
ROTATIONAL INVARIANT

NEURAL NETWORKS FOR

PROSTATE CANCER

CLASSIFICATION

JOEL EKELUND

Master’s thesis
2017:E64

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Rotational Invariant
Convolutional Neural Networks

for Prostate Cancer Classification

Author:

Joel Ekelund

Supervisors:

Anders Heyden

Ida Arvidsson

Master’s thesis

Faculty of Engineering
Lund University

Centre for Mathematical Sciences
Mathematics

2017-09-29

ii

Abstract

Prostate cancer was in 2012 the second most common type of cancer for males
globally. To be able to treat prostate cancer in the most effective way it is important
to know how aggressive the cancer is. This aggressiveness is graded using the Gleason
score. The diagnosis is done by pathologists inspecting prostate biopsies, but the
advancement of pattern recognition using Convolutional Neural Networks (CNN)
has made it interesting to try to automate this process.
The data in this thesis is microscopy images of prostatic tissue. These images are
rotation-invariant, meaning that they have the same Gleason grade no matter which
angle they are inspected at. The goal of this thesis is to investigate the possibility
of exploiting this rotation invariance to create a rotation invariant Convolutional
Neural Network for automatic classification.
The rotation invariant CNNs include a rotation of filters, which makes interpolation
an important aspect to investigate. This thesis does that by designing many different
CNNs in a general way that have different sizes of the filters that are to be rotated.
The resulting CNNs show that the filter size does indeed matter, with the smallest
rotated filters that trained the network well were of size 17x17. The lowest resulting
error rate for classification on both the training and validation data was 6.3%. The
lowest error rate for classification on just the validation data was 16.7%, however
the validation data consisted of only 24 images. The conclusion from this was that
making the CNN rotation invariant can be of some interest, and could be investigated
further by optimizing networks for a certain size of rotating filters.

Keywords: Convolutional Neural Networks, rotation invariance, deep learning,
automated Gleason grading.

iii

iv

Acknowledgements

I want to thank my supervisors, Anders Heyden and Ida Arvidsson, for providing
guidance and helping me focus the work to achieve the end-result. I also want to
thank anyone with whom I have ever discussed the thesis.

v

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 1

1.2.1 Overview . 2

2 Neural Networks 3
2.1 Single Neuron . 3

2.1.1 Activation Function . 3
2.2 Multiple Neurons . 4
2.3 Convolutional Neural Networks . 4

2.3.1 Typical Layers . 5
2.3.1.1 Convolutional Layer 5
2.3.1.2 Pooling Layer . 6
2.3.1.3 Softmax-function . 6

2.3.2 Rotation-Invariant Layers . 7
2.3.2.1 Rotating Filterbanks 7
2.3.2.2 Orientation Max-pooling 7

2.4 Training . 8
2.4.1 Objective Function . 8
2.4.2 Backpropagation . 9
2.4.3 Stochastic Gradient Descent with Momentum 9

2.4.3.1 Gradient Descent . 9
2.4.3.2 Batch Gradient Descent 9
2.4.3.3 Stochastic Gradient Descent 9
2.4.3.4 Stochastic Gradient Descent with Momentum 10

2.4.4 Regularization . 10
2.4.4.1 Weight Decay . 10
2.4.4.2 Data Augmentation 10
2.4.4.3 Dropout . 10

3 Dataset 13
3.1 Images . 13
3.2 Gleason score . 13
3.3 Data Augmentation . 14

4 Method 17
4.1 Software . 17
4.2 Implementation . 17
4.3 Process . 17

vii

5 Results 21
5.1 Classification on Patches . 21
5.2 Classification on Full Images . 22

5.2.1 On Training and Validation Data 22
5.2.2 On Validation Data . 24

6 Discussion 29
6.1 Classification on Patches . 29
6.2 Classification on Full Images . 30

6.2.1 Results on Training and Validation Data 30
6.2.2 Results on Validation Data . 31
6.2.3 Comparison with Regular Convolutional Neural Network . . . 31

6.3 The Filters . 32
6.4 Conclusion . 32
6.5 Future Work . 35

Bibliography 37

viii

1

Introduction

1.1 Background

Prostate cancer was in 2012 the fourth most common cancer in both sexes com-
bined and the second most common type of cancer for males globally [1]. In Sweden
in 2015 prostate cancer and breast cancer were the most common types of cancer [2].

To be able to treat prostate cancer in the most effective way it is important to
know how aggressive the cancer is. The aggressiveness is graded using a score called
the Gleason score. The grading is done by a pathologist who decides the score based
on the appearance of a biopsy of prostatic tissue stained with for example hema-
toxylin and eosin. This can be fairly time consuming work, and in Sweden there is
a lack of pathologists resulting in long waiting times [3]. There is also a possibilty
of two different pathologists grading the same biopsy differently.

It is therefore interesting to try automating this process to classify the biopsies.
An alternative for this automation is using Convolutional Neural Networks which
can be trained to work for this specific type of task. The Network takes as input
microscopy images of the stained biopsies and adjusts itself to become better at clas-
sifying the images. Moreover, the microscopic images are rotation invariant which
often is used in Convolutional Neural Networks by rotating the images and using
these rotated images as well as the original images to train the Network. However,
another possibility when it comes to rotation invariant data is to make the Network
rotation invariant in itself.

1.2 Problem formulation

The purpose of this thesis is to investigate the possibility of using rotation invariant
Convolutional Neural Networks for classifying the prostate biopsies. A reason for
using rotation invariant Networks would be to not need to expand the dataset by
rotating the images used for training the Network. This would drastically reduce the
amount of data the Network trains on which also reduces the time it takes for each
training cycle. However, less data can also mean poorer results and overtraining of
the Network.

The methods for making a Convolutional Neural Network rotation invariant are

1

2 1. INTRODUCTION

not many. The method which is focused on in this thesis was first presented in [4],
where it was used for texture classification. An issue that arises with making the
rotation invariant layers is that of interpolation. In those layers, there are filters that
are rotated 360◦ in steps, and when the angle is not a multiple of 90, interpolation
is necessary. Therefore different sizes of filters will be investigated to see if there is
a preferable size of filter.

1.2.1 Overview

The problem will be approached using Matlab and the toolbox MatConvNet. The
toolbox does not include rotation invariant layers, so they will first have to be im-
plemented - using the functions in MatConvNet.

After this some Network will be constructed that will be used to investigate how
different sizes of filters in the rotating filterbank affects the results to see if the in-
terpolation has a clear impact.

The report will first introduce the theory behind Neural Networks and especially
Convolutional Neural Networks. Important information regarding the data will then
be described. After these more theoretical parts, the method for completing the work
on the thesis will be described, and then results will be presented and subsequently
discussed.

2

Neural Networks

In this section the theory of Neural Networks (NN) will be described, starting at the
simplest possible and working up towards a Convolutional Neural Network (CNN).
The learning process and regularization techniques are also introduced.

