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Abstract

To maintain a high position accuracy in robots is essential in today’s industry. Be-
cause of different factors, as for example wear and tear, the robots may need to be
recalibrated after a while to maintain their high precision. Today the calibration can
be costly. The robot is often sent away to be calibrated and will therefore cause
stoppages in production, and if the calibration is performed in-house, education of
staff and purchases of expensive external measurement equipment are required. In
this thesis, a calibration method for the dual arm, seven degrees of freedom (per
arm) robot YuMi [ | from ABB is evaluated. The idea is to connect the
two arms to each other, perform specified movements and use solely the internal
sensors in the robot to do the calibration. The arms will also be docked in fixed po-
sitions in the robot’s work space and while fixed, they will be moved into different
configurations to obtain additional measurement data. A challenging part is that the
robot has an extra joint in each arm compared to common six-axis industrial robots,
which makes the robot inherently redundant. The redundancy makes it possible to
reach a certain point with the robot tool using several different arm configurations,
this makes it more difficult to estimate the robot’s parameters.

In this thesis, several different types of calibrations were performed. Because
the calibration methods have some drawbacks that need to be further investigated,
the correct parameters were only identified in some cases. In those cases where the
real parameters were not found, only the repeatability, and not the accuracy, was
improved. The methods showed these results in simulations, while the actual robot
was not successfully calibrated in experiments.
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1

Introduction

1.1 Nomenclature

The nomenclature used in this thesis is presented in Table 1.1.

Table 1.1 Nomenclature used in this thesis.

Term Explanation
Configuration The entire robot (arm) position and orientation including joint angles.
DOF Degrees of freedom.
POE Product of exponentials.
TCP Tool center point.
Pose Position and orientation of the TCP.
J Identification Jacobian.
Ji Jacobian corresponding to the ith joint.
Jot Jacobian corresponding to &;.
qi Joint variable of the ith joint.
q Vector with joint angles.
dq Joint offset.
T Forward kinematics map.
T, Actual end-effector pose.
T, Nominal end-effector pose .
T, Initial transformation matrix.
STT! Pose error at tool frame expressed in base frame.
E,» Twist corresponding to the ith joint.
& Twist coordinates corresponding to the ith twist.
Eu Twist corresponding to initial transformation matrix.
3 Vector of all joint twist coordinates.
6& Twist coordinate error.




Chapter 1. Introduction

1.2 Background

Robots are becoming a more natural occurrence in our everyday life. Particularly
in the industry, robots are replacing humans to do tedious, repetitive, and danger-
ous tasks in for instance assembly lines for everything from cars to small electronic
components. The robot needs to be able to perform a specific movement several
hundred thousand times for this purpose. It is important that the model in the con-
trol system corresponds well to the actual robot, otherwise the programmed position
will differ from the actual one. Factors like manufacturing tolerance, wear and tear,
transmission errors, set-up errors, and compliance will affect the robot’s accuracy.
When a robot is delivered, a calibration is typically performed to cope with those
factors, but after some use, wear and tear will increase the difference between the
model and the actual robot. This is where robot calibration comes in. Robot cali-
bration is a way to improve the accuracy, which is crucial if the same robot is to be
used for a longer period of time.

Today, calibration is often performed with expensive, large and somewhat com-
plicated cameras. Furthermore the calibration can take a while, especially when the
knowledge and equipment is not available in-house. The standard procedure is to
send the robot to a service center, which can lead to long downtime in production.
Cognibotics AB is a company specialized in development of methods for determi-
nation of robot properties and specifications. Cognibotics is currently developing
methods to calibrate robots without the use of external sensors. The only sensors
being used in the calibration are those existing in the robot, i.e., joint angle mea-
surements from the motors. The task in this thesis is to increase the accuracy of the
robot IRB 14000, also called YuMi [ ], from ABB.

1.3 Problem formulation

There is a lot of literature on different calibration methods for robots in books and
online. They, however, often treat calibration of non redundant (see Section 2.3)
robot manipulators with up to six joints in a single arm and often use external mea-
surements systems such as laser trackers and cameras. The goal with this thesis is
to evaluate a calibration method based on the product of exponentials (POE, see
Sections 2.6 and 2.7) formula on a dual arm redundant robot with seven degrees
of freedom (DOF) for each arm. This method has been verified to work on non-
redundant single arm robots with less than seven DOF, with known position and
orientation (pose) of the tool center point (TCP). The dual arm robot is a product
from ABB and is called YuMi. The calibration method will be evaluated on YuMi’s
predecessor, a prototype called Frida [Kock et al., ]. In this thesis, the joints
are numbered 1-7 counting from the base of the arm to the TCP'. The problem

! This numbering convention differs from ABB’s where joints 1-6 correspond to the ones of a standard
serial manipulator and joint 7 to the extra added joint between joint 2 and 3.
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1.4 Disposition

formulation of this master thesis is to:

1. Build a kinematic model for Frida using POE.
2. Evaluate the model.

3. Implement an algorithm for joint offset identification of a clamped (connected
to one or several fixed point/points) arm.

4. Implement an algorithm for kinematic parameter identification for two arms
connected with a clamping device.

5. Implement an algorithm joint offset identification for two arms connected
with a clamping device.

6. Evaluate the algorithms in simulations and experiments.

1.4 Disposition

In Chapter 1, an introduction and background to the problem, problem formulation
and some prerequisites are presented. In Chapter 2 theory behind the robot kinemat-
ics, derivation of the calibration algorithms and kinematic models are reviewed. In
Chapter 3 a description of the experiments and simulations are presented, and the
results are presented in Chapter 4. In Chapter 5, the results are discussed, and con-
clusions from the results are presented. In Appendix A the kinematic model used in
the thesis and some information about YuMi can be found.

1.5 Python

Python is a high-level, open-source programming language. The fact that it is open-
source implies that Python has a lot of third-party packages for different kind of
needs. The ones used during the course of this thesis are presented below.

NumPy

NumPy [ ] is a package in Python. It contains arrays and matrices and
foremost, mathematical functions to operate on arrays and matrices. The linear al-
gebraic package in NumPy has been most useful during this thesis.

SymPy
SymPy [ ] is an extension to Python that brings symbolic mathemat-

ics to Python. It is possible to define symbolic expressions, and perform various
mathematical operations on those.

11



Chapter 1. Introduction

SciPy
SciPy [ ] is an open-source software for mathematics, science, and engi-
neering that can be used with Python.

1.6 RobotStudio

RobotStudio [ ] is a program from ABB, which enables the user
to do off-line programming of robot systems from ABB. It uses ABB’s Virtual-
Controller [ ], which is a software implementation with the same

functionality as the controller in the real robot. It is therefore possible to simulate
all movements of the robot, before a program is uploaded to the real process.

1.7 RAPID

RAPID [ ] is a high-level programming lan-
guage used to control ABB robots. It is developed by ABB and a text editor is inte-
grated in RobotStudio. Programs can be written in RobotStudio, and then uploaded
to the actual robot.

MultiMove

The purpose of MultiMove [ABB, ] is to control several robots with the same
controller. It opens up for solutions where one robot can hold and move an item,
while another robot can work on the object. It is useful in this thesis, since the
relation between Frida’s two TCPs can be set to be fixed. This means that one arm
can be set to follow the other, making it possible to have a virtual bar between the
two TCPs.

Soft Servo

When Soft Servo [ABB, 1 [ABB, ] is activated on a joint, the joint acts
as a mechanical spring, with the force proportional to the deviation from the pro-
grammed position. Soft Servo is activated through the command SoftAct in RAPID
code. A value between 0 and 100 defines the softness, 0 being no softness and 100
being full softness.

MoveL and Moved

When programming a movement in RAPID, two different types of movement com-
mands can be used. With MoveL, the path between two targets will be linear. With
Movel/MoveAbsJ, the path between two targets is calculated to minimize joint
movement. Motion commands with MoveL are easier to interpret because of its
linear path in the room, while MovelJ leads to an arc-like motion, which will be

12



1.8 MATLAB

hard to predict and care needs to be taken if moving the robot in narrow passages.
However, MoveL will be more restricted to use close to singularities of the robot.

1.8 MATLAB

MATLAB [ ] language is designed for computational mathematics
and is used in the program MATLAB, which has several toolboxes for various sci-
entific purposes, such as robot kinematics for example.

Simulink

Simulink [ ] is a block-diagram environment for simulation that is
compatible with MATLAB. Models of various control systems can via a graphical
interface be programmed and modified.

1.9 ExtCtrl

An ABB robot controller consists of two computers, the Main Computer (MC) and
the Axis Computer (AXC). The MC handles high-level control while the AXC han-
dles low-level control. ExtCtrl [Blomdell et al., ] is a protocol developed at
LTH that makes it possible to intercept data sent between the MC and AXC and add
external control signals to the robot. Simulink-built models are used to generate the
C code used in ExtCtrl. ExtCtr]l was used to log the joint values of the robot arm(s)
during the experiments.

1.10 Frida

Frida [Kock et al., ] is a predecessor, a prototype, to YuMi and its specifications
are somewhat different from those for YuMi. Some link lengths and their place-
ment of the links are different, as well as the transformation from the robot base
to the respective arm’s base. The Frida robot has no model available in RobotStu-
dio, but the Department of Automatic Control has from previous projects a model
implemented in Simulink which can be used with ExtCtrl. Translated to the conven-
tional joint numbering from 1-7, beginning from the base, the joints are numbered
1,2,7,3,4,5,6. This definition is adopted since ABB had not implemented the possi-
bility to have robots with seven joints in RobotStudio, so they had to add the seventh
joint as an external axis. The robot can be seen in Figure 1.1.

A vast difference between Frida and other ABB robots is the number of degrees
of freedom. ABB robots usually have at most six DOF, while Frida has seven DOF.
The extra DOF enables respective arm to reach each pose with several configura-
tions. Another difference is the relationship between the base and the arm base. The
base is usually defined at the foot of the robot, while the arm base is defined near

13



Chapter 1. Introduction

the beginning of the first link. For other ABB robots, these coincide, but for Frida,
the base is located at the foot of the robot between the arms, while the arms are
mounted a distance from the table with a slight outwards and upwards rotation as
can be seen in Figure 1.1.

Figure 1.1 The robot Frida from ABB in the RobotLab of LTH, Lund University.
The two arms are here rigidly connected (clamped together) via a connector plate
with two tool changers.

14



2
Theory

2.1 Absolute accuracy and repeatability

In robotics, absolute accuracy and repeatability are main concepts. Absolute accu-
racy is the robot’s ability to reach a specific point in the room. The accuracy is the
deviation between the desired position and the actual position. The typical accu-
racy is somewhere around 8 mm to 15 mm [ABB, ] between the actual and the
programmed positions. ABB have developed something called Absolute Accuracy
[ABB, ], which is a way to decrease the discrepancy between the actual and the
virtual robot by compensating the programmed position internally in the controller.
This leads to an accuracy of about 0.5 mm in the entire working range. A robot can
have good accuracy but poor repeatability, meaning that there is a large difference
in pose between the times the target is trying to be reached, but the different poses
are gathered around a certain target. A summary can be seen in Figure 2.1. The ac-
curacy and repeatability are affected by factors like manufacturing tolerance, wear
and tear, transmission errors, set-up errors, and joint and link compliance.

2.2 Different types of inaccuracy

Joint offset

Joint offset is the difference between the measured joint angle and the actual one.
It can be a result from factory tolerances or set-up errors. It can also increase over
time, because of wear.

Backlash

Each motor along the arm has a gear box. The cogs in the gearbox are not perfectly
connected leading to a dead zone where a certain change of an input does not result
in a well defined corresponding difference in the output but may change depending
on if the cogs were in contact or not when starting the motion, see Figure 2.2. This
is called backlash [ ].

15
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3

Bad repeatability and bad accuracy Bad repeatability and good accuracy

®)
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%

Good repeatability and bad accuracy Good repeatability and good accuracy

Figure 2.1 Accuracy and repeatability.

Outgoing axis

Incoming axis

Figure 2.2 Schematic of backlash in a mechanical system.

Kinematic parameter errors

Kinematic parameter errors can be categorized in two subcategories. Firstly, the
robot links can differ in length from the model of the robot. It can also be a result
of factory tolerances or set-up errors. Secondly, the links’ rotation axes can differ
in orientation from the model. It can also be the result of factory tolerances or set-
up errors. It can also be a result of damages, if the robot arm for example hits an
obstacle with high speed.

