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Abstract

Predicting the development of distant metastasis for breast cancer patients is of high impor-
tance for both the patient and the medical staff. The current best method for prediction is
the use of handcrafted histopatological features. The aim with this study is to explore how
well Additive Multiple Labelling Cytochemistry (AMLC) stained core biopsy images can pre-
dict the development of distant metastasis. For this, two cohorts of a total of 488 patients are
investigated, each patient having 1-4 images of AMLC stained core biopsies (of size 2 mm)
from the tumour area and AMLC features extracted from those images. Each patient is also
supplied with the handcrafted histopatolohical features for reference. Both the images and
numerical AMLC features extracted from the images contain information on the immunolog-
ical response of the patient which in turn has been shown to have potential of good predic-
tive ability. The images were analyzed using convolutional neural networks and the AMLC
features with a support vector machine, random forest and linear discriminant analysis clas-
sifiers. We show that the convolutional neural networks and the numerical classifiers achieve
similar performance with an area under the receiver operating characteristic curve (AUC)
value of approximately 0.60, which is worse than the result achieved on the histopathological
features, which gave an AUC value of approximately 0.74. Further, we show that no difference
in prediction can be observed with using AMLC images containing immunological features as
compared to AMLC images not containing any immunological features. Finally, we show that
an ensemble of the classifiers for the AMLC features and the images gives no significant boost
to performance in terms of AUC value. Data from 488 patients were used in the study; the
results indicate that the sample size was too small to capture the variance present between
patients. Furthermore the core biopsies were most likely too small to capture the behaviour of
the tumour. For future studies, it is recommended to increase the number of patients and the
size of the core biopsies.

Keywords: Breast Cancer, AMLC, Metastasis Prediction, Convolutional Neural Network,
Machine Learning.
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Abbreviations

A summary of abbreviations used in the thesis.

AMLC
PCA
t-SNE
SFS
SVM
RBF
RF
LDA
ANN
MLP
CNN
ReLU
TP/TN
FP/FN
ROC

AUC

Additive Multiple Labelling Cytochemistry
Principal Component Analysis
t-Distributed Stochastic Embedding
Sequential Feature Selection
Support Vector Machine

Radial Basis Function

Random Forest

Linear Discriminant Analysis
Artificial Neural Network
Multi-Layered Perceptron
Convolutional Neural Network
Rectified Linear Unit

True Positive/Negative

False Positive/Negative

Reciever Operating Characteristic

Area Under Curve
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Notations

A list of notations used in the thesis.

X Data matrix

Dimension reduced data matrix

Y Label matrix

x(n) Observation n

y(n) Label of observation n

g(n) Predicted label of observation n
C Covariance matrix

o) Mean

o Standard deviation

T Training set

V Validation set

S Test set

B Batch set

L() Loss function

7 Model function

o(+) Activation function

g(*) Layer function

w(™) Weights of layer m

(™) Output of layer m

n Learning rate

oR L1/L2 regularization parameter
ang Momentum parameter
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1 Introduction

Cancer is a common endemic disease that affects many people world wide, with breast cancer
being the most common type for women. The disease represents 25.2% of all diagnosed cancer
forms for women and in Sweden alone about 8000 persons are diagnosed with breast cancer each
year. Breast cancer has a fairly low fatality rate, that is, a patient often survives the disease after
treatment. However, since the disease is so common the mortality rate in the overall population
is still high, see [1], [2].

Assessing the prognosis and deciding the type of treatment for a breast cancer patient is far from
a trivial matter as it is not a single disease. Instead, breast cancer is highly heterogeneous and
can be categorized into a multitude of subgroups depending on a wide range of factors. The dif-
ferent subgroups all have different prognoses and treatments associated with them. Knowledge
of the type of cancer is thus required for deciding the correct treatment, see [3]. However, the
heterogeneity of the disease is vastly complex and the subtypes of breast cancer are still poorly
defined and often overlapping. A specific treatment for a patient with a certain subtype of breast
cancer is not always effective, improper treatment will cause unnecessary side effects and eco-
nomic cost. Due to this, it is important to correctly characterize the tumour. Furthermore, cur-
rent methods for categorizing cancer subtypes only provide limited information for the prognosis
as well. Thus novel methods are called upon to better map the complexity of the disease in order
to improve disease prediction and treatment strategies as discussed in [4].

1.1 Background

When categorizing breast cancer, a pathologist typically examines a large biopsy sample that is
sectioned and stained with the routine histological stain Hematoxylin and Eosin (H&E) for mi-
croscopic examination where a handful of histopathological features are taken in consideration.

To further categorize the breast cancer, the presence of certain molecular biomarkers are exam-
ined through immunohistochemistry; biomarkers are in this case proteins associated with cer-
tain behaviors of the tumour. Especially four biomarkers are of particular importance for prog-
nosis and the choice of treatment. These four biomarkers are; Estrogen Receptor (ER), if the
cancer tumour has receptors for the hormone class Estrogen. Human Epidermal growth factor
Receptor-2 (HER-2), if receptors for the specied growth hormone are present. progesterone Re-
ceptor (PGR), if receptors for progesterone are present and the protein Ki-67 measuring prolifer-
ation (cell division) of the cancer cells. For further information see [1], [3].

A high degree of proliferation and cancer cell expression of hormone receptors is often treated
more extensively to reduce the risk of relapse. Altogether, the microscopic (i.e., histological)
analysis provides the basis for a histopathological grade of the tumour which describes the ma-
lignancy of the cancer, the size of the tumour itself etc. as explained in [1]. Conducting the mea-
surements of the cancer tumour is currently a resource intensive process as it requires the experi-
ence of a specialized pathologist.

The analysis does not provide sufficient information for prognosis of cancer outcome, mainly
since the outcome vary largely among patients within the same histopathological tumour stage.
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The analysis however assumes that the tumour progression is largely a cell-autonomous process,
which focuses only on the cancer cells and does not consider the host’s immune response and the
pattern of tumour-infiltrating immune cells, which might affect the predictability of the disease
outcome as shown in [4]. For example, the total number of T cells (a type of white blood cells)
has been shown to be related to good prognosis. The total immune response has also been shown
to correlate with the prognosis, i.e., a weak response is correlated with a bad prognosis shown in
[5]. There are several more studies that show that the development of cancer is affected by the
immune system. In the case for colorectal cancer, it has been shown that the immune response in
the tumour region is a better prognostic predictor for the staging of the cancer than histopatho-
logical methods. The immune response also plays an important role in preventing the tumour
from recurring and proliferating in colorectal cancer as shown in [6], [7], [8]. Hence, this type of
immune analysis can most likely be further improved if more types of immune cells are analyzed
and the complete tumour structure is also included in the analysis and not just the tumour cells.

In order to more accurately measure the immune response in tumours along with the classical
biomarkers, new staining methods that simultaneously can stain multiple cell markers are needed
(current standard immunohistochemistry is limited to 2-3 markers).

One such method for tissue staining is Additive Multiple Labelling Cytochemistry (AMLC).
AMLC is a novel staining approach invented by the company Medetect in Lund. This new tech-
nique allows for simultaneous visualization and automatic computerized segmentation and quan-
tification of all major cell populations in a routine tumour section. In practice, this means that
several selected immunological and standard biomarkers, smooth muscle tissue and the cancer tu-
mour can be seen simultaneously on high resolution digital images.

Currently, there are no standard procedures for analyzing the complexity of AMLC -stained biopsy
samples for prognostic prediction of outcome. The images can however be analyzed from a ma-
chine learning perspective, where the prediction of outcome can be viewed as a classification
problem. The current leading technique in image classification is called Convolutional Neural
Network (CNN) and has been growing in popularity since Alexander Krizhevsky in 2012 com-
peted in the ImageNet Challenge, completely outperforming his opponents. The competition is
held annually where teams compete in different image classification related events by submit-
ting a classification algorithm each. During the competition in 2012 the CNN AlexNet as shown
in [9], was submitted and it dropped the record error rate from around 25 % down to approx-
imately 16 %. The following years the error rate has dropped even further as more advanced
CNNs emerged. As the popularity has increased, so has the application of CNN in different fields
of science.

1.2 Related Work

CNNs have been used for estimating the Gleason grading (a microscopic scoring system) in pa-
tients with prostate cancer with promising results. In a study by Grummeson et al. [10], 213
Hematosin & Eosin (H&E) stained microscopic prostate images were used to train a network to
automatically grade samples. An error rate of 7.3 % was obtained for the grading. Tt was con-
cluded that a larger data set probably could even further reduce the error rate.
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The method has also been used for breast cancer patients with the goal of detecting mitosis (cell
division) in histopathological images. In Ciresan et al. [11], H&E stained images were also used
with the goal to classify each pixel as being mitosis or not. Two networks were used and yielded
an F-score of 0.782, significantly higher than other comparative models.

A similar study when it comes to predicting the outcome, and thus somewhat of a benchmark in
terms of result, was conducted on 97 breast cancer patients of which 46 developed distant metas-
tasis within 5 years. In a study by Edén et al. [12], one of the goals was to classify whether or
not a patient would develop metastasis. The best result was obtained from classical histopatho-
logical markers, e.g. age, histopathological grade, tumour size etc. The area under the receiver
operating characteristic (AUC) was 0.78 when using artificial neural networks for the classifica-
tion.

1.3 Hypothesis

The overarching goal of this Master’s Thesis is to investigate the potential benefits of using AMLC
analysis in conjunction with machine learning techniques to predict the outcome for breast can-
cer patients. As of the present date, no studies have been reported with regard to this purpose.
Thus, due to the absence of prior research the investigations and findings should be regarded as
a pilot study of the potential usage of AMLC analysis in predicting prognostic cancer outcome.

Whether or not a treatment is successful, and thereby the outcome for a breast cancer patient,

is not well defined. We will in this study use the following definition for disease outcome; if a pa-
tient after treatment does not show any signs of tumour metastases within a five year period, the
outcome is considered good. If this is not the case, and thus distant metastasis develops within
the 5 year time frame, the outcome is considered bad. This distinction is deemed sufficient and is
the same definition used by Edén et al. [12].

Using this definition of outcome, we can make the hypothesis that AMLC stained core biopsies (2
mm) containing both immunological and standard biomarkers can be used to better predict the
development of distant metastasis in breast cancer patients. In order to test the hypothesis, the
following three questions will be explored:

e How well can numerical features extracted from AMLC stained core biopsies be used to
predict the development of metastasis in breast cancer patients?

e How well can images of pre-segmented and color-coded AMLC stained core biopsies be used
to predict the development of metastasis for breast cancer patients using convolutional neu-
ral networks?

e How important are the immunological biomarkers in the AMLC staining when predicting
the development of metastasis in breast cancer patients?

It should be noted that there are several other outcomes and classification problems that can be
investigated using the data provided. Due to limitations in hardware and time only one binary
classification problem was deemed to be sufficient as initial investigation of the data. Further-
more, there are several software packages that can be used for machine learning and particularly
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CNN. Matlab was selected as the main software program since it offers built-in packages and
functions that are good enough for the purpose of the thesis. Most packages offer similar func-
tions, however some are more flexible for pre-trained CNN. Both authors are also comfortable us-
ing Matlab.

The target audience is the company Medetect, the inventors of the AMLC analysis, that pro-
vided the data for this project as well as future students interested in CNN.

1.4 Data

All data used was provided by Medetect, both numerical and color-coded AMLC stained images.
The data sets are part of a large Vinnova/Swelife-sponsored research project which apart from
Medetect also involves Departments at the Medical Faculty at Lund University (Prof Jonas Er-
jefalt, medical immunology expert and Medetect founder and Prof Marten Ferno, Dept of exper-
imental Oncology, coordinator of the large clinical study that provides the basis for the clinical
characterization and tissue samples). The clinical studies and the present data analysis have been
approved by the Lund ethical committee for human medical research.

In total the data received consists of 488 patients diagnosed with breast cancer in two different
cohorts, but originates from three independent studies. The first cohort consists of 277 patients,
which all had been given an adjuvant treatment, i.e., an additional treatment to lower the risk

of relapse after surgery, in this case with the hormone therapy Tamoxifen as seen in [13], [14].
The second cohort consists of 211 premenopausal patients of which 29 patients had been given
an adjuvant treatment as seen in [15]. All patients were monitored after diagnosis and had rou-
tine check ups in order to detect possible metastasis. It is thus known if a patient developed
metastasis of not. A short descriptive statistics about the different cohorts can be seen in table 1.

Table 1: Values of different variables in the two cohorts.

Cohort 1 Cohort 2 Joint

Type Pre- and Post- Premenopausal Pre- and Post-
menopausal pa- patients menopausal pa-
tients tients

Number of pa- 277 211 488

tients

Mean cores per 2.02 1.98 2.00

patients

Mean Age 60.3 46.0 54.1

Met. 5 years 23.1 % 15.6 % 19.9 %

Met. 10 years 29.2 % 22.3 % 26.2 %

The data can be divided in to three different categories. The first type consists of images. Each
patient has between one and four images (in most cases two) of an AMLC stained tissue sam-
ple obtained from normally two 2 mm core biopsies that were selected from the larger original
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tumour sample. In total, there are 977 AMLC-images (2 mm cores) available for analysis. Each
image contains information about several selected immunological and structural cell markers as
well as standard biomarkers in the form of a specific color. It is possible to select which biomark-
ers to export from the AMLC analysis, this makes it possible to create several packages of images
containing different biomarkers. Several image packages was exported for this project as seen in
table 2. An example image can be seen in Figures 1 and 2. For further details about the different
biomarkers see Appendix A.

Table 2: Different image packages available for analysis. Image package 1 contains all the avail-
able biomarkers while the rest of the packages consist of different combinations of those markers.
Furthermore image package 6 does not contain any immunological biomarkers and image package
7 only contains immunological biomarkers.

Image Content
package

1 Cytokeratin, Ki67, p63, CD8, CD3, CD11C, CD20, CD31, CDG8,
CD138, MPO, Tryptase, Langerin, SMA, HTX, FOXP3, Vimentin,
PGP

Cytokeratin, Ki67, p63, CDS, CD3, CD20

Cytokeratin, Ki67, p63, CD8, CD68, CD31

Cytokeratin, Ki67, p63, CD8, CD3, MPO

Cytokeratin, Ki67, p63, CDS8, Tryptase, Langerin

Cytokeratin, Ki67, p63, CD31, SMA

CD8, CD3, CD11C, CD20, CD68, MPO, Tryptase, Langerin, FOXP3

N | S| U= W| N
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Figure 1: An AMLC stained image of a core sample biopsy from one of the two cohorts in the
data set. This particular image has been stained according to Image package 1. The orange area
is Cytokeratin, which is the biomarker used for detecting cancer tissue.
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Figure 2: A closer look at three different positions in Figure 1 to discern all the small features.

