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Daniel Mikkola

Populärvetenskaplig beskrivning
Galaktisk arkeologi kallas det forskningsfältet inom astronomin som undersöker Vintergatans
historia i termer av stjärnors kemi, ålder, utveckling, och inte minst deras kinematik. Vintergatan
började som ett band av dimma över natthimlen innan människan förstod att det var våran egen
Galax, som vi själva satt inuti. Sedan dess har vi försökt förstå allt vi kan om Vintergatan.
Galaktisk arkeologi är forskningen om Galaxens olika komponenter, deras ursprung och deras
utveckling.

Vi är dock väldigt begränsade i hur djupt in i Vintergatan vi kan se. Rymdteleskopet Hip-
parcos kunde upplösa objekt ner till en millibågsekund. Det motsvarar ungefär att kunna upplösa
en människa på månens yta. Den nya satelliten Gaia kan nå ner till en mikrobågsekund, vilket
motsvarar att upplösa en pennspets på månen. Gaia har precis börjat ge resultat dock och vi kan
för tillfället inte nå längre än Solens ‘kvarter’ i Vintergatan.

Men även i denna begränsade sfär har vi kunnat skapa många teorier och modeller om hur
stjärnor rör på sig, hur de formas och hur de utvecklas. Oftast har man börjat med de enklaste
approximationerna och hur stjärnor rör sig i Galaxen är inget undantag. Den enklaste bilden är
att de rör sig i nästan cirkulära banor kring Galaxens center. Men detta tillsammans med ett
antagande om att den enda kemiska berikning som sker är genom stjärnors explosiva död leder till
ett förutsägande att varje del av Galaxen borde utvecklas separat från de andra. Med modeller
som visar att mängden metaller i stjärnor minskar desto längre ut man kommer i Vintergatan så
blir varje radie unik och borde ha en rätt strikt definierad relation mellan åldern på en stjärna och
dess kemiska komposition. Detta är dock inte vad vi ser.

När vi pratar kemisk komposition av en stjärna pratar vi gärna om metallicitet, som skrivs
[Fe/H], och är relaterat till mängden järn gentemot väte i en stjärna. När metallicitet och ålder
jämförs hade de enkla antaganden som beskrevs ovan gett en nära relation. Men observationer
visar att varje ålder har en spridning i metallicitet. En av förklaringarna till detta är att stjärnor
inte rör sig i nästan cirkulära banor utan kan oscillera i radie från en plats till en annan, eller till
och med migrera radiellt och hamna på en helt ny plats i Galaxen. Alltså sker en hel del blandning
av stjärnorna. Oscillerande radie är ett fenomen som kallas ‘blurring’ och radiell migrering genom
interaktion med spiralarmar kallas för ‘churning’. Fenomenet churning beskrevs först för galaxer av
Jerry Sellwood och James Binney i en artikel år 2002. De visade också att den främsta processen för
att skapa spridningen, churning, kan ske utan att lämna några dynamiska fotspår i stjärnan. Detta
betyder att dess omloppsbana inte behöver bli mer elliptisk när den interagerar med en spiralarm.

För att undersöka radiell migrering använder man sig av simulering eftersom det kan ta flera hundra
miljoner år. Många olika studier har genomförts men har i stor utsträckning varit begränsade i
vad de tittar på för sorts galax eller hur många olika galaxer de simulerar. I detta arbete ska jag
och min handledare göra en storskalig studie av hur radiell migrering är annorlunda från galax
till galax genom att genomföra flera olika simuleringar. Vi kommer dessutom kolla på stjärnors
vertikala egenskaper för att se vad dessa spelar för roll. Vertikala egenskaper har varit i fokus i
tidigare artiklar där det varit debatt om en stjärna migrerar mindre eller ej om den är vertikalt
långt ifrån galaxdisken.
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Chapter 1

Introduction

The purpose of Galactic archaeology is determining the history of the Milky Way (MW) Galaxy.
To do this one uses observational data from stellar populations in terms of properties such as
kinematics, chemistry, ages, and evolution. In this context a population means stars with similar
characteristics and the most notable population is “the Solar Neighbourhood” (SN). Stars orbit
with a ‘guiding radius’ defined as Rg ∼ Lz/Vc where Lz is the angular momentum in z-direction
(perpendicular to the disc of the Galaxy) and Vc the circular velocity in the potential. If we make
the two assumptions that (1) stars do not significantly change their radius over time and (2) the
Galactic disc is axisymmetric, we can view populations like the SN as representative samples of the
history of the Galaxy at their given radius. With these assumptions the content at one radius is
isolated, so using it to make assumptions about the past history for a certain radius is a powerful
approach.

If the assumptions hold true, we can use the age-metallicity relation (AMR) and the metal-
licity distribution function (MDF) of stars to find out the entire history of the MW disc at a given
radius. The metallicity of stars and interstellar medium (ISM) should increase with time as metals
are created predominantly in supernovae, so newer stars are more metal rich. Thus, we can predict
that metallicity decreases with age. Considering only this, we expect the distribution of stellar metal-
licity to have a peak. This is because fewer very metal-poor stars should be left alive and conversely
not so many very metal-rich stars have been born so far as have in the peak. However with basic
modelling of this kind the “G-dwarf problem” arises in which the number of metal-poor stars are
too many compared to observations (Searle & Sargent 1972). A proposed solution revolves around
gas in- and outflow (Larson 1974). In such a suggestion it is recognised that different regions of the
Galaxy are not isolated and can undergo mixing. Also, more recent observations (e.g. Holmberg
et al. 2009) suggest that the observed AMR is flat and has a large scatter in metallicity at a given age.

Kinematic properties of stars can usually tell us a lot about stars. Stars move in various ways
and can have eccentric orbits in which case they can spend some time on radii different from their
present one. The eccentricity of a star’s orbit can be identified from the velocity of the star at
different times. This might tells us that the star has had a dynamical interaction with something in
the past. Instead consider the more devious case where a star’s orbital radius is changed while the
orbit remains as circular as before. It would end up in a region with different typical metallicity
content while having a metallicity indicative of its own birthplace. We would be unable to identify
a kinematic difference between this star and one that has been born and remained in the same
region throughout its lifetime in contrast to the eccentric star.
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The first idea of a process of diffusion through the disc comes from Wielen (1977) but only
regards diffusion through interaction with giant molecular clouds (GMCs) which is insufficient at
changing the radius of stars enough for mixing. Two ways of changing the radius of a star are
called blurring and churning. The former, blurring, is when stars have non-circular orbits. No
star has a truly circular orbit, but the degree to which they are eccentric varies. Because of the
eccentric motion stars trace out what is called epicyclic orbits and visit radii up to a kiloparsec
different than their mean radial distance. Coupled with the fact that observations show clear radial
metallicity gradients in the disc (e.g. Vila-Costas & Edmunds 1992; de Jong 1996) it is clear that
this effect would cause chemical mixing in the Galaxy.

Regarding churning, it was shown in a paper by Sellwood & Binney (2002) that resonant in-
teraction with spiral arms in the Galaxy should be taken into account as well and is in fact the
principal driver of what we call radial migration. Churning is also a process which arises naturally
within the Galactic disc if there are spiral arms and can move stars across much greater distances
than blurring and does it without changing the star’s eccentricity, leaving no dynamical trace of
occurrence.

The Milky Way has complicated structure and content with different populations, thick and
thin discs, flaring, a halo, and more (Bland-Hawthorn & Gerhard 2016) and not everything observed
in these parts is explainable or likely due to radial migration. But behaviour involving more than
one part of the disc can be investigated to ascertain if radial migration is part of the solution.
A feature long noted in the Milky Way is the existence of, as stated above, two separate discs,
the thin and the thick discs. We can identify their differences through properties such as velocity
dispersion, metallicities, and ages with some small overlap (Haywood 2008).

There has been explanations beyond radial migration given to account for differences between the
discs (see e.g. Chiappini et al. 1997; Bensby et al. 2005) but the duality of the discs is one of the
cases where radial migration offers a solution. Schönrich & Binney (2009) performed simulations of
Galactic chemical evolution and included radial mixing. They were able to produce a thick and
thin disc from radial migration and showed that it can be used to explain some of the observations
found in the Galaxy.

Over recent years, a large number of numerical simulations of Galaxies with radial migration
have been performed and analysed (see e.g. Sellwood & Binney 2002; Solway et al. 2012; Roškar
et al. 2012; Vera-Ciro et al. 2014; Halle et al. 2015). A good example of other more comprehensive
studies is a series of papers lead by Michael Aumer and James Binney (Aumer et al. 2016a,b; Aumer
& Binney 2017; Aumer et al. 2017) where they perform a large N -body study of galaxies with
live dark matter halos and include the effects of combined spirals/bar and GMCs. They study the
growth and evolution of thick and thin discs under different conditions. Studies such as these have
increased the understanding of radial migration which is a topic still not completely understood.
This is where the work of this thesis comes into play.

The work presented in this thesis differs from those previously stated in that they have mostly
focused on individual, or in other ways somewhat limited, simulations while this work is intended
to have a broad scope of investigation. A large number of different N -body simulations have been
performed where different initial conditions have been used. By investigating the positions and
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velocities of the stars the radial migration of each simulation can be gauged. The nature of radial
migration depends strongly on the conditions of the galaxy in which it transpires. The effect of
conditions that will be investigated are the varying halo mass, the subsequent effect on spiral arms
in terms of strength and quantity, the stability of the disc in terms of dynamics, and the robustness
to numerical alterations regarding number of bodies, duration, and seed numbers. This will provide
a greater understanding of radial migration and provide a basis for future work in analytical models
or other N -body simulations.
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Chapter 2

Theory

2.1 Observational background
A galaxy is a mixture of stars, gas, and dark matter (DM). The stars are the source of most activity
in a galaxy, the constituents of stellar groups, clusters, the origin of supernovae and so on, and in
between them is the ISM and dark matter. If we observe stars at different radii we find a radial
metallicity gradient (Hayden et al. 2015). The stars are responsible for the metallicity content of a
region due to the production of elements in their cores. They burn through fusion and create more
massive elements which they then eject back out into the ISM through their deaths. Larger stars
undergo supernovae and deposit elements not found through big bang nucleosynthesis. Normally
metallicity is quantified through the difference of the logarithmic ratio of iron to hydrogen to that
of the Sun. This is written

[Fe/H] = log
(
NFe

NH

)
star
− log

(
NFe

NH

)
�
, (2.1)

where N stands for the number of atoms of each kind. Assuming that a region stays relatively
isolated we would expect a region to increase in metallicity over time. So looking at ages and
metallicities one could naively expect a decline in metallicity as the age of stars in a region increases,
see e.g. Bensby et al. (2014) or Bergemann et al. (2014). In the former paper, they derived
abundances for 714 F and G dwarfs and subgiant stars in the Solar neighbourhood. The result for
[Fe/H] against age is shown in figure 2.1.

The age-metallicity relation (AMR) in figure 2.1, does not appear to have the predicted be-
haviour. At a given metallicity there are a range of available ages with a large scatter. A similar
plot can be found in Bergemann et al. (2014). The same behaviour can be seen there and the AMR
almost appears to be flat. Radial migration is a solution that naturally occurs in the presence
of spiral arms and which could produce the result we see. Stars can move to regions with very
different metallicity than where they started.

Looking at more specific abundances, we briefly outline the three primary sites of stellar nu-
cleosynthesis as discussed by Edvardsson et al. (1993):

(i) Stars of large mass (M > 8M�), contribute as dominant source of O and α-elements (O, Ne,
Mg, etc).They start to create onion-like shells of different materials as they fuse all the way
up to the iron peak. Stellar winds drive some of this material back to the surroundings but
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Figure 2.1: Figure 2Ia from Bensby et al. (2014). It shows metallicity against age in Gyr. Blue
circles are stars with an age difference between upper and lower estimates below 4 Gyr and the size
increases with age. The grey dots are stars with bigger uncertainties.

the main driver is the core-collapse supernova which ends the life of the star. This is a type
II supernova.

(ii) A white dwarf that accretes mass can become a type Ia supernova. They create elements in a
process called thermal runaway fusion which creates mostly iron peak elements such as iron
and nickel. White dwarfs are born of stars of lower mass, below 8M� (although most of the
contribution is from 1-3M� stars).

(iii) The same stars that form white dwarfs in (ii) will in a past period in their lives be asymptotic
giant branch stars (AGB stars) which can create heavy elements through what is called the
s-process (slow process). They produce elements such as Y, Zr, Ba, and Nd. Stellar winds
and eventually superwinds that result in planetary nebulae return these elements to the ISM.

But the way these various processes come into being have vastly different time-scales. Massive
stars, responsible for the production of α-elements, cause (i) and require some tens of millions of
years to occur. Even heavier stars are faster. This is because the lifetime of a star is shorter with
mass as the burning proceeds faster. Less massive stars, which cause (ii) and (iii), take billions of
years. The expected lifetime of the Sun is 10 billion years. In that time, a couple of hundred of
massive stellar lifetimes will have passed. Meaning that process (i) will have transpired long before
(ii) starts. For the case of this study, case (iii) is less important as we care more for the amount of
alpha-elements and iron in the Galaxy.