16



2.3 Degrees of freedom (DOF)

Link flexing

Designing the robot links is a compromise between stiffness, weight, and cost. In a
robot like YuMi, low weight is to be preferred because the motors are comparably
weak. Because of the fact that the links are not perfectly stiff, they will flex a bit
when exposed to force, as for example gravity from the links themselves or from a
tool.

Joint flexing

The gearboxes in the joints imply flexibility, so just like the links, the joints are not
totally stiff. A joint can therefore deflect from the given joint angle when the link
connected to the joint is exposed to force.

2.3 Degrees of freedom (DOF)

For an open chain (attached to the ground at one single point) robot manipulator,
the degree of freedom (DOF) is equal to the number of joints [Murray et al., ].
The typical robot from ABB has six DOFs, which enables it to have a dexterous
workspace (the space where the robot can reach every position with arbitrary pose of
the end-effector) [Spong et al., ]. For one less degree, there will be limitations
on the poses that can be achieved.

Six DOFs is described in Figure 2.3, illustrating all possible movements in the
3D space that the body can perform. Three are for position and three are for orien-
tation.

Down

Figure 2.3 6 DOFs [Ionescu, 1.
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Chapter 2. Theory

Redundancy

According to [Chiaverini et al., ], redundancy can be divided into two classes,
namely:

Kinematic redundancy Kinematic redundancy arises when a robot manipulator
has more DOFs than needed for a specific task. It can be useful, because it gives
the opportunity to specify the configuration more freely to avoid obstacles, or to
minimize the necessary joint movement. A six DOF robot can be kinematically
redundant in certain tasks. An example is drilling, where the rotation around the
drill axis does not matter.

Inherent redundancy Inherently redundant is a robot which has at least seven
DOFs. Following a trajectory in space requires six DOFs, which means that a seven
DOF robot can reach every pose on the trajectory with several different config-
urations. The Frida and YuMi robots both have seven DOFs on their respective
arms, which make them both kinematically and inherently redundant. The purpose
of kinematic redundancy is to make the robot more dexterous.

Redundant parameter

A redundant parameter model is a model where not all parameters can be identified
individually. It might, for example, be possible to identify the sum of two param-
eters, but not the individual parameters. This fact means that the cost function for
the problem can be minimized, but with ”wrong” parameters. The problem might
converge to a local minimum, or even diverge if the redundancy has not been taken
into consideration.

2.4 Base transformation

The base transformation is the transformation from the robot base (see Figure 2.5)
to the arm base (see Figure 2.4). This transformation makes it possible to describe
both arms’ TCPs in the same coordinate frame.

Calculate the base transformation
The base transformation can be calculated from the relationship

ThaseTarm ((I) = Tpoint ((I) = Thase = Tpoint(q)T;rlm<q)

where T, is the desired transformation from the robot base to the arm base, T,
is the transformation from the arm base to the TCP, T, is the position of the
TCP, read from the teach pendant (a control unit for the robot with touch screen and
joystick), and q is the uncalibrated joint values.

18



2.5 Modeling and calibration

Figure 2.4 The arm base. Figure from [RobotStudio 2016]. The x-, y-, and z-axes
are represented by the red, blue, and green axes, respectively.

Figure 2.5 The robot base. Figure from [RoborStudio 2016]. The x-, y-, and z-axes
are represented by the red, blue, and green axes, respectively.

2.5 Modeling and calibration

Robot calibration is, according to [Nof, 1999], divided into three levels as follows:

Level 1: Also called joint level calibration. In this calibration the relationship be-
tween the actual joint displacement and the recorded joint displacement.

Level 2: Kinematic calibration. The entire kinematic model of the robot is cali-
brated, including joint angle relationships and basic kinematic geometry of
the robot.

Level 3: Non-kinematic calibration. This calibration compensates for errors due to
effects such as joint compliance, friction and backlash.

19



Chapter 2. Theory

In this thesis level 1 and level 2 calibration will be conducted. In level 2 cal-
ibration the parameters describing the robot’s forward and inverse kinematics are
identified why this also is called kinematic parameters. The steps for doing a kine-
matic calibration is:

1. Modeling of the robot kinematics.

2. Measurement of the end-effector pose (no explicit measurements done in this
thesis).

3. Calibration of kinematic parameters.

4. Error compensation.

An essential part of parametric calibration is the establishment of an error model
[Chen-Gang et al., ]. The error model is a way to describe the relationship
between errors in the kinematic parameters and errors in the pose of the end-effector.
A derivation of the error model for the POE model that is used in this thesis is
performed in Section 2.9. The POE model is explained in more detail in Section 2.6

Robots can as almost anything be represented by mathematical models. There
are several types of methods to model robots in the literature. Example of models
[Chen-Gang et al., ] are the Denavit-Hartenberg model (DH), S model, CPC
(Complete and parametrically continuous) model and POE model methods. There
are three basic requirements that a kinematic model for robot calibration needs to
meet [Chen-Gang et al., ]:

Completeness Meaning that the model needs to have enough parameters to de-
scribe any differences between the actual kinematic parameters and the nom-
inal kinematic parameters.

Continuity A small change in the geometric properties of the manipulator should
correspond to small changes in the kinematic parameters.

Minimality The model used for calibration should not include redundant parame-
ters.

In the following subsections a short introduction to some of the different mod-
eling methods is made.

Denavit-Hartenberg method

The DH representation for modeling robots has since its introduction been stan-
dard in the industry [Chen-Gang et al., ]. This is because kinematic models

20



2.5 Modeling and calibration

established by this method is consistent despite who established them. The DH rep-
resentation is centered around the assumptions that the coordinate frames assigned
to two consecutive joints fulfill that [Spong et al., 1!

1. The axis x4 (the x-coordinate for axis number n+ 1) is perpendicular to the
axis z,.

2. The axis x,+ intersects the axis z,.

The procedure of assigning frames to the links is not unique because of the fact
that the origin and axes of each frame are arbitrary as long as it is rigidly attached
to its corresponding link. Even though the parametrization can be done arbitrarily
as long as it fulfills the above mentioned assumptions, the final result of the forward
kinematics is always the same, hence the above mentioned consistency. By clever
choices in assigning the frames, only four parameters per joint are needed to de-
scribe the homogeneous transformations between adjacent joints. The parameters
are a;, o, d;, and 6; and they describe link length, link twist, link offset, and joint
angle, respectively. An arbitrary homogeneous transformation matrix uses six pa-
rameters, three for the translation and three for describing the rotation in difference
to the DH representation. This fact and the systematic procedure in assigning ref-
erence frames are factors to why this is a popular method to use. The total number
of parameters needed in the DH representation to describe the kinematics is given
by 4r+2p+6 [He et al., ], where r are the number of revolute joints, and p is
the number of prismatic joints. This model contains no redundant parameters and
hence fulfills the minimality condition. Because of constraints on the coordinate
system when establishing the model, the four parameters are not enough to fulfill
the completeness requirement stated above [Chen-Gang et al., ]. Another prob-
lem is that singularities arise when two consecutive joints are parallel, making the
model not fulfill the continuity requirement. The interested reader can get a deeper
knowledge on how the DH model works in [Spong et al., 1.

S-model method

The S-model is an extension of the DH representation. Stone [Stone, ] added
two parameters, which makes it a total of six parameters to describe the homo-
geneous transformations between adjacent joints and a total of 6n parameters to
describe the entire kinematic chain of the robot. This fact makes the model com-
plete, and the extra parameters also make it possible to place all coordinate systems
on the robot (which is not always possible in the DH representation). However, the
model is still not continuous and the extra parameters have made the calibration
model redundant.

' Note that in some literature a so called modified DH-parametrization, with another index convention,
is used.
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Chapter 2. Theory

Complete and parametrically continuous (CPC) method

The CPC method also adds two parameters to the DH model which makes the model
complete and continuous, hence the name. The two extra parameters allow for an
arbitrary positioning of the link coordinate frames, in contrast to the DH convention.
All redundant parameters in this method can be systematically removed, making
the method fulfill all the previously mentioned requirements for a kinematic model.
There is, however, a rather user-unfriendly conditioning-handling technique needed
to avoid singularities when constructing the error model. This is because the joint
axes direction vectors are adopted as link parameters [Zhuang et al., ].

Product of exponentials

The POE formula was first introduced in robot calibration by Park and Okamura
[Park and Okamura, ]. The POE formula is based on Screw theory and is ex-
plained in more detail in Sections 2.6 and 2.7. Park and Okamura’s error model,
however, was not on explicit form. An updated error model with explicit expres-
sions for the generic error model was introduced by [He et al., ], which is used
in this thesis. The POE formula fulfills all three requirements stated above.

2.6 Rigid body motion

An important part of robotics is rigid body motion [Murray et al., ]. Rigid
motions describe a motion of a rigid object which preserves the distance between
two points on that object. The motion in an Euclidean space is described by coor-
dinates specified in three orthonormal (all axes perpendicular to one another and
of unit length) axes, (x,y,z) € R®. The distance between two points represented
by coordinates p; = (x1,y1,z1) and p2 = (x2,y2,22) in Euclidean space is given
by /(x2 —x1)2+ (y2—y1)? + (z2 — z1)2. Preservation of a distance between two
points, p; and p, in rigid motions then means that

IP2(t) = p1(7)|| = [Ip2(0) — p1(0)|| = constant, for all 7

The movement of a rigid object obtained by a rigid motion is denoted a rigid dis-
placement. A rigid body motion can consist of a translation and a rotation. Rotations
in three dimensions can be represented in many different ways. One common way is
Euler angles [Murray et al., ], but in this thesis, rotation matrices in the special
orthogonal group SO(3) will be used. The definition of SO(3) is

SO(3) = {ReR¥3:RRT =1, detR = +1} (2.1)

22



2.6 Rigid body motion

Z

B

Xg

Figure 2.6 A translation and a rotation between two coordinate frames.

A rotation matrix can transform coordinates of a point (or frame axes) from one
coordinate frame to another via matrix multiplication

Xp
P =RubPs = [Xab  Yap Zab) |V (2.2)
Zb

where X,3,,¥,,, and z,, are the coordinates of the principal axes of coordinate frame
B and xp,y;, and z; are the projected coordinates of the point onto reference frame
B. In Figure 2.6 a translation and a rotation of a coordinate frame can be seen. A
point on a rigid body with coordinate frame B attached to it can then be expressed in
coordinate frame A by a rotation given by (2.2) and a displacement vector between
the origins of the two frames. Hence, the rotation matrix R, together with the
displacement vector rotate and move the coordinates of the point from frame B to
frame A. This can be extended to include rotations and translations from several
coordinate frames to one. Rotating between multiple coordinate frames is possible
through the composition rule. A rotation matrix describing coordinates of frame C
in frame B is given by R,.. Then the same coordinates can be represented in frame
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Chapter 2. Theory

A using the rotation matrix defined by the composition rule as:
Ruc = RypRye. (2.3)

A general rigid movement is a combined translation and rotation. Let p,, € R
be a displacement vector describing the position of frame B seen from frame A and
R, € SO(3) be the orientation of frame B relative to frame A. Then the general rigid
movement is given by the pair (p»,Rup) with a configuration space consisting of
the product space of R and SO(3) denoted as SE(3). SE(3) is the special Euclidean
group defined by

SE(3)={(p,R) :p< R} R e SO(3)} =R’ xSO(3) (2.4)
The pair (p,R) describes a transformation of a point g, similar to that of (2.2), as
4a = Pab + RapQp- (2.5)

Homogeneous transformations

Transformations of points and vectors in R* can be represented as homogeneous
transformations. Homogeneous coordinates for points and vectors are given by

q1 Vi
H q2 = V2
= s VH = 5 2.6
q 7 vy (2.6)
1 0

where the notation v is used to emphasize that it is a vector, not a point. The rigid
movement described in (2.5) can be written on linear form, using above defined

notations, as
R
q = {‘” - [ gb I’ﬂ [‘ﬂ =TH ol 2.7)

TZ?, which is a 4 x 4 matrix (not to be confused with the Hermitian matrix), is called
a homogeneous representation of a rigid movement. A composition rule exists for
elements in SE(3), similar as for the elements in SO(3), and is given by

Tch _ T%TII;IL _ |:Ra16Rhc Rubpbi'+pah:| ) (28)

Screws and twists

The screw theory is based on work by Chasles and Poinsot. Chasles proved that a
rigid body motion, as described in the section about rigid body motion above, can be
represented by a rotation around a straight axis and a translation parallel to the same
axis. This is referred to as a screw motion. Poinsot’s contribution to screw theory
is the discovery that any system of forces acting on a rigid body can be substituted
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2.6 Rigid body motion

by a single force applied along an axis together with a torque around the same axis.
This force is known as a wrench. The POE formula is based on screw theory in
combination with linear algebra and matrix groups and is based on Chasles’ and
Poinsot’s theorems [Murray et al., ].

