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Abstract

In this study we compare different volatility models on their ability to forecast
one day ahead volatility and value-at-risk (VaR). We compare five different
GARCH specifications: GARCH, IGARCH, GJR-GARCH, EGARCH and
APARCH, as well as EWMA, each paired with six different conditional
distributions. These models are used to forecast volatility and VaR one day
ahead using daily return data from the Swedish stock market index OMXS30.
The forecasts are then compared using the model confidence set procedure
of Peter Reinhard Hansen, Asger Lunde, and James M Nason (2011). “The
model confidence set.” In: Econometrica 79.2, pp. 453–497.

We find the APARCH models best for forecasting volatility, while for
forecasting VaR the best models are either APARCH, GJR-GARCH or
EGARCH—depending on which level of VaR we use—paired with conditional
distributions that take skewness and excess kurtosis into account. EWMA,
GARCH and IGARCH specifications cannot be recommended either for
forecasting volatility or for forecasting VaR.
Keywords: volatility forecasting, VaR, GARCH, model confidence set
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Forecasting Volatility and VaR 1. Introduction 1

1 Introduction
ARCH (autoregressive conditional heteroskedasticity) models the conditional volatil-
ity of a time series that is non-constant (conditionally heteroskedastic), this is done
by modeling the squared residuals as an autoregressive (AR) process, hence the
name.

Ever since the publication of the ARCH model in the Nobel Prize winning
paper by Engle (1982) and the subsequent GARCH (generalized ARCH) model
by Bollerslev (1986), there have been an explosion of different GARCH models.1
Reviews can be found in Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle,
and Nelson (1994) and Teräsvirta (2009); Bollerslev (2008) describes itself as an
“easy-to-use encyclopedic type reference guide to the long list of ARCH acronyms”
and tries to cover all the published GARCH models up to that date, and can be
very convenient when you feel lost in the GARCH acronym jungle.

The primary purpose of this thesis is to investigate which of the many GARCH
models2 (or rather, which of the ones—subjectively and quite arbitrarily—chosen
by the author) that performs the best for forecasting (i) one day ahead volatility
and (ii) one day ahead value-at-risk (VaR), using out of sample daily data of the
Swedish stock market price index OMX Stockholm 30 (OMXS30). The newly
developed model confidence set (MCS) procedure of Hansen, Lunde, and Nason
(2011) is used for selecting the “best” models.

A secondary objective is also to find out if there are differences in performance
in forecasting volatility versus VaR, if different models are “best” (as measured by
lowest statistical loss or inclusion and rank by MCS) at one or the other, or if the
best models excel at both tasks. And also, if the VaRα model ranks are consistent
for different values of α.

Finally, we also want to find out if the model specification or conditional
distribution used is the more important for each of the tasks. How helpful a
distribution that allows for skewness and excess kurtosis is for forecasting conditional
volatility remains to be seen but our guess is that it will probably be more important
for forecasting value-at-risk, which is a quantile function, and where the negative
tail of the distribution is the only part of interest.

The VaR forecasts are also tested using Christoffersen’s conditional coverage
test (Christoffersen 1998) which tests the joint hypothesis of correct number of
exceedances and that the exceedances are independent.

There have been many previous studies comparing volatility forecasting models,
see, e.g., Andersen, Bollerslev, et al. (2006) for a theoretical overview and Poon

1 For example, Hansen and Lunde (2005) compares 330 different GARCH specifications.
2 The exponential weighted moving average is also included as a benchmark model to compare

against.
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and Granger (2003, 2005) for extensive surveys on the previous research. However,
Patton and Sheppard (2009) finds “that the use of loss functions that are ‘non-
robust’, in the sense of Patton (2006), can yield perverse rankings of forecasts,
even when accurate volatility proxies are employed.” Brownlees, Engle, and Kelly
(2011b) adds that “the conflicting evidence reported by some previously published
empirical studies on volatility forecasting is due to the use of non robust losses, and
this calls for a reassessment of previous findings in this field.” This thesis only uses
those statistical loss functions that are “robust” as defined by Patton (2006, 2011)3,
namely quasi-likelihood (QL) and mean squared error (MSE), when examining the
volatility forecasts.

The contributions of this thesis are threefold: firstly, we use the same models and
data to to estimate both the conditional volatility and value-at-risk forecasts, making
the results comparable; secondly, we use the newly developed model confidence
set procedure of Hansen, Lunde, and Nason (2011) to select the models from the
above mentioned forecasts; and thirdly, we use data from Sweden which—to our
knowledge—has not been used in a similar study before.

Our findings are that APARCH is best for forecasting one-day-ahead volatility.
The model specification is important, for MSE losses only APARCH-t and APARCH-
skew t remains in the MCS, while for QL losses, all APARCH, 4 EGARCH and 4
GJR-models remain, with all the EWMA, IGARCH and GARCH models eliminated.
The conditional distribution does not seem to make that much of a contribution.
For value-at-risk, we find that conditional distributions are much more important,
but the model specification remains so as well. EWMA, IGARCH and GARCH
models are all eliminated and the best performing models differ depending on if we
forecast VaR1%, VaR5% or VaR10%. What all the best performing models have in
common is that they are conditionally distributed with distributions are capable of
capturing skewness and excess kurtosis.

The remainder of the thesis is organized as follows. In Section 2 we describe the
conditional volatility models and conditional distributions used to make the out-of-
sample forecasts. Section 3 is the main section where we describe the backtests
and the results and compare them to some previous studies. In Section 4 we
summarize the thesis and add some suggestions for further research. We have also
included three appendices, Appendix A with plots of one day ahead forecasts of σ̂t,
Appendix B with plots of the estimated parameters, and Appendix C with plots of
the estimated VaR together with the returns.

3 Patton (2006) is a longer, working paper version of Patton (2011).
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2 Volatility models and distributions
We have a series of daily closing prices {Pt} and calculate the percent log-returns
{rt}, defined as

rt = 100 (lnPt − lnPt−1) . (2.1)
The returns are modeled as4

rt = µ+ σtzt, zt|Ft−1
iid∼D(0, 1, ·) (2.2)

where Ft−1 is the information set with all available information at time t− 1. We
let εt = σtzt = rt−µ denote the error. The standardized error is denoted zt = εt/σt,
which is independent and identically distributed (iid) with zero mean and unit
variance and distribution D (see Section 2.2); · denotes any potential additional
parameters (e.g., for skewness and/or excess kurtosis). The conditional variance
σ2
t ≡ Var (rt|Ft−1) is modeled according to the specific volatility model described

below and summarized in Table 2.1.

