
Virtual Cycle-accurate Hardware and Software
Co-simulation Platform for Cellular IoT

Marcel Tovar
elt11mto@student.lth.se

Patrik Elfborg
dic11pel@student.lth.se

Department of Electrical and Information Technology
Lund University

Supervisor: Liang Liu

Examiner: Erik Larsson

October 4, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Modern embedded development flows often depend on FPGA board usage for pre-
ASIC system verification. The purpose of this project is to instead explore the
usage of Electronic System Level (ESL) hardware-software co-simulation through
the usage of ARM SoC Designer tool to create a virtual prototype of a cellular IoT
modem and thereafter compare the benefits of including such a methodology into
the early development cycle. The virtual system is completely developed and ex-
ecuted on a host computer, without the requirement of additional hardware. The
virtual prototype hardware is based on C++ ARM verified cycle-accurate mod-
els generated from RTL hardware descriptions, High-level synthesis (HLS) pre-
synthesis SystemC HW accelerator models and behavioural models which imple-
ment the ARM Cycle-accurate Simulation Interface (CASI). The micro-controller
of the virtual system which is based on an ARM Cortex-M processor, is capable
of executing instructions from a memory module.

This report documents the virtual prototype implementation and compares
both the software performance and cycle-accuracy of various virtual micro-controller
configurations to a commercial reference development board. By altering fac-
tors such as memory latencies and bus interconnect subsystem arbitration in co-
simulations, the software cycle-count performance of the development board was
shown possible to reproduce within a 5% error margin, at the cost of approximately
266 times slower execution speed. Furthermore, the validity of two HLS pre-
synthesis hardware models is investigated and proven to be functionally accurate
within three clock cycles of individual block latency compared to post-synthesis
FPGA synthesized implementations.

The final virtual prototype system consisted of the micro-controller and two
cellular IoT hardware accelerators. The system runs a FreeRTOS 9.0.0 port, ex-
ecuting a multi-threaded program at an average clock cycle simulation frequency
of 10.6 kHz.

i

ii

Popular Science Summary

Designing and simulating embedded computer systems virtually

Cellular internet of things (IoT) is a new
technology that will enable the inter-
connection of everything: from street
lights and parking meters to your gas
or water meter at home, wireless cellu-
lar networks will allow information to
be shared between devices. However, in
order for these systems to provide any
useful data, they need to include a com-
puter chip with a system to manage the
communication itself, enabling the con-
nection to a cellular network and the ac-
tual transmission and reception of data.
Such a chip is called an embedded chip
or system.

Traditionally, the design and ver-
ification of digital embedded systems,
that is to say a system which has both
hardware and software components, had
to be done in two steps. The first
step consists of designing all the hard-
ware, testing it, integrating it and pro-
ducing it physically on silicon in or-
der to verify the intended functional-
ity of all the components. The second
step thus consists of taking the hard-
ware that has been developed and de-
signing the software: a program which
will have to execute in complete com-
pliance to the hardware that has been
previously developed. This poses two
main issues: the software engineers can-

not begin their work properly until the
hardware is finished, which makes the
process very long, and the fact that the
hardware has been printed on silicon
greatly restricts the possibility of do-
ing changes to accommodate late system
requirement alterations; which is quite
likely for a tailor-made application spe-
cific system such as a cellular IoT chip.

A currently widespread technology
used to mitigate the previously men-
tioned negative aspects of embedded
design, is the employment of field-
programmable gate array (FPGA) de-
velopment boards which often contain a
micro-controller (with a processor and
some memories), and a gate array con-
nected to it. The FPGA part consists of
a lattice of digital logic gates which can
be programmed to interconnect and rep-
resent the functionality of the hardware
being designed. The processor can thus
execute software instructions placed on
the memories and the hardware being
developed can be programmed into the
gate array in order to integrate and ver-
ify a full hardware and software system.
Nevertheless, this boards are expensive
and limit the design to the hardware
components available commercially in
the different off-the-shelf models, e.g. a
specific processor which might not be

iii

the desired one.
Now imagine there is a way to de-

sign hardware components such as pro-
cessors in the traditional way, how-
ever once the hardware has been im-
plemented it can be integrated together
with software without the need of print-
ing a physical silicon chip specifically for
this purpose. That would be extremely
convenient and would save lots of time,
would it not? Fortunately, this is al-
ready possible due to Electronic Sys-
tem Level (ESL) design, which is com-
pilation of techniques that allow to de-
sign, simulate and partially verify a dig-
ital chip, all within any normal laptop
or desktop computer. Moreover, some
ESL tools such as the one investigated
in this project, allow you to even simu-
late a program code written specifically
for this hardware; this is known as vir-
tual hardware software co-simulation.

The reliability of simulation must
however be considered when compared
to a traditional two-step methodology
or FPGA board usage to verify a full
system. This is because a virtual hard-
ware simulation can have several degrees
of accuracy, depending on the specificity
of component models that make up the
virtual prototype of the digital system.
Therefore, in order to use co-simulation
techniques with a high degree of confi-
dence for verification, the highest accu-
racy degree should be employed if possi-
ble to guarantee that what is being sim-
ulated will match the reality of a sili-

con implementation. The clock cycle-
accurate level is one of the highest accu-
racy system simulation methods avail-
able, and it consists of representing the
digital states of all hardware compo-
nents such as signals and registers, in
a cycle-by-cycle manner.

By using the ARM SoC Designer
ESL tool, we have co-designed and co-
simulated several microcontrollers on a
detailed, cycle-accurate level and con-
firmed its behaviour by comparing it to
a physical reference target development
board. Finally, a more complex vir-
tual prototype of a cellular IoT system
was also simulated, including a micro-
controller running a a real-time operat-
ing system (RTOS), hardware accelera-
tors and serial data interfacing. Parts of
this virtual prototype where compared
to an FPGA board to evaluate the pros
and cons of incorporating virtual system
simulation into the development cycle
and to what extent can ESL methods
substitute traditional verification tech-
niques. The ease of interchanging hard-
ware, simplicity of development, simu-
lation speed and the level of debug ca-
pabilities available when developing in a
virtual environment are some of the as-
pects of ARM SoC Designer discussed
in this thesis. A more in depth de-
scription of the methodology and results
can be found in the report titled Vir-
tual Cycle-accurate Hardware and Soft-
ware Co-simulation Platform for Cellu-
lar IoT.

iv

Acknowledgements

We would like to thank first and foremost Magnus Midholt and Michal Stala at
ARM Sweden for giving us the opportunity to carry out this project in a new and
exciting field for us, and for their continuous support and encouragement. We
would also like to thank everyone else at the ARM LPWAN team for aiding us at
several occasions as we build up an understanding of the system.

Furthermore, we would also like to thank our supervisor Liang Liu for his
guidance in determining a clear goal for the thesis as well as his help in condensing
all of the broad work we have done into a coherent project.

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Cellular IoT and ARM Wireless Business Unit 3
1.3 Aims and challenges . 3
1.4 Previous work and alternative tools 4
1.5 Thesis outline . 5

2 Electronic System Level Design 7
2.1 FPGA . 9
2.2 System simulation . 10
2.3 SystemC . 14

3 ARM SoC Designer 17
3.1 Overview . 17
3.2 Modelling libraries . 18
3.3 The canvas & simulator . 21
3.4 Processor core models and ELF files 21

4 Developing a Virtual System Micro-controller 23
4.1 Virtual hardware base configuration 23
4.2 Start-up code . 25
4.3 Compiling the start-up binary . 26

5 Software Performance of a Minimal System 27
5.1 Reference development board . 27
5.2 Altering the bus and memory subsystem 29
5.3 Benchmark software functions . 30
5.4 The testbench ELF image . 30
5.5 Compilation of the test binaries . 31
5.6 Testing the systems . 31

6 Co-design and Integration of Hardware Blocks 33
6.1 Integrated hardware blocks . 34
6.2 Wrapping SystemC with ESL APIs 35

vii

6.3 AHB to AXI-stream bridge . 35
6.4 Transactor to SystemC signal translation chain 36
6.5 Generating SoC Designer models . 38
6.6 Hardware IP block cycle-count measurements 38
6.7 RTOS hardware-software synchronization 39

