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Abstract 
 
 

The purpose of the thesis relates to the Quality anomaly observed in the US equity market, where 

stocks with Quality characteristics tend to outperform and have higher risk adjusted returns. By 

dissecting the Quality anomaly, the thesis aims to analyze the drivers of the over performance of 

Quality and investigate the presence of a systematic Quality premium. From previous research, three 

areas have been identified as theoretical gaps – the magnitude of selection bias, how quality performs 

during different market conditions and if Quality has explanatory power in a cross sectional setting. 

By forming an aggregated, zero-investment Quality portfolio, regress it on traditional factor models, 

analyze condition Beta and perform a Fama Macbeth Cross Sectional Regression, the thesis aspires 

to address these gaps. Four main conclusions were brought to light; 

(i) The lack of a coherent definition of the Quality factor impose selection bias;  

(ii) There are tendencies towards flight to Quality – the risk-adjusted returns in excess of the 

market is mainly generated in down markets and over longer periods;  

(iii) The presence of a Quality premium is observed. When regressed on multifactor models, 

the Quality portfolio generates monthly significant alpha in between 0.431 - 0.549 %. 

Furthermore, the Quality portfolio loads significantly negative on market Beta, and 

tendencies are observed on significant negative factor loadings on SMB and HML. Thus, 

traditional factor models cannot explain the Quality premium.  

(iv) The premium appears to be caused by systematic errors rather than exposure to a 

systematic source of risk, as the Quality anomaly becomes evident first during longer 

time periods or during crises. In a CSR, Quality cannot be rejected to improve the model, 

but as such, it is also concluded not to be a compensation for carrying a systematic risk 

premium.     
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1 Introduction 

The first chapter of the essay provides a brief background to the evolvement of factor investing, from both an academic as 

well as an institutional perspective. This is followed by a literature review, which puts the Quality Anomaly in context, 

in terms of estimation techniques and previous research. Subsequently, a short review of the anomaly is discussed, 

followed by identification of theoretical gap, our research questions and the purpose of this essay. 

 

1.1 Background 
Equity risk premium is a multi-facetted expression, but it is often used in the context of the 

framework presented by Ross (1976), who stated that expected return of a financial asset can be 

modeled as a function of several sources of risk. In this spirit, empirical finance researchers have 

tried to uncover and determine common characteristics among stocks that exhibit abnormally high 

risk adjusted returns. Analogous to the progress within academia, a trend has emerged amongst 

institutional and retail investors; the inflows to systematic equity factor risk premium strategies, 

mainly through Exchange Traded Funds (ETFs), has exhibited a growth of 31 % CAGR during the 

last five years (Blackrock, 2017).  

Equity risk premium is as mentioned often described in the context of the framework presented by 

Ross (1976), Arbitrage Pricing Theory (APT). APT differs from CAPM in the sense that expected 

return of a financial asset can be modeled as a function of several sources of risk, not only the 

market factor, Beta1. Hence, in a general sense, a factor can be thought of as a specific trait, 

important for explaining an asset’s risk and return characteristics. However, the field is broad and 

can also incorporate strategies such as put/call writing strategies, volatility roll down, carry trades, 

total return swaps and repurchase agreements (Bank for International Settlements, 2017). 

Since the framework of CAPM was outlined in the 1950’s and 1960’s, one of the core concepts has 

been diversification – investors are compensated merely for holding market risk and not idiosyncratic 

risk (Markowitz 1952, 1959; Treynor 1961; Sharpe 1964; Lintner 1965; and Mossin 1966). Even if 

diversification is a cornerstone in the theoretical framework, the idea that a market portfolio (a 

capitalization weighted portfolio consisting of all available stocks) provides the highest risk adjusted 

                                                 
1 However, Ross does not state what these factors should be, but the sources of risk (and thus the drivers of asset 
returns) is often assumed to be modeled as either macroeconomic dynamics or theoretical equity market indices.  
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return, is not uncontroversial. Fama (1976) as well as Haugen, Nardin and Baker (1996) showed that 

a cap weighted index will be mean variance efficient only when considered in the context of four 

main assumptions. The first is that all investors have homogenous expectations regarding risk and 

expected return for all securities. Second, there should be no constraint in terms of short-selling. 

Furthermore, the returns from any investor’s portfolio should not be exposed to taxes. Lastly, the 

investment opportunity set, i.e the universe of tradable stocks, should be restricted to the stocks 

included in the cap-weighted index. Even in Wilshire 5000 (the most comprehensive equity index in 

the US), the fourth condition is violated (Haugen, Nardin, Baker, 1996). Neither is it realistic that the 

other assumptions are fulfilled. Absent above mentioned assumptions, even the most comprehensive 

cap-weighted portfolios engage positions within the efficient set. This finding implies that there is no 

practical way of implementing a “truly” mean variance efficient portfolio, using a broad index. This 

might be one of the explanatory sources as to why factor investing has increased in popularity 

throughout the years. 

Fama et. al. (1969) and Fama (1991) are famous for outlining the Efficient Market Hypothesis, which 

has been central in testing to what extent stock market returns can be forecasted. There is a quite 

broad consensus amongst contemporary financial economist that markets are hard to predict, and 

any achievement of doing so is a result of mere chance (Bogle, 2009; Malkiel, 1995, 2012; Gruber, 

1996; Barras et al, 2010; Berk and Binsbergen, 2012; Kosowski et al, 2006; Wermers, 2003; Jones and 

Wermers, 2011; Kinnel, 2010; Arnott, Berkin, and Ye, 2000; Ibbotson and Kaplan, 2000).  

In this context, the chase for alpha and the employment of active management investment strategies, 

appear to be a futile endeavor. This, combined with the empirical arguments against the idea that 

cap-weighted indices are mean variance efficient, leaves investors with a confusing setup. However, 

when the returns of active managers that consequently beat their respective benchmark is dissected, 

an interesting conclusion comes to light. Fama and French (2010) as well as Ang, Goetzmann and 

Schaefer (2009) showed that a majority of successful mutual funds tend to be exposed to well 

documented risk factors in the equity markets. In a similar note, Mok, Bender and Hammond (2013) 

found that about 50 % of the excess returns of mutual funds could be explained by the Fama French 

Three Factor Model. Thus, this implies that there is something systematic in the alpha generated by 

these managers. One of the conclusions in Mok et al is that some of this alpha is not a stochastic 

residual, but rather a systematic, extractable, dimension of equity return that can be harvested by 

using systematic factor strategies.  
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Lately, this line of thinking has been widely adopted by the industry. BlackRock, the world’s largest 

asset manager, earns a significant portion of their revenue from passive investing solutions and 

Exchange Traded Funds (ETFs) (BlackRock, 2017). Assets allocated to ETFs amounts to 

approximately USD 2 885 Bn, corresponding to 16 % of total assets under management in the US. 

Furthermore, the growth rate for ETFs during the last five years has been more than double that of 

other investment vehicles, aggregated (ETFGI, 2017).  

The increased demand from investors combined with a vast contribution within academia on equity 

risk premium, has enabled access to low cost ETFs in the equity markets2. These investment 

strategies are mainly constructed by using a broad parent index, but assigning different member 

weightings than in the cap weighted index. The most popular strategies base their member 

weightings on factors such as low Volatility, Dividend, Value, Quality, Size, Growth and Momentum 

rather than market capitalization.  

The implementation is often determined by using fundamental metrics as proxies for various risk 

premiums. One such factor, that has been more frequently and widely adopted, is Quality. In a 

general context, Quality screens aim to capture the premium of companies that have stable business 

models as well as growing profits, low leverage and solid cash flows (MSCI, 2013). Thus, the Quality 

strategy is often communicated as a way of mimicking the returns of investment guru’s such as 

Warren Buffet or Benjamin Graham. However, there is no coherent way of defining Quality, and 

even if various Quality screens have performed well in the past, there are different opinions as to 

why they have outperformed the market and if they will continue to do so going forward.  

This essay aims at dissecting the Quality Anomaly, and investigating potential sources of its historical 

outperformance. To fulfil the purpose, the essay is divided in three sub areas: investigating selection 

bias, the performance of Quality and Quality as a systematic risk factor. These three areas are 

identified as gaps from previous research. Before these are described more in detail, a section of 

previous research is presented, which puts the Quality Anomaly in context.  

 

                                                 
2 The cost for strategy ETF:s issued by iShares (BlackRock) is between 5 – 75 basis points annually, 
and the vast majority has net expenses of 20 basis points (iShares, 2017). 
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1.2 Literature Review and Previous Research 
 
1.2.1 Factor Investing 
CAPM can be viewed as the first factor model for asset prices. It uses only the market Beta as a 

factor, important for explaining asset returns (Markowitz 1952, 1959; Treynor 1961; Sharpe 1964; 

Lintner 1965; Mossin 1966; and Black 1972). Since the CAPM framework was outlined, a lot of 

research has been conducted in the spirit of Ross’ APT (1976). Subsequently, a lot of evidence has 

been put forward to strengthen the existence of certain risk premiums in the equity markets, most of 

them starting from a point where they see CAPM as an obsolete model that lacks explanatory power. 

Before these academic efforts are descried more in detail, an outline of previous research regarding 

factor methodology is presented.  

Connor (1995) stated that there are three main categories of factors: macroeconomic, statistical, and 

fundamental. Macroeconomic factors can for instance be surprises in PMI, changes in various 

business cycle variables, inflation and changes in the yield curve. (See also Chen, Ross, and Roll 

(1986)).  

Statistical factor models on the other hand takes advantage of various statistical estimation 

techniques, such as principal components analysis. The principal components analysis method selects 

a linear combination of asset returns which contribute with the highest variance (Egloff, Leippold, 

Wu 2010; Litterman, Scheinkman, 1991; Stock, Watson 1999; Johnson & Wichern 2009). The 

principal component analysis was developed by Pearson (1901) and Hotelling (1933), but one of the 

more cited modern reference is Jolliffe (2002). There is a vast spectrum of methods concerning 

estimation techniques, and except from principal component analysis, some of the more frequently 

used techniques are panel regressions, Bayesian models and latent factor models, to mention a few 

(Miller, 2006).   

Fundamental factors aim to capture certain characteristics among stocks, and to be a proxy of traits 

that are not directly observable. Fundamental factors have been thoroughly studied since the 

framework of APT was outlined, as a part of the field of academic asset pricing. Among the first to 

describe the prominence of individual stock traits as an explanatory variable of stock returns was 

Fama and Macbeth (1973). They could not reject the hypothesis that no measure of risk, in addition 

to Beta, systematically affected expected returns. They created a framework for testing for various 

risk premiums in the equity market, the so called Fama Macbeth Regressions. Due to this 



 8 

contribution, the foundation for many empirical papers regarding equity risk premiums was outlined.  

One of the most cited and well known academic efforts in the field of fundamental factors originates 

from the research of Eugene Fama and Kenneth French in the early 1990s. Fama and French (1992, 

1993) put forward a model explaining US equity market returns with three factors: the “market” 

(defined as in the traditional CAPM), the size factor (a sort based on large capitalization stocks 

versus small capitalization stocks) and the value factor (high book-to-market value of equity versus 

low book-to-market value of equity). Fama and French concluded that market Beta has a low 

explanatory power in terms of explaining the cross-sectional variation in the returns of stocks and 

bonds, implying that the traditional CAPM framework is insufficient as an explanatory model for the 

drivers of asset returns. Throughout the past decades, empirical finance researchers have studied a 

multitude of auxiliary stock traits, ranging from cash flow-, income statement- and balance sheet 

metrics, in order to unfold new fundamentally based factors in the equity markets.   

1.2.2 The Quality Anomaly 
Quality, as an investment strategy, seeks to capture the excess returns of companies that are efficient 

in an operational sense, are stable in terms of earnings and cash flows, have low leverage, are highly 

profitable and associated with low operational risk. Even if this definition is quite vague, these traits 

and this line of thinking have been popular in the active investment industry for decades. But as a 

more quantitative phenomenon, Quality is a rather new occurrence. As a dimension in factor 

investing, Quality was popularized first by Asness, Frazzini, and Pedersen (2013), but it is still not 

consistently defined. This indicates that the risk sources behind a Quality screen has not yet been 

uncovered and documented thoroughly. 

