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Abstract 

Flows of energy between the atmosphere, the oceans and the land surfaces drive weather and 

climate on Earth. Increased understanding of these processes is crucial to successfully predict 

and address the challenges of climate change. Land surface models (LSM) are mathematical 

models designed to mimic natural processes and evolution of land surfaces with the basic task 

to simulate surface-atmosphere energy flows. Within the SURFace EXternalisée modeling 

platform (SURFEX), developed by Météo-France and a suite of international partners, a new 

LSM called the Interaction Soil Biosphere Atmosphere model - Multi Energy Balance (ISBA-

MEB) has been developed. There are however still uncertainties in how to accurately 

prescribe model parameters used to numerically define the physiography and natural 

processes of modelled land surfaces which consequently results in uncertainties in modelled 

outputs. In the present study, Quasi-Monte Carlo simulations based on Sobol sensitivity 

analysis was applied to explore the uncertainty contribution of individual parameters to 

modelled surface-atmosphere turbulent sensible and latent heat fluxes in forest environments. 

Those parameters to which modelled fluxes were identified as significantly sensitive were 

then calibrated by generating multiple sets of parameter values with the Latin Hypercube 

sampling technique on which the model was run to identify what parameter values generated 

the least amount of model output bias and to evaluate how much model output uncertainty 

could be reduced. To explore variations in parameter sensitivity and optimal parameter 

prescriptions between forest environments, four separate forest areas with varying vegetation 

types and climate classifications were modelled. Results disclose that the level of uncertainty 

contribution of individual parameters varies between forest environments. Three parameters 

were however identified to contribute with significantly output uncertainty; 1) the ration 

between roughness length of momentum and thermal roughness length, 2) the heat capacity of 

vegetation and soil and 3) the leaf orientation at canopy bottom. Calibrating these parameters 

marginally reduced model output uncertainty at all study areas. 

Keywords: Physical Geography, Land Surface Model, Multi Energy Balance, Sensitivity 

Analysis, Sobol’s Method, Parameter Calibration, FLUXNET. 
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1 Introduction 

In principle, all the energy available on Earth originates from the sun intercepted as short 

wave electromagnetic radiation. A proportion of the energy is instantly reflected back to space 

while remaining quantities is absorbed by the planet and circulates the atmosphere, oceans 

and land surfaces before ultimately being emitted back to space (Barry & Chorley, 2010). 

These energy flows drive the weather and climate phenomena on Earth. Increased 

understanding of these drivers has been recognized by the scientific community as crucial to 

successfully predict and address the challenges of climate change (Petropoulos et al., 2014). 

As one of the fundamental components of this system, the land surface exchange energy with 

the atmosphere and the ground (Barry & Chorley, 2010). As insolation heat terrestrial 

surfaces a surplus in the land surface energy budget is generated. To attain energy balance, the 

surplus is transported via turbulence to the atmosphere as heat (i.e. sensible heat) and 

moisture (i.e. latent heat) and via heat conduction into the ground. In contrast, absence of 

insolation causes a surface energy deficit which instead is compensated by absorbing energy 

from the surroundings. In forest areas the canopy significantly alters patterns of incoming and 

outgoing land surface energy flows by absorbing and reflecting a proportion of incoming 

energy as well as trapping energy already in the forest. These factors is in turn governed by, 

and vary with, forest site specific properties such as age, height and density of trees as well as 

vegetation specific properties such as the shape, size and density of canopy leafs (Liming et 

al., 2012). In the presence of a forest floor snowpack conditions for incoming energy is 

further altered as the surface albedo, and thus reflected energy quantities, is increased as well 

as for outgoing energy as snow insulates the surface (Decharme et al., 2016). 

Land surface models (LSM) are mathematical models designed to mimic the natural processes 

and evolution of terrestrial surfaces with the basic task to simulate the energy flows of the 

land surface energy budget (Zhao & Li, 2015). Météo-France and a suite of international 

partners have developed a LSM called the Interaction Soil Biosphere Atmosphere model - 

Multi Energy Balance (ISBA-MEB) (Boone et al., 2017). In contrast to its predecessor 

(ISBA), which is a single energy balance LSM that treat all components of the (snow free) 

land surface as a composite energy budget, ISBA-MEB enables separation of landscape 

components such as the land surface, canopy and snowpack into distinct energy budgets for a 

more realistic land surface representation. Napoly et al. (2016) showed that ISBA-MEB in 

general enable more realistic land surface energy budget simulations in forest areas than 

ISBA. However, there are still uncertainties in how to prescribe the numerical parameters that 

are used to provide the LSM with information on the characteristics of modelled landscapes. 

Uncertainties in how to prescribe parameters consequently lead to uncertainties in modeled 

outputs. A common approach in addressing this issue is to identify parameters to which the 

models ability to accurately simulate its outputs is highly sensitive and to adjust the 

prescriptions of these until simulations better correlate with reality (Muleta & Nicklow, 

2005). Furthermore, as the landscape characteristics influencing the land surface energy flows 

vary between forests, so do the influence of parameters on the models ability to accurately 

simulate its outputs. Consequently, parameter sensitivity often varies between forests and thus 

optimal results are achieved by site specific parameter calibration (Hou et al., 2015).  
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1.1 Objective 

The aim of the present study is to explore how sensitive ISBA-MEB simulated latent and 

sensible turbulent heat fluxes are to a selected set of uncertain parameters, to explore if 

parameter sensitivity patterns vary between forest environments and to evaluate how much 

model output improvement can be achieved by identifying site specific optimal numerical 

prescription for parameters identified as the top most sensitive. To achieve this, the 

experimental setting is to be multiple forest areas with seasonal snow coverage of different 

climate classifications and vegetation types. The study will be guided by the following 

research questions: 

- To which of the tested parameters are modelled sensible and latent heat flux most 

sensitive in different forest environments? 

- How do the values of the calibrated parameters vary between forest environments?  

- How much improvement in modelled sensible and latent heat fluxes can be achieved 

by calibrating highly sensitive parameters in different forest environments? 
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2 Background 

Meteorology is the science of weather and climate phenomena occurring within the 

atmosphere at different space and timescales; from gusts of winds that swirl up some leaves 

for a few seconds to the large scale wind systems of the global climate system (Barry & 

Chorley, 2010). The particular focus of this study is on micro-meteorology within the 

planetary boundary layer where the lower boundary atmosphere meets and interacts with the 

surface of the planet. This background section is dispositioned into a first part in which the 

concept of the energy budget of terrestrial surfaces is presented, a second part in which the 

concepts and components of LSM are presented and finally a third part in which parameter 

sensitivity analysis and parameter calibration is discussed. 

2.1 The land surface energy budget 

Principally all energy available on Earth has been intercepted as short wave (SW) 

electromagnetic radiation from the sun and is either instantly reflected back to space by 

clouds, atmospheric particles and the planet’s surface or absorbed by, and circulates, the 

atmosphere, the oceans and the land surface (Barry & Chorley, 2010). To attain energy 

balance in the planetary energy budget, energy quantities equal to those absorbed must 

ultimately be emitted back to space resulting in a constant flow on incoming and outgoing 

energy (Wild et al., 2014). It is these flows of energy that drive the planetary weather and 

climate phenomena.   

Much like Earth constantly exchange energy with space, so does the land surface with the 

atmosphere and the ground to attain balance in the land surface energy budget (Barry & 

Chorley, 2010). During day time the land surface is supplied with SW radiation from the sun 

and long wave (LW) radiation from the atmosphere which is offset by day time and night time 

emissions of thermal LW radiation i.e. thermal cooling. The net of these radiation quantities 

constitute the surface net radiation (Rn). Day time energy contributions normally surpass 

those of the thermal cooling emissions resulting in a surface Rn surplus. During night time, in 

the absence of insolation, thermal cooling emissions instead generate Rn energy deficit. The 

equation for the surface energy budget is often written as: 

 𝑅𝑛 = 𝐺 + 𝐻 + 𝐿𝐸                  (1) 

where G, H and LE denote ground heat flux, sensible heat flux and latent heat flux, 

respectively. H can be described as heat that can be sensed, thus sensible heat. When an entity 

absorbs or emits H, the temperature of that entity changes e.g. oceans absorbing insolation 

experience increased water temperature. LE is energy released from, or absorbed by, a 

substance during a phase change e.g. energy leaving boiling water as vapour. LE is mainly 

associated with evapotranspiration and is sometimes expresses as an equivalent to that energy 

transport medium. The final component of the energy balance equation is G which denotes 

heat transferred by the mode of conduction in soils. A generalized description of day time and 

night time energy flows is given in Figure 1.  

 



4 

 

 

Figure 1. Simplified sketch of day- and night-time energy flows of the land surface energy budget. 

Vertical brown lines represent a simple land surface. Day time surplus surface net radiation (Rn) is 

partitioned into latent (LE) and sensible (H) turbulent heat fluxes to the atmosphere and diffusion of 

heat (G) into the ground. In contrast, night time surface Rn deficit is compensated by contributions of 

heat fluxes from the atmosphere and the ground. 