7 Results 43
7.1 Sotfware performance of virtual microcontroller prototypes and devel-

opment board . 43
7.2 HW accelerator block latency measurements 46

8 Discussion and Conclusion 49
8.1 Virtual prototype versus development board and FPGA 49
8.2 Conclusions . 53
8.3 Future work . 54

References 55

viii

List of Figures

1.1 Embedded SoC development flow with FPGA. 2
1.2 Embedded SoC development flow with virtual HW/SW system simu-

lation. 2

2.1 Classical vs ESL design flow . 8
2.2 HLS hardware development flow for FPGA 10
2.3 The SystemC language architecture 15
2.4 OSCI TLM-2.0 coding style characteristics 16

3.1 Hierarchy of ARM transactors and ESL APIs over SystemC and the
C++ ANSI standard. 18

3.2 CASI, CADI and CAPI . 19
3.3 Communication port types as displayed in SoC Designer 19

4.1 The virtual platform micro-controller hardware configuration in SoC
Designer. 24

5.1 Simplified virtual platform micro-controller hardware configuration. . 28
5.2 Simplified reference development board micro-controller hardware con-

figuration. 28
5.3 Ideal bus microcontroller configuration in SoC Designer. 29
5.4 Benchmarking software test flow for development board. 32
5.5 Benchmarking software test flow for virtual platform. 32

6.1 Downlink HW accelerator signal chain 34
6.2 AHB Transactor signal conversion chain 36
6.3 Waveforms of signal chain from transactor signal splitter to CASI to

SystemC block . 37
6.4 Waveforms of signal chain from transactor signal splitter to bus matrix 37
6.5 HW/SW co-simulation test program sequence diagram 40
6.6 Virtual prototype with HW accelerator blocks 41

7.1 Cycle count for function subset A of the software test-bench on the
various targets . 45

ix

7.2 Cycle count for function subset B of the software test-bench on the
various targets . 45

7.3 Latency for hardware downlink HW block in FPGA target 48
7.4 Latency for hardware uplink HW block in FPGA target 48

x

List of Tables

7.1 Virtual platform configurations . 43
7.2 Virtual platform configuration software performance comparison . . . 44
7.3 Software test-bench execution time and speed on target 46
7.4 HW block comparison in clock cycles between FPGA and virtual pro-

totype implementation . 46

xi

xii

Glossary

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

ARM Advanced Risk Machine (ARM) Ltd

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

CADI Cycle-accurate Debug Interface

CASI Cycle-accurate Simulation Interface

DMAC Direct Memory Access Controller

DSP Digital Signal Processing

ELF Executable Linkable Format

ESL Electronic System Level

FPGA Field-programmable Gate Array

HLS High-level Synthesis

HDL Hardware Description language

ILA Integrated Logic Analyzer

IP Intellectual Property

RTL Register Transfer Level

RTOS Real-time Operating System

SoC System on Chip

SystemC C++ HDL library and simulation kernel

UART Universal Asynchronous Receiver/Transmitter.

VHDL Very High Speed Integrated Circuit Hardware Description
Language

xiii

xiv

Chapter1
Introduction

1.1 Background

Embedded design for system-on-chip (SoC) has been traditionally carried out with
varying degrees of separation between hardware and software. Since there is an
inherent need to synchronize the two, physical target hardware must be available
to verify system functionality is as intended. This entails that a decision must
be made regarding the target hardware environment, creating a bottleneck in
the development process as the physical hardware must be developed in order to
begin designing fully verifiable corresponding software. The fixed hardware design
is then generally synthesized and taped-out for physical silicon production as an
application specific integrated circuit (ASIC). The isolation of the two designs thus
severely extends development time as they are not implemented synchronously.
Furthermore, such a rigid methodology causes any modifications to the system
design requiring chip alterations to become costly in both time and resources, as
new hardware must be re-produced before adapting the software.

Consequently, SoC development has been trying to move away from the two
step hardware-software design process in order to keep up with the rapidly in-
creasing processing power of modern chips, while reserving ASICs for the later de-
velopment stages and the final product. A few different techniques have emerged
to address this issue, the most widely used in industry being the integration of
re-configurable SoCs or Field-Programmable Gate Array (FPGA) into the devel-
opment process, see figure 1.1. An FPGA is typically encountered as a physical
hardware development board, which has specific logic sections that can be config-
ured according to the register transfer level (RTL) design of the hardware module
that is being implemented. This enables a certain degree of flexibility in the devel-
opment of the system through testing, but at the same time restricts the project
to only use the hard IP available on the board; as it is often bundled with a fixed
processing core, memories and other peripherals. Techniques such as this one are
referred to as hardware software co-design, a term which has been defined by J.
Teich as:

"[T]he process of concurrent and coordinated design of an electronic
system comprising hardware as well as software components based on
a system description that is implementation independent by the aid of
design automation." [1]

1

2 Introduction

Figure 1.1: Embedded SoC development flow with FPGA.

Another technology that attempts to bridge the gap between hardware and
software design and which allows for complete independence from physical target
hardware during early development is hardware software co-simulation, see fig-
ure 1.2. Software with co-simulating capabilities, which is the main focus of this
thesis, simulates hardware models according to RTL or higher abstraction level
languages and enables a virtual system where different modules can be intercon-
nected. With the addition of a processing core model to such a system, software
can thereafter be executed to simulate a complete SoC; all hosted in a standard
computer. The usage of hardware-software co-simulation techniques can be used
to achieve faster development and reduced costs, compared to FPGA exclusive
work-flows by supplying a non-rigid platform which is vastly reconfigurable.

Figure 1.2: Embedded SoC development flow with virtual HW/SW
system simulation.

Introduction 3

1.2 Cellular IoT and ARM Wireless Business Unit

Cellular Internet of Things (IoT) is the concept of interconnecting physical devices
for data transfer through mobile networks. It is a growing technology which is on
the verge of a major transition from Global System for Mobile Communications
(GSM) to Long-Term Evolution (LTE) communication standards due to infras-
tructural support changes and performance advantages. LTE potentially provides
reduced device cost and power consumption as well as extended coverage at the
cost of increased hardware complexity. In the near future there will be billions of
devices connected through cellular protocols and there will therefore be a demand
for systems with communication capabilities for these.

ARM Wireless Business Unit, is developing embedded solutions based on LTE
Narrowband (NB) IoT which offers signal processing software, digital hardware
and hardware control software. The systems developed consist of the interfacing
between real-time operating system (RTOS) running on processor cores, hardware
accelerators and the peripherals required to implement a wireless cellular modem
from the physical layer to the transport layer.

1.3 Aims and challenges

The objective of this thesis is the utilization of an existing System-on-chip (SoC)
hardware-software co-design and co-simulation tool (SoC Designer) from the mi-
croprocessor and semi-conductor company ARM, to realize a completely virtual
clock cycle-accurate co-simulation platform for parts of a cellular wireless modem
module. In this context the term virtual entails that the whole system (hardware
and software) are simulated synchronously on a host machine. Furthermore, a
virtual co-simulated environment also entails that the developed solution is com-
pletely independent from a physical instance of the target hardware for execution,
but is ideally bound to the physical constraints of the actual silicon hardware.

The purpose in the creation of the hardware-software co-simulation platform is
to enable the eventual completion of a virtual prototype of an LTE IoT embedded
system and accelerate development with early hardware-software integration. The
key points of focus are thus putting together a minimal working hardware base,
perform module integration and debugging and optimizing system parameters with
a cycle-accurate model based on an existing system that is currently being designed
with an FPGA work-flow. The challenges of this project are described in detail
below:

• To establish a limited but functional cycle-accurate hardware layout with
an ARM core and carry out porting of existing software to evaluate func-
tionality and perform benchmarking with focus on the tool itself and the
cycle-accuracy of the models. This is to be done with a comparison of a
known functioning hardware solution in the form of a development board
containing the same core.

• To utilize the reference hardware to check optimization possibilities utilizing
the co-simulation platform with regard to performance and resource cost by
swapping and altering the base hardware components.

4 Introduction

• Expanding the base platform by integrating hardware blocks which make
up the back-end of the wireless module, so that they function in the cycle-
accurate environment. This is achieved through the wrapping existing high-
level synthesis (HLS) C++ hardware blocks and creating/adjusting the inter-
faces between the modules and the created platform base configuration. A
related challenge is to carry out the necessary debugging in order to achieve
intended system functionality.