Like other stock market anomalies, the Quality anomaly has been identified from empirical tests of 

the Capital Asset Pricing Model of Sharpe (1964), Lintner (1965) and Black (1972), and later the 

multifactor models of Fama and French (1992) and Carhart (1997). The evidence from an empirical 

stand point indicates that portfolios sorted on Quality metrics such as profitability, earnings quality 

and safety have produced higher risk-adjusted returns relative to the market portfolio. However, the 

size of the premium is not coherent; it varies depending on which metrics are used, the time period 

investigated, the geographical market or stock sample examined as well as the asset pricing model 

used to measure portfolio risk. This leaves a somewhat disintegrated picture of the Quality anomaly. 

One of the first published Quality screens goes back to Benjamin Graham and the book “The 
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Intelligent Investor” from 1949. In chapter 14, Graham outlines a screen of combined financial 

metrics (Graham, 1949). Graham’s strategy was built on the premise that undervalued and 

underappreciated companies, that meet some given criteria, should be subject to higher expected 

returns. Graham considered metrics such as debt ratios, earnings stability, past earnings and dividend 

growth to be as important as valuation metrics such as price-to-earnings and price-to-book ratios. 

Another publication of Graham and Dodd (Graham, Dodd, 1934, page 351, Security Analysis) 

outlines a more rigor definition of Quality. This line of thinking was adapted by Graham’s disciple, 

the famous Warren Buffet. Buffet’s investment company Berkshire Hathaway has realized a Sharpe-

ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and 

Berkshire has consecutively produced significant alpha compared to the CAPM (Asness et al, 2013).  

Another impactful individual, who share a similar investment philosophy as Buffet, Dodd and 

Graham, is Peter Lynch. His efforts at the Magellan Fund and Fidelity Investments have made him 

an investment guru in the asset management industry. The common denominator is that they all 

invest in stocks that exhibit the Quality characteristics discussed above. Due to their high returns in 

excess of the stock market, their strategies have been subject to dissection by both practitioners as 

well as academia.  

Some of the early research on statistical relationships of earnings and stock performance links back 

to Foster (1977); Watts and Leftwich (1977); Albrecht et al. (1977); Beaver (1970); and Griffin 

(1977), indicating that profitable stocks tend to outperform broad benchmarks. In the 1980’s, 

Graham and Dodd’s Earnings Quality measure was re-introduced into the academic sphere, as a 

descriptive characteristic of earnings for academic researchers (O’Glove, 1987; Lev 1989), and thus 

forming a more coherent view on quality as a definition. 

Sloan (1996) was one of the first to validate the excess returns to high earnings quality stocks, where 

accruals proxy for earnings quality. Other examples of studies of this type are Lev and Sougiannis 

(1996), who evaluate how investor responds to increased or decreased earnings and accruals. This is 

was also described by Landsman et al. (2008). Bender and Nielsen (2013) and Kozlov and Petajisto 

(2013) both reconfirm the accruals effect, but for the the 2000s. They find similar results, namely 

that the accruals anomaly persisted throughout the time period examined in generating positive 

alpha. Leippold and Lohre (2010) concluded that in 22 of the 26 markets they examined, the accruals 

constituted an evident anomaly.  
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In a similar manor, Huang (2009) finds that firms with stable cash flows tend to outperform, 

measured as volatility of cash flow. The paper argued that cash flow volatility provides a better 

measure of the overall riskiness of a company than accruals.  

Dichev (1998), Griffin and Lemmon (2002), Vassalou and Xing (2004) and Campbell et al. (2008) all 

found that financial distress, as defined by trailing financial ratios, on average is associated with lower 

returns. The result applies for different markets and during diverse time periods. This was also 

investigated by George and Hwang (2010), by studying low leverage companies. The authors showed 

that there is a significant return premium in companies with low leverage, and when the results were 

put in a risk-adjusted return context, the results became even more clear. Another effort in this space 

was made by Penman, Richardson and Tuna (2007). They separated the book-to-market ratio into an 

asset and a leverage component. From this, they concluded that the leverage component of the 

book-to-market ratio negatively predicts to stock returns.   

Other modern endeavors within this field, generated in the spirit of Graham’s screen, have been 

made by Pitroski (2000) and Greenblatt (2005). Pitroski (2000) proposed an investment screen, based 

on 9 financial metrics, and the screen outperformed and produced significant alpha. The investment 

strategy bought expected winners and shorted expected losers, by filtering on financial metrics, and it 

generated 23 % annual return between 1976 and 1996. The strategy was robust over time. The screen 

has been revisited by many practitioners since it was outlined, and the screen has continued to 

perform well (Hyde, 2015). 

Greenblatt published a book in 2005, “The Little Book that Beats the Stock Market”, in which he 

outlined a stock screen, called “The Magic Formula” (Greenblatt, 2005). A dissection of the strategy 

was done by Novy-Marx in 2013, where the results indicated that the investment strategy produced 

significant results (alpha of 2,8 % yearly) (Novy-Marx, 2013).  Before this, Novy-Marx (2012) 

identified a proxy for profitability that was concluded to be closely correlated with average return. 

The sample at hand was the US stock market, and the time period spanned from 1963 to 2010. 

Stocks with high profitability characteristics produced alpha of 1,44 % per annum, and the return 

could not be explained by CAPM, Fama French Three Factor Model or Carhart’s Four Factor 

Model. Moreover, the alphas were significant over time.  

Dechow, Ge, and Schrand (2010) made a comprehensive review of how earnings persistence, 

accruals, earnings smoothness and loss avoidance affect stock prices. When weighing in on more 
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than 300 papers (many originating from the accounting field) they concluded the following. First, 

abnormal accruals tend to have positive persistence. Second, investors appear to recognize the 

distinction between High and Low Quality firms (such as abnormal accruals and normal accruals), 

but they do not fully incorporate the implications into price. Third, the literature is inconsistent 

regarding the causality from observing a quality company (in terms of fundamentals) to the 

consequences for future period earnings. Some papers find that quality is predictable, whereas others 

do not.  

A paper that merged fundamental metrics with a multi factor asset model was outlined by Chen, 

Novy-Marx and Zhang (2011). They included ROE in an alternative three factor model, with the aim 

to improve the explanation the cross-sectional variation stock returns. They showed that a long-short 

ROE factor earned a statistically significant average return of 0,71 % per month from 1972 to 2010, 

thus confirming that ROE can serve as a proxy for profitability and earnings quality.  

Moreover, Novy-Marx (2014) finds that gross profitability performs relatively better than quality 

strategies such as Graham’s quality, especially among large-cap US stocks. They also concluded that 

profitability has approximately the same explanatory power as book-to-market in explaining the cross 

section of average stock returns. 

Aharoni, Grundy, and Zeng (2013) document a somewhat weaker but still statistically reliable 

relation between firm investment and average return. (See also, Haugen and Baker 1996; Cohen, 

Gompers, and Vuolteenaho 2002; Fairfield, Whisenant, and Yohn 2003; Titman, Wei, and Xie 2004; 

Fama and French 2008, 2014.). A more extensive paper, published by Asness, Frazzini, and Pedersen 

(2013) indicates that high quality companies, measured by three categories (profitability, stable 

growth, and high payout ratio) has significantly higher risk-adjusted returns than the market 

portfolio.  

In 2013, a paper by Frazzini, Kabiller, and Pedersen was published, called Buffet’s Alpha. Buffet’s 

investment company Birkshire Hathaway has consequently produced significant alpha, but the alpha 

was found to be insignificant when controlling for exposures to other factors than Beta. This spurred 

an interesting discussion regarding to what extent Buffet’s Alpha could be extracted using factors in 

the equity market (Frazzini, Kabiller, Pedersen, 2013). 

In 2014, Fama French reiterated their factor approach from the 90s, in a paper called “A Five Factor 
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Asset Pricing Model”. They extend the original three factor model with two additional measures – 

RMW and CMA. RMW stands for Robust Minus Weak, and is a sort based on the robustness of 

profits and earnings power. CMA stands for Conservative Minus Aggressive, hence sorting stocks 

based on the level of investments made by the company. Their results indicate that the model 

provides a good description of asset returns; however, the results were not statistically significant 

(Fama, French 2014).  

Asness et al. (2014) found that portfolios sorted on profitability, safety and earnings quality have 

generated statistically significant alphas, both globally as well as in the US. The average profitability 

premium in the US over the period from 1956 to 2012 was 0,4 % per month, and the Four Factor 

Model alpha amounted to 0,53 % per month. 

Despite the pervasiveness of quality investment strategies, not much research has attempted to 

explain why quality outperforms. In theory, it is reasonable that quality stocks should command 

higher prices. As Asness et al. (2014) point out, investors should be willing to pay a higher price for 

companies with quality characteristics, as these companies tend to have either higher expected cash 

flows or lower volatility in cash flows- Due to this effect, this kind of companies would not 

necessarily imply higher risk-adjusted returns, since they are priced higher.  

To sum up previous research efforts, there is a clear indication that a quality screen, in various 

constellations, exhibit higher risk adjusted returns than the market, and that return patterns cannot 

be explained by the CAPM. The main challenge seems to be how to define the quality factor 

consistently and objectively by uncovering reliable proxies for the sources that drive the return of 

Quality stocks. As with other market anomalies, this premium may exist due to a variety of aspects, 

and the critiques range from insufficient risk models, measurement errors, data mining effects and 

overfitting, to behavioral biases (survivorship bias, home country bias, familiarity bias and selection 

bias to name some) and institutional constraints, including restrictions on short selling, tax effects et 

cetera (Davis, 2001). This is more thoroughly discussed in the Method section.  

Exhibit 1 summarizes eight of the most widely studied factors.  
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Exhibit 1: Well documented Systematic Factors from the Academic Research  

 
Companies that exhibits one or more of the characteristics outlined above, also tend to exhibit 

certain patterns in stock returns on average. These patterns cannot always be explained by the 

CAPM. In 2008, Fama and French (2008) dissected some of the most frequently used factors to 

conclude that anomalies can be linked to factors, in a cross sectional setting. Thus, some of these 

traits are considered to constitute anomalies that are left unexplained by the traditional framework of 

Modern Portfolio Theory.  

1.3 Theoretical Gap and Research Questions 
As described above, previous research indicates that quality screens generate higher risk adjusted 

Factor 
 

Explanation 

Value Captures excess returns to stocks that have low prices relative to 
their fundamental value 

Low Size Captures excess returns of smaller firms (by market 
capitalization) relative to their larger counterparts 

Momentum Reflects excess returns to stocks with stronger past performance 

Low Volatility Captures excess returns to stocks with lower than average 
volatility, Beta, and/or  

Dividend Yield Captures excess returns to stocks that have higher-than-average 
dividend yields 

Quality Captures excess returns of stocks that are characterized by low 
debt, stable earnings growth, and other “quality” metrics 

Growth Captures companies that have high historical sales and EPS 
growth, and high expected growth in EPS. 

Liquidity Captures companies that have low liquidity in their tradable 
assets 
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returns, but there is not yet a clear, quantitative definition of quality as a factor. Neither has previous 

research been able to produce coherent results as to why quality characteristics tend to outperform 

the market. There is no clear explanation to why this phenomenon occurs; is it due to errors in 

investor expectations, or could there be a systematic, non-diversifiable source of risk, that investors 

demand higher returns for? Quality metrics seem to constitute a proxy for some source of risk, due 

to the excess returns generated over long time periods, but there is no broadly accepted explanation 

today. The most prevailing explanation is a “residual” remark; the reason why quality has 

outperformed historically is due to errors in expectations. Thus, the theoretical gap that this essay 

focus on is the lack of explanations of the quality anomaly. 