2.1.1 Turbulent flux 

Turbulence is generated by hot air rising from the oceans and land surfaces of Earth. Within 

the planetary boundary layer, LE and H is transported by mechanical and convective diffusion 

processes i.e. turbulent and eddy diffusion (Barry & Chorley, 2010). Turbulent diffusion is 

still an unresolved apparently random and chaotic phenomenon instantaneously transporting 

momentum, water and heat at a timescale of a second or less. The concept of atmospheric 

eddy diffusion is however better understood in which a wind is described as a horizontal flow 

of rotating eddys that transport parcel of air (Figure 2). Each parcel store momentum, water 

and heat which is transported either between the land surface and the atmosphere, or between 

different horizontal atmospheric layers. The size of eddies range from a few cm to about two 

meters in diameter above a heated surface and grade into dust devils and tornados at greater 

meteorological scales. The term turbulent flux denotes the net transportation of a specific 

entity crossing a delimited area at a specific time unit. Turbulent fluxes constitute the majority 

of the heat transports of the land surface energy budget. A key aspect affecting the 

characteristics of winds is surface roughness (Pelletier & Field, 2016). A wind blowing over a 

smoot surface is less exposed to friction than a wind blowing over a rougher surface with 

more obstacles like scattered trees or an uneven landscape. When winds collide with obstacles 

of rough surfaces turbulence is onset.  
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Figure 2. Conceptual sketch of eddy diffusion. A wind (purple arrow) blowing over a forest consist of 

rotating eddies (white arrows) of different sizes that transport momentum, heat and moisture between 

the land surface and the atmosphere as well as between different levels within the atmosphere 

(modified figure from Burba & Anderson, 2010). 

2.1.2 Ground heat flux 

The principal energy transport mode in soils is conduction and the conduction capacity of a 

soil is a function of the solid fraction (i.e. particle size, mineral type and organic content) and 

the density and water content (Sauer & Horton, 2005). Besides differences in these properties 

between soil types, they often vary spatially within the same soil type, between soil layers as 

well as over time. Consequently, the magnitude of G may vary greatly between different types 

of soils and land covers. 

2.1.3 Energy budget in forest areas 

Forest canopies significantly alter patterns of incoming and outgoing radiation to the land 

surface (Barry & Chorley, 2010). The quantities of SW and LW that reach the forest floor by 

penetrating the canopy (i.e. forest crown and forest trunk) is governed by a range of site 

specific factors such as the density, distribution, height and age of the trees as well as 

vegetation specific factors such as dispersion, angular orientation and areal coverage of leafs 

and branches (Liming et al., 2012). Many of these factors also vary over the year which in 

combination with weather variations alters the patterns of incoming and outgoing radiation 

(Carrer et al., 2013). Radiation that does not penetrate the canopy is instead either reflected, 

proportional to the specific albedo of the vegetation species, or absorbed by the vegetation. In 

addition, a forest canopy also acts as an insulation trapping the energy already in the forest 

environment. Consequently, energy fluxes of forest land surface energy budgets vary with site 

specific ecosystem characteristics such as forest and vegetation properties. 

2.1.4 Energy budget in the presence of a snowpack 

The presence of a snowpack significantly alters conditions and patterns of land surface energy 

interception and flux partitioning (Decharme et al., 2016). Even though the albedo of snow 

varies with factors like density, temperature and age, it is in general always greater than the 

albedo of the surface it covers. Thus, a snowpack decreasing energy quantities absorbed by 
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the surface as the reflectance of incoming energy is increased. In addition, a snowpack 

insulates the surface inhibiting energy loss to the atmosphere. 

2.2 Land Surface Models 

LSM are mathematical models that, based on theories and hypothesis, are designed to mimic 

ecosystem functions and processes with the basic task to simulate the partitioning of land 

surface Rn into emissions of LW thermal radiation, turbulent LE and H heat fluxes to the 

atmosphere and G heat diffusion in the ground (Zhao & Li, 2015). In addition, LSM provide 

information on the state and evolution of the land surface, weather and climate. Therefore 

LSM has become an import tools in weather forecasting, hydrological and climate models.  

The core of a LSM is the model structure consisting of algorithms mimicking ecosystem 

functions and natural processes of the modelled environment. The modeling structure is 

composed of several sub-models each designed to mimic specific biological, geological, and 

chemical process of land surface component such as soil, snow and vegetation (Overgaard et 

al., 2006). The modelling structure do however not have any inherit knowledge of the 

characteristics of modelled environments and therefore such information need to be provided. 

Atmospheric forcing data such as intercepted radiation quantities, precipitation, air pressure 

and wind speed is provided either be directly by the modeller (i.e. offline mode) or by 

coupling the LSM to an atmospheric model (i.e. coupled mode) (Zhao & Li, 2015). 

Information on the surface characteristics of a modelled environment is provided by the use of 

numerical parameters. Most parameters of current generation LSM have physical meaning 

which means that their numerical value is a direct translation of the natural state of what they 

represent and these can therefore be prescribed to measured values. Model parameters can 

further be divided into two main groups; physiography parameters and process parameters 

(Masson et al., 2013). As the name suggests, physiography parameters are applied to provide 

the model with the information on the physiography of a landscape e.g. topography, soil type 

and vegetation characteristics. Process parameters are factors involved in the computation of 

the natural processes and evolution of land surfaces. Parameters are either prescribed 

according to measurements by the modeller or by coupling the model to databases. In general 

terms, the model structure, atmospheric forcing data, the parameters and simulated output data 

are the four main components of any LSM (Figure 3). 
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Figure 3. The four main components of LSM. Atmospheric forcing data is processed by the model 

structure in the context of the landscape characteristics defined by the parameters to generate model 

outputs (modified figure from Zhao & Li, 2015). 

2.2.1 SURFEX 

SURFace EXternalisée platform (SURFEX) is a modelling platform developed by the French 

national meteorological service Météo-France and a suite of international partners (Masson et 

al., 2013) including the Swedish Hydrological and Meteorological Institute (SMHI). It is 

designed to simulate surface-atmosphere fluxes and evolution of four types of surfaces: town, 

nature, inland water and ocean. SURFEX enable flux simulation of momentum, heat and 

water as well as carbon dioxide, chemical species, continental aerosols, sea salt and snow 

particles. It can be run in offline mode or coupled to hydrological or atmospheric models and 

is used in hydrology, numerical weather prediction and climate simulations. Parameters can 

be prescribed either by the modeller of by couplings to databases. 

2.2.2 ISBA-MEB 

Within the SURFEX framework the operational LSM for modeling landscape evolution and 

surface-atmosphere interactions is the Interaction Soil Biosphere Atmosphere model (ISBA) 

(Masson et al., 2013). By design all components of the surface landscape such as soil, 

vegetation and snow is treated as a single composite energy budget. This modeling approach 

has reached its limits and to remain consistent with the LSM development and to respond to 

current and future demands a new Multi Energy Balance (MEB) LSM has been developed 

(Boone et al., 2017). In contrast to the operational ISBA, this new modelling scheme called 

ISBA-MEB enables separation of surface components into three layers with distinct energy 

budgets. With this approach the separate functions of the landscape components as well as the 

energy exchanges between these, the ground and the atmosphere can be better represented 

which in turn facilitates better modelling of the surface energy balance. In Figure 4 a 

schematic diagram illustrate how turbulent energy flows is simulated amongst the land 

surface components and the atmosphere in ISBA-MEB; ground is coloured brown, canopy 

green and snow turquoise. There are six energy flow pathways between expressed as 

aerodynamic resistances (Ra): (1) the canopy not covered by snow and the canopy air, Ravg−c, 
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(2) the ground surface not covered by snow and the canopy air, Rag−c, (3) the forest floor snow 

surface and the canopy air, Ran−c, (4) the canopy part covered by forest floor based snow and 

the canopy air, Ravn−c, (5) the canopy air and the atmosphere, Rac−a ,and (6) the direct 

interaction between the forest floor based snow surface and the atmosphere, Ran−a. It can also 

be seen in this picture that the snowpack and ground can be further divided into several layers 

for better representation of characteristics at different depths.   

 

Figure 4. The six pathways for turbulent fluxes in terrestrial surfaces between soils (brown), snow 

(tortoise), canopy (green) and the atmosphere (modified figure from Boone et al., 2017). 

At this point in time Napoly et.al (2016) offers the only previously published study in which 

the performance of ISBA-MEB is tested and the results show that ISBA-MEB enables more 

accurate simulations of Rn partitioning into LE, H and G fluxes than the ISBA LSM.  

2.3 Parameter calibration 

LSM, like all other models, are per definition simplified representations of reality and 

simulated outputs are only as realistic as the assumptions, hypothesis and theories on which 

the model structure is built and the quality of the input data. In the process of model 

development an imperative step is to identify model components whose definitions is 

uncertain, and consequently impact the reliability of simulated outputs and to adjust these 

components until outputs closely match observed behaviours of the target environment – this 

is what is commonly referred to as calibration (Muleta & Nicklow, 2005). For LSM there are 

four sources of such uncertainty; uncertainties in the input data such as atmospheric forcing 

data, uncertainties in output data used for calibration, model structure uncertainties such as 
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neglect of important land surface processes or misrepresentation of included processes, and 

finally parameter uncertainties (Hou et al., 2015). The focus of this study is on the later and 

more precisely on process parameters. 

The term parameter sensitivity explains the level of influence a parameter has on a models 

ability to accurately compute its output in a given modelling environment (Saltelli, 2008). 

Consequently, misrepresentative prescriptions of sensitive parameter generate more 

uncertainty and potentially more bias in modelled outputs than does less sensitive parameters. 

In addition, as current generation LSM are highly non-linear mathematical models and 

process parameters are factors in the model algorithms, the numerical prescription of one 

parameter often influence the behaviours of other parameters which in turn further generate 

output bias if a parameter prescription is misrepresentative. Parameter sensitivity is therefore 

often expressed as the first order sensitivity due to a parameters direct effect as well as 

parameters higher order sensitivity due to interactions. 