• To perform basic hardware-software time synchronization as a proof of con-
cept for building a complete virtual system prototype, porting an RTOS into
the platform is required. The RTOS is used to schedule the access of the
hardware components by the software and manages the usage of resources.

• To quantify the functionality of the project, several simulations shall be
performed for system validation and verification according to the system re-
quirements at a block level. This entails an analysis of system block response
to given inputs with known expected outputs.

• Ultimately, the outcome of this thesis is a virtual cycle-accurate co-simulation
prototype for the development of a system that will enable the evaluation of
system aspects such as performance and module compatibility at an early
development stage. This in turn should enable a co-simulation platform for
debugging of both existing and new IP modules in an alternative work-flow
to the one currently employed.

1.4 Previous work and alternative tools

The field of hardware-software co-simulation has been developing for the last cou-
ple of decades. Early published works include J. A. Rowson’s analysis of available
techniques with respect to simulation speed, model complexity, debug capabilities
and co-verification turn around time [2]. In this paper from the year 1994, cycle-
accurate simulation is mentioned among the modelling techniques. It is however
also pointed out that system emulation in physical hardware is more widespread
than co-simulation, due to the lack of models and complexity of generating them
and cost of execution on a host system.

Although there is not a vast amount of publications documenting HW/SW
co-simulation implementations, most of them are based on the SystemC standard.
One of the most relevant examples of such a methodology, which sets similar
goals to this thesis, is outlined by A. Sayinta et al. through a case study of a
wireless local area network (WLAN) SoC development [3]. It describes a Sys-
temC based model, which runs concurrently with HDL RTL through a wrapper
interface in conjunction with an instruction set simulator. This allows algorithm
coherence with HDL implementation, while executing the intended firmware pro-
viding system validation. This methodology allows for verification to be done with
a re-usable SystemC test-bench for all implementation abstraction levels. Never-
theless, the publication focuses on functionality validation and does not emphasize
on simulation cycle-accuracy.

Introduction 5

Modern HW/SW co-simulation tools are compatible or based on SystemC to
some degree, including SoC Designer. The most prominent industry equivalent
tools for SoC interconnect and architecture exploration are Synopsis Platform Ar-
chitect MCO [4] and Vista from Mentor [5]. Both of these claim to allow for
hardware and software validation and performance measurement through TLM
models and SystemC, where Platform Architect specifies cycle-accuracy as possi-
ble.

1.5 Thesis outline

The thesis project, as documented in this report is comprised of two an intro-
ductory section consisting of two chapters on the implications of the technology,
three main chapters which comprise the methodology, one result chapter and a
final discussion chapter. The process of evaluating the virtual hardware-software
co-design/co-simulation platform development process through a virtual prototype
implementation for Cellular IoT is divided as follows:

Chapter (2) serves as an ingress into Electronic System Level (ESL) design
techniques, FPGA development, simulation abstraction accuracy, SystemC and
High Level Synthesis (HLS).

Chapter (3) places ARM SoC Designer within ESL methodologies and gives
a functional description of the tool and its relation to SystemC.

Chapter (4) deals with the establishment of a basic functioning co-simulation
system by putting together a virtual hardware micro-controller configuration based
on a Cortex-M core and other ARM verified IP models. Additionally, it describes
the development of a corresponding software bring-up for booting the processor.

Chapter (5) compares the virtual micro-controller system’s performance to a
closely equivalent system by executing benchmark software functions on a physical
silicon hardware reference development and measures the clock cycle discrepancy
in the two platforms.

Chapter (6) consists of evaluating HW/SW system co-simulation capabilities
with respect to scalability and HW accelerator block development. This is done
by measuring latency of two specific blocks instantiated in an expanded version
of the initial virtual micro-controller and comparing it to values measured in a
corresponding FPGA implementation.

Chapter (7) presents the condensed results obtained in the methodology
chapters (4-6).

Chapter (8) culminates the report with an in-depth analysis of the results,
an evaluation of the ARM SoC Designer tool with respect to FPGA driven devel-
opment as well as suggests further work and improvements upon the methodology.

6 Introduction

Chapter2
Electronic System Level Design

The definitions of ESL are diverse, however G. Martin et al. have provided the
following condensed description:

[T]he utilization of appropriate abstractions in order to increase com-
prehension about a system, and to enhance the probability of a success-
ful implementation of functionality in a cost-effective manner, while
meeting necessary constraints. [6]

For the purposes of this thesis, the term is focused to the subsection of this def-
inition which is met by hardware-software co-design and early hardware-software
integration methods.

The following chapter aims to describe FPGA driven development while com-
paring it to ASIC exclusive methodologies and thereafter explore the various ESL
simulation techniques to provide context regarding the potential benefits of adopt-
ing these methodologies into the development work-flow. The effects of ESL on
the development timeline according to J. Teich are illustrated in figure 2.1.

7

8 Electronic System Level Design

Figure 2.1: (a) Classical design flow and (b) ESL design flow starting
from an executable specification and allowing for concurrent
development of hardware and software after an initial delay for
specification and design space exploration. Savings of up to six
months may be expected. At the same time, the risk of late
design errors and of overdesigning and underdesigning a system
is reduced. [1]

Electronic System Level Design 9

2.1 FPGA

A field-programmable gate array is a semiconductor device which consists of logi-
cal gates and registers, which exists in a none-fixed configuration and provides no
useful functionality off-the-shelf. Instead, the logic functionality of the gate arrays
can be switched into a representation of a user defined hardware description. It
is even possible to continuously re-define the hardware layout throughout the dif-
ferent development phases. FPGAs are often standardized boards that enable the
verification of a system’s hardware blocks by loading RTL models and recreating
the intended functionality by realigning the coupling within the configurable logic
sections. Nevertheless, FPGA boards usually also include none-modifiable hard
or fixed IP, which provides basic and optimized functionality for standard com-
ponents such as CPUs, memory blocks, serial communication peripherals. Thus,
software can be executed on the FPGA given that its design is compliant to the
on-board components.

To place the usage of FPGA within the ESL of design, there is a requirement
to touch upon the term electronic design automation (EDA). EDA tools are in-
volved with the translation of RTL hardware designs into a logic gate configuration
layout, which is something not required in virtual hardware-software co-simulation
techniques; where RTL is often the lowest level of abstraction employed.

2.1.1 FPGA vs ASIC

Benefits of using FPGA technology over ASICs during development include re-
duced non-recurring engineering and shorter time to market [7]. Although FPGAs
enable flexibility since they can be reused in different development cases, they re-
quire larger silicon area and consume more power due to a higher transistor count,
they introduce delays and thus have decreased performance compared to an ASIC
chip [8, 9]. Furthermore, the design can never exceed the existing hardware con-
straints provided by an FPGA. Even though FPGA based co-design reduces the
development time, there is still a need to acquire non-final hardware just for co-
verification purposes. [10]

2.1.2 High-level synthesis

High-level synthesis (HLS), also known as ESL synthesis is "an automated de-
sign process that interprets an algorithmic description of a desired behavior and
creates digital hardware that implements that behavior" [15]. This translates in
most scenarios to the production of RTL HDL code based on C++ abstraction
level hardware descriptions [16]. As this thesis deals with several hardware blocks
developed through HLS with the Catapult HLS tool from Mentor Graphics and its
C++ library Catapult C [17], it is important to briefly highlight the design flow and
different methods that can be utilized for design testing from an HLS perspective
as shown in figure 2.2.

The initial step is generally to develop a block description and perform algo-
rithmic testing at a C++ level to check behavioural and functional correctness of
the hardware. Thereafter HLS is performed to obtain an HDL description which
can be input into an RTL event simulator with a signal test-bench.

10 Electronic System Level Design

Figure 2.2: HLS hardware development flow for FPGA.

It is during the HLS process that target constraints and technology library
information results in several degrees of optimization and thus often introduce
changes to the generated RTL, with respect to the high level design. These gen-
erally include the addition of hardware pipelines to ensure hardware timings are
met, as well as other factors that may affect the synthesized block latency when
compared to the C++ level description.

Finally, the RTL gate and register logic can be synthesized with a library and
programmed unto an FPGA to perform integration testing and system verification
before moving to the production of an ASIC. With this in mind it is noteworthy
that any alterations that may be done intentionally or unintentionally in the auto-
mated RTL generation process must be considered when comparing any high level
design source to a synthesized hardware block running on target, so as to be able
to properly evaluate the fidelity of the synthesized block to the original description
of the block, both functionally and structurally.