The second type of data consists of 466 numerical features extracted from the AMLC stained
core biopsies. These features consist of different measurements from the 18 available biomarkers,
which were used to create image package 1. The measurements used to create the final features
include for example the area of the different markers both compared to the whole image and
within a defined vicinity of the tumour region, and different area ratios between the biomarkers.
The numerical data is thus in a sense a different perspective of the information in the stained im-
ages, which has been quantified into numerical values. The quantification implies that most of
the spatial structure of the image is lost. To avoid confusion, this category will be referred to as
the AMLC features.
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The last type of data is also numerical and consists of more standard histopathological features
extracted from a much larger original tumour biopsy than the available core biopsy images. The
data in this category includes the variables patient age, tumour size, lymphocytic infiltration,
ER, PGR, HER-2, Ki67 and histopathological grading. These are roughly the same features used
by Edén et al [12]. This type of data will be referred to as the clinical data.
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2 Theory

2.1 Machine Learning

Machine learning is in its simplicity an algorithm that can learn from data. More often than

not these data sets can be quite large with many features or dimensions. For a human expert,

it becomes a more and more difficult task to draw accurate conclusions or extract meaningful
information from a data set as the number of samples and dimensions increases. The idea is
then to have the algorithm ”learn” to distinguish different patterns in the data either given prior
outcome, called Supervised Learning, or with no prior outcome, called Unsupervised Learning.

In this chapter, we will introduce the theory of the different techniques that will be used in this
thesis. First methods for robust prediction error will be presented, then dimensionality reduc-
tion techniques, numerical methods for classification and later convolutional neural networks for
image classification and lastly how the models will be evaluated. The methods presented will
mainly be supervised learning since the outcome of the data is prior knowledge. The outcome
used for supervised learning is referred to as Labels.

2.2 Training, Testing and k-fold Cross-Validation

In order to learn a model to distinguish different classes, it is common to first split the origi-

nal data set in three sets called training, validation and test. The training set is used to fit the
model, validation for estimate of prediction error and the test for estimate of out-of-sample er-
ror for the final selected model. Doing this will generate robust estimates on prediction errors for
unknown data. For this project, the training set is defined as 7', the validation set as V' and the
test set as S.

The size of each data set is difficult to select since it is dependent on the specific data set and
the size needed for training. A general rule of thumb is to split it into 50 % training and 25 %
each for validation and test, as explained in [16]. This method is dependent on the existence of
enough data to perform this split. Another approach is to use cross-validation. Regardless of the
method, a loss function L(Y, f(X)) needs to be introduced, where Y is a vector containing the
labels for the different classes, f is the model fitted on the training data and X is a input matrix
containing the different features. The loss function estimates the prediction error, for both a reg-
ular split and for cross-validation.

The K-fold cross-validation splits the data in K sets, :th model is then fitted K times. The kth
fitting uses K — 1 sets to fit the data and uses the K set for validation, which done for all sets,

that is for £ = 1... K. The prediction error is then created as an average of all the K prediction
errors, which is defined as

CV(f) = 2 2L X)) (1)

where f’k is the fitted model without the kth data set. X; and Y; are the out-of-sample data
sets which are not used for fitting the model. This method is called leave-one-out cross-validation.
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The number of folds used is a trade-off between bias and variance, where the leave-one-out method
usually has low bias but can have high variance.

The number of K is usually set to 5 or 10, see [17]. K-fold cross-validation could also be used for
fine-tuning parameters. f(X,a) is a set of models, where the tuning parameter « is indexing the
models. Then, f(X,a)¥ is the ath model fitted without the kth data set. The cross-validation
function can then be defined as (see [16])

K
CV(f,a) = % LY, fRO(XG, ) (2)
i=1

The tuning parameter that minimizes the error is selected and used as final model. The final
model is then fitted to the data as in Eq. 1 in order to obtain an estimate of the prediction er-
ror. A visualization of the split for a k-fold cross-validation with K = 5 can be seen in Figure
3.

Training Validation

Y

s

Figure 3: An example of a k-fold cross-validation with K = 5. The model is trained using all
data except the last set. This is thus the last iteration of the fitting of a model.

2.3 Dimensionality Reduction and Data Visualization

In classification problems, it is not unusual for the data set to contain a huge number of features.
It has been shown [18] that given a classifier the predictive accuracy will decrease if the number
of dimensions increases beyond a certain threshold. This reoccurring problem is often referred to
as the Curse of Dimensionality.

In order to utilize data with too many dimensions with respect to the sample size, dimensionality
reduction should be performed to obtain a better feature subset. Apart from the increased ac-
curacy of a classifier, dimensionality reduction can be used to reduce the data down to 2 or 3 di-
mensions for visualization which allows for an intuitive inspection of the feature space.

There are two main ways of performing dimensionality reduction, feature extraction and feature

selection. Feature extraction reduces the number of dimensions by transforming the data into a
subspace with fewer dimensions whilst feature selection tries to find a subset of features from the

16 of 79



O. Andersson & J. Ruuskanen 2 THEORY

already available set of features, see [19].

For this thesis, two feature extraction methods, principal component analysis (PCA) and t-distributed
stochastic neighbour embedding (t-SNE), and one feature selection method, sequential feature se-
lection (SFS), are considered.

2.3.1 Principal Component Analysis

PCA was first introduced by Pearsson [20] and later developed and named by Hotteling [21]. It is
a very common technique for dimension reduction and visualization of high dimensional data.
The goal is to reduce the number of dimensions by projecting the features onto a space with
fewer dimensions and still keep the maximum variance of the projected data. This is conducted
by an orthogonal linear transformation of a data matrix, X. The transformed data is projected
onto a new coordinate system, where the first coordinate contains the largest amount of variance
and the second coordinate contains the second largest amount of variance, and so on. This can
be defined as

C =WAWT | (3)

where C' is the covariance matrix of X and W is a matrix containing each eigenvector stored
column-wise. A is diagonal matrix containing the eigenvalues, Ay > Ay > ... > Ay. The dimension
wise reduced data matrix, X can thus be described as

X =XW, , (4)

where X is a Nxd matrix and W, contains d principal components.

2.3.2 t-Distributed Stochastic Neighbour Embedding

Complex datasets with many dimensions and classes might contain nonlinear manifolds in the
high dimensional space. These nonlinear manifolds would then not be discovered by using simple
linear techniques such as the PCA.

In a paper from Tillburg University [22], comparisons between a multitude of different commonly
used non-linear dimensionality reduction techniques and PCA have been performed. These tests
compared the different techniques on both artificial data created to include non-linear manifolds
and a number of real data sets. Not surprisingly, the non-linear techniques outperformed PCA on
the artificial data sets. However, on the different real data sets PCA managed to either outper-
form or at least perform as well as the best performing non-linear techniques.

However, the algorithm t-SNE presented by van der Maaten et al. was not a part of the non-
linear techniques tested. In particular, t-SNE has been shown to outperform other algorithms in
data visualization, as seen in [23]. It should also be noted that van det Maaten et al. explains in
the paper that it is not really known how well t-SNE will perform on general dimensionality re-
duction.
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There are also other reasons for including t-SNE for comparison. For one, the largest principal
components correspond to the largest variance in the data set. Large variance might be an indi-
cation on clustering but this is not always the case, e.g. two parallel hyperplanes that are close to
one another as we can see in Appendix B. Another reason is that there might be nonlinear man-
ifolds in this data that PCA will not be able to capture, even though the tests performed at Till-
burg University [22] show that this is unlikely.

In short, the t-SNE algorithm depends on modeling both the data points and the reduction map
points as two different conditional distributions in order to obtain a measure on the similarity
between the points inside the two sets. For the data points, the Euclidean distance between two
points is converted into a conditional probability using the Gaussian distribution to represent
similarity. The further the distance, the lower the conditional probability becomes.

exp (f||xl — xj||2/202)
Zk;ﬁi exp (—||z; — z|[?/202)
In a similar manner, we can compute the similarities between the reduced map points ; and z;

as conditional distributions but using t-distributions with one degree of freedom instead, which
then becomes

()

Pili =

~ ~ —1
(1+ [|&: — 74 [%)
~ ~ -1 -
Do (L1120 — 2k|1?)

In the original SNE, a Gaussian distribution is used for g;; as well, but to overcome some limita-
tions explained by van der Maaten et al. [23] the t-distribution is used instead.

(6)

9l =

If the points in the reduced map completely model the similarity between the data points, the
conditional distributions p;; and g;; will be equal. A measure of how well the reduced map mod-
cls the similarity between the data points can be obtained via the Kullback-Leibler divergence.
Thus in total, the overall ability to model the similarity is formed as the sum of all of the Kullback-
Leibler divergences between the data points, calculated as

L= KL(RIQ) =3 pjilog 2 . (")

p djli

The smaller the loss function L is, the more similar the reduced map is to the original data points
which implies that the reduced map can now be found by minimizing L. This in turn is done us-
ing an iterative optimizer, such as gradient descent.

2.3.3 Sequential Feature Selection

Instead of transforming the data to a subset of lower complexity, a subset could be created by
selecting a number of features vital for classification. This method is referred to as Feature Selec-
tion.

In order to perform feature selection, a method is needed to evaluate if a subset of features is
good or not. For this, let X be the set of all features for all data, X a subset of d features and
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L an arbitrary loss function. Finding the best feature subset X, can then be reduced to the min-
imization problem

L(Xq) = nin L(Xaq) . (8)
The question now remains how to select and test X4 from X in order to obtain the optimal sub-
set. A straight forward brute force approach would simply be to test all possible combinations
of features. This is called a Complete Search. Although this method would guarantee that X is
found, it is computationally unfeasible even for data sets of modest size since the number of pos-
sible combinations of features will grow exponentially. In practice, this means that the complete
search is almost never used.

Instead, the features could be selected using a greedy approach by sequentially selecting and
adding features to Xy that gives the best classification until no further improvements can be
made. This technique is called sequential forward search [19]. The greedy search is a fast way
of generating a good approximation for Xy but it is not guaranteed to find the optimal subset.

The greedy algorithm is executed as follows.

1. Start by considering an empty feature set X;—g.
2. For each feature &; evaluate L; = L ({X},§}).

3. The feature which gives the minimal L; is added to X to create the next subset X; 1 =
{X5, 61}

4. Steps 2-3 are then repeated until the improvements to the total loss are too small or a max-
imum number of features has been selected.

2.4 Classification of Numerical Data
2.4.1 Support Vector Machine

The Support Vector Machine (SVM) is a useful technique for predictions in high dimensional
feature space. The main idea is to separate classes with a half-space with as large margin as
possible. There are several different methods and the most basic form assumes that the classes
can be separated completely with a linear boundary. This is a very strong assumption and not
likely to be true in the most cases. A solution to this is to introduce nonnegative slack variables,
&1,&2,...,&,. This a less strict assumption and is referred to as soft-SVM, see [16].

IfT = (x1,41),---,(Xn,91) is a training set, where x; € R? are the features with their associ-

ated classes y; € {—1,1} and f; are parameters to be fitted, then we need to solve the following
optimization problem in order to obtain the largest margin between the classes
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maximize M
B0:B1s-5BasE15-€n

d
subject to Zﬁ? =1,
j=1
¥i(Bo + Brzir + .. + Baxig) > M(1-&) Vi=1,...,n,
n
é’i 2 07 Zgz S c ,
i=1

where M is the margin, i.c., the distance to maximize and c is a cost parameter that describes
the size of the margin around the boundary that allows observations to be on the wrong side of
the boundary. Missclassification occurs when & > 1, which means that no more than ¢ obser-
vations can be missclassified. More specifically, points for which & = 0 are classified correctly,

0 < & < 1 are points that are inside the margin, but on the correct side of the boundary decision
line. The size of c is a trade-off between variance and bias, were a value of ¢ gives low variance
but high bias and vice versa. A visualization of the maximization problem for 2 dimension can be
seen in Figure 4. The final decision rule can be written as (see [24])

f' = sign[f(2)] ,
= sign[z” B8 + fo] -

Figure 4: An example of an SVM where the observations are not completely separable. The size
of the margin is decided by the tunning parameter c, see [24].
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The SVM can also be altered in such a way that non-linear functions can be added in order to
get non-linear boundaries. This enables the use of several new functions which can be relevant to
use depending on the specific classification problem. It can be shown [24] that the optimization
problem and solution can be rewritten with the help of the inner products of the input features,
which in turn enable a more general function for the decision rule

N
= ZaiyiK(mv‘rl) + /7)0 s

where h(z) is a transformation of the input features and K (z,z’) is a symmetric positive (semi-)
definite kernel function. There are several different kernel functions that can be selected, in this
thesis the Radial Basis Function (RBF) was selected, defined as K(x,2') = exp(—||lz — 2'||?).
Furthermore, a; and Sy can be estimated by solving y; f(x;) = 1 for any (or all) z; for which 0 <
a; < c. A large C will lead to a less smooth boundary and possible overfitting, whereas the use of
a smaller ¢ will yield smoother boundaries as explained in [16].

2.4.2 Decision Trees and Random Forest

Decisions trees is a method that uses features z; from a data matrix X with j features and 7 ob-
servations with the goal of predicting labels from vector Y. The tree starts with a root node and
grows in to several additional nodes and leafs. At each node, a feature is used in a binary split of
the input data, leading to additional nodes and/or leaves, where each leaf contains a label. Each

new subset of the input is disjoint, e.g. at the root node, X is split into X; and Xy such that

X = X U Xy, see [25]. There are several methods for growing a tree and selecting what feature

to use at each split. In this thesis, the Gini index will be used as an impurity function, that is, a

measure of missclassification. Below is pseudocode presented for the growing of the tree:

1. Start at the root node.

2. For each zj, find the split that minimizes the impurity in the new nodes and choose that
split.

3. If stopping criteria is reached, stop and turn the node into a leaf.

4. Otherwise repeat from step 2.

The Gini index is defined as

Io(f) = Zfz‘(l - fi), (11)
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where J is the number of classes, i € {1,2,...,J} and f; is the probability of an element belonging
to label 4. The function value is zero when all observations in a node belong to the same class.
An example of a decision tree can be seen in Figure 5.

X3 > 91

Figure 5: An example of an incomplete decision tree. At the root node the input is split with
feature x3 at a threshold level 81, consequently splitting the original input data X into two dis-
joint sets X3 and Xs. The second split also shows when a leaf is created, where all observations
are classified as belonging to label 1, thus a stopping criteria is reached.