THEOREM 2.6.1
(Chasles’ Theorem) [Murray et al., 1 Every rigid body motion can be realized
by a rotation about an axis combined with a translation parallel to that axis. O

THEOREM 2.6.2

(Poinsot’s Theorem) [Murray et al., ] Every collection of wrenches applied to
a rigid body is equivalent to a force applied along a fixed axis plus a torque about
the same axis. a

Twists Twists (§) are infinitesimal screws and describe the instantaneous velocity
of a rigid body by using its linear (v) and angular (@) components. A rotation of a
body around an axis can be derived by looking at the velocity of a point attached to
a body rotating around an axis. The velocity is given by

q4(1) = 0 x q(r) = q(r) (2.9)

where @ is the rotation axis and the “hat”-operator, known as a “wedge”, is just
another way to represent the cross product of two vectors by turning the first factor
into a matrix as

0 —das ar bl a2b3 —a3b2
axb=ab= as 0 —aj bz = a3b1 —a1b3 . (2.10)
—ay ap 0 b3 ayrby —apb,

The relation (2.9) can be integrated to give the point q at time ¢ as

q(r) = exp(@t)q(0), (2.11)
where q(0) is the starting point. The matrix @ is a skew-symmetric matrix, meaning
that it satisfies @” = —@®. The vector space spanned by all skew symmetric matrices

is denoted so(3) and is defined as
so(3) ={S e R¥3 .87 = _§}.

Using the series expansion of the exponential and the fact that @ is skew sym-
metric, the exponential is given by

exp(@0) = I+ @sin 6 + @*(1 — cos 0) (2.12)

provided that ||| = 1 and that 6 € R, which is the angle of rotation about ®. This
is known as Rodrigues’ formula [Murray et al., ]. Exponentials of elements
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in s0(3) are orthogonal, so if R = exp(®6) then RR” =T and detR = +1, i.e., if
® € 50(3) and O € R, then ¢®? € SO(3). Another feature of the exponential map is
that it is surjective onto SO(3), which means that, given a rotation matrix R, there
exists an ® € R3, ||@|| = 1, and 6 € R such that R = exp(®8).

The exponential mapping can be generalized for the special Euclidean group
SE(3). From Figure 2.7, with @ € R, ||@|| = 1, and q a point on the rotation axis
, the velocity of point p can be written as

p(t) = 0 x (p() —q(7)). (2.13)

Converted to homogeneous coordinates the right-hand side of (2.13) is given by the
4 x 4 matrix

= [0 V]
&= {0 0 2.14)
where v = —® X q. (2.13) is then given by
i O v = . T
BT
with the solution
p(r) = ¢*'p(0) (2.16)

where £ is a generalization of skew symmetric matrices ® € so(3) and belongs to

the group R R
se(3)={(v,@:veR> e s0(3)}. (2.17)

Figure 2.7 Revolute joint [Murray et al., 1.
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2.6 Rigid body motion

Elements belonging to se(3) are referred to as twists. The twist coordinates of
the twist can be retrieved from the homogeneous representation using the V (vee)-

operator
PN v
W v| |V 6
while the A(wedge)-operator works in the opposite direction.
A ~
A_ VT o vl 2
. M _ [0 0} —Eese(3) (2.19)

Similar to the mapping of elements in so(3) to SO(3), elements in se(3) are mapped
to SE(3) via the exponential of £6 if § € se(3) and 68 € R,

%% € SE(3). (2.20)
An exponential mapping ege, with E € se(3) and 6 € R can be written as

e (1—e%9)(w x v) 4+ 0o’ v

T=e 0 ) ,

o #0. (2.21)
Transformations of an element in SE(3) is not, as for transformations between
two rotational matrices in SO(3), a mapping from one coordinate frame to another.
Instead, it describes the mapping from the initial point or pose to the point or pose
of the rigid body after the rigid motion is executed in the same coordinate frame:

p(6) = ¢“p(0) (2.22)

Screws Screw motions are, as previously mentioned, a motion that consists of a
rotation around and axis and a translation parallel to the same axis, see Figure 2.8.
The components of the screw are an axis of rotation [ defined by (2.25), a pitch h,
(2.24) and a magnitude M, (2.26). The motion associated with the screw is given
by the rotation & = M (in the case of a revolute joint). In prismatic joints, 0 is the
amount of translation along the axis about the axis / and the translation d = h0
parallel to the axis. 0 is the angle of rotation about the axis /. For a rigid body
transformation of a point p € R? using screw representation, the end location of the
point is equal to

Tp =q-+exp(®0)(p—q)+hOw (2.23)

where @ € R? is the axis of the twist coordinates associated with the screw.
Atwist & = (v, ) € RO gives rise to the associated screw with screw coordinates
(pitch, h, axis, | and magnitude, M) of the twist given by

oTv

h=
l|o|[*

(2.24)
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Figure 2.8 Generalized screw motion [Murray et al., 1.

I ““’wXHVZJrAa):leR ifw#0 2.25)
lo+Av:iAeR ifo=0 '

where A is a real number making (2.25) a directed line through the point 2% with
llel]

direction ®. Finally

o [lel irezo 226
v ifo=0 '
The transformation in (2.23) given in homogeneous coordinates is
®0 _ 06
T ¢ (I—-e®)q+hbw 2.27)
0 1
Exchanging v= —m x q+hw in (2.21) we get the same transformation matrix

as in (2.27) and it is shown that the twist coordinates & generate the screw motion.

To represent a rigid transformation T dependent on a twist & in another coordi-
nate frame, one can apply the adjoint transformation of the rigid transformation T.
The adjoint of T is given by

_|R p _[R PR
T_[O 1:|—>AdT—|:O R} (2.28)

It can be shown that the inverse of the adjoint is given by

T _ mpToART T T
Ad;l_{R (Rp)R]_[R R

0 _f o R p} = Ady (2.29)

This fact leads to a lemma
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2.7 Product of exponentials representation

LEMMA 2.6.3—[MURRAY ET AL., ]
If& € se(3) is a twist with twist coordinates & € RS, then for any T € SE(3), TET™!
is a twist with twist coordinates Adr& € RO, a

which is utilized in the derivation of the error model.

2.7 Product of exponentials representation

The transformation from base to end-effector of a robot can be described in many
ways. As previously mentioned, DH-parameters are widely used. However, in this
thesis product of exponentials will be used.

As mentioned in Section 2.5, the product of exponentials formula is based on
screw theory. By representing the joints in the robot manipulator as twists, it is pos-
sible to express the forward kinematics of the robot using the theory of screws and
twists in Section 2.6. The main advantages of using this representation is that it does
not suffer from singularities and that it provides an intuitive geometric description
of rigid body motion [Murray et al., ].

In the POE formulation there are only two coordinate frames, opposed to, for
instance, the DH representation. There is one coordinate frame at the base of the
robot and one at the tool. This is a due to that rigid transformations given by screw
motions represent the rigid body transformations relative to the initial configuration.
Given a generic n-DOF manipulator with n joints, the forward kinematics is given
as [Okamura and Park, IE

T = exp(&1q1) exp(€2q2).. exp(&xqn) To 1, (2.31)

where & comes from (2.14) and ¢; is the rotation about the axis corresponding to
twist i. As mentioned in Section 2.5 the POE formulation fulfills the three require-
ments for a kinematic model, i.e., completeness, continuity, and minimality.

2.8 Kinematic model

As mentioned in Section 2.6, the forward kinematics for a robot can be represented
by twists associated with each joint, and screws are a geometric description of twists
[Murray et al., ]. The relationship between twists and screws was discussed in
Section 2.6. It is easier to assign screws representing the joints than twists. A screw
is defined by its axis of rotation (@) and a point (q) on that axis. They can then be
easily transformed into twist coordinates by setting the linear velocity component
of the twist to —m X q.

By using a blueprint of the robot, one can use the lengths and orientations to
assign screws to each joint. The representation used in this thesis can be seen in
Section A.1.
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2.9 Generic algorithm

All identification algorithms in this thesis are dependent on an initial guess. Because
of the fact that the problem is non-linear, an initial guess too far from the correct
value might result in the algorithm converging to a local minimum, and not the
desired global minimum. Another problem with an initial guess too far away is that
the solution might not converge at all. It is therefore crucial to use an initial guess
reasonably close to the actual value. When identifying the kinematic parameters,
the nominal values are used as an initial guess. For motor offsets, the initial guess
used is zero.

Linear least-squares problems

Linear least squares problems are associated with solving the matrix equation [

]

Ax=h (2.32)

where A is an m-by-n matrix and x is an n-by-1 vector and b is an m-by-1 vector.
This is done by finding the x-vector minimizing the Euclidean norm (2-norm)

|Ax —b]|. (2.33)

Problems with m > n gives that there are more equations than there are unknowns.
These problems are called over-determined and there is normally no exact solution
to these problems.

Least squares is used to approximate a solution to the over-determined system
of equations by minimizing the sum of the squared errors in every equation in the
system. These problems can be solved in some different ways, where two of the
standard ways include QR decomposition and Singular value decomposition.

OR decomposition A QR decomposition is a decomposition of a matrix A into
A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix.
QR decompositions are used to solve linear least squares problems [

]. This can be utilized to check for linear dependence in ma-
trices. If one of the diagonal elements in R is zero, then there is a linear dependency
in the A matrix. The QR decomposition was used to analyze the linear dependence
in the Jacobians during this thesis.

Singular value decomposition Singular value decomposition (SVD) [MIT, ]
is a method where a matrix M is factorized to M = UXV* where U is a unitary
matrix, ¥ is rectangular diagonal matrix with non-negative real numbers on the di-
agonal and V* is a conjugate transpose of an unitary matrix. SVD is used in the
built-in least squares solver from NumPy (see Section 1.5) that is utilized in the
implementation to compute the parameter errors.
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2.9 Generic algorithm

BFGS-method with a numerical Jacobian

SciPy’s optimize.minimize-function [ ] with the BEFGS-method and a nu-
merical Jacobian was used in this thesis. BFGS stands for Broyden, Fletcher, Gold-
farb, and Shanno. This is one of the most powerful methods for solving non-linear
optimization problems [ ]. BFGS is an iterative quasi-Newton
method which has proven good performance. The numerical approximation of the
Jacobian makes convergence a bit slower but it still performs well. It is possible to
use an analytic Jacobian, but it was not done in this thesis.

Excitation

To enable identification of joint offsets and kinematic parameters, the data have
to be exciting enough. For joint offsets, it means that the joint has to be moved a
sufficient amount of radians. It is therefore important to move the joints as much as
possible, in as many configurations as possible, to maximize the change to acquire
a good identification of the joints. It might, however, not be necessary to move
the joints from their minimum angle to their maximum angle. Because the goal is
to calibrate the robot such that the desired pose corresponds to the actual pose, it
might be sufficient to just move the TCP as much as possible.

Calibration algorithm

The following algorithm is known from [He et al., ].
The POE formula gives that the generic forward kinematics of an n-DOF robot
manipulator can be written

T = exp(&11) exp(&2q2)-.. exp(&1gn) T1 (0) (2.35)

where Ty, (0) can be seen as the twist of the initial transformation that is given by

Ty (0) = exp(&)- (2.36)
Linearization of the forward kinematics gives an error model on the form
oT 8T
STT ' = (=36 5 5 T 2.37
where
E=1[6,8,... 6] €R™ (2.38)
and
a=1[q1,q2, )" €R" (2.39)
A first-order approximation of (2.35) can be written as [He et al., ]
STT ' =1log(T,T,") € se(3) (2.40)

31



Chapter 2. Theory

where T, is the actual end-effector pose obtained from measurements and T, is the
nominal end-effector pose. (2.40) represents the deviation of the actual pose from
the nominal pose.