2.1 Conditional volatility models
2.1.1 EWMA
The first and simplest volatility model we use is the exponential weighted moving
average (EWMA), defined as

σ2
t = (1− λ)

t−1∑
j=1

λj−1(rt−j − µ̂t)2, µ̂t = 1
t− 1

t−1∑
j=1

rt−j (2.3)

The parameter λ could be estimated, but we fix it to λ = 0.94 as suggested by
RiskMetrics (J.P. Morgan and Reuters 1996), and then there are no parameters to
estimate (except for potential distributional parameters). EWMA is equivalent to
IGARCH (to be defined in Section 2.1.3) with ω = 0 and β = λ (see e.g., Dowd
2005, p. 135), i.e.,

σ2
t = (1− λ)ε2

t−1 + λσ2
t−1.

2.1.2 GARCH
The second model that we estimate is the standard GARCH (generalized autore-
gressive conditional heteroskedasticity) of Bollerslev (1986):

σ2
t = ω + αε2

t−1 + βσ2
t−1 (2.4)

To ensure that σ2
t stays positive we have the following parameter restrictions ω > 0,

α, β ≥ 0, and to ensure stationarity: α + β < 1.
4 We have also tried an AR(1) specification, rt = µ+ ϕrt−1 + εt, which made no noticeable

difference for the volatility estimates.
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2.1.3 IGARCH
The third model is the integrated GARCH (IGARCH) of Engle and Bollerslev
(1986), which is just the standard GARCH (2.4) with α + β = 1, or

σ2
t = ω + (1− β)ε2

t−1 + βσ2
t−1. (2.5)

2.1.4 GJR-GARCH
The fourth model is an asymmetric model, GJR-GARCH of Glosten, Jagannathan,
and Runkle (1993) also called threshold GARCH (TARCH or TGARCH):5

σ2
t = ω + αε2

t−1 + γ1{εt−1≤0}ε
2
t−1 + βσ2

t−1 (2.6)

where 1{εt−1≤0} is the indicator function which takes the value 1 when εt−1 ≤ 0
and 0 otherwise. The parameter γ captures the asymmetry, or the extent to which
volatility increases more following negative shocks than for positive shocks (as long
as γ > 0, which tends to be the case for equity and equity index returns).6

2.1.5 EGARCH
The fifth model is the exponential GARCH (EGARCH) of Nelson (1991), which
models the log of conditional variance:

ln σ2
t = ω + αzt−1 + γ (|zt−1| − E [|zt−1|]) + β ln σ2

t−1. (2.7)

The natural logarithm is used to prevent σ2
t from becoming negative, consequently

EGARCH does not need to have any parameter restrictions, which adds flexibility to
the model (Nelson 1991). Here α captures the sign effect and γ the size effect. zt−1
is the standardized residual zt−1 = εt−1/σt−1. The expectation E [|zt−1|] depends
on the distribution of zt, e.g., when zt∼N (0, 1), E [|zt−1|] =

√
2/π and when

zt∼ tν , E [|zt−1|] = 2
√
ν−2Γ[(ν+1)/2]√
π(ν−1)Γ[ν/2] , where Γ(·) is the gamma function (Taylor 2005,

Eqs. 10.2 & 10.4).

2.1.6 APARCH
The sixth and final model is the asymmetric power ARCH (APARCH) of Ding,
Granger, and Engle (1993):

σδt = ω + α (|εt−1| − γεt−1)δ + βσδt−1 (2.8)
5 There is however another model also called threshold GARCH, namely the one by Zakoian

(1994), so we will use the name GJR-GARCH to avoid confusion.
6 The asymmetry is also called the leverage effect since Black (1976) believed it existed due to

financial leverage, which has since then been proven to be incorrect. (Taylor 2005, pp. 241–242)
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The parameter −1 < γ < 1 captures asymmetries, while the parameter δ ∈ R+

helps to capture volatility dynamics more flexibly than for other specifications.7
APARCH nests several other GARCH models (Ding, Granger, and Engle 1993,
Appendix A; Hentschel 1995; Bollerslev 2008, p. 3), e.g., it reduces to GJR-GARCH
when δ = 2 and 0 < γ < 1 (see Ding, Granger, and Engle 1993, Appendix A for
the calculations), and to GARCH when δ = 2 and γ = 0.

A summary of all the models is found in Table 2.1.

Table 2.1 The volatility models

Name Model

EWMA σ2
t = (1− λ)ε2

t−1 + λσ2
t−1, λ = 0.94

GARCH σ2
t = ω + αε2

t−1 + βσ2
t−1

IGARCH σ2
t = ω + (1− β)ε2

t−1 + βσ2
t−1

GJR-GARCH σ2
t = ω + αε2

t−1 + γ1{εt−1≤0}ε
2
t−1 + βσ2

t−1
EGARCH lnσ2

t = ω + αzt−1 + γ (|zt−1| − E [|zt−1|]) + β lnσ2
t−1 where zt = εt/σt

APARCH σδt = ω + α (|εt−1| − γεt−1)δ + βσδt−1

2.2 Conditional distributions
The volatility models are all estimated with each of the following conditional
distributions for zt|Ft−1.

2.2.1 Normal (N)
Completely described by its mean and variance, here scaled to a standard normal,
with zero mean and unit variance. No skewness or excess kurtosis. The density is
given by:

fN (zt|Ft−1) = 1√
2π

exp
(
−1

2z
2
t

)

2.2.2 Student’s t (t)
As used for GARCH models by Bollerslev (1987). Described completely by its
shape parameter ν which allows excess kurtosis (as ν goes to ∞, Student’s t
distribution converges to the normal distribution and the excess kurtosis goes to

7 One stylized fact for financial returns, the Taylor effect—first mentioned in Taylor (1986)—
says that for most series the autocorrelation is higher for |rt| than for r2

t and Ding, Granger, and
Engle (1993) and Granger and Ding (1995) shows that it peaks around k = 1 for |rt|k. For the
OMXS30 daily return data used in this thesis the autocorrelation peaks at k = 1.25 with a value
of 0.214 and the autocorrelation of |rt| is greater than that of r2

t , with values of 0.213 and 0.186,
respectively.
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0). No skewness. The density is given by:

ft(zt|Ft−1) =
Γ(ν+1

2 )√
νπΓ(ν2 )

(
1 + z2

t

ν

)− ν+1
2

where Γ(·) is the gamma function.