Fuhrmann (2011) analysed the abundances of over 300 nearby solar-type stars which allows
us to investigate the relative abundances of α-elements and iron. Schönrich & Binney (2009)
modelled chemical evolution of the SN by selecting stars from their model which resembled stars
from the Geneva-Copenhagen survey of the SN (Nordström et al. 2004).
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Figure 2.2: Figure 15 from Fuhrmann (2011). [Mg/Fe] against metallicity for over 300 SN stars.
The figure shows different discs using different symbols as explained through the figure. The size of
circles are in proportion to the determined ages.

If we turn to figure 2.2 we notice a separation that is quite clearly labelled in this plot. The
thick and thin discs vary in metallicity and, although not shown here, in velocity dispersion. The
chemical evolution we predicted can broadly be seen. First we have type II supernovae which over
time would provide a roughly constant amount of [α/Fe]. But hydrogen is not produced, so [Fe/H]
increases to the right. Eventually type Ia supernovae begin and the iron increases faster than the
α-elements, leading to a decline.

There are different gradients of metallicity in the Galaxy. Hayden et al. (2015) found a de-
crease in [Fe/H] with galactocentric radius for low altitudes above the disc. Higher up above the
disc, [Fe/H] is generally lower but does not change much at all with radius. Essentially the vertical
gradients disappear closer to the edge of the Galaxy. For [α/Fe], the distributions in metallicity are
quite similar, but at larger distances from the midplane of the Galaxy, the inner disc has slightly
higher [α/Fe] and somewhat more of a gradient than does [Fe/H] in the same regions. To summarise
there are negative gradients for [Fe/H] with radius near the disc and less so above it and gradients
with vertical distance, z, in the inner disc. [α/Fe] show similar gradients but with a radial gradient
also at higher z.

Following the above, we could view the x-axis of figure 2.2 as some indication of radius within a
population and the y-axis very roughly as age. When type Ia supernovae then begin, a transition
down to the thin disc would occur. The number of stars between the discs would depend on
the duration of the transition. In this picture we would then see, chemically, the evolution of
the ISM in a region of the Galaxy as a line through the data with no width to it. Since these
are all local stars, the width of the populations implies mixing as lines of other regions would
be shifted to the left and right. A separation is also observed rather than a smooth transition
between the thick and thin discs. Solutions that have been given to explain this behaviour are:
a break in the star formation history (Chiappini et al. 1997) and accretion events (Bensby et al. 2005).

In Schönrich & Binney (2009) they provide a similar plot with O instead of Mg. In that pa-
per they extend models to include radial migration and achieve similar results. They reproduce the
dichotomy of figure 2.2. But more importantly, they show that the stars at the SN do deviate from
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the path of the ISM in the [α/Fe]/[Fe/H] space. The extent of the deviation is larger than what
would be expected of blurring alone which is a further indication of radial migration as churning.
In plots like figure 2.2 the stars do not follow a line defined by the ISM either which suggests that
radial migration is apparent in the Milky Way. Indeed, the result from Sellwood & Binney (2002)
is that if transient spiral arms are present radial migration will occur.

2.2 Computational background
The force that is most relevant on astrophysical distance scales is gravity. When objects are very
far apart but of very large masses it is the only contributing force. Astronomers and physicists
since Newton have strived to describe, as accurately as possible, the motions of celestial bodies.
Following from Newton’s law of gravitation every body in a system experiences an acceleration due
to the gravitational attraction of all other present bodies which leads to the following description
of acceleration

d2xi
dt2

= −
N∑

j=1; j 6=i

Gmj(xi − xj)
|xi − xj|3

, (2.2)

for a system of N bodies with masses mj . G is the gravitational constant and j and i are the indices
of two bodies. This is a second order differential equation which has seen analytical solutions for a
handful of bodies. It becomes a matter of increasing complexity when N rises higher and analytical
solutions are abandoned in favour of numerical ones. This gives rise to the subject of N -body
modelling.

In N -body simulations N can rise to very higher numbers. However it is necessary to spec-
ify a divide between the type of systems simulated. The relaxation time is defined as the time after
which cumulative kicks from other bodies have significantly altered a bodies orbit. It is given as
(Binney & Tremaine 2008)

trelax '
0.1N
lnN tcross, (2.3)

with tcross being the time it takes for a body to cross the system once which in galaxy simulations is
the time it takes for a star to cross the galaxy. When studying dynamics below trelax the collisions
are not important and we call them collisionless systems. To give an example from Binney &
Tremaine (2008) galaxies typically have 1011 stars and are a few hundred crossing times old. They
would need to be around half a billion crossing times old before reaching the relaxation time. For
clusters however relaxation can strongly influence the structure over its lifetime. In 2011 collisionless
simulations could reach over 109 bodies while collisional ones only 106 (Dehnen & Read 2011) due
to the complexity of handling collisions.

Within these two categories there are plenty of examples of how N -body simulations are ap-
plicable in astrophysics. Planet formation (O’Brien et al. 2006), Planetary dynamics (Mustill et al.
2017), stellar cluster dynamical evolution (Hurley et al. 2007), and galaxy formation (Agertz &
Kravtsov 2016) are just a few examples. More applications outside of astrophysics exist as well but
will not be mentioned here. We will instead focus on simulations of disc galaxies.

The last decade or so has seen plenty of galaxy simulations which have given rise to the study of
radial migration. The seminal paper of the field is by Sellwood & Binney (2002). They utilised a
particle-mesh (PM) method to study N -body radial migration. PM has since been replaced by
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P3M, or the particle-particle-particle-mesh method. In their paper they showed the effect of radial
migration with a single and controlled spiral arm. Schönrich & Binney (2009), although not using
N -body simulations, investigated the chemical evolution with radial migration by expanding on a
model from Roškar et al. (2008b) which uses GASOLINE (Wadsley et al. 2004), a smoothed particle
hydrodynamics (SPH) code with N -body integration. which allows it to also follow gas dynamics.
They were able to produce thick and thin discs and performed comparison with observational
data. Solway et al. (2012) ran a number of simulations using a 3D polar grid-based code which is
outlined in Sellwood & Valluri (1997). From their simulations they stated findings that migrators
are vertically colder stars. The opposite was found by Vera-Ciro et al. (2014) which used the code
GADGET-2 (Springel 2005) which is a parallel TreeSPH code.

There are a number of topics on which the effect of different dynamical evolution scenarios
can be studied. We previously mentioned work by Aumer & Binney (Aumer et al. 2016a,b; Aumer
& Binney 2017; Aumer et al. 2017) where they use combinations of spirals/bar and GMC effects
as well as different thick disc formation scenarios to match results with the Milky Way. They
find that in their models, migration alone is unable to produce a thick disc (Aumer et al. 2016b).
Work by Ivan Minchev (Minchev et al. 2015, 2014) also look into the formation of thick discs in
simulations as well as the role of radial migration during the formation of galaxies rather than in
formed galaxies such as those appearing in this study.

These simulations are typically performed with one or two important restrictions. First they
are often performed in a controlled manner with strong induced spiral arms, see e.g. Sellwood &
Binney (2002) or Solway et al. (2012). Secondly they can be focused on a single simulation from
which results are deduced, see e.g. Vera-Ciro et al. (2014), Halle et al. (2015), or Kawata et al.
(2017). In this work I will try to address both of these limitations by running a very large number
of simulations that vary a lot from one to the other as well as having the features of the simulation
arise naturally without being induced. Some of the aims of this work is to be able to describe how
the results change depending on the simulation that is performed and to get a better grip on the
concept of radial migration as well as provide understanding of some discrepancies that appear in
the literature.

2.3 Blurring
Two different sources for radial migration exist in galaxies and both are important for understanding
the observable structure of any galaxy. The two processes related to the orbits of stars are called
blurring and churning. We will start with the former.

Stars start on nearly circular orbits with small variations. These nearly circular orbits do not send
the star onto very different radii. Stars can however undergo scattering events with heavier and larger
features like giant molecular clouds (GMCs). By dynamically scattering, these stars can be moved
onto slightly eccentric orbits. Small radial oscillations in a star’s orbit are treated by the epicycle
approximation and hence these orbits are called epicyclic orbits. An example of how this can look
is given in figure 2.3. In the figure the star moves interior and exterior to the circular orbit by some
1-2 kpc, so chemical mixing between different parts of the Galaxy by blurring is most likely occurring.

We shall now consider non-circular motions that can occur in the plane of a galaxy. For simplicity,
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the forces are specific forces. We can express a central gravitational force in terms of the rotational
velocity Vc(R) as

Fg(R) = Vc(R)2

R
, (2.4)

where R is the distance from the center of the galaxy and indices c and g are for circular and gravity
respectively. Standard cases of Fg are exterior to a spherical mass, Fg ∝ R−2, and the inside of a
homogeneous sphere, Fg ∝ R. We can also tell that a constant Vc yields Fg ∝ R−1. We summarize
with

Fg = F0

(
R

R0

)α
(2.5)

where α can be between −2 and 1. If α is less than -2 it implies a negative mass density in Poisson’s
equation. F0 denotes the force at the Sun’s distance which is R0. The value of α near the Sun can
be determined using local parameters.

We give the force near the sun as F0 = v2
0/R0, where v0 is the circular velocity of the Sun. With

angular momentum L0 = v0R0 we can write F0 = L2
0/R

−3. The angular velocity is ω0 = v0/R0.
Angular velocity and angular momentum are constant for a circular orbit. This means that the
star will not move radially from R0, the equilibrium distance because the gravitational force will
balance the centrifugal force.

Instead we now consider a non-circular orbit where the radius will change over time. Gravi-
tational force can still be expressed with equation (2.4):

Fg(R) = Vc(R)2

R
=
(
R

R0

)α L2
0

R3
0
, (2.6)

While the centrifugal force is expressed

Fc = ω2R. (2.7)

Because the angular velocity is not constant we replace ω with ω = L0/R
2 and write

Fc(R) = L2
0R
−3. (2.8)

We can now ponder a situation in which a star on a circular orbit receives a small boost in the
outward radial direction. As the star begins to move outward equations (2.6) and (2.8) govern
the force changes. The former changes as Rα and the other as R−3. Since α must be greater than
−2, the centrifugal force decreases more rapidly and the star accelerates back radially inwards.
In the situation in which the boost is towards the centre the centrifugal force will increase faster
and the star will accelerate outward again. Therefore the motion of the star is stable to small
velocity changes and would instead start to produce radial oscillations. This causes what is called
an epicyclic orbit.

The motions in the epicycle orbit are approximated by harmonic oscillators with the solutions

ξ(t) =a sin(κt+ ϕ)

η(t) =2ω0

κ
a cos(κt+ ϕ),

(2.9)
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Figure 2.3: An epicyclic orbit (blue) and a circular orbit (red) plotted for ∼ 240 Myr with κ = 35.3
km/s/kpc, A = 14,B = −12 km/s/kpc, a = 1.5 kpc, and R0 = 8.5 kpc as the guiding radius.

Here ξ(t) is an approximation of the radial motion, η(t) describes the part of the azimuthal motion
which is non-circular, a and ϕ are the amplitude and phase respectively κ is the epicycle frequency
which is given through the expression

κ(Rg) =
√√√√(RdΩ2

dR
+ 4Ω2

)
Rg

, (2.10)

where Ω is the circular frequency of the orbit and Rg the guiding radius the epicycle orbit oscillates
about. The frequency κ can be simplified with the inclusion of two new functions, A and B,

A(R) ≡ 1
2R

dΩ
dR

(2.11)

B(R) ≡ −
(

Ω + 1
2R

dΩ
dR

)
, (2.12)

called Oort’s constants which are measurable. With A and B, κ simplifies to
√
−4B(A−B) or

ω0

√
(3 + α). The ratio of amplitude between ξ(t) and η(t) is then

2ω0

κ
= 2√

3 + α
=
√
A−B
−B

, (2.13)

which, using literature values of A and B, becomes 1.47. For a full and thorough derivation of
this, see Binney & Tremaine (2008). This result means that the epicycles are ’dragged out’ in the
azimuthal direction. To illustrate this I plot an epicyclic orbit against a circular one in figure 2.3.
The circular orbit is marked in red and the epicyclic one in blue.

So stars have epicycle orbits and thus perform radial excursion. By putting blurring in the
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concept of chemical mixing in the Galaxy, we can convince ourselves of its relevance with ease as
it occurs over a few million years. Stars move onto radii different than their guiding radius and
are then capable of enriching other regions of the Galaxy. In fact, the guiding radius itself can be
changed by interactions that produce the kick necessary for epicyclic orbits. The Galactic disc is
dynamically heated over time (Wielen 1977) from various overdensities like GMCs which are able
to produce the kick.