To identify the parameters, the minimization problem

STT ' — (3€ SE+ aaést&;,)

2

minimize 241

has to be solved.
The explicit expression for STT~! with the Vee (V)-operator applied, derived
by [He et al., ], is now given by

[6TT ') = [(Sexp(&iq1)) exp(—Ergr)]”
+[exp(&191) (S exp(&aq2)) exp(—Eagn) exp(—E11)]Y

n—1 ~ R -1
(Hexp(‘giqi)> (6 exp(&ngn) exp(— énqn <H6Xp (i) )
i=1
n R N -1 v
(Hexp(éqz‘)> (8exp(&y))exp(—Ey) x (HeXp (&iqi) )
i=1
= [(§exp(&1q1)) exp(~E1q1)]”
+Ad(exp(&191)[(Sexp(&aga)) exp(—Exga)]¥
n—1 N N N
+...+Ad <H eXP(éiQi)) [(5GXP(§nqn))eXP(*énqn)]v
i=1
+Ad (f[ex;»@qi)) [(8 exp(Ey) exp(—Ex)]”
i=1
(2.43)
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where

[(8 exp(Eigi)) exp(—Eigi)]¥
_ <Qi16 4—9,~sin(6i)—4cos(6,~)gi

2| ex?
46; — 5sin(6;) + 6;cos(6;) .,
3 Q;
2/ o
2 —6;sin(6;) —2cos(6;) 3
Q;
2| eoi*
26; —3sin(6;) + 6;cos(6;) 4
Q4 SE 1+ E8a:
2||wiH5 i &i+&idg
=A;08+ &g
(2.44)
and
o v
o[y 4l
]| = (@f; + 03 + 03) '/
6; = || oil|gi
The twist corresponding to the initial transformation matrix is given by
[(8exp(&a)) exp(—Ex)]
4 — O, sin(0y ) —4cos(6y)
6+ 265 st
n 404 —5 sin(GS,);— 0 cos(Oy ) o
265
2 — Oy sin(By) —2cos(6y) 3
Q
N 204 .
265 — 3sin(Oy ) + 6 6
4 O sin( J):’ st €08 ( ‘Z)-Q'?z>6§i
20;
:Astaéi
(2.45)
with
_[ou Ve
[V &)
1/2.

2 2 2
Oy = sttH = (wlst + Wy +w351)
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Setting
[Al 5 él]a i=1
i—1 ~
Ad h ALEl 1<i<n+1
j_ 2| TewGiay) | (Angl, 1<i<on a6
i—1 ~
Ad | T1 exp(§jq)) | Ax, i=n+1
j=1
and
Js[ = Jn+1, (247)
(2.43) can be written as
y=Jx (2.48)
where
y=[6TT ']V e RS (2.49)
J: [J17J27~~aJn7Jst] €R6X(7n+6> (250)
x=[8&1,8¢1,86,8q,...,8&,,8q,, 6E4]T € R™T6 (2.51)

J is the identification Jacobian, y represents the pose error of the tool frame given
in the base frame and x are the errors in the kinematic parameters. This Jacobian
is used for identification of both kinematic parameters and joint offsets. In the case
when only kinematic parameters are being identified the Jacobian (2.52) was used

A, i=1
i-1 ~
Ad exp(iqgi) |Ai, 1<i<n+l1
¥ = jgl p(S;q)) i (2.52)
i~1 ~
Ad Hl exp(§jqj) | Ay, i=n+1
j:
and for identification of only offsets the following Jacobian (2.53) was used.
&, i=1
Ji= (2.53)

i—1 ~

Ad(]’[exp(@qﬂ) (ﬁi, I<i<n+1
j=1

By measuring m different configurations of the manipulator, (2.48) is given as

Vi Ji
= [ xey=Ix (2.54)
Ym Jm

34



2.10 Modification of algorithm

From this relation, X can be solved for by an iterative least-squares algorithm by use
of the pseudo inverse of J with solution

x=(J' T+, (2.55)

where A is a scalar. The kinematic parameters are then updated with the kinematic
parameter errors as
P =P +X (2.56)

where P are the nominal parameters to start the iteration with (the initial guess).

Identifiability

According to [He et al., ], all & parameters as well as the base transform &
are identifiable when the actual position T, is known. It is also possible to identify
all £ parameters and the joint offsets 6q provided that there are no more than six
DOFs. It is not possible to identify the &;- and dq-parameters in the same error
model because of the fact that the end-effector error would be a linear combination
of 6q and &, and hence they can not appear in the same error model.

Those assumptions require that the actual pose is known and they are valid for
one arm only. In the dual-arm implementation in this thesis, the used “actual” pose
in the algorithm is calculated using the erroneous kinematic parameters and joint
offsets and will hence not represent the actual pose. There is therefore an uncer-
tainty introduced in the algorithm, in contrast to when the known pose is used for
the single arm case. This will most definitely affect the identification of the param-
eters. In the single arm implementation in this thesis, the pose is set to unknown,
but with the knowledge that the pose is constant. This will also introduce an uncer-
tainty in the algorithm. Another problem might be that since the arms are clamped
together the twists corresponding to the initial poses might be hard to separate in
the identification.

2.10 Modification of algorithm

Error handling for dual arms

The error handling in the implementation in this thesis differs from the one in the al-
gorithm described in Section 2.9. The algorithm describes an identification method
for one arm with known point and therefore had to be modified for the dual arm
implementation. In this thesis, there is no known point for each arm in the dual arm
calibration, but it is known that the two TCPs have a common point. In each itera-
tion, the error is calculated as the difference between the two TCPs (compensated
for the clamping device). The error is then divided equally between the two arms,
so both arms are modified to compensate for the error. If the error was not divided,
the correction would therefore be double. A drawback with this approach is that
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the algorithm converges slower than it does when only one arm is identified and
corrected with the full error.

Damped least squares

Instead of using an ordinary least squares method before updating the parameters,
a damped least-squares method was used, see (2.55). Without damping, there is a
risk that the parameter update vector x grows, which might cause the algorithm to
become unstable.

Abort criteria

In this thesis, the identification algorithm was aborted either when a specified max-
imum number of iterations had been executed, or when the norm of the parameter
update vector x from (2.51) was smaller than some specified value. This is because
it is desirable to stop the iterations if there no longer is any significant update in
each iteration.

When the parameters are updated

In the end of each iteration, there was a check to see if the suggested parameter
change would decrease the error. If it would, the parameters would be updated and
the damping decreased. If it would not, the parameters would not be updated and
the damping would be increased. In some implementations, the criterion was that
the new error should be less that 1.5 times the previous error, instead of strictly
less than the previous error. It is because the algorithm sometimes seems to work
better after a step in the wrong direction. It temporarily increases the error, and can
thereafter take a new step that decreases the error.

Offset identification

The offset identification in this thesis is similar to the kinematic parameter identifi-
cation. However, the nominal twist parameters are used, so the twist parameters are
not identified. Therefore only the last part (£;0¢g;) in (2.44) was used (with nominal
twist parameters) together with the Jacobian in (2.53).

Conformation of the kinematic parameters

When one value of the twist parameters are changed, the twist parameters have to

be adjusted to conform to the definition of a revolute joint [He et al., ].
The twist parameters was therefore conformized by using [Yang et al., ]:
o
0= —— 2.57)
o]
T
v
Ve=V— 7o (2.58)
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Pseudocode

In Algorithms 1, 2, 3, and 4 pseudocode for the implementation of the algorithm
in Section 2.9 is presented. The code is inspired by Fredrik Bagge’s work, [Bagge,
1.

In each implementation, a number of logged data points (joint sets) are used.
Each joint set contains position values for each joint. The kinematic cost function
is the difference between the two transformation matrices for each TCP. The mean
transformation matrix is calculated as a mean value of all joint sets for the trans-
lation part. The mean of the rotation is calculated by first converting the rotation
matrix R = ¢®? to a twist rotational part @ by taking the logarithm and the us-
ing the vee operator from (2.18). A mean is then calculated for all @ and is then
converted back to a rotation matrix which is the mean rotation.

Algorithm 1: CalibDual_kinematic
Evaluate the initial kinematic error;
for All number of iterations do
for All joint sets do
Calculate the forward kinematics for both arms’ TCPs with the
current parameters;
Calculate the kinematic cost function between the two TCPs;
Calculate the Jacobian for both arms with current parameters;
end
Calculate the kinematic parameter update for both arms separately with a
damped least-squares method;
Evaluate the kinematic error;
if Norm of kinematic parameter error is small then
| break;
end
if Error is smaller than before (or in some implementations smaller than
1.5 times the previous value) then
Update the kinematic parameters with 50% of the kinematic
parameter error;
Conformize the updated kinematic parameters;
Decrease the damping;
else
Increase the damping;
end

end
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Algorithm 2: CalibDual_offsets
Evaluate the initial kinematic error;
for All number of iterations do

for All joint sets do
Calculate the forward kinematics for both arms TCPs with current

joint values compensated with identified offsets (zero in first
iteration);
Calculate the kinematic cost function between the two TCPs;
Calculate the Jacobian for both arms with joint values compensated
with identified offsets (zero in first iteration);
end
Calculate the joint value update for both arms separately with a damped
least-squares method;
Evaluate the kinematic error;
if Norm of kinematic parameter error is small then
‘ break;
end
if Error is smaller than before (or in some implementations smaller than
1.5 times the previous value) then
Update the joint values with the joint value error;
Decrease the damping;
else
‘ Increase the damping;
end

end
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Algorithm 3: CalibSingle_offsets
Evaluate the initial kinematic error;
for All number of iterations do

if The fixed point is unknown then
Calculate a mean transformation matrix with joint values

compensated with identified offsets (zero in first iteration);
Orthogonalize the transformation matrix;
end
or All joint sets do

if The fixed point is unknown then
Calculate the kinematic cost function between the mean

transformation matrix and current transformation matrix
calculated with current joint set;

)

else
Calculate the kinematic cost function between the known

transformation matrix and current transformation matrix
calculated with current joint set;

end
Calculate the Jacobian for the arm with current joint offsets;

end
Calculate the joint error for the arm with a damped least-squares method;
Evaluate the kinematic error;
if Norm of joint error is small then
| break;
end
if Error is smaller than before (or in some implementations smaller than
1.5 times the previous value) then
Update the joint values with the joint value error;
Decrease the damping;
else
| Increase the damping;
end

end

Algorithm 4: Eval_error

0 — rot_error;

0 — trans_error;

for All joint sets do

Calculate the transformation matrices for both arms;

Add the norm of the translation difference between the two arms to the
previous translation difference;

Transpose one of the rotation matrices, multiply with the other;

Logarithmize the product and transform the new matrix to a @ vector and
add the norm to the previous rotation error;

end
. . .. 39
Return the sum of transformation error and the sum of rotation error divided
by the number of joint sets;
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2.11 Scalability

In identification problems where all geometric lengths are unknown, a problem with
scalability can arise [Collin, 1. It is because of the fact that the forward kine-
matics is then calculated solely based on joint angles. If no link length is known,
infinitely many solutions can be found for the same set of joint angles. At least one
length must therefore be known in the closed kinematic chain in order to break the
scalability problem, because the problem with scalability arises when no absolute
measurement is available. It is however undesirable to set any length to known (and
therefore not identify it), because if the "known” length is faulty, the identification
will lose precision.
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Simulation and experiments

To verify the algorithms, simulations and experiments were performed. In this chap-
ter a description on how simulation data were generated and how the simulations
and experiments were performed is presented.

3.1 Generation of simulation data

To be able to perform simulations, data for the simulations were needed. An iterative
least-squares algorithm was implemented to generate joint values corresponding to
the poses of the arms, the so called inverse kinematics. The algorithm was imple-
mented using an adaptive damped least-squares algorithm as follows

qdp+1 = (J(qn)TJ(qn)+A’I)71J(qn)y (31)

In (3.1), y is the error between the desired pose and the iteratively updated pose,
starting from the intial guess expressed as twist coordinates, and the Jacobian J(q)
is defined as [Murray et al., ]

J=[ &..&] (3.2)

where &/ is given by

& =Ad

t (eE. 91m35i719i71)§" 3.3)

and A € R is a damping factor which is changed depending on how the error
changes. The factor is multiplied by ten if the current error is bigger than the last
and divided by ten if the current error is smaller than the last.