A more robust method with less risk of overfitting is the random forest (RF) method, where an
ensemble of trees is used to vote for the most popular class, see [26]. Below is a pseudocode for
creating a random forest where B is the set of all trees in the ensemble:

Let b be a single tree in the ensemble and j the number of features. Then, Vb € B
1. Sample with replacement from XandY.

2. Randomly select k features at each node and use for best split according to impurity func-
tion, where k < j.

3. If Io(f) = 0, stop and turn the node into a leaf. It is also possible to use other stopping
conditions, such as the minimum number of observations in a leaf.

4. Otherwise repeat from step 2.

The forest error rate is dependent on the size of randomly selected features k. Increasing the
number will lead to higher strength of each individual tree but will also increase the correlation
between any two trees. Increasing the correlation will also increase the forest error rate as ex-
plained in [26].
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2.4.3 Linear Discriminant Analysis

The idea with Linear Discriminant Analysis (LDA) is to find weights w for the function

y(z) = wlz | (12)

that projects the observations z onto a line, see [27]. The observations are then classified as a
certain class depending on the sign of the function, e.g. if y(z) > 0 then x is classified to be-
long to class one. There are several variations of LDA. A simple variant is called Fisher’s linear
discriminant. The proposal for this type is to maximize a function that will give a large sepa-
ration between the projected class means while also giving a small variance within each class as
described in [27]. The proposal is to maximize the expression

w! Crw

J(w) (13)

wlI'Cyw ’
where Cp is the between-class covariance matrix and Cyy is the total within-class covariance.
The covariance matrices are calculated as

Cp = (n2 — p1)(p2 — )", (14)
Cw =Y (wn—p1)(@n — )" + Y (@0 — po)(wn — p2)7 (15)
neCy neCs

where p is the mean of each class k. Observations that belong to class one are defined as Ci,
thus the total number of observations in class one is n € C; and similar for class two. In order to
maximize J(w) it is differentiated with respect to w and becomes

(w! Cpw)Cyw = (w! Cyw)Cpw = (16a)
w o< O (o — 1) - (16Db)

Since wT Cgw and w? Cww are only scaling factor, they are dropped. This means that w is pro-
portional to the difference of class means as shown in [27].

2.5 Classification of Image Data using Artificial Neural Networks

While the classifiers discussed so far have a long history with providing accurate classifications on
numerical data, a problem arises when this is transferred to images. If each pixel value is denoted
as a feature, it would leave the algorithm with a very high complexity and also make the algo-
rithm extremely sensitive to translations.

A solution is to manually define different measurements in the images to create hand crafted fea-
tures. Although hand crafted features do work, crafting them is tedious work and requires some

previous knowledge of the data for intuition on which features might be relevant or not. Instead

of manually creating features, a Convolutional Neural Network (CNN) can be used to automati-

cally find image features.
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In order to properly introduce CNN;, the notion of an artificial neural network (ANN) must be
introduced. An ANN seeks to mimic the parallel processing power constructed from small in-
dividual processing units as seen in the neurons of a central nervous system. It is worth noting
that an ANN is not a simulation of the brain and as Haykin [28] writes, an ANN only resembles
the brain in two aspects; that the network knowledge is obtained through learning and that the
interconnected strengths between neurons are the storage of the acquired knowledge.

2.5.1 The Multi-Layered Perceptron

First things first, consider the individual processing unit of the central nervous system, the neu-
ron. It takes a number of inputs from other neurons and produces an output according to some
rule.

To emulate this behaviour an artificial neuron is defined as shown in Figure 6. As shown the ar-
tificial neuron takes in a number of input signals x; weighted with wg. The weighted inputs are
summed and a bias b is added. This sum is then passed through an activation function ¢(-) and
then sent out as z. This gives the artificial neuron the output function (see [29])

z=¢ (Z wrTk + b) . (17)
k=1

v

Z " o) z

Figure 6: A simple image describing the flow through the artificial neuron.

The next step is to combine artificial neurons into a simple network of two layers as shown in
Figure 7. A network of this configuration is referred to as a perceptron. The perceptron has one
input layer and one output layer. The input layer simply consists of the input values x; and the
output layer is stacked artificial neurons with output z;. From this, it can be seen that a percep-
tron with a single output is no different from a single artificial neuron. For an arbitrary percep-
tron, the output of node 4, z;, is given by (see [29])
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k=0

Input layer Output layer
X1 Zy
X, Z3
X Zn
Xg = 1

Figure 7: Descriptive overview of a perceptron with m inputs and n outputs. The bias term has
been concatenated into zg and is now allowed to have weights as any other input.

Further, we can add new layers in between the input and output layers. The perceptron is then
transformed into a multi-layered perceptron (MLP) as shown in Figure 8. Given the network in
Figure 8, we denote the activation function for the hidden layer as ¢p(-) and the activation func-
tion for the output layer as @,(-). The output can then be written as

hj = on (2 ﬁ)wk) , (19)
k=0

Zi = %o Z wz(;)hy s (20)
7=0

= 2 = o ng)goh (Z wj(i)xk> . (21)
J=0 k=0
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Figure 8: Schematic of the multilayered perceptron, here with one hidden layer.

Adding more layers is a simple task, just replace xp with a new hidden layer that takes xj as in-
put.

Finally, the output of the network is often scaled using a softmax function. This is done to map
the output values into classification probabilities for the different classes. For an output z;, the
softmax function is defined as (see [29])

e

The final classification ¢ is then defined as the output class ¢ which receives the highest probabil-
ity Pi-

where Zpi =1 Vi. (22)

2

2.5.2 Convolutional Neural Networks

The MLP itself is no better than the classifiers discussed for the numerical data in the area of
image classification. A few modifications need to be made to the simple MLP architecture in or-
der to transform it into a CNN, which solves the problems with image translation and high com-
plexity.

Lets introduce a new type of layer called convolutional layer. A convolutional layer is defined as

a three dimensional convolution with the weights as the different filter kernels. The three dimen-
sions corresponds to the width, height and color channels of an image. Learning the filter kernels
would then be an automatic way of extracting features from the images. The mathematical con-

volution operation is defined as

-1 k-1

Z I($ - ‘75/7 Y- y/a z = Z/)F(:C/a y/a Z,) ’ (23)
'=0

M1
M1

(I*F)[chyﬂz] =

! 0,/ 0

Il
<
I

I

@
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where [ is a three dimensional input image and F' a filter of size k X k x k. A single filter kernel
is often quite small and shared between all the neurons in a layer. Because of this, each neuron
is only aware of a small area from the previous layer, called the receptive field. This structure
greatly reduces the amount of weights between layers and thus reduces the number of parameters
in the network, compared with the MLP structure. It also makes the convolutional layer insen-
sitive to spatial translation as the same filter is applied to all of the input image as explained in
[30].

The input images will be three dimensional tensors with width, height and depth. The filter ker-
nels have a width and height of k£ which corresponds to its receptive field, however the depth of
the kernels are often set to the same depth as the input image. A kernel applied to a three di-
mensional input image will thus yield a two dimensional output as discussed in [30].

17 | a1]-3s]-32] 27 [ 47

Figure 9: An intuitive explanation of a convolutional layer response. Here, the depth is the three
color channels. The figure shows a 8x8x3 image being convolved with a 3x3x3 kernel to create a
6x6x1 output.

As seen in Figure 9 the filter kernel has been shifted so that the center pixel in the image corre-
sponds to the same position in the output. To have an absolute center, the kernel size k should
thus be chosen as an odd number. Define the new boundaries as ks = %, also let kp define the
depth of the image. The convolutional operation for a single kernel as shown in Figure 9 is then
defined as

25 = Qe (@i * wij +b) (24)
ks ks kD

= e Z Z Z Tiit j—jt —k' - Wit ik + 0| (25)

i'=—ks j'=—ks k'=0

This can be compared to the equation of the perceptron output as shown in Eq. 18. The out-
put becomes a two dimensional feature map of smaller size than the input image since the mis-
matched edges are not included, as seen in Figure 9. To include the edges, Zero Padding can be
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performed by expanding the input image with a frame of zeros. In order to detect more than
one type of shape in the layer, many independent filter kernels are used for the same input im-
age. The two dimensional output of these kernels are then stacked into a new three dimensional
tensor that can be used as an input image in the next convolutional layer as described in [30].

Since the convolution is a linear operation, an activation function needs to be introduced in order
to capture non-linearities, shown as ¢.(:) in Eq. 24. Normally, the simple activation function rec-
tified linear unit (ReLU) is used, this is defined as f(x) = maxz(0, z). Other nonlinear activation
functions such as the hyperbolic tangent och sigmoid can be used, but training with ReLU has
shown to give faster convergence, see [9].

In order to further reduce the number of parameters in the model a layer called pooling Layer is
commonly used. A pooling layer reduces the size of the input image by moving a window over
the image, and in each position downsampling the pixels contained in the window into a sin-

gle pixel. The procedure is then repeated for each depth layer in the image. There are different
methods for performing the downsample, but the most commonly used strategy is called max
pooling. Max pooling simply outputs the largest value in each window step as the downsampled
pixel as explained in [31].

Both the convolutional and pooling layers utilize sliding windows to calculate the feature maps
from the input image. The step size of the windows is called stride as explained in [31].

Single depth slice
111112 4

(06| 7|8
3 | 2 |[NINES 3|4
4

max pool with 2x2 filters
and stride 2 6 | 8

y

Figure 10: THe figure shows a 4x4 image in a MaxPool layer with stride 2 being reduced to a
2x2 image. Image courtesy of http://cs231n.stanford.edu/.

In convolutional networks such as AlexNet [9], it has been found that performance can be im-
proved by normalizing the layer outputs after the ReLLU activations in a process called local re-
sponse normalization. Let :I:f{j be the response of a neuron when the kernel d has been applied to
the position i, j and then passed through the ReLU activation function. The response-normalized
output 3‘3;% ; 1s then calculated as
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max(N—1,d+n/2) 9 B
#i=al/[k+a Y (xdj) . (26)

d'=max(0,d—n/2)

The local response normalization thus normalizes over the n closest kernels in depth for each
width /height position 4, j. The parameters k,n,a and 3 are all predefined hyperparameters that
need to be set.

In order for a CNN to make a classification, the network is often paired with a couple of fully
connected layers in the end that have the same structure as the MLP networks as explained in
[30]. Then, by connecting a number of convolutional layers, max pooling layers and finalizing
with some fully connected layers, we can create a convolutional neural network as shown in Fig-
ure 11.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1

1 y 1 1 I - ~——.  dog (0(810)4)
cat (0.
T Nl I qabboaz(o.s‘u
| syl ! ‘-\ I ........ A

-0 -—

-
-

bm

Figure 11: An example of a small CNN with two convolutional layers, two MaxPool layers
and two fully connected layers. Image courtesy of www.wildml.com/2015/11/understanding-
convolutional-neural-networks-for-nlp/.

2.5.3 Learning through Stochastic Gradient Descent

In order to use an ANN for classification, a method needs to be devised to train it on previously
labeled data. First, some definitions are needed. Let x(n) be the input data vector of sample n,
y(n) its corresponding true class label and g(n) the classification given from an artificial neural
network that has been fed the data x(n). A set of training data of size N can then be defined as

T = {x(n), y(n)}n=1.n - (27)

What is sought is a way to adapt the weights so that g(n) becomes similar to the true values
y(n). Start by defining a loss function L that measures how much the predicted labels g(n) differ
from the true labels y(n), the smaller the value the better the accuracy. There are a multitude
of ways to construct the loss function but for classification tasks cross entropy is commonly used,
see [29].

By utilizing the loss function, finding the optimal weights for classification essentially becomes a

minimization problem. Let w be the weights of the network and f(w) be an ANN classifier, then
the optimal weights w for the data set T can be found by minimizing the loss function

L(f(w) | T) = min L(f(w) | T) , (28)
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over all possible w. To efficiently search the space of w, an iterative optimizer is commonly used,
often gradient descent, which works as follows (sce [29]).

1. Initiate the weight block w at time ¢ = 0 to be a set of random values.
2. For the next time step, find a small weight step Aw according to some rule.
3. Update the weights according to w(t + 1) = w(t) + Aw.

4. Repeat steps 2-3 until the loss function L(f(w) | T') is no longer decreasing.

In step 2, a rule needs to be defined in order to update the weights such that L decreases in value.
This can be done by taking the derivative of the loss function with respect to the weights and
then moving a small step the opposite direction, calculated as

oL
Aw = o0 (29)
Here, 1 decides the step length and is referred to as the learning rate. To increase convergence,
the learning rate is often decreased during training. One such method is step decay in which the
learning rate is reduced by a factor after a set number of iterations as explained in [30].

In practice, it is desirable to perform each step with the gradient descent on a subset of the train-
ing set, called batch updating. In each iteration of a new batch B will be drawn from 7" and then
the gradient step will be calculated from B. Performing the update on the entire training set at
once is inefficient when dealing with large data sets. On the other hand, performing the update
using a single data point is numerically unstable as explained in [29]. A batch updating block of
size Npg is then defined as

B ={z(u), y(W}i=1.n, BCT. (30)

Drawing a new batch from the training set is a semi-random process were each data point will
be used once before a data point can be included in a batch for a second time. The number of
iterations that is required for all training data points to have been used once is referred to as an
epoch.

The numerical instability that arises with single or very few data points comes from the fact that
the loss function L is evaluated over the inputs and outputs of those data points. Using few sam-
ples in each iteration will make the overall structure of L vary between batches which in turn
complicates the convergence of the weights. A batch updating thus seeks to approximate the en-
tire behaviour of the data set T" without needing to calculate the derivative for all training data
in each step. The size of the batch depends on the number of classes and the general hetero-
geneity of the data. Using gradient descent with batch updating is sometimes referred to as the
stochastic gradient descent method as explained in [30].

Often the stochastic gradient descent method is enhanced with momentum in order to make it

more robust. The enhancement modifies the gradient descent updating rule shown in Equation
29 by adding a part of the previous gradient update. Intuitively the momentum can be thought
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of as a kind of velocity for the algorithm which will hopefully speed up the convergence and keep
the algorithm clear of most local minimas. The updating rule for gradient descent with momen-
tum can be written as (see [29])

Aw(m) (t _|_ 1) — _7” + aMAw(”L)(t) y (31)

oL
Ow(m)
where o is a hyperparameter deciding the amount of momentum.