The metallicity broadening that comes from blurring is not enough to explain observations from
the Geneva-Copenhagen survey (Nordström et al. 2004) however and accounts for only up to 50%
of the observed scatter in metallicity that can be seen in plots like figures 2.1 and 2.2 (Schönrich &
Binney 2009; Roškar et al. 2008a).

2.4 Churning
Another contributor to radial migration and the most important one is angular momentum transfer
via scattering by spiral arms. This is called churning and we will now explain this phenomena.

In order to explain the process of churning in a simple manner we will use an extremely simplified
picture of a star near the co-rotation velocity of a single spiral arm which does not change through
the evolution of its host galaxy.

Let us start by defining the torque. The torque is the cross product of a force vector, FFF , and a
positional vector, rrr.

ΓΓΓ = rrr ×FFF . (2.14)
Angular momentum is the cross product of the position and momentum, ppp,

LLL = rrr × ppp (2.15)

and thus changes as
L̇LL = d

dt
(rrr × ppp) = (ṙrr × ppp) + (rrr × ṗpp). (2.16)

Since ppp = mṙrr and ṗpp = mr̈rr = FFF , the first parenthesis equals zero and the second remains as

L̇LL = rrr ×FFF = ΓΓΓ. (2.17)

So the torque describes the change of angular momentum. The magnitude is less of importance
than the sign. The magnitude of the angular momentum is proportional to the radius and the
circular velocity. The process we are now going to describe is illustrated in figure 2.4. Here
a single spiral arm is marked out. Corotation is marked out with a dotted line which means
that at this radius stars orbit with the same pattern speed as the spiral arm. Interior to this
stars move faster and exterior they move slower relative to the spiral arm in terms of angular velocity.

We start with the star moving slower than the spiral arm. It is the red dot to the top left
in the illustration. It is moving slower than the arm so in the rotating frame appears to be moving
towards the spiral arm. The force points to the right and the position points outwards and hence
the torque is negative. A negative torque, according to equation (2.17), means that the angular
momentum decreases and the radius then decreases and the star ends up on an orbit interior to the
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Figure 2.4: An illustration of the principle of angular momentum transfer at corotation. Red dots
mark different positions in time for the horseshoe orbit of the star and the spiral arm is in teal.
The dotted line marks the radius of corotation. The vectors of force and position are indicated as
well as direction of rotation of the spiral arm.

arm. Now it will orbit faster and appear to move away from the spiral arm which is the lower left red
dot. It comes around and catches up to the spiral arm in the red dot on the lower right. The force
now points in the other direction and thus the torque is positive, the star gains angular momentum
and moves to an exterior radius. The net effect of this interaction is zero. However, spiral arms are
not fixed features of a galaxy. They are transient objects and multiple spiral arms usually exist.
Hence by the time the star interacts with a spiral arm a second time, the spiral arm will be different
and so will the interaction with it. So when a more complicated scenario is considered the net
effect is unlikely to be zero and radial migration can happen both inwards and outwards in a galaxy.

This was shown more rigorously in Sellwood & Binney (2002) where spiral arms caused churning of
stars and gas while retaining overall angular momentum distribution and with very little increase in
random motion. In their paper they start at the Jacobi integral (for a description and derivation see
appendix A, the experienced reader can skip this.) Ej = E − ΩpL, where E = H, the Hamiltonian,
since this Hamiltonian is equal to the total energy E. The Jacobi integral is constant in time so
the change between two moments in time yields the equation

∆E = Ωp∆L. (2.18)

But we can also describe the change in energy in parts. The radial and azimuthal kinetic energy
can approximate the energy change through the equation

∆E = ∂H

∂L
∆L+ ∂H

∂JR
∆JR, (2.19)

which is the differential of the Hamiltonian under the assumption that it only depends on L and
JR, that is, we treat the system as 2D. We have introduced the variable JR, called radial action.
To understand it we must briefly cover angle-action variables. These variables are, in a sense, a

14



CHAPTER 2. THEORY Daniel Mikkola

different set of coordinates. One way to illustrate this is in figure 2.5. Here the action is the area of
one of the rings and the angle is indicated in the figure. Angle-actions coordinates are not identical,
but closely analogous, to polar coordinates in this manner.

Figure 2.5: Figure from page 214 of
Binney & Tremaine (2008) illustrating
the concept of angle-action variables as
similar to polar coordinates. The mo-
mentum pi and coordinate qi are given
as the area of the rings, called the action
Ji, and the angle θi.

Now recall Hamiltonian mechanics and Hamilton’s equa-
tions,

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
. (2.20)

We wish to describe the Hamiltonian using the angle-
action variables with our momenta being the actions J
and coordinate θ. The actions are assumed integrals of
motion and therefore

J̇i = −∂H
∂θi

= 0. (2.21)

Which then leads to the derivative of the coordinate

θ̇i = ∂H

∂Ji
= Ωi(J), (2.22)

an angular frequency. With this knowledge, returning to
equation (2.19), we can find the solution to the partial
derivatives. With radial action and angular momentum,
we get ∂H/∂L = Ω and ∂H/∂JR = ωR, the azimuthal
and radial frequencies respectively. The equation now
looks like

∆E = Ω∆L+ ωR∆JR. (2.23)
Putting this in equation (2.18) gives

∆JR = Ωp − Ω
ωR

∆L. (2.24)

Which means that a change in angular momentum changes the radial action unless changes in
angular momentum occur at corotation (Ω = Ωp). A change in the radial action would mean that a
star would change its eccentricity.

Actions are very useful units to have. They have already been discussed as area to position
and momentum coordinates but what they quantify are oscillations. The radial action is an expres-
sion of the radial oscillations and the vertical action, Jz, an expression of the vertical oscillations.
They are able to combine different properties with, for example, Jz being a combination of vz and z.
As actions are a combination of other variables and conserved in the approximation they simplify
interpretation of the results. The actions are conserved quantities as they are assumed integrals of
motion.

The fact that radial action does not change for angular momentum changes at corotation is
one of the perhaps more frustrating features of churning. While it is the stronger out of blurring
and churning, it also occurs at corotation without leaving behind a dynamical trace. This makes
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deducing trends and population behaviour from observations much more troublesome because not
only do we have methods for moving stars from different parts of a galaxy to another but churning
dynamically hides itself. To emphasise this, some papers suggest that the Sun itself came from a
radius ∼ 2 kpc closer in than where it is today (Wielen et al. 1996).

It cannot be said that radial migration is the sole solution for the observed behaviour in the
Galaxy. It is likely to be occurring however and may well be a contributor along with other
proposed methods to create the observed chemical mixing. Since radial migration is a process that
occurs over very large timescales the way to study it is in computer simulations which can then be
run for billions of years with millions of particles. With the inclusions of chemical evolution models
for the Galaxy it is possible to attempt to generate observables or to simply probe the nature of
these process and what affects them.

Radial migration is not a completely understood mechanism and there exists several impor-
tant questions, one of which is which stars that undergo migration. It is unclear if gradients in
migration exist in properties such as radius, height above the disc, or dynamical temperature. A
simple picture can be painted from the theory which is that stars that are dynamically cold, or
spends more of their time close to the midplane of the disc, would have a greater opportunity to
participate in churning by the spiral arms. This would put constraints of both the height above the
disc and the dynamical temperature. The literature on this subject is not clear and an answer to
this question is important as galaxies have vertical metallicity gradients so it would be useful to
know what part of the disc should be taken into account, as it would have an effect on the observed
spread in metallicities.

The strength of a spiral arm can be expected to have a relation with the amount of radial
migration that occurs. The number of spiral arms that form and their strength is not fully under-
stood either and more importantly what determines it. Results have shown a relation between the
number of spiral arms that are formed with respect to disc to DM halo ratios and radius (D’Onghia
2015). There might be relationships between the strength and the number of spiral arms that
form. This is an important question when it comes to future analytical modelling within the field.
Analytical models rely on the results provided in simulations and the behaviour they display.

These questions regarding which stars are migrating, what their properties are and what types
of discs it occurs in, what spiral arms form and at what strengths, will be further addressed in
sections 4.1 and 4.2.
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Chapter 3

Methods

3.1 Simulations
The simulations are run with packages that exist within Peter Teuben’s NEMO toolbox (Teuben
1995 https://bima.astro.umd.edu/nemo/). For a list of parameters used in the packages with
explanations, please see appendix B.

3.1.1 Initial conditions: mkWD99disc

The disc

The disc in my simulations is created in the way described in McMillan & Dehnen (2007). It
is designed to ensure that the disc begins in equilibrium. We will go through the method briefly here.

To start, an approximation is made that the motion of all particles in the disc is separated
into planar and vertical parts with energies that are separately conserved. These parts are given as

E‖ ≡
1
2(v2

R + v2
φ) + Φ(R, 0) (3.1)

E⊥ ≡
1
2v

2
z + Φ(R, z)− Φ(R, 0). (3.2)

It turns out that for orbits close to the disc, |z| � R, this approximation is excellent. The three
velocities are described in cylindrical coordinates and the potential Φ is the total potential of the
system (disc model + halo). The disc model potential is found from Dehnen & Binney (1998) and
the halo from Dehnen & McLaughlin (2005).

To obtain the distribution function (DF) which informs us of how our positions and velocities of
the particles are distributed, we follow the approach laid out by Dehnen (1999). First observe
the simplest DF, a dynamically cold disc with all particles on circular orbits. With disc density
ρ = Σ(R)δ(z) Dehnen (1999) expresses this

fcold(E‖, Lz, z, vz) = Ω(RLz)Σ(RLz )
πκ(RLz) δ[E‖ − Ec(RLz)]δ(z)δ(vz), (3.3)

where Σ(R), κ(R) are angular and epicycle frequencies at radius R. Ec(R) is energy of a circular
orbit. RLz is the radius of an orbit with z-component angular momentum Lz. The δ-functions are
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replaceable by exponentials if one wants to achieve a warm disc DF.

In the same paper Dehnen argues that it is better to use an alternative form for the cold disc,

fcold(E‖, Lz, z, vz) =
Ω(RE‖)Σ(RE‖)

πκ(RE‖)
δΩ(E‖)[Lz − Lc(RE‖)]δ(z)δ(vz). (3.4)

Here RE‖ is the radius of a circular orbit with energy E‖. We warm the disc up by replacing the
delta functions with exponentials. We arrive at the rather long expression

fdisc(E‖, E⊥, Lz) =
Ω(RE‖ )Σ̃(RE‖ )
(2π)3/2κ(RE‖ )

1
zdσz(RE‖ ) exp

[
− E⊥
σ2

z(RE‖ )

]
× 1

σ̃2
R(RE‖ ) exp

(
Ω(RE‖ )[Lz−Lc(RE‖ )]

σ̃2
R(RE‖ )

)
.

(3.5)
The new parameters Σ̃(R) and σ̃R(R) are sought such that the true surface density and radial
velocity dispersion profiles in the N -body system match whichever is desired. Following exercise
4.21 of Binney & Tremaine (2008) which assumes an axisymmetric and isothermal disc, we arrive
at a velocity dispersion in the vertical direction of σ2

z(R) = πGzdΣ(R) for a given radius where zd
is the scale height of the disc. The reason Dehnen (1999) argues for this DF is that RE‖ better
approximates the mean radius of a given orbit than RLz which also means that Σ(R) and σR(R)
more closely resemble the heated DF counterparts Σ̃(R) and σ̃R(R).

The sampling of the DF is performed so as to minimize noise. To this end we sample orbits
from the density distribution Σ̃(R) and place 1� Nsam � Ndisc particles on points of each orbit.
The parameters Σ̃(R) and σ̃R(R) are then iteratively adapted so that the actual surface density
and velocity dispersion match the desired ones as well as possible. The disc is truncated at five
scale radii to concentrate particles in the main area of the disc.

The halo

The halo model we have used is given in Dehnen & McLaughlin (2005) and is added onto the disc.
They find, for the enclosed mass profile and density, the equations

M(r) = Mtot

(
x4/9

1 + x4/9

)5

(3.6)

ρ(r) = 5
9
Mtot

πr3
0
x−7/9(1 + x4/9)−6, (3.7)

Where x ≡ r/r0 and r0 is the scale radius. Mtot is the total halo mass. From integration of
GM(r)/r2 the gravitational potential can also be found

Φ(r) = −9
4
GMtot

r0
B 1

1+x4/9

(9
4 ,

11
4

)
. (3.8)

In this equation Bu(p, q) ≡
u∫
0
tp−1(1− t)q−1 is what is called the incomplete beta function (Press

et al. 1992).

Through mkWD99disc it is possible to select from a number of halo models by changing the
accname, accpars, and accfile settings. Through parameters in accpars which give the inner
and outer slopes of the density as well as a transition exponent the halo is determined.
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3.1.2 Integration: gyrfalcON

The simulation is integrated using the package gyrfalcON which is written and developed by Walter
Dehnen, in the early 00’s. The full description of the algorithm is available in Dehnen (2000) and
Dehnen (2002). We will provide some background of the integrator and briefly outline its unique
features in the following paragraphs.