It is often argued that one of the most appealing aspects of modern LSM is that the parameters 

are physically based. However, it is hard to exactly prescribe these since the aspects they 

represent and the natural processes in which they are involved are highly spatially 

heterogeneous and differ between environments, climate classifications and vegetation 

species. For optimal simulation results, such environmental variations need to be accounted 

for by adjusting parameter prescriptions according to the specific characteristics of simulated 

environments (Chaney et al., 2016). In addition, differences in ecosystem characteristics 

between forest sites also affect to what extent a model is sensitive to specific parameters (Hou 

et al., 2015). As such, parameter sensitivity patterns often vary between forest environments.   

Raoult et.al (2016) argues that for objective, reproducible and optimal results calibration of 

parameters included in complex non-linear mathematical models must be conducted by 

applying established statistical methodologies. A commonly applied such methodology 

include two main steps. First, a sensitivity analysis is conducted to discern to which 

parameters one or more model output variables are sensitive. Second, that or those parameters 

identified as to be associated with the highest level of sensitivity become subjects of the 

calibration process itself while less sensitive parameters are set to default values.  

2.3.1 Sensitivity analysis 

The concept of sensitivity analysis has been described by Saltelli (2008) as the study of how 

uncertainty in model outputs can be apportioned to different sources of uncertainty in model 

inputs. Sensitivity analysis methods are separated into local and global methods. In local 

methods the first order uncertainty contribution of parameters is estimated whereas the global 

methods are applied to estimate the higher order uncertainty contribution in addition to the 

first order. Pianosi et al. (2017) argues that analysing parameter sensitivity of LSM with 

complex non-linear model structure and numerous complex parameter interactions demands 

the use of global approaches. For instance, Hou et al. (2015) applied both local and global 

sensitivity analyses on LSM parameters which generated similar sensitivity patterns among 

the global analysis, but these results differed in comparison to the results of the local methods. 

The drawn conclusion was that the local method was unable to generate valid results due to 
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the complexity of model parameter interactions. Chaney et al. (2016) also emphasised the 

need for global analysis as a single parameter can influence as many as 20 other parameter of 

the LSM scheme.  

In previous LSM parameter calibration efforts, various sensitivity analysis methods have been 

applied. A commonly applied method, and the chosen method for this study, is the Sobol 

sensitivity method based on variance decomposition i.e. the variance contributed by each 

parameter to the total variance between model output and validation data is estimated (Sobol, 

1993). The Sobol method has proven to generate valid results in previous LSM parameter 

sensitivity studies e.g., Chaney et al. (2016); Rosero et al. (2010); Hou et al. (2015). In a 

comparative study of global sensitivity analyses Tang et al. (2007) concluded that Sobol is the 

most effectively global alternative in disclosing first and total order parameter sensitivity.  

The Sobol methodology is based on computerized mathematical techniques referred to as 

Monte Carlo simulations. In short, Monte Carlo simulations are applied to sample multiple 

sets of input data on which the model is run – one simulation for each generated set of model 

inputs. In the context of this study, a model input refers to a unique combination of parameter 

values on which the model is run. By analysing how the variance of simulated outputs varies 

when different parameter values are applied the variance contribution of each parameter is 

estimated by probability statistics (Saltelli, 2008). Emery et al. (2016) state that the main 

drawback of applying the Sobol methodology of complex models is the high computational 

cost due to the numerous simulations required for the results to be statistically significant. 

2.3.2 Calibrating parameters 

Much like in the sensitivity analysis, parameter calibration involves multiple model 

simulation. In this step, however, different values for parameters are tested with the objective 

to find what parameter values generate the least amount of output bias in relation to validation 

data. These parameter values for these simulations are preferably sampled with the Latin 

Hypercube sampling technique (Chaney et al., 2016; Hou et al., 2015). This is as Latin 

Hypercube sampling is a stratified sampling technique that efficiently explores the full range 

of possible parameter combinations. With this approach the number of sampled parameter sets 

is reduced which in turn reduce the number of necessary simulation. The number of possible 

parameter value combination increases exponentially with every additional parameter 

included in the calibration process. Consequently, the computational cost – both in terms of 

demand on computer and time resources – as well increases exponentially as all these 

parameter combinations are to be simulated. As such, reducing the number of parameters to 

calibrate by only including those identified as top most sensitive is preferable to enable as few 

parameter combination samples as possible. 
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3 Data 

This section is devoted to the presentation of the data applied in the experiments and the 

characteristics of the study areas. 

3.1 FLUXNET 

Data used to validate LE and H simulation outputs and atmospheric data used to force 

simulations was collected from the FLUXNET network of micro-meteorological observation 

sites. At the present, FLUXNET include over 900 sites situated in terrestrial ecosystems of 

various environmental characteristics across 5 continents (Baldocchi et al., 2017).  

Observations include surface-atmosphere interface exchanges of carbon dioxide, water vapour 

and energy as well as meteorological, vegetation and soil data. FLUXNET data is commonly 

applied in LSM development e.g. Chaney et al. (2016) for the Noah LSM; Blyth et al. (2010) 

for Jules LSM; Joetzer et al. (2015) for ISBA. 

3.2 Data selection 

The selection of FLUXNET sites from which data was collect was based on a set of criterions. 

First, as governed by the study objective only forest areas with seasonal snow cover were 

sought after. This is as to continue the development of ISBA-MEB’s ability to simulate the 

land surface energy fluxes in forest areas that was conducted by Napoly et.al (2016). Second, 

as ISBA-MEB (and LSM in general) is designed to simulate a broad spectrum of different 

environments at various temporal and spatial scales, parameter schemes need to be optimized 

accordingly. Thus, sites with varying vegetation and climate classifications were sought after. 

Third, a minimum observation time period criteria was set to three years of consecutive 

measurements. This is due to the models demand on “spin-up” (the model initially need some 

time to stabilize the simulated variables) as well as to have an adequate subsequent validation 

period. Other than these three main requirements there is also a forth data quality criterions 

relating to energy closure which is further discussed in section 3.3. Only four FLUXNET sites 

conforming to these criterions was found and used as study areas. These are described in the 

following sections and their main characteristics summarised in Table 1. 

3.2.1 Tumbarumba forest 

This Australian flux station is situated in the Bago State Forest of the southern tablelands of 

New South Wales (Lat/Lon: -35.6557 / 148.1521, 1200 m a.s.l). It is an open wet sclerophyll 

evergreen broad-leaf forest dominated by mature Alpine Ash (Eucaluptus delegatensis). Trees 

are mixed-aged up to 90 years with a mean canopy height of 40m and LAI of 2.87 m
2
 m

-2
 

(Keith et al., 2009). The understory is composed of grasses, herbs and 0.5 – 2 m shrubs. This 

50000 ha forest is regenerating from over 100 years of selective wood production which came 

to a halt some 30 years prior to installation of the flux station in 2000. The climate is cool, 

moist temperate sub-alpine with mean annual temperature of 8 °C, mean annual minimum of 

5.3°C and mean annual maximum of 19.5°C (Karan et al., 2016). Mean annual precipitation 

(MAP) is 1000 mm. Snowfall is common during the winter season and remains at the ground 

for 3 – 4 weeks. The soil class is acidic, eutrophic, red dermosol with moderate carbon and 

nutrient storage (Leuning et al., 2005). The soil in the study area never freezes. 
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3.2.2 Tharandt forest 

This station is situated on a gentle south facing slope in the eastern part of a 60km
2 

forest area, 

near the city of Tharand, 25 km SW of Dresden, Germany (Lat/Lon: 50.9624 / 13.5652, 380 

m a.s.l.). It is an Evergreen Needle-leaf forest dominated by spruce trees (Picea abies and 

Pinus sylvestris) established by shedding in 1887, with tree density of 477 trees ha 
−1

, LAI of 

7.6 m
2
 m

-2 
and mean canopy height of 26.5 m (Grüwald & Bernhofer, 2007; Schwärzel et al., 

2009). The understory consists primarily of young wavy Hair-grass (Deschampsia flexuosa) 

and European beech (Fagus sylvatica). Apart from 1 ha open area mainly covered by grass to 

the west and 0.5 ha of laboratory buildings to the north, the area within the vicinity of the flux 

station is homogeneous with respect to vegetation characteristics. The climate is classified as 

warm temperate sub-oceanic fully humid with warm summers. Mean annual, maximum and 

minimum temperatures of 8.2 °C, 9.4 °C and 6 °C, respectively. Annual precipitation is 843 

mm and snow covers the ground for about 72 days per year (European flux database, 2017).  

3.2.3 Blodgett Forest 

This site is situated adjacent to the University of California, at Berkley’s Blodgett Forest 

Research Station on the western slope of Sierra Nevada Mountains, USA (Lat/Lon: 38.8953 /  

-120.6328, elevation 1315 m a.s.l). It is a 1200 ha flat ponderosa pine (Pinus ponderosa) 

plantation established in 1990, classified as mixed evergreen coniferous forest. The planted 

species is evenly aged at 7 – 8 years; with mean canopy height of 4m occupy over 70% of the 

total areal biomass in 1999 (Goldstein et al., 2000). The understory consist primarily of 

Whitethorn (Ceanothus cordulatus) and Manzanita (Arctostaphylos) shrubs. From mid-May 

to mid-June in 2000 there was a pre-commercial thinning removing all shrubs and ~60% of 

the trees, thereby decreasing the total LAI from ~7 to ~1m
2
 m

-2 
(Fares et al., 2010). The 

climate is Mediterranean with hot, dry summers and cold, wet winters. Mean annual 

temperature is 11.9 °C and mean annual precipitation is 1630 mm (2540 mm snow) mainly 

falling between September and May, with almost no precipitation in the summer. 