Therefore, the scope of the thesis is to investigate the following areas:  

Magnitude of Selection Bias: Create zero investment portfolios for single metrics, frequently used 

in the literature, to analyze the magnitude of the selection bias. Another aspect of the selection bias 

will also be analyzed, namely that two Quality portfolios are constructed, one based on previous 

research and one screen based on Svenska Handelsbanken (SHB) selection of metrics, and how 

different combinations of metrics affect the portfolio.  

The Performance of Quality: To enhance the understanding the Quality anomaly, the thesis 

analyzes how Quality performs during different market conditions, as well as outlining if there exist a 

premium is in terms of alpha, in a multifactor setting.  

The Quality Factor: Can a zero-investment portfolio, which is long High Quality stocks and short 

Low Quality stocks, help explain a larger proportion of the cross-sectional variation in equity returns, 

thus stating a systematic source of risk, or are the returns linked to a systematic error among 

investors?  

1.4 Purpose 

The purpose of the thesis is therefore to investigate why stocks with Quality characteristics tend to 

outperform and have higher risk adjusted returns. By dissecting the Quality anomaly, this essay aims 

to investigate the presence of a systematic Quality premium. 
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2 Theory 

The chapter covers the main theories and academic concepts within the field of financial economics which relates to 

market efficiency and asset pricing models. The theories presented will serve as the basis for the thesis, providing the 

background and foundation essential to analyzing the Quality anomaly.  

 

2.1 The Capital Asset Pricing Model 
The Capital Asset Pricing Model (CAPM) is considered the foundation of asset pricing theory and 

constitutes the framework of Modern Portfolio Theory. It was developed by joint contributions 

from Markowitz (1952, 1959), Treynor (1961), Sharpe (1964), Lintner (1965), Mossin (1966) and 

Black (1972). The basis of the CAPM relies on the idea that there are two types of risk from which 

returns are generated – Systematic risk and unsystematic risk. Systematic risk can be viewed as 

market risks and hence cannot be diversified away, while unsystematic risk, so called idiosyncratic 

risk, is specific risk to an individual asset and thus uncorrelated to market movements. The 

unsystematic risk can be eliminated by diversification, why investors should only be compensated for 

carrying systematic risk. The CAPM provides a framework for measuring the systematic risk as a 

function between expected return and exposure to the market (Beta).  

 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑓𝑓 +  𝛽𝛽𝑖𝑖𝑖𝑖�𝑟𝑟𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑓𝑓� 

 

Where rit is the return of any asset i during time t, 𝑟𝑟𝑓𝑓 is the risk free rate, 𝛽𝛽𝑖𝑖𝑖𝑖 is the sensitivity of 

asset i to the market return, 𝑟𝑟𝑚𝑚𝑚𝑚. Usually, this equation is determined by regression analysis. If 

(𝑟𝑟𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑓𝑓)  is defined as a vector of excess market returns, X, and 𝑟𝑟𝑖𝑖𝑖𝑖 is defined as a vector of asset 

i:s returns, Y, OLS can be used to estimate the 𝛽𝛽𝑖𝑖𝑖𝑖, by (X’X)-1 X’Y. 𝛽𝛽𝑖𝑖𝑖𝑖 can also be estimated using 

GLS if autocorrelation or heteroscedasticity is observed. Then an intertemporal homoscedastic 

covariance matrix Ψt can be used to estimate 𝛽𝛽𝑖𝑖𝑖𝑖. Markowitz proves that under certain assumptions, 

the 𝛽𝛽𝑖𝑖𝑖𝑖 is defined as: 

𝛽𝛽𝑖𝑖𝑖𝑖 =
𝐶𝐶𝐶𝐶𝐶𝐶 ( 𝑟𝑟𝑖𝑖, 𝑟𝑟𝑚𝑚)
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑟𝑟𝑚𝑚)
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2.2 The Mean Variance Framework 
The Mean Variance Framework, popularly referred to as Modern Portfolio Theory, MPT, states that 

an investor wants to maximize the return for any given level of risk. MPT assumes that investors are 

risk averse, implying that an investor facing two portfolios with similar return characteristics but 

different risk levels, will chose the less risk one.  

 

By this logic, an investor face a trade-off in terms of risk and return, and an investor will only 

increase the level of risk if she is compensated by higher expected returns. The relationship will be 

the same for all investors, but investors will evaluate the trade-off differently as each investor’s utility 

function differs in terms of risk aversion. Consequently, the framework outlines a concept referred 

to as the efficient frontier, showing the combination of all available assets, which in turn shows the 

efficient set – the portfolios with the highest return for every level of risk. (Markowitz, 1952) 

 

The efficient set shown below:  

 
 
 

2.3 Arbitrage Pricing Theory 
As an alternative to the Mean Variance Asset Pricing Model proposed by Sharpe (1964), Lintner 

(1965) and Treynor (1961), Arbitrage Pricing Theory (APT) was introduced by Ross in 1976. In the 

Mean Variance Model, the linear relation between return and risk (Beta) is used in order to price 



 17 

assets. The APT builds on CAPM’s ability to price risky assets, but relies on the argument that the 

return of assets is driven by various macro-economic factors rather than only the exposure to the 

market factor. Ross (1976) asserts that there are an infinite number of factors, both macro-economic 

and firm-specific, on which the assets expected return depend on. The APT formula is depicted 

below: 

𝑟𝑟 = 𝑟𝑟𝑓𝑓 +  𝛽𝛽1𝐹𝐹1 + 𝛽𝛽2𝐹𝐹2 + ⋯+ 𝛽𝛽𝑛𝑛𝐹𝐹𝑛𝑛 

 

Where r is the rate of return, rf the risk-free rate, βi represents the sensitivity of asset i in relation to a 

factor, and Fi is the systematic factor.  

 

The APT is far less restrictive in terms of its assumptions than the CAPM, and leaves more room for 

the investor to customize and develop a model for a specific asset’s return. However, this implies 

that the investor must in turn identify each of the factors used in every specific asset, which is no 

trivial matter. In the CAPM, which can be viewed as a simplified model of the APT, only one factor 

needs to be considered: the risk of a particular asset relative to the market.  

 

2.4 The Efficient Market Hypothesis and Systematic Risk versus Systematic Errors 
In general, there are two main camps in the debate over what drives factor returns—one based on 

the view that markets are efficient and that factors reflect “systematic” sources of risk, and one based 

on the view that investors either exhibit behavioral biases or are subject to different constraints. 

These constraints can be such as time horizons, investable geography, ability to use leverage or tax 

effects (Ross, 1976).  

2.4.1 Systematic Risk 
In accordance with the APT (Ross, 1976) and the Efficient Market Hypotheses (Fama et al 1969), 

systematic risk refers to the risk attached to the factors; since these factors provide the stock its traits 

and the risk to these traits cannot be diversified away given an efficient market and rational investors, 

thus making the sources of risk ‘systematic’. A premium in terms of excess return should therefore 

be earned for companies carrying systematic risk. Systematic risk could for instance be found in 

exposure macroeconomic factors, such as growth and inflation, in factors such as Value, Size and 

Momentum, since these are sensitive to shocks in the economy and thus must carry a return 

premium for the investor. Another example of systematic risk can be found in the small cap 
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premium, which is believed to be due to exposure to stocks characterized by low liquidity (Liu, 

2006), low transparency (Zhang, 2006) and are more likely to be distressed (Chan and Chen, 1991; 

Dichev, 1998). 

2.4.2 Systematic Errors 
Another explanation for the excess return earned by factors is due to investors’ systematic errors. 

One suggestion, which can be derived from literature in behavioral finance, asserts that investors 

exhibit biases, such as chasing winners, preferring familiar investments and overconfidence, which 

can explain the observed factor anomalies in the market. Another camp within those who argue for 

systematic errors as explanation for factor anomalies, suggests that even though investors behave 

rational, they can be subject to different constraints. Investor constraints and frictions from 

regulatory and industry practices are argued to affect factor performances. For instance, studies have 

shown that low volatility stocks earn a premium over time horizons stretching beyond 10 years, while 

most investors prefer a much shorter time horizon and stocks with high liquidity. Therefore, an 

investor with a longer time horizon should earn higher returns, a premium, for carrying the horizon 

risk. 

2.5 Factor Models 
2.5.1 Fama and French Three Factor Model 
In 1993, Eugene Fama and Kenneth French introduced an extension to the Capital Asset Pricing 

Model where two variables, besides the market factors, are presented. In the Fama French Thee 

Factor Model (1993), both size and book-to-market ratio, together with the market factor, is used in 

order to explain the cross-section of average returns on assets. Fama and French (1992) finds that 𝛽𝛽, 

used alone or in combination with other variables, gives limited information in regards to average 

returns, while size, leverage, E/P and book-to-market equity does however carry explanatory power. 

Especially the two variables size (ME) and book-to-market equity (BE/ME) are useful in explaining 

the cross-section of average stock returns. The size factor used by Fama and French (1993) is 

measured as “Small (market cap) minus Big” (SMB) and relies on the findings that small firms tend 

to outperform larger firms. The excess return from a portfolio consisting of firms with small market 

capitalization (S) is taken over the excess return of a portfolio with large capitalization firms (B). The 

book-to-market factor, “High (book-to-market) minus Low” (HML), is constructed in a similar 

fashion, taking excess return from a portfolio consistent of firms with a high book-to-market ration 

(H) over the excess return of a portfolio with low book-to-market ratio firms (L). This is due to the 
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fact that firms with high book-to-market ratio, known as value stocks, have a tendency to 

outperform firms with low book-to-market ratio.  

 

𝑟𝑟 = 𝑟𝑟𝑓𝑓 +  𝛽𝛽𝑚𝑚�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓� + 𝛽𝛽𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆) +  𝛽𝛽𝑣𝑣(𝐻𝐻𝐻𝐻𝐻𝐻) 

 

Where r denotes the expected rate of return, rf is the risk-free rate and rm represents the return of the 

market portfolio. βm is analogous to the classical β but not equal to it, since we now have an 

additional two factors at play, SMB and HML. βs and βv denotes the sensitivity to these factors 

respectively.  

 

2.5.2 Carhart Four Factor Model 
Carhart (1997) builds on the Fama and French Three Factor Model (1993) by adding an additional 

factor to the model – momentum. While investigating the persistence in mutual fund performance, 

and building of the research on the Momentum factor by Jagadeesh and Titman (1993), Carhart 

(1997) found that stocks with a high return in the past tend to perform well in the next period as 

well. Thus, the momentum factor, “Up (performance) Minus Down” (UMD) was added and 

constructed by taking the excess return of past winners (U) over past losers (D). The Carhart Four 

Factor Model is depicted below: 

 

𝑟𝑟 = 𝑟𝑟𝑓𝑓 + 𝛽𝛽��𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓� + 𝛽𝛽𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆) + 𝛽𝛽𝑣𝑣(𝐻𝐻𝐻𝐻𝐻𝐻) +  𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈) 

 

Where r denotes the expected rate of return, rf is the risk-free rate and rm represents the return of the 

market portfolio, βm represents the sensitivity to the market, βs, βv and βmom denotes the sensitivity to 

the size-, value- and momentum-factor respectively.  

 

2.5.3 Fama and French Five Factor Model 
Fama and French (2014) also built on their original Thee Factor Model by including an additional 

two factors – Profitability and an Investment factor. The argument for adding these two variables 

can be derived from the Dividend Discount Model (Fama, French 2006), which supplies further 

evidence that profitability and investment add to the description of average returns provided by the 

book-to-market ratio. The book-to-market ratio can be calculated by the following formula:  
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𝑀𝑀𝑡𝑡

𝐵𝐵𝑡𝑡
=
𝐸𝐸𝑡𝑡 � ∑ .∞

τ =1
 𝑌𝑌𝑡𝑡+ τ −  𝑑𝑑𝐵𝐵𝑡𝑡+ τ

(1 + 𝑟𝑟)τ  �

𝐵𝐵𝑡𝑡
 

  

Where 𝑀𝑀𝑡𝑡  is the market value of the firm at time t,  𝐵𝐵𝑡𝑡  is the firm’s book equity,  𝑌𝑌𝑡𝑡+τ is the total 

equity earnings for period 𝑡𝑡 +  τ,  𝑑𝑑𝐵𝐵𝑡𝑡+τ is the change in book value (i.e firm investment), 𝑟𝑟 is the 

internal rate of return of dividends (a proxy for expected return). It follows that, all else held equal, 

differences in expected profitability  𝑌𝑌𝑡𝑡+τ should, in the cross section, be related to the rate of 

return, 𝑟𝑟. Keeping the market-, book-value and the expected change in book value constant, the 

variation in expected earnings should be related to the variation in the rate of return. High expected 

profitability predicts a high rate of return, just as high valuation, 𝑀𝑀𝑡𝑡
𝐵𝐵𝑡𝑡

, and high rates of expected 

investment should predict a lower expected return.  