3.2 Base transformation

Since both arms are to be connected when performing the calibration, both arms
have the same base coordinate frame. This simplifies the comparison between the
poses of the two arms which is used in the algorithms. The transformation from
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the common base frame to each arm base needs to be known. For YuMi, the base
transform calculation described in Section 2.4 was performed with data from Robot-
Studio, which should lead to a very accurate base transformation. Since Frida is an
early prototype there was reason to assume that it most likely differ a bit from YuMi
in its specifications, so a base transformation earlier derived by a former PhD stu-
dent' was used for Frida.

3.3 Clamped single arm, Frida

One fixed point

Idea The idea behind the clamping method is to fix the TCP at a desired pose, and
since the robot is redundant it has the possibility to reach the position in many dif-
ferent configurations. It can be compared to pressing the palm of the hand towards
a table, and moving the arm around in different configurations. The human arm,
including the shoulder, elbow and wrist, has seven DOFs. If the TCP (or the palm
of the hand) is positioned in a fixed point, it is only possible to move the elbow in
space. This situation is the same for the robot when attached in a fixed pose at a
fixed point. If there is any offset in the joints, the registered pose will differ from
the actual pose at the fixed point, even though the TCP has the same pose. By using,
for example, least-squares identification, the joint offsets can be calculated.

Simulation Via the Python implementation of the inverse kinematics, several con-
figurations (sets of joint values) were generated with the requirement that the TCP
should have the same pose, but with different joint angles. A known offset was
added to the joint values and via the known transformation matrix and the joint sets,
the joint offsets were calculated with the implementation of the algorithm in Sec-
tion 2.9. In the first simulation, the points were assumed to be known, making the
simulation not fully realistic, but tested how well the joint offset calibration worked.

To make a more realistic experiment, the points were now set to be unknown.
The joint sets from the above simulation were used, and the same offset was added.
In Algorithm 3, transformation matrices were calculated for all joint values, and a
mean was used as the actual measurement in the algorithm. In each loop, new trans-
formation matrices were calculated, corrected with the newly calculated offsets.
With this approach, the different poses will converge to one point and the offsets for
that point is the result.

Experiment For the experiment, two tool changers were mounted on a thick metal
plate with a constant distance of approximately 5 cm, see Figure 3.1. The plate with
the tool changer was then attached to the robot, because the robot itself was not that
firmly attached to the table, and therefore the most stable point was on the robot.
The tool changer plate was possible to mount on both sides of the robot, so both

! Andreas Stolt.
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3.3 Clamped single arm, Frida

arms could be fixed in the same way. One arm was then attached to the tool changer
closest to the robot, see Figure 3.2, and the arm was then manually moved as much
as possible after the brakes were released. Since the end-effector was attached to
the tool changer it kept a fixed pose during the movement. The result was several
configurations (sets of joint values), that corresponded to the fixed pose. Because
of joint limitations, not all configurations were reachable, so the arm had to be
detached, reoriented, and then attached again. It was possible to attach the arm
in two different ways, one where the elbow was moving in a semicircle inwards
towards the body and one where it was moving outward towards the body, resulting
in two different obtained data sets. This increased the number of configurations and
also increased the total joint excitation. The same procedure was carried out on both
arms. The distance from the robot base to the tool changers was measured to get a
rough estimation if the result was reasonable.

Figure 3.1 The clamping device with tool changers (Schunk, model MWS030)
mounted on Frida’s left side.
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Chapter 3. Simulation and experiments

Figure 3.2 Frida’s right arm at the clamping device.

Several fixed points

Idea Using only one point, there is a problem with identifying the offsets for joint
one and joint seven, which can be seen in Table 4.2. An offset on the first joint will
not affect the possibility to repeat a pose in a certain point but it will affect where
that point is located, and an offset on joint seven will not be distinguishable from
a rotation of the fixed point. This can be read more about in Section 5.1. The idea
behind using several fixed points with known transformation in between, instead of
only one point is to improve the identifiability of joint one and joint seven. This is
done by addressing the redundancy problem where an offset on joint one could be
compensated for by moving the clamping point, and an offset on joint seven could
be compensated by rotating the fixed point.

Simulation Similar to the one fixed point case, data for several points spread
throughout the room were generated randomly. Restrictions in x, y, and z coor-
dinates were introduced to keep the points in the work space of the arm. The ran-
domized 3x3 rotation matrix was orthogonalized to represent a valid rotation. One
point was chosen to be the original point and the transformation between this point
and the others were calculated using the relationship

-1
Tirans = Tadditiona[Toriginal 34

where Tj4,s is the transformation between the original point and the additional
point and Toiginai and Taqgitionar are the forward kinematic maps for the original
and additional points respectively. The same offsets were added to all points and the
result is shown in Figure 3.3. The calculated transformation matrices for each point
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3.3 Clamped single arm, Frida

were used to move the four additional points to the original point using

T()riginal = Taaditionat Tirans (3.5)

which resulted in Figure 3.4 (note the different scaling). The identification was then
performed on the total collection of data sets. The cost function that was minimized
in this identification is given by

J:Zf"'fir (3.6)

and is a sum of the error between the forward kinematics of all points in the col-
lection of data sets and a twist representing a homogeneous transformation matrix
(point) that is to be optimized to make the cost function as small as possible. In
(3.6), the row-vector f; is given by

fi = (10g (T, (Trise) ™))" (3.7)

and represents the twist coordinates representing the error in transformation be-
tween all the measured poses (T}kin) and a transformation matrix calculated by
using the exponential of a twist (Tjy;s ). The optimization variables are the joint
offsets and the twist coordinates corresponding to Ty,;s. The index i is to denote
the measured poses.

Forward kinematics Point 1
A Point 2

Point 3
Point 4
Point 5
True pos

Figure 3.3 Spread of the points before they are transformed to the original point.
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Point 2
Point 3
Point 4
Point 5
True pos
Mean pos

Forward kinematics Point 1

Figure 3.4 Spread of the points after they are transformed to the original point.

Experiment This method was only evaluated in simulations.

Logging

All logging was executed using ExtCtrl with no down-sampling (0.004032 s be-
tween samples). The data from ExtCtrl used motor radians as measurement unit
and used the joint numbering for Frida (1,2,7,3,4,5,6 from the arm base). The data
were then down-sampled in Python, converted to arm radians by dividing the motor
radians with the gear ratios given in Table 3.1 and using joint numbering from one
to seven counting from the base. The odd gear ratio for joint five is because the joint
is located in the tilt house, which means that if joint five rotates a full revolution,
the engine will rotate a full revolution. This leads to one extra (101 instead of 100)
in gear ratio compared to the other joints.

Validation

To validate the identified offsets, they were added to all joint sets and the forward
kinematics was then calculated. If all joint offsets were successfully calculated, all
joint sets will give the same pose. This was done offline with the logged data.

46



3.4 Dual arm calibration, Frida

Table 3.1 Gear ratio from motor radians to arm radians.

Joint | Gear ratio
1 100
100
-100
100
-101
100
100

~N| N | AW

3.4 Dual arm calibration, Frida

Idea

The idea with the dual arm calibration is similar to the one behind the fixed point
clamping method, but instead of a fixed pose there is a fixed transformation between
the two TCPs. If the robot is uncalibrated, there will be conflicting transformations
between the two TCPs for the different measured poses (measured with the logged
joint values). By using the least-squares method as described in Algorithm 1, an
attempt to identify the errors in the &-parameters was carried out, as well as joint
offset identification.

Simulation

Before the actual experiment, simulations were carried out. A fixed transformation
represented as a twist was added to the right arm, corresponding to the clamping
device between the two arms. The clamping device between the two end-effectors
can be seen as an extension of the last link of the right arm. The z-axis pointing from
the clamping device (on the right arm) into the left arm’s TCP was rotated around
the y-axis, to be pointing in the same direction as the z-axis of the left arm. By doing
that, the optimization problem was simplified to be a problem with minimum when
the two end-effectors (the original one from the left arm and the new one from the
end of the clamping device on the right arm) to have the same position and the same
orientation. Random poses were generated for the right arm (with the clamping
device added), and via inverse kinematics, poses for the left arm were calculated to
match the transformation corresponding to the right arm and the clamping device
(with the previously described rotated z-axis).

Parameter identification To simulate uncertainties in the robot parameters, small
variations were added to the nominal &-parameters before Algorithm 1 was used.
Since only kinematic parameters were to be identified the Jacobian in (2.52)
was used. The variations were added by randomizing a number using NumPy’s
random.uniform-function in the interval [-1,1] multiplied by 0.01 m for the linear
components and 2.47 /180 rad for the angular components. These variations gener-
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ated a total error of up to about 0.05 m in translation and 0.15 radians in orientation
for the TCP.

Offset identification To simulate offsets, a predetermined offset was added to each
joint with absolute value in the range 0.0 to 0.07 radians. The algorithm in Sec-
tion 2.9 was used, where only 0q was identified, and the Jacobian was calculated
according to (2.53) in difference to the case of kinematic parameter identification.
Small uncertainties were then added to the &-parameters to test the identification
under more realistic circumstances and the simulation was redone.

Parameter and offset calibration There is an overlap in the joint offset identifica-
tion and the kinematic parameter identification. A joint offset can be compensated
by either adding the identified joint offset, or changing the kinematic parameters in-
cluding the parameters corresponding to Ty,. Both identification methods will there-
fore individually solve the problem. Since both errors in kinematic parameters and
offsets were assumed, first a joint offset calibration was executed for some itera-
tions, followed by a kinematic parameter calibration with the updated joint values
retrieved from the offset calibration.

Experiment

To automate the experiment procedure, the movements were written in RAPID
code, tested in RobotStudio and then uploaded to the robot. A start position was
chosen, and MultiMove (see Section 1.7) was then used to fix the two arms’ relative
position and orientation. The left arm was set to follow the right arm. Different con-
figurations were then programmed in RobotStudio (for the YuMi robot) and then
uploaded to the Frida robot. The positions were chosen to maximize the angular
movements of each joint. To confirm that reasonable configurations were chosen, a
first test was executed with the poses, but where the two arms were not connected.
After the different poses were confirmed to be reasonable, the arms were connected
with the clamping device, see Figure 3.5. At first, a relatively large value for Soft
Servo (see Section 1.7) was used, and successively decreased to a value where all
configurations were possible to reach. A too large Soft Servo value results in that
the motor force is too weak and the robot is unable to move, and for a too small
value there is a risk that the motors will get damaged because of the high force from
the joint motors. Because the YuMi robot in RobotStudio and the Frida robot does
not correspond fully, manual correction of the poses had to be done by manually
moving the clamped arms and then saving the position. Because of the joint off-
sets and the kinematic parameter errors, the two TCPs would not follow each other
perfectly.

48



3.4 Dual arm calibration, Frida

Figure 3.5 The dual arm clamping device with toolchangers on a 90 degree
bracket.

It was difficult to write a RAPID program that made a big motion since it was
time consuming and quite a lot of work to manually change the positions for that
many points, which was needed because of the problems mentioned above. Instead,
the connected arms were moved manually as much as possible after the brakes for
both arms were released to get a good data set. That data was then used in the
identification experiments.

Logging

The data was logged in the same manner as described in Section 3.3.

Identify the clamping device

To run the optimization algorithm, the transformation representing the clamping
device must be known. To find the transformation, the following relationship was
used:

T Ty =T, = Tea =T, 'T, (3.8)

where T; is the transformation matrix from the base coordinate system to the TCP
for the left arm, T, is the transformation matrix from the base coordinate system
to the TCP for the right arm and T is the transformation matrix for the clamping
device that was used. This is done for a lot of samples when moving in the dual arm
configuration. T, and T is calculated for every joint configuration in each sample,
and the mean of all T, is calculated from each sample. Every element in the mean
T4 was calculated as a mean value of the corresponding element in each T.; from
all samples.
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The sensitivity of estimation errors for the clamping device was calculated via
the following steps.

1.

7.

Simulated data for dual arm with known joint offset and known clamping
device.