3.2.4 Harvard forest 

Data is collected in the Prospect Hill tract approximately 100 km west of Boston, 

Massachusetts, USA (Lat/Lon: 42.5378 / -72.1715, elevation 340 m a.s.l). Surrounding the 

station is a moderately hilly mixed Deciduous Broad-Leaf forest dominated by 50 – 70 year 

old Red Oak (Quercus rubra) and Red Maple (Acer rubrum), with a mean canopy height of 

23 m (Urbanski et.al, 2007). Three leaf emergence averages around day 140 and when fully 

grown the LAI of the site is 3.5m
2
 m

-2
 (Freedman et al, 2001; Goldstein et al, 1998). The 

climate is humid continental with warm-summers and the average annual air temperature is 

7.1 °C, average minimum of -12 °C in January and average maximum of 19 °C in July. 

Annual precipitation averages at 1071 mm, falling relatively evenly throughout the year. 
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Table 1. Study areas characteristics. All data is collected from literature sited in the site description 

Site Tumbarumba Tharandt Blodgett Harvard 

Country Australia Germany USA USA 

Site Code Au-Tum De-Tha Us-Blo Us-Ha1 

Study period 2001 – 2003 2002 – 2004 1999 – 2001 1992 – 1994 

Latitude -35.6566 50.9624 38.8953 42.5378 

Longitude 148.1517 13.5652 -120.6328 -72.1715 

Tower Height 

(m) 
70 42 12.5 30 

Forest type 
Evergreen  

Broad-leaf 

Evergreen  

Needle-leaf 

Evergreen  

Needle-leaf 

Deciduous  

Broad-leaf 

Elevation  

m a.s.l 
1200 380 1315 340 

Climate 

classification 

(KGCC) 

Cfb - Warm temperate 

fully humid with warm 

summer 

Cfb - Warm temperate 

fully humid with warm 

summer 

Csb - Warm temperate 

with dry, warm 

summer 

Dfb - Warm 

Summer Humid 

Continental 

Mean annual 

Temperature 

(°C) 

8.0 8.2 11.1 7.1 

Mean annual 

precipitation 

(mm) 

1000 843 1226 1071 

 

3.3 Validation data 

Validation data consist of 30 minutes average LE and H fluxes measure by eddy covariance 

sensors mounted on micrometeorological towers. Eddy covariance is a method for computing 

vertical net flux transported by eddys at the physical point of the sensor in a given times unit. 

Eddy covariance is considered as the most reliable method for this particular application 

(Baldocchi et al, 2001). However, the method is associated with the well-known energy 

closure imbalance issue (Majozi et al, 2017). The first law of thermodynamics (i.e., the law of 

conservation of energy) state that energy can neither be created nor destroyed – only 

transformed from one form to another. Thus, energy absorbed by the land surface must be 

partitioned into emission of equivalent quantity. This issue is often described using a rewrite 

of the energy balance equation presented earlier: 

𝑅𝑛 − 𝐺 = 𝐻 + 𝐿𝐸                 (2) 

The energy closure issue arises as energy quantity of turbulent fluxes (right hand side of 

equation) measured by eddy covariance systems are not equivalent to the amount of the Rn 

minus the amount of energy emitted to the soil (left hand side of equation). Studies show that 

the general closure imbalance for eddy covariance FLUXNET sites is 10 – 30 % (Wilson et 

al, 2002). To use validation data with minimum bias only data from sites with energy closure 

imbalance less than 10 % was included. 
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3.4 Atmospheric forcing data 

Forcing data include incoming short-wave radiation intercepted directly from the sun, 

incoming short-wave radiation scattered by the atmosphere, incoming long-wave thermal 

radiation, separate rain and snow precipitation, wind speed, wind direction, air temperature, 

air specific humidity, atmospheric pressure and atmospheric CO
2
. This data had been 

recorded by various specialized sensors and tools mounted on meteorological towers and on 

the ground either on or adjacent to the eddy covariance towers where the flux data was 

recorded. All forcing data represent 30 minutes average values. 

3.5 Physiography parameters 

Data used to provide the LSM with information on physiography of the land surface through 

numerical parameterisation was collected from three sources; databases, literature and 

estimations. The majority of parameters were prescribed by coupling the LSM to two 

different databases. Vegetation related parameters were derived from ECOCLIMAP database 

which is a SURFEX native global, 1km spatial resolution land cover database with 550 land 

cover types (Masson, 2013). These cover types are composed by satellite data and land cover 

maps. For parameters representing soil characteristics the model was coupled to the 

Harmonized World soil Database (HWSD). This is a global 30 arc-second raster database 

composed of regional and national soil information with information from the FAO-UNESCO 

Soil Map of the World database (FAO, 2017). 

Parameter values derived from databases are however generalized relative to the spatial 

resolution. Therefore, a literature study was conducted to find site specific parameter values 

relevant for the given study periods. In the instances when adequate such data was found for 

all four sites this data had power over the data base values. The main parameters are 

summarized in Table 2. 

3.6 Initial state variables 

Besides forcing data and parameter prescriptions the model also need to be provided with the 

initial state of some variables such as soil water and ice content, soil temperature, snow 

density, snow thickness and snow temperature. Prescription values for initial parameters that 

was not disclosed in the reviewed literature, supplied by FLUXNET or included in the 

databases were estimated by “spin-up” simulations. Here, spin-up simulation refers to the 

process of simulating the target area without knowing the initial state variables and letting the 

model simulate an estimated value for that variable (Carrer et al, 2013). For each site, this was 

performed by defining all parameter and initial state variables that were known in the model 

scheme. The model was then run for nine years forced with this available three years of 

forcing data multiplied by three. During the simulation the sought after state variables are 

simulated based on the evolution of the land surface. The last state variable value of the first 

day of the last simulated year was then used to represent the initial state of each estimated 

variables in the subsequent simulations. Several such simulations were conducted whereupon 

nine years of spin-up period was identified as adequate. 
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Table 2. Values used to prescribe the main ISBA-MEB vegetation and soil parameters for the four 

forest study areas. The source column indicates that data is either based on database coupling or 

values found in the literature cited in the study area description section. 

Site Tumbarumba Tharandt Blodgett Harvard Source 

Soil Parameters      

Sand (%) 54 37 42 76 HWSD 

Clay (%) 27 23 29 8 HWSD 

Soil Organic Carbon 

0-30 cm (kg/m2) 
3.5 3.2 5.6 5.8 HWSD 

Soil Organic Carbon 

70-100 cm (kg/m2) 
3.9 4.0 5.6 7.9 HWSD 

Soil depth (m) 5 3 3 3 ECOCLIMAP 

Root Depth (m) 5 2 2 2 ECOCLIMAP 

Soil albedo mean y-1 

Visible / Near infrared 

(Reflectance fraction in %) 

0.089 / 0.22 0.079/0.19 0.071/0.19 0.085 / 0.23 ECOCLIMAP 

Vegetation Parameters      

Total LAI (m2 /m2) 2.87 7.6 
7.1 in 1999 

1.2 in 2001 

0.3 day 110 to 

3.5 day 180 
Literature 

Mean Canopy Height (m) 40 26.5 4 23 Literature 

Vegetation albedo mean y-1   

Visible / Near infrared 

(Reflectance fraction in %) 

0.029 / 0.187 0.025/0.137 0.029/0.175 0.040/0.230 ECOCLIMAP 

Vegetation fraction (%) 0.95 0.95 0.95 0.95 ECOCLIMAP 

Ground litter (cm) 3 3 3 3 ECOCLIMAP 
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4 Method 
In this section the pre-processing of model input data and the model setup is first described 

followed by description of the applied sensitivity analysis and parameter calibration. 

4.1 Data quality control 
Data distributed by FLUXNET is pre-processed according to harmonized standards including 

gap filling of missing data and partitioning (Chaney et al., 2016). Nonetheless, additional 

quality control was conducted to minimize data uncertainty. Forcing and validation data time 

series were inspected to ensure no missing values and that the data followed the annual and 

seasonal cycles as well as to identify outlier values. No missing values were found but a 

handful of illogical outliers in the forcing data were identified and substituted for interpolated 

values. 

4.2 Model set up 

As discussed in section 2.2.2, ISBA-MEB enables separation of the land surface into three 

distinct fully coupled energy budgets and all simulations un this study the model was set to 

separate the ground, the canopy and snowpack into distinct energy budgets. Ground heat 

transfers were modelled using a diffusive soil (DIF) option which mean that the ground is 

divides into 15 layers exchanging energy amongst each other and with the surface (Decharme 

et al., 2011).ISBA- MEB incorporate a multi-layer canopy option that models what fraction of 

incoming radiation is intercepted by the canopy, what fraction is transmitted to the ground and 

how much is reflected (Carrer et al., 2013). As the modelled forest areas have seasonal 

snowfall the snowpack was treated with the ISBA Explicit Snow Processes (ISBA-ES) which 

is an multi-layer option that separate the snowpack into 12 layers (Decharme et al., 2016). 