2.2 System simulation

In order to move towards a completely physical hardware independent hardware-
software co-design, virtual co-simulation tools have recently increased in popu-
larity. Such tools allow for software execution in a hardware target environment
prior to its availability in a silicon ASIC. Several methods exist to conduct SoC co-
designing and co-verification and most of these were originally based on VHDL and
C/C++. One of the most widespread open license libraries to do system hardware-
software co-simulation is the encompassing SystemC C++ expansion library, which
is capable of both describing hardware and simulating the execution of it through
a kernel [11]. As the ESL field is still in a settling phase, the terminology and tax-
onomy for the various techniques within it is a controversial subject. Nevertheless,
from a SystemC point of view, Grötker et al. define several critical characteristics
of a model based simulation in their book System Design with SystemC [12], both
from an individual component model and full system perspective. This terminol-

Electronic System Level Design 11

ogy is one adapted in this dissertation when addressing the subject.

2.2.1 Model characteristics

A simulated system represents a corresponding physical target or a proposed im-
plementation of such and can thus be evaluated in terms of how accurate it is
represented as a model according to various principles. Grötker et al. provide a
terminology list of the accuracy criteria for a simulated hardware model, when
comparing it to the real physical implementation, which is described below. [12]

• Structural accuracy refers to how well the model reflects the structure of
the actual implementation. Regarding hardware, this concerns whether the
signals and pins are accurate to the real system.

• Timing accuracy indicates the degree to which the model mirrors the
timing of the target. A physical target introduces delays due to required
processing and a model implementation could have delays enforced by design
specification.

• Functional accuracy is a measure of how correct the model behaves in
terms of functionality compared to the target. It is common to simplify
complex functions and behaviours in order to achieve faster simulation speed
with a high-level model.

• Data organization accuracy refers to the fidelity in which the model
stores data structurally with regard to the physical target. For example,
hardware register matching.

• Communication protocol accuracy concerns how fully modeled the com-
munication between modules is, from a protocol perspective. Protocols can
be more or less complex and can therefore be modeled on different levels of
abstraction with a trade-off in accuracy. The communication protocol accu-
racy term reflects how well the model is true to the target implementation.

2.2.2 Simulation abstraction models

There are several abstraction levels when it comes to modelling a hardware-
software system. These have different areas of focus that involve trade-offs between
detail in simulation accuracy and execution time. The following section attempts
to organize two different abstraction level descriptions into a coherent taxonomy
that incorporates the various terminology that is often used.

Grötker et al. define the different levels, ranging from the highest to low-
est level of abstraction, as Executable specification, Untimed functional, Timed
functional, Transaction-level, Behavioural modelling, Cycle-accurate and Register-
transfer level, where as R.Schaumont has divided the range of abstraction into
Transaction-accurate, Instruction-accurate, Cycle-accurate, Discrete-event, Con-
tinues time. They both incorporate some of the same functionality, but from
different perspectives. Grötker et al. take on the abstraction definition from
an implementation perspective and R.Schaumont focuses on defining it based on
granularity of time.

12 Electronic System Level Design

Executable specification

An executable specification abstraction level models the desired functionality of
a design based purely on the specification, meaning it does not take into account
any proposed implementation aspects. [12]

Untimed functional

A model which is implemented on the untimed functional level does not include
any representation of delays, even if it is present in the specification. This is
what sets it apart from the executable specification level. None of these two are
structurally accurate to the modelled component. Communication is modeled
point-to-point without any shared objects such as a bus in between. Instead, this
is usually done through utilization of FIFOs with blocking write and read to ensure
correctness. [12]

Timed functional

Timed functional models add delays to achieve a closer to reality simulation. These
delays can for instance be timing constraints based on the specification, or delays
introduced by a specific target implementation’s processing. The communication
between two modules is however, still modeled as point-to-point but it is possible
to add delays in regard to this aspect as well. The none true to target structural
representation of untimed functional and executable specification abstractions also
applies to timed functional models. [12]

Transaction-level

In a transaction-level model (TLM) the focus lies on the interaction between mod-
ules on a pure functional, none protocol specific, perspective and allows for ex-
ploring of system design as to where and when data should be communicated.
The communication is often implemented in a more realistic way than untimed
and timed functional abstraction levels by utilizing function calls. This modeling
technique allows for accuracy in regards to both functionality and timing, but
structural accuracy is not obtained as the pin-level transfers are bundled together
as one coherent function call to increase the simulation speed. [12, 13]

Behavioural modelling

This level of abstraction focuses, like the TLM, on the flow of the design with a
concern on exploration of relative ordering of input and output events. However, a
behavioural model adds pin-accuracy and describes the transactions in more detail
making it more accurate in regard to communication protocol accuracy. It would
though not be considered completely structural accurate as the internal structure
of the module does not reflect the target implementation. [12]

Electronic System Level Design 13

Instruction-accurate

A more detailed overview than TLM is also provided by Instruction-accurate level,
which utilizes instruction sets as the frame of reference instead of transactions when
sequencing the simulation. This level of abstraction is only applicable when the
simulated system contains a microprocessor. [13]

Cycle-accurate

The term cycle-accurate simulation is defined by A.Khan et al. as a simulation
that conforms to the cycle-by-cycle behaviour of the target design. The behaviour
may be characterized in terms of the values of all the state elements of a machine
(registers, memories, etc.) for every clock cycle. [14]

This type of simulation takes real time events and places them on the next
chronological clock-cycle thus creating functionally accurate results for each cycle.
As single-clocked hardware circuits have behaviour defined by the frequency of
the clock, simulating at this level enables close to target behaviour at a high
granularity of time. The model is also pin-accurate, but its internal representation
of components such as the registers and the combinational logic does not need
to be true to target. Using this level of abstraction it is possible to analyze
real-time performance of a system, which is not available at higher abstraction
levels [12, 13, 14].

Since this thesis deals with a time-critical LTE system, the capability to simu-
late at a cycle-accurate level is essential for ensuring that the complete hardware-
software system is capable of synchronizing with the carrier network.

Register-transfer level

RTL simulation adds structural accuracy to cycle-accurate models which makes
it functional, timing and structural accurate. A model in a register-transfer level
abstraction is defined down to the transactions between functional units and regis-
ter files. These and interconnections between them are together called data paths.
Hidden by the abstraction level are gates and latency of computation. In fact,
computations and data transfer are treated as to take zero time, depending on the
clock. Meaning that the propagation delay of a critical signal path is not taken
into account and there is thus no guarantee that the target implementation will
be able to meet the time constrains of the clock period. [12]

2.2.3 System models

Individual component versus system abstraction level

Based on the model characteristics and the simulation abstraction levels described
in the previous sections, an explanation from a system point of view is required.
In order to model a hardware system, there are several aspects which need to be
simulated, these can be simplistically divided into individual component blocks and
their communication with other blocks. As a system expands, several abstraction

14 Electronic System Level Design

levels are often employed to achieve inter-connectivity, improve simulation speed
or for ease of implementation.

From the perspective of a cycle-accurate system, what is lost is structural
and data organizational accuracy to a real physical implementation, however this
does not necessarily compromise functional and timing accuracy. For example,
a transaction level abstraction can be employed for the communication between
two cycle-accurately described component models, but as long as any delays are
represented the system should retain communication protocol accuracy as well as
a cycle-by-cycle and pin-by-pin accurate data value.

2.2.4 Type of models utilized

Since this project does not aim to structurally recreate any specific physical sys-
tem, but instead seeks to create and evaluate a cycle-accurate virtual prototype,
the developed system utilizes a few types of models to achieve cycle-accuracy
while keeping the simulation load to a minimum. These models are mainly cycle-
accurate models generated from RTL which are described in a cycle-by-cycle fash-
ion, behavioural non-structurally accurate models, and transaction level protocol
communication models used between blocks. The different occurrences of these in
the system are described in the later sections of this report.

