
Numerical Analysis
Bachelor’s Thesis

Approximating extrema of quadratic forms
using Krylov subspaces

Simon Hallborn

Advisor: Gustaf Söderlind

27/09/2017

Contents

1 Abstract 1

2 Background 2

2.1 Black box methods . 4

3 Theory 5

3.1 Power iteration . 5

3.2 Shifted inverse iteration . 6

3.3 Orthogonalization . 8

3.4 Approximating l[A] and L[A] . 8

3.5 Approximating m[A] and M [A] . 9

3.6 The symmetric case . 11

3.7 The indefinite case . 11

4 Discussion 12

4.1 Future work . 14

5 Conclusion 15

6 Results 16

7 Appendices 25

8 Code structure 26

References 42

ABSTRACT

1 Abstract

In this thesis approximations to quadratic forms using Krylov subspaces are presented. These
quantities are approximations of the norm and logarithmic norm of a matrix. In order to find these
quantities an eigenvalue problem has to be solved, but because of limited storage and time, this
is not feasible in practice with large matrices. Instead one can project this problem down to a
problem of smaller size with a Krylov subspace and solve it there instead.

The original idea was to investigate, for a given matrix, if one could get sufficiently good estimates
of the norms with only one subspace. This turned out to not be the case.

The span of the subspaces that was generated is good in approximating some vectors, but for
others it is a poor choice. This is dependent on which norm we are trying to approximate but also
on the matrix type. Hence we need different methods depending on what the specific conditions
are for the problem.

The goal is to reach at least two digits of accuracy because an algorithm like the one that was
constructed for this thesis could, if further developed, be used in conjunction with already existing
methods. This is an approximation based method, that favours simplicity and speed. It is well
suited for other methods that require the estimated quantities in multiple time steps or iterations.

To test the quality of these projections, different matrices that arise in practice are tested and
their norms approximated. The test matrices have known norms and behaviour so the result can
be interpreted.

Overall the results show that one can obtain two digit accuracy with a low dimension of the
subspace, even for matrices with large dimensions, which is truly promising.

1

BACKGROUND

2 Background

In many applications in scientific computing, it is of interest to compute or at least estimate the
norm and/or the logarithmic norm of a matrix A. This is needed for a wide variety of tasks, such
as estimating convergence rates, stability constants, ellipticity etc. While today’s software can
easily compute these data for matrices of moderate size (say n ≤ 100) the task becomes more or
less prohibitive for large matrices. In addition, while these parameters can be estimated for linear
operators, it often becomes a complicated task for the nonlinear case. Here we limit ourselves
to the problem of computing these quantities for large matrices, with the aim of reducing the
computational complexity using Krylov subspaces. Thus we intend to develop algorithms that are
efficient also for large matrices, while making sure that we still obtain accurate results.

The reduction of the computational complexity using Krylov subspaces will be applied to solving
both large linear systems of equations and large eigenvalue problems. The methods that would be
used for these large problems vary depending on the type of the matrix, so a case by case basis is
required to find the most efficient solution.

Specifically, this project will be based around approximating four quantities

L[A]2 = max
x6=0

x>A>Ax

x>x
(1)

M [A] = max
x 6=0

x>Ax

x>x
(2)

l[A]2 = min
x 6=0

x>A>Ax

x>x
(3)

m[A] = min
x6=0

x>Ax

x>x
, (4)

these are the extrema of the quadratic forms which we are interested in.

In order to estimate these quantities we begin with forming the Rayleigh Quotient

R(C, x)
x 6=0

=
x>Cx

x>x
,

and in our case x ∈ Rn×1 is a nonzero vector and C ∈ Rn×n

As Equations 1 - 4 show we are looking at the stationary points of R(C, x) for the cases when
C = A and C = A>A, to calculate the logarithmic norm and/or the norm of A respectively. In
order to find the stationary points of of R(C, x) we differentiate with respect to x and set the
derivative to zero,

(x>C + x>C>)x>x− 2x>(x>Cx)

(x>x)2
= 0.

2

BACKGROUND

Rearranging and transposing this we get the eigenvalue problem:

(C + C>)

2
x = R(C, x)x.

Now let C = A>A or C = A and from this general problem we obtain two specific problems,

A>Ax =
x>A>Ax

x>x
x (5)

(A> +A)

2
x =

x>Ax

x>x
x. (6)

This is done because Equation 5 gives us the solution to Equations 1 and 3 while Equation 6 gives
us the solution to Equations 2 and 4.

Both of Equations 5 and 6 are two symmetric eigenvalue problems of the form

A>Ax = σ2x (7)

(A> +A)

2
x = µx, (8)

where σ is the largest singular value of A, σ2 = ||A||22 = L[A]2 and µ = M [A]

When the matrix A is large and sparse a good idea for methods to solve Equations 5 and 6 are
iterative ones. This is due to direct methods often requiring more work and because of iterative
methods’ ability to exploit the sparsity of the matrix.

In the realm of iterative methods a commonly used idea is to project an n-dimensional problem
into a lower-dimensional Krylov subspace, with further reading in [2]. One way to solve large sparse
symmetric eigenvalue problems as in Equations 5 and 6 is to use Lanczos iteration. But this thesis
will be based on using a different method. This alternative method uses the same principle as
Lanczos in the sense of creating a subspace and creating an orthogonal base from the subspace.
After that point they diverge. The point of this thesis is not to compare the two, it is to test the
result of the alternative method and see how effective it is.

3

BACKGROUND

There are a few reasons why this alternative method is promising.

The first is that it has a simple theory and implementation. Once the problem is projected down
onto the subspace, obtaining the solution is simple. This is because the size of the problem is now
small enough that direct methods can easily be applied.

The second reason is that it is a cheap and approximation based method, which is good for it
to be implemented into other main methods. The quantities that are estimated here might be used
frequently based on what kind of main method that uses them. The method remains cheap while
the subspace’s dimension is low, which will not be the case for every matrix. This because we might
never reach two digits of accuracy, which is the minimum acceptable tolerance.

The third reason is that for some special matrices the solution is very accurate, even for low
dimensional subspaces.

And the final reason is because one does not have to explicitly form A which takes unnecessary
space on the memory. This is because all the operations with A can be obtained with black box
methods as described in the next section.

2.1 Black box methods

The theory behind a black box is a procedure whose structure is hidden to the user but transmits a
desired output [1]. An example could be how a black box method would be in our case for a given
vector x. This method would return a linear mapping, y = Ax of x. One of the strengths of this
method is that A is never formed explicitly which saves space on the memory.

Exactly how this method is developed is not the primary focus, rather it is idea the behind it
that is interesting. This is because black box methods that are used for applications today are
complex because they vary from problem to problem. For example if there is a sparse matrix
with its non-zero elements spread around in the matrix, then one can rearrange the rows so that
all the non-zero elements are within a band. Inside this band there are both non-zero and zero
elements, and on the outside it is just zeros. Then it is more compact and easier to only focus on
the multiplications that affect the result.

For a dense matrix, with its only entries being non-zero elements, performing a matrix-vector
multiplication costsO(n2) operations. When n grows then this multiplication does become expensive.

However, for large and sparse matrices there is a certain structure that is desirable to exploit.
If for example we have a sparse matrix with five non-zero elements per row and we perform a
matrix-vector multiplication then it can be done in O(5n) calculations. This means that because
of the sparsity we avoid a lot of unnecessary calculations.

So the main reasons that we want to use this procedure is because of the decreased amount of
calculations that is necessary for the multiplication as well as the fact that A is never stored.

4

THEORY

3 Theory

The idea now is to project down the large n-dimensional problem to a smaller one. The original
idea was that we form one subspace only using power iteration as described in the next section.
The assumption was that this subspace would, for a given matrix, be able to estimate its norms
accurately.