This approach enables representation of different temperature, density and water equivalent 

content in the different sections of a snowpack. During simulations the model was supplied 

with 30 minute atmospheric forcing during the three years of modelling time. The model was 

run on a single point in space representing the footprint of the micro-meteorological tower 

from which the forcing and validation data was collected. To match the validation data the 

model was set to output 30 minutes average flux values over the course of the three year 

simulations. 

4.3 Parameter calibration 

As discussed on section 2.3 the applied parameter calibration methodology includes a Sobol 

sensitivity analysis to explore parameter sensitivity followed by the actual calibration of 

parameters identified as highly sensitive. Both the sensitivity analysis and the subsequent 

calibration process are based on multiple runs of the same model in which the parameters are 

prescribed to statistically sampled values. Multiple model runs is here forth referred to as 

simulation iterations, a set of sampled parameter values applied in one simulation iteration is 

referred to as a parameter vector and a collection of such vectors is referred to as a sample 

matrix. The Sobol methodology was selected as it has shown to generate the best results in 

previous LSM parameter sensitivity studies. Parameter values for the simulation iterations in 

the calibration step is sampled with the Latin Hypercube Sampling technique as this approach 

has proven to be effective and reliable in previous parameter calibration studies. 
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Algorithms were implemented in Python and Bash including the python sensitivity analysis 

packages SALib (Herman & Usher, 2017) and the SciPy stack for numerical and statistical 

data processing (van der Walt et al., 2011). ISBA-MEB itself is written in Fortran90 and 

simulations were performed on a computer cluster of the National Supercomputer Centre at 

Linköping University. 

4.3.1 Sensitivity analysis 

The concept of sensitivity analysis has been described by Saltelli (2008) as the study of how 

uncertainty in the output of a model can be apportioned to different sources of uncertainty in 

the model inputs. In the context of this study those inputs are the model process parameters. 

Sobol sensitivity analysis is a statistical variance-based approach belonging to a class of 

probabilistic approaches used to quantify model input and output uncertainty as probability 

distributions (Sobol, 1993). The core of this methodology is variance decomposition which is 

a way to apportion the total variance between simulated and validation data into parts 

attributable to input factors and combinations of these factors. This is achieved by running 

multiple simulation iterations on different parameter vectors and evaluating how the variance 

of the model output varies as parameter values are varied. 

In practice, this approach includes four main steps. 1) Selecting a set of parameter to include 

in the analysis i.e. parameter candidates. 2) Sampling a matrix of parameter vectors that will 

be used to prescribe the parameters in each of the simulation iterations. 3) Run the model once 

for each parameter vector and quantify the variance between the simulated output and the 

validation data. 4) Decompose the total variance into parts attributable to each parameter. 

4.3.2 Parameter candidates 

In theory, with unlimited resources the sensitivity of all model parameters could be evaluated. 

However, ISBA-MEB is a highly non-linear and computational demanding model including 

numerous parameters and the computational cost of the Sobol algorithm increases 

exponentially for every additional included parameter – thus such an approach would seem ill 

advanced. Furthermore, just like in nature certain land surface components and ecosystem 

processes influence turbulent fluxes more than others. Testing the sensitivity of all model 

parameters for a limited amount of output variables would therefore be theoretically 

irrelevant. An intermediate approach is instead to select a set of parameter candidates with 

strong coupling to the target variables (Chaney et al., 2010). Consequently, this selection must 

be based on firm knowledge of the physical meaning of the parameters and how this is 

implemented in the model structure. In the parameter candidate selection process the 

emphasis was therefor on parameters that influence turbulent fluxes and this selection was 

performed in consultation with SURFEX developers and researchers at SMHI and Météo 

France (Table 3).  
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Table 3. Parameter candidates. Min and max columns denote the lower and upper bound of the 

ranges within which parameter values were varied during the sensitivity analysis and parameter 

calibration. 

Name Physical meaning Min Default Max 

XTAU_LW Longwave radiation transmission factor 

Parameter included in the computation of the ‘view-factor’ i.e. the 

proportions between the amount of sky and vegetation that is visible from a 

particular point on the ground (Boone et.al, 2016). This proportion is directly 

related to the amount of radiation the canopy and the ground is exposed to as 

well as how much energy can leave the forest. Adjusting this parameter alters 

the proportions of the view-factor. Previous studies have concluded that the 

default value of 0.5 is to be used, but little is known of how this factor may 

differ between environments.  

0.4 0.5 0.6 

XUNIF_CV Vegetation/soil heat-capacity 

Parameter included in algorithms computing the heat capacity of vegetation 

and soil (Boone et.al, 2016). Heat capacity plays a key role in estimating heat 

flows between soil, vegetation and the atmosphere. This parameter is known 

to be uncertain and little is known of how this parameter is to be prescribed 

in different forest environments.  

0.5E-5 

 

1.0E-5 2.0E-5 

Z0m/Z0h Ratio Z0m/Z0h 

ZOm denotes the roughness length of momentum i.e. the height above the 

land surface where the wind speed reaches zero due to friction of the surface. 

ZOh denotes the thermal roughness length i.e. the distance between the land 

surface and a point above that surface where the temperature is the same. 

There is a relationship between these two and as it is easier to estimate ZOm 

it is used estimate ZOh in the present model setup. This parameter denotes 

the ratio between these phenomena. There is currently an active debate of 

how the default value of this parameter is to be prescribed in different forest 

environments.   

1 10 10 

XXB_SUP Sigma parameter in clumping index (canopy top) 

Clumping refers to the density of leafs and the clumping index is used as a 

measure of the dispersion/grouping of canopy leaves. Carrer et.al (2013) 

found that ISBA simulated carbon fluxes are sensitive to this parameter and 

as leaf structure affects incoming and outgoing turbulent fluxes in forests it is 

relevant to evaluate how sensitivity LE and H fluxes are to this parameter. 

This parameter defines the clumping index of the canopy top but clumping 

index at canopy bottom is also included as a parameter candidate. Carrer et.al 

(2013) found the canopy top parameter to be more sensitive than the canopy 

bottom. This property differs between tree species and thus the default values 

and ranges are vegetation specific. 
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XXB_INF Sigma parameter in clumping index (canopy bottom) 

The definition of clumping index is described in XXB_SUP along with the 

motivation to analyse it. This parameter defines the clumping index at 

canopy bottom which is found by Carrer et.al (2013) to be less sensitive than 

clumping index at canopy top. This property differs between tree species and 

thus the default values and ranges are vegetation specific. 
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XGT_SUP Leaf orientation parameter (canopy top) 

This parameter defines the angular orientation of leafs at canopy top. This 

property affect the amount of radiation intercepted or absorbed by leafs as 

well as how much radiation penetrates the canopy. Carrer et.al (2013) found 

that ISBA simulated carbon fluxes are sensitive to this parameter and as leaf 

orientation affects incoming and outgoing turbulent fluxes of a forest it is 

relevant to test how sensitivity LE and H fluxes are to this parameter. Carrer 

et.al (2013) found this canopy top parameter to be more sensitive than the 

corresponding canopy bottom parameter. 

0.4 0.5 0.6 

XGT_INF Leaf orientation parameter (canopy bottom) 

The definition of leaf orientation is described in XXB_SUP along with the 

motivation analyse it. This parameter defines the leaf orientation at canopy 

bottom which is found by Carrer et.al (2013) to be less sensitive than leaf 

orientation at canopy top. 

0.4 0.5 0.6 
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4.3.3 Parameter sampling 

Sampling can be thought of as a tool to explore a domain of interest. In the context of this 

study the domain of interest is the possible values within the specified parameter ranges i.e. 

the parameter space. The exploration is conducted by testing the outcome of running the 

model with parameters prescribed to different values drawn from the parameter space.  

In accordance with the Sobol method the sampling matrix was generated by the Saltelli 

sampling technique (Saltelli, 2008). This approach is conducted by first generating a matrix of 

parameter vector referred to as the base sample. This matrix is sampled using the Sobol quasi-

random sampling techniques (i.e. Sobol sequence) designed to generate uniformly distributed 

parameter samples in more uniform way than simple random sampling. This is achieved by 

avoiding sampling previously sampled values and by doing so avoid sampling clusters and 

gaps in the parameter space. The Saltelli extension is then applied by “cross-sampling” the 

base sample by holding one parameter value of a base sample parameter vector fixed at a time 

while generating samples for the rest of the vector values. 

Due to the computational cost of Monte Carlo simulations it is relevant to use techniques to 

generate as low number of sampling vectors as possible. However, as the Sobol method is 

based on probability theory, for the derivatives to be statistically significant the sample must 

at the same time be representative for the whole parameter space. The number of samples 

necessary to fulfil these requirements is dependent on, and increases with model complexity 

and the number of parameter included in the analysis but other than these factors there is no 

general consensus in how many vectors to sample (Zhang et al., 2013). To evaluate the 

appropriate sampling size several sample matrices was generated holding 160 to 3840 vectors 

on which the model was iterated. The validity of these simulation results was then evaluated 

by inspecting how the derived parameter sensitivity varied between matrices. These tests 

revealed that patterns in sensitivity varied with matrices of less, but not more than 2560 

vectors. This sampling size was therefor used for the subsequent sensitivity analyses. 

Investigations were also conducted to evaluate if aggregating the original 30 minutes time 

series data into 6, 12 and 24 hour time step affected the parameter sensitivity estimates; this 

was indeed the case and therefor the 30 minutes time step was selected to achieve optimal 

accuracy. 

