
search projects have validated R.C. Martin’s metrics and principles, both theoretical
and empirical. The modified version has been empirically validated through a case
study on an open source system performed by the authors [Almugrin et al., 2014].
Metric 3 use Henry and Kafura fan-in fan-out complexity measure and Gupta and
Chhabra PCM. Both of the metrics satisfy the theoretical validation defined [Briand
et al., 1996]. The empirical validation was conducted through case study during a
real project in the automotive industry which offered feedback through workshops
and interviews with system architects, designers, and integration testers [Durisic et
al., 2013].

Cohesion metric was omitted in Metric 3 by the authors of the article due to
the fact that modules provided by the suppliers to original equipment manufacturer
(OEM) had "platform specific executable code”, meaning that the necessary source
code needed for the analysis was usually not available to the OEMs [Durisic et al.,
2013].

Empirical validation of the selected metrics

This section proposes how empirical validation of the selected metrics for usage
in aerospace industry should be conducted. The resemblance in design and de-
velopment of systems architecture between the automotive and aerospace indus-
try suggests similar approach when validating the selected metrics for usage in the
aerospace industry. Metric 3 was empirically validated in the automotive industry
according to the guidelines defined in [Fenton and Pfleeger, 1997]. Therefore, the
method proposed is highly influenced by the approach used for Metric 3 [Durisic
etal., 2013].

1. Extract the data from one version of the architecture and check its validity
manually (to avoid measurement errors).
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2. Wait for a relevant period of time (decided based on the project sched-
ule/progress) until the number of changes in the architecture accumulates.

3. Extract the data from another version of the architecture and check its validity
manually.

4. Compare the extracted data for both versions and list the changes.

5. Interview technical experts in the domains of software architecture and test-
ing in order to check whether the changes listed reflect the changes made in
the architecture with respect to Metric 1, Metric 2, and Metric 3.

The time frame for conducting the empirical validation should span over suffi-
ciently long period of time in order to collect samples during different stages of the
development. The metrics rely on a higraph model to execute the measurement. It is
therefore necessary for the extracted data, from the architecture, to be representable
in a higraph to insure measurement result. The extraction may be performed using
custom software tool that collects the information from the primary development
environment.
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Figure 4.9 Test bed. Example of how to visualise instability and complexity.
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Coupling
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Module #

Figure 4.10 Test bed. Example of how to visualise instability and complexity.

Figure 4.11 Test bed. Coupling visualised.
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5

Conclusion and future work

5.1 Conclusion

Systems architecting consumes a small budget of a product’s life cycle. Deciding the
right architecture can save development cost whereas late modifications are highly
expensive. Finding metrics that are used within systems architecting proved to be
difficult task. Architects rely much on their experience from past projects, system
knowledge, and design patterns. These are all important factors when developing
new products and impossible to measure with any metric. This thesis narrows down
three potential metrics that can be used by system architects and stakeholders to fol-
low trends throughout a product’s life cycle — from conceptual and design to mainte-
nance and support phase — in order to achieve characteristics, e.g. interchangeability,
extensibility, and modularity, when developing IMA architecture.

All three metrics rely on a system model that portrays the system viewed from
system architects and stakeholders perspective. In the thesis, the system was mod-
elled using higraph from Metric 1 — an extended graph which includes hierarchy
and partitioning. The model should be intuitive and only incorporate systems that
are of relevance for system architects and stakeholders. The higraph has the benefits
of representing dependencies, hierarchy, and partitions with a graph and although
no weights were used for Metric 3 it is important to point out that the weighted
dependencies are not represented. Additionally, the coupling metric of Metric 3 re-
quires extraction of information from the higraph to differentiate in which package
each component belongs.

The new and none mature Metric 1 measures the structural complexity using the
higraph which can provide good insight how complex the system is modelled during
conceptual and design phases before any work is begun. Different designs can be
compared to select the best suited for the requirements. Necessary information on
interpreting the result is missing from the articles, likewise theoretical and empir-
ical validation, leaving the users guessing and questioning their designs. A design
with higher structural complexity is not equivalent with bad design. The complexity
might be justifiable for the specific system and therefore it is important that system
architects manually analyse before taking any decisions if they were to use it.