The brunt of the computational effort of N -body simulations in stellar dynamics comes from
the calculation of the gravitational forces between mutually interacting bodies, which is required at
each time step. This means that, most often, the error of the simulations is chiefly determined by
the noise from the distribution of the simulated bodies. To avoid calculating the forces by direct
summation, since it would be an exhausting task, one can instead utilise approximations which
allow for greater number of particles and, hence, less noise.

A milestone for the computation of stellar dynamics came with the Barnes and Hut tree code
(Barnes & Hut 1986). It is an approximate method which sorts bodies into a hierarchical tree of
cubic cells. It then computes multipole moments of said cells. Once this is done, the force at the
position of a body generated by the contents of a cell is calculated using a multipole expansion.
The complexity then becomes O(N log(N)) since the number of interactions is O(log(N)). Here N
is the number of bodies.

Apart from the tree code of Barnes and Hut, the so-called fast multipole method (FMM) has also
achieved popularity. Developed by Greengard and Rokhlin (Greengard & Rokhlin 1987, 1997),
FMM has a different usage and is most often designed for high accuracy which is not as important
in collisionless stellar dynamics. This algorithm sorts bodies into a hierarchy of nested grids and
then calculates the multipole moments of different cells and then calculates the forces between grid
cells using an expansion of the multipoles. This uses spherical harmonics and cells are both sources
and sinks. This reduces the complexity to O(N).

The idea of gyrfalcON is to combine the powerful tools of the tree code and FMM into a new code
which is designed for low-accuracy application. It uses a hierarchical tree of cubic cells like the tree
code. Mutual cell-cell interaction are utilised for force calculation where cells are sources and sinks
at the same time. By keeping both nodes of an interaction as source and sink, Newton’s third law
is exactly conserved by construction. The code also has complexity O(N) but is faster than both
FMM and the tree code. One of the ways the code reduces computation time is that it determines
if a cell-cell interaction can be executed or must be split with an improved multipole-acceptance
criterion, further outlined in Dehnen (2002).

The simulations I run are collisionless and thus do not require very high accuracy. The de-
sign of gyrfalcON is to suit the type of large simulations I perform here and thus it stands as a
superb choice of integrator for my investigations.
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Table 3.1: Time unit for various simulations.

Time conversion unit
Simulation Time unit in Myr

Q = 1.5,Mh = 12 Md 10
Q = 1.5,Mh = 24 Md 11
Q = 1.5,Mh = 36 Md 12
Q = 1.5,Mh = 48 Md 13
Q = 1.5,Mh = 60 Md 15
Q = 1.5,Mh = 72 Md 15
Q = 1.2,Mh = 24 Md 11
Q = 3,Mh = 24 Md 11
Nbodies = 2 · 106 11
Nbodies = 107 11
Rσ = 2 11

3.1.3 Units and simulations
The output from the simulation comes in "code" units where G = Md = Rd = 1. The units we
use in our results are mass, length, time, or some combination of the three. The distances are in
units of scale radius. This I take to be the scale radius of the Milky Way. Since this number is not
well determined (Bland-Hawthorn & Gerhard 2016), I choose a number roughly in the middle of
estimates, 3 kpc. The mass is in units of the total disc mass which for the Milky Way I take to be
Md = 5 · 1010M� (Bland-Hawthorn & Gerhard 2016).

The last unit, time, is more difficult to find a conversion coefficient for. This is because the
unit changes between simulations. To determine the time unit I compare the acceleration felt by a
region near the Sun’s position in my own galaxy to that of the real Sun’s acceleration towards the
Milky Way centre. This can be found by the equation of centripetal acceleration and by using the
proper motion of Sgr A∗ (Reid & Brunthaler 2004). However we perform simulations with different
halo masses and as such the unit will vary. In table 3.1 the result can be seen for various simula-
tions. Unless otherwise statedMh = 24Md, Q = 1.5, Nbodies = 106. This is my ‘standard’ simulation.

To present the results in a more understandable manner the results are given in real units (km, kpc,
Gyr, M�, etc...). To be able to do this while having a varying time unit I take the most prominent
result of t = 11 Myr as the conversion factor for all results. This of course affects the results to
some level and therefore table 3.1 is given so that a proper conversion can be performed if the
reader should feel encouraged to do so.

From table 3.1 it is also evident that the parameter Q has been changed between simulations, this
parameter is known as Toomre’s Q or Toomre’s stability criterion. It relates to the gravitational
stability of differentially rotating discs and was derived for a disc of stars in Toomre (1964). For a
stellar disc it is

Q ≡ σRκ

3.36GΣ > 1, (3.9)

where σR radial velocity dispersion, G is the gravitational constant, and Σ is the surface density.
Toomre’s Q can be thought of in the context of hot and cold discs. A dynamically hot disc will
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Figure 3.1: Circular velocity curves for the different halo mass simulations as well as a rotational
curve from McMillan (2017) which models the Milky Way. Since the different simulations have
been given the same time unit, the circular velocity is normalised to the circular velocity at R = 8
kpc. The curve most similar to the MW of McMillan (2017) is the 24 Md halo simulation.

have a larger σR and thus a larger Q. A truly cold disc has zero velocity dispersion and zero Q.
When Q is below one a wavelength exists for which the wave-equation describing the distribution
of stars can grow exponentially, causing an instability. Thus we always have Q > 1. The higher Q
is set in the simulations the more stable the disc should become.

One parameter is seen in table 3.1 which is different from the rest, namely Rσ. This param-
eter relates to Q and determines whether Q varies with radius. When this parameter is zero,
which it is in all other simulations, Q is fixed. Otherwise the parameter determines radial velocity
dispersion through

σR ∝ exp
(
− R

Rσ

)
, (3.10)

with the normalisation defined in such a way that Q = 1.5 at R = Rd.

I also change the halo mass in the simulations. This is more thoroughly covered in section
4.2 but it will be briefly touched upon in a different light here. Changing the surrounding mass to
an orbiting particle will have an effect on its circular velocity. This can be clearly seen in figure
3.1 where rotation curves for all halo mass simulations are shown along with that of the Milky
Way from McMillan (2017). The one which behaves most similar to the Milky Way is the 24 Md
simulation. The halo mass will not only affect the circular velocities however but also the stability
of the system and the strength and prevalence of spiral arms that occur. In the inner regions there
is a large difference between the Milky Way rotation curve and the ones from this work which is
due to the lack of a bulge in the simulations.
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The halo mass is varied because of the effect it is expected to have on the spiral structure.
A galaxy disc with a very heavy halo is expected to have a harder time generating strong spiral
arms due to the gravitational force of the dark matter. With a lot of dark matter, the individual
parts of a galaxy do not feel the influence of one another as strongly and do not merge into large
spiral arms. Conversely a lighter halo is expected to be able to create fewer stronger spirals as the
different parts of the disc are able to interact more strongly. This expectation is shown to occur in
results like D’Onghia (2015). Not only will different halo masses allow investigation of what type
of spirals and their strength that arises but also by extension show what amount of migration is
linked to what type of spirals.

3.2 Analysis tools
In the following sections I will outline the methods I have used and developed. The results produced
from these tools are seen in chapter 4. For a cursory reading, these sections may be skipped.

Once the output of the simulations has been produced, it needs to be analysed. To do this,
I convert it from .nemo format to ASCII using a converter called s2a, made by Walter Dehnen.
Once in ASCII format I have created multiple analysis tools ready to utilise. I developed these in
MATLAB and will introduce them in the following subsections.

3.2.1 Radius over time
One of the more straight-forward tools I have developed is one which investigates the development
of radius (measured as distance from the centre of the galaxy) over time for the top migrating
particles in the simulation.

To do this the top migrators must first be deduced from the simulation. In suitable steps in
time, perhaps a fifth of the total duration or smaller if the simulation runs longer, the absolute
change in angular momentum is evaluated. This is specific angular momentum in the z-direction
which relates to a change in the planar position of a particles.

Lz = x · vy − y · vx. (3.11)

This property is investigated for each individual particle. For the next time-step it is evaluated
again and the absolute angular momentum differences are added up. By then performing a filter for
particles located between radii (0− 3), (3− 6), (6− 9), (9− 12), (12− 15) kpc respectively, I identify
the indices of the particles with the maximum total difference in angular momentum. These are
the top migrators in each radial bin.

The radius of the top migrators can then be extracted at every time step of the simulation
and the path of radius over time can be plotted which an example of can be seen figure 4.5. By
looking at the top migrators the very extremes of migration in the different simulations can be
gauged as well as give a very quick and easy way to determine whether or not migration is occurring
in the simulation. If even the top migrators have not changed their orbit by much the rest of the
simulation is not going to show much migration.

22



CHAPTER 3. METHODS Daniel Mikkola

3.2.2 Radial velocity dispersion
Another check I perform to ensure that things are behaving correctly is to investigate the radial
velocity dispersion within the disc. This is simply the standard deviation of the velocities in the
radial direction.

The radial velocity is calculated as the composite of the x and y velocities just as radius is
with positions. To attain the standard deviation as a function of radius, σR(R), a moving standard
deviation through radius is calculated with a window size of N = 104 points. A moving standard
deviation means that at a given point p, the closest N points are used together with pi to calculate
the standard deviation. Moving onto the next point pi+1 the closest N points to pi+1 is used.
The process is repeated for all points in the series. This is then evaluated at various times of the
simulation with suitable intervals. The result can be seen in figure 4.18 and is discussed in section
4.4.1.

By performing this analysis I can determine whether or not the velocity dispersion of the particles
is increased over time or not. From Sellwood & Binney (2002) it is not expected that there will be
a significant increase in non-circular motion.

3.2.3 ∆Lz over initial Lz

Lz is a good marker of radial migration as it will not change during blurring but only during
churning or other dynamical effects. I show the change of angular momentum between initial
time and after 2.2 Gyr, ∆Lz, plotted against initial Lz in the plots shown in figure 4.6. This will
give an overview of which particles are migrating. However, as the number of particles in the
simulation can, at times, be several millions, I also bin the particles. Creating bins in both directions
gives a 90x220 sized two-dimensional bin for Lz against ∆Lz. I take care to remove empty bins
and store the number of points in each bin to be able to generate a number density colour map as well.

This is a way of identifying which parts of the disc is migrating. But plotting the angular
momentum in this fashion can also give indication of spiral arms which show up as diagonal regions
of overdensity with a negative slope with initial angular momentum. This slope arises from churning.
If a star is exactly at corotation it will not migrate as it never encounters the spiral arm. This
would put it at ∆Lz = 0. If the star is interior to the spiral arm, it will migrate outwards meaning
that at lower Lz than corotation a positive ∆Lz is expected. Outside corotation the star is migrated
inwards and would have a negative ∆Lz. So spiral arms appear as diagonal lines in these plots.
This also shows how spiral arms are indeed the primary source of radial migration.

3.2.4 vz, Lz, σ∆Lz

My main investigations lie with determining whether or not the velocity of stars in the z-direction
is of any importance. The literature has been indecisive on this issue with papers like Vera-Ciro
et al. (2014) claiming the velocity matters while Solway et al. (2012) are surprised to find only very
minor difference in changes in angular momentum between thick and thin discs. As such it is a
suitable investigation to undertake.

Lz has already been calculated and vz is one of the output parameters. These parameters are
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taken at their initial values. Once more I perform two-dimensional binning. The size is 50x50
from 0 to the maximum of Lz. Within each bin ∆Lz is calculated and then the standard deviation
is evaluated. This means that a large standard deviation corresponds to a scatter in ∆Lz and
therefore migration. The standard deviation is given as a colour scheme. The result can be seen in
figure 4.20 and discussed in section 4.4.2.

3.2.5 Slope of σ∆Lz
against vz

In the previous analysis method I wanted to see whether or not the trend existed for the whole disc.
But another method I also used was to take slices in Lz at 0.2, 0.4, 0.6, and 0.8 of the maximum
Lz, which corresponds to fractions of 0.2, 0.4, 0.6, and 0.8 of the maximum radius, 15 kpc. This
means roughly 3, 6, 9, and 12 kpc respectively. At these slices I plot σ∆Lz and vz. This way I can
look for the strength of the slope to see how strong the trend is between different parts of the disc,
if a trend does exist.

This is done in a very similar fashion to section 3.2.4 with binning in vz for the given slice
of Lz. We take slices of Lz for different parts of the disc to give information of the whole disc. Since
the plotted points now utilise vastly different amounts of data points for the calculation of σ∆Lz we
add a colour to each point indicative of the number of data points contained in the calculation.
The result of this is seen in figures 4.8 through 4.13.

3.2.6 Fourier spectrum
If spiral arms arise it is important to determine their characteristics such as strength and frequency.
To calculate these I created a routine for performing a Fourier analysis of the density of the disc
to identify apparent frequencies. To do this snapshots of the data are required at much closer
interval. We use a step of ∆t = 1, compared to other snapshots taken at ∆t > 25 depending on the
simulation. A more in-depth description of the method which I have used is available in Press et al.
(1992). I will briefly explain it here.