This assumption turned out to be incorrect due to the fact that the span of the subspace that
was generated failed to find certain vectors for certain cases. It failed to uphold the generality of
the assumption, so instead we generate a subspace through either power or shifted inverse iteration
(also described in the upcoming sections) depending on the situation. From either of these subspaces
we approximate the solution to Equations 5 and 6 by using a subspace based on the structure of
the matrix and what norm that is estimated. This case by case basis will grant us a better estimate
than what only one of the methods could do on their own.

3.1 Power iteration

The first kind of Krylov matrix that is used, Kp, is defined below and it is obtained using power
iteration [3] It is constructed by multiplying the matrix A with an initial vector b. These vectors
will be the column vectors of Kp,

Kp = [b, Ab,A2b, . . . , AN−1b]. (9)

If the next vector in the iteration equals the previous one then the iteration is stopped. For example
if AM−1b = AMb then the dimension of Kp will be n×M , if this is the first time this has occurred
in the iteration.

The operation cost depends on whether we use black box methods or direct computation, where
A is formed explicitly. For the matrices in our experiments it suffices to use direct computation
because the matrices are neither large nor sparse.

Two shortcomings with this iteration is that the algorithm only produces the largest eigenvalue of
A in absolute value, and that the largest eigenvalue of A has to be significantly larger than the
second largest eigenvalue.

5

THEORY

3.2 Shifted inverse iteration

The second Krylov matrix will be created by using shifted inverse iteration. In a similar fashion
as Equation 9 with the first Krylov subspace we now use (A− sI)−1 instead of A, and s is a shift
that helps us locate a certain eigenvalue. In order to not form the inverse we will transform the
problem

(A− sI)−1b = x,

to an easier one. This is done by multiplying both sides with (A − sI) and we end up with the
problem,

(A− sI)x = b.

This is a linear equation that when solved yields the desired vector x. With the matrices in our
experiments it suffices to use the backslash operator in Matlab that will in the general case
solve this linear equation with an LU factorization. When we have larger and more sparse matrices
this method would not be an optimal choice since the LU factorization ruins sparsity. This because
the lower matrix L and the upper matrix U will be dense. Instead one needs to use iterative
methods, but the method one would use depends on the structure of A and on the fact that A
should preferably not be formed explicitly.

Which iterative method that should be used is entirely up to the conditions of the problem. If
the matrix is symmetric and positive definite then there are methods like CG (Conjugate gradient)
otherwise methods that work for more general matrices like GMRES (Generalized minimal residual)
or BiCGSTAB (Biconjugate gradient stabilized) could be used [1].

Below is the definition of Krylov matrix, Ki, that is obtained by the inverse iteration,

Ki = [b, (A− sI)−1b, ((A− sI)−1)2b, . . . , ((A− sI)−1)N−1b].

The dimension of Ki works the same as for Kp, because this is just a different form of power
iteration. If the next vector in the iteration equals the previous one then the iteration stops. For
example if ((A− sI)−1)M−1b = ((A− sI)−1)Mb then the dimension of Ki will be n×M , if this is
the first time this has occurred in the iteration.

A shortcoming with using inverse iteration is that cases having two eigenvalues with almost the
same magnitude causes difficulties with the spanning of the subspace. This is because we want
the vectors to give as much information as possible and having two eigenvalues close to each other
affects the how the vectors in this subspace are pointing.

The advantages of using inverse iteration are that instead of only finding the largest eigenvalue
in absolute value, as is done with power iteration, one can find any eigenvalue. Also the rate
of convergence can be controlled. This is possible if one can find a shift, s close enough to the
eigenvalue of interest.

6

THEORY

To find a suitable shift one can use the Gershgorin Circle Theorem that states that any eigenvalue
of A can be found in a constructed circle centered at aii with radius Ri, where aii is the ith element
on the diagonal of A and Ri =

∑n
j=1
j 6=i
|ai,j |.

We can thus obtain a disc where the smallest and largest eigenvalues are contained. This narrows
down the possible values of our shift. The disc that is created with the circle theorem can be
relatively large depending on the matrix though. There might be ways to zoom in further to reduce
the size of the disc of possible eigenvalues. However in our results as we will later see it suffices to
set the shift to zero for our experiments. This is again because this iteration is only used in the
experiments when we want to find the smallest eigenvalue in absolute value, which means some
number relatively close to zero in our case. So without any methods of finding a better shift, zero
is the best one for the experiments.

So what happens if (A− sI) is singular?

The eigenvalues of (A − sI) are λ − s, where λ are the eigenvalues of A. It is singular if the
eigenvalue of interest and the shift are the same. The relevance of this is, as we will see later, when
we try to approximate the eigenvalue equal to zero. An example of this could be the case when
we have a singular positive semi definite matrix and we want to find the smallest eigenvalue in
absolute value. To find a shift close to this eigenvalue of interest is to set the shift to zero which
means (A− sI) is singular. In these specific cases it is not really an issue because even though the
algorithm will not return anything but a warning message, we know what the exact value is.

7

THEORY

3.3 Orthogonalization

To combat the near linear dependence that we are creating with power iteration and inverse
iteration, one needs to make sure that the vector space whose vectors are almost pointing in the
same direction becomes orthogonal. This orthogonalization will be done with the QR factorization,
from which we obtain an orthogonal base, Q.

As an example from using power iteration we obtain Qp from,

Kp = QpR.

So the Krylov subspace using power iteration would have the following structure

KN = 〈b, Ab,A2b, . . . , AN−1b〉 = 〈q1, q2, q3, . . . , qN 〉 ⊆ Rn,

where 〈q1, q2, q3, . . . , qN 〉 are the column vectors of Qp [1].

Let us now consider a vector x = Qu that is represented as an element of the generated Krylov
subspace, as a linear combination of the columns of Q.

3.4 Approximating l[A] and L[A]

By setting x = Qu in Equation 7 we get:

A>AQu = σ2Qu.

We multiply both sides with Q> from the left and we will end up with

(AQ)>AQu = σ2u.

By setting Bl = AQ we are left with the eigenvalue problem

B>l Blu = σ̂2u, (10)

where σ̂ is an approximation to σ.

Even though Bl is a rectangular matrix with dimensions (n×N), this will not be a problem. This
is because we form B>l Bl which makes it a square matrix and we can find the eigenvalues. The
dimension will be (N ×N) which is the desired result because N << n.

Also, because the matrix B>l Bl that we form is symmetric positive semi definite, we know that

0 ≤ l[A] ≤ L[A].

With this inequality in mind we want to use power iteration to find L[A] and shifted inverse iteration
to find l[A], this is true for any non-singular matrix that we look at.

8

THEORY

3.5 Approximating m[A] and M [A]

By setting x = Qu in Equation 8 and multiplying with Q> from the left we get,

(A> +A)

2
Qu = µQu

Q>(A> +A)Q

2
u = µu.

By setting Bm = Q>AQ we get

(B>m +Bm)

2
u = µ̂u, (11)

where µ̂ is an approximation to µ.

Here Bm is a square matrix instantly after the multiplications with dimension (N × N) which
is again the desired result we are looking for because N << n.

One reason why it is important to obtain the values for m[A] and M [A] is because they are known
as the lower and upper logarithmic norms of A, see [6] for an introduction to logarithmic norms.
The logarithmic norm has many applications in differential equations, and a survey of its most
important applications is found in [7].

One particular application is the recent link to stiffness. Thus stiffness can be assessed in terms of
the average logarithmic norm

mavg =
(m[A] +M [A])

2
,

see [8] for details.

The average logarithmic norm requires that both m[A] and M [A] are computed. One of the
motivations for this thesis is that it is generally expensive to compute m[A] and M [A] to full
accuracy, as they technically require that we solve eigenvalue problems for matrices of the same
dimension as A.

However, as stiffness does not call for more than an estimate of the average logarithmic norm,
it is of interest to develop cheap techniques that allow m[A] and M [A] to be estimated to an
accuracy of around two digits. If this can be achieved at low cost, stiffness can be assessed along
the solution of an ODE, without causing the integration to slow down too much.

9

THEORY

Now that the matrix is only symmetric instead of symmetric positive semi definite the inequality
from the previous section changes to

−∞ < m[A] ≤M [A] <∞.