2.1 Single Neuron

Figure 2.1: A Single Neuron

A single neuron would be the simplest possible Neural Network. A model of a single
neuron can be seen in Figure 2.1. It takes an input vector x and has a weight vector
w, a bias b and an activation function f , and creates an output y according to

y = f
(∑

xiwi + b
)
.

2.1.1 Activation Function

The most commonly used activation function in Convolutional Neural Networks is
the Rectified Linear Unit (ReLU) which has been found to accelerate the learning
of a Network several times[5]. The ReLU is defined as

f(x) = max(0, x).

The ReLU simply thresholds the values at zero.

3

4 2. NEURAL NETWORKS

2.2 Multiple Neurons

Figure 2.2: A Network consisting of an input, one hidden layer and an output.

A Neural Network usually consists of multiple neurons that are connected and or-
ganized in layers. Figure 2.2 shows a two layer feedforward NN with six neurons.
Networks with many layers are sometimes called Deep Neural Networks, and the
term deep learning is also sometimes used, since the networks get deeper when more
layers are added. Feedforward means that the outputs from layer i are inputs to
layer i + 1, and there is no feedback. The Network has 26 learnable parameters,
20 weights and 6 biases. In regular Neural Networks it is common for the layers
to be fully-connected. This means that each neuron in layer i is connected to each
neuron in layer i+1, but neurons within a layer are not connected. In Convolutional
Neural Networks it is common to end the Network with at least one fully-connected
layer, but the earlier layers are usually not fully-connected. The output layer does
not have an activation function, because it is for example in classification problems
interpreted as the class scores. The output would for the Network in Figure 2.2 be

yk =
4∑
j=1

wokjf
(3∑
i=1

xiw
h
ji + bhj

)
+ bok, k = 1, 2,

where the superscript h is for the hidden layer, and o is for the output layer, and
the subscripts describe the weights connecting the different layers, for example wo21
is the weight connecting the upper neuron in the hidden layer with y2.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are similar to regular Neural Networks in
that they consist of neurons with learnable weights and biases. The difference is that
with CNNs the input is usually images. Earlier the inputs have been 1D-vectors,
but for a CNN the inputs are 2D (grayscale) or 3D (color) volumes. Regular Neural
Networks do not scale well to images. The image-sizes used for learning in this
project were 128x128, which gives a single fully-connected neuron in the first hidden
layer 128 · 128 = 16384 weights to learn.

2. NEURAL NETWORKS 5

The CNN takes advantage of knowing the inputs will be images so the layers have
the neurons arranged in three dimensions (width, height and depth). The layers
will be organized so that they rescale the input so that the ouput will be a 1x1xC
volume, where C is the number of classes in the classification problem.

2.3.1 Typical Layers

A CNN typically consists of a few different types of layers, with the convolutional
layer the only one that is needed for the Network to be called a Convolutional Neural
Network. Since the inputs to a CNN are images, the neurons are here spatial filters.

2.3.1.1 Convolutional Layer

The convolutional layer is the core layer of a CNN. It takes as input a 3D volume
and produces a 3D volume output. For example if you have RGB-images, the input
volume will be width x height x 3. The depth of the output volume depends on the
number of filters in the filter bank.

The operation performed in the convolutional layer is a convolution, which when
performed between the data in x with a kernel w is defined as

(x ∗ w)(s) =

∫ ∞
−∞

x(u)w(s− u)du,

or discretely as

(x ∗ w)(s) =
∞∑

u=−∞

x(u)w(s− u).

The discrete function can then be expanded to two dimensions as

(x ∗ w)(s, t) =
∞∑

u=−∞

∞∑
v=−∞

x(u, v)w(s− u, t− v).

The two dimensional discrete convolution operation is the relevant one when con-
volving images with kernels. The interpretation of this is that the kernel is flipped
both vertically and horizontally and then slid over the image and the Frobenius
inner product is calculated on the overlap.

Example A part of an image has the values

[
1 2
3 4

]
, and the kernel is

[
1 0
0 −1

]
.

The flipped kernel will then be

[
−1 0
0 1

]
, and the result from the Frobenius inner

product between input and kernel is: −1 · 1 + 0 · 2 + 0 · 3 + 1 · 4 = 3.

The convolution operation can change the size of the input volume, depending on
the kernel-size, number of filters, stride and zero-padding. The stride describes how
much the kernel is moved in each step. With a stride of one pixel the kernel is moved
one pixel at a time, with a stride of two pixels the kernel is moved two pixels at a

6 2. NEURAL NETWORKS

Figure 2.3: This image shows the convolution between an image I and a kernel K.
It highlights one step in the convolution, [6].

time, and so on. A larger stride will reduce the width and height of the output more.
Zero-padding can be used to counter this reduction of size. It is just the operation
of padding the input with zeros around the border. For example, an input that
is convolved with a kernel of size 3x3 with stride 1 and no zero-padding will have
its width and height reduced by 2 pixels. The kernel size, stride and zero-padding
changes the width and height of the input volume while the number of filters will
change the depth.

Figure 2.3 shows an example of a 7x7 matrix being convolved with a kernel of
size 3x3, producing a 5x5 output matrix. The highlighted parts show how the green
4 was achieved by convolving the red area with the kernel. The rest of the output
comes from the other possible overlaps between the matrix I and the kernel.

2.3.1.2 Pooling Layer

Pooling layers are used to reduce the spatial size to reduce the number of parameters.
The pooling operation works independently on each depth slice. The most common
type of pooling is max-pooling. It is common to use 2x2 pooling filters with stride
2, which will basically divide the input into 2x2 squares and the output will be the
maximum values for all of these squares. This will reduce the number of activations
by 75%. Figure 2.4 shows the max-pooling operation. There are other types of
pooling, for example average-pooling, which instead would take the average of the
values in the 2x2 squares.

2.3.1.3 Softmax-function

It is common to end the CNN with a softmax function that will make the results
easier to interpret in a classification problem. The softmax function is defined as

fj =
ezj∑
k e

zk
,

2. NEURAL NETWORKS 7

Figure 2.4: Maxpooling with a 2x2 pooling filter with stride 2.

where z is a vector of arbitrary scores, j is the class and the sum in the denominator
is over all classes. The softmax function takes the scores in z and converts this to
a vector of values, f , where the elements have values between zero and one and the
sum of all elements in the vector is one. These values can then be interpreted as
probabilities.

2.3.2 Rotation-Invariant Layers

The layers described in Section 2.3.1 are the traditionally used layers for Convolu-
tional Neural Networks. These are not rotation invariant by themselves so there is
a need for adding some other layers to make the Network rotation invariant. There
are two layers that are used in this project to make the Network rotation invariant.
One is a rotation of the filters in the filterbank, and the other is an orientation
max-pool operation.