What I want is to calculate Fourier coefficients for separate frequencies, radii, and modes. The
surface density of the disc can be expanded into a Fourier series given by

Σ(r, φ) =
∞∑
m=0

cm(r)e[−imφm(r)], (3.12)

Here m stands for the mode or pattern multiplicity. The angle φm(r) is the phase of the m-th mode
at a given radius r. The complex coefficient for a given radius and mode is

cm(r) = 1
M(r)

N∑
j=1

mje
imφj , (3.13)

with j as particle index. The mass of a particle ismj and its angle between current position and x-axis
is φj . N is the total number of particles within the radial bin considered. Since my particles all have
the same mass, mj can be taken out of the sum and when divided overM(r) it simply becomes 1/N .

The coefficients cm(r) are calculated once for each output of data that I have and as such are a
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time series upon which a discrete Fourier transform is performed.

Ck,m(r) =
S−1∑
j=1

cj(r,m)wje2πijk/S, k = 0, . . . , S − 1. (3.14)

Here S is the number of time samples we have, so j now stands for an output rather than an
individual particle. The index k is for separate frequencies and wj is the window function I use
which is

wj(x) = e−(x−S/2)2/(S/4)2
. (3.15)

In the window function, x is the current snapshot.

The frequency sampling is set by the length under investigation, S, and by the step between
the different samples, ∆t. It is

Ωk = 2π k

S∆tm, k = 0, 1, . . . , S/2, (3.16)

which then avoids some high-frequency spectral leakage. We avoid mirrored spectra at the Nyquist
frequency since ΩNy = ΩS/2. With these tools the power spectrum can be constructed.

P (Ωk, r) = 1
W

[
|Ck(r)|2 + |CS−k(r)|2

]
, k = 1, 2, . . . , S2 − 1. (3.17)

Here W is a normalization factor calculated as W = ΣS
j=0. With P , Ωk, and r it is possible to

construct a contour plot to show the power spectrum. This will identify changes in the density
which I assume come from phase rather than changing amplitudes.

To perform a sanity check, a fake disc is generated consisting of particles placed with a nor-
mal distribution in radius and uniform distribution in angle. Superimposed on top of this are
smaller density regions following a sinusoidal wave going along the x-axis. By applying a rotation
matrix to all particles belonging to the sinusoidal feature it can be caused to rotate with the desired
pattern speed, which should then be identified in the Fourier power spectrum. After performing
this test I confirm that pattern speeds are identified at the correct mode.

3.2.7 Wave strength
It is important to not only identify whether or not spiral arms arise but also when they do and
how strong they are. To this end I find the amplitude of the waves which is given as

Am(r) = |cm(r)|. (3.18)

I then find the maximum value of the mode and divide it by the zeroth mode amplitude. In the
zeroth mode the exponentials of equation (3.12) and equation (3.13) equal one and left is the mean
density of the disc. For every step in time I take max(Am/A0) which shows the evolution over time.
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3.2.8 Metallicity distribution
Despite the simulations being rather limited in not including the effects of GMC scattering, stellar
evolution, chemical enrichment, and more, including metallicity and chemistry to a small extent
can still add a stronger connection to observations from my simulations. Since the simulations do
not include any chemistry to begin with it needs to be added. However there is a problem in the
use of modern observational values for the chemistry and is is that they represent the Milky Way
today. It could be argued as a poor choice for initial conditions but modern values will be used
regardless as they represent a reasonable gradient that could be expected for a galaxy. The results
can then be used to observe instead the level and type of mixing that occurs rather than try to
accurately reproduce MW values. In this way it becomes a useful indication for chemical mixing
from radial migration.

For the purpose of adding metallicities the results of Hayden et al. (2015) are used. This data
utilises 69,919 red giants from the APOGEE which is a spectroscopic survey which has determined
chemical abundances for roughly 200,000 stars. The data is used calculate regional metallicities
and metallicity gradients in the SN. (Hayden et al. 2015) provides average metallicities for regions
between 3 kpc and 15 kpc, with a bin with of 2 kpc. By taking this data I fit for the gradient and
extrapolate to R = 0. The fit that I arrive at is

[Fe/H] = −0.0449 ·R + 0.334. (3.19)

However, stars of various heights above the midplane of the disc have different gradients as well
as displayed in Hayden et al. (2015). To emulate this, I use vertical action, Jz, in an additional
term in the slope described above. Action is used rather than vz or z. This is because a star that
migrates inwards will reach lower z with the same vz due to the increased density of inner regions.
Moving outwards will take a star to larger z with the same vz. At the same time the velocity vz
is affected. But between the two, Jz is roughly conserved and more useful as a gradient for the
whole disc. The vertical action is described further in sections 2.4 and 4.2. The vertical action is
not directly proportional to vertical height however and the following approximation is used

zmax ≈ A
Jz

exp
(
− R

2Rd

) , (3.20)

where Rd is the scale radius and A is a constant determined through rough minimization to be
(1/83). With this, the new gradient is

[Fe/H] = −0.0449 ·R + 0.334− 1
83

Jz

exp
(
− R

2Rd

) (3.21)

I use equation (3.21) with initial radius for R to ‘paint’ the stars in the simulation with metallicity.
Then at the end of the simulation three metallicity distributions are produced by selecting stars
that are within the Solar neighbourhood equivalent of the simulation (7.5 < R < 8.5) kpc and
dividing them into three vertical regions of Jz < 5 kpc km s−1, 5 ≤ Jz < 15 kpc km s−1, and
15 ≤ Jz kpc km s−1.
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Results

4.1 Spiral formation and radial migration
The formation of spiral arms is a central part of my work and therefore the results of a set of
simulations will now be presented in this context. The focus here will be on showing the different
type of spirals that arise in various simulations and the gauge what effect this has upon the
migration that transpired within that disc. A set of simulations with different halo masses are
selected for review in this context and they are further described in section 4.2.

The difference in appearance between a light and heavy DM halo is shown in figures 4.1 and
4.2 which are snapshots of their respective disc at halfway through and at the end of the simulations.
The exact masses are 12Md and 72Md for the DM halos to give the largest visual difference available.

The differences between a heavy halo and a light halo has striking differences when the galaxy is
viewed face-on. We can see that the low mass halo simulation shows a significant growth in radial
extent with only a few defined, strong spiral arms as well as what appears to be a bar-like feature.
This is in strong contrast to the heavy halo mass disc which which does not grow radially, with
many spiral-like features that are rather weak. Neither does a bar form.

To gain an overview of the spirals that form in terms of angular frequency, radial extent, and
duration, the Fourier spectrum described in section 3.2.6 is used on a part of the disc between 3-9
kpc. It is limited to this region to avoid two things. 1) The influence of a bar-like feature, and
2) misidentification of noise in the outer regions. These are two features that can occur during
the analysis which will hide any spiral features in the Fourier spectrum. The complement to this
analysis is that I also use the method in 3.2.7 to see the amplitude ratios which is what provides
information about when and how long the spiral features exist.

The results of these analysis tools are given in figures 4.3 and 4.4. The results are presented
for the simulations with DM halo mass 12 Md, 24 Md, 48 Md, and 72 Md from left to right in the
figures. These four simulations are selected as they have an appropriate range of masses. In each
simulation, seven different modes are shown. It might appear that, at first glance of figure 4.3,
there are spirals appearing at multiple modes and across all simulations. There are a few things to
remember when viewing this figure. In each respective plot, the maximum power is shown regardless
of the other plots for the same simulation. Also if a spiral has shown up during any point in the
simulation it will appear and spirals from different times can be identified simultaneously. These two
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Figure 4.1: The 12 Md halo mass simulation galaxy viewed face-on at 1.1 Gyr into the simulation
on the left and at the end of the simulation, 2.2 Gyr, on the right. The points here are from
100x100 2D bins in X and Y . The colour gives the logarithm of the number of particles within a
bin. Only a few, strong spiral arms appear.

Figure 4.2: The particle density of the simulation with a 72 Md halo, comparable to figure 4.1
of a different simulation. The spiral arms appear considerably weaker and more numerous with a
heavier halo.

figures are best viewed side-by-side as figure 4.4 shows both the strength of a spiral and when it arises.

It becomes evident from viewing these plots that as the simulations begin spiral arms do eventually
arise. The actual strength of the spiral arms are smaller for the heavier halo mass simulations.
This is expected as spirals can grow more easily in a disc-dominated galaxy as was discussed in
sections 2.4 and 3.1.3.
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Figure 4.3: Fourier spectrum of four different simulations given in four columns. The simulations
are 12Md, 24Md, 48Md, and 72Md from left to right. The axes show radius and angular frequency.
Each row shows a mode ranging from 2 to 7. Moving from top left to bottom right increases the
number of detected patterns, indicating that individual spirals become weaker.
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Figure 4.4: Amplitude ratios of identified Fourier modes for the same four simulations as specified
in figure 4.3 in the same order as well. The modes are the same and the axes now show amplitude
ratio over time. The plot when compared to figure 4.3 confirms that spirals become weaker with a
heavier halo mass and larger mode.
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Figure 4.5: The top migrators in various radius bins for the 12Md halo and 72Md halo simulations.
The former is on the left and the latter on the right. The strength of the individual migrations with
a lighter halo causes migrations across almost the entire disc. For the heavier halo the migrations
are much smaller.

Different spirals arise in the various simulations that are performed and a summary of the most
prominent spirals are seen in table 4.1. We can see the decreasing strength of spiral arms as the
halo mass increases, which was mentioned above.

Beyond appearance the difference in halo mass,
and the different spirals that arise, has a notice-
able effect on radial migration. Different levels
of migration appear and can mix the galaxies
significantly. When I extract the, cumulatively,
largest migrators, for bins in 3 kpc radius, figure
4.5 is made.

The figure shows that when we have very stable
systems or a massive halo we can still see radial
migration up to about 2 kpc. In the lighter halos
we see migrations that span across almost 10
kpc. This is evidence that in my simulations the
width of available distance for migration is large.
But this is for the farthest migrators which is
only a few of the particles available. Figure 4.6
offers a better overview of the migration that
occurs.

Table 4.1: Dominant modes and strengths of spi-
rals in different simulations. The values sum-
marise results from figures 4.3 and 4.4 that
lower halo masses give stronger spirals and lower
modes.

Simulation Dominant m Am/A0

12 Md 2 0.40
24 Md 5 0.20
36 Md 4 0.10
48 Md 4 0.15
72 Md 6 0.10

Nbodies = 2 · 106 5 0.20
Nbodies = 107 3 0.15
Q = 1.2 4 0.25
Rσ = 2 5 0.1
Seed 1 2 0.15
Seed 2 4 0.15
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Figure 4.6: Showing Lz,i, the initial angular momentum in
the z-direction, against the change in the same parameter
from the start to the end of the simulation. Once more a
2D bin with 90x200 cells where the colour correspond to the
logarithmic number of particles. Top: 12 Md halo simulation
showing large migrations throughout the disc. Bottom: 72
Md halo simulation with much less impressive migrations and
with the largest migration occurring near the middle of the
disc.

In figure 4.6 we can see the be-
haviour of the entire disc. The
same lightest and heaviest dark
matter halo simulations are shown
on the top and bottom panels re-
spectively. Some noticeable dif-
ferences are the range of avail-
able Lz values, the spread in
∆Lz, the shape of the figures
and the regions with larger den-
sities. As a heavier halo is
used, a larger Lz value corre-
sponds to the same radius as a
smaller one would have in the
lighter halo simulation. We can
also see that the heavier halo
mass simulation has no counter-
rotating stars which is due to
its stability. Roughly speaking
the zero and maximum values
of Lz in each case are at 0
and 15 kpc respectively. That
the spread in ∆Lz is different
is simply because migrations are
much less common and less ef-
fective when we have weaker
spirals in the heavy simulation.
This can also be seen in figure
4.5.

The diagonal line appearing in the
upper plot which seems to follow
∆Lz ∝ −Lz is due to stars or parti-
cles with a given Lz rarely decrease
to below zero angular momentum.
If they do, they become counter-
rotating stars which is why some
stars lie below the diagonal line as
well.

A key feature of these plots is that they reveal spiral features that otherwise might be difficult to
find by eye in plots like figures 4.1 and 4.2. There are a number of diagonal lines, overdensities,
appearing in both discs. These are the spiral arms and they appear as diagonal lines because of
the migration that occurs interior and exterior to the corotation radius. A spiral has corotation
radius at a certain Lz and at this point stars will not migrate, i.e. ∆Lz = 0. Stars at lower Lz
are interior to the spiral arm and will be migrated outwards, with a positive ∆Lz. Stars at higher
Lz are exterior and migrate inwards with negative ∆Lz. This is just as churning is described in
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section 2.4.