2.2.3 Skew Normal (skew N)
The skew normal is the normal distribution scaled with a skewness parameter
ξ ∈ (0,∞), as formulated by Fernandez and Steel (1998). The density is given by:

fSN (zt|Ft−1) = 2
ξ + 1

ξ

{
fN

(
zt
ξ

)
1{zt≥0} + fN (ξzt)1{zt<0}

}
(2.9)

where fN (·) is the density of the normal distribution, and where 1{x} denotes the
indicator function which takes the value 1 when the condition x is fulfilled and 0
otherwise.

2.2.4 Skew Student’s t (skew t)
Skew Student’s t is the Student’s t distribution scaled with a skewness parameter
ξ ∈ (0,∞), also by Fernandez and Steel (1998). The density is the same as
fSN (zt|Ft−1) in (2.9) but with fN (·) replaced by ft(·)—the density of Student’s t
distribution.

2.2.5 Normal Inverse Gaussian (NIG)
Allows for skewness and excess kurtosis. See Barndorff-Nielsen (1997). The density
is given by:

fNIG(zt|Ft−1) = αδ

π
exp

(
δ
√
α2 − β2 + β(zt − µ)

) K1
(
α
√
δ2 + (zt − µ)2

)
√
δ2 + (zt − µ)2

K1(·) denotes the modified Bessel function of the third kind with index 1 (see
Abramowitz and Stegun 1970, Section 9.6), µ ∈ R is the location parameter, δ > 0
is the scale parameter, α and β, 0 ≤ |β| ≤ α, determines the shape of the density.

2.2.6 Reparametrized Johnson’s SU (JSU)
Rigby and Stasinopoulos (2005) reparametrize the SU distribution of Johnson (1949)
to make the mean equal to the parameter µ and the standard deviation equal to σ.
Allows for skewness (through parameter ν – negative skewness when ν < 0 and
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positive skewness when ν > 0) and excess kurtosis (through the parameter τ > 0).
The density is given by:8

fJSU(zt|Ft−1) = τ

cσ

1
(r2 + 1)1/2

1√
2π

exp
(
−1

2z
2
)

where

z∼N (0, 1) = −ν + τ ln
[
r + (r2 + 1)1/2

]
,

r = zt − (µ+ cσw1/2 sinh Ω)
cσ

,

c =
{1

2(w − 1)(w cosh(2Ω) + 1
}−1/2

,

w = exp
( 1
τ 2

)
,

Ω = −ν
τ
.

3 Backtesting forecasts
In this section we will evaluate the volatility models by assessing one day out-of-
sample forecasts of (i) volatility and (ii) value-at-risk (VaR), using the Swedish
stock market price index OMX Stockholm 30 (OMXS30) as data. Daily closing
prices, {Pt}, from 1990 to 20169 are used to calculate daily percentage log-returns,
rt = 100 (lnPt − lnPt−1). The data is plotted in Figure 3.1, and Table 3.1 displays
some summary statistics.

Table 3.1 Summary statistics for OMXS30 log returns. Qk denotes the kth quartile, Q2 is the median.

T Mean St. Dev. Skew. Exc. Kurt. Min. Q1 Q2 Q3 Max.

6777 0.0294% 1.4707% 0.0987 4.0011 -8.8003% -0.7369% 0.0574% 0.8003% 11.0228%

As seen in Table 3.1 the kurtosis is higher than for the normal distribution
(excess kurtosis of 4 versus 0 for the normal), indicating that the true distribution
is leptokurtic (meaning that is has heavier tails than a normal distribution), this
can also be seen in Figure 3.2 which plots a histogram with normal and NIG10

density curves overlayed, as well as quantile-quantile (Q-Q) plots, suggesting that
the NIG distribution is a much better fit than a normal. We should note though,

8 Taken from Stasinopoulos, Rigby, and Akantziliotou (2008).
9 Obtained from http://www.nasdaqomxnordic.com.

10 NIG is chosen to represent distributions that are able to capture excess kurtosis (and skewness),
JSU and skew t could just as well have been used to illustrate the same point.

http://www.nasdaqomxnordic.com
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Figure 3.1 Daily closing prices and percentage log-returns of OMXS30 from 1990 to 2016. The
training period is shaded and the out of sample period starts from 1993-12-28 and onwards.

that GARCH models allow for excess kurtosis even if the error terms are normally
distributed; here follows the equation to calculate the kurtosis of the returns for a
standard GARCH-N model (Taylor 2005, Eq. 9.13):

kurtosis(rt) = 3 E [σ2
t ]

σ4 = 3
[

1− (α + β)2

1− 2α2 − (α + β)2

]
> 3 (3.1)

for 2α2 + (α + β)2 < 1; otherwise, the kurtosis is infinite. For example, if α = 0.09
and β = 0.88, then kurtosis(rt) = 4.13, meaning that the excess kurtosis is 1.13.
So GARCH-N can capture excess kurtosis, but the questions remains if it is flexible
enough, especially for VaR forecasts when we are only interested in the left tail of
the distribution.

3.1 Setup
The first 1000 days (the shaded area of Figure 3.1) is used as a training period
leaving us with 5776 returns to be forecasted. The models are refitted every 5
days and—following Brownlees, Engle, and Kelly (2011a)—an expanding window
is used (i.e., each estimation makes use of all available data up to that point, as
opposed to a rolling window which uses a fixed number of observations for each
estimation).11 Plots of one day ahead forecasts of σ̂t can be found in Appendix A,

11 Brownlees, Engle, and Kelly (2011a) compares an expanding window with two different rolling
windows, one short and one of medium length, and in their online appendix, Brownlees, Engle,
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Figure 3.2 (Left) Histogram of the log returns with a normal curve (red) and NIG curve (blue).
(Middle) Normal Q-Q plot with a 95% confidence band. (Right) NIG Q-Q plot.

in Figures A.1-A.6. Plots of the estimated parameters are found in Appendix B,
Figures B.1-B.6.12

Before we start to discuss the results we should mention that the results for
EGARCH-t, EGARCH-skew t and EGARCH-JSU are somewhat dubious. As can
be seen in Figure B.5 the parameters for these models vary wildly compared to the
other models, so the results from these models may probably not be relied upon,
but we still leave them in and it is up to the reader to draw her own conclusions.

3.2 Backtesting volatility forecasts
The squared residual (squared demeaned return) ε̂2

t = (rt − µ̂)2 is used as a proxy
of the true conditional variance σ2

t , since the latter cannot be observed directly.
Other alternatives include realized volatility (RV), but requires high frequency
intra-day data. Both ε̂2

t and RV are unbiased ex post proxies of conditional variance
(Brownlees, Engle, and Kelly 2011a). See Brownlees, Engle, and Kelly (2011a,b)
for a comparison of ε̂2

t and RV (they actually use squared returns r2
t instead of ε̂2

t ,
but they do not use an intercept in their mean equation, assuming the mean to be
zero, making rt = εt, and in practice the daily returns are often very close to zero
(see, e.g., Taylor 2005, Table 4.1)).