4.3.3 Sensitivity iterations 

For each forest site, the model was iterated once for each sampled parameter vector. To match 

the validation data the model was defined to output time series of 30 minutes average 

turbulent H and LE fluxes over three year periods. As the Sobol approach is a variance based 

method it is not the model output time series itself that is analysed, but the variance between 

the model output and the validation data time series. The first year of simulated was 

considered model spin-up and thus only the last two years were used in the comparison. The 

Mean Square Error (MSE) objective function was applied to quantify variance which is 

written as: 

𝑀𝑆𝐸 =
∑ (𝑂𝑠𝑖𝑚,𝑖−𝑂𝑜𝑏𝑠,𝑖)

2𝑘
𝑖=1

𝑘
            (3) 
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where k is the total number of simulated time steps, Osim,i is the simulated output at time i and 

Oobs,i is the observed value at that same time i. This measures squared mean of all 30 minutes 

time steps. LE and H variables were processed separately. 

4.3.4 Analysing sensitivity 

A simulated output variable of any mathematical model can be expressed as a function: 

𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛)                    (4) 

where Y is the model output, X1, X2 and X3 are factors included in the computation of  the 

model output and Xn denotes the total number of included factors. In the context of this study 

the model output is either LE or H and the factors are the parameters. 

With variance decomposition the aim is to find out what would happen to the variance of Y if 

the true value of a factor Xi were to be found and by doing so discern that factors variance 

contribution to the total variance. Variance decomposition is expressed as: 

              𝑉𝑎𝑟(𝑌) = ∑ 𝑉𝑖

𝑖

+ ∑ 𝑉𝑖𝑗 + ∑ 𝑉𝑖𝑗𝑘 + 𝑉7, … , 𝑛

𝑖<𝑗<𝑘𝑖<𝑗

                          (5) 

where Var(Y) denotes the total variance of the output variable – this is the previously 

computed MSE. Vi is denoted the first order variance index which is an estimate of the 

variance contribution of Xi to Var(Y) not accounting for interactions with other factors. Vij 

denotes the second order variance index which is interpreted as the sum of the first order 

variance contribution of Xi and the variance due to this factors interaction to a second factor 

Xj. Higher order variance indices can be computed for interactions amongst all analysed 

factors n as well as the total order index which is an estimate of the variance contribution of 

all factors but Xi. 

To decrease the computational cost of the algorithm, often only the first and total order 

variance is computed. Deriving only these two indices is adequate to fulfil the objective of 

this study. The first order and total order indices are estimated as: 

First-order variance index 

𝑉𝑖 = 𝑉𝑎𝑟[𝐸(𝑌|𝑋𝑖)]                    (6) 

Total-order variance index 

𝑉~𝑖 = 𝑉𝑎𝑟[𝐸(𝑌|𝑋~𝑖)]                      (7) 

In the equation for the first order variance contribution E(Y|Xi) is the conditional expectation 

i.e. the expected value of Y when it is estimated based on the sampled values for factor Xi. 

Var[E(Y|Xi)] is then the variance of the condition expectations calculated of all sampled 

values for factor Xi. If this variance is big then the influence of that factor is important. In the 

equation for calculating the total order variance contribution X~i denotes all parameters except 
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Xi - hence the total variance contribution measures how much variance would be left if the 

true values of all parameters but Xi were known. With these estimates the first and total order 

sensitivity indices can be estimated as: 

First-order sensitivity index: 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟(𝑌)
                          (8) 

Total-order sensitivity index: 

𝑆𝑇𝑖 = 1 −
𝑉~𝑖

𝑉𝑎𝑟(𝑌)
             (9) 

where Si measures the main effect (i.e., individual sensitivity) of a factor Xi,  V~i denotes the 

amount of variance contributed by all factors but Xi and therefor STi is a measurement of the 

sum of Si of Xi and the higher order interactions of Xi with all other factors. The numerical 

value of a factors Si denote the fraction of the total sensitivity apportioned to that factor i.e. a 

parameter with Si 0.8 constitutes 80 % of the sum of all parameters Si. The sum of all 

parameters Si should therefore theoretically be 1. As STi represent Si plus all higher order 

indices, the sum of STi should theoretically be 1 or more. 

It was these sensitivity indices that were used to discern how sensitive the model is to each of 

the parameter candidates. Those parameters associated with the highest sensitivity were then 

subjects of the calibration. Interpreting sensitivity indices to discern what parameters are 

associated with significant uncertainty is subjective. Chaney et al. (2016) and Hou et al. 

(2015) interpret parameters apportioning at least 10 % of the total sensitivity at a site as 

highly sensitive. Based on these premises three parameters were classified as highly sensitive 

and was therefore analysed in the subsequent calibration process. For further elaboration and 

discussion of this sensitivity methodology see Saltelli (2008), in particular chapter 1 and 5. 

4.3.5 Calibrating parameters 

The calibration process is conducted by iterating the model on sampled parameter vectors and 

adopting the values of the vector that generate the least amount of variance between simulated 

and observed values as the optimal set of parameters. Reducing the amount of parameters to 

calibrate by only including those most sensitive ensure calibration of relevant parameters and 

reduces the computational cost of the calibration process. For further efficiency the stratified 

Latin Hypercube sampling technique was applied to generate the sampling matrix for the 

calibration iterations. Latin Hypercube sampling divides (i.e., stratifies) the 

parameter probability space into subgroups (i.e., stratum) of equal proportion and then 

randomly samples an equal amount of samples from each stratum. By doing so the whole 

parameter space is effectively represented. Chaney et.al (2016) found it adequate generate 

1000 Latin hypercube sample for calibrating three parameters and this approach was adopted 

in the present study i.e. 1000 unique parameter sets are generated for each forest site for a 

total of 4000 model runs.  
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The performance of each vector was defined as the sum of the normalized LE and H variance 

quantified by Normalized Root Mean Square Deviation (NRMSD). Starting by computing the 

root mean square deviation of both LE and H separately, the cost function is written in three 

steps as: 

𝑅𝑀𝑆𝐷 = √∑ (𝑂𝑠𝑖𝑚,𝑖 − 𝑂𝑜𝑏𝑠,𝑖)𝑘
𝑖=1

2

𝑘
            (10) 

 

where Osim,i is the simulated time series at each simulated times i, Oobs,i is the observed time 

series at that same time i and k denote the total number of times steps. The RMSD is then 

normalized by division by the mean of the range i.e., the maximum value minus the minimum 

values of the observed data time series: 

𝑁𝑅𝑀𝑆𝐷 =  
𝑅𝑀𝑆𝐷

max(𝑂𝑜𝑏𝑠,𝑖)−min (𝑂𝑜𝑏𝑠,𝑖)
          (11) 

Finally, the NRMSD of the variables are summed for use as a performance metric of each 

parameter vector: 

𝐿𝐸𝑁𝑅𝑀𝑆𝐷 + 𝐻𝑁𝑅𝑀𝑆𝐷            (12) 
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5 Results 

In this section the results of the parameter calibration process is presented. 

5.1 Sensitivity analysis 

The factional uncertainty contribution of the analysed parameter candidates to MEB LSM 

modelled turbulent LE and H fluxes was analysed by the Sobol methodology and quantified 

in terms of first order (Si) and total order (STi) sensitivity indices (Figure 5) – see section 4.3.4 

for definitions of these indices. 

 
Figure 5. Parameter sensitivity indices at the four forest study areas; Tumbarumba (Au-Tum), 

Tharandt (De-Tha), Blodgett (Us-Blo) and Harvard (Us-Ha1).Each of the eight diagrams illustrate 

the sensitivity index of tested parameters (outlined in Table 3) in relation to the tested turbulent latent 

(LE) and sensible (H) heat flux model output variables (rows) at each of the study areas 

(columns).The X-axis, which is shared by all diagrams, denotes the names of the analysed parameters 

and the Y-axis represents the fractional sensitivity measure of these parameters ranging from 0 to 1. 

The sensitivity analysis results indicated that the greatest parameter sensitivity is in general 

attributed the ratio between roughness lengths of momentum and roughness lengths of heat 

(Z0m/Z0h) for both LE and H at all four forest sites. Harvard forest (US-Ha1) however 

deviate from this pattern as both Si and STi of this parameter for H is neglectable. The second 

most sensitive parameter is XUNIF_CV representing the heat capacity of vegetation and soil. 

For LE the influence of this parameter is neglectable, but for H it is the second largest at all 

sites. The sigma clumping index at canopy bottom (XXB_INF) has relatively high sensitivity 

indices for LE at all sites except the Australian forest (Au-Tum). For H, this parameter was 

not estimated to be sensitive except for Us-Ha1 where it instead was estimated to be the most 

sensitive. The sensitivity of the longwave radiation transmission factor (XTAU_LW), leaf 

orientation at canopy top (XGT_SUP) and leaf orientation at canopy bottom (XGT_INF) 

parameters is in this context neglectable. The same applies for the sigma parameter in 

clumping index at canopy top (XXB_SUP) for all sites except for LE at the German forest 
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(De-Tha) where it instead is the second most sensitive parameter. The values STi do not 

deviate remarkably from Si which implies that even though there is higher order interactions 

amongst the tested parameters the main parameter sensitivity is due to the direct influence of 

these parameters on modeled outputs. Based on these results Z0m/Z0h, XUNIF_CV and 

XXB_INF is ranked as the top most sensitive parameters and were therefore subjects of the 

subsequent calibration process. 