2.3 SystemC

SystemC is a hardware description language (HDL) and a system-level modeling
library specified in the IEEE 1666-2011 standard [18]. It is driven by the Accellera
Systems Initiative and is available through their website [19]. SystemC consists of
various macros and classes implemented as an ANSI C++ class library, created with
the purpose of enabling the modeling of hybrid hardware and software systems. It
includes a simulation scheduler, or kernel, which is event driven, meaning it can
advance the simulation time to the next scheduled event if there is no immediate
event pending and thus resulting in a more time effective simulation. The SystemC
language structure is displayed in figure 2.3. Its core language consists of the
kernel, modules, ports, interfaces and channels.

The modules and ports represent a systems structural information and the
interfaces and channels act as an abstraction for the communication. Modules are
the system’s building blocks, and most often contains ports for communication
with other blocks and an implementation of the functionality. Modules can contain
other modules, allowing for a hierarchical structure with interconnected sub-blocks
that make up a complete functional module. This allows for code recycling, as well
as makes it possible to inspect a model with different detail level abstractions as is
suitable for a given system simulation. Also included in the library are predefined
channels, a set of commonly used entities such as signals, clocks, FIFOs, mutexes
and semaphores. Even more, utilities and data types enables debug functionality
and modeling of digital logic and fixed-point arithmetic. It is possible to add other
C++ libraries and user defined classes into the design of a system given that they
comply to the SystemC standard.

Electronic System Level Design 15

Figure 2.3: The SystemC language architecture. [18]

One such library which extends the usage of SystemC is the OSCI TLM-2.0
language [20], which comes bundled in SystemC since version 2.3.0. It describes
and adds the functionality of Loosely timed and Approximately timed coding
styles. These coding styles describes different ways of designing models of a simu-
lated system while focusing on the timing accuracy of the communication, hence
they work on the TLM abstraction level. Loosely timed are the less accurate but
enables a faster simulation speed of the two and allows for temporal decoupling
from the system simulation time, which means individual SystemC processes are
allowed to run ahead of simulation time until they reach a point where they need
to interact with other processes. The idea is to reduce the amount of context
switches since every switch adds overhead to the simulation. The communication
itself are divided into two timing points, one for the transaction request and one
for the response.

In a simulation which utilizes the Approximately timed coding style, the tim-
ing is more accurate and each process has to comply with the system simulation
time. The communication is allowed to be defined into more than two timing
points to allow modeling of multiple phases within one transaction. The delay of
a transaction is also expressed within the Approximately timed coding style.

The TLM-2.0 language reference manual also mentions that it would be pos-
sible to derive a cycle-accurate modelling coding style using techniques present in
the specification, but states that it is currently out of the specification’s scope.

16 Electronic System Level Design

Figure 2.4: OSCI TLM 2.0 coding style characteristics.

Chapter3
ARM SoC Designer

3.1 Overview

The ESL approach used for this thesis investigation into co-design and co-simulation
is using ARM’s SoC Designer [21], a SystemC based toolkit that enables the de-
velopment and simulation of virtual prototypes. The software contains utilities for
both set-up and running of pre-configured models, as well as tools that are used
for crafting a custom platform based on ARM intellectual property (IP), through
either the ARM IP Exchange, included behavioural models bundled with the tool,
and/or custom third party models. The IP Exchange is a database that contains
a wide array of licensed ARM hardware cycle-accurate models such as processing
cores, peripheral components and other SoC components [22].

In the case of the ARM processor models, the SoC Designer environment allows
them to execute instructions from an executable binary placed in a memory in the
same way as a silicon implementation of the processing core would; as long as
the software is compiled compliant to the hardware configuration of the virtual
prototype. This is the aspect that allows for the co-simulation aspect of the tool.

The SoC designer software features the possibility to run hardware and soft-
ware concurrently in different modes, namely loosely timed, and cycle-accurate,
depending on the type and capability of the IP models which are included in
the simulation [23]. The types of models provided by ARM are divided into
cycle-models (cycle-accurate), and fast models (loosely timed), and this can be
used simultaneously or interchangeably in a simulation. This means that cycle-
accurate simulation can be entered at specific time breakpoints where execution
is time-critical, while allowing the simulation to run at higher abstraction lev-
els in sections that are not a debugging priority. A particular advantage to this
functionality would be to reduce booting time during for example system start-
up, increasing efficiency. Alternatively, both a hybrid cycle-model and fast-model
system could be constructed that could run marginally faster than a purely cycle-
accurate configuration. The variations of simulation involving Fast Models are
however not investigated in this thesis due to the availability of such models for
the processing core utilized as well as the real-time requirements of the intended
Cellular IoT system prototype.

The cycle-accurate IP provided in the ARM IP Exchange for the tool is com-
piled utilizing cycle-based modelling for all the components that are available offi-

17

18 ARM SoC Designer

cially for the tool on the ARM IP exchange. These component models are largely
generated through the ARM Model Studio software from HDL descriptions of
RTL by translating the low-level RTL to a higher level C++ cycle-scheduled rep-
resentation which retains full functional implementing the ARM ESL modelling
interfaces [21, 24]. The ESL interfaces are explained more in detail in the next
section of this report.

SoC Designer thus supports any C++ hardware modules that implement their
ESL API libraries natively or through wrapping. The tool contains platform de-
bugging tools that will allow for breakpoint setting, register, memory and even
hardware signal inspection through the usage of the cycle-accurate simulation,
debug and profiling interfaces which are described ahead in this chapter.

3.2 Modelling libraries

Firstly, in order to import any given C++ or SystemC model to SoC Designer, it
must be compliant to the cycle-accurate simulation interface (CASI). Secondly, in
order to provide visibility and interactivity into the simulated signals, registers and
other internal workings of a hardware model, the cycle-accurate debug interface
(CADI) must be implemented. These two C++ modelling libraries along with the
cycle-accurate profiling interface (CAPI) make up the ESL APIs which are core
to SoC Designer.

Figure 3.1: Hierarchy of ARM transactors and ESL APIs over Sys-
temC and the C++ ANSI standard.

3.2.1 CASI

The cycle-accurate simulation interface is based on the SystemC library and man-
ages the interconnection and communication between components as well as the
advancing of time in the simulation environment. It provides infrastructure for
both cycle-based scheduling and transaction level communication modeling and
has support for the legacy SystemC event-driven simulation. It is thus possible
to simulate both CASI cycle driven components along side event-driven SystemC
components since the CASI clock signal generation is based on the SystemC OSCI
scheduler.

The communication is modeled directly in a TLM fashion through port-based
interconnection and has support for both signal based and transaction based com-

ARM SoC Designer 19

Figure 3.2: The cycle-accurate simulation, debug and profiling in-
terfacing layers [25]

munication, which models different degrees of protocol accuracy. A signal based
communication carries one signal while a transaction based communication mod-
els several pins as one. Other than the signal and transaction based signals, there
also exists generic SystemC signals by which it is possible to interconnect SystemC
components. The protocol accuracy in place when using generic SystemC signals
would depend on the underlying SystemC port as it is possible to define the signal
structure being communicated.

All of these communication alternatives are realized by CASI ports which are
divided into master and slave rather than input and output port, where a master
must be connected to a slave port of the same type. The different port types
as represented in the SoC Designer GUI is illustrated in fig 3.3. It should be
however noted to the reader that the CASI TLM implementation is different from
the SystemC implementation of SystemC TLM 2.0 mentioned in section 2.3.

Figure 3.3: Communication port types as displayed in SoC Designer.

The CASI simulation is cycle-based synchronous and each simulation cycle is
divided into two phases, a communicate phase and an update phase, which together
represents one hardware clock cycle. During the first, communication phase, all

20 ARM SoC Designer

inter-component communication should be performed, at which no modification
to shared resources are allowed. Instead, the updating of shared resources should
be performed in the next, update phase.

In the case of a simulation environment with both CASI components and
legacy SystemC components, the clocked components are triggered on the edge of
a clock pulse, while the event-driven components are allowed to take place during
clock phases.

AMBA Transactors

As an addition to the CASI ports and signal types, SoC designer has support for
a proprietary collection of individual libraries that bundle the standard AMBA
communication protocols called transactors. These are an ARM proprietary C++
library implementation of CASI transaction based communication that aims to
raise the abstraction of the protocols to transaction-level, with a cycle-accurate
coding style. In addition to bundling pins together and thereby facilitating con-
nection between components in SoC Designer, the transactor protocol bundle also
implements the CADI and CAPI adding debug capabilities. These include func-
tionality of breakpoints to control simulation, transaction views which interprets
the pin-level protocol signals into readable AHB definitions and the possibility to
capture waveforms. This feature is explained in more detail in section 3.2.2 and
3.2.3. It is also worth noting that the vast majority of the models available from
the ARM IP Exchange solely implement the transactor library for all the standard
protocol communication.