We use the two statistical loss functions used by Brownlees, Engle, and Kelly
(2011a), namely the quasi-likelihood (QL) and the mean squared error (MSE).

and Kelly (2011b), they write: “Using a shorter, rolling estimation window tends to weaken
forecasting accuracy. In some cases, the performance decreases by as much as 20%. The window
length results are non-monotonic. While the full sample dominates, we often see that the medium
estimation window does worse than the short window.”

12 The R (R Core Team 2017) package rugarch (Ghalanos 2015) is used to estimate the volatility
models and MCS (Catania and Bernardi 2015) is used for the MCS procedure (see Section 3.2.1).
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They argue that these two loss functions are the only proper loss functions to use
among those commonly used to compare volatility forecast, since they belong to the
class of Patton (2006) that “asymptotically generate the same ranking of models
regardless of the proxy being used” and they also add that “This rank preservation
holds as long as the proxy is unbiased and minimal regularity conditions are met.
It ensures that model rankings achieved with proxies like squared residuals or
realized volatility correspond to the ranking that would be achieved if forecasts
were compared against the true volatility.”

The loss functions are defined as follows:

QL: L(ε̂2
t , σ̂

2
t ) = ln

(
σ̂2
t

)
+ ε̂2

t

σ̂2
t

(3.2)

MSE: L(ε̂2
t , σ̂

2
t ) =

(
ε̂2
t − σ̂2

t

)2
(3.3)

where σ̂2
t is the volatility forecast from our model to be evaluated.

The means of the QL and MSE losses from the forecasts are displayed in
Table 3.2. The table is ordered by the QL losses. The APARCH models are all
ranked in the top by both QL and MSE. MSE then favors all the GJR-GARCH
models, taking rank 7 to 12 and ranks the EGARCH models 13 to 18, while QL
mixes EGARCH and GJR-GARCH models in the 7th to 18th spot. No EWMA,
GARCH or IGARCH model makes the top half when ranking by either QL or
MSE.

In the bottom we find the EWMA models when ranking by QL (spots 31-36,
and 25-30 by MSE) and the IGARCH models are ranked the worst by MSE (spots
31-36, and 23-26, 29-30 by QL).

But how do we know that the best ranked model, APARCH-t, is statistically
better than the worst one, EWMA-N (or IGARCH-N if ranked by MSE)? We will
use a procedure developed by Hansen, Lunde, and Nason (2011) called the model
confidence set (MCS).

3.2.1 The model confidence set (MCS)
The MCS procedure is a set of tests that eliminate models from the setM0 (all
the considered models, in our case 36 models) one by one that do no pass a test of
equal predictive ability (EPA) at a specified confidence level. A benchmark model
to test against is not required when using the MCS procedure. The models that are
not eliminated are included in the model confidence set (MCS)M∗. See Hansen,
Lunde, and Nason (2011) for the technical details and the MCS package (Catania
and Bernardi 2015) for an R implementation.

The MCS procedure is used on our QL and MSE losses to compute two model
confidence sets. Table 3.3 displays the results. For the MSE losses, all models
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Table 3.2 Ranking of the volatility forecasts by QL and MSE (ordered by QL rank).

QL MSE

Model Value Rank Value Rank

APARCH-t 1.46014 1 23.28331 1
APARCH-skew t 1.46030 2 23.28395 2
APARCH-JSU 1.46038 3 23.28732 3
APARCH-NIG 1.46048 4 23.29145 4
APARCH-N 1.46172 5 23.32723 5
APARCH-skew N 1.46186 6 23.33204 6
EGARCH-NIG 1.46336 7 23.44319 13
EGARCH-JSU 1.46343 8 23.45279 14
GJR-GARCH-t 1.46473 9 23.36620 8
EGARCH-N 1.46477 10 23.46315 15
GJR-GARCH-skew t 1.46483 11 23.36620 7
GJR-GARCH-JSU 1.46484 12 23.37059 9
EGARCH-skew N 1.46484 13 23.46372 16
GJR-GARCH-NIG 1.46488 14 23.37659 10
GJR-GARCH-N 1.46560 15 23.43196 11
GJR-GARCH-skew N 1.46569 16 23.43584 12
EGARCH-t 1.46737 17 23.66925 18
EGARCH-skew t 1.48524 18 23.54899 17
GARCH-JSU 1.48914 19 24.34193 21
GARCH-skew t 1.48915 20 24.34010 20
GARCH-t 1.48919 21 24.33996 19
GARCH-NIG 1.48920 22 24.34469 22
IGARCH-JSU 1.49001 23 24.59040 33
IGARCH-NIG 1.49003 24 24.60017 34
IGARCH-skew t 1.49011 25 24.58642 31
IGARCH-t 1.49013 26 24.58658 32
GARCH-skew N 1.49024 27 24.41989 24
GARCH-N 1.49045 28 24.41812 23
IGARCH-skew N 1.49129 29 24.72745 35
IGARCH-N 1.49144 30 24.73918 36
EWMA-t 1.50042 31 24.44000 25
EWMA-skew t 1.50043 32 24.44045 26
EWMA-JSU 1.50044 33 24.44076 27
EWMA-NIG 1.50047 34 24.44107 28
EWMA-skew N 1.50117 35 24.44800 30
EWMA-N 1.50125 36 24.44665 29

except for APARCH-t and APARCH-skew t are eliminated. Those are also the
best ranked models when using the QL losses, with the difference that 12 other
models also are included in the MCS—all the APARCH models are ranked in the
top followed by a mix of EGARCH and GJR-GARCH models. We note that all
EWMA, GARCH and IGARCH models are eliminated. Regarding the conditional
distributions, we do not see any clear pattern, for MSE losses only models with
two different distributions remain in the MCS: t and skew t; for QL: 3 models with
JSU, 3 models with NIG, 2 models with skew t, 2 models with skew N, 2 models
with t and 2 models with N distributions remain in the MCS.

Brownlees, Engle, and Kelly (2011a) conducts a similar study for forecasting
one day ahead volatility using S&P500 daily returns from 1990 to 2008—with 2001-
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Table 3.3 The model confidence sets for QL and MSE. All the EWMA, GARCH and IGARCH models
were eliminated for both QL and MSE losses, and to save space they are not included in the table.