5.2 Parameter calibration 

Similar to the sensitivity analysis, the calibration process was conducted by running multiple 

simulations in which parameter prescriptions were varied. In this step, the aim was to find the 

parameter prescription that generates the least amount of cumulative variance in simulated 

turbulent LE and H fluxes. The focus of this study is on calibrating parameters for simulation 

of LE and H. However, as components of the land surface energy budget, turbulent fluxes 

cannot be analysed in isolation but must be considered in the context of energy availability 

(i.e., Rn) and what proportion of this energy is conducted into the ground (i.e., G flux). 

Therefore, these four components are included in the analysis. In the following four sections 

simulated time series applying default and optimal parameter values are presented along with 

the corresponding observed time series for the individual study areas. 
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5.2.1 Tumbarumba forest 

The Australian broad-leaf eucalyptus forest displayed pronounced diurnal cycles in all months 

(Figure 6). Simulated Rn correlates well with observations and the partitioning of this energy 

into LE and H is in general well represented throughout the year. However, for the three last 

months of the year both the default and the optimized parameterization overestimate LE and 

underestimate H. The optimal parameterization however decreases this bias which is reflected 

in the lower NRMSD of this simulation. The bias in the Gflux time series is too small to 

explain these errors and therefor source of this bias may be errors in input data. Overall, the 

optimisation process slightly decreased the variance between simulated and observed LE and 

H time series. These improvements slightly compensate the total bias. 

 
Figure 6. Average monthly diurnal cycles of net radiation (Rn), latent (LE) heat flux, sensible (H) heat 

flux and ground heat flux (Gflux) at Tumbarumba forest (Au-Tum) in 2002 and 2003 simulated with 

default and optimized parameters. The performance of simulation with default parameters and 

optimized parameters is expressed in Normalized Root Mean Square Deviation (NRMDS) from 

observed values for the variables to which parameters are calibrated. 
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5.2.2 Tharandt forest 

Rn at this German Evergreen Needle-leaf forest is in general well represented for both the 

default and the optimised simulation, but the energy partitioning is not adequate (Figure 7). A 

general day-time LE flux overestimate is disclosed for LE, especially for May to September. 

For H there is instead a general night-time underestimate. LE bias is marginally decreased in 

the optimised simulation whereas the bias for H instead increases. The fact that an optimized 

parameter set can actually result in greater variance for a variable is due to the definition of 

the cost function. Recall from section 4.2.5 that the cost is defined as the cumulative variance 

of LE and H. Consequently, as the variance decrease for LE is so great at this site, the 

variance increase of H is compensated. The bias in the Gflux time series is too small to 

explain these errors and therefor source of this bias may be errors in input data. 

 
Figure 7. Average monthly diurnal cycles of net radiation (Rn), latent (LE) heat flux, sensible (H) heat 

flux and ground heat flux (Gflux) at Tharandt forest (De-Tha) in 2003 and 2004 simulated with default 

and optimized parameters. The performance of simulation with default parameters and optimized 

parameters is expressed in Normalized Root Mean Square Deviation (NRMDS) from observed values 

for the variables to which parameters are calibrated. 
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5.2.3 Blodgett forest 

The simulated Rn at this Californian planted mixed evergreen coniferous forest is 

underestimated from May to November which consequently affects all other components of 

the energy budget system (Figure 8). This bias is reflected in flux underestimates for H in 

May and for LE from June to October. LE bias is especially great in June and August which is 

interpreted as a consequence of underestimated Rn and overestimations in H and Gflux. 

Marginal compensation for these biases is achieved by calibrating the parameters. 

 
Figure 8. Average monthly diurnal cycles of net radiation (Rn), latent (LE) heat flux, sensible (H) heat 

flux and ground heat flux (Gflux) at Blodgett forest (Us-Blo) in 2000 and 2001 simulated with default 

and optimized parameters. The performance of simulation with default parameters and optimized 

parameters is expressed in Normalized Root Mean Square Deviation (NRMDS) from observed values 

for the variables to which parameters are calibrated. 
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5.2.4 Harvard forest 

Simulated Rn is in general underestimated at this mixed Deciduous Broad-Leaf forest for both 

the default and optimal parameterization. This underestimate is especially tangible for the 

three first months of the year which consequently lead to great underestimate of H. In April 

and May Rn is however realistically simulated, but the partitioning of this energy skewed as 

LE is overestimated and H underestimated. In the diurnal cycles of the remaining months LE 

and H is in general slightly underestimated or overestimated. Overall the calibration 

marginally improves both LE and H simulation and simulated bias is greater during the first 

half year more than the second half. No observations of Gflux were available for this site. 

 
Figure 9. Average monthly diurnal cycles of net radiation (Rn), latent (LE) heat flux, sensible (H) heat 

flux and ground heat flux (Gflux) at Harvard forest (Us-Ha1) in 1993 and 1994 simulated with default 

and optimized parameters. The performance of simulation with default parameters and optimized 

parameters is expressed in Normalized Root Mean Square Deviation (NRMDS) from observed values 

for the variables to which parameters are calibrated. 
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5.2.5 Optimal parameter vectors 

Calibrating the three top most sensitive parameters revealed the site specific optimal 

parameter values. The output variance of all simulations of the calibration iterations is plotted 

against the parameter values used in the corresponding simulations to identify patterns in 

variance as a function of parameter prescriptions (Figure 10). Parameter values generating the 

least amount of variance vary between sites. The majority of the values of the optimal vectors 

lie at the edges of the parameter range indicating that values outside these ranges would 

further decrease variance. Expanding the parameter ranges would however lead to unrealistic 

parameter prescriptions as such values would not be in accordance with the parameters 

physical meaning. 

 
Figure 10. Prescribed parameter values (outlined in Table 3) and resulting output variance of 

parameter calibration simulation iterations for forest study areas; Tumbarumba (Au-Tum), Tharandt 

(De-Tha), Blodgett (Us-Blo) and Harvard (Us-Ha1). In each of the 12 diagrams the Y-axis marks 

cumulative turbulent latent (LE) and sensible (H) heat flux Normalized Root Mean Square Deviation 

(NRMSD) from observed flux time series and the X-axis marks the range of tested parameter values. 

Blue dots mark a parameter value and the resulting variance of using that value in a simulation. Red 

dots mark parameter values identified to generate the least amount of simulated NRMSD. The black 

lines are intended as a visual aid to illustrate patterns in parameter values VS resulting variance. 
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The optimized parameters reduce simulation bias by 0-2 Wm/
2
 for both LE and H at all sites 

but for H at De-Tha (Figure 11). In addition, model fit expressed in R
2
 measuring how well 

simulated time series correspond to dynamic changes in observed data is also in general 

improved except for LE at Au-Tum and De-Tha. 

 
Figure 11. Performance of simulated turbulent latent (LE) and sensible (H) heat fluxes with default 

(blue bars) and optimized (black bars) parameter prescriptions at the four forest study areas; 

Tumbarumba (Au-Tum), Tharandt (De-Tha), Blodgett (Us-Blo) and Harvard (Us-Ha1).The top row 

depict model fit (R2) and the bottom row average variance bias in Watt/m2.  
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6 Discussion 

To contribute to the development of the SURFEX modeling platform this study set out to 

explore how sensitive ISBA-MEB simulated latent and sensible turbulent heat fluxes are to a 

selected set of uncertain parameters, to explore if parameter sensitivity patterns vary between 

forest environments and to evaluate how much model output improvement can be achieved by 

identifying site specific optimal prescription for the top most sensitive parameters. To achieve 

this, four forest areas with seasonal snow coverage representing different climate 

classifications and vegetation types was applied as model environments and the results of 

simulating these environments compared.  

Parameter uncertainty was explored by Sobol sensitivity analysis. Sensitivity studies are 

commonly applied in ISBA related studies to evaluate impact of parameters as well as other 

input factors on modelled outputs. However, during the course of this study no prior ISBA 

related attempts to evaluate parameter impact on turbulent fluxes by applying the Sobol 

approach was identified. The influence of seven parameters on modelled turbulent latent and 

sensible heat was explored. In general, the parameter defining the ration between roughness 

length of momentum and thermal roughness length (ZOm/ZOh) was identified to be the top 

most sensitive for both latent and sensible heat fluxes. The second most sensitive parameter 

was identified to be the heat capacity of vegetation and soil (XUNIF_CV) and mainly 

influences simulations of sensible heat. Carrer et.al (2013) concluded that forest carbon fluxes 

are sensitive to ISBA parameters representing clumping index and leaf orientation at the top 

of the canopy, but less sensitive to parameters defining these aspects at canopy bottom. In 

contrast to the finding of Carrer et al. (2013), for turbulent fluxes of heat, only the leaf 

orientation parameter at canopy bottom (XXB_INF) is estimated to be highly influential 

primarily for latent heat. Remaining clumping index and leaf orientation parameters was 

seemingly non-influential in the context of the tested parameters. The same applies for the 

Longwave radiation transmission factor parameter (XTAU_LW). 

For all sites except for Harvard forest the sensitivity analysis results are homogeneous. 

Harvard forest is the only site in which ZOm/ZOh did not have the highest sensitivity indices 

for H but instead exhibited neglectable sensitivity. In addition, in contrast to XXB_INF being 

non-sensitive at all sites for sensible heat this parameter was identified as the most influential 

for this flux variable at Harvard forest. This might be due to the fact that Harvard forest is the 

only site in which LAI has an annual cycle and parameters defining leaf characteristics may 

have greater influence on such sites. The fact that all four study areas were sensitive to the top 

two ranked parameters indicates that these results expand to multiple vegetation types and 

climatic characteristic. The fractional sensitivity of the total sensitivity of these parameters 

does however vary between study areas indicating that the influence of these parameters is 

site-specific. 