3.2.2 CADI

The cycle-accurate debug interface enables debug features such as viewing and
altering internal registers and memory contents for any type of component. It also
has the functionality to set breakpoints on these registers and memory addresses
which will trigger when a value is updated. Another feature is the possibility to
toggle arbitrary functionality, such as the viewing of the internal registers. This
is done by implementing component parameters as variables in the code which
can be interactively set through the CADI and thus changed from the GUI within
SoC Designer prior to, or during halted simulation, depending on the parameter
type. CADI also enables interaction with an external debugger which supports
the interface. [25]

3.2.3 CAPI

Apart from the above interfaces, the cycle-accurate profiling interface (CAPI)
provides the additional functionality of creating and assigning data streams to
specific nodes, enabling the storage of for example signal, register or port values
in a CASI module and thereafter providing a historical view of the accumulated
data during a simulation. [25]

ARM SoC Designer 21

3.3 The canvas & simulator

The SoC Designer software is divided into two programs, the project builder tool
called the canvas where the hardware system is assembled and configured, and the
actual simulator which executes the output from the canvas.

All of the shared object models are loaded into the canvas individually into
the tool library in order to interconnect a system. All the blocks are placed and
optional parameters for the models are set, and basic signal type connectivity
assertion is performed. It is worth noting that a shared object compiled from
a hardware block model source which implements the CASI individually will be
able to be included in isolation, however, to achieve interconnection with other
blocks and successful simulation, every relevant port must be connected graphically
through a wire to a port of the same type containing the same signal type.

Thereafter the interconnected system is inputted into the simulator where all
the run-time interaction functionality occurs as previously described by the ESL
APIs.

3.4 Processor core models and ELF files

Any ARM IP Exchange processor models included into an SoC Designer simula-
tion are compatible with executable and linkable format (ELF) files (.elf or .axf
extension), which contain the compiled software instructions to be executed. An
ELF file consists of the information required to run the program on the target sys-
tem; including an indication of memory map of code regions as well as initial stack
and heap pointers. These files support the inclusion of additional information to
enable debug capabilities during software execution.

22 ARM SoC Designer

Chapter4
Developing a Virtual System

Micro-controller

Reaching a base for the system included designing a base configuration of the hard-
ware design, developing system-specific start-up code as well as creating dynamic
build automation templates. It is worth mentioning that all the SoC Designer
models utilized in this section are either ideal/behavioural configurable hardware
components, or fully cycle-accurate models compiled by ARM from RTL code.

4.1 Virtual hardware base configuration

To put together a micro-controller, the minimal hardware requirements are a pro-
cessing core for instruction execution and memories to store both instructions and
data. These need to be connected at pin level for software execution to take place.
For this initial section, a specific cycle-accurate processor model has been used as
the core for the base design. This processing core, an ARM Cortex-M which will
be from this point forward referred to as Core M, implements the AHBv2 standard
bus connectivity protocol. The core, has three bus master interfaces which are to
be connected into the system. The first two, the instruction and data buses are
for fetching the processor instructions and data from code respectively. This are
expected to point to the same memory, however they are separated into two bus in
order to support various hardware designs such as the utilization of a flash memory
with instruction data prefetching and bypass for data code, or a memory cache
with hit-under-miss capabilities between code and instructions. The third and last
bus master, the system interface, controls all of the remaining memory accesses
during execution such as the heap, stack and any or all present slave peripherals
in the system.

In order to provide support for additional peripheral components in the design,
an ARMmodel of a bus matrix was added. A bus matrix or interconnect, is a block
that which is placed between a master block, or controller, such as a processing core
and all other peripherals, acting as a multiplier for bus access points and provides
arbitration of shared resources between bus masters and slave (controlled) blocks.
The presence of such an interconnect also allows for the expansion of the system
through the integration of additional hardware blocks. In this case the bus matrix
handles the arbitration of the access data, instruction and system buses as well

23

24 Developing a Virtual System Micro-controller

as peripheral access. Bus arbitration consists of determining which master input
port of the matrix has access to a specific slave output port. This model employed
a fixed arbitration scheme on the buses, which means that one AHB port always
has the highest priority and the remaining ones have lower, fixed priorities [26].

Consequently, two behavioural, configurable RAM memory models were con-
nected to the bus matrix, forming a system capable of executing software. One
RAM model was simulated as a read-only memory (ROM) used for code and in-
struction storing and the other RAM as a read/write memory which holds the
system stack and heap. Both models were initially configured to have a standard
default access times and latencies.

For the purpose of being able to interact with the simulation externally and
dynamically under execution, a Universal Asynchronous Receiver/Transmitter
(UART) was required in the base configuration. The available UART model in
SoC designer implemented however the APB standard, and to the means of make
it compatible with the AHBv2 bus matrix, an AHBv2 to APB adapter was placed
in between them. The achieved base hardware configuration design, which repre-
sents the microcontroller of the embedded system, is illustrated in figure 4.1 and
later simplified in figure 5.1.

Figure 4.1: The virtual platform micro-controller hardware configu-
ration in SoC Designer.

Regarding the UART model used in the platform, since it is placed in a vir-
tual simulation which cannot be accessed externally at pin level, a TCP (Trans-
port Control Protocol) server functionality included in the model was used as the
method for input and output of serial data. When utilizing the this functionality,
the RX (receive) and TX (transmit) pins are disabled and rerouted to the TCP
server’s data in/out. The server is hosted locally on the machine on a user de-
termined port which is set as a component parameter. However, while using this
added functionality, the model has a limitation which concerns the FIFO queue

Developing a Virtual System Micro-controller 25

usage and the interrupt generation: the input queue is limited to one character
entry, and it is therefore not possible to use an interrupt driven input handling
since the hardware interrupt is triggered depending on FIFO queue load. The
selectable interrupt trigger levels are 1/8, 1/4, 1/2, 3/4, 7/8 of queue capacity
and the RX and TX FIFO queues have a fixed size of 16, making it impossible to
trigger an interrupt for a load less than two characters.

4.2 Start-up code

The first step towards enabling the execution of arbitrary code on the system was
the initialization of present hardware. The hardware components are configured
through software drivers which allow for the control of the hardware component’s
registers. In the drivers, which have been written in the C programming language,
a representation of the registers have been defined as structs and these have been
associated with the physical address of the component in the AHB memory map.
In addition to this, there are also several functions that control the operation of
the hardware by accessing the register structs.

In the virtual prototype micro-controller, the components which needed to be
configured were the processing core and the UART. Beginning with the core, the
system control space (SCS) registers must be specified. These registers include,
but is not restricted to, system control block (SCB), the nested vectored interrupt
controller (NVIC), system timer (SysTick) and memory protection unit (MPU):

• The system control block provides processor information and the control of
the processors features, such as internal interrupts (faults). It also includes
a vector table offset register (VTOR) to specify the address of the vector
table. The vector table in turn specifies the initialization value for the stack
pointer as well as the entry points of all exception handlers [27]. The micro-
controller system implements both the internal exception handlers and a
handler for the interrupts coming from the UART.

• The NVIC controls the enabling, disabling and clearing of external inter-
rupts.

• The SysTick is a continuous counter which decreases in value until it reaches
zero, at which point it resets to a reload value and triggers an interrupt
before it starts decreasing again [27]. The SysTick register value is the time
granularity unit used for RTOS execution scheduling, this is relevant later
in section 6.7.1.

• To protect a system from running code which might alter data at the wrong
address, there exists a possibility to configure the MPU regions if it is present
in the hardware. The MPU defines access rights according to execution priv-
ilege level to certain regions of the memory. If a process tries to read or write
at an unauthorized region the execution results in a hardware fault. This
functionality mainly prevents erroneous or unintentional access to important
memory sections and helps maintain system stability. [27]

26 Developing a Virtual System Micro-controller

Configuration of the UART was done by utilizing an existing driver which im-
plements functionality to initialize, reconfigure and handle data transactions such
as receive and transmit. Initialization consists of setting the baud rate, enabling
sending interrupts and specifying the threshold at which the UART should trigger
an interrupt based on how full the FIFO (first-in-first-out) queues are. Regarding
the interrupts, as mentioned previously when using the TCP server functionality
in the UART, the receiving FIFO queue can only hold a value at a time. This,
together with the fact that it is not possible to set the interrupt signaling threshold
to less than two entries in the queue, results in no interrupt generation from the
UART while receiving data. Instead, polling was used in the system to receive
serial data from the UART to circumvent this issue.