Model Rank QL Rank MSE

APARCH-t 1 1
APARCH-skew t 2 2
APARCH-JSU 3 Eliminated
APARCH-NIG 4 Eliminated
APARCH-N 5 Eliminated
APARCH-skew N 6 Eliminated
EGARCH-NIG 7 Eliminated
EGARCH-JSU 8 Eliminated
GJR-GARCH-t 9 Eliminated
EGARCH-N 10 Eliminated
GJR-GARCH-skew t 11 Eliminated
GJR-GARCH-JSU 12 Eliminated
GJR-GARCH-NIG 13 Eliminated
EGARCH-skew N 14 Eliminated
GJR-GARCH-N Eliminated Eliminated
GJR-GARCH-skew N Eliminated Eliminated
EGARCH-t Eliminated Eliminated
EGARCH-skew t Eliminated Eliminated

2009 as an out-of-sample period, comparing GARCH, GJR-GARCH, EGARCH,
APARCH and NGARCH13 with normal errors. They find14 the QL losses smallest
for GJR-GARCH, followed by APARCH, EGARCH, NGARCH and then GARCH;
with the first four models performing better than GARCH on a 1% significance
level using a Diebold-Mariano test (Diebold and Mariano 1995). They also repeat15

the same procedure for nine U.S. sectoral equity indices and eighteen international
equity indices.16 For the equity sectors they find that APARCH performs the best,
followed by GJR-GARCH, NGARCH, GARCH, and lastly EGARCH. APARCH,
GJR-GARCH and NGARCH performs significantly better than GARCH on a 1%
significance level. For the international equity indices they find that GJR-GARCH
performs best, followed by NGARCH, APARCH, EGARCH and lastly GARCH,
with the first three being significantly better than GARCH on a 1% significance
level (but EGARCH not even on a 10% level). Their results agree with the current
study in that GARCH performs poorly, but they have GJR-GARCH perform best
for S&P500 and the international equity indices (but APARCH for the U.S. equity
sectors), while GJR-GARCH-N was not even included in the model confidence set
for the OMXS30 returns in the current study (Table 3.3) and where APARCH
performed the best. They did, however, use a shorter out-of-sample period of

13 Nonlinear GARCH (Engle 1990), not included in our study. With conditional variance
σ2

t = ω + α(εt + γ)2 + βσ2
t−1.

14 See Brownlees, Engle, and Kelly (2011b), Table 6.
15 See Brownlees, Engle, and Kelly (2011b), Table 8.
16 They also study ten exchange rates, which we, however, will not discuss here since it is not

comparable to the data used in the current study.
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2001-2008, compared to 1994-2016 in the current study, which could explain some
differences.

Another study is Hansen and Lunde (2005) which compares 330 different
GARCH specifications.17 They study out-of-sample performance for IBM returns
from June 1, 1999, to May 31, 2000, for a total of 254 trading days. They find
APARCH(2, 2), specified with t-distributed errors and conditional mean of zero
to perform the best. This is a comparable result to the current study where
APARCH-t performed the best (even though we only include (1, 1) specifications
for the conditional volatility and only a constant conditional mean).

3.3 Backtesting value-at-risk forecasts
3.3.1 Value-at-risk

The value-at-risk (VaRα
t ) is the loss that will exceed VaR with probability α, i.e.,

the conditional α quantile

Pr (rt < VaRα
t |Ft−1) = α (3.4)

where Ft−1 is the information set with all information available at time t− 1.
We use the same data and models as when backtesting the volatility forecasts,

and again we use the first 1000 days as a training period and the remaining 5776
days as an out-of-sample test period for one day ahead VaR-forecasts, where we
calculate VaRα

t for α = {1%, 5%, 10%}. The out-of-sample VaR5% and VaR1%

one day forecasts for all models are plotted in Figures C.1-C.6 in Appendix C.
Table 3.4 displays the actual and expected number of VaR exceedances for each of
the models.

3.3.2 Christoffersen’s conditional coverage test

In Table 3.5 VaR exceedances are used to calculate the conditional coverage
of Christoffersen (1998), which tests the joint hypothesis that the frequency of
exceedances is correct and that they are identically and independently distributed
(iid). Christoffersen (1998) shows that the likelihood ratio test for conditional
coverage is the sum:

LRcc = LRuc + LRind (3.5)

and LRcc is distributed as χ2
(2). LRuc is a likelihood ratio test, and under the

null hypothesis of correct unconditional coverage (frequency of exceedances) is

17 55 models for the conditional volatility, three different conditional mean specifications and
either normal or t-distributed errors.
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Table 3.4 The actual and expected number of VaR breaks, and actual divided by the total number of
observations (5776).

VaR1% VaR5% VaR10%

Model actual expected actual
obs. actual expected actual

obs. actual expected actual
obs.

EWMA-N 105 57 1.82% 342 288 5.92% 584 577 10.11%
EWMA-t 77 57 1.33% 347 288 6.01% 622 577 10.77%
EWMA-skew N 95 57 1.64% 326 288 5.64% 573 577 9.92%
EWMA-skew t 73 57 1.26% 338 288 5.85% 617 577 10.68%
EWMA-NIG 68 57 1.18% 331 288 5.73% 615 577 10.65%
EWMA-JSU 68 57 1.18% 336 288 5.82% 618 577 10.70%
GARCH-N 75 57 1.30% 301 288 5.21% 538 577 9.31%
GARCH-t 63 57 1.09% 313 288 5.42% 598 577 10.35%
GARCH-skew N 73 57 1.26% 289 288 5.00% 526 577 9.11%
GARCH-skew t 61 57 1.06% 308 288 5.33% 592 577 10.25%
GARCH-NIG 60 57 1.04% 302 288 5.23% 589 577 10.20%
GARCH-JSU 60 57 1.04% 305 288 5.28% 592 577 10.25%
IGARCH-N 72 57 1.25% 282 288 4.88% 513 577 8.88%
IGARCH-t 58 57 1.00% 300 288 5.19% 575 577 9.95%
IGARCH-skew N 68 57 1.18% 272 288 4.71% 493 577 8.54%
IGARCH-skew t 52 57 0.90% 295 288 5.11% 570 577 9.87%
IGARCH-NIG 48 57 0.83% 282 288 4.88% 564 577 9.76%
IGARCH-JSU 48 57 0.83% 284 288 4.92% 568 577 9.83%
GJR-GARCH-N 72 57 1.25% 284 288 4.92% 543 577 9.40%
GJR-GARCH-t 55 57 0.95% 300 288 5.19% 578 577 10.01%
GJR-GARCH-skew N 73 57 1.26% 273 288 4.73% 534 577 9.25%
GJR-GARCH-skew t 55 57 0.95% 295 288 5.11% 573 577 9.92%
GJR-GARCH-NIG 54 57 0.93% 286 288 4.95% 570 577 9.87%
GJR-GARCH-JSU 55 57 0.95% 290 288 5.02% 572 577 9.90%
EGARCH-N 72 57 1.25% 293 288 5.07% 543 577 9.40%
EGARCH-t 57 57 0.99% 301 288 5.21% 586 577 10.15%
EGARCH-skew N 67 57 1.16% 286 288 4.95% 540 577 9.35%
EGARCH-skew t 30 57 0.52% 277 288 4.80% 585 577 10.13%
EGARCH-NIG 55 57 0.95% 297 288 5.14% 583 577 10.09%
EGARCH-JSU 56 57 0.97% 301 288 5.21% 586 577 10.15%
APARCH-N 74 57 1.28% 289 288 5.00% 547 577 9.47%
APARCH-t 56 57 0.97% 309 288 5.35% 581 577 10.06%
APARCH-skew N 72 57 1.25% 280 288 4.85% 544 577 9.42%
APARCH-skew t 54 57 0.93% 299 288 5.18% 582 577 10.08%
APARCH-NIG 53 57 0.92% 291 288 5.04% 580 577 10.04%
APARCH-JSU 54 57 0.93% 296 288 5.12% 581 577 10.06%
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distributed as χ2
(1),