2.5.4 Training a Feed-Forward Network through Back-Propagation

The MLP and the CNN structures discussed are part of a type of networks called feed-forward
networks. For these types of networks, each layer only has a single input, the output of the previ-
ous layer. This structure can be used to simplify the calculations for the derivatives.

Computing the derivatives of the loss function with respect to the weights is not a trivial task.
To succeed the feed-forward structure will be used in an algorithm called back propagation. Let
w™, 2™ and g(-)(™ be the weight block, input and layer function respectively for layer m and
consider the arbitrary feed forward network as seen in Figure 12.

x(@ —  x(1) x(2) xM-1) x (M)
g(l} + g(z] > oo » g(M) = [

wb w®) w)

Figure 12: The flow of an arbitrary feed-forward neural network. Here, (9 is the input image
while (9, 4 € [1, M], is the output from hidden layer M, g(™) is the layer functions and L an
arbitrary loss function.

Since the loss function L depends on many nested layer functions, deriving it with respect to the
weights on layer m can be simplified using the chain rule with one derivative per layer as shown
in [32]. The derivative becomes

aL 8L 89(]\/[) (:B(]w_l)lw(M)) ag(m) (m("l_1)|w(nl))
ow(m ~ gz 0z (M=1) o Ow(m)

Now consider an arbitrary layer function with input @, layer function g(-) and output z = g(x).
For a convolutional layer especially both the input and the output are three dimensional tensors,
x € RIXWXD gng z = RH>XW'D' A derivative of the layer function g(-) with respect to the
input would result in a 6 dimensional tensor. For simplicity, we want to express the derivation
in matrix notation, which can be done by stacking both the input and output in lexicographical
ordered vectors and then performing the derivation. Define x, to be the vector stacked tensor x

(32)

31 of 79



0. Andersson & J. Ruuskanen 2 THEORY

T111

Z211

Ly = | THI11 . (33)

T121

| THWD |

The derivation of the stacked output of the layer function z, = g(x) with the stacked input x,
would now result in the Jacobian matriz

92111 0z111 02111 92111 92111
or111 Ox211 to Orp11 0r121 " Orgwbp
02211 0z211 02211 02211 02211
0x111 Ox211 T 0x 111 0x121 Tt Odzgwbp
dz f , , A f
vo_ Ozpiyy Ozpr1y Ozpi Oz, Ozp14 (34)
dxT 0z111 0x211 to 0T H11 0x121 c 0THW D
v
62’121 lezl 82121 62121 82121
0z111 0211 to JzH11 0z121 *t° Ozwp
aZH/W/D/ azH’W’D’ 8zH/W/D/ aZH’VV’D’ BZH’W’D’
ox111 Ox211 to 0T 11 0r121 " Ozgwp

However, the Jacobian matrix quickly becomes extremely large and it is unfeasible to explicitly
calculate it. As an example from [32], using only small input and output images of size 32 x 32 x
128, we would need roughly 68 GB to store the entire matrix in single precision! Fortunately the
back propagation technique allows us to calculate the derivatives without incurring this huge
memory cost. First rewrite the chain rule derivative of L in Eq. 32 with the stacked vector no-
tation as

oL oL dgM) (wiM_l)\wiM) ) dg(m™ (wim_l)lwq(jm)>
= = T TINT 7 (35)
0 (wq(,m)> 0 <a:1(, )) 0 (wq(, - )> 0 (wf,m’))
Here the first derivative, I with respect to its input in transpose, is simply a row vector of size

T
:cg,M)) since L is scalar. The rest of the terms become Jacobian matrices as shown in Eq. 34.

Denote this first row vector in the chain rule as

(55M))T _ a(iﬁf . (36)

T
)" could possibly be constructed by using the product of the

By taking a step backwards (51(,M_1 )

previous § and the next derivative in line as
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g (M1 M)
(5£A1—1)>T:<55M))T. 9 62;}\/[1))1; ) _ (37)

T
Eq. 37 is a vector matrix multiplication and will yield a new row vector of size <£L’1(,M_1)> , but

since the matrix is the huge Jacobian, it cannot explicitly be stored in memory. However, be-
T
cause of the feed-forward structure, the <61()M)) is only dependent on the output of the previous

(M—1)

T T
™M) and is thus seen as constant with respect to (iBU ) . Since the derivative is a

layer (

linear operator, the constant can be moved inside the operation as

()= gy () (1) @
olxy
(M

T
Now, the inner ¢ is a row vector of the same size as (mv )) and the function ¢ is simply the

(M)

T
function output of layer M which is (mv ) itself. This multiplication thus becomes the stan-
dard inner product and leaves us with a scalar derived with a row vector, which in turn becomes
T
a new row vector of size (a:SJMfl)) . Let (-,-) denote the inner product. Eq. 38 can now be re-

formulated to the the calculation of the back-propagation on step m as

8 (55| glmt1) (g™ o +Y)
5m) — { ga($(£)w)T w )> "

T
In order to then update all the weight blocks, simply start by computing <5§M)> and Aw®™).

-\" on\"
Then, take a step backwards, compute [ dy using ( dy and use the results to compute

Aw™M-1 _ Continue to step backwards until all weight blocks are updated. For an arbitrary layer
m the gradient descent update becomes

oL Pl <51()m)’ g(m) (mq()mfl) |w1(}m)>>

T o) : (10)
oL
(m) — _ 7~
w™(t+1) = w™ () + Aw™ | (42)

What remains is to derive the loss function and the layer functions with respect to the inputs
and weights, but we will not go in to further details. The general idea of the back propagation
has been introduced and going further is not necessary for additional comprehension.

2.5.5 Overfitting and Network Regularization

Neural networks often contains many millions parameters. Here, a large problem arises since

more parameters means that the model has more degrees of freedom to perform the model fit-
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ting. The more freedom a model has with its parameters, the more the model tends to capture
variations in each individual data point and not the entirety of the data set as explained in [31].
An example of this is seen in Figure 13 below.

Polynomial of degree 1 Polynomial of degree 8

O Data O Daa i ‘

Original o - Original
/
— Fitted 3 — Fitted /

Figure 13: The figure shows the dangers of overfitting. A set of data points from a polynomial of
degree 1 has been generated and distorted with a gaussian variable of standard deviation 1. The
data points are then fitted to two new polynomials, one of degree 1 and one of degree 8. The one
with higher degree captures the individual variations much better than the polynomial of lower
degree.

A robust model with good generalization can be transferred on to a new data set and still give
good classification. On the other hand, a model that is overfitted will not perform well on a new
data set. This is why the initial data set is split into multiple smaller partitions. By training the
model on the training set T', performance on previously unseen data can be measured on the vali-
dation set V. A good performance on T but bad on V exposes poor generalization. A simple way
to make a model more robust to overfitting is simply by using more data in 7', but this is not al-
ways possible as explained in[31].

If no more data is available, a good option is instead to simply expand the data set through data
augmentation. This technique allows for the creation of more data points by simple transforma-
tions of the available training data, such as translation or rotation. It is important to perform
this step of data augmentations after the original data set has been split into its sub parts. Oth-
erwise, it is very likely that an augmented image will end up in the validation set V while the
original image is in the training set 7.

Beyond data augmentation there is a large group of methods for combating poor generalization
in networks called regularization. The first regularization technique that we will discuss is called
weight decay. Weight decay modifies the loss function as (see [29])

Lp(w) = L(w) + apQ(w) . (43)

Here, € is the regularization term and ar > 0 is a hyper-parameter controlling the amount of
regularization. There are many different ways of determining Q(w) but most commonly used are
two techniques called L2 and L1 regularization defined as (see [31])
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7

1
Qw) = 3 sz L2 regularization , (44)

2
Qw) = Z |w;| L1 regularization . (45)

In theory, L2 and L1 regularization will force any excess weight that is not needed for classifi-
cation to zero while keeping the necessary weights small. These regularizations often decrease
overfitting and increase generalization performance, but in practice the hyper-parameter ar can
be hard to tune and sometimes large weights are necessary which are penalized using L2 or L1 as
explained in [29].

A different regularization technique is a method called drop-out. Instead of modifying the loss
function the network itself is changed. Define a drop-out factor d as a number between 0 and 1.
In each iteration, we will temporarily remove a factor d of all artificial neurons from the hidden
layers and then train the network. After the iteration, the removed neurons are reinserted as ex-
plained in [31].

Drop-out implies that an artificial neuron cannot rely on any other particular neuron to be present
in the network when performing the weight update. This results in the neuron trying to learn
more robust features that work in conjunction with any random subset of the neurons in the
network. Although not entirely intuitive, the drop-out method has shown [33] to successfully in-
crease the generalization and decrease overfitting in a large variety of neural network implemen-
tations.

2.5.6 Transfer Learning

Training a completely new CNN is a resource demanding process, both concerning time, GPU-
programning skills and expensive equipment. Furthermore, one could be in a situation where
there is not enough labeled data in order to train a network. Due to these high thresholds other
alternatives than training a CNN from scratch have evolved. The main idea is to use an already
trained network and apply it to a new classification problem. This process is called transfer learn-
ing. It has been shown that this is a very successful path to get good results as seen in [34], [35],
[36], [37].

Intuitively, the first layers of a network capture more general features while the last layers cap-
ture more specific features depending on what training set and classes were used during the origi-
nal training. It therefore becomes an interesting problem to find which layers are general enough
to transfer and which are too specific. In transfer learning the first n layers are copied from the
original network while the remaining layers are randomly re-initialized. It has been shown that
the generalization of the network increases if it is fine-tuned, i.e., if the original weights are in-
cluded and updated during the back-propagation. Another alternative is to freeze the original
layers, which does not increase generalization as much as fine-tuning, see [34].

Which layers should be copied from the original network and which layers should be retrained
is a question with only general guidelines. It is mostly dependent on how similar the original
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data set is to the new data set. If the data sets are similar, then more layers from the original
network can be used and vice versa. The number of parameters of a network does also influence
the performance when transfer learning. Overall it is better to have more parameters, especially
when the original and new data sets are similar. Smaller networks are not able to generalize in
the same manner as a larger networks. On the other hand, a large network with many parame-
ters can have problems with overfitting if the original and new data sets are not similar enough
as shown in [35]. It should also be noted that all results are dependent on the network that was
used and the new data set that it was tested on. With this into account, all results can only be
seen as general heuristics and it is necessary to find exact settings for best results for each spe-
cific problem that has not been tested by previous studies.

2.6 Ensemble Techniques

To increase the accuracy of the predictions, different algorithms can be combined into a single
classifier called an ensemble. The idea behind the ensemble is that by using multiple classifiers a
reduction in variance can be achicved and thus a higher accuracy can be obtained as explained
in [38]. An ensemble also gives a natural way of combining results from different classifiers using
different types of data.

Kantardzic [39] has an interesting example demonstrating how an ensemble learner outperforms
the individual classifiers. Consider an ensemble of 15 classifiers for a binary classification task.
Let the final ensemble classification be a simple majority vote between the classifiers. If we as-
sume that the different classifiers are independent with the identical error rate €, the probability
of k classifiers being wrong will follow the binomial distribution

mky—<f)ﬁ(1—q“—k. (46)

Since an ensemble miss-classification will occur if at least half of the classifiers are wrong the to-
tal ensemble error can be calculated as the sum of all probabilities when & > 8

15 15 /15
5—k
=Y p0) =3 ()0 - 9 (a7)
k=8 k=8
If the identical error rate is set to € = 0.3, the total ensemble error rate would reduce to a stag-
gering €.,s = 0.05. In reality, it is safe to assume that this gain is a bit optimistic, because it
assumes that the classifiers are completely independent which is a major simplification. Instead,
as a rule of thumb it can be said that the more independent the different classifiers are, the more
the ensemble will boost the overall accuracy as explained in [38].

We proceed to define a general ensemble model. Let f(-) denote a set of n classifiers and X the
set of input data. The set of class probabilities returned from each classifier and each data point
can then be written as

P=f(X) . (48)

Now let fens(-) denote an ensemble model function. The ensemble classification can then be writ-
ten as
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Y = feﬂe(P) = fens‘(.f (X)) . (49)

(c)

The simplest way of defining f.,s is by voting. Denote p;; as the class probability for class c re-

turned from the classifier j with the input data point ¢ and let w; be a weight associated with
(

the classifier j. Also let the output for input data ¢ and class ¢ be written as yic). The voting

system thus becomes

n n
y}c) = ijpg) where ij =1. (50)
j=1 j=1

Another ensemble technique is stacking which considers the outputs P from the different classi-
fiers as features of their own. These features can then be learned by a meta-classifier on top of
the original classifiers.

2.7 Evaluation of Models

In order to evaluate models one can use several measurements and methods, all with their own
advantages and drawbacks. A common method is to present a confusion matrix, i.e., a matrix

with the percentage of correctly and incorrectly predicted labels from a certain model. It is straight-
forward and can easily be interpreted, especially if there are only two classes.

Another method for evaluation is the receiver operating characteristic (ROC), a graph that plots
the true positive rate and the false positive rate. It is also a common measurement for evalua-
tion of a classifier model and is commonly used in the medical field. It is possible to obtain the
arca under the curve (AUC) from the ROC. The AUC represents the probability for a classifier
to classify a randomly selected positive input higher than a randomly selected negative input as
explained in [40]. That is, P(X; > Xjy), where X; is the score for a positive input obtained from
a classifier and X is the score from a negative input. An example of this can be seen in Figure
14. A random classifier will receive an AUC value of 0.5 and a perfect classifier will have an AUC
value of 1. The AUC has however been criticized for being misleading as discussed in [41]. It will
still be used in this thesis since it provides a baseline for comparison with other studies.
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Figure 14: An example of a ROC curve in red. The blue coloured area respresents the AUC.

In Table 3, we can see the confusion matrix in the blue cells. For this thesis however, the position
of the negative and positive predictions have been switched when presenting a confusion matrix.
The accuracy can also be seen which is used for model evaluation. It is a good measurement for
total correctly predicted labels but does not show the distribution of correctly classified labels

as can be seen in the confusion matrix. Instead a modified version of the accuracy will be used
which will be defined as the mean of the per class accuracy as can be seen below.

L _XTP+YTN
- n
TP | BTN

nrp nrn

A = ——— modified accuracy .

2
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Table 3: Prediction and true condition of a label. From this it is possible to obtain the confusion
matrix, in blue cells, which is used for evaluation of a model. The accuracy can be seen in the
bottom left corner, which indicates the total correctly predicted labels.
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3 Initial Data Remarks

The following chapters will revolve around training different classifiers on the available numerical
and image data. Each classifier will be evaluated in terms of performance, that is their accuracy
and AUC score. Later, some of the classifiers will be used in order to determine the eventual rel-
evance of the immunological features in the data and finally the classifiers will be used to create
an ensemble system. A simplified flow chart has been created in Figure 15 to make it easier to
follow the different steps in the process.