These figures show a difference in the number of spiral arms that arise in each of the two simulations
as there are far more diagonal lines in the bottom plot of figure 4.6. This is also tied to the amount
of radial migration as the upper plot has a span in ∆Lz of ∼4000 kpc km s−1 and the lower plot
only ∼1500 kpc km s−1. This confirms earlier findings about the correlation of modes, spiral arm
strength, and migration.

From these plots it is evident that in our simulations the level of radial migration is tightly
linked with the formation of spiral arms. Fewer and stronger arms cause more radial migration and
stars move across vast distances in the simulated galaxies. It is also apparent that the mass of the
dark matter halo has a significant effect on what spirals form and therefore also on the quantity
and nature of radial migration that occurs.

4.2 Radial migration as a function of height z
As mentioned in section 3.2.4 there exists a discrepancy in the results of Solway et al. (2012) and
Vera-Ciro et al. (2014). The results regard the effect that typical height above the disc, z, will have
on radial migration. Solway et al. (2012) found minor differences between the angular momentum
changes of stars belonging to the thick and thin disc. Vera-Ciro et al. (2014) found that migrators
in their simulation are a heavily biased subset of stars that have lower vertical velocity dispersions
(However I note from my results that different combinations of parameters such as surface density
and Toomre’s Q can change the velocity dispersion). A suggested explanation for this is that when
a star is further away from the disc, it will not interact as strongly with the spiral arm. However
these two simulations vary significantly in the halo mass. They have:(

Mhalo

Mdisc

)
Solway

≈ 0.9 ,
(
Mhalo

Mdisc

)
Vera-Ciro

≈ 52. (4.1)

With the latter using a Hernquist model and the former a rigid halo without well-defined profile,
which we will elaborate on below.

The halo of Solway et al. (2012) is best understood through figure 4.7. The figure shows fig-
ure 1 from Solway et al. (2012) but with the dark matter contribution highlighted. It shows initial
surface density profiles of their thin and thick tapered discs as black and green respectively. The
dashed red curves are expected surface densities from the integration of their distribution function.
The dotted curves correspond to non-tapered discs. The blue line indicates an adopted exponential
profile of the thin disc. The point of this figure is that Solway et al. (2012), in order to achieve the
dotted lines, must add dark matter to their halo. But we can see that for most of the disc radius,
the contribution is exceedingly small so that in the disc the matter not part of the dark matter
halo strongly dominates. This way of adding dark matter also means that the halo they use is not
of a standard profile.

In Vera-Ciro et al. (2014), figure 1, a plot is provided which shows the circular velocity, vc,
as a function of radius for the disc, the halo, and in total. By taking a ratio of the circular velocity
contribution of the disc and halo at 8 kpc, I can perform a comparison with my own simulations as
well as find out what type of matter dominates since Fc = mv2

c/r ⇒ Fh/Fd = (vh
c /v

d
c )2 (here h and
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Figure 4.7: Figure 1 of Solway et al. (2012) showing initial surface density profiles of tapered thin
and thick discs as solid lines, untapered discs as dotted lines, an expected surface density as red
dashed curves, and a blue line which indicates an adopted exponential profile of the thin disc. The
figure is highlighted here to show the contribution of the dark matter halo.

d stand for halo and disc respectively). The result is that the ratio from Vera-Ciro et al. (2014) is(
Fh

Fd

)
R�

≈ 2.5 (4.2)

by an eye measurement. Even with some uncertainty in the precision of the number it shows a
very heavy DM halo that dominates the disc. This is in strong contrast to Solway et al. (2012).

Table 4.2: The various halo mass simu-
lations and their force ratios.

Simulation (Fh/Fd)R�
12 Md 0.49
24 Md 0.99
36 Md 1.49
48 Md 2.01
60 Md 2.53
72 Md 3.08

The proposed explanation for the discrepancy in relevance
of vertical motion is that the weaker the force from the
halo the stronger the force from the spiral arm on a point
in the simulations. A stronger spiral arm is likely to cause
radial migration at larger distances from the midplane.
Not only this, but a stronger disc tends to form fewer
spiral arms. With more spiral arms close to each other
in radius, the interactions of two could cancel out. In
order to test the hypothesis that these two results differ
because of their rather different halo masses we perform
a number of simulations where we try halos of various
masses. They have 12 Md, 24 Md, 36 Md, 48 Md, 60 Md,
and 72 Md where Md is the mass of the disc. We assume a Milky Way mass of Md = 5 · 1010M�.
The simulations have a constant Q = 1.5. All of these simulations have already been shown in
section 3.1.3 and their force ratios between the halo and disc can be seen in table 4.2.

The result of performing the analysis in section 3.2.5 can be seen in figures 4.8 through 4.13.
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As predicted, for the low halo mass galaxies there is no significant difference in migration for stars of
different vertical velocities and then as the halo becomes more massive a stronger slope appears. To
better verify the strength of the slope I perform a weighted least squares fit to fit a line through the
points. The slopes are then plotted in figure 4.13. In order to get weights, I make the assumption
that the population is Gaussian in order to calculate the dispersion of the standard deviation as

D[s] ' s√
2(n− 1)

, (4.3)

where s is the sample standard deviation (σ∆Lz in my case) and n is the number of points in each
standard deviation. The weights are then taken as the inverse square of D,

Wi = 1
D2
i

. (4.4)

As figure 4.13 shows, as the halo becomes more massive the magnitude of the slope increases in
almost all parts of the disc. The innermost part of the disc is less clear. The actual value on the
y-axis is not relevant here but rather the fractional increase between the slopes. This is because
the value only speaks to the level of radial migration rather than the type. It was already shown in
section 4.1 that a lighter halo has stronger migration. Here it is instead relevant what parts of the
galaxy are undergoing radial migration, not how strong it is.

The velocity vz changes during radial migration as a particle can move to a less or more dense region.
Not only this, but it is also an oscillating variable and because of this adds some extra uncertainty
to the slopes. To try and view the same behaviour in another fashion the vertical properties are
also investigated in terms of vertical position z. This is shown in figure 4.14. Reassuringly it shows
the same behaviour and for all parts of the disc.

The vertical height, z is not ideal either. It too is oscillating and as a star migrates it might no
longer reach the same z in the new region it has entered. For this reason it is instead better
to use a combination of the two, Jz, the vertical action which is an expression of the vertical
oscillation. Actions are described in greater detail in section 2.4. To calculate actions from the
output parameters of the code a pre-existing script has been made which is based on the work of
Binney (2012). The action does not oscillate like the two other parameters and is therefore a more
optimal variable for this investigation. It also serves to combine the results of the two previous
figures. The result of using Jz is shown in figure 4.15. The description of results in Jz also makes
for results more easily utilized by analytical models which have an easier time using actions than
N -body simulations. An example of this is Schönrich & McMillan (2017).

The result from figure 4.15 is that a decreasing slopes is observed with increasing halo mass
for all parts of the galaxies except perhaps the very outer parts. In all three different parameters
used, z, vz, and Jz, we are able to observe the appearance of a strong negative slope with heavier
halo mass. This means that a heavy halo (or weak disc), does not migrate particles high above the
disc as much as those near it. For the lighter halo and stronger disc, all vertical parts of the disc
are partaking in migration to almost equal amounts. This corresponds to the two different cases
described in the papers by Solway et al. (2012) and Vera-Ciro et al. (2014) as they had a light and
heavy DM halo respectively. These results show a clear explanation for the discrepancy between
the two papers as well as describe the behaviour of radial migration as a function of DM halo mass.
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Figure 4.8: The plots resulting from the analysis tool described in section 3.2.5. It shows the
absolute value of initial z-velocities against the dispersion in the change in angular momentum for
four different regions of the disc. The colour shows how many points are in each of the calculated
dispersions. This figure shows the 12Md simulation and an almost flat relationship. In the following
plots up until figure 4.13 the slope will increase.
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Figure 4.9: Same as figure 4.8 for the 24 Md simulation.

36



CHAPTER 4. RESULTS Daniel Mikkola

0 50 100 150

0

50

100

150

200

σ
∆
L
z
[k
p
c
·
k
m

·
s−

1
]

Lz,i ≈ 0.2Lmax
z

Npoints = 30525

0 50 100 150

0

50

100

150

200

250

300

Lz,i ≈ 0.4Lmax
z

Npoints = 22371

0 20 40 60 80

|vz,i| [km · s−1]

0

50

100

150

200

250

300

σ
∆
L
z
[k
p
c
·
k
m

·
s−

1
]

Lz,i ≈ 0.6Lmax
z

Npoints = 15976

0 10 20 30 40 50

|vz,i| [km · s−1]

0

50

100

150

200

250 Lz,i ≈ 0.8Lmax
z

Npoints = 9221 0 

1 

2 

3 

4 

5 

6 

7 

N
p
oi
n
ts
/1
00
0

Figure 4.10: Same as figure 4.8 for the 36 Md simulation.
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Figure 4.11: Same as figure 4.8 for the 48 Md simulation.
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Figure 4.12: Same as figure 4.8 for the 60 Md simulation.
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Figure 4.13: Same as figure 4.8 for the 72 Md simulation.
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Figure 4.13: Derivatives of change in Lz with vz, normalised such that the σ∆Lz value at vz = 0 is
1 in all cases. There is a clear relationship between the slope and increasing halo mass.
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Figure 4.14: Similar to 4.13 but using the behaviour of ∆Lz with respect to position z rather than
velocity vz. The same pattern of an increased slope with halo mass appears here as well.
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Figure 4.15: Also similar to 4.15 with the combined properties of vertical position and velocity, the
vertical action Jz, instead of one or the other used to find the slope. As both figures 4.13 and 4.14
showed a relationship between slope and halo mass, it is not surprising to find the same pattern
here.

4.3 Metallicity distribution function
Using the method in section 3.2.8 I am able to generate metallicity distributions for the SN in
the hopes of being able to provide a path for predictions to be made in more expansive future
work. However these results are attained with a very crude method and should not be considered
predictions but rather they are indications of how a connection to observations can be made from
pure N -body simulations such as these.

All the stars that end up in a region between 7.5 and 8.5 kpc are selected and treated as the ’solar
neighbourhood’ of the simulated galaxies. Painted with equation (3.21) and split into three different
vertical regions, three different histograms are created from the 12 Md mass halo and the 72 Md
mass halo to show the extremes of the two cases of churning that are observed (the disc-restricted
or not, see section the 4.2). The result can be seen in figure 4.16. For a comparison the initial
metallicity distribution is also shown in figure 4.17.

Some features will strike the reader immediately such as the positions of the peaks in each
plot and the widths of the distributions. Starting with the upper plot of figure 4.16 with the lighter
halo we can see that the peaks are shifted to higher metallicities and that the distributions are
broader than they were in the initial distribution of figure 4.17. This is due to the effects described
in section 4.2 that migration can occur at very different heights above the disc. Thus all parts of
the disc end up being mixed and broadened. The more broadened they are the more the peak
will move towards a galactic mean in metallicity. We observe different effects for the heavier halo
where the distributions closest to the disc and furthest away share almost no stars of the same
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Figure 4.16: Metallicity distributions of the SN for the lightest and heaviest halo mass simulations
at the end. The halo mass, Jz bin, and mean value of the distributions are indicated in the figure.
For the lighter halo, with more migration, a broader width is seen for all vertical slices of the disc.
For the heavier halo the broadening is much less, as would be expected with less migration.

Figure 4.17: Same metallicity distributions as 4.16 but taken at t = 0 for the SN. There is almost
no difference as no mixing has occurred.
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metallicities and the distributions are not shifted towards the right. They also appear far less mixed
as they retain almost the same distribution as they initially had.

The relative widths of distributions in the same simulation should be carefully explained so
as to not be misunderstood. In the heavier halo mass simulation we expect very little migration
to be occurring for the stars located at larger vertical action, yet the relative width is larger than
for the stars close to the disc. This is likely due to the fact that a larger span of Jz values are
considered. The lowest vertical segment is only 5 kpc km s−1 wide, the next one 10 kpc km s−1 and
the final one contains all values above 15 kpc km s−1. This would likely broaden the distributions
and therefore the width does not imply that the upper parts perform more migration.

When drawing input from Hayden et al. (2015), averages of their measured values are used.
The result presented here can, however, also be compared to Hayden et al. (2015), by considering
the complete width of their data to observe the level of mixing. The extent of the distributions
being between 0.5 and 1 dex is comparable to the extent of MDFs presented in Hayden et al. (2015),
which shows that the level of mixing might be within the realm of possibilities. This exercise into
including metallicities shows a small example of how the path to observational comparison might
be possible for results from pure N -body simulations like mine. However I again stress the very
simple nature of these metallicity properties.

4.4 Simulation sensitivity
Due to the inherently chaotic nature of N -body simulations it is important to ensure that the
results hold if subjected to further testing. Stochastic variations can occur in large simulations
(Sellwood & Debattista 2009) and in order to test the simulations found in this thesis I use different
numbers of particles, run simulations for various lengths, and utilise several different seeds. I also
undergo test of the dynamical stability of the simulations. The results of this will now be presented.