LRuc = −2 ln
[
(1− α)T0αT1

]
+ 2 ln

[
(1− T1/T )T0(T1/T )T1

]
(3.6)

where α is the known VaRα coverage rate, T the total number of observations,
T0 the number of non-exceedances and T1 the number of exceedances. LRind is
the likelihood ratio test of independence, also distributed as χ2

(1) under the null
hypothesis,

LRind = −2 ln
[
(1− π̂2)(T00+T11)π̂

(T01+T11)
2

]
+ 2 ln

[
(1− π̂01)T00 π̂T01

01 (1− π̂11)T10 π̂T11
11

]
(3.7)

where Tij denotes the number of days where state j occurred after state i occurred
the previous day, and i and j can take the value 1, which refers to exceedance or 0
which refers to non-exceedance; πij denotes the probability of state j given that
the state the previous day was i, π2 denotes the probability of exceedance given
independence. Estimates of the probabilities are calculated as:

π̂01 = T01

T00 + T01
, π̂11 = T11

T10 + T11
, π̂2 = T01 + T11

T00 + T10 + T01 + T11

Table 3.5 displays the p-values for the Christoffersen likelihood ratio tests, both
the joint test of conditional coverage (LRcc), as well as the individual tests of
unconditional coverage (LRuc) and of independence (LRind).

For VaR1%, independence cannot rejected for any model. For UC and CC (the
conclusions are the same for both) EWMA-N, EWMA-skew N and EGARCH-skew
t are rejected at a 1% significance level, while in addition EWMA-t, GARCH-N
and APARCH-N are rejected at a 5% significance level. At a 10% significance level,
all the remaining models with normal distributions as well as GARCH-skew N,
APARCH-skew N, GJR-GARCH-skew N and EWMA-skew t were also rejected.
We note that no NIG or JSU distributed model can be rejected even at the 10%
significance level, and only one t and two skew t distributed models are rejected,
namely EWMA-t, EWMA-skew t and EGARCH-skew t (which probably had some
convergence problems, see Figure B.5). Only two skew N distributed models cannot
be rejected—EGARCH-skew N and IGARCH-skew N, while all N distributed
models were rejected.

For VaR5%, all EWMA models are rejected at a 1% level for the joint CC test;
no other model can be rejected—neither jointly nor by the the individual tests.

For VaR10% and CC, IGARCH-skew N is rejected at a 1% level; in addi-
tion, EWMA-t, EWMA-skew t, EWMA-NIG, EWMA-JSU, GARCH-skew N and
IGARCH-N are rejected at a 5% level.

In summary, for VaR1%, the distribution seems to matter more than the model
specification, as a majority18 of models that do not take excess kurtosis into

18 On a 10% significance level.
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account (those with N and skew N distributions) were rejected, while no NIG or
JSU distributed model can be rejected. For VaR5%, however, EWMA performed
very poorly and were all rejected, while none of the GARCH type models could
be rejected. VaR10% seems to be a blend, a majority of the EWMA models were
rejected and the other three models to be rejected were N or skew N distributed.

Table 3.5 The conditional coverage test of Christoffersen (1998). LRuc denotes the p-values from
testing H0: correct exceedances (equivalent to the test of Kupiec (1995)), LRind denotes the p-values
from testing H0: independent, and LRcc denotes the p-values from testing the joint H0: correct
exceedances and independent.