This fact makes it so in order for the subspace to be accurate, a case by case basis of how the
eigenvalues are located is necessary to have. This can be seen from the following examples:

If the initial matrix is positive definite then we have the same case as for l[A] and L[A], that
being shifted inverse and power iteration respectively.

But if the matrix is negative definite then the roles reverse since M [A] now is whatever eigenvalue
is closest to zero and if we use power iteration to span that subspace then it will not be accurate.

The estimations we get from Equations 10 and 11 are the approximations to the exact values we
are trying to obtain. These two eigenvalue problems can be solved by direct computation, this
because of their reduced size. To get a view of how accurate these approximations truly are we
compare the result of the approximate value σ̂ to the exact value σ by forming the relative error

e =
σ̂ − σ
σ

, (12)

and the same goes for µ and µ̂ .

10

THEORY

3.6 The symmetric case

Before any assumptions are made, consider the fact that the eigenvectors of a matrix A and its
inverse A−1 are the same. To show this begin with an eigenvalue problem

Ax = λx,

where A is invertible. By multiplying both sides with A−1 and 1
λ , this works because we know that

A−1 exists and that λ 6= 0, so we obtain

A−1x =
1

λ
x.

As an example, assume now that the initial matrix is symmetric positive definite. This means that
the quantities we are searching for are all positive. None of the eigenvalues can be equal to zero due
to A being non-singular. Hence we can use both power and inverse iteration without any trouble.

With A being symmetric, finding the largest/smallest eigenvalues from the Equations 5 and 6 now
changes. The left hand sides of both equations now simplify to A (Equation 6 simplifies because of
the square root). So the new problem for this case is to approximate the largest/smallest eigenvalue
of A which is exactly what our methods do, so the two eigenvalue problems coincide.

Also, the case of when the matrix is skew-symmetric works almost in the same way as the symmetric
case except that Equation 6 is always the zero matrix.

So the subspaces we create in order to estimate the desired vectors are very accurate and this
is shown in the result.

3.7 The indefinite case

To find estimates for L[A] and l[A] is no issue for the indefinite case. This because the matrix we
form for these quantities will be symmetric positive semi definite so the eigenvalues will be real and
non-negative. And we know from before we use power and shifted inverse iteration respectively to
find the estimates.

But what happens for M [A] and m[A]?

First, the matrix that we construct is at least symmetric so the eigenvalues are real. Imagine now
that we have a matrix whose smallest eigenvalue is of the magnitude −1010 and largest eigenvalue of
magnitude 105. If we use power iteration then the subspace will be based on the largest eigenvalue
in absolute value, i.e | − 1010|.

The question remains, how does one find a good subspace to estimate the eigenvalue at 105. In
order to find this eigenvalue we would need to use inverse iteration with a shift that is close to this
eigenvalue of interest. If we do not get a shift that is close enough then the span of the subspace
will not be accurate. Simply setting the shift to zero as is done for our experiments will not work
in this case.

11

DISCUSSION

4 Discussion

The results of this thesis are very promising. The matrices that we observed had special properties,
but it gives an idea of how it would work for general matrices. We saw what happens for
positive/negative definite matrices, matrices with large entries, singular matrices and non-symmetric
matrices. These matrices can be seen as test data, and we know the theory behind these matrices,
thus making it possible to interpret the result and predict their behaviour. This makes it easier to
understand the outcome and find any anomalies that do not fit the pattern.

Setting the tolerance to two correct digits might seem like a poor choice, but the idea behind
this method is for it to function as fast and cheap as possible. Speed is preferred over accuracy.
This is supposed to be a method that could be used before a complex main method initiates. The
measuring of stiffness for differential equations is a good example, because the estimations of m[A]
and M [A] determines whether the main method should be continued or stopped.

This method could be used multiple times for different main methods that require the estimations
of the quantities in multiple time steps or iterations. And one normally only wants a rough idea
of how stiff the differential equation is. If accuracy was the main purpose then it would require a
lot of work for each time step or iteration which could possibly add up to be more work finding an
estimate to these quantities than it would be to perform the main method itself.

As can be seen from the result, for some matrices we get both speed and accuracy. For very
low dimensions of the subspaces, which do not require that much work, we obtain a surprisingly
high accuracy. For an efficient and smooth algorithm more work has to be done, as we will talk
about in the next section.

When the kind of matrix whose norms we are trying to estimate is unknown, and it happens
to be symmetric or skew-symmetric, we know that this method is a good candidate to use. So
instead of this method being used for general matrices, perhaps it should only be used on a subset
containing symmetric and skew-symmetric matrices. Because it is here that the method shows its
potential. The main purpose of this thesis was still to only test this method and see the result, not
to compare to others.

The size of the selected problems that we have been working with is to test them on a smaller
scale and then increase the dimensions, because if it is not working here then it will surely not work
for larger dimensions. The largest dimension that we were working with was n = 300. For sparse
matrices we could see a much higher dimension being possible. When we are working with n = 300
we can use direct methods without any problems because modern computers with multiple cores
can compute it with ease. This enables us to verify and assess the algorithm.

12

DISCUSSION

Two already existing commands in Matlab that were used are eig and backslash operator.
The backslash operator will definitely not be used for larger problems due to it requiring a lot
of work and ruining sparsity. The command eig is only used in the testing of this algorithm. This
served as a comparison to see whether the output from the algorithm was close to the exact value.
If the results were accurate, the algorithm can be initiated for larger problems without knowing
the exact eigenvalues of the matrix A.

Something that has not been brought up yet, but still was developed in the algorithm is an adaptive
variant of this method. It is rather basic but it shows how this could be used or combined with
already existing main methods.

Right now a tolerance can be set and when the error is below this threshold the program terminates
and returns when the threshold was achieved and at what accuracy. As an example, here is the
output from the adaptive method for approximating L[T] and M [T] when the matrix T (see Results
for its definition) has dimensions 300× 300.

The given tolernace is tol = 1.000000e-04.
L has been approximated at N = 106
With the error -9.308016e-05.
M has been approximated at N = 2
With the error 3.629698e-05.

The reason not much time was spent on improving the adaptive method is because there is always
room for improvement when dealing with adaptive methods and developing an advanced one was
not the primary focus of this study.

13

DISCUSSION

4.1 Future work

In order for this method to be applicable to very large problems in the future, there are a few things
that need to be researched and integrated for the method to function as efficiently as possible for
any given matrix.

First and foremost a more general approach to finding the shift for inverse iteration of matrices
without a known exact value of the eigenvalues of A is needed, to make sure that the subspaces
that we generate are accurate. Take the example of the indefinite matrix as we saw before, whose
smallest eigenvalue is of the magnitude −1010 and largest eigenvalue of magnitude 105. In order to
find the eigenvalue 105 shifted inverse iteration must be used and for it to span a good subspace,
then we need the shift to be close to the eigenvalue at 105. So with a method or a theorem, maybe
in conjunction with Gershgorin Circle Theorem, finding a good shift would be required.

Secondly, general improvements to the structure of the code could be made. Right now it requires
the user to manually type in the type of the matrix, instead of the algorithm determining this
automatically. Also the algorithm only returns the quantities in a specific way. This made obtaining
the plots of the results easy in our case. But this might have to be changed depending on what
result the user is after.

Here is also where the adaptive method should be further researched. All it does currently is
to check if the error is smaller than a given tolerance. We want the program to be able to look at
the data the same way as we would look at a graph and make smart decisions about when the size
of the Krylov space is sufficient and terminate the running algorithm and present the results.

When the threshold is reached one can take a set of data points surrounding this point of interest
and compare the differences between them to see how the error behaves as we go forward in time
but also as we move backwards to the previous data points. Here one can also check the tangent
lines at these data points to get a better understanding of what the graphs curvature looks like and
decide whether or not the algorithm should continue.

And the final point is to make sure A is never formed explicitly. In the algorithm we form A,
because of the small size of the dimension of our experiments, which should be avoided for larger
dimensions. So a black box method should be used whenever A is used in a operation, which can be
done with a matrix-vector multiplication through all the steps were A is used within the algorithm.