Calibrating the highly sensitive parameters enabled simulations with lower cumulative latent 

and sensible variance with respect to observed time series for all sites than simulations with 

default parameter prescriptions. In general, the parameter values of the optimal vectors vary 

between sites. However, there is great bias in simulated LE and H with under and 

overestimations in terms of variance and model fit and it is therefore not possible to attribute 
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these variations to differences in environmental characteristics. In addition, the optimal values 

of the calibrated parameter vectors lie at the edges of the defined parameter ranges indicate 

that even greater variance reduction could be achieved by expanding parameter ranges. Such 

expansion would however generate unrealistic parameter prescriptions as such values would 

not be in accordance with the physical meaning of the parameters. This phenomena is 

interpreted as these values was selected, not due to the fact that they best represent the natural 

aspect represented by the parameters, but rather that these values best compensate for the 

great bias in the simulations. For Blodgett and Harvard forest some of the bias can be 

explained by simulated underestimates of Rn that consequently affects energy quantity 

available for partitioning. Napoly et al. (2016) describes that ISBA simulations of Gflux are 

lacking with great levels of under and overestimations which is the fact as well in the present 

study. However, as the factional proportion of Rn partitioned into Gflux is relatively small in 

comparison to LE and H this bias is not enough to explain but a fraction of the bias in the 

simulations. To explore the possibility of the bias being due to misrepresentative vegetation 

physiography parameters additional sensitivity studies were conducted. False prescriptions of 

physiography parameter applied to define the physical characteristics of the landscape were 

identified as the probable cause for bias Rn partitioning at De-Tha and Us-Blo as this bias was 

reduced by altering root depth and leaf area. Root depth governs how much soil water can be 

assimilated by vegetation and leaf area governs how much water can be used as a medium for 

latent heat emission. At the two American forests simulated Rn is underestimated which may 

be due to false prescription of albedo causing to high reflectance of incoming radiation or 

physiography parameters inhibiting radiation to reach the forest floor by penetrating the 

canopy. Identifying accurate physiography parameters is often problematic according to 

Muleta and Nicklow (2005) and it is highly unlikely to find accurate data for all inputs needed 

for a simulation. Hou et al. (2015) argues that is particularly problematic ins studies such as 

this one where inputs is derived from databases as these data is always to some degree 

generalised. Liu et al. (2004) describe that calibrating parameters in accordance with 

environmental prescriptions that are not representable for the target environment may lead to 

decreased variance between simulation and observations, but as the description of the 

landscape is inaccurate the calibrated parameters are not representable for the target 

environment. As neither the source of bias nor accurate parameter data could be derived no 

further emphasis was put on these aspects. 

Nevertheless, by applying the cost function, parameter vectors are generated that reduce 

simulated cumulative LE and H variance at all four sites. However, as the cost function is not 

designed to consider individual variable variance reduction this do not necessarily mean that 

the variance for both output variables is decreased. Consequently, there were instances when 

the optimized vectors results in increased variance for one of the validation variables. The rate 

of variance reduction is directly related to the potential influence parameters have on 

validation variables. As such, even though the calibrated parameters were identified to hold 

the greatest proportional model influence in the context of all analysed parameters, optimizing 

these parameters given the applied methodology generate marginal variance reduction. 

Optimized vectors do in general generate better correspondence between simulated and 
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observed time series. However, as the cost function is not designed to evaluate model fit such 

improvement is not ensured.  

Raoult et al. (2016) argues that sensitivity analysis and parameter calibration results are 

shaped by the modeller’s subjective decisions such as what parameters to analyse and what 

values to test on these parameters. Even though the methodological applied in this study was 

designed to be as objective as possible it do included subjective elements. For instance, 

manually selecting a set of parameter candidates to include in the analysis is highly dependent 

on the knowledge of the model and the role of the parameters. An alternative approach 

applied by Liu et al. (2004) is to first conduct a preliminary screening of multiple parameters 

by the means of local sensitivity analysis to identify relevant parameter candidates. Local 

sensitivity analyses are less computational demanding than global approaches and can thus be 

applied to analyse a higher number of parameters for the same cost. Parameters identified as 

sensitive are then qualified for a more in in depth global analysis. Another benefit of this 

approach would be potential disclosure of parameter candidates that would otherwise not be 

considered as potentially sensitive. 

Identifying an appropriate number of simulation iterations of the Sobol sensitivity analysis is 

crucial in deriving valid sensitivity indices. As there is no general consensus on how many 

iterations to perform this process becomes iterative and subjective as it depends on the 

complexity of the model and parameter interactions (Zhang et al., 2013). However, as a 

parameters first order index is a measure of the fractional sensitivity exhibited by that 

parameter all first order indices should add up to 1 and as total order indices measures first 

order indices plus all higher order indices due to interactions with remaining analysed 

parameters these indices should be 1 or more (Saltelli, 2008). Meticulous review of the 

sensitivity analysis results of the present study reveal that these requirements are not fulfilled 

at all sites as the total of all first order sensitivity indices do not sum to 1 and the total order 

indices are for some sites lower than 1 (Figure 5). This is due to computation errors that could 

be reduced by increasing the number of iterations. Tests were made to evaluate the impact on 

parameter indices by increasing simulation iterations which showed marginal changes to 

individual indices but the overall trend of sensitivity indications was however not altered.  

Only data with energy closure imbalance (discussed in section 3.3) lower than 10 % was 

included in this study. This levels of energy imbalance is considered to be low and the fact 

that Napoly et.al (2016) noted in previous ISBA-MEB studies that closing the energy balance 

had neglectable impact on the simulations this issue was not further addressed. However, for 

even better calibration results the energy balance can been closed. 

The choice of objective functions and design of cost functions used to evaluate parameter 

vectors performance in the calibration iterations greatly influence what parameter values are 

ranked as optimal. The cost function applied in this study was designed to considered variance 

bias but could be extended to also evaluate how well simulated time series correlate with 

dynamic diurnal and seasonal changes. As this cost function evaluate cumulative LE and H 

variance it is not ensured that optimized vectors decrease the bias of both flux variables if the 

variance reduction of one variable compensate for increased variance in the other. To further 
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develop the cost function considerations to this aspect such as these can be implemented. 

Finally, as the evaluated flux variables are measured in the same unit and the quantities of 

these fluxes are proportional, normalizing the flux variables in the cost function was 

redundant but did not affect the results of the study. 

In light of the findings of the present study it is recommended that corrects prescriptions of 

parameters identified as highly sensitive is derived and applied in future simulations to 

decrease the uncertainty in modelled turbulent fluxes in forest regions. Furthermore, future 

parameter calibrations attempts should first include extended validation of physiography data 

applied to prescribe parameter if this data is derived from generalized data bases to ensure that 

the data is representable. This is important to enable high quality simulations catching the 

dynamic changes of fluxes and to ensure that optimized parameter vectors are calibrated in 

accordance with the intended environment. As optimized parameters are shaped by the 

objective function or cost function applied to evaluate parameter vector performance in the 

calibration process, careful considerations of what results are sought after prior to selecting or 

designing such performance metrics. 
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7 Conclusions 

Sensitivity analysis disclosed that the uncertainty contribution of individual parameters to 

ISBA-MEB modelled turbulent latent and sensible heat fluxes varies between forest 

environments. However, out of the analysed parameters, modelled outputs were identified to 

be particularly sensitive to three parameters. The highest level of sensitivity is associated with 

the parameter representing the roughness length of momentum and thermal roughness length. 

In general, this parameter is associated with the highest level of sensitivity for both analysed 

model output variables. The second most sensitive is the parameter representing the heat 

capacity of vegetation and soil. It is primarily sensible heat that is sensitive to this parameter 

and for this variable it is the second most sensitive at all analysed study areas. A third 

parameter, representing the leaf orientation at canopy bottom, was identified to be 

significantly sensitive at three out of the four study areas. However, there is no general pattern 

neither in how sensitive the modelled flux variables are to this parameter nor which variable is 

sensitive to it. Instead, this parameter is ranked as the most, the second most and the third 

most sensitive for one or the other of the flux variables at different sites. Analysis of how the 

optimal numerical prescriptions of these highly sensitive parameters vary between forest 

environments was non-disclosing due to flaws in simulated flux time series supposedly 

resulting from bias in the physiography parameterisation. Nonetheless, results showed that 

calibrating the three top most sensitive parameters, by means of the applied methodology, 

reduce cumulative latent and sensible variance between simulated and validation flux time 

series at all four forest sites. In addition, this approach in general reduces the average variance 

of the individual flux variables by 0-2 W/m
2
. However, at one site sensible heat variance was 

instead increased by applying calibrated parameters. 

As it could not be derived from the results of this study, future research could further study if, 

and if so how, optimal parameter prescriptions vary between forest environments. In addition, 

evaluating if parameter sensitivity varies with seasonal phenology and weather cycles could 

be conducted for increased understanding of parameter model influence of such aspects. 

Furthermore, evaluating if parameter sensitivity patterns identified in this study can be 

extrapolated to similar forest areas can be conducted by multisite sensitivity study e.g. 

including several similar forest areas and exploring potential similarities and variations in 

parameter sensitivity. Finally, developing an automated parameter sensitivity and/or 

parameter calibration approach specifically for ISBA and/or ISBA-MEB could further aid in 

the development of the SURFEX modeling platform. In case of such endeavour, the 

methodology and developed algorithms of the present study could be considered.  
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