2.3.2.1 Rotating Filterbanks

This layer is an extension of a regular convolutional layer in the Network. The
filterbank is extended so that for each filter in the filterbank, 360◦ rotations of the
filter in a certain amount of steps is added to the filterbank. Or, if the first filter in
rotation group i is denoted hi0, then after this filter the filters

hiα = rotate(hi0, α), ∀α ∈ [1, . . . , R]
360

R
,

where R is the number of steps in the 360◦ rotation, are added in connection with the
first filter, hi0. When rotating the square filters by an angle that is not a multiple
of 90◦, parts of the rotated filter would be outside of the filter. This is fixed by
only using pixels in a circle with center at the center of the filter and a diameter
the width of the filter. For those rotation angles interpolation will also affect the
rotated filters.

2.3.2.2 Orientation Max-pooling

The orientation max-pooling operation is similar to the regular max-pooling opera-
tion, but works on the whole depth-slices from one rotation group. Instead of taking

8 2. NEURAL NETWORKS

Figure 2.5: The two layers used to make a Network rotation invariant [4].

the max value from a certain area of one depth-slice as in regular max-pooling, it
sends through the whole depth-slice that has the largest activation in one rotation
group.

Figure 2.5 shows an illustration of how both the rotating filterbank and the ori-
entation max-pooling works. In the illustration the input is a grayscale image of
size 128x128, and the filters in the convolution are 35x35. To the left in the image
is the input. In the middle is the result from the convolution with the extended
filterbank, where each color represents one rotation-group. To the right is the result
after the orientation max-pooling, where one depth-slice from each rotation group
remains.

2.4 Training

Training a CNN is the process of using as input to the CNN images with a known
class, and using the comparison of the classification result from the CNN with the
real class to update the weights of the Network.

2.4.1 Objective Function

To compare the classification result with the real class, an objective function is
needed (sometimes called cost function or loss function). The objective function
should take the classification result and the real class and use this to produce a high
number if the classification result is bad, and a low number if the classification result
is good.

A common objective function is the softmax log loss, which is a combination of
the softmax-function from Section 2.3.1.3 and multinomial logistic loss.

Li = − log softmax(z)i = −zi + log
∑
j

ezj .

This is the loss for an image, and the total loss is the average of this for all data

L =
1

N

∑
i

Li,

where N is the total amount of images.

2. NEURAL NETWORKS 9

2.4.2 Backpropagation

With the loss function defined, what is now needed is the gradient of the loss func-
tion with respect to all the different weights in the Network. The gradient is needed
for the optimization method Stochastic Gradient Descent with Momentum, which
is described in Section 2.4.3.
The gradient is propagated backwards through the Network, starting from the gra-
dient of the loss function, by applying the chain rule until the wanted gradient is
found.
To backpropagate through a CNN, one needs to know how the backpropagation
through the specific layers work. Backpropagation through a convolutional layer is
a convolution but with the filters rotated 180◦. Backpropagation through a max-
pooling layer is passing the gradient to where it came from (back to the coordinate
that won in the max-pooling). Backpropagation through an average-pooling layer
is dividing the gradient equally over the whole pooling block. Backpropagation
through the orientation max-pooling is just going back through the activated filter
(rotated 180◦ as it is a convolution) in the rotation groups.

2.4.3 Stochastic Gradient Descent with Momentum

To minimize the loss function the algorithm Stochastic Gradient Descent with Mo-
mentum is used. It can be broken down into smaller parts when described. Stochas-
tic gradient descent is also sometimes called online gradient descent.[7, 8]

2.4.3.1 Gradient Descent

Gradient Descent is a minimization procedure where the weights, w, are updated
iteratively according to

wt+1 = wt −∆wt, where ∆wt = η
∂L

∂w
,

where η is the learning rate, which is an important parameter to tune when training
the Network and the subscript indicates a step in the process.

2.4.3.2 Batch Gradient Descent

Batch Gradient Descent is an extension of regular Gradient Descent in that a batch
of m examples is used for the update instead of all examples.

wt+1 = wt − η
1

m

m∑
i=1

∂Li
∂w

.

2.4.3.3 Stochastic Gradient Descent

With Stochastic Gradient Descent (SGD), a single example (k), or a subset of ex-
amples, is chosen at random from a batch in the training set at each iteration and
an approximation of the true gradient is then used to update the weights according
to

wt+1 = wt − η
∂Lk
∂w

.

10 2. NEURAL NETWORKS

2.4.3.4 Stochastic Gradient Descent with Momentum

Extending SGD to include momentum means including another term in the update
that remembers the last update, as

∆wt+1 = η
∂Lk
∂w

+ α∆wt.

The momentum term α determines the strength of the previous gradient.

2.4.4 Regularization

When training a Convolutional Neural Network, a problem that might occur is over-
fitting, which is when the Network learns details and noise in the training images
in addition to the details that define the images. This problem can be called gen-
eralization error, which refers to how well the learned Network works for examples
not included in the training. Overfitting can be observed by looking at how the
errors evolve over training epochs - if the training error is much lower than the
validation error, which might even start to increase - then the Network is probably
overfitting to the training data. Regularization is the name for methods which are
supposed to reduce the overfitting, or as Ian Goodfellow defines it in Deep Learning
”any modification we make to the learning algorithm that is intended to reduce the
generalization error, but not its training error”[9]. The regularization methods that
are used in this project are described below.

2.4.4.1 Weight Decay

Weight decay is a regularization strategy that adds the term λ
2
‖w‖22 to the objec-

tive function, where λ is the term that is changed when weight decay is said to
be changed. This will drive the weights closer to the origin and prevent overfit-
ting. Weight decay is also known as the L2 parameter norm penalty or Tikhonov
regularization.

2.4.4.2 Data Augmentation

A good way to improve the generalization of the Network is to train it on more
data. However, the amount of data is often limited and acquiring more data can be
hard or impossible. One way to get around this is to expand the dataset artificially.
Some methods to do this is to add noise to the data, enlarge or shrink the data,
rotate the data, translate the data or flip the data and then adding this new data
to the dataset. All methods can not be used for all types of data. For example,
rotating or flipping the data is not a good method when dealing with classification
of characters, since if you rotate a ’d’ 180◦ it becomes a ’p’.

2.4.4.3 Dropout

Dropout is a technique that drops out neurons in a Neural Network, which means
that it temporarily removes the neuron from the Network. The principle is shown
in Figure 2.6, where to the left is a Network without dropout with full connections
between the layers, and to the right is the same Network with dropout which is
much more sparsely connected. Which neurons that are dropped is random and a

2. NEURAL NETWORKS 11

Figure 2.6: To the left is a Network with two hidden layers with full connections.
To the right is the same Network with dropout applied, [10].

neuron has a probability, p, to be dropped and is often set around 0.5. The forward
propagation, backpropagation and learning is performed as usual. Dropout is only
applied during the training.

A reason for the improvements when using dropout is that the neurons in the hidden
layers need to learn useful features on their own without relying on other neurons
to help them. Dropout can also be seen as an efficient way of performing model
averaging. Averaging the predictions from several different Networks is a good way
to reduce errors, but the training and testing of several different Networks is compu-
tationally expensive. Dropout makes it possible to train a large amount of different
Networks in a reasonable time [11].