Numerical Numerical
Preprocessing Classifiers

Merging Cohorts

Image Convolutional
Preprocessing Neural Networks

Figure 15: The flow chart of the final ensemble learner. References to the sub-parts of this image
will be made further on in the method for a more intuitive understanding.

3.1 Merging Cohorts

The data can be categorized into two classes depending on whether or not the patient develops
metastasis within a 5-year period. We refer to all patients that do not develop metastasis within
the given time period as class 1 and all patients that do as class 2. The cohorts were merged in
order to create a single data set. This is conducted since about 20 % of the patients belong to
class 2. If the two cohorts are investigated individually, the estimate of the prediction error will
have a too high variance. The validation set would only contain approximately 11 respectively 8
patients from class 2 for each cohort. Henceforth, the referred data set consists of both cohorts.

3.2 Estimating Label Errors

It is possible that some of the labels in the data are incorrect. Some patients have passed away
or were not followed up in the study. Thus, it is not known whether or not they did develop
metastasis within 5 years. These patients have been labeled as belonging to class 1, not devel-
oping metastasis, but it might not have been the case. These patients will either have to be re-
moved from the data set or kept knowing that they will affect the results.
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A patient was categorized as a potential error if the person was marked as class 1 and had an
overall survival of less than 5 years or if the latest metastasis-free checkup date was less than 5
years from initial diagnosis. Using this distinction, N, =~ 12.7 % of the set of all patients were
found to have a potential error.

By excluding the patients with potential label errors, we can estimate the true risk of developing
metastasis within a 5 year period. From our data set, this becomes P(metastasis) = 22.8%. If
we assume that the patients with potential label errors have the same risk of developing metasta-
sis as the rest of the group, the percentage of errors € in the labels can then be estimated as

¢ = P(metastasis) - Nepr = 2.89 % . (51)

Since an error rate of 2.89 % is more acceptable than removing 12.7 % of the data, the patients
with potential label errors will be kept in the data set.

3.3 Creating Training, Validation and Test Sets

The available data set is split using a 5-fold cross-validation scheme to create 5 training sets T’
and 5 disjoint test sets S. These 5 folds will be the same throughout all of the tests. In some of
the algorithms used, the training set T will be split using yet another k-fold to encompass a val-
idation set V in order to estimate parameters. By splitting the data set on the patients, we can
use the same folds in all three data types which is important for correct comparisons.
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4 Classifying the Numerical Data

In this chapter, the usability of the numerical data in predicting prognosis is to be investigated
using a number of numerical classifiers. Initially, we will conduct numerical preprocessing, to

later fit different classifiers and present the results. The numerical data consists both of the AMLC
feature data type and the clinical data type. Mainly, the AMLC features will be investigated and
the clinical data will be used as reference.

We begin by structuring the data from the AMLC features and the clinical data into columns,
representing the different features. The rows will then represent the different patients. Denote a
data matrix of this type as X, this could be either the AMLC features or the clinical data. Fur-
ther, let X1 be the data matrix from all the patients in the training set and Xg the data matrix
from all the patients in the test set.

4.1 Numerical Preprocessing

Numerical
Preprocessing

Merging Cohorts

Figure 16: The red rectangle indicates what part of the ensemble structure that we currently are
presenting.

Before any classification can be made with the numerical data, it first needs to be preprocessed.
There exists not-a-number (NaN) values in the numerical data that needs attention and the data
need to be normalized in order to work properly. The huge amount of variables in the AMLC
features also need to be reduced. Here, we will examine and present the feature reduction using
PCA, t-SNE and SFS.

4.1.1 Dealing with NalN Values

In the numerical part of the data set there are some features that have observations with NaN
values. For AMLC features, some values are denoted as the fraction between different features.
In some cases, there does not exist any value in the denominator, i.e., a specific biomarker does
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not exist in the sample. The value will then be division by 0. For the clinical data NaN values
exists in some features in the form of missing values.

Furthermore each patient is associated with 1 to 4 core sample images each, which in turn means
that each patient has 1 to 4 different values for each feature in the AMLC features. Since the
goal is to predict the outcome for each patient, a mean value of each feature is created. The
mean will represent the patient more accurately. Another advantage is that most of the NaN val-
ues in the AMLC features can be removed in this step by simply omitting them when calculating
the mean values.

However, not all NaN values can be removed and the missing values in the clinical data still re-
main. For the clinical data, the NaN values occur in features with only binary values. These NaN
values have simply been replaced with the average between the two available binary values in or-
der to in a fast and simple way minimize their impact. For the AMLC features, we instead calcu-
late a feature mean over all available patients for each feature, and then replace the NaN values
with the corresponding mean.

4.1.2 Data Normalization

The range of the values in the AMLC features or clinical data differs much from feature to fea-
ture. The solution to this is to normalize each feature vector to zero mean and standard devia-
tion 1. This is performed by removing the estimated mean and dividing by the estimated stan-
dard deviation. To keep the test and training sets 1" and S separated, the mean and standard
deviations are estimated only from T'. Let a; be feature vector i for all the patients in the the
training set data matrix X7. The mean and standard deviation can then be estimated as

N
. 1
fi = %7 Zwu z; € Xr | (52)
j=1
L&
0i=\N_1 ; (wij — )" i€ Xr . (53)

After calculating a mean and standard deviation estimation for each feature vector ¢ the normal-
ization can be computed as

zr="" g eXp | (54)

o =2 T vrle Xg . (55)
This is done for both the AMLC feature data matrix and the clinical data matrix.

4.1.3 Extracting Relevant Features

The AMLC features consists of a large cascade of 466 different features and no or only minor
knowledge of their relevance exists. It is therefore very important that the feature space is re-
duced into a manageable size. Three methods of dimensionality reduction will be used for finding
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the relevant features; PCA, t-SNE and SFS. The clinical data however only consists of a collec-
tion of 8 features that all are hand picked for determining the overall survival of a patient. No re-
duction will be used on this data type.

In order to compute PCA and t-SNE, we will use a third party Matlab toolbox called the Matlab
Toolbox for Dimensionality Reduction written by Laurens van der Maaten [42], one of the inven-
tors of the t-SNE algorithm. The reduction needs to be calculated simultaneously for both the
training and test sets, otherwise the new features for the two sets might represent completely
different things. This is done by stacking X7 on top of Xg into a single data matrix, reducing
the number of columns using cither PCA or t-SNE and then extracting the reduced X7 and Xg
from the stacked matrix. This is simple because the methods do not shuffle the patient indexes.

Using the training data set T" from the first fold, we can examine how the features behave. We
begin by reducing the data matrix Xz for both the AMLC features and the clinical data down to
two dimensions using PCA and t-SNE to see if we can spot any clustering. It is pretty clear from
the plots in Figure 17 that there are no real clustering to be observed. But if we instead look at
the clinical data in Figure 18, we can see that it is more clustered but still has no clear and dis-
tinct patterns.

PCA t-SNE

40

30

20

Figure 17: The AMLC features reduced from 466 dimensions down to 2. Each circle represents a
patient in the training set 7.
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Figure 18: The clinical data reduced from 466 dimensions down to 2. Each circle represents a
patient in the training set T.

The strengths of the different principal components are shown in Figure 19. As can be seen, the
principal components over approximately 30 has little influence while the components over ap-
proximately 100 has practically none. For this reason, we will test dimensionality reduction using
PCA on the AMLC features with both 30 and 100 principal components.
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Figure 19: The strengths of the different principal components from the PCA reduction on the
AMLC features of the training set data matrix X7. A maximum of 364 principal components
have been evaluated since we only have 364 patients in the training data set.

Since the t-SNE features are highly dependent on the number of features used when performing
the reduction, there is no easy way of doing the same type of strength comparison as with the
PCA. Instead, we will use a t-SNE reduction with the same number of dimensions as the PCA
for comparison.
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The SFS will be computed using the built in Matlab function sequentialfs. This function takes

a loss function L, a data matrix X and the correct labels for each patient and sequentially se-
lects the different columns until there is no more improvement to L. The loss function L consists
of a classifier to generate predictions from X to test against the true labels. The loss is then
measured based on the prediction error. In our case, we will use SVM with two kinds of kernels,
linear and RBF. For measuring the loss, we will also consider using both the accuracy and the
AUC.

The selection itself in sequentialfs is performed using a k-fold to split the input data into k new
training sets and & disjunct validation sets. For each fold the classifier in L is trained on the
training set and evaluated on the validation set for each feature suggestion. Each feature sug-
gestion will then have k loss values associated with it, and a final suggestion L; can then be com-
puted using the average. The feature suggestion with the best average loss value will be selected.
For this thesis, we select k to be 5.

4.2 Training the Numerical Classifiers

Numerical Numerical
Preprocessing Classifiers

Merging Cohorts

Figure 20: The red rectangle indicates what part of the ensemble structure that we currently are
presenting.

After normalizing the features for both the AMLC features and the clinical data and reducing
the dimensionality of the AMLC features the classifiers can be trained. We are going to consider
three types of classifiers for the numerical data, namely SVM, RF and LDA. All are commonly
used methods and could potentially yield different prediction scores, which is beneficial for an en-
semble classifier.

The first classifier to be used is the SVM and for this we will consider two types of kernels, the

linear kernel and the RBF. The SVM will be trained using the built in Matlab function fitcsum,
which takes a data matrix X with the true labels and fits a support vector machine to the data.
The Matlab function can also optimize hyperparameters which will be done with the parameters
BoxzConstraint, which is related to the cost ¢, and KernelScale, a scaling parameter for the input
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features in X . The optimization is performed on a 5-fold cross-validation of X.

The second type of classifier is the RF algorithm. Here, the built in Matlab function TreeBagger
will be used to create the decision tree ensemble. The function takes a data matrix X, the true

labels and a third parameter that decides the number of trees in the ensemble. We will test two

different bag sizes of 300 and 600 trees but we will not perform a complete optimization on this

parameter.

The last classifier we will consider is the LDA. The built in Matlab function used for fitting the
LDA is called fitediscr. For the LDA as with the SVM it is also possible to optimize over hyper-
parameters which we also will do for this function. The parameters that will be optimized are
Delta which is a threshold for the feature weights (a feature with a weight lower than the thresh-
old will be omitted) and Gamma which decides the amount of regularization in the covariance
matrix. Matlab defines the regularization as follows. Let S be a covariance matrix, the regular-
ized matrix then becomes

S = (1 —7)8 + ydiag(S) . (56)
The optimization for the LDA is also calculated using a 5-fold cross-validation of the input data
matrix.

Before training the classifiers the over-representation of class 1 needs to be dealt with. Otherwise
a classifier with an accuracy of ~ 75 % can be achieved by simply guessing at class 1 repeatedly.
This is handled by the built in Matlab functions which can be fed with a prior probability, by
setting the prior to uniform we ensure that the classifiers see the data set as balanced.

4.3 Evaluating the Classifiers

The results from the evaluated classification performance are presented below in the Table 4.

The results are presented as the average AUC score from the 5 folds together with the standard
deviation. In the top row, the results for the original AMLC features are shown while the bottom
most row shows the performance on the 8 features in the clinical data.
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Table 4: Results for AMLC features using different classifiers and dimensionality reduction
techniques. The values are presented as mean AUC =+ standard deviation, for a 5-fold cross-
validation for both AMLC features and clinical data. The best dimensionality reduction tech-
nique for each classifiers are shown in bold text. It can easily be seen that the clinical data out-
performs the classifiers using AMLC features.

Reduction tech- SVM- SVM-RBF RF-300 RF-600 LDA

nique Linear

All features 0.57+£0.07 | 0.58 +0.06 | 0.55+0.05 | 0.56+0.04 | 0.60 +0.03
PCA (30) 0.55+0.08 | 0.58 +0.06 | 0.60+0.07 | 0.60 +0.09 | 0.54 +0.05
PCA (100) 0.53+£0.12 | 0544005 | 0.58-£0.06 | 0.58+0.06 | 0.53+£0.11
t-SNE (30) 0.55£0.09 | 0.56+0.08 | 0.49+£0.06 | 0.49+0.06 | 0.56=+0.09
t-SNE (100) 0.57£0.05 | 0.564+0.08 | 0.51£0.07 | 0.51+0.08 | 0.56+0.07
SFS - Lin (Acc) 0.58 £0.07 | 0.57£0.06 | 0.56£0.04 | 0.54+0.03 | 0.56+0.08
SFS - Lin (AUC) | 0.574+0.08 | 0.5540.07 | 0.57£0.05 | 0.55+0.04 | 0.5940.04
SFS - RBF (Acc) | 0.58+0.09 | 0.56£0.09 | 0.57£0.04 | 0.55+0.04 | 0.54£0.08
SFS - RBF (AUC) | 0.56 £0.08 | 0.58 £0.06 | 0.54£0.04 | 0.55+£0.04 | 0.57+0.06
Clinical data | 0.73+£0.07 [ 0.74+£0.04 | 0.74£0.09 |0.74+0.09 | 0.74 +0.06

All of the classifiers on all of the reduction techniques perform very poorly and are as bad or
worse as not using any dimensionality reduction at all. The clinical data however performs as ex-
pected, a bit lower than the results obtained by Edén et al. [12] but still within a single standard
deviation for all classifiers. We can go further and examine the confusion matrices of the clini-
cal data and the AMLC features without any dimensionality reduction to see how the classifiers
manage to capture each of the two classes. This can be seen in Table 5 and Table 6.
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Table 5: Confusion matrices for the clinical data, estimated over a 5-fold cross-validation.

SVM - Linear SVM - RBF
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.68 £ 0.05 0.32£0.05 No met. 0.64 £0.10 0.36 £ 0.10
Met. 0.39 +0.17 0.61 +0.17 Met. 0.31+0.19 0.69 + 0.19
RF - 300 RF - 600
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.83 +0.02 0.17 +0.02 No met. 0.83 £0.03 0.17£0.03
Met. 0.49 + 0.22 0.51 +0.22 Met. 0.50 + 0.23 0.50 +£0.23
LDA
Pred. no met. Pred. met.
No met. 0.70 +£0.03 0.30 +£0.03
Met. 0.34 £0.07 0.66 £ 0.07

Table 6: Confusion matrices for the AMLC features with no dimensionality reduction, estimated
over a 5-fold cross-validation.