. Identify the joint offset via the joint offset identification algorithm.

. Subtract the vector with identified joint offsets from the vector with known

joint offsets element-wise and calculate the norm of the vector.

. Change the transformation matrix for the clamping device to simulate uncer-

tainties.

. Once again, identify the joint offset.

. Once again, calculate the norm for the known joint offset with the identified

joint offset subtracted.

Compare the norm from Step 3 with the norm from Step 6.

These steps will give an indication how much a given uncertainty in the clamp-
ing device affects the joint offset identification. If the norm between Step 3 and Step
6 increases, it is an indication that the joint offset identification is affected.



4

Results

The following simulations and experiments have been performed:

¢ One arm

— One fixed point, offset identification.
— Several fixed points, offset identification.

— Connected to a calibrated arm, kinematic parameter identification.
¢ Dual arm

— Offset identification.
— Kinematic parameter identification.

— Joint offsets identification followed by kinematic parameter identifica-
tion.

4.1 Simulation results

In this section, the calibration methods are evaluated on simulated data. When iter-
ations are mentioned on the format x(y), x is the total number of iterations and y is
the number of iterations where the error has been decreased (or is less than 1.5 times
the previous error in some implementations). The values are only changed when the
error decreases, as mentioned in Section 2.10.

The cost function for the one arm, one fixed point was calculated as

Iy —Ax| 4.1

where y is the difference between the transformation matrix for the fixed point
(sometimes calculated as a mean) and the transformation matrix which is calculated
with the forward kinematics and the updated joint offsets and kinematic parameters.
A is the jacobian and x is the error vector.
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Chapter 4. Results

For the case with one arm but several fixed points, the cost function is calculated
as the sum of the distance between the points calculated with the forward kinematics
for all joint values after they are moved to the original point and the mean of all these
points. The details can be seen in Section 3.3.

For the dual arm offset cases, the cost function is calculated as (4.1) for each
arm, but y is calculated as the difference between the two transformation matrices
for each arm, A is the jacobian for each arm and x is the error vector for each arm.

Frida one arm clamping

Known point In Table 4.1, the result from the iterations with a known point is
presented, that is, when the pose of the arm is known. In Figure 4.1, the original
uncalibrated data points are presented in black and the calibrated points in red. The
final cost function was 1.23e-08.

Table 4.1 Known point identifying offsets in simulation from 3(3) iterations. All
values are in radians.

Joint Nominal offset  Actual values Identified values

1 0 0.02000 0.02000
2 0 —0.03000 —0.03000
3 0 —0.02000 —0.02000
4 0 0.03000 0.03000
5 0 0.01500 0.01500
6 0 0.04000 0.04000
7 0 0.01800 0.01800
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4.1 Simulation results

Forward kinematics comparison

Figure 4.1 Joint offset identification with known point. Black is the uncalibrated
data points, red the calibrated data points, which all coincide in one point.

Unknown point In Table 4.2 the result from the joint offset identification for all
joints for the left arm with unknown point is presented. In Figure 4.2, the forward
kinematics before calibration (black) and after (red) are presented. The final cost
function was 0.00883.

Table 4.2 Joint offset identification with unknown clamping point for 10(10) iter-
ations. All values are in radians.

Joint Nominal offset  Actual values Identified values

1 0 0.02000 —0.01528893
2 0 —0.03000 —0.0298328
3 0 —0.02000 —0.01723198
4 0 0.03000 0.02995881
5 0 0.01500 0.01839823
6 0 0.04000 0.03976109
7 0 0.00180 —0.0179892
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Chapter 4. Results

Table 4.3 The actual pose and the identified pose of the arm from the multiple
point simulation.

Actual pose Identified pose
1.0000 0.0000 0.0000 0.3500 0.9999  —0.0091 0.0067 0.3495
0.0000 1.0000 0.0000 0.0000 0.0092  0.9998 —0.0155 0.0052
0.0000 0.0000 1.0000 0.2500 —0.0066 0.0155  0.9999 0.2470
0.0000 0.0000 0.0000 1.0000 0.0000  0.0000  0.0000 1.0000

Forward kinematics comparison

016 0.17

0.18 0
0.19 0.260

X [

Figure 4.2 Joint offset identification with unknown point for the left arm. Uncal-
ibrated data points are presented in black, calibrated data points in red. The cyan
colored point corresponds to the actual position.

Several points In Figure 4.3, the result from the offset calibration can be seen. All
moved points now correspond to the same point. The identified twist represented
as a transformation matrix (pose) and the actual pose can be seen in Table 4.3. In
Table 4.4 the identified joint offsets can be seen. The norm of the translation error
between the identified point and the actual point is 0.0060 m. The final value of the

cost function is 7.913e-14.
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see Point2
ees Point 3
ses Point 4

Point 5
s*s True pos

Forward kinematics after identificatiof*** Point 1

Figure 4.3 Forward kinematics comparison after calibration, where all points co-
incide at the blue dot.

Table 4.4 Identified offsets from the multiple point simulation.

Joint Nominal offset Actual values Identified values

1 0 0.0200 —0.0008
2 0 —0.0300 —0.0300
3 0 —0.0200 —0.0200
4 0 0.0300 0.0300
5 0 0.0150 0.0150
6 0 0.0300 0.0300
7 0 0.0180 0.0180

Dual arm

Joint offsets In Table 4.5, the result from the simulation with dual arm and known
clamping device is presented. The final value for the cost function for left arm is:
0.07133 and the cost function for right arm is 0.0640.

A similar simulation was performed where only identification of offsets in joint
one in both arms was performed. The result is shown in Table 4.6. The cost function
values were 1.0866e-07 and 1.6371e-07 for the left and right arm respectively.

In Table 4.7, the result from the simulation with dual arm and known clamping
device is presented with the criterion for applying the update relaxed with factor
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Table 4.5 Joint offset identification for dual arm in simulation for 10(2) iterations.

All values are in radians.

Joint Nominal offset  Actual offsets Identified left Identified right
1 0 0.02000 0.00706375 0.02092654
2 0 —0.03000 —0.02981544 —0.02864519
3 0 —0.02000 —0.02889904 —0.02121532
4 0 0.03000 0.03062328 0.0330501
5 0 0.01500 0.00603746 0.00998059
6 0 0.04000 0.03830235 0.03322925
7 0 0.0180 0.01648792 0.01583548

Table 4.6 Joint offset identification for joint one for dual arm in simulation for

50(50) iterations. All values are in radians.

Joint Nominal offset  Actual offsets (L/R) Identified (L/R)
1 0 0.0200/ —0.0300 0.0200/ — 0.0300
2 0 0.0000 0.0000
3 0 0.0000 0.0000
4 0 0.0000 0.0000
5 0 0.0000 0.0000
6 0 0.0000 0.0000
7 0 0.0000 0.0000

1.5. The final value for the cost function for the left arm is 0.0386 and for the right
arm is 0.00307.

Table 4.7 Joint offset identification for dual arm in simulation for 10(10) iterations,
with relaxed requirement for applying the update with factor 1.5. All values are in

radians.

Joint Nominal offset  Actual offsets Identified left Identified right
1 0 0.02000 0.01166092 0.01972847
2 0 —0.03000 —0.02951589 —0.02992553
3 0 —0.02000 —0.02491096 —0.02038856
4 0 0.03000 0.03024651 0.02995226
5 0 0.01500 0.00992934 0.01458749
6 0 0.04000 0.03971442 0.04001757
7 0 0.0180 0.01682413 0.01787835

Dual arm where one arm is considered known In Table 4.8, the identified pa-
rameters from simulations can be seen with the nominal and actual parameters for
comparison. The simulations were performed with one arm considered to be known
and with different kinds of errors added to the model. Firstly, the simulation was
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performed with errors only added to the kinematic parameters. In the next step, off-
sets were added to the joint values in addition to the kinematic parameter errors.
In the last step measurement noise was added as well. The errors in translation and
rotation from the simulations can be seen in Figures 4.4 and 4.5.

Mean translational error as a function of iterations

0.045 T T
3.93e-02 EEm Kinematic error
3.93e-02 .
E Kinematic error + offsets
0.040 EE Kinematic error + offsets + measurement noise
0.035 4
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0.000
1 2 3 4
Iterations

Figure 4.4 Position error as a function of iterations for different types of added
errors.
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Table 4.8 Nominal, actual, and identified parameters for one arm in dual arm sim-
ulation, where one arm is assumed to be known and used as measurement.

Twist Nominal Actual Identified parameters  Identified parameters Identified parameters
parameters parameters Kinematic errors Kinematic errors Kinematic errors
+ offsets + offsets
+ measurement noise

0 —0.0051 —0.0051 —0.0051 —0.0051

0 —0.0022 —0.0022 —0.0022 —0.0022
0 0.0001 0.0001 0.0001 0.0001
& 0 0.0095 0.0095 0.0095 0.0095
0 0.0253 0.0253 0.0253 0.0253

1 0.9996 0.9996 0.9996 0.9996

—0.11 —0.1052 —0.1052 —0.1052 —0.1052
—0.0 0.0022 0.0022 0.0043 0.0043

—-0.03 —0.0228 —0.0228 —0.0227 —0.0227
& 0 0.0283 0.0283 0.0483 0.0483
1 0.9990 0.9990 0.9983 0.9983

0 —0.0332 —0.0332 —0.0334 —0.0334

0.0 —0.0021 —0.0021 —0.0019 —0.0019
—0.0 —0.0027 —0.0027 0.0003 0.0003
0.0 0.0002 0.0002 0.0001 0.0001

§ 0 0.0370 0.0370 0.0672 0.0672
0 0.0397 0.0397 0.0376 0.0376
1 0.9985 0.9985 0.9970 0.9970

—0.3565 —0.3609 —0.3609 —0.3591 —0.3591

0.0 —0.0049 —0.0049 —0.0046 —0.0046
0.0405 0.0313 0.0313 0.0390 0.0390

£ 0 —0.0154 —0.0154 —0.0150 —0.0150
1 0.9996 0.9996 0.9997 0.9997

0 —0.0219 —0.0219 —0.0194 —0.0194

0.0 —0.0091 —0.0091 —0.0089 —0.0089
0.397 0.3964 0.3964 0.3946 0.3946

-0.0 —0.0027 —0.0027 —0.0018 —0.0018
& 1 0.9996 0.9996 0.9997 0.9997
0 0.0230 0.0230 0.0226 0.0226
0 0.0134 0.0134 0.0132 0.0132

—0.3835 —0.3753 —0.3753 —0.3737 —0.3737

0.0 —0.0056 —0.0056 —0.0015 —0.0015
0.3055 0.3146 0.3146 0.3224 0.3224

& 0 —0.0018 —0.0018 —0.0012 —0.0012
1 0.9999 0.9999 1.0000 1.0000
0 0.0157 0.0157 0.0032 0.0032

0.0 —0.0144 —0.0144 —0.0138 —0.0138
0.4105 0.4133 0.4133 0.4025 0.4025
—0.0 0.0088 0.0088 0.0095 0.0095
& 1 0.9988 0.9988 0.9994 0.9994
0 0.0356 0.0356 0.0344 0.0344

0 —0.0331 —0.0331 —0.0034 —0.0034

—0.0573 —0.0605 —0.0605 —0.0448 —0.0448

0.0 0.0033 0.0033 —0.0001 —0.0001
0.5874 0.5796 0.5796 0.5822 0.5822

& 0.0 —0.0280 —0.0280 —0.0507 —0.0507
1.5707 1.5750 1.5750 1.5439 1.5439

0.0 —0.0296 —0.0296 —0.0542 —0.0542
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016 Mean rotational error as a function of iterations
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Figure 4.5 Rotational error as a function of iterations for different types of added
errors.

Dual arm calibration where both arms are unknown In Figures 4.6 and 4.7,
results from simulations of a dual arm calibration can be seen. In the simulation,
errors in the kinematic parameters have been introduced and the mean errors during
the course of the calibration are presented. The resulting identified parameters for
the left and right arm can be seen in Table 4.9.
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Figure 4.6 How the error in translation decreases in the algorithm.

016 Mean rotational error as a function of number of iterations
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Figure 4.7 How the error in rotation decreases in the algorithm.
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Table 4.9 Identified parameters in dual arm calibration, where only errors in kine-
matic parameters were introduced.