 

Novy-Marx (2012) and Aharoni, Gundy and Zeng (2013) identify relationships between expected 

profitability and average return, and investment and average return separately, why an augmented 

version of the Fama and French Three Factor Model (1993) is included with the two factors. In the 

Fama and French Five Factor Model (2014), the profitability factor is measured by the difference in 

returns of portfolios with “Robust” (R) and “Weak” (W) profitability - “Robust minus Weak” 

(RMW). The investment factor is measured in a similar fashion between portfolios of low (C) and 

high (A) investment stocks – “Conservative minus Aggressive” (CMA).  

 

𝑟𝑟 = 𝑟𝑟𝑓𝑓 +  𝛽𝛽𝑚𝑚�𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓� + 𝛽𝛽𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆) + 𝛽𝛽𝑣𝑣(𝐻𝐻𝐻𝐻𝐿𝐿) +  𝛽𝛽𝑝𝑝(𝑅𝑅𝑅𝑅𝑅𝑅) + 𝛽𝛽𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶) 

 

Where r denotes the expected rate of return, rf is the risk-free rate and rm represents the return of the 

market portfolio, βm represents the sensitivity to the market, βs, βv, βp and βi denotes the sensitivity to 

the size- value-, profitability-, and investment-factor respectively.  

 

2.6 Conditional Beta 
The Sharpe-Lintner-Black model (SLB) is based on the assumption of a positive risk-return tradeoff, 

and asserts that the expected return for any asset can be derived by a positive function of three 

variables: Beta, the risk-free rate and the expected market return. This implies that the only cause for 

systematic differences in returns between assets depend on the asset’s responsiveness to market 
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movements. Although early empirical tests, such as Fama and MacBeth (1973), supported the validity 

of the SLB model, the usefulness of Beta as the sole measure of risk for a security has been 

challenged by at least three arguments. The first argument suggests that Beta is not the most efficient 

measure of systematic risk, but rather systematic responsiveness to macroeconomic variables should 

be measured (Chen et al, 1986). The second argument relies on empirical evidence that security 

returns are affected by unsystematic risk (Lakonishok and Shapiro, 1986). The third argument states 

that there is empirical evidence which indicates the absence of a systematic relationship between Beta 

and security returns (Fama and French 1992). Therefore, the question of Beta’s efficiency and 

completeness arises, and whether or not Beta does in fact measure risk and if there is a risk-return 

tradeoff. 

 

By using realized market returns as a proxy for expected market returns and assuming an inverse 

relationship between realized returns and Beta, when the realized market returns fall below the risk-

free rate, Pettengill, Sundaram and Mathur (1995) are able to find a significant and systematic 

relationship between Beta and returns. Their evidence of a positive risk-return tradeoff, when Beta is 

used as a measure of risk, supports Betas usefulness as a measure of risk, although it might not be 

direct support of the Sharpe-Lintner-Black model.  
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3 Method 
 

In the following section, the methodology of the thesis is described and justified. The gathering of data and the process of 

analyzing it is presented in detail, in combination with critical perspectives and delimitations throughout the process. 

 

3.1 Determining Geography 
The American equity market is chosen due to several reasons. First, the amount of data is extensive, 

both in terms of completeness in a historical context, but also in terms of accounting standards. This 

mitigates some data selection issues. The universe of investable stocks is also larger than for instance 

the European equity market. Furthermore, the American stock market is likely one of the more well-

functioning markets in a global context, in terms of efficiency.  

3.2 Collecting Data 
The Bloomberg terminal was used to collect the data. The data has been gathered from stocks 

incorporated in the Wilshire 5 000 index, the broadest equity index available in the US market. Due 

to data issues, historical performance and reliable accounting variables were only retrievable from 

January 1993. However, throughout the time period investigated, there have been several financial 

and economic crises. Also, during this time period, a lot of progress has been done in terms of factor 

investing, which may affect the results and the pervasiveness of the Quality anomaly as well as other, 

today, well documented factors. Altogether, we believe that the time period captures these aspects 

and thus provides an interesting and sufficient time window for the purpose of the thesis. 

Furthermore, all data is collected monthly, providing a total of 288 observations during the period 

examined, for each asset and each portfolio. Financial stocks are not excluded from the data, due to 

data issues. We observe the universe one time each year, and follow the same process as Fama and 

French (1992). The average number of stocks used each year in the quintiles is 350. With monthly 

data, spanning over a period of 24 years and across 12 metrics, this results in a total of over 2,4 

million data observations. The stocks are weighted equally and as such, each stock has a weight of 

approximately 0,3 %. 

3.3 Constructing a Quality Screen 
Quality can be defined in various ways but is typically associated with profitable companies with low 

leverage and stable earnings. It is rooted in fundamental analysis and thus makes use of an 

assortment of financial data extracted from financial reports of companies. Although the definition 
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of Quality varies in complexity, stretching from simple, one-dimensional metrics such as ROE, to 

multi-metric definitions encompassing a multitude of accounting ratios, the most frequently used 

characteristics of the quality definition can be group in three main categories: Profitability, Safety and 

Quality of earnings.  

Profitability is defined as a company’s ability to generate earnings as compared to its expenses, why 

profitable firms are often referred to as quality firms. Profitability can be measured by different 

accounting ratios such as gross profit over assets (GP/Assets), operating cash flows over assets 

(CF/Assets) and various net profit-based measures, for instance return on equity (ROE), return on 

assets (ROA) and return on invested capital (ROIC). The different ratios provide different insights in 

regards to the financial state of the company, where gross, net and operating margins suggest how 

well the company is at managing its expenses, while ratios such as ROE and ROA give insights to 

the company’s ability in deploying its capital in order to generate returns. Since these ratios can, to 

some extent, be affected by accounting choices, the best suitable metric to represent profitability is a 

subject of controversy. Novy-Marx (2013) argue that the cleanest measure of profitability can be 

found in gross profit, since this metric is relatively unaffected by accounting estimates for accruals 

and non-cash expenses. Index providers however, argue that net profit-based metrics are better 

suited to represent profitability, since net profit measures the profit which accrues to common 

shareholders rather than stakeholders. These are metric such as ROE and ROA (Norges Bank, 

2015). Seasonality is another factor which can affect the profitability metrics, rendering certain 

metrics unsuitable to be compare across different industries.  

High-quality companies are also often defined as safe and stable. A company exhibiting excessive 

leverage carries greater risk of financial distress, since it may be jeopardizing its ability to service its 

debt. Therefore, safety is often regarded as having a strong balance sheet – low leverage, high current 

ratios and high interest coverage ratios. 

A high-quality company is often regarded as one which generates a stable and persistent stream of 

earnings, since this might indicate the presence of a competitive advantage, good management and a 

strong market position. Furthermore, earnings stability can be measured by both the volatility of 

earnings, or profitability metrics such as ROE and ROA, and by its growth. Earnings variability 

tends to vary by industry and by company age, where younger companies exhibit more volatile 

earnings than more established, older companies.  
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In the following table, the Quality definition by different authors/practitioners is presented:

Due to the controversy surrounding the definition of quality, a total of 12 metrics from the three 

main categories were chosen to represent the characteristics of Quality. The aim is to perform 

statistical test in order to determine the best proxy for Quality, although this method does imply a 

certain amount of selection bias. To somewhat account for the selection bias, the metrics of choice 

are frequently used individually in previous research, as can be seen from the table above. 

Furthermore, to mitigate the selection bias effect, a higher level of significance is imposed in the 

regressions. ROIC, GP/Assets, CF/Assets, Operating margin, ROE and ROA were chosen to 

represent the profitability characteristic of Quality, Leverage, Debt/Equity and Net debt for the 

Safety category, and EPS Stability, Dividend 5-year growth and Equity Variability as a measure of 



 25 

Earnings.  

Following the methodology of Asness and Frazzini (2013), portfolios for each metric is formed by a 

long position in the quintile of highest ranking stocks for each metric, and short the quintile of 

stocks with the lowest ranking, resulting in 12 net portfolios which are rebalanced yearly.  

In order to construct an aggregated Quality portfolio, each of the fundamental metrics are first 

regressed on the CAPM, Fama French 3 Factor Model, Carhart’s 4 Factor Model and Fama French 5 

Factor Model. The statistical result from these regressions, combined with relevant literature 

regarding the choice of fundamental metrics to represent the Quality characteristics, will form the 

foundation in constructing the aggregated Quality portfolio consisting of three metrics – one from 

each category. 

Once the three metrics have been decided upon, each variable is converted into ranks and 

standardized to obtain a z-score through a methodology that follows that of Asness and Frazzini 

(2013). Thus putting each measure on equal footing and making it possible to combine them. The z-

score is computed as follows: 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) 

Where x is the variable of interest and r the vector of ranks. 

𝑧𝑧(𝑥𝑥) = 𝑧𝑧𝑥𝑥 = (𝑟𝑟 − 𝜇𝜇𝑟𝑟)/𝜎𝜎𝑟𝑟 

Where μr and σr are the cross sectional mean and standard deviation or r. 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑧𝑧(𝑧𝑧𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 1 + 𝑧𝑧𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 2 + 𝑧𝑧𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 3) 

With the Quality factor defined, an aggregated Quality portfolio is formed by a zero-investment 

portfolio, taking a long position in the 20% (10%) highest ranking stocks and a short position in the 

20% (10%) lowest ranking stocks, following the methodology of Fama and French (1993) and 

Asness and Frazzini (2013). The portfolio is then rebalanced yearly. Furthermore, the aggregated 

Quality portfolio is regressed in CAPM, Fama French 3 Factor Model, Carhart’s 4 Factor Model and 

Fama French 5 Factor Model, in order to investigate the portfolios factor loadings.  
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3.4 Decomposing the Quality Screen 
Following the portfolio approach of Fama & Macbeth (1973), Fama and French (1992, 1993 and 

1996) and Asness and Frazzini (2013), the Quality Factor is decomposed by conditional sorts, first 

sorting on size and then on quality. Size is sorted on Small and Big, while Quality is sorted on Low, 

Medium and High, thus forming 2x3 portfolios.  

In order to further investigate the characteristics of Quality, differences in the long Quality portfolios 

and short Quality portfolios are studied. Firstly, the riskiness of High- and Low-Quality stocks is 

assessed by volatility and Beta. Volatility is calculated by a rolling 200day window, while Beta is 

measured with a window of 60 months and the following formula:  

𝛽𝛽𝑖𝑖𝑖𝑖 =
𝐶𝐶𝐶𝐶𝐶𝐶 ( 𝑟𝑟𝑖𝑖, 𝑟𝑟𝑚𝑚)
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑟𝑟𝑚𝑚)

 

 

The average market capitalization in each portfolio is also compared in order to illustrate size-

differences between high- and low-quality stocks. Lastly, the price-to-book ratio is measured, as 

illustrated in 2.5.3, in order to test for price-differences between the two, which can be derived to the 

characteristics of Quality.  

3.5 Fama Macbeth and the Cross Sectional Regression 
Risk factors are frequently used to explain asset returns in asset pricing models, and one of the 

preferred models for this endeavor is the Fama and Macbeth method. This approach involves a two-

pass estimation methodology. The first part consists of estimating market Betas using the linear 

regression model developed in the CAPM framework. Step two involves using these Betas together 

with other variables that are considered important to explain the variation in returns (Fama and 

MacBeth, 1973). Even if this methodology was developed more than 45 years ago, numerous studies 

have relied on it when investigating factors affecting equity return. Skoulakis (2008) suggests that this 

framework is the preferred methodology to determine factor risk premium and cross section of 

returns.   