SVM - Linear SVM - RBF
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.82 +0.09 0.18 £0.09 No met. 0.62 +0.23 0.38 +0.23
Met. 0.74 £ 0.09 0.26 £ 0.09 Met. 0.58 +0.29 0.42 + 0.29
RF - 300 RF - 600
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.95 + 0.02 0.05 +0.02 No met. 0.94 £0.03 0.06 £ 0.03
Met. 0.91 + 0.06 0.09 + 0.06 Met. 0.91 + 0.06 0.09 + 0.06
LDA
Pred. no met. Pred. met.
No met. 0.73 £0.05 0.27£0.05
Met. 0.61 + 0.09 0.39 £ 0.09

The confusion matrices for the clinical data shown in Table 5 are well-balanced for both the SVM
classifiers and the LDA classifiers. It is however equally unbalanced for both the RF classifiers.

It seems that the two sets of trees in the random forest do not have any impact on the actual re-
sults for this data set. The different SVM kernels perform equally well and yield similar results,
but the standard deviation for class 1 with the RBF kernel is twice as high. The LDA seems to

49 of 79



0. Andersson & J. Ruuskanen 4 CLASSIFYING THE NUMERICAL DATA

have the strongest performance, well balanced with a high accuracy and low standard deviation
in both class 1 and class 2. The standard deviation for class 2 where there are very few values in
the validation data becomes very large for all of the remaining classifiers.

In comparison, the confusion matrices for the unreduced AMLC features shown in Table 6 are
always skewed. The only exception is the SVM with the RBF kernel, although it instead has a
large variance in both classes which indicates that some of the k-fold evaluations where skewed as
well.
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5 Classifying the Image Data

In this chapter, the relevance of using CNNs on the core biopsy images for predicting distant
metastasis development will be tested. Both custom made small networks and different fine-
tuning settings on the classical CNN AlexNet will be used to measure if and how well the prog-
nosis can be predicted. Before any testing can begin the images will be cropped into a set of
smaller subimages and further preprocessed by normalization and data augmentation.

For comparing, the different neural network configurations only the images belonging to the pa-
tients in the first fold will be used. This is done in order to save time as the networks require a
very long time to train and evaluate. By not training and evaluating on every fold, we will have
to forgo estimating the network performance variance for the available data. However, in our case
we want only to compare the relative difference between network settings and since the T and S
sets will not change between runs the scheme is deemed suboptimal but adequate.

5.1 Image Preprocessing

Numerical Numerical
Preprocessing Classifiers

Merging Cohorts

Image
Preprocessing

Figure 21: The red rectangle indicates what part of the ensemble structure we currently are pre-
senting.

5.1.1 Extracting Cropped Images from the Core Biopsies

The core biopsy images in the data set are all very large, approximately 3500 x 3500 pixels each,
and cover many small details. A typical CNN takes input images of a much smaller size and
thus the large biopsies need to be preprocessed in some way. The original implementation of

the CNN AlexNet [9] took images of 256 x 256 to generate an input image to the network of
224 x 224 by data augmentations. Since we want to use similar types of data augmentations
our aim is to preprocess the core biospy images down to images of 256 x 256 pixels. A com-
parison between the size of the core biopsy and the sought input image is shown in Figure 22.
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Figure 22: An image of a core biopsy from the data set. The orange areas are regions of cancer-
ous cells. The small red rectangle is a 256 x 256 crop for scale.

The small details in the large image can become problematic if a simple down scale is conducted
as it will not keep the finer structure, such as biomarkers, which might be important for classifi-
cation. Another approach is to crop the image into smaller subimages of size 256 x 256. However,
cropping also has its own problems. Cropping a large image will not keep larger structures that
might be present in the image. A middle ground solution is instead to first scale down the origi-
nal image by a fraction and then cropping the image.

Before defining a cropping method, we must address the next problem; how can we know that it
is even possible to predict distant metastasis from a crop? A feasible assumption is that if it is
possible, then it is only possible from parts of the image that contain enough cancer cells. The
rest of the crops containing very few cancer cells will thus not contribute to classification. Since
there is only a single true value for the entire image, a crop from which classification is impossi-
ble will introduce noise in the data set which will interfere with the entire classification process.

The color of the cancer cell biomarkers from the AMLC analysis is known and by comparing
each pixel with this color a binary image can be created. However, since the images have been
scaled down the borders of the cancer areas will be contaminated with non-cancer colored pix-
els. This is because on the border both pixels with and without this color will have been aver-
aged to create a new pixel in the down-scaling. The measured cancer area will thus be somewhat
smaller than the true area if only the exact color is considered. This is especially true if we have
a sample with lots of very small cancerous regions. To combat this all pixel values within a small
neighbourhood of the sought color is considered to be a pixel of a cancerous region.
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After the binary image of cancerous and non-cancerous regions has been created, the number of
true pixels relative to the false pixels can be counted and used to define a threshold for inclusion.
To keep the vital regions centered in the crops we will only search for cancerous regions in a cen-
tral square of half the size of the crop as seen in Figure 23.

Figure 23: Three different crops of size 256x256 from Figure 22. The image has first been scaled
down to 30 % of the original size. The lower row contains the same crops but as binary images
where the white pixels represent the areas with cancer cells. The red square denotes the area in
which we search for cancer cells and the percentage in the titles show how many pixels marked as
cancer are found within the square.

After rescaling the input image into a more suitable size and defining an algorithm for select-
ing crop suggestions we need to define a way to perform the cropping itself. For this task, a slid-
ing window method was used to generate crop suggestions. A window will slide over the image
from left to right in a deterministic fashion, in each step a crop suggestion will be generated and
tested for inclusion. The step length is set to half the crop size, i.e., 128 pixels, as this will make
the area in which we search for cancer cells unique for each crop. Finally, each included crop is
given the same label as the original image.

5.1.2 Image Normalization

Before we can train a network the image data needs to be normalized. For the network AlexNet
[9], the normalization was performed using zero centering, i.e., from each image substracting the
image mean calculated from the entire training data. This approach is used in the Matlab imple-
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mentation of AlexNet as well, and it is the normalization we will use in this thesis for both our
fine-tuning and the three custom made networks.

5.1.3 Data Augmentation

To increase robustness and decrease overfitting, data augmentation should be implemented to
expand the training set. For inspiration, we can yet again look at the original AlexNet imple-
mentation [9] which used the following types of data augmentations; mirroring, translation and
color channel transformation. Mirroring creates a new image by horizontal reflection of the orig-
inal image, translation extracts a random crop of the correct input size from the 256x256 input
image whilst color transformation randomly alters the intensities of the different color channels.

Both mirroring and translation will be used as data augmentations for our networks. Color chan-
nel transformation will however be discarded. This is due to the fact that the image data are all
taken during controlled conditions and the color staining are always the same for the same type
of markers, i.e., the cancer cells will always have the same orange color. Altering the color chan-
nels will thus not decrease any overfitting since there is little to no natural color variation in the
images.

Apart from the two augmentations kept from AlexNet, a third will be added, namely rotation.
By randomly rotating the image either 0, 90, 180 or 270 degrees, we can expand a single image
to 4 different variations. This is possible because compared with the images used to train the
original AlexNet, our data set has no natural orientation of up and down.

5.2 Training the Neural Networks

Numerical Numerical

Preprocessing Classifiers

Merging Cohorts

Image Convolutional

Preprocessing Neural Networks

Figure 24: The red rectangle indicates what part of the ensemble structure we currently are pre-
senting.

For testing the predictions, three types of custom made network structures trained from scratch
and four fine-tuned settings of AlexNet will be used. Since it is not known how well or if at all
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it is possible to predict the development of metastasis from our data set or which biomarkers
present in the packages that are relevant, we will evaluate the networks on the image packages
1-5 presented in the introduction. The best image packages and the best networks will lastly be
evaluated in a 5-fold cross-validation in order to estimate a robust prediction error.

The three custom made networks are all loosely based on AlexNet but smaller and referred to

as SmallNet-4, SmallNet-5 and SmallNet-6, the numerical suffix indicates how many learnable
layers the networks contain. The main difference between the networks is the number of convo-
lutional layers they contain while the number of fully connected layers remains the same. The
custom made networks are tested for evaluating the performance of different structures. The
small networks do also have fewer parameters compared to AlexNet, the large amount of parame-
ters might limit the performance on our small data set. The structures of the three networks and
AlexNet are shown in Appendix C.

Before fine-tuning AlexNet, we will first have to replace the final fully connected layer which has
1000 output nodes for the 1000 original classes that AlexNet uses, with a new layer containing
only 2 output nodes for our binary classification. Later, four different fine-tuning settings will be
tested. Since there only exists general guidelines on how to fine-tune a network, it was deemed
necessary to test many different approaches. The settings to be used are shown below.

1. Ordinary fine-tuning, no further settings apart from replacing the final layer.

2. Replacing all the fully connected layers with layers of smaller sizes. From (4096, 4096, 1000)
to (4096, 1024, 2).

3. Freezing the first two convolutional layers.
4. Freezing the first three convolutional layers.

All of our networks will be trained using the built in Matlab library for deep learning, more de-
tail on the actual implementation can be found in [43]. The following values will be used for the
hyperparameters seen below.

Np = 256 Size of batch
7 = 0.001 Learning Rate
ay = 0.9 Momentum

apr = 0.0001 L2 Regularization

To increase convergence and reduce the risk of overfitting the learning rate will be decayed us-
ing step decay. The learning rate will be reduced by a factor of 0.9 every 2 epochs. Further, no
other configurations of the hyperparameters will be used when training the networks we present.

Since our data is skewed, we want to devise a method to avoid training biased networks. The
Matlab library offers no way of defining priors for convolutional neural networks, instead our so-
lution is to subsample the crops from the training set into a new training set where the classes
are balanced. The subsampling will be performed once before each epoch to create new training
sets, by resampling we can utilize more of the training data from class 1 even though most of it is
discarded inside an epoch.
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5.3 Evaluating the Different Networks
5.3.1 Image Voting

From our trained neural networks, we will obtain prediction scores for each crop in an image. In
order to obtain a single prediction for each patient, we will construct a small voting system that
takes the average of each prediction score, i.e., the softmax output, for class 2 for all the crops
in an image and denote the resulting value as the total image prediction score. For patients with
multiple images, the average of all of the image prediction scores will be calculated to form a per
patient prediction score.

A benefit of the voting ensemble is that if we assume averaging, i.e., w; = 1/n Vi € [1,...,n]
then the method is independent of the number of classifiers used. This is to our great advan-
tage when calculating the image prediction scores. Different images will have different amount
of crops because of our crop suggestion selection method.

5.3.2 Setting Preprocessing Hyperparameters

The first thing that needs to be tested is the relevance of the two hyperparameters; scaling and
cancer threshold. Initial testing has shown that a scaling of 0.3 and a cancer threshold of 0.01
seems to yield adequate results but a more thorough evaluation needs to be made. To do this,
the two hyperparameters will be evaluated individually by cropping images from image package
1 which will be used to fine-tune AlexNet with ordinary settings. When testing the scaling the
cancer threshold will be kept at 0.01. When evaluating the threshold the best performing scaling
factor will be used. We will also compare the scaling with simply down sampling the core biopsy
image down to 256x256 pixels. The results for the different scaling of the images can be seen in
Table 7 while the results for the different thresholds can be seen in Table 8.

Some permuations of different hyperparameters were tested briefly, but no significant change of
result was detected and because of this not tested more extensivly. Some of the different levels of
scaling were also tested on other image packages, however with similar results, hence it was not
further evaluated.

Table 7: Results for different scaling of the image. All results were evaluated on AlexNet and on
image package 1.

Scale Accuracy test Accuracy vote AUC test AUC vote
0.1 0.54 0.50 0.58 0.58
0.2 0.56 0.61 0.59 0.65
0.3 0.57 0.64 0.64 0.72
0.4 0.56 0.54 0.61 0.69
0.5 0.56 0.52 0.59 0.64
256x256 0.54 0.57 0.52 0.55
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Table 8: Results for different cancer thresholds for accepting a crop. All results were evaluated

on AlexNet and on image package 1.

Cancer Accuracy test Accuracy vote AUC test AUC vote
threshold

0.001 0.57 0.645 0.61 0.69
0.005 0.59 0.66 0.63 0.71

0.01 0.57 0.64 0.62 0.70

0.05 0.58 0.65 0.62 0.68

0.1 0.57 0.58 0.60 0.60

As can be seen in Table 7, the scale of 0.3 yielded the best results in all four categories while a
simple down scaling gave the worst results. Scaling 0.3 will thus be selected to be used hence-
forth. The improvement for using the cropping method can be attributed to two things. First,
the cropping method will expand the data set a lot by creating multiple images per core biopsy
and thus decreasing overfitting. Secondly, as argued earlier, there might also be smaller features

relevant to prediction that disappear when performing a simple down scaling.

For the different cancer thresholds seen in Table 8, the results are much more inconclusive. The
best performing threshold of 0.005 is only best by a very small margin. We instead choose to use
threshold 0.01 since it is almost as good. Further, time consumption is relevant for the evalua-
tion and thresholds lower than 0.01 will yield more images which in turn will make the training
process slower. In practice, we can save up to 25 hours of computing time for a full 5-fold cross-
validation on five image packages by choosing 0.01 over 0.005.

5.3.3 SmallNet-4

The results for our smallest custom built network SmallNet-4 for the different image packages
can be seen in Table 9. The results are all similar and the best was obtained from image package
4. To investigate the behaviour in more detail, the confusion matrix for image package 4 can be

seen in Table 10.

Table 9: Results for SmallNet-4 on all five image packages, including accuracy for testing and
voting as well as AUC for testing and voting.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.60 0.64 0.61 0.65

2 0.58 0.62 0.59 0.63

3 0.61 0.63 0.61 0.65

4 0.61 0.65 0.63 0.69

5 0.56 0.64 0.56 0.63
Mean 0.59 0.63 0.60 0.65
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Table 10: Confusion matrices for SmallNet-4 on image package 4.

Train Test Vote
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
No Met. 0.6487 0.3513 0.63 0.37 0.65 0.35
Met. 0.51 0.49 0.41 0.59 0.35 0.65

We can see in the confusion matrices shown in Table 10 that the accuracy for training, testing
and voting for class 1 seems stable. It is to be expected that both the training and voting accu-
racies are higher than the testing accuracy which can be seen. For class 2 however the test accu-
racy is higher than the training accuracy which is unexpected.