Also it is worth mentioning that there are exceptional cases, such as nilpotent matrices, that
have not been accounted for in the algorithm because of their special structure. There are more of
these cases that could be an obstacle for the algorithm, but the focus was mainly on the structures
that were observed.

14

CONCLUSION

5 Conclusion

The main purpose of this thesis was to investigate how viable this algorithm would be to estimate
extreme values of quadratic forms. An accuracy of at least two digits is desired and from the results
we see that this is indeed very possible. It all depends on the conditions of the certain problem.

For symmetric and skew-symmetric matrices we can definitely see a plausible chance that this
method would be used in order to find the norms of a matrix instead of using different algorithms.
A two digit accuracy could be achieved by using a subspace with two to six vectors. Both test
matrices had the dimensions 300 × 300. And the small amount of work required to project this
problem down to a small scale like that makes it very lucrative.

When the symmetry breaks, as happened with the case of the linear combination of T and S,
it shows how even a small disturbance can affect the result. The plots using inverse iteration show
that by just adding 0.1S to T , the amount of correct digits that the estimates could obtain went
from twelve to six. Thus, the span of the subspace changed for the worse and failed to locate the
vectors as well as the previous subspace did.

The result from the matrices K0 (see figure 15) and K10 (see figure 16) are slightly odd though, the
sudden decay when six vectors are used is both good and bad. The negative part is that six vectors
are required to estimate a 20 × 20 problem. But these two matrices are very special, with their
elements being very large and the lack of symmetry makes it difficult to quickly get an accurate
subspace. The positive part is that when seven vectors are used the estimates are really accurate.

Even though we are looking at strict cases in this thesis, if further development and research
were conducted on this topic, it could be used for general large problems. This method definitely
has potential.

15

RESULTS

6 Results

First we have two matrices, S and T . These two Toeplitz matrices arise in Finite Difference
methods, where S and T are both used in order to approximate the first and second derivative
respectively. In differential equations originating from chemistry, the matrix T represents diffusion
while S represents convection.

So let us begin with the matrix, S defined below as

S =


0 1

−1
. . .

. . .
. . .

. . . 1
−1 0

 .

S is a skew-symmetric matrix with interesting properties. If we consider the two matrices we are
going to form, S>S and (S+S>)/2, then (S+S>)/2 = 0 due to the fact that it is skew-symmetric.
Thus making it redundant to bring up the results for M [A] and m[A]. Another fact about S is that
the non-zero eigenvalues are complex. This is because of its skew-symmetric structure and that all
the elements in the matrix are real.

Assuming the dimension of A is n, where n is an even number, then there will be n
2 conjugate

eigenvalue pairs. If A has dimension n+1 instead, this means that the matrix still has n
2 conjugate

eigenvalue pairs, but there will be an additional eigenvalue without a pair that will be equal to
zero. For S>S to be singular then S has to be singular too. Thus we know that the matrices S
and S>S are singular when the dimension is odd and non-singular when the dimension is even.

Also, one does not have to fear about the imaginary part of the eigenvalues. This because the
matrix S>S is symmetric singular positive semi definite for odd dimensions and symmetric positive
definite for even dimensions, so all the eigenvalues are real and non-negative.

The following two examples are when S has a dimension of 300×300 so it is non-singular. Otherwise
we would have just obtained the result of L[A] due to the fact there is an eigenvalue equal to zero,
which is the value l[A] would attain.

16

RESULTS

Figure 1: The relative error for approximating the constant l[S] with dimension 300×300 based on the size of the Krylov space.
The decay is rapid and already after two iterations we have two correct digits. Close to machine precision after N = 8. Shifted
inverse was used here because we are trying to find the smallest eigenvalue of a positive definite matrix. The dimension was
even so the matrix is non-singular. Again using shifted inverse iteration, here with the shift = 0 due to the non-singularity.

Figure 2: The relative error for approximating the constant L[S] with dimension 300 × 300 based on the size of the Krylov
space. The decrease in error is quick at the start and the but the speed almost evens out at around N = 50 with the error
10−4. We have two correct digits after ten iterations. This was done with power iteration due to the fact that we are looking
for the maximum value.

17

RESULTS

The matrix T is a symmetric negative definite matrix. This means that all the eigenvalues are real
and non-positive.

T =


−2 1

1
. . .

. . .
. . .

. . . 1
1 −2


Because T is negative definite and therefore non-singular, we see that shifted inverse iteration will
yield a result instead of a warning message. T is now symmetric instead of being skew-symmetric
so we have four different plots for T with dimension 300× 300.

Figure 3: The relative error for approximating the constant L[T] with dimension 300 × 300 based on the size of the Krylov
space. Quick decrease until N = 4 when we obtain a constant error of the size 10−7. Two digit accuracy after three iterations.
Shifted inverse was used with the shift = 0, this was not an issue because T is not singular.

Figure 4: The relative error for approximating the constant L[T] with dimension 300 × 300 based on the size of the Krylov
space. Rapid decay until N = 15 when the speed evens out with an error of 10−3. Two digit accuracy after six iterations. This
was done with power iteration because we are looking for the highest value in magnitude.

18

RESULTS

Figure 5: The relative error for approximating the constant m[T] with dimension 300 × 300 based on the size of the Krylov
space. Rapid decay until N = 15 when the speed evens out with an error of 10−3. Two digit accuracy after six iterations. This
was done with power iteration because we are looking for the lowest value in magnitude.

Figure 6: The relative error for approximating the constant M [T] with dimension 300 × 300 based on the size of the Krylov
space. Quick decay until N = 5 when we almost get machine precision. Two digit accuracy instantly. This was done with
shifted inverse iteration because we are looking for the largest value of all the negative eigenvalues. A shift = 0 was used because
it is not singular.

19

RESULTS

We can also form linear combinations out of these two matrices, γS + βT . Linear combinations
are important because they show what happens when symmetry breaks. An example of this is
when we have both diffusion and convection in a system. We take a small γ to show the difference
between the previous and the current result, in order to see how much it actually changes for a
small disturbance.

T + 0.1S =


−2 1.1

0.9
. . .

. . .
. . .

. . . 1.1
0.9 −2


The following examples are created with the matrix T + 0.1S, which is still negative definite.

Figure 7: The relative error for approximating the constant l[T +0.1S] based on the dimension of the Krylov space. Quick decay
until the constant error of 10−7 has been achieved after seven iterations. We have a two digit accuracy after two iterations.
shifted inverse iteration was used with a shift = 0.

Figure 8: The relative error for approximating the constant L[T + 0.1S] based on the dimension of the Krylov space. Rapid
decay until N = 20 when the decay attains a more steadily decline wit the error of 10−3. We have a two digit accuracy after
seven iterations. power iteration was used to obtain the result.

20

RESULTS

Figure 9: The relative error for approximating the constant m[T + 0.1S] based on the dimension of the Krylov space. Quick
decay until N = 10 where it stabilizes around three digit accuracy. Two digit accuracy after five iterations. power iteration
was used to obtain the result.

Figure 10: The relative error for approximating the constant M [T + 0.1S] based on the dimension of the Krylov space. The
decay is rapid and stables out at 10−6 where it becomes constant when N = 7. Two digit accuracy already after one iteration.
inverse iteration with a shift = 0 was used.

21

RESULTS

We also consider Jan Verwer’s air pollution model from the Bari Test Set [4], [5]. This is a large
chemical reaction kinetics problem consisting of 20 equations with 25 widely varying reaction rate
constants. The singular Jacobian can be written

J(x) = A ·K · (R0 +R1x),

where A ∈ R20×25 is an incidence matrix of the reactions and K ∈ R25×25 is a diagonal matrix of
reaction rate constants. As the elemental reactions are of the form rk(x) = xi or rk = xixj (with
i 6= j), it holds that

gradxr(x) = R0 +R1x,

where R0 ∈ R25×20 is a constant matrix, and R1 ∈ R25×20×20 is a 3-tensor, implying that R1x ∈
R25×20.
Thus the Jacobian is J(x) = J(0) + (J(x)− J(0)), where only J(x)− J(0) = AKR1x contributes
to non-linearity. The Jacobian is dominated by J(0) = AKR0.