53



Chapter 5. Conclusion and future work

Metric 3 is the only metric found that exists within the field of systems archi-
tecting in the industry. It focuses on measuring the effect of changes to its archi-
tectural properties and is applied after significant changes in the architecture during
development. The metric has both been theoretically and empirically validated. One
drawback experienced during the implementation is the complexity metric. In the
automotive industry the complexity metric is 0 if a component has unidirectional de-
pendencies, i.e. only incoming or outgoing dependencies. This suits the industry be-
cause that is the desired flow of communication between components, meaning that
bidirectional connections are more likely to cause problems. However, the system
architecture in the aerospace industry, especially with IMA architecture, handles
more data which is shared between sub-systems. Component with high degree of
depend upon components should also be considered complex since minor changes
could also effect large parts of the system, causing ripple effect.

Metric 2 which is a pure software metric is used to highlights components that
are likely to be affected by modifications in the system. Metric 2 measures instabil-
ity but with a smaller modification it can be adjusted to highlight the most stable
and responsible components as they are more likely to produce ripples in the system
when modified. While the result from the measurement varies between 0 and 1 it
is not obvious how it can be applied to support system architects and stakeholders.
Possible application could be to use this metric in cooperation with the complexity
metric in Metric 3 to highlight the behaviour of the components with complexity
value of 0.

Metrics within the systems architecting is relatively unexplored research field
unlike e.g. software architecting which has made great progress over the years. It
is possible that further software metrics could be used in systems architecting but
which ever emerges, system architects should not base their decisions solely on
the result of the measurements. The metrics should only provide support whereas
knowledge, experience, and design patterns should still be used when analysing
the system and making decisions. The selected metrics need to be validated in the
aerospace industry over a longer period of time before any decision can be made
whether or not they are relevant for IMA architecture.
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5.2 Future work

The authors, that applied Metric 3 to the automotive industry used two different
views, logic and development view: the former for communication between com-
ponents and the latter had two purposes. To show the network of the computers and
to show deployment of software components in the individual computers. This the-
sis focused on modelling the system accurately using higraph and thus providing a
higraph model view of the system. For future work it should be evaluated if higraph
model provides sufficient view for the architects and stakeholders.

It should be investigated whether the weighted dependencies can be integrated
into the higraph model and while the suggested weights were relevant in the auto-
motive industry, the aerospace architects and stakeholders need to assess the depen-
dencies and apply weights to suit their industrial needs.

Finally, the higraph and the metrics need to be validated in the industry over
longer period of time in guidance of the suggested methods in Chapter 4. It is sug-
gested that implementing the metrics that has the highest probability of succeeding
should be chosen first. Metric 3, which has been empirically and theoretically val-
idated, is the obvious choice followed by Metric 2. Metric 1 is suggested to be
implemented last due to insufficient maturity. By implementing the other metrics
first, more time is given to refine and validate Metric 1.
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Long-list

Table A.1 Long-list that displays authors and general area of their metrics.

Dependency Analysis
Maintainability

Timing Analysis
Response Time Analysis
Resource Analysis

Execution time

Availability
Flexibility
Modifiability

Complexity
Abstraction
Scalability

Jitter
Quality
Safety
Security

Authors

<| Cohesion

[Yourdon and Constantine, 1979]

[Gupta and Chhabra, 2009]

<&/ Coupling

[Navarro et al., 2010]

[McCabe, 1976]

[Qutaish and Abran, 2005]

[Henry and Kafura, 1981]

Card and Agresti, 1988]

Aboutaleb and Monsuez, 2016]

Albrecht and Gaffney, 1983]

Zhang and Li, 2009]

NN NSNS NN

Broniatowski and Moses, 2014]

Kubo et al., 2007] v

Almugrin et al., 2014] v v

Gillespie et al., 2012] v v v

Nord et al., 2014] v

[Perepletchikov et al., 2007] v

[Durisic et al., 2013] v v v

[Yau and Chang, 1988] v

Nakamura and Basili, 2005] v

Ghasemi et al., 2015] v

Voss and Hsuan, 2009] v

Stewart, 2006] v

Bril et al., 2008] 4

Kim et al., 2015]

Grigg and Audsley, 1999]

Chen and Du, 2015]

Vestal, 2007]

[Yao et al., 2016]

ANRNRNANANRNEREN

[Pathan, 2014]

[Marinescu et al., 2012] v

[Baruah et al., 2011] v

A
A
A

Klein et al., 1993] v

Elhag and Mohamad, 2014] v

Gaudan et al., 2008]

Schneidewind, 1996]

SRR

Chandran et al., 2010]

Jogalekar and Woodside, 2000] v

Yau and Collofello, 1985] v
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Short-list

Table B.1 Short-list that displays authors and general area of their metrics.