By following the logic from Fama Macbeth’s cross- sectional approach, we are able to include 

additional risk factors in the model and test to what extent these and the Betas describe the stock 

returns. In this sense, the framework fits the overall purpose of this essay well. However, in empirical 

tests of the CAPM, Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), Fama and French 
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(1992) and Frazzini and Pedersen (2013), come to a similar conclusion; the market Beta is smaller 

than what is predicted by the CAPM. Furthermore, Davis, Fama, and French (2000) find a similar 

result for the multivariate Beta in the Fama-French Three Factor Model. Their findings suggest that 

the predictions of models that include a standard market factor are too high for assets with market 

Betas greater than 1.0 and too low for assets with Betas less than 1.0. In this sense, the argument for 

using a cross sectional model is strong, however, there are also some drawbacks since the estimation 

of Beta impose some difficulties, more on this later.  

The general cross-sectional model, which is used in this essay, is:  

𝑹𝑹𝑡𝑡 =  𝛾𝛾0𝑡𝑡𝜄𝜄 + 𝛾𝛾1𝑡𝑡 𝜷𝜷𝒎𝒎 + 𝐗𝐗𝒕𝒕𝚪𝚪𝟐𝟐𝟐𝟐 +  𝓔𝓔𝒕𝒕 

Where 𝑹𝑹𝑡𝑡 is the return for each of our sub portfolios for each month, a column vector with 

dimensions 288x1, expressed as returns in excess of the risk-free rate. All prices are calculated as the 

log price change, they are adjusted for dividends (the return is expressed as total return) and the 

prices are adjusted for new stock issuance, buybacks and splits. As a proxy for the risk free rate, the 

three month treasury rate is used, transformed into its monthly equivalent. 

𝚪𝚪2𝑡𝑡 is the (k x 1) vector of the coefficients (γ2𝑡𝑡   , … ,  γ2𝑘𝑘+1,𝑡𝑡   ) of the k:th additional explanatory 

variable, Xt. Since the market Betas are assumed not to be known, the first step in the Fama Macbeth 

regression consists of estimating these by separate time series regression for each portfolio, using the 

following model:  

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖 +  𝛽𝛽𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚 +  ℰ𝑖𝑖𝑖𝑖 

Where i denotes the portfolio, and i = 1, …, 6. The variance of the returns at time t may differ across 

the portfolios, and the returns might be correlated over time. This implies that the disturbance terms 

of the monthly cross-sectional model may be both heteroskedastic and correlated. Therefore, the 

OLS estimator of the parameters of the cross-sectional regression may be inefficient. We therefore 

use the GLS approach to estimate the single index model, outlined above. The following method is 

used to estimate the coefficients: 

 

𝚪𝚪�𝒕𝒕(𝑮𝑮𝑮𝑮𝑮𝑮) = (𝐇𝐇′ 𝚿𝚿𝒕𝒕
−𝟏𝟏𝐇𝐇𝒕𝒕)−𝟏𝟏 𝐇𝐇𝒕𝒕′ 𝚿𝚿𝒕𝒕

−𝟏𝟏𝐑𝐑𝒕𝒕  
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Where, 𝐇𝐇𝒕𝒕 is (N x K+2) matrix containing all the explanatory variables of the model. The properties 

of 𝚿𝚿 makes it possible to derive the best linear unbiased estimator for the Betas, thus obtaining error 

terms that are homoscedastic and exhibit no autocorrelation. 𝚿𝚿 has the following characteristics:  

 

𝚿𝚿𝒕𝒕
−𝟏𝟏 = 𝐏𝐏′𝐏𝐏 

 

Where P is a square, non singular matrix and 𝚿𝚿 is positive definite. Also,  

 

𝐏𝐏𝐏𝐏𝐏𝐏′ = 𝐏𝐏𝐏𝐏−𝟏𝟏(𝐏𝐏′)−𝟏𝟏 𝐏𝐏′ = 𝐈𝐈 

 

Consequently, the following applies:   

𝐄𝐄 [𝐏𝐏𝜺𝜺|𝐗𝐗] = 𝟎𝟎 

 

And,  

𝐕𝐕𝐕𝐕𝐕𝐕 [𝐏𝐏𝜺𝜺|𝐗𝐗] =  𝜎𝜎2𝐏𝐏𝐏𝐏𝐏𝐏′ =  𝜎𝜎2𝐈𝐈 

 

The Gauss Markow assumptions are thus fulfilled. In this sense, we use the heteroscedasticity and 

autocorrelation consistent (HAC) standard errors, also referred to as Newey–West standard errors, 

for all the regressions. The White covariance matrix assumes that the residuals of the estimated 

equation are serially uncorrelated, a fact not observed in our data sets. It is a well-known fact that 

financial data tend to exhibit excess kurtosis and volatility clustering, so it is not reasonable to 

anticipate that the residuals are serially uncorrelated. Therefore, the HAC consistent covariances are 

a better fit. Furthermore, we test for autocorrelation using the Durbin–Watson test (Durbin and 

Watson, 1950).  A value close to 2 indicates that the first-order autocorrelation coefficient is close to 

zero. If the value however is much smaller than 2, it is an indication of first order autocorrelation. 

  

As mentioned above, there is another issue with financial data in time series analysis. Due to volatility 

clustering effects, the data is not likely to be stationary. Engle (1982) proposed the framework of 

autoregressive conditional heteroscedasticity (ARCH), which incorporates this mechanism. In the 

ARCH framework, the variance of the error term depends on the squared error terms from previous 

periods. In this essay, we use the augmented Dickey–Fuller (ADF) test to see whether the data is 
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stationary or not, but we do not impose any model on volatility, such as ARCH or GARCH. The 

statistic generated from the ADF test is a negative number, and a low value indicates that the 

hypothesis, the presence of a unit root, is rejected.  

 

Another aspect of GLS is that it might be sensitive to outliers in the data set, since it assigns equal 

weights to all the observations. A popular approach in finance is to winsorize the data set, in order to 

exclude the outliers. Since this method removes data (for instance, it is common the remove the top 

and bottom percentile). We follow this approach to avoid overfitting. Furthermore, all the stocks are 

assigned equal weights. The average stock weighs 0.3 % in our net quality portfolio, based on 

quintiles. This implies that even if a few stocks has some outlying values, this is not likely to affect 

the overall result.  

Important to note is that including the Betas generated from equitation 1 into the cross-sectional 

regression causes errors-in-variables problem. Thus, the Cross Sectional Regression Model will be 

likely to underestimate the Beta and overestimate the other coefficients. The overestimation of the 

other coefficients depends on the level of correlation between the variables (Kim, 1995). Fama and 

MacBeth (1973) addresses this issue by using portfolios instead of individual stocks. However, it is 

important to note that this procedure not entirely solves the errors-in-the-variables problem (Ho, 

Strange and Piesse, 2006). Applying a portfolio approach might on the other hand cause a loss of 

information, an issue discussed by for instance Asgharian and Hansson (2000). Fama and French 

(1992) in contrast to Fama and MacBeth (1973) use portfolios in order to estimate the Betas and 

subsequently assign the Beta values to the individual stocks. The analysis is then carried out on the 

individual stocks (Fama and French, 1992). This approach is also used in this essay, in order to 

mitigate the errors-in-variables problem.  

 

The discussion above constitutes the prerequisites for estimating the Cross Sectional Model, outlined 

below:    

 

𝑹𝑹𝑡𝑡 =  𝛾𝛾0𝑡𝑡𝜄𝜄 + 𝛾𝛾1𝑡𝑡 𝜷𝜷𝒎𝒎 + 𝛾𝛾2𝑡𝑡 𝜷𝜷𝑺𝑺𝑺𝑺𝑺𝑺 +  𝛾𝛾3𝑡𝑡 𝜷𝜷𝑯𝑯𝑯𝑯𝑯𝑯+ 𝛾𝛾4𝑡𝑡 𝜷𝜷𝑴𝑴𝑴𝑴𝑴𝑴 + 𝛾𝛾5𝑡𝑡 𝜷𝜷𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 +  𝓔𝓔𝒕𝒕 

 

This model might be subject to autocorrelation, heteroscedasticity and multicollinearity. However, 

according to Verbeek (2012), there is nothing wrong with including variables in a model that are 
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correlated, however this needs to be controlled for to ensure a good fit. We use the Variance 

Inflation Factor (VIF) to detect multicollinearity.  

The VIF is given by the following formula:  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑏𝑏𝑘𝑘) =
1

1 − 𝑅𝑅𝑘𝑘2
  

The VIF indicates the factor by which the variance of bk variables is inflated, compared with the 

hypothetical situation when there is no correlation between the dependent variable and any of the 

other explanatory variables. There is no consensus on how high the VIF can be in order to constitute 

a problem, but if the value is higher than 2.50 (corresponding to a R2 of 0.6), there is clearly a 

correlation issue amongst the factors. We also compare the correlation between the different factors, 

i.e construct both a correlation and a covariance matrix of the underlying data sets for Market, SMB, 

HML, MOM and Quality to investigate the robustness of the regression.  

Once the model is specified, the coefficients of 𝛾𝛾𝑖𝑖𝑖𝑖 are estimated by using t-statistic values. The t-

statistic values are defined as follows: 

𝑡𝑡𝑗𝑗 =  
𝛾𝛾�𝑗𝑗

𝜎𝜎�( 𝛾𝛾𝚥𝚥)�
 

Where  

𝛾𝛾�𝑗𝑗 =
1
𝑇𝑇
�𝛾𝛾�𝑗𝑗𝑗𝑗

𝑇𝑇

𝑡𝑡=1

 

And,  

𝜎𝜎�2�𝛾𝛾�𝑗𝑗� =  
1
𝑇𝑇

1
𝑇𝑇 − 1

 �(𝛾𝛾�𝑗𝑗𝑗𝑗 −  𝛾𝛾�� )2
𝑇𝑇

𝑡𝑡=1

 

Where tj follows a t-distribution with (T-1) degrees of freedom. As discussed in section 3.6 the 

conventional level of significance of 2.0 or higher, is considered to be too low due to the process 

employed in selecting the portfolio.  
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3.6 Critical Perspectives 
Numerous researches have raised the possibility that the quality anomaly as well as other anomalies 

may be a result of measurement errors, methodological biases and data mining. As discussed by for 

instance Lo and MacKinlay (1990) and Black (1993), researchers tend to test their hypothesis and 

conduct their analysis on the same investment universe, with the goal to uncover anomalies. Since 

researchers may only publish the most statistically significant findings, the process is prone to 

selection bias. Following this logic, it is not a surprise that an interesting pattern or an anomaly 

emerges from time to time, simply by chance. Another aspect, that is particularly relevant for the 

quality premium, is the fact that it is not well defined and leaves the researches with a lot of choices 

and potential exclusions. In light of this, there have been a lot of discussion regarding to what extent 

the findings are reliable or not, as it is subject to data snooping and selection bias. 

Harvey, Liu and Zhu (2015) discuss this issue, and propose that the t-stat level of 2.0 needs to be 

adjusted upwards, to 3.5 or more, in order to control for the selection bias and data snooping 

aspects. This would imply that many of the papers published by researchers on the quality anomaly 

would not be able to pass the threshold of significance.  

Another methodological aspect, in addition to the multiple testing bias, is overfitting. Novy-Marx 

(2015) states that when combining multiple metrics, each prone to predict high risk adjusted returns, 

conventional two-sided significance tests are no longer reliable. Intuitively, suppose a researcher tests 

25 randomly selected metrics, and then concludes that ten of them predict higher returns, due to 

chance. If these are aggregated and back tested, the performance is likely to be very high.   

 

Another important aspect is firm size. Davis (1994) who investigated the American Stock Market, 

excluded all the small firms, since small firms make up a great portion of the market, and thus may 

skew the findings and making them more difficult to generalize. We do not exclude any firms based 

on size, but it is important to note that this might skew the data. Since smaller firms are likely to be 

affected by idiosyncratic aspects to a greater extent than large firms, the conclusions might not be as 

robust. By dividing our sample in different size categories, it is intended to control for this. 