5.3.4 SmallNet-5

The results for the second custom built network SmallNet-5 in terms of accuracy and AUC can
be seen in Table 11. As with SmallNet-4, the highest AUC value was obtained for image package
4. The results are however a bit less diverse, as image packages 3 and 5 also obtain good results.
The confusion matrices for image package 4 can be seen in Table 12

Table 11: Results for SmallNet-5 on all image packages, including accuracy for testing and voting

as well as AUC for testing and voting.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.61 0.67 0.63 0.68

2 0.60 0.63 0.60 0.65

3 0.64 0.68 0.65 0.69

4 0.61 0.65 0.63 0.71

5 0.61 0.70 0.63 0.70

Mean 0.61 0.67 0.63 0.69

Table 12: Confusion matrices for SmallNet-5 on image package 4
Train Test Vote
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
No Met. 0.65 0.35 0.63 0.37 0.69 0.31
Met. 0.55 0.45 0.40 0.60 0.39 0.61

Similarly to SmallNet-4, the results for class 2 shown in Table 12 are higher for the test set than
the training set which is unexpected. Similarly, the results for class 1 are still normal.
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5.3.5 SmallNet-6

The results for our final custom made network SmallNet-6 can be seen in Table 13. As can be
seen the results are all very similar, with image package 2 giving sightly better results. The con-
fusion matrices for SmallNet-6 on image package 2 is shown in Table 14.

Table 13: Results for SmallNet-6 on all 5 image packages, including accuracy for testing and vot-
ing as well as AUC for testing and voting.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.58 0.61 0.62 0.66

2 0.59 0.64 0.62 0.67

3 0.58 0.61 0.62 0.65

4 0.56 0.62 0.58 0.66

5 0.55 0.62 0.55 0.63
Mean 0.57 0.62 0.60 0.65

Table 14: Confusion matrices for SmallNet-6 on image package 2

Train Test Vote
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
No Met. 0.39 0.61 0.39 0.61 0.37 0.63
Met. 0.36 0.64 0.22 0.78 0.10 0.90

As can be seen in Table 14 the results are skewed. The prediction errors for class 1 are signif-
icantly lower than 50 % while the results for class 2 are instead much higher. We can also see
that the test accuracy for class 2 is higher than the training accuracy similarly to SmallNet-4 and
SmallNet-5. For the voting accuracy, it seems as though the voting method enhances the skew-
ness of the testing accuracy.

5.3.6 Fine-tuning of AlexNet

Fine-tuning AlexNet by replacing the fully connected layers with layers containing fewer artifi-
cial neurons yielded the best results in our fine-tuning testing ground. The results can be seen in
Table 15. The corresponding confusion matrix for the best performing image package is shown in
Table 16. No matter how the network was fine-tuned, it was prone to be skewed in class 2 for the
test data and the vote of the test data.
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Table 15: Results for AlexNet when changing the size of the fully connected layers for all image
packages. Including accuracy for testing and voting as well as AUC for testing and voting. The
last fully connected layer was randomized.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.61 0.69 0.64 0.69

2 0.55 0.59 0.56 0.60

3 0.57 0.60 0.59 0.66

4 0.55 0.63 0.56 0.62

5 0.54 0.64 0.56 0.61
Mean 0.56 0.63 0.58 0.63

Table 16: Confusion matrices for the fine-tuned AlexNet when replacing the fully connected lay-
ers with layers of fewer nodes, evaluated on image package 1.

Train Test Vote
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
No Met. 0.63 0.37 0.57 0.43 0.61 0.39
Met. 0.47 0.53 0.35 0.65 0.23 0.77

As can be seen for the confusion matrices in Table 16 the same problem has occured for the fine-
tuned AlexNet as with SmallNet-4/5/6. The class 2 results are much higher in the test data than
in the training data while the results of class 1 has a more expected distribution.

Below in Tables 17, 18 and 19 the results can be seen for fine-tuning AlexNet by only replacing
the final fully connected layer, freezing the first two convolutional layers and finally freezing the
first three convolutional layers.

Table 17: Results for AlexNet on all image packages, including accuracy for testing and voting as
well as AUC for testing and voting. The last fully connected layer was randomized.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.58 0.63 0.61 0.66

2 0.53 0.51 0.55 0.60

3 0.57 0.59 0.58 0.63

4 0.55 0.56 0.56 0.63

5 0.56 0.61 0.58 0.67
Mean 0.56 0.58 0.58 0.64
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Table 18: Results for AlexNet when freezing the first two convolutional layers for all image pack-
ages. Including accuracy for testing and voting as well as AUC for testing and voting. The last
fully connected layer was also replaced.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.58 0.61 0.60 0.66

2 0.56 0.57 0.57 0.63

3 0.57 0.61 0.57 0.63

4 0.54 0.57 0.56 0.52

5 0.54 0.62 0.56 0.63
Mean 0.56 0.59 0.57 0.61

Table 19: Results for AlexNet when freezing the first three convolutional layers for all image
packages. Including accuracy for testing and voting as well as AUC for testing and voting. The
last fully connected layer was also replaced.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.57 0.62 0.58 0.65

2 0.54 0.57 0.56 0.61

3 0.57 0.62 0.59 0.65

4 0.53 0.52 0.55 0.59

5 0.54 0.55 0.55 0.61
Mean 0.55 0.58 0.57 0.62

5.3.7 Mean of each Image Package

From the previously presented results of SmallNet-4/5/6 and the different fine-tuning settings for
AlexNet, it is pretty clear that the prediction does not depend that much on the choice of net-
work structures. Some are slightly better than others but keep in mind that the results have high
variance due to the small data set and lack of cross-validation. If we, for example, compare the
result of the AlexNet fine-tuned with only replacing the final fully connected layers, three differ-
ent results of the same setting can be seen in Table 7, Table 8 and Table 17. The three tables
have different prediction errors which shows that when training a network there exists variance in
the results, even when using the same settings.

We can also compare the results of the five different image packages by calculating the mean and
standard deviation for each evaluation on each image package. The results can be seen in Ta-
ble 20. It is clear that image package 1, containing all biomarkers available, is performing the
best across all network structures. Performing a t-test with a 5% significance level between the
different vectors of AUC vote scores for the image packages, reveals that image package 2 is sig-
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nificantly worse compared to image package 1 for the presented measurements. No other image
package was shown to be worse than image package 1 using this significance level.

Table 20: Mean and standard deviation for test and vote both in accuracy and AUC, evaluated

over each included image package.

Image Accuracy test Accuracy vote AUC test AUC vote
package

1 0.59 + 0.02 0.64 + 0.03 0.61 + 0.02 0.66 + 0.02
2 0.56 + 0.02 0.59 + 0.04 0.58 + 0.03 0.63 + 0.03
3 0.59 + 0.03 0.62 + 0.03 0.60 + 0.03 0.65 + 0.02
4 0.57 + 0.03 0.60 + 0.05 0.58 + 0.03 0.63 + 0.06
5 0.56 + 0.04 0.63 + 0.04 0.57 £+ 0.03 0.64 + 0.03

5.3.8 Robust Estimations

From our tests, we can see that SmallNet-5 performed best among the custom made networks
and that the fine-tuning by replacing the fully connected layers with layers of smaller size gave
the best performance for AlexNet. These two networks will now be evaluated with a 5-fold cross-
validation to get a more robust estimation on the actual performance of the networks on the im-
age packages.

The results for the robust estimation of SmallNet-5 and AlexNet can be seen below in Table

21. As can be seen the results are worse than the preliminary results presented in Table 11 and
only as good as the best AMLC feature results presented in Table 4. All of the image packages
have similar results, slightly better than guessing. The best performing image package was image
package 1 and its confusion matrices can be seen in Table 22.

Table 21: AUC results for AlexNet and SmallNet-5 with a 5-fold cross-validation.

CNN Image Pack 1 | Image Pack 2 | Image Pack 3 | Image Pack 4 | Image Pack 5
SmallNet-5 | 0.60 % 0.05 0.59 + 0.07 0.60 = 0.06 0.59 + 0.07 0.56 = 0.04
AlexNet 0.62 +0.04 0.62 £+ 0.04 0.60 + 0.03 0.60 + 0.04 0.60 + 0.03

Table 22: Confusion matrices for image package 1 on SmallNet-5 evaluated over 5-fold cross-

validation.
Train Test Vote
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
No Met. 0.69 £ 0.01 0.31 +£0.01 0.68 £0.05 0.32 £ 0.05 0.66 £ 0.06 0.34 £ 0.06
Met. 0.51 +0.02 0.49 = 0.02 0.54 +£0.11 0.46 = 0.11 0.48 =0.15 0.52 +0.15

In Table 22, it can clearly be seen that it is class 2 that fails to be properly classified. Class 1
manages to get continuously high scores for both training, test and vote. Class 2 also has a higher
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standard deviation. This behaviour was seen on all the five image packages and not just the one

presented here.

Since we have estimated SmallNet-5 using 5-fold cross validation, we have obtained one out-of-
sample prediction score per patient. Each test set in the folds are disjunct and together make up
the entire data set. Using this we can construct a total ROC curve and AUC value for the entire

data set. The plot can be seen in Figure 25.
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Figure 25: The ROC curve for the validation scores calculated on SmallNet-5 for all the patients.
The AUC score calculated this way is somewhat higher than the estimated scores presented in

Table 21 but well within one standard deviation.
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6 Relevance of Immunological Biomarkers

Using our networks, we can investigate if the immunological biomarkers seem to have any ef-
fect on the prediction of metastasis development. For this, we will use our network SmallNet-

5 trained with the same parameters as previous networks but on the three image packages 1, 6
and 7. Image package 1 contains all markers, image package 6 contains only non-immunological
markers while image package 7 does only contain immunological markers. Since image pack-
age 7 does not contain any colored cancer cells the cropping method devised will not work, in-
stead the positions of the crops from image package 1 are saved and used for image package 7.
Three crops from the three image packages taken from the same area are shown in Figure 26.
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Figure 26: Three crops from the three image packages; image package 1, image package 6 and
image package 7. The three crops are taken from the same position.

The results for running SmallNet-5 on the three image packages can be seen in Table 23. As can
be seen no real difference between the image packages can be observed. As with the robust es-
timations displayed in Table 21, the AUC scores are slightly better than guessing but not more.
In Table 24, the confusion matrices for the three image packages are shown. Here, the results are
also similar between the image packages, no real difference can be observed between them. As
with the confusion matrices shown for the robust estimation of SmallNet-5 shown in Table 22,
the AUC value for class 2 is close to 0.5 and its variance is generally twice as high as for class 1.
This indicates that the networks are not able to meaningfully predict this class.

Image Pack 1 | Image Pack 6 | Image Pack 7
AUC 0.61 £0.05 0.59 £ 0.05 0.59 £ 0.07

Table 23: Results SmallNet-5 with a 5-fold cross-validation.
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Table 24: Confusion matrices of the AUC vote scores for the three image packages.

No Met. | 0.66 £ 0.06

Image Pack 1 Image Pack 6 Image Pack 7
Pred. no Met Pred. Met | Pred. no Met Pred. Met | Pred. no Met Pred. Met
0.34 £0.06 | 0.65+0.06 | 0.35+£0.056 | 0.61+0.09 | 0.39+0.09
Met. 0.46 £0.14 0.54 +0.14 0.51 £0.09 0.49 £+ 0.09 0.45+0.16 0.55 £0.16

As with the networks in Section 5.3.8, there exists one out-of-sample prediction score from the
test set for each patient in the data set. These prediction scores can yet again be used to create
a total out-of-sample ROC curve of the data set, this time for the three image packages 1, 6 and
7. The ROC curve is shown in Figure 27. No difference between the three image packages can be
observed in the ROC curve.
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Figure 27: The ROC curve for the three image packages calculated from the out-of-sample pre-
diction scores of the entire data set.
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7 Fitting the Ensemble

Numerical Numerical
Preprocessing Classifiers

Merging Coharts

Image Convolutional
Preprocessing Neural Networks

Figure 28: The red rectangle indicates what part of the ensemble structure we currently are pre-
senting.

In this final part, we are aiming to combine the values generated from CNNs with the values
from both the AMLC features and the clinical data to test if the AUC values can be boosted
through an ensemble system. The CNNs to be considered are the same SmallNet-5 classifiers
evaluated in Subsection 5.3.8 with the different image packages 1 to 5. We will consider the same
numerical classifiers used in Section 4 with the exception that we will only use a single RF with
500 trees.

The prediction scores will be generated using a 5-fold cross-validation for each classifier for ro-
bust estimations. As before the same patient partitioning will be used for each classifier. This is
vital since after the prediction scores are obtained, the different classifiers will be paired up for
each patient. For the numerical classifiers, both the AMLC features and the clinical data will
be considered in the ensemble, no dimensionality reduction will be performed on the AMLC fea-
tures.

7.1 Voting and Stacking

Both voting and stacking will be considered in this ensemble system. For voting, we will use a
simple average voting system that takes the scores from each classifier and calculates the mean
of their results. For stacking, we will consider two meta-classifiers, the SVM with a linear ker-
nel and the RF. The SVM will utilize optimization for its hyperparameters and the RF will use a
bag of 500 trees.

Training of the meta-classifiers will be performed on the training set. This approach might yield

a higher overfitting, since the input features are scores from classifiers trained on the same train-
ing data. However, since our data set is limited this approach was deemed necessary.
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7.2 Ensemble Results

The results from the different ensembles can be seen in Table 25 were it seems that a simple vote
is in terms of AUC value the general best approach. It should however be noted that the confu-
sion matrices that can be seen in Table 26 reveals that the accuracy is skewed. This is especially
true if only conducting voting on the networks. The best AUC value was obtained from RF us-
ing both the results from the networks and the clinical data. The confusion matrix from this en-
semble was also fairly balanced even though class 2 as usual has the highest variance. This was
achieved by limiting the leaf size to 20 of each tree that is grown in RF and introducing a miss-
classification cost.

Table 25: The result of the ensemble system using voting and stacking. Presented are different
combinations of the CNN scores with the other classifiers.

Ensemble CNN CNN + AMLC CNN + Clinical CNN+AMLC
features features+Clinical
Voting 0.61 £+ 0.07 0.61 + 0.06 0.71 £0.05 0.69 + 0.05
SVM-linear | 0.59 4 0.06 0.54 +0.07 0.73+0.11 0.67 +0.09
RF-500 0.61+0.07 0.57 +0.02 0.75 4+ 0.08 0.69 +0.03

In total, almost no benefit can be seen with using an ensemble system. Voting with the different
image packages yields an AUC score only slightly higher than the best performing image package
and using CNN in conjunction with the clinical data yields very similar results compared to us-
ing the clinical data by itself. By omitting image package 5 from CNN+clinical it was possible to
achieve an AUC score of 0.76.6 4+ 0.06, which is the best result from the ensemble. Other permu-
ations were also explored, but did not yield additional increase in AUC, accuracy or decrease in
standard deviation. The confusion matrix for the best ensemble can be seen in Table 27.