However, as an addition to the driver, the C standard output was redirected
to use the UART in order to receive a response from the system in the TCP server
whenever printf() is invoked. The re-targeting involved re-declaring the __FILE
and __stdout structs and overwriting fputc() and ferror() to each place the
output character to the transmit register of the UART instead of the standard
implementation which takes into account which filehandle the output is supposed
to be directed to. [28, 29]

4.3 Compiling the start-up binary

Compiling the software for the initial minimal micro-controller system was done
using the ARM Compiler 5.06u4 Toolchain [30], the toolchain includes a GCC
style compiler, linker and librarian for compiling C and Assembly language files
and linking object files and libraries in order to create an ELF image. In order
to arrange the placement of the different .elf executable segments, a scatter file
which instructs the linker on how to organize the memory layout of the system
image is used. The scatter file is useful in many situations for embedded systems
and especially when it comes to placement of data and code onto different types of
memories. Moreover, it eases the use of memory-mapped peripherals by the same
use of placing hardware representational structs at the corresponding address of the
peripheral. This allows for the separation of hardware placement and hardware
functionality, meaning it is more convenient to keep the hardware layout and
software representation in sync. Another functionality of the scatter file is to
define the stack and the heap in the memory, both in terms of placement and
size. [31]

For instance, the vector table was placed as the first element of the data section
in the resulting executable file since the initialization value of the VTOR was not
changed from zero.

Chapter5
Software Performance of a Minimal System

With the aim of testing the cycle-accurate capability of the SoC Designer and
the virtual platform through existing software function benchmarking, a physical
hardware development board was used as a reference hardware system. The board
was chosen since it runs on an instance of Core M with hardware design schematic
that correlates to what was available as verified ARM IP models. Although the de-
velopment board has a different hardware configuration from the developed virtual
minimal system, it was used to adapt and optimize the initial platform hardware
and software compilation methods in order to achieve a comparable cycle-count
between the physical system and the virtual platform.

5.1 Reference development board

As a reference hardware system layout to the one developed using SoC designer,
a standard off-the-shelf development board was used as a comparison target. The
board’s hardware configuration is more complex and includes several additional
blocks than the minimal microcontroller developed in the virtual platform. As
shown in 5.2 the development board includes reciprocal IP consisting of one Core
M processor running at 100 MHz, RAM memory, UART and a bus matrix. On
the other hand, also included are a flash memory and flash cache accelerator
block which are central to the execution of the system. These two blocks replace
what would correspond to the second ROM RAM memory module in the virtual
platform. Furthermore, the board also includes direct memory access controller
(DMAC) blocks, timers and additional I/O connectivity ports which fall outside
of the scope of the software executed during the testing of the platforms and is
therefore not utilized or illustrated.

The key hardware aspects of the development board system which differs from
the virtual platform is the memory subsystem. For starters, the software binary
is placed on the flash memory as opposed to a RAM module, and the system
thereafter executes pre-fetched instructions through the flash accelerator. The
purpose of the flash cache is to counteract the miss-match in speed between the
flash memory access times and the higher clocking rate of the processor by fetching
multiple- instruction blocks large enough to keep the processor executing for a
certain number of cycles. This accelerator also implements a branch cache that
adapts to avoid wait states and minimize the effect of disrupting sequential code

27

28 Software Performance of a Minimal System

Figure 5.1: Simplified virtual platform micro-controller hardware
configuration.

Figure 5.2: Simplified reference development board micro-controller
hardware configuration.

Software Performance of a Minimal System 29

execution when branching. The vendor of the board claims that this configuration
averages zero-wait-state execution. Additionally, the system RAM (SRAM) that
the board uses is marked as zero-wait state.

Another decisive factor in the performance of the board is its bus matrix, which
is implemented so that all the AHB masters, in this case the instruction, data and
system buses can achieve independent none-blocking access to the different AHB
slaves. This entails that the bus matrix should not introduce wait states to the
system and even several peripherals can be controlled simultaneously by different
AHB masters. The nodes in illustrated inside the bus matrix in 5.2 show the
possible bus collision points for bus access on different master ports (M0-M3) by
different requestors (bus masters) on the slave ports (S0-S2).

5.2 Altering the bus and memory subsystem

The bus and memory layout in the virtual platform microcontroller were modified
into various hardware configurations to investigate the performance impact on
software benchmarking. The first optimization done to the initial design, was
altering the memory subsystem to reciprocate the reference development board
design by eliminate the access times on both the data/instruction and system
RAM memory modules. This entailed reducing the column access strobe (CAS),
row address strobe (RAS) and page latencies to zero on the behavioural models
to simulate the zero-wait-state present on the board.

Figure 5.3: Ideal bus microcontroller configuration in SoC Designer.

With a zero-wait-state achieved from the memory blocks, two variations of
the bus matrix model were compiled and tested in the system simulation. The
difference between the two was the bus arbitration scheme, which varied from fixed,
as in the initial configuration, to a round-robin scheme. Round-robin arbitration

30 Software Performance of a Minimal System

is performed on every active clock-cycle of the HREADYM. The port priority
decreases from the first requestor on slave port 0 as the port index increases. When
several requests are made, the active priority goes to the highest priority requestor,
relative to the active one. Additionally, fixed length bursts are not interrupted but
are allowed to finished before passing the priority to another requesting port. [26]

To further model the memory subsystem behavior on development board and
suppress the wait-states introduced by the bus matrix acting as a blocking resource,
an alternative ideal bus configuration was introduced. This consisted on providing
an exclusive ideal AHB bus model for every one of the Instruction, Data and
System buses as seen on figure 5.3. To enable this change, the Instruction/Data
RAM memory was replaced with an equivalent model with two AHB slave inputs.

5.3 Benchmark software functions

A wide array of 62 use cases of digital signal processing (DSP) and cellular IoT
specific functions were included into a testbench for benchmarking performance
across the different systems. Several of the functions included in the test suite
utilize core-specific CMSIS (Cortex Microcontroller Software Interface Standard)
DSP package functions [32].

5.4 The testbench ELF image

The executable image loaded on to the two systems for testing consisted of three
different parts linked together: the start-up code, code for the benchmark software
functions and a command parser. Both the benchmark code and the command
parser are pre-written C programs which were compiled into individual static li-
braries prior to the final linking into the start-up code. The command parser
allows for a more dynamic test environment making it possible to execute spe-
cific benchmark functions depending on the system serial data input through the
UART. The command parser contains entries that represent each supported test
case. The purpose of the parser is to determine if the command is present as an
entry and if the provided parameters are supported for that test function.

In order to measure the cycle count of each function in the same way, a special
debug register included in the processing core was utilized. This register incre-
ments continuously with every clock-cycle during execution, and it can be reset at
any moment to initialize a new measurement. Each entry thus begins by parsing
the input and if successful, the counter is reset before calling the test function,
probing the register for a cycle-count as it returns. The final count is then trans-
mitted to the UART. In case of failure a standardized failure message is sent
instead.

The flow structure of the testing program loaded on to the system consists of
the start-up code which leads to a main function that polls the UART address
through continuous AHB reads and forwards the received characters to the com-
mand parser, which in turn calls upon the relevant benchmark function with the
provided parameters and measures the elapsed clock-cycles.

Software Performance of a Minimal System 31

5.5 Compilation of the test binaries

Comparing the software performance on the platforms required the execution of
the exact same instructions and hence the benchmark functions had to be compiled
in the same manner. However, legacy code restrictions in both the start-up of the
development board and the virtual core did not allow to use the same compiler
for both the test ELF images. Nevertheless, the issue was solved in the following
way:

Both the benchmarking functions and command parser were compiled equally
into static libraries with the GNU ARM Embedded Toolchain 5.2.1 (20151202
release) [33]. In the case of the development board, both the start-up code and
linking of the final image were also done with this compiler toolchain. On the other
hand, the virtual platform start-up code was compiled and linked together with the
pre-compiled static libraries using the ARM Compiler 5.06u4 Toolchain, to ensure
that the function calls and cycle-measurements are the same at a instruction level.