12 2. NEURAL NETWORKS

3

Dataset

3.1 Images

The data set consists of 213 microscopy images taken with 40x magnification of sliced
biopsies of prostatic tissue that have been stained with hematoxylin and eosin. The
images differ slightly in colour possibly between the two sources they come from,
the Prostate Cancer Research Consortium and PathXL in Belfast and Beamount
Hospital in Dublin.

The images are divided into four different classes according to their Gleason grade.
There are 52 images in the benign class, 52 images graded with Gleason grade 3, 52
images graded with Gleason grade 4 and 57 images graded with Gleason grade 5.
Figure 3.1 shows an example image for each of the four different classes. Eight of
the images were however too small to use.

3.2 Gleason score

The Gleason score was first devised by Donald Gleason in the 1960’s. The score is
based on the patterns in the microscopy images of the prostate biopsy. The biopsies
are graded on a scale from 1 to 5, where grade 1 means that the biopsy looks almost
like healthy prostate tissue and grade 5 means that the cells have mutated to the
point of barely resembling normal prostatic tissue. The full Gleason score is derived
by finding the most prevalent pattern and the second most prevalent pattern and
adding the grades of these together to get a Gleason score between 2-10. The lower
scored cancers are less aggressive than the higher scored. Lately the lowest grade
that is given is grade 3. [12]

Since the introduction of the Gleason score in the 1960’s there have been some
changes to the classification. Recently a total scale from 1-5 has been suggested.
This means that there are now only five different total scores instead of 25 (1+1,
1+2, 2+1,...) [13], however as mentioned, the grades 1 and 2 are not assigned any-
more. The data used in the thesis are images with one Gleason grade each: benign,
grade 3, grade 4 and grade 5. The images are a part of a larger full microscopy
image. So the small images used in this thesis are graded and then they can be
looked at in the larger scale to see which grades are the most common and second
most common for the full microscopy image to give the final score. This final score

13

14 3. DATASET

is the one that recently has been suggested to be between 1-5. The description of
these final scores and the grade combinations that these scores represent can be seen
in Table 3.1.

Table 3.1: Description of the full Gleason scores [13].

Full Score Description

1 (Gleason grade 3+3=6) Only individual discrete well-formed glands

2 (Gleason grade 3+4=7)
Predominantly well-formed glands with lesser
component of poorly formed/fused/cribriform
glands.

3 (Gleason grade 4+3=7) Predominantly poorly formed glands with lesser
component of well-formed glands.

4 (Gleason grade 8) • Only poorly formed glands, or

• Predominantly well-formed glands and lesser
component lacking glands, or

• Predominantly lacking glands and lesser
component of well-formed glands

5 (Gleason grades 9&10) Lack of gland formation with or without poorly
formed glands.

3.3 Data Augmentation

The microscopic images of prostatic tissue are both rotation invariant and flip in-
variant. So the data set is extended by flipping the images up/down and left/right.
It is also possible to rotate the images and add these to the data set, however this
is not wanted when looking at the possibility of a rotation invariant network since
a point of the rotation invariant network is to not have to expand the data set in
this way to reduce the number of training images.

The images in the data set come in different sizes, ranging from 491 568 pixels
to 40 086 725 pixels. A CNN requires the images used to be the same size, therefore
patches of size 128x128 pixels where extracted from the images after the images
were resized by a factor 0.15. The patches were extracted from the regular images
and the images that were flipped up/down and left/right. The number of patches
extracted from each image depended on the size of the image. From some images
no patches were extracted due to the images being to small. The images were also
normalized to values between 0-255 for each color channel independently.

3. DATASET 15

Figure 3.1: Microscopic images from the four different classes used in this project.
Upper left: benign, upper right: Gleason grade 3, lower left: Gleason grade 4, lower
right: Gleason grade 5.
The difference in colour between the image sources is visible between the grade 5
image and the rest.

16 3. DATASET

4

Method

4.1 Software

The programming in this thesis was all done using Matlab, and the toolbox Mat-
ConvNet which implements Convolutional Neural Networks. More information
on MatConvNet can be found at the projects website, http://www.vlfeat.org/
matconvnet/.

4.2 Implementation

Implementing a regular Convolutional Neural Network using MatConvNet is mostly
a matter of designing the Network using the already implemented layers in the tool-
box. The important layers such as the convolutional layer, pooling layers, activation
functions and loss functions are directly available through the toolbox. The rotation
invariant layers described in Section 2.3.2 must be implemented. In MatConvNet
what is needed for this is implementing a forward function for the forward prop-
agation and a backwards function for the backpropagation. The learning process
using Stochastic Gradient Descent with Momentum is also already implemented in
the toolbox.

4.3 Process

With all the layers implemented and available, the next step is to find viable CNNs
for the problem at hand. This means trying different strutures of the Network and
many different hyperparameter combinations. This is a very time consuming work
since the learning process takes some time, and since there can be so many combi-
nations that performs similarly. Changes can be made to the learning rate, weight
decay, filter size and stride, zero-padding, depth in each convolutional layer, pooling
sizes, dropout rate etc.

When some Network structure and certain hyperparameter-combinations were found
that worked somewhat well for different sizes of the rotational filters (since that is
something that is investigated in the thesis), a problem that arises is how to make
it a fair comparison between different sizes. This is a problem because of how the
convolutions change the size of the output depending on the size of the filter. In the

17

http://www.vlfeat.org/matconvnet/
http://www.vlfeat.org/matconvnet/

18 4. METHOD

end the method used for a somewhat fair comparison is using different amounts of
zero-padding for the different filter-sizes so that the output of the rotational layers
will always have the same size. Table 4.1 shows the design of the Network used for
testing different sizes of rotating filters. The structure used is so that the convo-
lutional layers do not change the height and width of the input, except the fully
connected convolutional layer that has size 4x4. The convolutional layers with size
3x3 have a stride of 1 and a zero-padding of 1. The data size column shows the size
after the data has gone through the current layer.

Table 4.1: The structure of the Network used to try different sizes for the rotational
filters.

Type Size Depth Data size

Input 128x128x3

Rotation Invariant Variable 16 128x128x16

Maxpool 2x2, Stride 2 64x64x16

Conv 3x3 50 64x64x50

Maxpool 2x2, Stride 2 32x32x50

Conv 3x3 100 32x32x100

Maxpool 2x2, Stride 2 16x16x100

Conv 3x3 150 16x16x150

Maxpool 2x2, Stride 2 8x8x150

Conv 3x3 50 8x8x50

Maxpool 2x2, Stride 2 4x4x50

Dropout Dropout rate 0.5 4x4x50

Conv 4x4 16 1x1x16

Dropout Dropout rate 0.2 1x1x16

Conv 1x1 4 1x1x4

The variable sizes used were from 3x3 up to 35x35 in increments of 2. For all of these
sizes the different combinations of learning rate and weight decay that is shown in
Table 4.2 were used, divided into groups. Since the tests on different sizes of rota-
tional filters were done for sizes from 3x3 to 35x35 in increments of 2 for six different
combinations of learning rate and weight decay the resulting amount of Networks
are 17 ·6 = 102. To train all these Networks on the full dataset would take too much
time, so these were trained on a subset of the dataset, with 200 subimages from each
class to train on. The Networks that produced somewhat promising results from
this training were then trained on the full dataset.