Table 26: Confusion matrices for ensemble systems. The confusion matrix for the method with
the highest value, marked with bold numbers in Table 25, is presented for each combination of
input features.

CNN CNN + AMLC
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.79 +0.08 0.21 £0.08 No met. 0.63 +0.07 0.37 £ 0.07
Met. 0.68 £ 0.08 0.32£0.08 Met. 0.41 +0.10 0.59 +0.10
CNN + Clinical CNN + AMLC + Clinical
Pred. no met. Pred. met. Pred. no met. Pred. met.
No met. 0.70 £0.03 0.30 £0.03 No met. 0.85 +£0.08 0.154+0.08
Met. 0.33 £0.08 0.67 £0.08 Met. 0.63+0.14 0.37 +0.14
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Table 27: Confusion matrix for best performing ensemble using all clinical classifiers and all im-
age packages except image package 5.

Pred. no met. Pred. met.
No met. 0.78 = 0.03 0.22 +£0.03
Met. 0.40 +0.08 0.60 £+ 0.08
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8 Conclusions

The first question to be answered was to what extent numerical features extracted from the AMLC
stained core biopsies could be used to predict the development of metastasis. The results from
AMLC features presented in Table 4 indicate that it is possible from the available data but not
particularly well. Only slight differences between the classifiers and the reduction techniques

can be seen and all the dimensionality reduction techniques perform as bad or worse than us-

ing all features. The classifier with the highest average AUC value and lowest standard devia-

tion was LDA using all features, which obtained an average AUC value of 0.60 for a 5-fold cross-
validation. This can be compared to the best classifier for clinical data, which also was obtained
with LDA with an AUC value of 0.74. Further, the classifiers used on the AMLC features are

very skewed and prone to predict class 1 more often than the classifiers that use the clinical data.

The second question to be answered was how well the AMLC images could be used to predict
metastasis development using CNN. The results from the robust estimation using 5-fold cross-
validation of SmallNet-5 presented in Table 21 show that it is possible, but yet again does not
work particularly well. Further, the preliminary comparisons of the networks indicate that there
arc only minor differences on the first fold between the different structures. The estimated mean
AUC value of the image packages were no better than the results obtained from the AMLC fea-
tures presented in Table 4. All of the image packages in the robust estimation perform similarly
and the image packages for the preliminary results shown in Table 20 also perform equally, al-
though image package 1 was shown to be slightly better than image package 2. The confusion
matrices for the robust estimation of SmallNet-5 shown in Table 22 and later in Table 24 show
that the network does not manage to predict class 2 as the AUC value is always close to 0.50 and
class 2 also obtains a higher standard deviation than class 1.

For the third and final question, the relevance of immunological biomarkers in the AMLC stain-
ing for predicting the development of metastasis was to be investigated. To answer the question
the CNN SmallNet-5 was used in Section 6 on the three image packages 1, 6 and 7. As can be
seen in Table 23, no relevance of immunological biomarkers in predicting the development of
metastasis can be found. Surprisingly, the three image packages manage to perform equally well,
even though completely different biomarkers were present.

The results from the different numerical and CNN classifiers were further combined in order to
create an ensemble. The results from the different ensemble configurations evaluated are dis-
played in Table 25 which indicates that there are only marginal gains to be made. When using a
voting system the confusion matrix for the ensemble showed the similar skewness as both the nu-
merical classifiers and the CNNs. However, it was possible to obtain less skewed results in the en-
semble. Using the scores from both the CNN and clinical data and training a random forest clas-
sifier it was possible get almost equal accuracy in both classes.

Finally, the aswers to the questions give reason for rejecting the hypothesis. The results show

that it is possible to make predictions from the AMLC stained core biopsies of 2 mm but the
methods are worse than the current standard method.
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9 Discussion

The results for the classifiers on the numerical classifiers and the CNNs are considered fairly
equal. However, by looking at the different confusion matrices it can be seen that the skewness

is less prevalent when using the CNNs on the AMLC images. If this is due to the use of different
classification methods or to the images containing structures relevant for less skewness can not be
determined. Further the CNN classifiers as well as the classifiers using the clinical data showed

a similar pattern in terms of the variance in prediction accuracy in class 2. This likely occurs for
mainly two reasons. Firstly, as class 2 only contains about 20 patients, a single missclassification
will thus have a bigger impact on the accuracy than it would on class 1, which contains about 80
patients. The second possible reason is that the number of patients in class 2 are too few, so that
the variance present in the population can not be presented accurately with the current sample
size.

The results for investigating the relevance of immunological biomarkers show that there is no dif-
ference between the image packages. In fact, all the image packages, both from the robust esti-
mation of SmallNet-5 and the investigation of immunological relevance performed fairly equal.
One possible explanation is that since the images are so heterogencous only the cancer tissue are
of any significant importance for classification. We then suspect that since the presence of cancer
tissue is still prevalent in the images for image package 7, although not colored, the CNN man-
ages to capture enough of the cancerous regions for a similar classification as the rest of the im-
age packages.

The ensemble classifiers were only able to boost the results marginally. This is most likely due

to the fact that the classifiers used behaved similarly and had high correlation. It is not surpris-
ing that a simple vote method was not beneficial since all classifiers were similarly skewed, the
voting system mainly solidified the skewness. It should however be noted that we used the same
network structure for the entire ensemble as we assumed that there would be larger difference be-
tween the image packages. If instead also using different networks a significant boost might have
been achieved.

All in all, we suspect that there are two main limitations for obtaining better results; sample size
of the patients and how representative the small 2 mm core biopsies are for the entire tumour
area.

The numbers of patients together with the distribution of the classes have limited the analysis in
several aspects. The results show that the accuracy between the training and test sets in class 1
is as expected. On the other hand, class 2 has a very large difference between the training and
test sets. Further, when performing the robust estimation class 1 obtains a robust value with lit-
tle standard deviation, while class 2 gets a score of about 0.50 with a much higher standard de-
viation. If we assume that this is due to the sample size needed for SmallNet-5 to obtain robust
results, it is possible to estimate the total sample size needed. If we further assume that the vari-
ance within each class is equal and that we want the same level of difference between train and
test sets, it would require a sample size of approximately 2000 patients with the same class dis-
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tribution. However, if the distribution between the classes would be more equal it would require
less patients.

If data from more patients were available, it would have been possible to examine the prediction
results in different breast cancer subgroups. This would enable tests to better determine the rele-
vance of immunological features in the different subgroups, e.g. patients with ER+.

In the method, it is assumed that the small 2 mm core biopsies are representative of the be-
haviour for the immune markers in the entire tumour, which might very well not be the case.
The large amount of heterogeneity between the different cores within the same patient indicates
that the characteristics of the entire tumour are not captured. The original biopsy is on the scale
of 1 cm? and thus a lot of the available information about the patient is lost. There is a risk that
potentially important biomarkers for classification will not be discovered since the presence of
biomarkers varies a lot, both within the same patient and between patients. It is very possible
that the limited results are more of an indicator of how non-representative the data are rather
than the method and potential of using immunological features itself. Further, it should be noted
that the clinical data and the AMLC images are not completely equal for comparison, since the
clinical data use more information from the patient than was available from the AMLC images
used in this study.

A legitimate critique to our method is the decision to not use k-fold when exploring hyperparam-
eters and deciding the best performing networks. This decision was made since insufficient com-
putational resources were available. Initially, the Lund University data cluster LUNARC was to
be used for training and evaluation. Even though this worked initially, external circumstances be-
yond our control stopped the continuation of the resource. Instead, the authors had to resort to
their own personal computers, which in practice meant that a 5-fold cross-validation took up to 7
days to compute. Because of the decision not to use k-fold, the initial results became higher than
the final evaluation results as the different folds are very different, as can be seen in the standard
deviation of the results.

In the method, it has been assumed that predicting distant metastasis is related to the cancer re-
gions. Crops of original images were only accepted if they contained cancer cells above a certain
threshold. This is an assumption that not necessarily need to be true. It is likely that cancer re-
gions are important but other features might also play a vital part. Another approach is to sim-
ply skip this condition when cropping but then the algorithm will end up with many crops not
containing any biomarkers. This will introduce a lot of noise in the form of crops that can not be
classified. A suggestion for future work is to instead use other biomarkers as co-features in deter-
mining the acceptance of crop suggestions.

The focus in regard to using different pre-trained CNNs has been to explore few networks more
thoroughly rather than to test several networks more briefly. Initially, it was not known if the re-
sults were connected to preprocessing, network, or quantity of data. In order to lay a foundation
for future work, it was decided that it is better to more thoroughly explore the parameters and
settings of AlexNet. The custom made SmallNet was used to compare against AlexNet to give
indications on what was most influential on the performance. In hindsight the difference was not
that significant, but SmallNet was less prone to overfit. This is most likely due to fewer parame-
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ters. However, there are many other networks that have shown great performance that were not
tested. It can thus not be ignored that the use of AlexNet and SmallNet might have limited the
results. Due to this, it is recommended for future work to use the best performing network avail-
able.

However, defining what is a good network is not a trivial matter. A network having a high score
in image recognition is very dependent on the type of classes and the data available, and thus it
does not necessarily mean that the network is good at a completely different recognition task.
This can also be a problem with using AlexNet, since it is not trained on histopathological data
but on standard image recognition. The best solution would be if there was a network available
that had been trained using a large set of biopsy images to remove the large gap in data types.
At current time, no such network was easily available.

It is possible to obtain an image channel for each biomarker in the AMLC stained images. In the
exported images, the standard RGB channels were however the only ones available. Theoreti-
cally, the image contents are identical since the biomarker values are binary. However, when scal-
ing down the images the RGB values for the biomarkers might be blurred which will not be the
case if they have their separated channels. It is also feasible that it is easier for a network to be
trained on images that contain separated channels for each biomarker. Using different channels
for each biomarker would also remove any underlying tissue from the image, which would remove
the possibility that a CNN captures uncolored cancer tissue which was probably the case for im-
age package 7. For future, work this approach is recommended.

Finally, for any future studies we strongly suggest that a larger sample size is used. This will

most likely solve the issue of skewed class accuracies and the high variance for the patients in
class 2 and between folds.
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A Biomarkers in the AMLC stained biopsy samples

Table 28: All available biomarkers in AMLC stained biopsy samples that was provided by Mede-
tect.

Biomarker Description

Cytokeratin | Epithelial marker, in this case tumour tissue
Ki67 Protein, proliferation marker

p63 Basal-cell, part of the epithelial

CD8 T cells (cytotoxic)

CD3 CD4+ T cells (T helper cells)

CDh11C Myeloid dendritic cells

CD20 B-lymphocyte

CD31 Endothelium (blood vessels)

CD68 Macrophage

CD138 Plasma cell (white blood cell)

MPO Neutrophil

Tryptase Mast cell (white blood cell)

Langerin Dendritic cell

SMA Smooth muscle tissue

HTX Cell nucleus

FOXP3 Protein expressed among others as suppressor T cells
Vimentin Intermediate filaments

PGP Nerves and soe tumour tissue
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B Comparing PCA to t-SNE

Three dimensional object

PCA ) t-SNE

(b)

Figure 29: Visualization of two parallell planes in 3 dimensions. (a) Two classes of data gener-
ated as 3 dimensional normal distributions. Each dimension has a standard deviation of 1 except
for the z direction which has a standard deviation of 0.1. Class one has a expected value vector
of p11 = (0,0,0) while class two has a expected value vector of pz = (0,0,1). (b) As we can see in
this small example, the PCA does not manage to capture the two clusters that well when those
are not separated in the maximum variance, whereas t-SNE manages to do so.
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C The Network Structure of the CNNs Used.

All convolution and fully connected layers uses ReLLU activation functions. The suffix of the Small-
Nets refer to the number of learnable layers, i.e. convolutional layers and fully connected layers.

Structure of SmallNet-4

Layer Type Description

1 Input Input layer of 227x227x3.

2 Conv 32 bxbx3 convolutions with stride 3 and padding 1.
3 Conv 64 3x3x32 convolutions with stride 2 and padding 1.
4 FC 256 neuron fully connected layer with 50% dropout.
5 FC 2 neuron fully connected layer.

6

Output 2 class probabilities from SoftMax normalization.

Structure of SmallNet-5

Layer Type Description

1 Input Input layer of 227x227x3.

2 Conv 32 5x5x3 convolutions with stride 3 and padding 1.
3 Conv 64 3x3x32 convolutions with stride 1 and padding 1.
4 Conv 64 3x3x32 convolutions with stride 2 and padding 1.
5 FC 256 neuron fully connected layer with 50% dropout.
6 FC 2 neuron fully connected layer.

7

Output 2 class probabilities from SoftMax normalization.

78 of 79



O. Andersson & J. Ruuskanen C THE NETWORK STRUCTURE OF THE CNNS USED.

Structure of SmallNet-6

Layer Type Description

1 Input Input layer of 227x227x3.

2 Conv 32 bxbx3 convolutions with stride 3 and padding 1.

3 Conv 128 3x3x32 convolutions with stride 2 and padding 1.
4 Pool 2x2 max pooling layer stride 2 and padding 0.

5 Conv 128 3x3x32 convolutions with stride 1 and padding 1.
6 Conv 128 3x3x32 convolutions with stride 1 and padding 1.
7 Pool 2x2 max pooling layer stride 2 and padding 0.

8 FC 256 neuron fully connected layer with 50% dropout.
9 FC 2 neuron fully connected layer.

10 Output 2 class probabilities from SoftMax normalization.

Structure of AlexNet in the Matlab 2017a implementation

Layer Type Description

Input Input layer of 227x227x3.

2 Conv 96 11x11x3 convolutions with stride 4 and padding 0 with
Local Response Normalization (LRN).

3 Pool 3x3 max pooling later with stride 2 and padding 0.

Conv 256 5x5x48 convolutions with stride 1 and padding 2 with
LRN.

5 Pool 3x3 max pooling later with stride 2 and padding 0.
6 Conv 384 3x3x256 convolutions with stride 1 and padding 1.
7 Conv 384 3x3x192 convolutions with stride 1 and padding 1.
8 Conv 256 3x3x192 convolutions with stride 1 and padding 1.
9 Pool 3x3 max pooling later with stride 2 and padding 0.

10 FC 4096 neuron fully connected layer with 50% dropout.
11 FC 4096 neuron fully connected layer with 50% dropout.
12 FC 1000 neuron fully connected layer.

13 Output 1000 class probabilities from SoftMax normalization.
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