We test the computation of the values for Equation 1 - 4 both for the initial condition for the
solution vector x at time t = 0 (The matrix K0, see figure 15) and at t = 10 (The matrix K10, see
figure 16).

Because of the law of mass conservation and the nature of our matrices, there will be an eigenvalue
equal to zero. Since K0 and K10 are singular then l[K0] and l[K10] will be equal to zero. For L[K0]
and L[K10] we use power iteration because these quantities are the largest in absolute value. If
we look at the matrix K0, because no method for obtaining a shift was developed for this thesis,
it is hard to find both of the values of m[K0] and M [K0]. Power iteration will find the largest
one in absolute value but the other one needs to be found with shifted inverse iteration, which is

not possible with our algorithm. By using eig for the matrix
K>0 +K0

2 we found that the largest
eigenvalue in absolute value was m[K0]. The same thing applied to the matrix K10.

Thus, only estimations for L[A] and m[A] are presented in the results, both obtained by using
power iteration.

22

RESULTS

The following two examples are obtained when using the matrix K0 from figure 15.

Figure 11: The relative error for approximating the constant L[K0] based on the dimension of the Krylov space. The decrease
in error is slow in the beginning but after N = 6, when we have two digit accuracy, the decay drops substantially after, to
machine precision in fact. Power iteration was used here.

Figure 12: The relative error for approximating the constant m[K0] based on the dimension of the Krylov space. The decrease
in error is slow in the beginning but after N = 6, when we have two digit accuracy, the decay drops substantially after, to
machine precision again. Obtained using power iteration.

23

RESULTS

The following two examples are obtained when using the matrix K10 from figure 16.

Figure 13: The relative error for approximating the constant L[K10] based on the dimension of the Krylov space. The decrease
in error is slow in the beginning but after N = 6, when we have two digit accuracy, the decay drops substantially after, to
machine precision again. Power iteration was used here.

Figure 14: The relative error for approximating the constant m[K10] based on the dimension of the Krylov space. The decrease
in error is slow in the beginning but after N = 6, when we have two digit accuracy, the decay drops substantially after, to
machine precision again. Power iteration was used here.

24

APPENDICES

7 Appendices

Figure 15: Displays the sparse pattern of the matrix, K0 from Jan Verwer’s air pollution model when t = 0. The non zero
elements are very different in size, ranging from 10−3 to 1011.

Figure 16: Displays the sparse pattern of the matrix, K10 from Jan Verwer’s air pollution model t = 10. The non zero elements
are very different in size, ranging from 10−3 to 1011.

25

APPENDICES

8 Code structure

This Matlab code is constructed with six different m-files. Four of them are for the different
quantities which we are trying to estimate. The two remaining files are for displaying information
and to set certain parameters.

There were a few other m-files that were used to aid the six main m-files, but none of them
will be presented in this thesis. ’Eigestimate.m’ was one of these help files. Its purpose was to find
an approximation to an eigenvalue for a matrix A. This was used to help with obtaining a good
shift for shifted inverse iteration. It found an interval using the Gershgorin circle theorem where
the desired eigenvalues would be contained in. Also there was an m-file called ’Matrix.m’ that was
used to initiate the rest of the m-files with a matrix. The matrix was either taken as input or
constructed within.

These six m-files will be displayed down below, from the top of the hierarchy to the bottom.

This is the m-file ’Krylov.m’, the execution file.

1

2

3 Program that c a l l s Display and p l o t s a l l the de s i r ed r e s u l t s . In here you
4 c on t r o l what kind o f output we wanna see with d i f f e r e n t parameters
5 s p e c i f y i n g how Display should re turn the r e s u l t .
6

7 Written (c) S Hal lborn 21−05−2017
8 %}
9

10 %User can s p e c i f y the de s i r ed dimensions , n dim o f the input matrix and N
11 %the s i z e o f the kry lov space .
12 n = 300 ;
13 N = 150 ;
14

15 %number o f i t e r a t i o n s , (graphs on the window)
16 i t e r a t i o n s = 1 ;
17

18 % Typematrices : 1 = PD, −1 = ND, 0 = ID , s p e c i f i e d by the use
19 Typematrix = −1;
20

21

22 % l [A] : lType = 0 , L [A] : lType = 1 , m[A] : mType = 0 or M[A] : mType = 1
23 %(va lue s that we want to obta in)
24 lType = 1 ;
25 mType = 0 ;
26

27 % nType = 0 i s p l o t t i n g the e r r o r vs S i z e N o f Krylov matrix
28 % nType = 1 i s p l o t t i n g the e r r o r vs S i z e n o f A
29 % nType = 2 i s g i v e s the approximations f o r a g iven matrix A
30 %using adapt ive methods .
31 nType = 0 ;
32

33 % to l e r an c e f o r adapt ive method .
34 t o l = 0 . 0 1 ;
35

26

APPENDICES

36 % Sh i f t used in s h i f t e d i nv e r s e i t e r a t i o n
37 s = 0 ;
38

39 % Calcu la t ing and d i sp l ay i ng Maverage
40

41 [a1 , l i t t l em] = msestimator (Typematrix , Matrix (n , n) , rand (n , 1) ,N, s) ;
42 [a2 , bigm] = Mestimator (Typematrix , Matrix (n , n) , rand (n , 1) ,N, s) ;
43

44 mavg = (l i t t l em + bigm) /2
45

46 % Cosmetic f o r the output
47

48 i f lType == 0
49 l f o n t = ’ l [A] ’ ;
50 e l s e
51 l f o n t = ’L [A] ’ ;
52 end
53

54 i f mType == 0
55 mfont = ’m[A] ’ ;
56 e l s e
57 mfont = ’M[A] ’ ;
58 end
59

60 % Plo t t i ng beg ins
61

62 i f nType == 1
63

64 f o r j =1: i t e r a t i o n s
65 [x , l , k] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s) ;
66 semi logy (x , abs (l))
67 hold on
68 g r id on
69 t i t l e ([l f on t , ’ : n−max = ’ , num2str (n) , ’ N−max = ’ , num2str (N)])
70 y l ab e l (’ Re l a t i v e e r ro r , e ’)
71 x l ab e l (’ Dimension o f A, n ’)
72 end
73

74

75 f i g u r e
76 f o r b =1: i t e r a t i o n s
77 [x , l , k] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s) ;
78 semi logy (x , abs (k))
79 hold on
80 g r id on
81 t i t l e ([mfont , ’ : n−max = ’ , num2str (n) , ’ N−max = ’ , num2str (N)])
82 y l ab e l (’ Re l a t i v e e r ro r , e ’)
83 x l ab e l (’ Dimension o f A, n ’)
84 end
85

86 e l s e i f nType == 0
87

88 f o r j =1: i t e r a t i o n s
89 [x , l , k] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s) ;
90 semi logy (x , abs (l))
91 hold on
92 g r id on
93 t i t l e ([l f on t , ’ : n−max = ’ , num2str (n) , ’ N−max = ’ , num2str (N)])
94 y l ab e l (’ abso lu t e e r ror , ’)

27

APPENDICES

95 x l ab e l (’ Dimension o f the Krylov matrix , N ’)
96 end
97 f i g u r e
98 f o r b =1: i t e r a t i o n s
99 [x , l , k] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s) ;

100 semi logy (x , abs (k))
101 hold on
102 g r id on
103 t i t l e ([mfont , ’ : n−max = ’ , num2str (n) , ’ N−max = ’ , num2str (N)])
104 y l ab e l (’ Re l a t i v e e r ro r , e ’)
105 x l ab e l (’ Dimension o f the Krylov matrix , N ’)
106 end
107

108 e l s e
109 [x , l , k , lada ,mada] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s) ;
110 end
111

112 end

28

APPENDICES

This is the m-file ’Display.m’, the display file.