All of this above will give a Network that classifies the small patches that were
extracted from the images. However, when diagnosing, the classification of a full

4. METHOD 19

Table 4.2: The different combinations of learning rate and weight decay used, divided
into groups.

Learning Rate Weight Decay Group

10−3 0 1

10−3 0.1 2

10−4 0 3

10−4 0.1 4

10−5 0 5

10−5 0.1 6

image is wanted. This is created by dividing the image in patches as before, but
not flipping anything. These patches will be classified as usual, and then the most
common classification on the patches from one image will be the classification of
the full image. Meaning that if nine patches is extracted from one image and six
of them are classified as benign and the other three are classified as grade 3 then
the full image will get the classification benign. This will be done for all images,
both the ones included in the training set and in the validation set. It is done on
both the training and validation data to see how these classifications might differ in
accuracy. The validation data only includes six images per class (this is around 10%
of the total amount of data), which means 24 images in total, which is not a large
enough amount to draw any conclusions from the resulting error rates, but they will
still be included. Ideally, there would be another separate test-set to do this on, but
the amount of data used was too small.

20 4. METHOD

5

Results

5.1 Classification on Patches

From the first tests, using the smaller subset of training images, on all of the different
filter sizes with the six different combinations of learning rate and weight decay there
were 19 results that were deemed promising enough to train on the full dataset.
These can be seen in Table 5.1, which shows the filter size, learning rate and weight
decay and also the group the Networks were designated based on their learning rate
and weight decay.

Table 5.1: The parameters for the Networks that showed promising results on the
smaller dataset divided into groups corresponding to their learning rate and weight
decay.

Filter Size Learning Rate Weight Decay Group

3x3 10−3 0 1

5x5 10−3 0 1

17x17 10−3 0.1 2

19x19 10−3 0.1 2

23x23 10−3 0.1 2

25x25 10−3 0.1 2

27x27 10−3 0.1 2

17x17-35x35 10−4 0 3

29x29 10−4 0.1 4

31x31 10−4 0.1 4

In Table 5.1 there are only two Networks with filters that are small, 3x3 and 5x5 both
from parameter-group 1. The Networks trained with the parameters in group 5 and 6
did not give any promising results. Figure 5.1 shows the resulting objective function
and error over 50 epochs for six of these 19 Networks, when they were trained on
the smaller dataset. The error is in the Figure called top1err, simply because the

21

22 5. RESULTS

classification ranks the scores for the different classes and top1err means that the
largest scoring class is either correct or false.
The 19 Networks that were trained on the full dataset showed similar result with
each other within the same groups of learning rate and weight decay. Figure 5.2
shows a representative example of the objective and error for each group.
Figure 5.3 shows how the objective and error evolves for two different examples that
were trained with group 3 parameters for 50 epochs and then with an added weight
decay of 0.1 for 25 epochs. This was done as an attempt to reduce the overfitting.

5.2 Classification on Full Images

For the classification on the full images the results will be presented as an error rate
for the Networks. There will also be confusion matrices for some of the Networks
to see how some of the mis-classified images were classified. The error rates and
confusion matrices will be based on the final epochs of the different Networks, some
of them trained for 50 epochs and some for 75. The Networks used for this were
the Networks mentioned in Table 5.1. The results will be presented for each group
separately.

5.2.1 On Training and Validation Data

In this section the results are from the classification on both the training and the
validation images.

Group 1 The Networks in group one were the only ones with small filters. This
proved to be a poor Network to use, and the resulting error rate was for the Network
with filter size 5x5 around 75%. Looking at the confusion matrix it becomes clear
that the Network has simply classified all the images as benign, see below. In the
confusion matrix the rows represent the actual class and the columns represent the
predicted class.

51 0 0 0
51 0 0 0
49 0 0 0
54 0 0 0

Group 2 For group 2 there were five different filter sizes that were trained further
with the full dataset, see Table 5.1. The resulting error rates for the different filter
sizes can be seen in Table 5.2. The error rates are spread from 18.0% up to 33.7%.
Below are the confusion matrices for the best (19x19, left) and the worst (25x25,
right) Networks.

51 0 0 0
6 26 13 6
0 6 39 4
0 2 0 52

51 0 0 0
20 25 2 4
1 28 20 0
0 12 2 40

For both those Networks, all of the benign images were correctly classified. However,
the poor Network seemed to classify more to the lower grades, as 20 of the grade
3 images were classified as benign and 28 of the grade 4 images were classified as
grade 3.

5. RESULTS 23

Table 5.2: Error rates for the Networks in group 2.

Filter size Error rate

17x17 21.0%

19x19 18.0%

23x23 18.5%

25x25 33.7%

27x27 26.3%

Group 3 Group 3 had 10 different filter sizes that were trained on the full dataset.
Out of these, 7 were trained a further 25 epochs, with an added weight decay of
0.1, compared to the rest in an attempt to reduce overfitting. Table 5.3 shows the
resulting error rates for the different filter sizes, the ones trained for 25 epochs more
are in bold.

Table 5.3: Error rates for the Networks in group 3.

Filter size Error rate

17x17 6.3%

19x19 7.3%

21x21 9.8%

23x23 8.3%

25x25 8.3%

27x27 11.2%

29x29 7.3%

31x31 18.5%

33x33 8.3%

35x35 9.3%

The results in Table 5.3 shows that the Networks trained for another 25 epochs had
lower error rates. Below are the confusion matrices for the Networks with filter sizes
17x17, 29x29, 31x31 and 35x35, in that order.

50 1 0 0
1 45 1 4
0 6 43 0
0 0 0 54

51 0 0 0
1 45 3 2
0 6 43 0
1 1 1 51

50 1 0 0
5 38 8 0
0 6 43 0
0 6 12 36

51 0 0 0
3 42 3 3
0 8 40 1
0 1 0 53

All of these classified the benign images well, but they are all a little wrong for
grades 3 and 4. And for grade 5, the 31x31 Network has a quite poor result, while
the others have better results.

24 5. RESULTS

Group 4 Group 4 had two Networks that were trained on the full dataset. The
error rates for these two is shown in Table 5.4.

Table 5.4: Error rates for the Networks in group 4.

Filter size Error rate

29x29 15.6%

31x31 20.5%

These error rates are higher than those for group 3, but slighly lower than those for
group 2. The confusion matrices for these can be seen below, 29x29 to the left and
31x31 on the right.