 

A popular perspective to raise when discussing factor investing is survivorship bias. Most of the 

studies in this field rely on data from the COMPUSTAT or CRSP database. As Kim (1997) and 

Kothari, Shanken and Sloan (1995) describes, there is an element of survivorship bias regardless of 
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what source of information is used. Large and profitable firms are more likely to be entered and 

maintained into the databases. However, this bias was likely more predominant some decades ago, 

since the process of updating data frequently and on a large set of stocks is more convenient today. 

This an important implication as to why we use the Wilshire 5 000 Index, rather than S&P 500 as the 

underlying universe.   

 

Davis (1994) outlines another important aspect, affecting the selection process. Generally, firm 

policies and accounting standards are not coherent over time. To name an example, stock buybacks 

have to a large extent acted as a substitution of dividends since the late 90’s in the US, which for 

instance might impose some selection issues when dividend models are used (Ogden, Jen and 

O`Connor, 2003).  

 

One final aspect to outline is the case of non-synchronous trading. As for example Morelli (2007) 

and Ho, Strange and Piesse (2006) point out, the estimated Beta will not be efficiently estimated, thus 

resulting in an overall spurious regression. Since monthly returns have been used, this effect is to 

some extent mitigated. Furthermore, exclusions of stocks with insufficient data, such as low liquidity 

or missing data due to accounting variables, have been made. 

 
  



 33 

4 Empirical Findings 

The fourth chapter of the essay contains the results from data analysis as presented in the methodology. The empirical 

findings, in combination with the theories presented in chapter three, will serve as the foundation for the discussion and 

analysis of the thesis. 

4.1 Building a Quality Screen 
When creating the 12 zero investment portfolios, based on the fundamental metrics as described in 

section 3.3 the results, in terms of significance, varied depending on which factor model the zero 

investment portfolios were regressed on. The alpha for each of the 12 metrics and underlying models 

are presented in appendix 1. 

 

From these results, the metrics with the most significant alpha values, and most consistent data, 

within the three different dimensions of Quality were chosen to act as proxies. From profitability, 

the CF/Assets metric was used. The reason for this is due to data issues; for instance, was 

GP/Assets was inconsistent and for some years, and a large part of the universe lacked information 

for this metric. It was therefore not considered to be representative. Additionally, cash flow metrics 

(accruals) are frequently mentioned in the literature as a suitable proxy for the profitability premium. 

 

From the safety dimension, the leverage metric demonstrated highest significance and was therefore 

selected. EPS stability was chosen as a proxy for the earnings quality premium, since dividend, for 

the same data reason as GP/Assets, was excluded. Furthermore, the spread within the dividend 

metric was very high, thus concluded to be unrepresentative for the equity quality premium. 

 

Below, the factor loadings (Carhart’s Four Factor Model) for the different metrics are presented, for 

each of the dimensions of Quality. Regardless of which dimension the metric belongs to, factor 

loadings differ quite significantly, i.e the dimensions do not tend to be coherent in terms of factor 

loadings.  
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Figure 1 

 

 
Figure 2 

 

 

 
Figure 3 

 

The performance of the three dimensions of Quality are depicted in Appendix 2. 
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As a result of defining the Quality screen, a ranking of our stock universe based on a combined z-

score of the three metrics was enabled. Each of the stocks in the universe was assigned an individual 

rank for each year, and from this the zero investment portfolios were formed. The portfolios 

consisted of long positions in the 20 % (10 %) highest ranking stocks, and short the 20 % (10 %) 

lowest ranking stocks. This resulted in a net Quality portfolio. The net portfolios, presented as both 

deciles and quintiles, are depicted below. The average number of stocks in the quintiles is about 350 

each year, thus considered to be well diversified. The portfolios were rebalanced yearly.    

 
Figure 4 

The graph below shows the cumulative returns from the Quality portfolio, in excess of the Wilshire 

5000 Index. The majority of the excess returns can be linked to adverse equity market conditions. 

  
 

 
Figure 5 
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Below, the zero investment portfolio (consisting of a long position in the 10 % highest quality stocks 

and short the 10 % lowest) is depicted against the performance of Wilshire 5 000. The zero 

investment portfolio performs rather poorly, in comparison to the Wilshire 5 000, during normal and 

strong market conditions, but earns high excess returns in periods of market distress. 

 

 
Figure 6 

The risk and return characteristics of the long Quality portfolio, the SHB portfolio, the S&P500 and 

Wilshire 5 000 are presented in the table below. When compared to the indices, the Quality 

portfolios exhibit higher annualized returns but lower volatility, earning a significantly higher Sharpe-

ratio. Worth noticing is that the SHB portfolio has an average of 165 stocks each year, about half of 

the Quality portfolio. Thus it is not as diversified, and the performance might thus be subject to 

chance, rather than systematic sources of risk.   

 
Annualized returns Annualized volatility Sharpe Max Min 

Long Quality Portfolio 10,15% 13,37% 0,76 16,41% -18,55% 

SHB Quality Portfolio 13,19% 13,36% 1,01 16,69% -17,87% 

S&P500 7,23% 13,36% 0,54 11,38% -17,71% 

Wilshire 5000 7,30% 14,82% 0,49 11,39% -17,74% 

Table 1 

The zero-investment portfolio was then regressed on CAPM, FF3, Carhart’s Four Factor Model and 

FF5. From the table below, we can conclude that the Quality factor exhibits positive, significant 
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alphas across all models. Furthermore, it loads negatively on Beta, SMB and HML, but positively on 

MOM, RMW and CMA. The results of the regressions are depicted below.  

 
alpha Beta SMB HML MOM RMW CMA 

CAPM 0,5161%*** -0,284134*** 
     

FF3 0,549%*** -0,268983*** -0,131828*** -0,070671 
   

Carhart 0,4311%*** -0,211661*** -0,154784*** -0,019977 0,151111*** 
  

FF5 0,4422%*** -0,212143*** -0,095365* -0,179917*** 
 

0,139688* 0,178546* 

Table 2 

The result of corresponding regressions for the SHB portfolio is presented below. The SHB loses 

the significant alpha when regressed on the FF5, which might be due to the high factor loading on 

RMW, i.e the risk return relationship is more or less explained (alpha not significant) by the factor 

loadings. 

 
Alpha Beta SMB HML MOM RMW CMA 

CAPM 0,00383*** 0,808652*** 
     FF3 0,002608** 0,829988*** 0,077547** 0,327369*** 

   Carhart 0,002938** 0,813987*** 0,083955** 0,313219*** .-0,042181* 
  FF5 0,000299 0,952815*** 0,250762*** 0,190301*** 

 
0,487793*** 0,064346 

Table 3 

 
Below, the variance-co-variance matrix for the factors used in our regressions is presented. The 
correlation is quite low, and the VIF is always below 2.5.  
 
 

 
Net Quality RMrf SMB HML MOM RMW CMA 

Net Quality 0,080% 
      

RMrf -0,052% 0,184% 
     

SMB -0,021% 0,032% 0,109% 
    

HML 0,003% -0,019% -0,031% 0,096% 
   

MOM 0,049% -0,058% 0,015% -0,029% 0,252% 
  

RMW 0,025% -0,059% -0,054% 0,037% 0,011% 0,082% 
 

CMA 0,010% -0,031% -0,009% 0,042% 0,005% 0,017% 0,044% 

Table 4 
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Furthermore, Quality exhibits higher persistence than other factors. In the table below, the 

percentage of positive outcomes of a rolling 12 months window of net return is presented for the 

different factors.  

 

SMB HML MOM RMW CMA Quality 

54,9% 56,7% 70,8% 67,9% 61,4% 73,3% 
Table 5 

 

4.2 Conditional Beta Analysis 
Following the research from Pettengill, Sundaram and Mathur (1995), a conditional Beta test was 

performed on the Quality portfolio, with the purpose of understanding how Quality performs during 

different market conditions. The results were not statistically significant, but indicate that a Quality 

strategy earns higher excess returns during bad market conditions than during good. Worth 

mentioning though, is that Quality generates excess returns in both up, as well as down market 

conditions. The results from the conditional Beta test are presented below.  

 

Aggregated Quality Portfolio 

Variable Coefficient Std, Error t-Statistic Prob, 

Alpha 0,008865** 0,00317 2,797098 0,049 

Beta, Up 0,010999 0,012699 0,866153 0,4353 

Beta, Down -0,01218 0,010049 -1,212066 0,2922 

Table 6 

 

4.3 Decomposing the Quality Factor 

In the spirit of Fama and French, we formed sub-portfolios from the findings of our Quality screen 

by sorting on size, and then by Quality. Thus, we ended up with 6 sub portfolios, ranging from High 

to Low Quality, for two sub-universes - small cap stocks and large cap stocks. The returns from the 

6 portfolios are presented below. As can be seen, higher quality outperforms lower quality, regardless 

of size. There is also a tendency for small cap stocks to perform better than large cap stocks, with the 

Small-Cap-Low-Quality portfolio being the exception.  
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Figure 7 

 

4.4 Fama Macbeth (Cross Sectional Regression) and Systematic Risk Premiums 

The regression models from Fama Macbeth (1973) were used to regress the 6 sub-portfolios. 
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indicating a positive market risk premium. In this sense SMB, HML and Quality carries some 

explanatory power in the cross sectional variation of stock returns, however, the results are not high 
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reject that alpha differs significantly from zero.  
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  Beta SMB HML MOM Quality 

 𝛾𝛾0 𝛾𝛾1 𝛾𝛾2 𝛾𝛾3 𝛾𝛾4 𝛾𝛾5 

Mean 0,00887 -0,0017 0,0006 0,00393 -0,0156 0,0265 

 Median 0,00164 0,0006 0,00103 0,00222 -0,0052 0,02409 

Skewness 0,172 -0,0663 -0,0565 0,28966 -0,4043 0,06811 

Kurtosis 3,32007 3,54846 6,43597 6,98009 4,46127 2,52242 

Jarque-Bera 2,6493 3,82069 141,824 194,121 33,4689 2,95969 

Sum 2,55551 -0,4856 0,17209 1,13257 -4,4889 7,63236 

Sum Sq. Dev. 2,67935 3,47153 0,90598 0,62628 25,9154 9,53526 

t-stat 1,55844 -0,2602 0,18063 1,42881 -0,8802 2,46737 

Probability 0,2659 0,14803 0 0 0 0,22767 
Table 7 

 

The corresponding coefficients for the portfolios from the cross sectional regressions are presented 

below. There is a clear relation that higher Quality portfolios are associated with a lower Beta, lower 

SMB, lower HML, and higher MOM. All the coefficients for the various sources of risk are depicted, 

as calculated from the Fama Macbeth cross sectional regression. In short, High Quality stocks are 

often larger companies with lower Beta values and high P/B ratios. 

 

 Portfolio Beta SMB HML MOM 

Small Cap 
Stocks 

Low Quality 1,225735 1,023901 -0,00167 -0,21272 

Medium Quality 0,958258 0,731187 0,362973 -0,10568 

High Quality 0,880476 0,665005 0,257789 -0,10064 

Large Cap 
Stocks 

Low Quality 1,206858 0,180431 0,122814 -0,0244 

Medium Quality 1,003436 -0,08184 0,175092 -0,00868 

High Quality 0,912115 -0,13542 -0,18904 0,017724 

Table 8 
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4.5 Comparing Factors 
From the earlier empirical findings, we have seen that Quality is generating returns in excess of the 

market, and produces significant alpha. Below, we illustrate the risk adjusted returns, according to 

Markowitz Mean Variance Optimization approach. In order to compare the return of factors, we 

collected data from other, well documented factors in the equity markets. Due to data issues, the 

time frame spans from January 1999 – January 2017. In addition to investigating other factors, we 

also test how mean variant efficient Quality is in relation to the Wilshire 5 000 Index. 