VaR1% VaR5% VaR10%

Model LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc

EWMA-N 0.000*** 0.457 0.000*** 0.002*** 0.030** 0.001*** 0.779 0.036** 0.106
EWMA-t 0.015** 0.149 0.019** 0.001*** 0.008*** 0.000*** 0.054* 0.045** 0.021**
EWMA-skew N 0.000*** 0.733 0.000*** 0.028** 0.026** 0.008*** 0.840 0.060* 0.167
EWMA-skew t 0.053* 0.172 0.060* 0.004*** 0.012** 0.001*** 0.087* 0.043** 0.030**
EWMA-NIG 0.188 0.203 0.187 0.013** 0.012** 0.002*** 0.104 0.037** 0.030**
EWMA-JSU 0.188 0.203 0.187 0.005*** 0.010** 0.001*** 0.079* 0.046** 0.029**
GARCH-N 0.029** 0.160 0.035** 0.464 0.176 0.307 0.079* 0.292 0.123
GARCH-t 0.495 0.238 0.395 0.149 0.316 0.214 0.373 0.052* 0.102
GARCH-skew N 0.053* 0.172 0.060* 0.990 0.344 0.639 0.022** 0.341 0.046**
GARCH-skew t 0.671 0.254 0.476 0.251 0.251 0.268 0.529 0.064* 0.147
GARCH-NIG 0.768 0.262 0.510 0.429 0.186 0.305 0.618 0.094* 0.218
GARCH-JSU 0.768 0.262 0.510 0.332 0.217 0.291 0.529 0.064* 0.147
IGARCH-N 0.070* 0.178 0.078* 0.680 0.250 0.475 0.004*** 0.477 0.012**
IGARCH-t 0.975 0.278 0.555 0.502 0.376 0.539 0.909 0.069* 0.189
IGARCH-skew N 0.188 0.203 0.187 0.306 0.531 0.487 0.000*** 0.254 0.000***
IGARCH-skew t 0.438 0.331 0.462 0.709 0.303 0.549 0.738 0.067* 0.176
IGARCH-NIG 0.184 0.370 0.276 0.680 0.250 0.475 0.549 0.083* 0.186
IGARCH-JSU 0.184 0.370 0.276 0.771 0.275 0.529 0.673 0.058* 0.152
GJR-GARCH-N 0.070* 0.178 0.078* 0.771 0.774 0.920 0.126 0.993 0.310
GJR-GARCH-t 0.713 0.304 0.551 0.502 0.709 0.744 0.986 0.786 0.964
GJR-GARCH-skew N 0.053* 0.172 0.060* 0.336 0.550 0.526 0.053* 0.828 0.150
GJR-GARCH-skew t 0.713 0.304 0.551 0.709 0.607 0.817 0.840 0.900 0.972
GJR-GARCH-NIG 0.615 0.313 0.529 0.866 0.441 0.732 0.738 0.969 0.945
GJR-GARCH-JSU 0.713 0.304 0.551 0.942 0.511 0.804 0.806 0.923 0.966
EGARCH-N 0.070* 0.178 0.078* 0.800 0.277 0.536 0.126 0.652 0.280
EGARCH-t 0.920 0.286 0.564 0.464 0.730 0.721 0.713 0.947 0.933
EGARCH-skew N 0.233 0.210 0.224 0.866 0.614 0.868 0.096* 0.590 0.216
EGARCH-skew t 0.000*** 0.576 0.000*** 0.473 0.934 0.771 0.746 0.855 0.933
EGARCH-NIG 0.713 0.304 0.551 0.622 0.473 0.685 0.813 0.869 0.959
EGARCH-JSU 0.815 0.295 0.562 0.464 0.392 0.530 0.713 0.825 0.912
APARCH-N 0.040** 0.166 0.046** 0.990 0.493 0.791 0.176 0.856 0.394
APARCH-t 0.815 0.295 0.562 0.228 0.382 0.329 0.882 0.937 0.986
APARCH-skew N 0.070* 0.178 0.078* 0.593 0.346 0.556 0.137 0.788 0.319
APARCH-skew t 0.615 0.313 0.529 0.540 0.361 0.546 0.847 0.960 0.980
APARCH-NIG 0.523 0.322 0.499 0.894 0.374 0.668 0.916 0.913 0.989
APARCH-JSU 0.615 0.313 0.529 0.665 0.317 0.552 0.882 0.937 0.986
Note: p < 0.10 is denoted by *, p < 0.05 by **, and p < 0.01 by ***.
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3.3.3 Statistical losses
One drawdown of the Christoffersen (1998) test is that it does not take the size
of each VaR break into account. Therefore, we will calculate the statistical losses
for VaRα

t , using the asymmetric VaR loss function of González-Rivera, Lee, and
Mishra (2004):

L(rt,VaRα
t ) = (α− 1{rt<VaRαt })(rt − VaRα

t ), (3.8)

where 1{rt<VaRαt } is the indicator function for VaR exceedances, which takes the
value 1 when rt < VaRα

t and 0 otherwise. It penalizes the losses below the α
quantile level, i.e., rt < VaRα

t , with weight 1− α. Table 3.6 ranks the models by
the sum of the statistical losses.
Table 3.6 Ranking of the models by the sum of the statistical losses for VaR1%, VaR5% and VaR10%.

Rank VaR1% VaR5% VaR10%

1 EGARCH-NIG APARCH-JSU GJR-GARCH-JSU
2 EGARCH-JSU APARCH-skew t GJR-GARCH-NIG
3 EGARCH-skew N APARCH-NIG GJR-GARCH-skew t
4 APARCH-skew t APARCH-t GJR-GARCH-t
5 APARCH-JSU GJR-GARCH-skew t APARCH-skew t
6 APARCH-NIG GJR-GARCH-JSU APARCH-JSU
7 GJR-GARCH-skew t GJR-GARCH-NIG APARCH-NIG
8 GJR-GARCH-JSU EGARCH-NIG APARCH-t
9 GJR-GARCH-NIG GJR-GARCH-t GJR-GARCH-N
10 APARCH-t APARCH-skew N GJR-GARCH-skew N
11 APARCH-skew N GJR-GARCH-skew N APARCH-skew N
12 EGARCH-N APARCH-N APARCH-N
13 GJR-GARCH-t GJR-GARCH-N EGARCH-NIG
14 GJR-GARCH-skew N EGARCH-JSU EGARCH-JSU
15 APARCH-N EGARCH-skew N EGARCH-skew N
16 GJR-GARCH-N EGARCH-N EGARCH-N
17 EGARCH-t EGARCH-t EGARCH-t
18 IGARCH-skew N EGARCH-skew t EGARCH-skew t
19 GARCH-skew N GARCH-NIG GARCH-NIG
20 IGARCH-N GARCH-JSU GARCH-skew t
21 GARCH-NIG GARCH-skew t GARCH-JSU
22 GARCH-JSU IGARCH-skew t IGARCH-skew t
23 GARCH-skew t IGARCH-t IGARCH-JSU
24 GARCH-t IGARCH-JSU IGARCH-t
25 GARCH-N IGARCH-NIG GARCH-t
26 IGARCH-t GARCH-skew N IGARCH-NIG
27 IGARCH-skew t GARCH-t GARCH-N
28 IGARCH-JSU GARCH-N GARCH-skew N
29 IGARCH-NIG IGARCH-N EWMA-N
30 EGARCH-skew t IGARCH-skew N EWMA-skew N
31 EWMA-JSU EWMA-skew N EWMA-NIG
32 EWMA-NIG EWMA-NIG EWMA-JSU
33 EWMA-skew t EWMA-JSU EWMA-skew t
34 EWMA-t EWMA-skew t EWMA-t
35 EWMA-skew N EWMA-N IGARCH-N
36 EWMA-N EWMA-t IGARCH-skew N

The MCS procedure of Hansen, Lunde, and Nason (2011) described in Sec-
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tion 3.2.1 is used again to produce the model confidence sets for VaR1%, VaR5% and
VaR10% losses. As seen Table 3.7, for all levels of α, all the EWMA, IGARCH and
GARCH models are again eliminated just as in the MCS for the volatility forecasts.
For some reason, EGARCH-t and EGARCH-skew t are again also eliminated for
all three levels of α.19

When looking at the ranking of the non-eliminated models (i.e., those in the
MCS) we see some differences for different values of α.