50 1 0 0
5 29 14 3
0 4 45 0
0 2 3 49

48 3 0 0
4 31 15 1
0 6 43 0
0 1 12 41

The Networks in this group are quite bad at classifying the grade 3 images. They
are also not very good at the grade 4 and 5 images either.

5.2.2 On Validation Data

This Section will show the results when just looking at the classification on the
validation images. The Networks are the same as in the previous section.

Group 2 The classification on the validation images for group 2 can be seen in
Table 5.5. Below are the confusion matrices for the 19x19 and 25x25 networks.

6 0 0 0
1 3 2 0
0 0 5 1
0 0 0 6

6 0 0 0
2 3 1 0
0 2 4 0
0 1 0 5

Table 5.5: Error rates on validation data for the Networks in group 2.

Filter size Error rate

17x17 20.8%

19x19 16.7%

23x23 16.7%

25x25 25.0%

27x27 20.8%

5. RESULTS 25

Group 3 Table 5.6 shows the error rates for the classification on the validation
images for group 3. Below are the confusion matrices for the Networks with filter
size 17x17, 29x29, 31x31 and 35x35, in that order.

6 0 0 0
1 3 1 1
0 2 4 0
0 0 0 6

6 0 0 0
1 3 2 0
0 1 5 0
1 0 0 5

6 0 0 0
2 2 2 0
0 1 5 0
0 2 0 4

6 0 0 0
2 3 1 0
0 1 5 0
0 1 0 5

Table 5.6: Error rates on validation data for the Networks in group 3.

Filter size Error rate

17x17 20.8%

19x19 25.0%

21x21 29.2%

23x23 25.0%

25x25 25.0%

27x27 25.0%

29x29 20.8%

31x31 29.2%

33x33 20.8%

35x35 20.8%

Group 4 Table 5.7 shows the error rates for the classification on the validation
images for group 4. Below are the confusion matrices for both these Networks, 29x29
on the left and 31x31 on the right.

6 0 0 0
2 0 4 0
0 0 6 0
0 2 0 4

5 1 0 0
1 4 1 0
0 0 6 0
0 1 1 4

Table 5.7: Error rates on validation data for the Networks in group 4.

Filter size Error rate

29x29 33.3%

31x31 20.8%

26 5. RESULTS

Figure 5.1: Resulting objective function and error over 50 epochs for six of the 19
Networks trained on the smaller dataset. Upper left has filter size 3x3, from group
1. Upper right has filter size 19x19, from group 2. Middle left has filter size 19x19,
from group 3. Middle right has filter size 27x27, from group 3. Lower left has filter
size 35x35, from group 3. Lower right has filter size 29x29, from group 4.

5. RESULTS 27

Figure 5.2: Resulting objective and error over 50 epochs for one example from each
parameter-group, trained on the full dataset. Upper left: Group 1 with filter size
5x5. Upper right: Group 2 with filter size 17x17. Lower left: Group 3 with filter
size 21x21. Lower right: Group 4 with filter size 31x31.

28 5. RESULTS

Figure 5.3: Resulting objective and error over 75 epochs where the parameters for
the first 50 epochs were as in group 3, and for the last 25 epochs the weight decay
was set to 0.1. Left: Filter size 17x17. Right: Filter size 25x25. The Networks were
trained on the full dataset.

6

Discussion

6.1 Classification on Patches

The first training that was performed on the smaller subset of the data on all the
102 different Networks showed that the interpolation of the filters most likely plays
a role in the result. There were two surprising Networks that showed somewhat
promising results from this training, those were the Networks with 3x3 and 5x5
rotating filters from parameter group 1. However, as you can see in the upper left
graphs in Figure 5.1 in the objective the validation has started to move upwards
which is not a promising sign. I still chose to test these further since the training
objective and error went lower than for any of the other Networks, and also because
I wanted to see if a larger dataset would reduce the overtraining. The upper left
graph in Figure 5.2 shows that this simply did not work.
All of the other Networks that qualified according for further testing had rotating
filters of size 17x17 up to 35x35, which was the largest filter size that was tried.
Looking at the resulting objective and error in Figure 5.2, discarding the upper left,
there are some differences. The upper right graphs were from a Network from group
2, meaning it had a learning rate of 10−3 and a weight decay of 0.1, the lower had
a learning rate of 10−4 and the lower left had no weight decay, the lower right had
0.1 weight decay. According to the theory, see Section 2.4.4, the upper right and
lower right should not be overtrained, or at least not much overtrained since they
are trained with a weight decay. The upper right is clearly not overtrained, the
validation follows the training well, although the validation error is a bit up and
down and the validation objective has some strange peaks. So the weight decay
works well for that Network, but the error seems to converge already at 0.3. The
lower right also had weight decay, but was still overtrained. The lower right could
be compared to the lower left which had the same learning rate. Comparing the
objective- and error-values at the last epoch, it does indeed seem like the Network
with weight decay is slightly less overtrained. But it also seems like this comes at
the price of larger objective- and error-values on the training data. The training
error at the last epoch in the lower left graph is around 0.15, while in the lower right
graph it is around 0.2. But when looking at the validation errors they are quite
similar, with maybe a slightly lower trend in the lower left graph.
The comparison that was just made was between two specific results inside the
groups 3 and 4, but the results were similar within the groups so it is still a fair
comparison. While the Networks in group 4 were less overtrained, they also needed

29

30 6. DISCUSSION

larger rotating filters to produce interesting results as seen in Table 5.1. Larger
filters means there are more parameters to learn and that it will take longer to train
the Networks.
So if one were to look at the results from the 19 Networks in Table 5.1 it seems
like the Networks trained with parameters from group 3 were the most interesting.
Since they were the most interesting, some of them were trained for a further 25
epochs with an added weight decay of 0.1 in an attempt to reduce the overtraining..
The resulting objective and error for two of these are shown in Figure 5.3. What is
wanted there is for the validation objective- and error-values to come down closer
to the training objective- and error-values. For the objectives this cannot be seen,
but there might be a slight trend towards the training error in the validation errors,
especially in the right graph.

6.2 Classification on Full Images

The results from the classification on the full images are in the end more interesting
than the result on the extracted patches.
As explained in the method section, the results were obtained by taking the full
images and taking out patches spread out over the whole image and then classify-
ing the patches and the final classification of the image will be the most common
classification on the patches for the image. Since you want to capture the whole
image in patches there will most likely be overlaps between the patches. The only
situation in which there would be no overlap would be if all images had both width
and height as a multiple of 128 pixels since that is the size of the patches.
The error rates presented in the result is first from classification using both the
training images and the validation images combined, and then for just the valida-
tion images. Ideally there would have been a third separate test set, but the amount
of data was too small for this. The reason for not looking at just the validation im-
ages is the same, there were only six validation images for each class. This means
that the results from the classification using both the training images and the valida-
tion images combined include images that the Network has seen and updated itself
based on, which lowers the error rate unless there is absolutely no overtraining.