1

2 f unc t i on [x , l , k , lada ,mada] = Display (Typematrix , nType , lType ,mType , n ,N, to l , s)
3

4 %{
5 Function to d i sp l ay the r e s u l t s from the 4 es t imator f unc t i on s .
6

7 Inputs :
8

9 Typematrix − Type o f A, −1 = negat ive d e f i n i t e , 1 = po s i t i v e d e f i n i t e ,
10 0 = i n d e f i n i t e .
11

12 nType − Changes the output layout ;
13 nType = 0 i s p l o t t i n g the e r r o r vs S i z e N o f Krylov matrix
14 nType = 1 i s p l o t t i n g the e r r o r vs S i z e n o f A
15 nType = 2 i s g i v e s the approximations f o r a g iven matrix A
16 us ing ana adapt ive method .
17

18 lType − The de s i r ed l /L [A] quant i ty (va lue s that we want to obta in) ;
19 l [A] : lType = 0
20 L [A] : lType = 1
21

22 mType − The de s i r ed m/M [A] quant i ty (va lue s that we want to obta in) ;
23 m[A] : mType = 0
24 M[A] : mType = 1
25

26 n − dimension o f the i n i t i a l matrix A.
27 N − Dimension o f the kry lov space
28 t o l − Given t o l e r an c e to determine when the adapt ive method should
29 terminate .
30 s − s h i f t f o r i nv e r s e i t e r a t i o n
31

32 Outputs :
33

34 x − vec to r that i s used as a x−ax i s f o r the p l o t t i n g l a t e r
35 l − l i s t o f the e r r o r s from es t imat ing l [A] or L [A] depending on the user
36 k − l i s t o f the e r r o r s from es t imat ing m[A] or M[A] depending on the user
37 lada − The e r r o r from es t imat ing l [A] or L [A] with the adapt ive method .
38 mada − − The e r r o r from es t imat ing m[A] or M[A] with the adapt ive method .
39

40

41 Written (c) S Hal lborn 21−05−2017
42 %}
43

44

45

46

47 l = [] ;
48 k = [] ;
49 %Typematrix only shows the name o f the matrix in the p l o t
50 % This block a c t i v a t e s i f we want l i t t l e n on the x−ax i s
51

52 i f nType == 1
53

54 % Disp lays the r e l a t i v e e r r o r based on the dimension o f A
55

56 x = 1 : 1 : n ;

29

APPENDICES

57 % n ca l c u l a t i o n s are made
58 f o r b = 1 : n
59 i f lType == 1
60 lada = Lest imator (Typematrix , Matrix (b , n) , rand (b , 1) ,N) ;
61 e l s e
62 lada = l s e s t ima t o r (Typematrix , Matrix (b , n) , rand (b , 1) ,N, s) ;
63 end
64 i f mType == 1
65 mada = Mestimator (Typematrix , Matrix (b , n) , rand (b , 1) ,N, s) ;
66 e l s e
67 mada = msest imator (Typematrix , Matrix (b , n) , rand (b , 1) ,N, s) ;
68 end
69 l = [l ; lada] ;
70 k = [k ;mada] ;
71 end
72 e l s e i f nType == 0
73

74 % Disp lays the r e l a t i v e e r r o r based on the dimension o f the Krylov space
75

76 x = 1 : 1 :N;
77 % N ca l c u l a t i n s are made
78 f o r b = 1 :N
79 i f lType == 1
80 lada = Lest imator (Typematrix , Matrix (n , n) , rand (n , 1) ,b) ;
81 e l s e
82 lada = l s e s t ima t o r (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;
83 end
84 i f mType == 1
85 mada = Mestimator (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;
86 e l s e
87 mada = msest imator (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;
88 %y1 = mestimator (Typematrix , Matrix (b , n) , rand (b , 1) ,N) ;
89 end
90 l = [l ; lada] ;
91 k = [k ;mada] ;
92

93 end
94

95 e l s e
96

97 % Disp lays the r e s u l t o f the adapt ive method , i . e when the t o l e r na c e
98 % has been achieved .
99

100 lada = 100 ;
101 mada = 100 ;
102 va r i ab l e = 0 ;
103

104 f p r i n t f (’The given t o l e r na c e i s t o l = %i .\n ’ , t o l)
105

106 x = 1 : 1 :N;
107 % N ca l c u l a t i n s are made
108 f o r b = 1 :N
109 i f abs (lada) >= to l
110

111 i f lType == 1
112 lada = Lest imator (Typematrix , Matrix (n , n) , rand (n , 1) ,b) ;
113 va r i ab l e = ’L ’ ;
114 e l s e
115 lada = l s e s t ima t o r (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;

30

APPENDICES

116 va r i ab l e = ’ l ’ ;
117 end
118 e l s e
119 di sp ([num2str (v a r i ab l e) , ’ has been approximated at N = ’ , num2str (b−1)])
120 f p r i n t f (’With the e r r o r %i .\n ’ , lada)
121 break
122 end
123 end
124

125 f o r b = 1 :N
126 i f abs (mada) >= to l
127

128 i f mType == 1
129 mada = Mestimator (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;
130 va r i ab l e = ’M’ ;
131 e l s e
132 mada = msestimator (Typematrix , Matrix (n , n) , rand (n , 1) ,b , s) ;
133 va r i ab l e = ’m’ ;
134 end
135

136 e l s e
137 di sp ([num2str (v a r i ab l e) , ’ has been approximated at N = ’ , num2str (b−1)])
138 f p r i n t f (’With the e r r o r %i .\n ’ ,mada)
139 break
140 end
141 end
142 end
143

144 end

31

APPENDICES

This is the m-file ’lsestimate.m’, the l[A] estimator file.

1

2 f unc t i on [l e r r] = l s e s t ima t o r (˜ ,A, x0 ,N, s)
3 %{
4 Function to es t imate the e r r o r between the t h e o r e t i c a l and p r a c t i c a l va lue
5 o f the quant i ty l [A] .
6

7 Inputs :
8

9 A − The input
10 x0 − randn (n , 1) i n i t i a l vec to r
11 N − Dimension o f the kry lov space
12 s − s h i f t f o r i nv e r s e i t e r a t i o n
13

14 Outputs :
15

16 l e r r − r e l a t i v e e r r o r between l [A] and the p r a c t i c a l va lue
17

18

19 Written (c) S Hal lborn 21−05−2017
20 %}
21

22

23

24 %th e o r e t i c a l value , the use o f e i g () o f t h i s b ig matrix can be j u s t i f i e d
25 % by that i t i s only done in a t e s t program l i k e t h i s . In the f i n i s h e d
26 % product we never even form m, because we w i l l r e l y on the r e s u l t o f the
27 % code .
28 m = min(sq r t (abs (e i g (A’∗A)))) ;
29 l e x = m;
30

31 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
32 i f abs (10ˆ(−16)) >= abs (m)
33 di sp (’ Trying to approximate 0 ’)
34 l e r r = 0 ;
35

36 e l s e
37

38 %Pra c t i c a l s h i f t , e s t imated with e i g e s t ima t e)
39 [m,M] = e i g e s t ima t e (A) ;
40 %Sh i f t
41 L = s ∗m;
42 s h i f t = −1;
43

44 % Sh i f t i n g the matrix A and c r e a t i n g a new matrix A2 .
45 A2 = A − s h i f t ∗L∗ eye (s i z e (A)) ;
46

47 X = [] ;
48 x i = x0 ;
49 % A2 i s used to form the Krylov matrix , X
50 % sh i f t e d i nv e r s e i t e r a t i o n i s always used f o r l [A] , f o r any A.
51 f o r i =1:N
52 x i = A2\ x i ;
53 x i = x i /norm(x i) ;
54 X = [X x i] ;
55 end
56

32

APPENDICES

57 % An orthogona l base , Q i s obta ined from the kry lov matrix
58 [Q,R] = qr (X, 0) ;
59

60 % Our new matrix AQ i s formed , with a l o t lower dimension than A.
61 AQ = A∗Q;
62 aHa = AQ’∗AQ;
63

64 % The p r a c t i c a l va lue i s obta ined .
65 l p r a c = min (sq r t (abs (e i g (aHa)))) ;
66

67 % Re la t i v e e r r o r i s obta ined and i s outputted .
68 l e r r = (lp ra c − l e x) / l ex ;
69 end
70 end

33

APPENDICES

This is the m-file ’Lestimator’, the L[A] estimator file.