For VaR1%, 16 models are included in the MCS. The EGARCH and APARCH
models that have distributions with skewness (skew-N, skew-t, NIG and JSU) seems
to be preferred and are in the top six. Then comes the three GJR-GARCH models
that allows for both skewness and excess kurtosis and then a mixture of the rest.

For VaR5%, 15 models are included in the MCS, in addition to the above
mentioned models eliminated for all levels of VaR, EGARCH-N is also eliminated.
APARCH that have distributions that allows for skewness and excess kurtosis (JSU,
skew-t and NIG) are in the top three, then we have APARCH-t at four, followed
by the three GJR models allowing for skewness and excess kurtosis (skew-t, JSU,
NIG). After that we have a mixture of the remaining models.

For VaR10%, 10 models are included in the MCS—in addition to EWMA,
IGARCH and GARCH, all the EGARCH models, APARCH-N and APARCH-skew
N are also eliminated. All the GJR-GARCH models remain and the ones that
allows for skewness and excess kurtosis forms the top three (JSU, NIG, skew-t)
and then comes GJR-GARCH-t, after which we have the four remaining APARCH
models, and finishing off with GJR-GARCH-skew N and N.

Table 3.7 The model confidence sets for VaR1%, VaR5% and VaR10%.

Rank VaR1% VaR5% VaR10%

1 EGARCH-NIG APARCH-JSU GJR-GARCH-JSU
2 EGARCH-JSU APARCH-skew t GJR-GARCH-NIG
3 APARCH-skew t APARCH-NIG GJR-GARCH-skew t
4 EGARCH-skew N APARCH-t GJR-GARCH-t
5 APARCH-JSU GJR-GARCH-skew t APARCH-skew t
6 APARCH-NIG GJR-GARCH-JSU APARCH-JSU
7 GJR-GARCH-skew t GJR-GARCH-NIG APARCH-NIG
8 GJR-GARCH-JSU EGARCH-NIG APARCH-t
9 GJR-GARCH-NIG GJR-GARCH-t GJR-GARCH-skew N
10 EGARCH-N APARCH-skew N GJR-GARCH-N
11 APARCH-t EGARCH-JSU -
12 APARCH-skew N GJR-GARCH-skew N -
13 GJR-GARCH-skew N GJR-GARCH-N -
14 GJR-GARCH-t APARCH-N -
15 APARCH-N EGARCH-skew N -
16 GJR-GARCH-N - -

19 We suspect convergence issues with the solver, which also seems to be an issue with EGARCH-
JSU, see the parameter instability in Figure B.5.
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González-Rivera, Lee, and Mishra (2004) analyzes VaR5% forecasts using condi-
tional volatility models with normal errors for S&P500 returns from April 1, 1970
to November 17, 2000, with the 999 last returns used as an out-of-sample period.
And similar to the current study, they find that EWMA and IGARCH performs
very poorly, while they find the stochastic volatility model20 (not included in our
study) to perform the best. Amongst the GARCH models included, EGARCH
performs the best, which does not agree with our findings, since EGARCH-N was
not included in the MCS for VaR5%.21

4 Conclusions
For forecasting one day ahead volatility the model specification seems to be more
important than the conditional distribution, and the winner is APARCH with the
only two models left in the MCS for the MSE losses and with all the top six models
in the MCS with the QL losses, while EGARCH and GJR-GARCH make up the
remaining models. No EWMA, GARCH or IGARCH models remain at all.

For forecasting one day ahead value-at-risk the conditional distributions are
more important than for forecasting volatility, but the model specification is still
important, with all the EWMA, GARCH and IGARCH models yet again eliminated
from the models confidence sets for all levels of VaR. Models distributed as JSU,
NIG and skew t (i.e., the distributions that allow for both excess kurtosis and
skewness) top all three levels of VaR. However, different model specifications seems
to be better for different levels of VaR, with EGARCH in the top for VaR1%,
APARCH in top for VaR5% and GJR-GARCH in top for VaR10%.

4.1 Suggestions for further research
There are many ways that this study could be extended. We could:

• Extend the scope by (i) including even more models and conditional distri-
butions, (ii) by including stochastic volatility models (Taylor 1982, 1986) or
implied volatilities from option prices.

• Include longer time horizons for the forecast, instead of only focusing on one
day ahead, such as forecasting a week and a month ahead.

20 See e.g., Shephard (1996, 2005) and Taylor (1994).
21 Only two models with normal errors were included in the MCS for VaR5% in our study,

namely GJR-GARCH-N and APARCH-N and they were ranked in the bottom, so the results of
González-Rivera, Lee, and Mishra (2004) may not be completely comparable to our study since
they only use normal errors to model the conditional volatilities.
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• Use more data. The current study only uses one equity index return series.
We could expand the study by including data from multiple asset classes and
countries.

• Use other proxies of volatility—since squared returns are quite noisy—e.g.,
realized volatilities or daily range.
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Appendix A Plots of one day ahead forecasts of σ̂t
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Figure A.1 One day ahead forecasts of σ̂t for EWMA.
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Figure A.2 One day ahead forecasts of σ̂t for GARCH.
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Figure A.3 One day ahead forecasts of σ̂t for IGARCH.
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Figure A.4 One day ahead forecasts of σ̂t for GJR-GARCH.
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Figure A.5 One day ahead forecasts of σ̂t for EGARCH.
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Figure A.6 One day ahead forecasts of σ̂t for APARCH.



Appendix B Parameter plots

Figure B.1 Parameter plots for all the estimations of the EWMA models. For EWMA-N all parameters are constants so they are
not included.



Figure B.2 Parameter plots for all the estimations of the GARCH models.



Figure B.3 Parameter plots for all the estimations of the IGARCH models.



Figure B.4 Parameter plots for all the estimations of the GJR-GARCH models.



Figure B.5 Parameter plots for all the estimations of the EGARCH models.



Figure B.6 Parameter plots for all the estimations of the APARCH models.



Appendix C VaR plots

Figure C.1 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with EWMA.



Figure C.2 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with GARCH.



Figure C.3 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with IGARCH.



Figure C.4 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with GJR-GARCH.



Figure C.5 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with EGARCH.



Figure C.6 Plot of OMXS30 daily returns and VaR5% (top) and VaR1% (bottom) forecasted one day ahead with APARCH.
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