6.2.1 Results on Training and Validation Data

The results from the group 1 Networks were poor and classified all the images as
benign, so those can be discarded.
For the five different Networks in group 2 the error rates ranged from 18% to 33%
as seen in Table 5.2. This is not a very good error rate, the best one means that
almost one in five diagnoses is wrong which is of course not an acceptable result.
Looking at just the best one, the confusion matrix shows that it still classified all
benign correctly and only misclassified two of the grade 5 images. But for grade 3
and 4 there were too many misclassifications.
The Networks in group 3 were more successful overall. There were 10 Networks
that were promising enough to train on the full dataset and as can be seen in Table
5.3 the error rates are lower for this group than for group 2, except for the 31x31
Network which is a bit of an outlier. And as described in the previous section, these
Networks were a bit overtrained so seven of them were trained for another 25 epochs

6. DISCUSSION 31

with added weight decay. These that were trained longer have a lower error rate,
but just looking at that does not tell too much since it would be entirely possible
for them to have lower error rate if they were trained for longer even without the
weight decay. The lowest error rate here was for the 17x17 Network at 6.3%, which
is a fairly good result. The confusion matrices show that mostly it is hard to classify
the grade 3 and 4 images.
Group 4 had two Networks that were trained on the whole dataset and the error
rates for these at 15.6% and 20.5% (Table 5.4) were not as good as group 3. For the
Network with 15.6% error rate the confusion matrix shows that the Network has
problems especially with classifying grade 3 images.

6.2.2 Results on Validation Data

The results from group 1 does not need to be presented since the validation data
was included in the result from both training and validation data which classified
all the images as benign.
Group 2 had a lowest error rate of 16.7% and highest at 25.0%. The error rate of
16.7% means that four of the 24 images were misclassified, and 25.0% error means
that 6 of the 24 images were misclassified. This straight away shows a problem with
representing the results on such a small amount of data as error rates. The error
rates differ by quite a bit with just one more or less image misclassified. Comparing
with the error rates from Table 5.2 they are around the same values. Looking at the
confusion matrices, it seems like it is mostly the grade 3 and grade 4 images that
are generally harder to classify.
Group 3 had a lowest error rate of 20.8% and the highest was 29.2%. This is a much
higher error rate than when looking at both training and validation data in Table
5.3, where the lowest was 6.3%. This indicates that the Network was overtrained,
which was also seen in Figures 5.2 and 5.3. To have an error rate of around 6.3%
on a dataset with only 24 images, only one or two images can be misclassified. But
for an error rate of 20.8%, five images are misclassified. In the confusion matrices
it seems like the grade 3 and grade 4 are still difficult to classify, but there also
seems to be a slight problem with grade 5 images - for example the 29x29 Network
classified one grade 5 image as benign.
Group 4 only had two Networks and they had error rates of 33.3% and 20.8%. 20.8%
is in the same area as the others, while 33.3% means eight misclassified images
which is slightly higher than the other presented results. The 29x29 Network that
had 33.3% error did not manage to classify any grade 3 image correctly, as can be
seen in the confusion matrix, but could classify all the benign and grade 4 images
correctly.

6.2.3 Comparison with Regular Convolutional Neural Net-
work

The dataset used in this thesis has been used in another paper which used regular
Convolutional Neural Networks to classify the images, see [14]. That paper expanded
the dataset with rotations of the images, and trained a regular CNN with more than
12 000 patches for each class. That Network achieved an error rate of 7.3%, which is
on only validation data. That error rate is comparable to the best error rates when

32 6. DISCUSSION

looking at both training and validation data in this thesis, but when looking at just
the validation data the best error rate was 16.7% or four out of 24 misclassified.
Some things to consider while comparing this thesis with the paper are that [14]
focused on creating one Network to achieve a lowest possible error rate and they
used cross validation to get the final error rate. Since the focus in this thesis has
been more on investigating different filter sizes in the Networks, there has not been
time to do this cross-validation, since the training of all the Networks took more
than one week. Designing and optimizing one specific Network has also not been
done here.

6.3 The Filters

Since a big focus has been on the sizes of the rotating filters, it could be interesting
to see what the filters might look like for some Networks. However, as will be seen
in the coming Figures, it’s hard to interpret what they really do and why they have
evolved to what they are.
Figure 6.1 shows the filters for the 19x19 Network with error rate 18.0% from group
2. There the general trend is for a brighter center of the filter, and also many of the
filters appear to be green, even though the images are more pink or purple.
Figure 6.2 shows the filters for the 17x17 Network which had the lowest error rate of
all Networks at 6.3%. These appear to have barely any structure to interpret at all.
This could indicate overtraining of the Network, which has been mentioned earlier.
Some have a brighter center while some have a darker center.
Figure 6.3 shows the filters for the 35x35 Network in group 3 that had an error rate
of 9.3%. These are of course a bit more detailed since they have around four times
as many pixels as the earlier two. Some of these appear to have some kind of cyclic
symmetry to them, with alternating brighter and darker going out from the center,
but they still look quite noisy.
Figure 6.4 shows the filters for the 29x29 Network in group 4 with error rate 15.6%.
Some of these also have the cyclic symmetry appearance that some had in figure
6.3, and they also seem slightly less noisy than those. The colours of the filters also
seem more pink which was the colour of the data.
That the filters from group 3 are more noisy than those from group 2 and 4 most
likely has something to do with them being trained without weight decay for the
most part.
Comparing the filters achieved in this thesis with the filters in [4], those filters have a
more directional pattern, while the filters in this thesis had a more circular pattern
not unlike the filters achieved in [4] when using a regular CNN with the dataset
extended with rotations of the images. However, the dataset used in [4] contained
images that had a clearly directional pattern themselves, so the comparison between
those filters and the filters from this thesis does not need to mean that the filters in
this thesis are somehow wrong.

6.4 Conclusion

This thesis investigated the usage of rotation invariant Convolutional Neural Net-
works to classify microscopy images of prostatic tissue. Since the rotation invariant

6. DISCUSSION 33

Figure 6.1: The filters in the rotating layer of size 19x19 in group 2.

Figure 6.2: The filters in the rotating layer of size 17x17 in group 3.

34 6. DISCUSSION

Figure 6.3: The filters in the rotating layer of size 35x35 in group 3.

Figure 6.4: The filters in the rotating layer of size 29x29 in group 4.