1

2 f unc t i on [Lerr] = Lest imator (˜ ,A, x0 ,N)
3

4 %{
5 Function to es t imate the e r r o r between the t h e o r e t i c a l and p r a c t i c a l va lue
6 o f the quant i ty L [A] .
7

8 Inputs :
9

10 A − The input matrix
11 x0 − randn (n , 1) i n i t i a l vec to r
12 N − Dimension o f the kry lov space
13

14 Outputs :
15

16 Lerr − r e l a t i v e e r r o r between L [A] and the p r a c t i c a l va lue
17

18

19 Written (c) S Hal lborn 21−05−2017
20 %}
21

22

23 % Step 1 Create d e t e rm i n i s t i c seed which i s ” i r r e g u l a r ”
24 %{
25 D = s i z e (A, 1) ;
26 x = (1 :D) ’/D;
27 uno = ones (D, 1) ;
28 y = x − uno /2 ;
29 x0 = uno − y .ˆ2 − y + s in (7∗ pi ∗x) ;
30 %}
31

32 %th e o r e t i c a l value , the use o f e i g () o f t h i s b ig matrix can be j u s t i f i e d
33 % by that i t i s only done in a t e s t program l i k e t h i s . In the f i n i s h e d
34 % product we never even form m, because we w i l l r e l y on the r e s u l t o f the
35 % code .
36 M = max(sq r t (e i g (A’∗A))) ;
37 Lex = M;
38

39 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
40 i f abs (10ˆ(−16)) >= abs (M)
41 di sp (’ Trying to approximate 0 ’)
42 Lerr = 0 ;
43

44 e l s e
45

46

47 X = [] ;
48 x i = x0 ;
49 % power i t e r a t i o n i s always used f o r l [A] , f o r any A.
50 f o r i =1:N
51 x i = A∗ x i ;
52 x i = x i /norm(x i) ;
53 X = [X x i] ;
54 end
55

56 % An orthogona l base , Q i s obta ined from the kry lov matrix

34

APPENDICES

57 [Q,R] = qr (X, 0) ;
58

59 % Our new matrix AQ i s formed , with a l o t lower dimension than A.
60 AQ = A∗Q;
61 aHa = AQ’∗AQ;
62

63 % The p r a c t i c a l va lue i s obta ined .
64 Lprac = max(sq r t (e i g (aHa))) ;
65

66 % Re la t i v e e r r o r i s obta ined and i s outputted .
67 Lerr = (Lprac − Lex) /Lex ;
68 end
69 end

35

APPENDICES

This is the m-file ’msestimator.m’, the m[A] estimator file.

1 f unc t i on [merr , mprac] = msestimator (Typematrix ,A, x0 ,N, s)
2 %{
3 Function to es t imate the e r r o r and the p r a c t i c a l e s t imat i on o f
4 $m[A] $ depending on what matrix we have as input .
5

6 Inputs :
7

8 A − The input matrix
9 Typematrix − Type o f A, −1 = negat ive d e f i n i t e , 1 = po s i t i v e d e f i n i t e ,

10 0 = i n d e f i n i t e .
11 x0 − randn (n , 1) i n i t i a l vec to r
12 N − Dimension o f the kry lov space
13 s − s h i f t f o r i nv e r s e i t e r a t i o n
14

15 Outputs :
16

17 mprac − Estimated value o f m[A]
18 merr − r e l a t i v e e r r o r between m[A] and mprac
19

20 Written (c) S Hal lborn 21−05−2017
21 %}
22

23

24

25 % th e o r e t i c a l value , the use o f e i g () o f t h i s b ig matrix can be j u s t i f i e d
26 % by that i t i s only done in a t e s t program l i k e t h i s . In the f i n i s h e d
27 % product we never even form m, because we w i l l r e l y on the r e s u l t o f the
28 % code .
29 mex = min (e i g (He(A))) ;
30

31 % Choose s h i f t (i f needed)
32 X = 0 ;
33 s h i f t = −1;
34 HeA = He(A) ;
35

36 %q = e i g (A) ;
37 %mex = min (q) ;
38 %min(q) ;
39

40 i f Typematrix == −1
41 %For negat ive d e f i n i t e matr i ce s
42

43 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
44 i f abs (10ˆ(−16)) >= abs (mex)
45 di sp (’ Trying to approximate 0 ’)
46 merr = 0 ;
47 mprac = 0 ;
48

49 e l s e
50

51 X = [] ;
52 x i = x0 ;
53

54 % power i t e r a t i o n i s used f o r negatove d e f i n i t e matr i ce s .
55 f o r i =1:N
56 x i = A∗ x i ;

36

APPENDICES

57 x i = x i /norm(x i) ;
58 X = [X x i] ;
59 end
60

61 % An orthogona l base , Q i s obta ined from the kry lov matrix
62 [Q,R] = qr (X, 0) ;
63

64 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
65 QHeAQ = He(Q’∗HeA∗Q) ;
66

67 % The p r a c t i c a l va lue i s obta ined .
68 mprac = min (e i g (QHeAQ)) ;
69

70 % Re la t i v e e r r o r i s obta ined and i s outputted .
71 merr = (mprac − mex) /mex ;
72

73 end
74

75 e l s e i f Typematrix == 1
76

77 % For p o s i t i v t e d e f i n i t e matr i ce s
78

79 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
80 i f abs (10ˆ(−16)) >= abs (mex)
81 di sp (’ Trying to approximate 0 ’)
82 merr = 0 ;
83 mprac = 0 ;
84

85 e l s e
86

87 %Pra c t i c a l s h i f t , e s t imated with e i g e s t ima t e)
88 [m, Minf] = e i g e s t ima t e (A) ;
89 %Sh i f t
90 L = s ∗m;
91

92 % Sh i f t i n g the matrix A and c r e a t i n g a new matrix A2 .
93 A2 = A + s h i f t ∗L∗ eye (s i z e (A)) ;
94

95

96 X = [] ;
97 x i = x0 ;
98 % A2 i s used to form the Krylov matrix , X
99 % sh i f t e d i nv e r s e i t e r a t i o n i s used f o r p o s i t i v t e d e f i n i t e matr i ce s

100 f o r i =1:N
101 x i = A2\ x i ;
102 x i = x i /norm(x i) ;
103 X = [X x i] ;
104 end
105

106 % An orthogona l base , Q i s obta ined from the kry lov matrix
107 [Q,R] = qr (X, 0) ;
108

109 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
110 QHeAQ = He(Q’∗HeA∗Q) ;
111

112 % The p r a c t i c a l va lue i s obta ined .
113 mprac = min (e i g (QHeAQ)) ;
114

115 % Re la t i v e e r r o r i s obta ined and i s outputted .

37

APPENDICES

116 merr = (mprac − mex) /mex ;
117 end
118

119 e l s e
120 % For i n d e f i n i t e matr i ce s
121

122 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
123 i f abs (10ˆ(−16)) >= abs (mex)
124 di sp (’ Trying to approximate 0 ’)
125 merr = 0 ;
126 mprac = 0 ;
127 e l s e
128

129 % Step 2 Create Krylov subspace
130 X = [] ;
131 x i = x0 ;
132

133 % power i t e r a t i o n i s used f o r i n d e f i n i t e matr i ce s .
134 f o r i =1:N
135 x i = A∗ x i ;
136 x i = x i /norm(x i) ;
137 X = [X x i] ;
138 end
139

140 % An orthogona l base , Q i s obta ined from the kry lov matrix
141 [Q,R] = qr (X, 0) ;
142

143 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
144 QHeAQ = He(Q’∗HeA∗Q) ;
145

146 % The p r a c t i c a l va lue i s obta ined .
147 mprac = min (e i g (QHeAQ)) ;
148

149 % Re la t i v e e r r o r i s obta ined and i s outputted .
150 merr = (mprac − mex) /mex ;
151 end
152 end
153 end
154 end

38

APPENDICES

This is the m-file ’Mestimator.m’, the M [A] estimator file.