Twist ~ Right arm actual parameters ~ Right arm identified parameters | Left arm actual parameters ~ Left arm identified parameters
—0.0007 —0.0040 0.0090 0.0036
—0.0002 —0.0043 —0.0019 —0.0016
—0.0000 —0.0001 —0.0001 —0.0000
& —0.0227 —0.01268 0.0177 0.0059
0.0184 0.0176 0.0076 0.066
0.9996 0.9998 0.9998 1.0000
—0.1000 —0.1024 —0.1191 —0.1167
—0.0018 —0.0040 0.0005 —0.0016
—0.0312 —0.0351 —0.0341 —0.0362
& —0.0096 —0.0297 —0.0016 —0.0208
0.9996 0.9992 0.9998 0.9995
—0.0270 —0.0261 0.0200 0.0220
—0.0073 —0.0107 0.0043 —0.0014
0.0058 0.0107 —0.0041 —0.0038
0.0002 0.0004 —0.0001 —0.0001
& 0.0121 0.0231 0.0071 —0.0038
—0.0153 —0.0152 —0.0271 —0.0282
0.9998 0.9996 0.9996 0.9996
—0.3482 —0.3520 —0.3506 —0.3507
0.0119 0.0064 0.0046 —0.0008
0.0472 0.0459 0.0306 0.0265
& 0.0302 0.0144 0.0102 —0.0047
0.9991 0.9995 0.9994 0.9995
—0.0287 —0.0291 —0.0328 —0.0316
—0.0022 —0.0081 0.0129 0.0073
0.3961 0.4012 0.3874 0.3874
0.0060 0.0074 —0.0093 —0.0040
& 1.0000 0.9998 0.9994 0.9998
0.0054 0.0203 —0.0334 —0.0186
0.0085 —0.0021 —0.0014 0.0104
—0.3846 —0.3864 —0.3750 —0.3783
0.0016 —0.0025 —0.0103 —0.0150
0.3058 0.3073 0.2956 0.2932
& 0.0370 0.0220 —0.0107 —0.0259
0.9985 0.9991 0.9997 0.9995
0.0412 0.0358 0.0213 0.0177
—0.0014 —0.0075 0.0011 —0.0050
0.4025 0.4075 0.4159 0.4162
0.0008 0.0021 0.0069 0.0120
& 0.9998 0.9998 0.9998 0.9999
0.0035 0.0183 —0.0024 0.0121
0.0217 0.0107 —0.0171 —0.0054
—0.0552 —0.04811 —0.0592 —0.0562
—0.0043 —0.0060 0.0010 —0.0035
0.5831 0.5798 0.5935 0.5911
& 0.0220 0.0055 0.0301 0.0161
1.6048 1.5896 1.5931 1.5557
—0.0163 —0.0076 0.0247 0.0306
Identifiability

Jacobian analysis The Jacobian analysis result is presented in Table 4.10, where
n is the number of DOF and N corresponds to the number of measured poses. N has
a minimum value to make the Jacobian have more rows than columns, to be able to
evaluate if it has full column rank or not.

According to Table 4.10, there will be a linear dependency when identifying
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all &-parameters and &q, but not when identifying all &-parameters and Ty. The
non-identifiable parameter is d¢s.

According to the linear parameter identification, there is a linear dependency
between the parameters 8¢, 0g3, v22 @, ;. The subscript (x,y) means that it
belongs to the x:th twist and is the corresponding twist coordinate’s y:th v € R3 or
o € R? parameter.

Table 4.10 QR-decomposition of the Jacobian for one arm. The number within
parenthesis is the theoretical full rank.

Data set Jacobian dimensions Jacobian rank Zero diagonal elements in R

E+ Ty 6NX(61+6) 48 (48) 0
£ +8q 6NXTn 48 (49) 1

Values after many iterations

In Table 4.11, it can be seen in what cases the parameters converge to the right val-
ues if the number of iterations is increased. The notation ”-” is for non-conducted
experiments. (#) and (k) are when the clamping point is unknown and known re-
spectively and (i) is the simulations performed with multiple clamping points with
known transformation to an original point. The notation single (dual) means that
both arms were used but one arm was considered known. Conclusions of conver-
gence in the non-conducted experiments for the single clamped arm could be drawn
from other experiments and theory. In the case with known clamping point and iden-
tification of the kinematic parameters, the iterations should converge to the correct
values since this is very similar to measuring the TCP and hence almost the same as
the case of having one of the arms calibrated. For the unknown point, the kinematic
parameters will not converge since the point is most likely not the actual point and
hence the parameters will not be correct. When identifying both kinematic parame-
ters and offsets for the known clamping point case, the parameters will not converge
using the implementation presented in this thesis since it can not separate the offsets
from the kinematic parameters.

Table 4.11 Methods where the correct parameters are identified in simulations.

Method Offsets | Kin.par | Kin.par + offsets
Single clamped (u) no - -
Single clamped (k) yes - -
Single clamped (m) no - -
Single (dual) yes yes no
Dual yes no no
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4.2 Experiment results

In this section, the calibration methods are evaluated on real data.

Frida one hand clamping

Offsets In Figures 4.8 the result from the one arm left clamping with all joints
offsets and the clamping point set to unknown is presented. In Figure 4.9 the result
from the right arm can be seen, and in Table 4.12 the identified joint offsets for both
arms can be seen.

Forward kinematics comparison

Figure 4.8 Joint offset calibration with real data, left arm. The uncalibrated data
points are presented in black, the calibrated in red.
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Table 4.12 Offset identification for real data with one arm clamping for 10(3)L and
10(10)R iterations.

Joint Identified offsets left Identified offsets right

1 0.01535218 —0.00526062
2 —0.01944153 —0.0219391
3 —0.10272261 0.06114016
4 —0.18232597 0.06929014
5 0.12745788 —0.07205064
6 0.00113391 —0.02431022
7 —0.00246351 —0.01362234

Forward kinematics comparison

Figure 4.9 Joint offset calibration with real data right arm. The uncalibrated data
points are presented in black, the calibrated in red.

Dual arm calibration

Only offset 1In Table 4.13 the result from the offset identification with the real data
is presented. The relative error convergence can be seen in Figures 4.10 and 4.11
(blue bars).
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Table 4.13 Joint offset identification for real data with dual arm for 15(7)iterations.

Joint Identified values Left Identified values Right

1 —0.02022305 0.02792938
2 0.01346539 0.0534484
3 —0.03011492 0.04263252
4 0.00865558 0.00785042
5 0.00377689 —0.05009817
6 —0.02160491 0.06770496
7 0.03510456 —0.01055271
014 Mean rotational emor as a function of terations __
HEm Offset calibration
o2 mmm Kinematic calibration
E 0.10
g 0.08
.‘E 0.06 e
é 0.04 | 8
0.02 i
0.00

012345678 910111213141516171819202122232425
Iterations

Figure 4.10 How the error in rotation decreases in the offset and kinematic param-
eters identification algorithm.

First offset, then parameter identification 1In Figure 4.12 and Figure 4.13, the
result from the offset and then kinematic parameter identification is verified on the
data from the one hand clamping for the left and right arm, respectively.

In Figures 4.10 and 4.11 it can be seen how the relative errors between the arms
change during the course of the iterations in the calibration algorithm. In the algo-
rithm, an identification of the offsets was performed first and the identification of
the kinematic parameters was performed after with the updated joint values from
the offset identification. Hence, the error at the first iteration in the kinematic cali-
bration starts at the value at the final error of the offset calibration.
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Mean translational error as a function of iterations

0.040 —

Il Offset calibration
0.035 | Em Kinematic calibration | |
0.030
0.025
0.020

Mean translational error [m]

0.015 | i
0.010 | i
0.005 | i
0.000

012345678 910111213141516171819202122232425
Iterations

Figure 4.11 How the error in translation decreases in the offset and kinematic pa-
rameters identification algorithm.

The error sensitivity of the clamping device identification In Table 4.14 the result
from the clamping device analysis in Section 3.4 can be seen. The norm increases
drastically when there is an error in the representation of the clamping device. The
deviations added represents 1 cm along the x- and y-axes, -1 cm along the z-axis
and 0.1 rad positive rotation about y and z and -0.1 rad negative rotation about x. It
shows that it is important to get a good estimation of the clamping device.

Table 4.14 Norm if the clamping device is not exactly known for 10(2) and 10(3)
iterations.

Norm no error Norm error
L:0.018233417053  L:0.116347249947
R:0.0094444009505 R:0.115983124183
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Forward kinematics comparison
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Figure 4.12  First offset identification and then kinematic parameter identification
verified on the data from one hand clamping for the left arm. The uncalibrated data

are presented in black, the calibrated in red.

Forward kinematics comparison

Figure 4.13 First offset identification and then kinematic parameters identification
verified on the data from one hand clamping for the right arm. The uncalibrated data

are presented in black and the calibrated in red.

67



D

Discussion and conclusions

The calibration methods evaluated in this thesis are in theory good. They are cheap,
easy, and have potential to be accurate. In simulations, it works well for offset iden-
tification for one arm with known clamping point, offset identification for dual arm,
and kinematic parameter identification for dual arm but with one arm known.

The dual arm offset identification is highly relevant and the clamping device
between the two TCPs can be constructed with high precision, which is required.
Finally, the kinematic parameter identification for dual arm, but with one known
arm is also relevant. If one arm has to be replaced or repaired on YuMi and needs
recalibration, the other arm can be used as measurement to calibrate the replaced or
repaired arm.

5.1 Simulation result discussion

General error sources for dual arm calibration

An explanation of the poor parameter convergence in some simulations, is the im-
plementation of the algorithm. The algorithm described in Section 2.9 depends on
that the pose is known for each arm. In the dual arm implementation, the arms are
not constrained to a single point but moves around in space with only the other arm
as measurement, where the other arm might be uncalibrated. The errors calculated
from (2.55) are least-squares minimizations from all those points. Since simulations
(and real experiments) are done with arms that have errors in the kinematic parame-
ters and have joint offsets, the point obtained for each configuration is in fact not the
actual point, since an uncalibrated arm is used as measurement. This is an explana-
tion of the poor convergence of the algorithm which can be seen if comparing how
well the algorithm converges when assuming one arm to be known as in Table 4.8
compared to Table 4.9, where both arms’ parameters are unknown.

In addition to what is discussed in the previous paragraph, the transformation
matrix for the clamping device is calculated from a mean of the data, which is also
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5.1 Simulation result discussion

retrieved with uncalibrated parameters and offsets, which also most certainly gives
an uncertainty in the transformation and therefore uncertainties in the identification.

Frida one hand clamping

Offset identification for one point If the clamping point is known, the joint values
converge very fast to the correct values, as seen in Table 4.1. Figure 4.1 also shows
that the calibrated data have converged to the right location.

In Table 4.2 it can be seen that the joint offsets do not converge exactly to the
correct values, when the point is unknown. However, the repeatability is improved
as seen in Figure 4.2, where it is shown that the points are much more gathered than
before the calibration. The error in the joint offset identification is probably because
of the fact that the fixed point is unknown. As mentioned in Section 2.10, the iden-
tified point is calculated as a mean of all points, and then the mean is recalculated
every iteration with updated joint offsets. This procedure leads to that the identi-
fied point might end up in the wrong position, making the joint offsets impossible
to identify. Compared to the actual position there is a difference between the true
point and the identified one as seen in Figure 4.2.

An alternative to calculate the clamped pose as a mean value would be to set
the pose as a free variable in the identification algorithm, and thereby include it
in the error model. That, however, that leads to more free variables (for position
and orientation), which might complicate the identification. Problems with linear
dependent parameters might arise.

The single arm clamping can, as mentioned before, be compared to pressing the
palm of the hand towards a table and moving the arm around to different configura-
tions. If one does that, it is easy to notice that the elbow joint does not move at all
(or very little). Therefore it is hard to excite the elbow joint (joint three). However,
as shown, the identification works well if the point is known, which implies that the
excitation is not a problem and that the method with one fixed point works, even
though joint three does not move a lot. However, it is important to take this into
consideration, because non-excited joints might give a good result in the area where
the identification is done, but might give a poor result when the TCP is moved to an
other location.