6. DISCUSSION 35

Networks make use of rotating filters, the problem of interpolation arises. The tests
performed showed that interpolation indeed is an issue when rotating the filters. The
Networks that showed results that were at least interesting enough to investigate
further had a filter size of at least 17x17 in the layer with rotating filters, except for
the two Networks with 3x3 and 5x5 filters which in the end proved to be poor sizes.
The error rates for the classification on both training and validation data over all
Networks ranged from 6.3% up to above 30%. An error rate of 6.3% is approximately
the same as saying that 1 in 15 images are misclassified. This is not good enough to
use in a real setting. That result is also boosted considering the classification that
achieved those low error rates on the full images was done on the whole dataset,
including the training set.
The error rates when just looking at the validation images ranged from 16.7% up to
33.3%. This result is worse than for the error rates on both training and validation
data, which is to be expected. Since the validation data only consisted of 24 images
the error rates change by approximately four percentage points when one more or
one fewer image is misclassified. The error rate 16.7% means that four out of the
24 images were misclassified, or 1 in 6. This is simply not a good enough result to
apply these Networks in a real setting.
In the comparison with a regular Convolutional Neural Network it seems like the
regular Network is better right now, but one should keep in mind that the Networks
in this thesis were most likely not the optimal networks since the testing was done
in the most general way possible. So it should be possible to reduce the error rate
with Networks that are more optimized for the task. It should also be noted that
the training for regular Networks is done with a much more expanded dataset, since
it can be augmented with rotations of the images.

6.5 Future Work

There are possibilities to expand on the work done in this thesis in many ways.
The Networks were not designed specifically for a certain size of rotating filters, but
instead used zero-padding to be able to compare the different sizes. So one could try
to design Networks specifically for some filter size that were determined to produce
good results. It is of course also possible to adjust parameters to enhance the results,
one possibility is to use an adaptive learning rate. It would also be preferable to
have more data.

36 6. DISCUSSION

Bibliography

[1] Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, Sultan Eser, Colin
Mathers, Marise Rebelo, Donald Maxwell Parkin, David Forman, and Freddie
Bray. Cancer incidence and mortality worldwide: Sources, methods and major
patterns in globocan 2012. International Journal of Cancer, 136(5):E359–E386,
2015. ISSN 1097-0215. doi: 10.1002/ijc.29210. URL http://dx.doi.org/10.

1002/ijc.29210.

[2] Socialstyrelsen. Statistik om nyupptäckta cancerfall 2015. 2017. URL
http://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/

20462/2017-1-14.pdf.

[3] Skriande brist p̊a patologer skapar kris i cancerv̊arden. http://www.dn.se/

debatt/skriande-brist-pa-patologer-skapar-kris-i-cancervarden/,
2015. Accessed: 2017-08-30.

[4] Diego Marcos Gonzalez, Michele Volpi, and Devis Tuia. Learning rotation
invariant convolutional filters for texture classification. CoRR, abs/1604.06720,
2016. URL http://arxiv.org/abs/1604.06720.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Cur-
ran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[6] Deep learning for complete beginners: convolutional neural networks
with keras. URL https://cambridgespark.com/content/tutorials/

convolutional-neural-networks-with-keras/index.html. Accessed:
2017-09-27.

[7] Léon Bottou. On-line learning in neural networks. chapter On-line Learn-
ing and Stochastic Approximations, pages 9–42. Cambridge University Press,
New York, NY, USA, 1998. ISBN 0-521-65263-4. URL http://dl.acm.org/

citation.cfm?id=304710.304720.

[8] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Ef-
ficient BackProp, pages 9–50. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8 2. URL
https://doi.org/10.1007/3-540-49430-8_2.

37

http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1002/ijc.29210
http://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/20462/2017-1-14.pdf
http://www.socialstyrelsen.se/Lists/Artikelkatalog/Attachments/20462/2017-1-14.pdf
http://www.dn.se/debatt/skriande-brist-pa-patologer-skapar-kris-i-cancervarden/
http://www.dn.se/debatt/skriande-brist-pa-patologer-skapar-kris-i-cancervarden/
http://arxiv.org/abs/1604.06720
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
http://dl.acm.org/citation.cfm?id=304710.304720
http://dl.acm.org/citation.cfm?id=304710.304720
https://doi.org/10.1007/3-540-49430-8_2

38 BIBLIOGRAPHY

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[11] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580, 2012. URL http://arxiv.org/

abs/1207.0580.

[12] Donald F. Gleason and George T. Mellinger. Prediction of prognosis for
prostatic adenocarcinoma by combined histological grading and clinical stag-
ing. The Journal of Urology, 167(2):953 – 958, 2002. ISSN 0022-5347.
doi: http://dx.doi.org/10.1016/S0022-5347(02)80309-3. URL http://www.

sciencedirect.com/science/article/pii/S0022534702803093.

[13] Jonathan I. Epstein, Michael J. Zelefsky, Daniel D. Sjoberg, Joel B. Nel-
son, Lars Egevad, Cristina Magi-Galluzzi, Andrew J. Vickers, Anil V. Par-
wani, Victor E. Reuter, Samson W. Fine, James A. Eastham, Peter Wiklund,
Misop Han, Chandana A. Reddy, Jay P. Ciezki, Tommy Nyberg, and Eric A.
Klein. A contemporary prostate cancer grading system: A validated alter-
native to the gleason score. European Urology, 69(3):428 – 435, 2016. ISSN
0302-2838. doi: http://dx.doi.org/10.1016/j.eururo.2015.06.046. URL http:

//www.sciencedirect.com/science/article/pii/S0302283815005576.

[14] Mattias Ohlsson Niels Christian Overgaard Agnieszka Krzyzanowska Anders
Heyden Anders Bjartell Kalle Aström Anna Gummeson, Ida Arvidsson. Au-
tomatic gleason grading of h and e stained microscopic prostate images using
deep convolutional neural networks. Proc.SPIE, 10140:10140 – 10140 – 7, 2017.
doi: 10.1117/12.2253620. URL http://dx.doi.org/10.1117/12.2253620.

http://www.deeplearningbook.org
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://www.sciencedirect.com/science/article/pii/S0022534702803093
http://www.sciencedirect.com/science/article/pii/S0022534702803093
http://www.sciencedirect.com/science/article/pii/S0302283815005576
http://www.sciencedirect.com/science/article/pii/S0302283815005576
http://dx.doi.org/10.1117/12.2253620

Master’s Theses in Mathematical Sciences 2017:E64
ISSN 1404-6342

LUTFMA-3334-2017

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	omslag
	main
	Introduction
	Background
	Problem formulation
	Overview

	Neural Networks
	Single Neuron
	Activation Function

	Multiple Neurons
	Convolutional Neural Networks
	Typical Layers
	Convolutional Layer
	Pooling Layer
	Softmax-function

	Rotation-Invariant Layers
	Rotating Filterbanks
	Orientation Max-pooling

	Training
	Objective Function
	Backpropagation
	Stochastic Gradient Descent with Momentum
	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Stochastic Gradient Descent with Momentum

	Regularization
	Weight Decay
	Data Augmentation
	Dropout

	Dataset
	Images
	Gleason score
	Data Augmentation

	Method
	Software
	Implementation
	Process

	Results
	Classification on Patches
	Classification on Full Images
	On Training and Validation Data
	On Validation Data

	Discussion
	Classification on Patches
	Classification on Full Images
	Results on Training and Validation Data
	Results on Validation Data
	Comparison with Regular Convolutional Neural Network

	The Filters
	Conclusion
	Future Work

	Bibliography