1

2 f unc t i on [Merr , Mprac] = Mestimator (Typematrix ,A, x0 ,N, s)
3 %{
4 Function to es t imate the e r r o r and the p r a c t i c a l e s t imat i on o f
5 $M[A] $ depending on what matrix we have as input .
6

7 Inputs :
8

9 A − The input matrix
10 Typematrix − Type o f A, −1 = negat ive d e f i n i t e , 1 = po s i t i v e d e f i n i t e ,
11 0 = i n d e f i n i t e .
12 x0 − randn (n , 1) i n i t i a l vec to r
13 N − Dimension o f the kry lov space
14 s − s h i f t f o r i nv e r s e i t e r a t i o n
15

16 Outputs :
17

18 Mprac − Estimated value o f M[A]
19 Merr − r e l a t i v e e r r o r between M[A] and Mprac
20

21

22 Written (c) S Hal lborn 21−05−2017
23 %}
24

25

26

27 %th e o r e t i c a l value , the use o f e i g () o f t h i s b ig matrix can be j u s t i f i e d
28 % by that i t i s only done in a t e s t program l i k e t h i s . In the f i n i s h e d
29 % product we never even form m, because we w i l l r e l y on the r e s u l t o f the
30 % code .
31 M = max(e i g (He(A))) ;
32

33 X = 0 ;
34 s h i f t = −1;
35 HeA = He(A) ;
36

37

38 i f Typematrix == 1
39 % For p o s i t i v e d e f i n i t e matr i ce s
40 Mex = M;
41

42 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
43 i f abs (10ˆ(−16)) >= abs (Mex)
44 di sp (’ Trying to approximate 0 ’)
45 Merr = 0 ;
46 Mprac = 0 ;
47 e l s e
48

49

50 X = [] ;
51 x i = x0 ;
52

53 % power i t e r a t i o n i s used f o r p o s i t i v e d e f i n i t e matr i ce s .
54 f o r i =1:N
55 x i = A∗ x i ;
56 x i = x i /norm(x i) ;

39

APPENDICES

57 X = [X x i] ;
58 end
59

60 % An orthogona l base , Q i s obta ined from the kry lov matrix
61 [Q,R] = qr (X, 0) ;
62

63 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
64 QHeAQ = He(Q’∗HeA∗Q) ;
65

66 % The p r a c t i c a l va lue i s obta ined .
67 Mprac = max(e i g (QHeAQ)) ;
68

69 % Re la t i v e e r r o r i s obta ined and i s outputted .
70 Merr = (Mprac − Mex) /Mex ;
71 end
72

73 e l s e i f Typematrix == −1
74 % For negat ive d e f i n i t e matr i ce s
75

76

77 %th e o r e t i c a l value , the use o f e i g () o f t h i s b ig matrix can be j u s t i f i e d
78 % by that i t i s only done in a t e s t program l i k e t h i s . In the f i n i s h e d
79 % product we never even form m, because we w i l l r e l y on the r e s u l t o f the
80 % code .
81 Mex = max(e i g (He(A))) ;
82

83 % Fa i l s a f e so we can be assured that we don ’ t t ry and approximate 0 .
84 i f abs (10ˆ(−16)) >= abs (Mex)
85 di sp (’ Trying to approximate 0 ’)
86 Merr = 0 ;
87 Mprac = 0 ;
88 e l s e
89

90 %Pra c t i c a l s h i f t , e s t imated with e i g e s t ima t e)
91 [minf ,M] = e i g e s t ima t e (A) ;
92 %s h i f t
93 L = −s ∗M;
94

95 % Sh i f t i n g the matrix A and c r e a t i n g a new matrix A2 .
96 A2 = A − s h i f t ∗L∗ eye (s i z e (A)) ;
97

98

99 X = [] ;
100 x i = x0 ;
101

102 % A2 i s used to form the Krylov matrix , X
103 % sh i f t e d i nv e r s e i t e r a t i o n i s used f o r negat ive d e f i n i t e matr i ce s .
104 f o r i =1:N
105 x i = A2\ x i ;
106 x i = x i /norm(x i) ;
107 X = [X x i] ;
108 end
109

110 % An orthogona l base , Q i s obta ined from the kry lov matrix
111 [Q,R] = qr (X, 0) ;
112

113 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
114 QHeAQ = He(Q’∗HeA∗Q) ;
115 Mprac = max(e i g (QHeAQ)) ;

40

APPENDICES

116

117 % The p r a c t i c a l va lue i s obta ined .
118 Merr = (Mprac − Mex) /Mex ;
119

120 % Re la t i v e e r r o r i s obta ined and i s outputted .
121 M = Mprac ;
122

123 end
124

125 e l s e
126

127 % For i n d e f i n i t e matr i ce s
128 Mex = M;
129

130 i f abs (10ˆ(−16)) >= abs (Mex)
131 di sp (’ Trying to approximate 0 ’)
132 Merr = 0 ;
133 Mprac = 0 ;
134 e l s e
135

136 X = [] ;
137 x i = x0 ;
138

139 % power i t e r a t i o n i s used f o r i n d e f i n i t e matr i ce s .
140 f o r i =1:N
141 x i = A∗ x i ;
142 x i = x i /norm(x i) ;
143 X = [X x i] ;
144 end
145

146 % An orthogona l base , Q i s obta ined from the kry lov matrix
147 [Q,R] = qr (X, 0) ;
148

149 % Our new matrix QHeAQ i s formed , with a l o t lower dimension than A.
150 QHeAQ = He(Q’∗HeA∗Q) ;
151

152 % The p r a c t i c a l va lue i s obta ined .
153 Mprac = max(e i g (QHeAQ)) ;
154

155 % Re la t i v e e r r o r i s obta ined and i s outputted .
156 Merr = (Mprac − Mex) /Mex ;
157 end
158 end
159

160 end
161 end

41

APPENDICES

References

[1] L.N. Trefethen, D.B. Bau. Numerical Linear Algebra, Pages 243-255 SIAM, 1997.

[2] Y.Saad. Iterative Methods For Sparse Linear Systems. 2nd edition, Section 6-7, SIAM, 2003.

[3] G.H.Golub, C.F.V.Loan. Matrix Computations, Pages 208-219, The Johns Hopkins University
Press, Baltimore, Maryland, USA

[4] F. Mazzia, C. Magherini. Test Set for Initial Value Problem Solvers, Pages II-2-1 - II-2-9, ,
Universita degli studi di Bari, Italia,
https://archimede.dm.uniba.it/ testset/report/pollu.pdf

[5] F Mazzia, J. R. Cash, and K. Soetaert. A test set for stiff initial value problem solvers in the
open source software R: Package deTestSet, JCAM 236 (2012), Pages 4119-4131.

[6] Logarithmic norms, Springer Encyclopedia of Applied and Computational Mathematics, Pages
826-830, (2015).

[7] G. Söderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics
46 (2006) Pages: 631-652.

[8] G. Söderlind, L. Jay, M. Calvo. Stiffness 1952–2012. Sixty years in search of
a definition. BIT Numerical Mathematics 55 (2015) Pages: 531–558, SpringerLink
http://link.springer.com/article/10.1007/s10543-014-0503-3

42

	Abstract
	Background
	Black box methods

	Theory
	Power iteration
	Shifted inverse iteration
	Orthogonalization
	Approximating l[A] and L[A]
	Approximating m[A] and M[A]
	The symmetric case
	The indefinite case

	Discussion
	Future work

	Conclusion
	Results
	Appendices
	Code structure
	References