Offset identification for several points A problem with assuming the clamping
pose to be unknown is that all joints will not be identifiable. It is hard to identify
an offset in joint one with one single fixed unknown point. If there is an offset in
joint one, convergence of the offsets in joint two to seven will give the same point
relative to the coordinate frame of joint one, just moved in space. It is therefore
impossible to distinguish an offset in joint one, from the case when all points are
moved in space with unchanged internal distance and orientation. For joint seven it
is hard to distinguish a joint offset from a rotation for the fixed point at the same
axis. A specific joint offset can either be a joint offset, or a rotation of the fixed point.
This constitutes a problem since it is not desirable to require a known orientation
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and position of the fixed point. It is hard to get exact measurements and a small
measurement error will result in errors in the identification. However, it could be
hard to identify the pose by including it in the same error model as parameters and
offsets, because of the extra parameters that will be required as mentioned before.

A solution is to use many points mounted with known transformation in be-
tween. It is considerably easier to create a plate, or other exact geometry, than to
very accurately measure one point’s position. As seen in Figure 4.3, Table 4.3 and
Table 4.4, this works rather well when the transformation between the points is
known. The algorithm does identify the last joint correctly, but the problem with
joint one remains. If a geometry is constructed with several clamping positions with
known transformation in between, a movement in joint one will just move this ge-
ometry in space. The idea is also discussed in [Collin, ]. Precisely as above this
could be solved by knowing one of the clamping points.

Frida dual arm

Offsets calibration ~ As seen in Table 4.5, the identified offsets almost converge to
the actual offsets. Especially joint one and joint seven converge much better than for
the one-hand-one-point clamping identification. It is probably due to the fact that
the clamping device between the arms has an angle between the attachment points.
An offset in joint seven for one arm will have an impact on the configuration for
the other arm, and can not be explained by rotating the clamping device. Similar for
joint one, an offset in the joint can not be explained by moving the configurations
in space, compared to the fixed point case.

As discussed above in the section about offset identification for several points,
joints two to seven were successfully identified using several clamping points. Fur-
thermore from Table 4.6 we can see that using the dual arm offset calibration joint
one is identifiable for both arms if the other offsets are known, so by combining
these two methods a complete calibration of the offsets is possible assuming the
kinematic parameters are correct.

Kinematic parameter calibration for one arm assuming the other arm is known
As seen in Figure 4.4 and Figure 4.5, the relative error between the arms converges
to zero, and remaining errors can be explained by the added measurement noise. In
Table 4.8, it is shown that all parameters are identified in the case when only kine-
matic parameter errors are introduced. With joint offsets added, the relative error
between the arms still goes to zero. However, there are small differences between
the actual and identified parameters, caused by the fact that the kinematic param-
eters now also have to compensate for the joint offsets. All parameters were, as
expected, identified according to Section 2.9 when only kinematic parameter errors
were introduced.

Kinematic parameter calibration for both arms In Figure 4.6 and Figure 4.7 it
can be seen that the relative error between the arms is decreasing. However, by
looking at the identified parameters and comparing them with the actual parameters,
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see Table 4.9, it is obvious that the correct parameters have not been identified.
When doing the identification in the dual arm case, the error retrieved between the
two arms individually generate a Jacobian for each arm, but when updating the
parameters according to (2.56), only half of the parameter updates calculated are
applied to each arm in difference to when only identifying the parameters for one
arm. This is because the arms are opposite to each other and should converge to a
common point, where the translation and orientation differences between the arms
are minimized. Adding the whole update may lead to the arms passing each other.
This leads to that an increased number of iterations will be needed to be able to
converge to a zero error. It also incorporates the above mentioned problem that the
arms are not calibrated to start with and that the measurements used as ’actual”
position are not correct.

Update the parameters or not

In the implementation of the identification algorithm, there is a criterion that must
be fulfilled if the parameters are to be updated. Either, the error must be reduced, or
in some implementations, be less than 1.5 times the previous error. As mentioned
in Section 2.10, the algorithm sometimes finds a better approach after a step in
the wrong direction. There is a restriction on when the parameters are updated,
because if the error vector becomes too large, it can result in a too large step in
some direction, making the algorithm unstable.

The 1.5 factor (instead of strictly 1.0) was used in the dual arm joint offset
simulation (Section 4.1). As seen in Table 4.5 and Table 4.7, the 1.5 factor improved
the result. It leads to that the parameters were changed in all 10 iterations, instead of
just 2 out of 10. The change to factor 1.5 was useful in the cases where the correct
kinematic parameters or joint offsets were found after many iterations as seen in
Table 4.11. The change to 1.5 led to a faster convergence after a few iterations. In
the cases when the parameters were not fully converged after many iterations, the
1.5 factor did not improve the convergence.

Drawback of simulating in Python

A drawback to just randomly generate configurations with the Python implementa-
tion is that it takes no consideration to physical limitations between the robot and its
arms (or between the two arms). For the real robot, a generated configuration might
be impossible because of collisions between the arms, collisions between the arms
and the robot body, or limitations on the maximal joint movements. It might also
be impossible to move between two configurations without first detaching the two
arms from each other, or detach the arm from the fixed clamping point, reorient one
or several joints and then attach the arm/arms again.
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5.2 Experiment discussion

In this section, the results from the real experiments are discussed.

General error sources

It was late during the thesis discovered that the last joint on the left arm is broken,
and might have been broken when the data sets were acquired. The broken joint
has probably introduced a large backlash in that joint and therefore the identified
parameters for the left arm are not to be trusted for the one hand clamping case. In
the dual arm case, it is highly likely that the broken joint affected the result and is
therefore a large error source for the result. However, a benefit with the identification
in this thesis is that the broken joint would have been identified long before it was
any visible damage on the joint, if the identification algorithm was fully functional
from start. The damaged joint would lead to that the identification would fail or give
strange results, because of the relative huge backlash in the damaged joint.

In all experiments, all joints, links and tool changers have been considered to be
stiff. That is of course not true, and joint and link flexing as well as non-stiff tool
changers is probably also an error source.

One hand clamping offset

As seen in Figure 4.9, the repeatability is better after the calibration, but not as good
as in simulation. The problem might lie in the lack of excitation of the data. Because
of the position of the arm, some joints moved very little and that might explain the
circle-formed points in Figure 4.9, compared to the more evenly distributed data
points in the simulation presented Figure 4.2.

It is also possible that there are errors in the kinematic parameters, that are not
coped with in the offset calibration. There is also a problem with only using one
fixed point, as discussed in the section about offset identification for several points.

In Figure 4.8, one can see that the repeatability for the left arm is not at all
improved as much as for the right arm, see Figure 4.9. This is most likely a result of
the broken joint on the left arm, as discussed in the section on general error sources
previously.

Dual arm offset

There is a large difference between the identified offset for the one hand clamping
presented in Table 4.12 and the identified joint offsets for the dual arm experiment
presented in Table 4.13. None of the algorithms converge as well as in simulation,
and there is therefore reason to believe that the identified offsets are not to be trusted.
It is likely that the identification of the clamping device’s transformation matrix was
too inaccurate and that uncertainty makes the algorithm work poorly. Also in this
experiment, it is possible that there are kinematic errors that are not coped with.

The broken joint in the left arm is probably also an explanation of the poor
result.
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Both offsets and kinematic parameters

As can be seen in Figure 4.10 and Figure 4.11, the errors seem to be roughly de-
creased with 50 percent. However, these are the errors between the two TCPs (in-
cluding the estimated clamping device). When the nominal parameters were ex-
changed with the calibrated parameters and the data from the left and right arm
clamping were evaluated with the new parameters and with compensated offsets,
there was no remarkable change in the errors, as can be seen in Figure 4.12 and
Figure 4.13.

5.3 Conclusion

In this thesis, calibration methods for a seven DOF dual arm robot have been eval-
uated. The calibration methods are easy to use, cheap, and have potential. The al-
gorithms look promising in simulation, has not given the corresponding satisfying
result in real experiments. It is hard to tell if it is because of the broken joint seven
in the left arm, or not. There are some problems with how the error is handled in the
algorithm and the implementation of the algorithm that is discussed in Section 5.1
as well as in Section 5.4.

In simulations it was possible to verify that a total calibration of the offsets is
possible by combining the one arm, multiple point clamping calibration and the
dual arm offset calibration.

The calibration method did also improve the repeatability in all simulations. It
did find the exact parameters in some simulations (see Table 4.11), and the calibra-
tion therefore also improved the accuracy. If the error handling problem is coped
with, the calibration methods would probably be very useful.

5.4 Further work

To get this algorithm to actually make a significant position and accuracy improve-
ment, there are a few things that can be investigated.

Get a better approximation for the common point in the dual
arm implementation

As mentioned in the discussion in Section 5.1, there is probably a problem with
how the dual arm algorithm compensates the error between the two TCPs. The
compensation has to be further investigated, and maybe changed.

Better identification of the clamping device

An error source is the uncertainties in the clamping device’s transformation matrix.
If the identification method will be commercialized, it is reasonable to assume that
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the clamping device can be designed with high accuracy and that the attachment
orientation to each arm will be well known. That will probably improve the result.

Find a way to distinguish identified offsets from identified
kinematic parameters

It might be interesting to distinguish the joint offset from the kinematic parameter
errors. In this thesis, it is not possible to do that. An offset might be compensated
with a change in the kinematic parameters, and vice versa. An improvement of the
algorithm would be to find a way to do this distinction.

Elastic joints and links

In this thesis, all joint and links have been considered to be stiff. This assumption
means that no consideration has been taken to possible flexing in joints and links. It
is hard to construct a model for all flex effects, but it will most likely improve the
accuracy of the calibration.

Jacobian identification

It is most likely that joint offsets and &-parameters are not identifiable when they
are involved in the same error model, according to [He et al., ] and also the
Jacobian analysis (see Table 4.10). It would have been advantageous if the offsets
and parameter errors could be identifiable in the same error model, since modeling
and identifying them separately will lead to that the parameters that are identified
will compensate for those who are not.

As discussed in Section 2.9, some parameters are probably redundant or non-
identifiable. If those parameters would to be identified, it might be possible to re-
move these from the error model, identify them in a different experiment or assume
that they are equal to the nominal value. This procedure will probably lead to a
better result. Which parameters to lock have to be rigorously motivated. The solu-
tion will probably be to identify the different Jacobians, and thereby find out which
parameters that are non-identifiable and/or redundant.

Add restrains in Python simulation

As mentioned in Section 5.1, in the Python simulations in this thesis, there is no
control if the generated configurations are valid or not. To generate realistic data,
there can not be any invalid configurations, so restrains or a validity check has to
be implemented. This check is already implemented in RobotStudio, so it might be
possible to use RobotStudio to do this validation, or even generate the data.
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Appendices

A.1 Kinematic representation

In Table A.1, the mathematical representation of the kinematics for Frida using POE
that was used during the thesis can be seen. Each row in the screw matrix represents
a screw for that corresponding joint in the robot. Ty is, as earlier mentioned, the
initial transformation for the robot which was when all joint angles were zero. The
last two matrices are the transformation between the robot base and the right and
left arm base, respectively.

A.2 YuMi, IRB 14000

YuMi is a dual-handed robot developed by ABB. It is designed to do small part
manufacturing as well as be a collaborative robot, meaning that it requires no safe
zones or cages. The safety is inherent in the robot. A model of YuMi is available
in RobotStudio, but it has no ExtCtrl implementation. It uses the conventional joint
numbering from 1-7, beginning from the base. It can be seen in Figure A.1 [

I I
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Table A.1 Mathematical model of the robot kinematics using POE.

0 0 0 0

—-0.030 0 0.110 0

0 0 02565 0

Screws 0.0405 0 0.3565 O
0.180 0 0397 1

0.3055 0 0.3835 O

| 03375 0 04105 1

0 0 1 0.3375
T 0 1 0 0

S -1 0 0 0.4105
0 0 O 1

0.5723 —0.1041 0.8134

0.6161 0.7092  —0.3427

—0.5412 0.6973  0.4700
0.0 0.0 0.0

Base transformation (right)

0.5784  0.1049 0.8090
—0.6143 0.7084 0.3474
—0.5367 —0.6979 0.4742

0.0 0.0 0.0

Base transformation (left)

Figure A.1 YuMi IRB 14000 [YuMi Overview 2016].
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