4.4.1 Changing Toomre’s Q
In section 3.1.3 the role of Toomre’s Q parameter was discussed. One investigation that has
been performed is changing its value, but still keeping it constant for the initial conditions, or
by setting Rσ 6= 0, allowing it to vary with radius. Three simulations are performed. The first
two are set Q = 1.2 or Q = 3 throughout the disc, while the final one has Rσ = 2 and a vari-
able Q. All use a halo mass of 24 Md. Focus is put on the stability of the simulations under the
different initial conditions as well as migration and they are only analysed up to 1.1 Gyr of evolution.

Figure 4.18 shows the moving standard deviation from section 3.2.2 for the three simulations. Note
that in the centre the proportionality in equation (3.10) no longer holds. With higher Q comes a
larger velocity dispersion as can be understood through equation (3.9). Figure 4.18 confirms this
as the σR values differ. Previous statements regarding the stability provided by a larger value of
Q are also shown to hold true as the Q = 3 simulation clearly experiences very little dynamical
heating in the radial direction after even 1.1 Gyr. The same cannot be said for Q = 1.2, which
experiences some heating, albeit to a small extent. The 24 Md DM halo simulation of section 4.2 is
comparable and shows similar heating which is not shown here. Having a fixed Q over all radii
may not be representative of reality however as Q may change and when it
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does the bottom plot is produced. The radial
velocity dispersion is somewhere between the
two other plots but remains as stable as the
Q = 3 simulation. We do not expect to see
any significant increase in non-circular velocities
as a result of churning (Sellwood & Binney 2002).

We found in section 4.1 that a larger halo mass
created a more stable system where parts of the
disc could not easily interact with each other and
form strong spiral arms. In the case of stability
with Q the Q = 3 and Rσ the disc has larger
radial oscillations and is dynamically hotter.
This makes it more difficult to form spiral arms
and can be similar in appearance to the heavy
halo simulations. The Q = 3 simulation does
not create any spirals that are identifiable, the
Rσ = 2 forms a weak m = 5 mode, and Q = 1.2
creates a strong m = 4 mode. This can also be
seen in table 4.1.

The levels of migration show the expected be-
haviour given the type of spiral arms that are
seen. Q = 3 and Rσ experience very little
radial migration. The former reaches roughly
∆Lz ± 150 kpc km s−1 and the latter reaches
somewhat higher with roughly ∆Lz ± 400 kpc
km s−1 which is still five times smaller than the
light halo showed in section 4.1. The Q = 1.2
simulation shows roughly three times as much
migration as the Rσ simulation with ∆Lz ± 1500
kpc km s−1.

When it comes to vertical properties the slopes
of σ∆Lz against |vz| are calculated for the four
parts of the disc. For the Lz = 0.2Lz,max,
Lz = 0.4Lz,max, Lz = 0.6Lz,max, all three simu-
lations show slopes of roughly -20, -30, and -40
for the respective regions. In the outer part with
Lz = 0.8Lz,max the slopes are -15, -80 and -50
for the Q = 1.2, Q = 3, and Rσ = 2 simulations
respectively, likely due to noise from having few
particles in the outer parts. If compared to figure
4.13 these slopes are slightly more negative than
the standard simulation. This may be due to the
shorter duration for which the simulations are
evaluated.

Figure 4.18: The radial velocity dispersion of
three simulations using Q = 3, Q = 1.2, and
Rσ in descending order. The standard deviation
is calculated using a moving standard deviation
as described in section 3.2.2. The colours of all
three plots indicate different times during the
simulation and a legend is shown in the top plot.
The simulation with a high Q = 3 is clearly very
stable as expected from the theory. The more
realistic case of a variable Q through Rσ 6= 0 also
behaves very stable.
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4.4.2 Different N

The standard simulation consists of 106 particles
and no results are drawn from simulations with
fewer. Instead I attempt to see if more particles
are necessary and have therefore performed sim-
ulations using 2 · 106 and 107 particles. These
simulations use different seeds but apart from
number of bodies identical input parameters as
the 24 Md DM halo, Q = 1.5 simulation.

The N = 106 simulation forms m = 5 spirals
with amplitude 0.2. For the larger simulations
with N = 2 · 106 and N = 107 the values are
m = 5 and m = 3 as well as 0.2 and 0.15 in
amplitude respectively. The effect that this has
on radial migration can be seen in figure 4.19
where the change in angular momentum is shown
for the entire discs. All three simulations show
significant radial migration with ∆Lz ± 1500 kpc
km s−1 as is expected with a lower halo mass
from section 4.1.

In figure 4.20 |vz| is plotted against Lz, both
taken at the starting time of the simulation
with the standard deviation of ∆L shown with
colour. It gives a sense of how migration behaves
over the entire disc as well reveal any vertical
properties through vz. Both plots reach equal
extremes in |vz| for all Lz. It can be seen that
migration takes place in most parts of the disc
except the very inner parts. This is in agreement
with results from Bird et al. (2012) although
unfortunately they do not show the behaviour
in their very inner disc which is where we find
less migration. The amount of migration seems
to stay the same as |vz| increases and drops off
mostly at the edges of the coloured region. This
aligns well with the vertical properties observed
in the N = 106 simulation from section 4.2.

Figure 4.19: Number density of simulated galax-
ies with different number of bodies. Comparable
to 4.6. top: Angular momentum changes of the
N = 107 simulation. Middle: The simulation
with N = 2 · 106. Bottom: The standard simu-
lation. The plots show the appearance of spiral
arms as diagonal overdensities.

The three simulations with various bodies show similar extents of migration, reaching ∆Lz ± 1500
kpc km s−1 as well as similar strengths in spiral arms and some slight difference in the number of
modes with two showing m = 5 and the other m = 3. The vertical properties are not affected by the
increase either. This shows that our simulations are robust against changes in number of particles,
allowing greater confidence in results drawn from 106 particles which reduces computational costs.
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Figure 4.20: A 50x50 bin of |vz| and Lz at the start of the simulation with standard deviation of
∆L as colour map. Left: The N = 107 simulation with no noticeable effect with vz except perhaps
a weak decrease at the edges. Right: The N = 2 · 106 simulation. It shows the same behaviour as
the left plot.

4.4.3 Different durations

Figure 4.21: The top migrators for the standard
simulation in the upper panel and the same in
the bottom panel for the 5.5 Gyr simulation,
both in different radial bins. No new behaviour
is revealed at times later than 2.2 Gyr and in-
stead stars move back and forth.

The simulations normally run to 2.2 Gyr.
To learn whether or not this choice of du-
ration for the simulation has an apprecia-
ble effect a simulation is run for 5.5 Gyr
using a million particles and a 24 Md
DM halo. This simulation is then com-
pared to one with the same initial con-
ditions that runs for only 2.2 Gyr, the
standard simulation. The natural first in-
vestigation is the behaviour of top migra-
tors and can be seen in figure 4.21 for
both simulations. The same behaviour is
seen for the first 2.2 Gyr of evolution af-
ter which the longer simulation simply churns
somewhat back and forth. The churn-
ing simply carries on in a similar fash-
ion. We can see that no unpredicted new
behaviour is revealed by the longer dura-
tion and the migrations are of roughly the
same magnitudes, changing up to 6-8 kpc,
and do so for all parts of the disc consid-
ered.

Other properties between the simulations are the
extent of radial migrations seen in the ∆Lz and
Lz space. Here they both reach ∆Lz ± 1500 kpc
km s−1 and are difficult to distinguish. Both form
m = 5 mode spirals with amplitude ratios of
roughly 0.2. Regarding the vertical properties the
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Figure 4.22: Slopes for different parts of simulated discs in |vz| against Lz, comparable to 4.13 and
similar figures. However, the x-axis now contains the seed number instead. The numbering of the
seeds is arbitrary. There is little scatter in the slopes apart from in the very outer parts, which
means that the seeds are not too dissimilar.

slopes of |vz| and σ∆Lz are almost identical at -20 for all parts except the outer disc where the
5.5 Gyr simulation reaches -60. This could again simply be noise due to having less particles to
determine the dispersion.

The multiple noted similarities between the simulations show that the simulations are not sensitive
to much longer durations. Making simulations shorter runs the risk of missing information but
longer than 2.2 Gyr does not change the outcome of the results. This, in addition to earlier results
regarding the number of bodies, can significantly reduce computational cost and improves the
robustness of the simulations.

4.4.4 Different seeds
When initialising a simulation a seed is selected based on the clock. However not all seeds need to
generate good initial conditions. For this reason it can be useful to compare identical simulations
started with different seeds. This would constitute a third addition to the robustness of the
simulation along with number of modelled bodies and duration of simulations.

For a 24 Md simulation 5 different seeds were tried. They each had 106 particles and were
run for approximately 2.2 Gyr. In order to most conveniently show whether or not the seeds make
a difference we investigate the slopes of σ∆Lz against |vz| once more but this time with identical
halo masses and simply different seeds.
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The result is in figure 4.22 and we can see that the slopes end up almost identical for all seeds
with very little scatter. In the outer parts of the galaxies there is a larger scatter however. This
is possibly due to there being less bodies in the calculation of the standard deviation as seen in
similar earlier cases. Although a negative trend might be hinted, none exist as the order of the
seeds is arbitrary and are placed in increasing numerical fashion for simplicity.

This result means that there is little variance between the seeds that are generated and it adds
confidence to the results presented throughout this thesis as they are taken from a single seed.
As such the robustness provided by this exercise is incredibly important for the entire presented
results.
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Conclusions

In this thesis I present my work comprising of running numerous large N -body simulations with
1-10 million particles between 1.1-5.5 Gyr as well as a broad analysis of the output data. The
simulations have been performed using the existing packages for N -body integration and initial
conditions available through NEMO (Teuben 1995). To generate initial conditions the package
mkWD99disc has been used which is based on Dehnen (1999). The integration is carried out by
gyrfalcON, an integrator designed for specifically these types of simulations. The simulations are
pure N -body apart from a dark matter halo external potential from Dehnen & McLaughlin (2005).
The simulations have been performed with different various initial conditions with the prime goal
being an investigation into radial migration as a function of vertical properties (z, vz, Jz). To this
goal I have simulated a range of different DM halo masses to produce spirals of different strengths
and types. Other parameters investigated have been dynamical stability through Toomre’s Q,
simulation stability through various seeds, number of bodies, and different simulation lengths.

The analysis of the simulation data has been performed with MATLAB. Multiple scripts have been
created to produce all the various plots available in this thesis, all of which are thoroughly described
in section 3.2. The output produced gives time, mass, positions, velocities, and accelerations. All
other variables need to be calculated from them. Tools have been developed to identify the top
migrators at separate radii, calculate radial velocity dispersions, angular momentum and angular
momentum changes, metallicity distributions, and Fourier spectra. Metallicity has been painted
on to the simulation output taking inspiration from APOGEE results (Hayden et al. 2015) and
are simply assigned to a certain particle. It is not evolved over the course of the integration. This
means metallicity is not evolved and only mixed by the end of the simulations.

The importance of radial migration and the understanding of it is not to be underestimated.
The results from the literature are quite clear that the observed spread in metallicity cannot be
explained by a simple picture of isolated galactic evolution and a means of mixing in the Galaxy is
required. There has been many solutions to provide the mixing required and we have given two
examples: a break in star formation history (Chiappini et al. 1997) and large accretion events
(Bensby et al. 2005). While these solutions are very possible, radial migration is going to be
occurring as well if there are spiral arms present in the Galaxy (Sellwood & Binney 2002) and
the Milky Way does indeed have spiral arms, although it is not clear exactly how many. Radial
migration provides a mixing solution based in few approximations and which occurs without outside
influence.
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In this work a strong focus is put on identifying how radial migration works but also on where
it occurs in the Galaxy in terms of vertical and radial properties. This type of analysis can
carry on through other work which use analytical models that build on results like these to make
assumptions about what migration to consider in a certain type of disc. Some examples of where
analytical models of this type are used include Schönrich & Binney (2009) and Schönrich & McMil-
lan (2017). Studies like these are the justification for approximations made in such analytical models.

This work helps to overcome shortcomings that exist within the literature on N -body simu-
lations of radial migration. One of the shortcomings is that often only a single galaxy is simulated
and studied (e.g. Vera-Ciro et al. 2014; Halle et al. 2015; Kawata et al. 2017). Studying a single
galaxy puts strong limitations on the results produced and how they might be applicable. Another
shortcoming to note is that when multiple simulations are performed for the same work, they are
done so in a constrained environment (e.g. Sellwood & Binney 2002; Solway et al. 2012). This can
be either by creating discs specifically to have certain behaviour or patterns such as a given m-mode
spiral or a bar. This work seeks to take a step forward. While other studies such as those mentioned
might be able to make more detailed claims or comparisons to observations this work aims to
understand radial migration across very different simulations and types of simulated galaxies. To
this end we have performed simulations that vary strongly from one another and even from what
we believe the Milky Way ought to be like. This work exists partly to offer insight into what
type of galaxy to simulate if one wishes to have a certain type of behaviour in their simulated system.