 

In the optimization setting, maximum weights were set to 20 %. The optimized portfolio generated a 

combination of factors, rather than using the market index.  

 

Factor High 
Dividend Quality Low 

Volatility Russel 2000 Value Momentum Growth Small Wilshire 
5 000 

Ann. Return 10,29% 5,82% 9,14% 8,15% 5,82% 3,52% 4,85% 10,22% 5,45% 

Ann. Std 13,60% 13,51% 11,19% 19,68% 15,56% 16,57% 15,15% 18,46% 14,69% 

Sharpe, rf=0 0,76 0,43 0,82 0,41 0,37 0,21 0,32 0,55 0,37 

          
Weights 20,0% 20,0% 20,0% 0,0% 0,0% 20,0% 20,0% 0,0% 0,0% 

Table 9 

 

Below, the Optimized portfolio is presented and compared to the Wilshire 5000 index. The Mean 

Variance Optimized Portfolio performs better in terms of risk-adjusted returns and has less Value at 

Risk, from a historical distributional perspective.  

 

 Annualized returns Annualized Std Sharpe Max drawdown VaR (99,5 %, Basic Historical Simulation) 

Portfolio 6,72% 12 % 0,51 -33,04% 10,6% 

Wilshire 
5 000 5,45% 14,69 % 0,37 -43,97% 11,0% 

Table 10 

 

As illustrated below, the factors chosen mostly engage positions outside the efficient set. All returns 

are presented in excess of the risk free rate.  
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Figure 8 

 

4.6 Descriptive Statistics  
 
4.6.1 Performance Statistics by Sub-Periods  
Further empirical analysis has been conducted during various market conditions, to test the Quality 

factor during shorter time periods. The events below are defined as follows. The Russian/Asian 

crisis is from January 1997 - January 2000, the Dotcom crisis spans from January 2000 - January 

2003, the Great Financial Crisis is measured from January 2007 - January 2010 and the Aftermath of 

the Great Financial Crisis, also including the fiscal crises in Europe, is from January 2010 - January 

2013. The results are depicted below.  

  Alpha Beta SMB HML 

Russian/Asian Crisis 0.011498** 0.564042 0.159239 -0.010890 

Dot-com Bubble 0.005705 0.664003 0.151088 0.044388 

Great Financial Crisis 0.007230*** 1.009342*** 0.766948*** .-0.138088*** 

Aftermath 0.016181** 1.053517 0.687059** -0.321837 
Table 11 

The results can be illustrated further, and below we present the aggregated Quality portfolio in terms 

of annualized returns, volatility and Sharpe-ratio, as well as the market portfolio. Throughout the six 
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year periods, Quality performs in line with the market portfolio, but risk adjusted returns are higher 

during the defined events, i.e in various market distress conditions. 

 

Aggregated Quality Portfolio  

Event/Year Annualized return Annualized Volatility Sharpe Min Monthly Max Monthly 

Russian/Asian Crisis 17,74% 13,33% 1,49 -13,44% 7,43% 

Dot-com Bubble -11,41% 15,34% -0,82 -9,33% 7,65% 

Great Financial Crisis 6,17% 19,19% 0,30 -18,55% 16,41% 

Aftermath 15,91% 19,44% 0,82 -9,59% 15,01% 

      
1993 - 1998 14,39% 10,58% 1,57 -13,44% 7,43% 

1999 - 2004 2,83% 13,13% 0,36 -9,33% 8,47% 

2005 - 2011 10,40% 16,24% 0,64 -18,55% 16,41% 

2012 - 2017 12,98% 13,54% 1,23 -8,74% 15,01% 
Table 12 

 
 

 Market Portfolio (Wilshire 5000)  

Event/Year Annualized return Annualized Volatility Sharpe Min Monthly Max Monthly 

Russian/Asian Crisis 22,86% 17,49% 1,37 -16,08% 7,72% 

Dot-com Bubble -16,37% 20,00% -0,82 -10,72% 7,94% 

Great Financial Crisis -1,24% 17,84% -0,04 -17,23% 10,19% 

Aftermath 12,67% 15,78% 0,88 -7,89% 11,35% 

      
1993 - 1998 16,37% 11,91% 1,74 -16,08% 7,33% 

1999 - 2004 2,32% 15,69% 0,50 -10,72% 8,22% 

2005 - 2011 4,91% 14,74% 0,48 -17,23% 10,19% 

2012 - 2017 13,52% 11,67% 1,40 -7,59% 11,35% 
Table 13 
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4.6.2 Characteristics of Quality 
In the following two figures, Figure 9 and Figure 10, a similar relationship can be observed. Figure 9 

and 10 show monthly excess returns of the Quality portfolio (10% and 20%) and the market excess 

returns. The aggregated Quality portfolio exhibits a mild positive convexity, indicating that it benefits 

from crisis rather than portraying a crash risk. The sample runs from January 1993 to December 

2016.

 
Figure 9 

 
Figure 10 

When studying the characteristics of Quality, by observing the differences in the Long- and Short- 

Quality portfolios, certain features are brought forth. Riskiness, measured by both volatility and Beta, 

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

-20,00% -15,00% -10,00% -5,00% 0,00% 5,00% 10,00% 15,00%

Q
ua

lit
y 

Po
rt

fo
lio

 (1
0%

) 
E

xc
es

s 
R

et
ur

n 
 

Market Excess Return 

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

-20,00% -15,00% -10,00% -5,00% 0,00% 5,00% 10,00% 15,00%

Q
ua

lit
y 

Po
rt

fo
lio

 (2
0%

) 
 E

xc
es

s 
R

et
ur

n 

Market Excess Return 



 45 

tends to be higher for Low Quality stocks in both cases. The results are illustrated in the figure 

below. 

 

 
Figure 11 

When comparing the size-difference between Low- and High Quality stocks, measured by market 

capitalization, the empirical results portray a positive relationship between quality and size. The 

results are shown in the figure below. 

 
Figure 12 
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Lastly, when investigating price-differences between Low- and High Quality stocks, measured by 

price-to-book ratio, High Quality stocks tend to be more expensive than it Low Quality counterpart. 

This is illustrated in the figure below. 

 

 
Figure 13 
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5 Analysis 

The following chapter contains the analysis and discussion surrounding the empirical findings in relation to the 

theoretical framework presented, relevant to the main topic of the thesis.  

 

When the three dimensions of our proxies for Quality were set up, an interesting feature came to 

light. The first remark can be made regarding the variance and magnitude of significant alphas, for 

each metric in the different regressions. For instance, the net portfolio based on ROIC exhibited 

positive, significant alpha at the 10 % level in the Carhart regression, but not in the other regressions. 

Similar patterns were observed in Dividend, Debt/Equity and Net Debt. The persistence of the 

metrics, and their ability to generate alpha, therefore seem to mostly be a matter of chance and be 

dependent on the sample at hand as well as the time frame. Also, in the CAPM setting only 4 out of 

12 metrics exhibited significance, only 3 out of 12 metrics were significant in FF3, in the Carhart 

model, 5 out of 12 obtained significance, and finally, 5 out of 12 metrics were significant in the FF5 

model (see Appendix 1). Furthermore, the metrics tend to load on different factors, and since the 

selection of metrics imply different factor loadings, the merits of selection are likely to produce 

different results.     

 

The 12 metrics chosen have been frequently used in previous research and they are all, to a varied 

extent, validated in terms of proxies for Quality. However, it is evident that each of the metrics, used 

alone, is subject to selection bias. An interesting finding in the literature is that independently of 

metrics selected to proxy for Quality, there are indications that the combination of metrics should 

capture a “Quality effect”. However, this line of thinking is contradicted by the different factor 

loadings of the metrics. The factor loadings of the metrics in the Profitability screen exhibit the most 

coherent factor loadings, except from ROE. Concerning the other dimensions, Safety and Earnings 

quality, the metrics vary and each of the dimensions exhibit inconsistent patterns (see Figure 1, 2 & 

3). This implies that the metrics are not as coherently defined as in the Profitability screen, indicating 

that factor loadings seem to be linked to the selection of metrics. A more extensive research effort 

regarding how factor loadings vary for different combinations of metrics would therefore be of 

interest. The differences in terms of factor loadings that can be seen from our overall Quality 

portfolio compared to the SHB portfolio, also indicates that a similar selection process of metrics 

may result in different factor loadings (see Table 2 & 3).  
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An interesting note regarding this aspect is that the SHB portfolio loads on other factors whilst 

exhibiting Quality characteristics. The correlation between the two amounts to nearly 80 %, the 

major difference being the higher amplitude found in the SHB portfolio. We interpret this as an 

indication of selection bias in the screen. The SHB screen loads highly on Beta, which is 

contradictory with our Quality screen. Despite the differences in factor loadings, the characteristics 

are similar. Thus, the lack of a coherent Quality screen continues to be a problem when used as 

proxy for Quality.  

 

The aggregation of the three dimensions into a zero investment portfolio indicates that Quality earns 

a lot of the excess returns during bear market conditions. As can be seen in Figure 4, the net 

portfolio generates consequent excess returns during crises. I.e, the spread of High versus Low 

Quality stocks seems to increase during times of distress. This can also be seen in section 4.6, 

Descriptive statistics, that during market distress, Quality performs better than comparable indices.  

 

When the Net Portfolio is regressed on traditional factor models, Quality generates significant 

monthly alpha in between 0.431 - 0.549 %. Furthermore, the Quality portfolio loads significantly 

negative on market Beta, and tendencies are observed on negative factor loadings on SMB and 

HML, although the level of significance varies. It is interesting to note that regardless of factor 

model, the Net Quality Portfolio seems to earn its excess return from filtering out large cap 

companies with stable business models (as indicated by the negative Beta) and higher valuations (as 

indicated by negative loading on HML).  

This result is further emphasized in the Conditional Beta Analysis presented in Table 6. Even if the 

regression does not impose significant result on neither down nor up market conditions, the 

tendency lean towards an increase in excess return during down market conditions. This can also be 

linked to the characteristics of the Low and High Quality portfolios, respectively. As can be seen in 

section 4.6, Figure 11, the risk, measured as either average volatility of all assets in the portfolio or 

average Beta, is lower in the High Quality portfolio. Also, High Quality stocks tend to be more 

expensive (measured as P/B) and larger in terms of market capitalization, as shown in Figure 12 and 

13. The dynamics of the High versus Low Quality portfolios indicates that there are tendencies 

toward flight to Quality. For instance, during the Dot-com bubble, the two portfolios were inversely 
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correlated in terms of average P/B ratios, implying that the highly valuated, pre-crisis, tech stocks 

where not captured by Quality. Not investing in these stocks led to stable returns relative to the 

overall market in the subsequent year. This valuation spread (high tech stocks vs High Quality 

stocks) led to a large spread in the High versus Low Quality portfolios from September 1999 until 

May 2000, thus contributing to earning high returns for the zero investment portfolio. Furthermore, 

there is a spike in volatility and Beta for both portfolios during the great financial crises. Also, the 

spread in terms of volatility and Beta increases dramatically. For instance, the amplitude of the 

volatility is more than 50 % higher for the Low Quality portfolio throughout 2008 - 2009. The fact 

that High Quality exhibits lower market risk seems to be an important source for explaining the risk 

adjusted returns.   

 

When dividing the stock universe into two size categories and conduct a sort based on Quality, it is 

evident that High Quality performs better than Low Quality, irrespective of size. The difference 

between the highest Quality portfolio within the large cap universe, compared to the lowest Quality 

for large cap stocks, is 0,78 % monthly. The corresponding figure for the small cap portfolios 

amounts to 4,14 % monthly. This indicates that our proxy for Quality is significantly higher for small 

cap stocks. Previous research has outlined that there exists a small cap premium in the equity market 

due to un-diversifiable sources of risk. Furthermore, small cap stocks do not tend to be as efficiently 

priced as stocks of larger companies. Thus, our findings are in line with the previous research; the 

magnitude of the premium in the Quality portfolio is higher for small cap stocks, due to either 

market inefficiencies or errors in expectations among investors. However, since the results are 

coherent based on our sort on Quality, we conclude that Quality cannot be rejected to carry a 

systematic source of risk.    