Dependency Analysis
Timing Analysis
Response Time Analysis
Resource Analysis

Complexity
Abstraction
Availability
Controllability
Flexibility
Maintainability
Modifiability
Modularity
Execution time
Jitter

Quality
Reliability
Safety
Scalability

Authors

Security
Stability

| Cohesion

Yourdon and Constantine, 1979]

Gupta and Chhabra, 2009]

«|§| & Coupling

Navarro et al., 2010]

Henry and Kafura, 1981]

Card and Agresti, 1988]

Aboutaleb and Monsuez, 2016]

Zhang and Li, 2009]

ANANENENEN

Broniatowski and Moses, 2014]

Almugrin et al., 2014] v

Nord et al., 2014] v

Perepletchikov et al., 2007] v

Durisic et al., 2013] v v

Yau and Chang, 1988] v

Ghasemi et al., 2015] v

Troy and Zweben, 1981]

Elhag and Mohamad, 2014] v

Gaudan et al., 2008]

Yau and Collofello, 1985]




Metric 1

Matlab code for Metric 1, structure complexity.

function [ structural_complexity ] = higraph(system_matrix, type_matrix,
dependency_matrix)

JHIGRAPH Measures the structural complexity given

Asystem, type, and dependency matriz.

nodes = sum(system_matrix(:))
edges = sum(dependency_matrix(:))
rho = hierarchy(system_matrix)

type_nodes = sum(type_matrix(:))
type_rho = hierarchy(type_matrix)

if edges ==
structural_complexity = log2(nodes) + 2*log2(rho) + log2(type_nodes) +
2*xlog2(type_rho);
else
structural_complexity = log2(nodes) + 2*log2(edges) + 2xlog2(rho) +
log2(type_nodes) + 2*log2(type_rho);
end
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Metric 2

Matlab code for Metric 2, instability.

function [ instability ] = instability( dependency_matrix )
JINSTABILITY Calculates instability given connection and dependency matriz

/D (Pi) Received Dependency
dependency_matrix_normalised = spread_dependency(dependency_matrix);
received_dependency_value = sum(dependency_matrix_normalised,1);

AR(Pi) Proportional Respomsibility
/Dz, total number of the dependent packages in the system ezcluding the
sink packages
Dx = ceil(sum(received_dependency_value));
for i = 1:length(received_dependency_value)
/4 R(Pi)
proportional_responsibility(i,:) = (received_dependency_value(i)/Dx);
end

AR’(Pi) Relative Responsibility

4 R_maz, mazimum rTesponsibility wvalue

R_max = max(proportional_responsibility);

for j = 1:length(proportional_responsibility)
AR’ (Pi)

relative_responsibility(j,:) = (proportional_responsibility(j)/R_max)

end

/ Calculate in- and outgoing connmections from nodes
connections_to = transpose(sum(dependency_matrix,1));
connections_from = sum(dependency_matrix,2);

instability = zeros(length(dependency_matrix) ,1);
AI(Pi) Instability
result = 0;
dependency_factor = 0.5;
for m = 1:length(dependency_matrix)

for n = 1:length(dependency_matrix)

if (dependency_matrix(m,n) > 0)
result = result + (1 - (relative_responsibility(n)x*
dependency_factor));

end
end
if result == 0 && (connections_to(m) + connections_from(m)) =
instability(m,:) = 0;

I
o

65



Appendix D. Metric 2

else
instability(m,:) = result / (connections_to(m) + connections_from(m
))s
result = 0;
end
end
end
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Metric 3

Matlab code for Metric 3, complexity and coupling.

function [ complex ] = complexity( dependency_matrix )
ACOMPLEXITY Calculates the complexity for a given set of
4 data connections represented in a matriz.

connections_to = transpose(sum(dependency_matrix,1));
connections_from = sum(dependency_matrix,2);

complex = 0;
for i = 1:length(connections_to)
complex(i,:) = connections_to(i) * connections_from(i);
end
end

function [ graph, coupling ] = coupling( dependency_matrix, level)
ACOUPLING Calculates coupling between partitions of a system
A given connection matriz and partition set.

size_part = length(level);

coupling = zeros(size_part,1);
incoming = 0;

outgoing = 0;

edges = 0;

for k = 1:(size_part)
for 1 = 1:(size_part)
if k "= 1
for i = 1:length(level{k})
from = level{k}(i);
for j = 1:length(level{l})
to = level{1l}(j);

outgoing = outgoing + dependency_matrix(from, to);
incoming = incoming + dependency_matrix(to, from);
end

end

edges = outgoing + incoming;

graph(k,1l) = edges;

graph(1,k) = edges;

incoming = 0;

outgoing = 0

edges = 0;

end
end
end
coupling = transpose (sum(graph));



Appendix E. Metric 3

end
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