I have shown in section 4.1 a relationship between the stability of a system and the strength
and number of spiral arms that appear. Things that stabilise the galaxy, such as an increase
in Toomre’s Q for the disc or a larger dark matter halo, create systems that are less sensitive
to spiral density waves increasing and when they do, it is at a higher mode with a much lower
amplitude. This also has a clear effect on the amount of migration. Figures 4.5 and 4.6 showed a
remarkable decline in the amount of migration that occurs via churning with the existing spiral
arms as changes of ∆Lz ± 2000 kpc km s−1 for the low mass halo decreased to ∆Lz ± 500 kpc km
s−1 for the heavy halo mass case. Blurring too appears to decrease in amplitude somewhat as the
radial oscillations go from around 4 kpc for the light halo to barely even 1 kpc in the heavy mass halo.

A major focus of this work is again on how the vertical motions of stars affect their radial
migration. In section 4.2 I discuss the results of two papers from literature, namely Solway et al.
(2012) and Vera-Ciro et al. (2014) where the former claims that stars in their simulations migrate
mostly regardless of vertical properties and the latter claims an opposing conclusion that migrators
have lower vertical velocity dispersions. I have been able to replicate similar results to each by
using dark matter halos of varying mass, varying the stability and the spiral arms that form in
each case. Vera-Ciro et al. (2014), which claim that vertical properties affect migration, have
multiple spiral arms and high modes with a heavy dark matter halo. When I simulate a heavy dark
matter halo, I also find lower strength but multiple arms and that vertical properties are far more
important. Solway et al. (2012) have a m = 2 spiral in the simulation that leads to their claim.
They also have a light halo. In table 4.1 we see that the lighter haloes create fewer and stronger
spiral arms. This investigation into the varying DM halo mass offers an explanation to the discrep-
ancy between these two papers and a solution of when vertical properties are of stronger significance.

I have investigated the effects of varying the radial velocity dispersion, parametrised through
Toomre’s Q on the simulated galaxies. The tested values were two fixed values of Q = 3 and
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Q = 1.2 and one simulation where the value of Q varies with radius. The way in which Q varies
with radius is described by equation (3.9) and the following paragraphs. It is not obvious that the
Q parameter should be constant so we experiment with it to determine the simulations’ sensitivity
towards it. Figure 4.18 showed the effects of the various settings for Toomre’s Q. The parameter is
closely linked with dynamical stability we can see that the higher value gives a much more stable
disc which changes little over the first billion years. The same goes for the case with a varying Q.
When Q is set as low as 1.2 or 1.5, some increase of radial velocity dispersion is observed however
it is not significant. This is in agreement with claims by Sellwood & Binney (2002) that churning
does not cause significant increases in non-circular motion. Other processes associated with spirals
(at different radii than corotation) could cause an increase in radial velocity dispersion.

The stability of the simulations has been tested in section 4.4 through multiple runs with varying
number of particles, seeds, and durations. Since stochastic variations are possible (Sellwood &
Debattista 2009) these checks are necessary. Comparison between three simulations of N = 106,
N = 2 · 106, and N = 107 with different seeds but otherwise identical initial conditions showed
that despite increasing the number of particles, no discernible difference can be identified. This
encourages us to believe that the results are robust against the number of bodies used. It is,
however, possible that the difference between the number of bodies in the simulations is not signif-
icant enough. Note however that the simulation used in Vera-Ciro et al. (2014) utilised 108 particles.

When running a simulation with different seeds but identical initial conditions for 5.5 Gyr instead
of 2.2 we found a large number of similarities. Extent in radial migration, importance of particles’
vertical motion and the behaviour of top migrators all showed little difference. The top migrators
went on to behave in a predictable manner after 2.2 Gyr of evolution. This demonstrates that the
results are robust to longer integration timescales.

The last test to simulation stability was trying different random seeds. For this, 5 new simu-
lations were started with different seeds but otherwise identical to the 24 Md DM halo mass,
Q = 1.5 simulation from section 4.2. Figure 4.22 shows the slopes of σ∆Lz against |vz| at different
values of Lz, meaning at different parts of the disc. It is apparent that the variation from one seed to
another is not large and unlikely to be the cause of any major discrepancies between them. This, as
well as the previous two tests described, are vital tests that increase the robustness of the simulations.
The fact that no large differences are observed gives us confidence that the seeds we have used
for all test have provided good initial conditions. The outer disc showed some variation which
could be due to the smaller number of particles available to the calculation of the standard deviation.

In figures like figure 4.6, when there is little migration present such as in the lower plot, changes in
∆Lz tend to increase with Lz. This is unexpected and appears to contradict results of e.g. Bird
et al. (2012). They also tend to stay the same in negative and positive ∆Lz. If we have migration,
we expect particles in the outer disc to migrate inwards and vice versa. I can provide no reason
why migration would be larger in the outer disc and reasonably migration should not occur equally
in inward and outward directions in the very inner and outer disc. Perhaps the observed behaviour
here stems from something other than churning, as when migration occurs to a larger extent as in
the upper plot, the expected behaviour appears.

The two figures 4.16 and 4.17 show two cases that are the extremes of the simulated DM halos.
The upper plots in each case has strong spirals which should migrate almost equally at all heights
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and the lower plots should migrate only near the midplane of the disc. From this we expect the
lower plots to have similar widths for initial and final distributions and the upper plots to have
histograms which increase in width. This is the observed behaviour and correpsonds, as stated, to
the level of radial migration. The fact that bins with larger Jz have broader widths than those
of smaller Jz is explainable by the fact that stars with greater extent in Jz are considered. The
investigation into metallicity is a crude one however and ought to be taken with a grain of salt.

An interesting feature is observed in figure 4.20. In this figure and more so in similar ones,
a region with larger σ∆Lz or a ‘yellow’ region appears in the outer disc. This is similar to the
increase in migration with Lz observed in figure 4.6 and could be due to the same cause. In some
plots with very strong migration, this region disappears.

In this thesis I have performed an extensive investigation into the nature of radial migration
via churning and attempted to increase and expand upon the understanding of this process which
has a significant impact upon local observations and must be taken into account. I have provided
an understanding of apparent discrepancies in literature and provided a basis for further detailed
studies into radial migration in galaxies not strictly similar to the Milky Way.

5.1 Future work
There is ample room for future work and improvement based on the study presented here. A
direction in which it would be very interesting to progress this work would be towards being able
to compare to observations and perhaps even provide predictions. One existing example of what
would be interesting to do is the work done by Kawata et al. (2017). In their paper they ‘paint’
particles of their N -body simulation with chemicals using a Markov Chain Monte Carlo (MCMC)
technique. This allows them to paint their stars at the beginning of the simulation in such a way
that the end result comes out looking similar to the MDF of the SN. This is in strong contrast
to the results I have presented where the stars are painted at the start of the simulation using
results from Hayden et al. (2015). The difference being that Kawata et al. (2017) in effect looks at
chemical mixing up until today where I instead look at mixing starting from today.

It would be interesting to try to include the evolution of chemicals during the integration by
utilizing models of chemical evolution and star formation to simulate a ‘live’ galaxy. Without the
addition of chemicals in some manner, the ability to make predictions is extremely limited and due
to the existing literature and detailed study of the metallicity in the SN it would appear a logical
next step.

Studies like Schönrich & Binney (2009) or Schönrich & McMillan (2017) require an analyti-
cal description of radial migration. Currently they assume that the extent of radial migration is
independent of Jz. In this study it has been shown that this depends on the nature of the spirals.
The dependences found in this work could be put into such models.

During the study of the growth of spiral arms in section 4.1 no attempt was made to identify which
spiral modes are dominant at which radius. In figures 4.3 and 4.4 the modes are shown as a function
of radius and their strength as a function of time for the simulations. Based on results from papers
like D’Onghia (2015) we would expect there to be an increase in mode with radius, that further out
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in the disc higher mode spirals would be dominant. It is not possible to identify such behaviour in
these results. Figures 4.1 and 4.2 might be better used for identification by eye in this case. Figure
4.1 may show an increase from m = 2 to m = 3 at t = 1.1 Gyr. D’Onghia (2015) does however also
show an increase in m with lighter discs and heavier halos which is also seen in these results. A
new approach with these results could be to try and identify a relationship between mode and radius.

An interesting features have been found which deviate from current understanding of radial
migration, namely an increase of ∆Lz with Lz for low-migration simulations (see figure 4.6 and
4.20). Any continuation of this work should strive to find possible explanations for this behaviour.

There are inclusions to the simulations that could be made to improve the simulations and
to more closely resemble reality. The option to include a bulge, a ‘live’ dark matter halo, or
other larger parts of the Galaxy as N -body components would improve the simulations and the
comparison to the Milky Way.
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Appendix A

Jacobi integral
When considering a non-axisymmetric potential neither total energy or angular momentum is
conserved. But their combination, called the Jacobi integral, is. It is necessary for the full
description of the churning process and we therefore go through it here.

We will follow the derivations used in chapter 3.3.2 of Binney & Tremaine (2008) closely. We take
the example of a non-axisymmetric galaxy which rotates in respect to inertial space. So we have a
static potential Φ in a reference frame which rotates steadily at angular velocity Ωp, the pattern
speed. The velocity in the frame is ẋ which gives us a velocity in the interial frame of ẋ + Ωp × x
and thus the Lagrangian

L = 1
2 |ẋ + Ωp × x|2 − Φ(x) (A.1)

and the momentum
p = ∂L

∂ẋ
= ẋ + Ωp × x. (A.2)

We can then get the Hamiltonian through the equation
H =

∑
i

q̇ipi − L (A.3)

where qi and pi are generalised coordinate and momentum respectively. The index is for multiple
coordinates. We are using the vector x and can thus write

HJ = p · ẋ− L. (A.4)
We now replace ẋ using equation (A.2) and L using equation (A.1).

HJ = p · (p−Ωp × x)− 1
2 |ẋ + Ωp × x|2 + Φ

= p2 −Ωp(x× p)− 1
2p

2 + Φ

= 1
2p

2 + Φ−Ωp(x× p),

(A.5)

Which utilises that L = 1
2p

2 − Φ and the identity A(B ×C) = B(C ×A) = C(A ×B). In the
intertial frame p is the momentum and then x × p = L, the angular momentum. We also have
that 1

2p
2 + Φ is the Hamiltonian for the inertial frame and thus we can write

HJ = H −Ωp · L. (A.6)
This equation has no time dependence since Φ(x) is constant in the rotating frame, and the
derivative dHJ/dt = ∂HJ/∂t along any orbit vanishes. This means that HJ fits the definition of an
integral of motion and we call it the Jacobi integral. We find that in a rotating non-axisymmetric
potential such as this H and L are not conserved while the Jacobi integral is. We can rewrite it
using the effective potential Φeff(x) ≡ Φ(x)− 1

2 |Ωp × x|2, starting from equation (A.5),

HJ = 1
2 |ẋ|

2 + Φ− 1
2 |Ωp × x|2 = 1

2 |ẋ|
2 + Φeff . (A.7)

This is most easily shown replacing the momentum in the middle line of equation (A.5) with
equation (A.2). The effective potential is the sum of the gravitational potential and a repulsive
centrifugal potential.
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Appendix B
Table 1: List of parameters used in the NEMO packages with explanations

Parameter Explanation
mkWD99discmkWD99discmkWD99disc

out Output file
nbody Number of bodies
nbpero Number of bodies per orbit

R_d Scale radius: Surface density = Sig_0*(e^(-R/R_d))
Sig_0 Central surface density, see above
R_sig Velocity dispersion scale radius, σ ∝ (e^(-R/R_sig))

Q Toomre’s Q, constant if R_sig=0, else Q(Rsig)
z_d Vertical scale height
Rmax Maximum disc radius
eps Particle smoothing length
seed Seed for random number generator
q-ran [T/F] Use quasi- instead of psuedo-random numbers
time Simulation time of snapshot
ni No. of interation of disc surface density and velocity dispersion

giveF [T/F] Give distribution function in aux data
accname Name of any external acceleration field
accpars Parameters of external acceleration field
accfile File required by external acceleration field

gyrfalcONgyrfalcONgyrfalcON
In Input file
out Output file
eps Particle softening length
kmax The longest time step is taken to be tau=2^(-kmax)
step Primary data output is made every step simulation time units.
tstop The simulation shall be halted at simulation time=tstop

logstep Log output is made every logstep blocksteps
give Specifies which data are given with primary data output

accname Name of any external acceleration field
accpars Parameters of external acceleration field
accfile File required by external acceleration field

accparsaccparsaccpars
Rh Halo scale length
Mh Halo mass

innerh Halo inner logarithmic density slope
outerh Halo outer logarithmic density slope
etah Halo transition exponent
Rth Halo truncation radius

Rcoreh Halo core radius
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