 

Another interesting aspect of the 6 sub-portfolios is, as presented in Table 8, that regardless of size, 

the factor loading on Beta diminishes consequently as Quality increases. Also, lower Quality 

commands negative loading on the Momentum factor. According to the CAPM, low Beta portfolios 

should not exhibit return in excess of the market, as our Quality portfolios do. From this we can 

therefore argue for the presence of a premium that is not explained by traditional factor models.   

 

This, combined with a t-statistic higher than 2 for Quality in the CSR, implies that we cannot reject 

that Quality constitute a systematic risk premium. However, adding Quality to the CSR does not 
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improve the explanatory power sufficiently, to explain all the variation of the stocks, which weakens 

the argument. Also, as Harvey, Liu and Zhu point out, the value of our t-statistic is not a high 

enough level when the process of designing the portfolio is subject to several layers of subjective 

selection.  

 

In a Markowitz optimization setting, the Quality portfolio is “outside” the efficient set. This is also 

the case for the high dividend and low volatility strategies. This should not be possible according to 

the Markowitz framework for extended time periods. As can be seen in Table 9, the most efficient 

portfolio is a combination of factors, and the market portfolio is not assigned any weight. Since the 

factor portfolios have performed well historically, the results are expected and further strengthen the 

argument that factor investing can harvest systematic alpha. However, the Markowitz framework has 

been known to produce unreliable results in terms of future performance and pervasiveness. 

 

Therefore, we conclude that our proxies for Quality aim to capture returns in excess of the market. 

The main questions that remain are why, and if the Quality factor will persist as a source of 

systematic alpha. From the cross sectional regression results, we conclude that we cannot reject that 

Quality is a systematic source of risk, i.e has explanatory power in the cross sectional variation of 

stocks. As previously discussed, there are tendencies that Low Quality underperforms High Quality, 

irrespective of size, and the persistence of the net portfolio is higher than the persistence of other 

factors.  

 

In order to constitute a systematic source of risk, the Quality factor should imply exposures to un-

diversifiable factors such as macro-economic factors, value, size or momentum: premiums that 

command addition return. There is no evident result that points in this direction. Instead, the Quality 

portfolio earns its return in excess of the market during longer time periods and more turbulent 

times. An interesting point to be made in this regard is that investors tend to exhibit irrational 

exuberance and over confidence. During the Dotcom bubble for instance, High Quality was 

“underpriced” relative to Low Quality. The subsequent result was a mean reversion; Low Quality 

stocks fell dramatically, whilst High Quality stocks performed well on a relative basis. This seems to 

be the virtue of High Quality: irrational investor behavior, such as chasing winners, is avoided. The 

correlation between the market and the Quality portfolio is quite high during “normal” market 
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conditions, and the returns are slightly lower during normal market conditions (which is also 

indicated by the lower Beta-values).    

 

Furthermore, when the Quality anomaly is analyzed during shorter time horizons, the anomaly is less 

evident. We believe that this might be consistent with previous research made on investor 

preferences. Most investors have an investment horizon of 3 -5 years, and the Quality anomaly 

becomes evident first during longer time periods or during crises. Thus, there seem to be a holding 

premium for Quality for taking on the horizon risk. Investing in large capitalization, stable stocks 

with low financial risk, does in other words not seem to attract investors with a shorter horizon to 

the same extent as riskier investments (i.e companies with lower P/B ratios). Even if High Quality 

stocks are associated with higher valuations, the pricing of Low Quality stocks are more volatile. 

Also, the average volatility and Beta-values of the individual stocks in the Low Quality portfolio are 

higher. Thus, we conclude that the Quality anomaly rather is a result of the miss-pricing of stocks 

that do not exhibit High Quality traits. It appears to be in times of poor performance of these kinds 

of stocks that High Quality stocks earn most of their returns in excess of the market. This is 

indicated by the mean reversion pattern, shown in for instance Figure 6. Therefore, the results 

indicate that the premium is more likely to be due to systematic errors than a systematic source of 

risk.  
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6 Conclusions 

The four main conclusions from the analysis above, aimed at responding to the central questions and the purpose of the 

thesis, are presented in the section below. 

 

6.1 Lack of coherent definitions impose selection bias 
The first conclusion to be drawn is that there are several elements of selection bias when 

constructing a Quality screen. This applies to several aspects of the Quality anomaly. First, defining 

what metrics to use as a proxy for Quality involves a subjective element. As shown in Figures 1, 2 

and 3, the factor loadings across the three dimensions of Quality differs a lot, implying that even on a 

category level of fundamental metrics, inconsistency can be found. Interesting to note however, is 

that Profitability (Figure 1) shows the least deviation in terms of factor loadings, a finding that aligns 

well with previous research such as Novy-Marx. This also reflects upon the persistence, where 

Profitability exhibits higher persistence than the other dimensions.  

 

Furthermore, the selection bias is also evident when the Quality portfolio is compared to the SHB 

portfolio. Despite a similar process of defining Quality, the factor loadings are quite different, as 

shown in Table 2 and 3. However, both portfolios exhibit significant positive alphas, indicating that 

the usage of a Quality screen captures some premium, and even though the factor loadings differ, the 

correlation between the two amounts to roughly 80 %.  

 

The main conclusion is thus that the difficulty in defining Quality coherently makes it too prone to 

several selection biases, which in turn is likely to affect the overall performance of the Quality factor. 

Still, the return characteristics of both portfolios are left unexplained by traditional factor models, 

indicating a presence of a Quality premium.  

 

All conclusions from this point on will be based on the Quality factor as outlined by this essay. 

 

6.2 High performance in down markets – flight to Quality  
The second conclusion is that stocks that exhibit Quality characteristics earn most of the returns in 

excess of the market during adverse market conditions. This can for instance be inferred from 
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Figures 4, 5 and 6. The peaks in excess returns of the Quality portfolio tend to coincide with the 

various financial crises, and the cumulative excess returns remain relatively flat in the periods in 

between. This is further illustrated in Table 12 and 13, where the Quality portfolio outperforms the 

market portfolio in most of the crisis. Similarly, this is indicated from the Conditional Beta Analysis, 

showing that the benefit of owning Quality stocks is higher when equity markets are in distress.   

 

Another feature amongst Quality stocks is that they are less risky. As illustrated in Figure 12, High 

Quality stocks exhibit lower volatility and Beta than their Low Quality counterparts, thus rendering 

them less risky. The Quality portfolios’ positively convex traits, as shown in Figure 9 and 10, 

indicates a flight to Quality which benefits from crisis rather than implying a crash risk. When 

comparing the Quality portfolio to the Wilshire 5000 index, it is also evident that the Quality 

portfolio is less risky since the Sharpe-ratio is higher. This is further strengthened by the fact that the 

Quality portfolio engages a position outside the efficient set, as can be seen in Figure 8.  

 

6.3 Presence of a Quality Premium 
The third major conclusion to be drawn is that there seems to be a systematic premium associated 

with Quality. The portfolio’s performance and consequent alpha cannot be explained by traditional 

factor models, and we find a t-statistic higher than 2 in the CSR, displayed in Table 6. However, 

adding Quality to the CSR does not improve the explanatory power sufficiently, to explain all the 

variation of the stocks. Also, as Harvey, Liu and Zhu point out, the value of our t-statistic is not a 

high enough level when the process of designing the portfolio is subject to several layers of 

subjective selection. Thus, we conclude that Quality cannot be rejected to carry a systematic source 

of risk.  

 

The conclusion above can be extended to the 6 sub-portfolios, sorted on size and Quality. As is 

shown in Table 7, the factor loading on Beta diminishes consequently as Quality increases, regardless 

of size.   

 

The fact that High Quality exhibits lower market risk seems to be an important source for explaining 

the high risk adjusted returns. The high performance relative to the benchmark in benign market 

conditions accounts for the majority of excess returns. This argument, combined with the fact that 

traditional factor models cannot explain the alphas, indicates the existence of a Quality premium.  
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6.4 Systematic errors rather than systematic risk  
The final conclusion to be drawn is that the premium derived from the Quality factor is more likely 

to be due to systematic errors rather than systematic risk. As discussed above, Quality earns the 

majority of its excess return during market distress. A conclusion to be drawn in this sense is linked 

to behavioral aspects. Investing in High Quality stocks leads to a more rational investor behavior, 

such as avoiding chasing winners. The correlation between the market and the Quality portfolio is 

quite high during “normal” market conditions, and the returns are slightly lower during normal 

market conditions.  

 

We thus conclude that the Quality anomaly rather is a result of the miss-pricing of stocks that do not 

exhibit High Quality traits. This is indicated by the mean reversion pattern, shown in for instance 

Figure 6. The phenomena of flight to Quality, shown in Figures 9, 10, further strengthen this 

conclusion. Therefore, the results indicate that the Quality premium is more likely to be due to 

systematic errors, foremost in terms of Low Quality stocks, than a systematic source of risk.  

 

In order to constitute a systematic source of risk, the Quality factor should imply exposures to un-

diversifiable factors such as macro-economic factors, value, size or momentum: premiums that 

command addition return. There is no evident result that points in this direction.  

 

Another aspect strengthening this conclusion is that most investors have an investment horizon of 3 

-5 years, and the Quality anomaly becomes evident first during longer time periods or during crises. 

Thus, there seem to be a holding premium for Quality associated with taking on horizon risk. 

Investing in large capitalization, stable stocks with low financial risk, does in other words not seem to 

attract investors with a shorter horizon to the same extent as riskier investments.  
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7 Future research 

During the process of dissecting the Quality anomaly in order to answer the main questions of the thesis, certain 

elements and indication have been brought forth which are subject to further research. These findings are presented in the 

chapter below.  

 
When constructing the Quality factor used in this thesis, it became evident that the factor loadings 

varied between the metrics, even in regards to factors of the same category. Subsequently, the factor 

loadings of the Quality factor based on a combination of metrics might therefore differ, conditional 

on which metrics are chosen to proxy for the factor. Further research in regards to the factor 

loadings of the metrics, as well as the persistence of the metrics, would therefore be beneficial for 

defining a Quality factor, and suitable metrics to proxy for it.  The differences in terms of factor 

loadings that can be seen from our overall Quality portfolio compared to the SHB portfolio, also 

indicates that a similar selection process of metrics may result in different factor loadings (see Table 

2 & 3). 

Another interesting topic to investigate further, is whether different Quality screens can be proxied 

for by other factors, such as low volatility or dividend strategies. The similarities in terms of risk and 

return of these strategies, outlined briefly in this essay, indicates that there might be some common 

sources that generate the excess returns. As such, it would be interesting to see if there are any 

common elements in terms of risk premiums, which carry explanatory power.  

Furthermore, Liquidity is a commonly used risk factor in explaining returns. It would therefore be of 

interest to adjust the Quality Screen, and for instance form sub portfolios sorted on Liquidity. It 

would also be interesting to conduct a CSR based on this kind of screen, to further dissect the 

Quality Anomaly in equity returns.  
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Appendix  

Alfa ROIC GP/Assets CF/Assets Operating Margin ROE ROA 

CAPM 0.001655 0.007089*** 0.006121*** 0.004608 0.002240 0.003139 

FF3 0.000753 0.007797*** 0.005577*** 0.002688 0.001494 0.002566 

Carhart 0.002095* 0.007094*** 0.004311** 0.001217 0.000154 0.001972 

FF5 0,000082 0.006265*** 0,002245 0.000343 -0.001511 0.000452 

       

Alfa Leverage Debt / Equity Net Debt EPS Stability Dividend Equity Var 

CAPM -0.002909 -0.001777 -0.001566 0.002706* 0.002347** 0.002631 

FF3 0.004497*** 0.001207 0.001665 0.001647 0.001386 0.000878 

Carhart 0.004130*** 0.000514 0.001185 0.002533* 0.001464 0.000752 

FF5 0.006125*** 0.003205* 0.004595** 0.002221 0.001892* 0.002777 
Appendix 1 
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Appendix 2 

 

Appendix 3 
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