5.5.1 Build automation

The software source compilation was done using GNU make, a utility which de-
termines what files need to be compiled, and issues commands to compile them
according to user defined directives called makefiles [34]. Through the use of
makefiles the build process was made dynamic, allowing the compilation of the
same software ELF image for different hardware configurations. This is specially
valuable when changing core add-on presence such as co-processors, which require
a different set of flags for compiling with the correct library code corresponding
to the hardware layout. Furthermore, since the project required build support
for several targets and compilers, makefiles were essential in order to support the
building of static libraries utilizing a librarian and linker from mixed toolchains.

5.6 Testing the systems

A Python script was utilized to administer the testing functions and manage the
results for both systems, the script performed an identical test suite on both sys-
tems, except for the UART serial input communication method which is target
dependent. The development board was connected via USB and the communi-
cation was performed through a teletypewriter (TTY) R/W file. The Pyserial
package was employed for this purpose. In the case of the virtual platform, as
previously mentioned the communication is done via TCP/IP socket instantiation
of the standard python socket class.

The script performs the serialized character inputs to the target and then
performs a blocking read of the expected response byte length including the cycle-
count of the tested function from the command parser. In the case of failure, such
as the serial data arriving corrupted to the target, the command string is re-issued
until success is achieved. The time elapsed for each test case is also measured and
recorded in the script. An overview of the test system’s flow is presented in figures
5.4 and 5.5.

32 Software Performance of a Minimal System

Figure 5.4: Benchmarking software test flow for development board.

Figure 5.5: Benchmarking software test flow for virtual platform.

5.6.1 Host Environment Specifications

• Intel Core i7-6700 CPU (8 cores @ 3.40GHz)

– single core usage for simulations

• 15.4 GiB RAM

• CentOS 7 (64bit)

• SoC Designer (9.1.0) for Linux64 with gcc 4.8.3

Chapter6
Co-design and Integration of Hardware

Blocks

Following the software performance benchmarking of the virtual micro-controller,
the scalability of both the virtual prototype and the simulation platform was inves-
tigated from a hardware software co-design perspective for an embedded cellular
IoT system. The system being prototyped exists as an FPGA implementation
that has a completely different micro-controller configuration due to the hard IP
constraints of the FPGA board. It is nevertheless comprised of several hardware
accelerators and a real-time operating system that manages a multi-threaded soft-
ware application. Thus, to expand the virtual prototype towards the FPGA system
implementation, and achieving the functional and cycle-accurate compatibility of
additional hardware IP blocks to the base microcontroller, the integration and
testing of three specific modules was carried out. This was done in several steps:

• Wrapping the SystemC HLS pre-synthesis target hardware blocks with the
ESL APIs in order to provide simulation compatibility with SoC designer.

• Creating the interface blocks between the developed minimal microcontroller
made up of ARM verified IP models, which utilizes transactor signals for
the protocol implementation, and the pin level implementation of the IP
models under testing.

• Integrating the wrapped hardware blocks into the working virtual platform
and achieving functional connectivity by developing a Transactor to Sys-
temC translation block chain.

• Debugging and performing behavioural verification for functional accuracy
on the individual blocks through software test-cases and utilization of CADI
features.

• Performing cycle-count measurements of individual blocks on the platform
and comparing them to their FPGA implementation equivalents to evaluate
latency deltas between the two.

• Porting FreeRTOS to the virtual platform and carrying out real-time syn-
chronous testing of the blocks under analysis.

33

34 Co-design and Integration of Hardware Blocks

Since the FPGA system hardware and software configuration are different from
the virtual prototype, it is only used to check the validity of the individual HW
accelerator implementations in the virtual platform and not the complete system.

6.1 Integrated hardware blocks

The two hardware blocks that were originally intended to be integrated into the
virtual prototype were late design stage verified IP, developed in Catapult C with
an HLS design flow. These blocks are hardware accelerators involved in the uplink
and downlink data processing paths and are thus hereforth referred to as the Up-
link HW accelerator and the Downlink HW accelerator for confidentiality reasons.
Both of the accelerators utilize a subset of the AXI-stream protocol signals to in-
terface with the system and therefore posed a challenge to integrate into the devel-
oped virtual micro-controller due to the communication protocol incompatibility
as well as the Transactor to SystemC signal type miss-match. Both accelerators
also have additional signals for control/configuration of the block which are set
outside of the protocol interface. To provide these signals, a native CASI imple-
menting signal generator was developed to configure the required static values for
each test-case at a signal level.

The communication protocol issue was thereafter addressed by integrating
and verifying a third block into the virtual prototype in SoC Designer: an early
development stage AHB to AXI-stream bridge developed in SystemC at RTL level.
This model includes among other things buffering FIFOs that introduce latency in
the bridge. The integration of two instances of this module thus allows for a pin-
level, signal type and protocol matching for both the Uplink and Downlink HW
accelerators in the simulation. The simulation signal type difference was resolved
by developing a series of zero-latency CASI blocks to form a Transactor to generic
SystemC signal translation chain which is described later in section 6.4.

Figure 6.1: Downlink HW accelerator signal chain, containing a
Transactor to generic SystemC signal translation chain, AHB
to AXI-stream bridge, control signal generator, unused signal
binding dummy and the HW accelerator.

Co-design and Integration of Hardware Blocks 35

6.2 Wrapping SystemC with ESL APIs

As described in chapter 3, in order for a C++ or SystemC level model to run
in a SoC Designer simulation, the model must primarily comply to the CASI
library. Thereafter, the communication methods, port types and pin-level signal
representations will depend on if the model has been natively designed with cycle-
based scheduling from CASI or relies on SystemC ports and signal types for an
event-driven section block. As the blocks under test were created through HLS,
the SystemC integration approach was default.

The wrapping consists of creating new source code which instantiates a CASI
top-level module with a one to one mapping of the ports in the target SystemC
module by either directly connect to the internal port, or to add intermediate
signals which are updated with the wrapper port’s value and cast the signal type
into the required internal type class, which is read by the corresponding port in
the SystemC module that is being wrapped. The signal conversion and forwarding
was done with sensitivity lists sensitive only to the wrapped signals and not to
the clock in order to avoid adding any register latency to the simulation from the
wrapper.

The clock port is tied to the CASI master clock signal directly, so that there
is no need to manually clock them with a component inside the simulation. The
clock can however be handled as a standard signal to connect to a clock-divider if
there is a need to introduce different clock domains in the simulation.

In order to provide visibility into the registers, internal and intermediate sig-
nals and to be able to set hardware debug points when simulating the models in
SoC Designer, the CADI was also implemented for both accelerator blocks. The
CADI module in the wrapper was done so that there was SoC Designer register
views for the wrapper ports and intermediate signals as well as the ports of the
internal SystemC module. Furthermore, every register of the internal SystemC
sub-module was also traced in order to provide high-visibility into the internal
component simulation at a cycle-accurate level. Internal signal traces were also
implemented to generate waveforms of the module execution.

Finally, the CADI module also implemented parameters that allow the en-
abling and disabling of the aforementioned debug functionality in each block from
SoC Designer as booleans. Having the option to toggle debug features during ex-
ecution prevents the simulation to do unnecessary processing on every clock-cycle
that the user does not want to review, thus accelerating execution.

6.3 AHB to AXI-stream bridge

This module was functionally verified with the help of the CADI together with
the HW blocks that were to be integrated by the scope of the thesis. As seen
in figure 6.1 the AHB to AXI-stream bridge requires a signal binding dummy in
order to function correctly within the simulation as it is in early development
stage. As this block is not present in the FPGA implementation, all delays caused
by the buffering are not investigated when analyzing the signal translation chain
as they cannot be compared. These delays are inherent to the design and would
be required in a physical implementation of the model.

36 Co-design and Integration of Hardware Blocks

6.4 Transactor to SystemC signal translation chain

To interface the micro-controller to the AHB to AXI-stream bridge and the Up-
link/Downlink HW accelerators, a three module translation chain from a AHB
Transactor signal to generic SystemC type signals was developed by implementing
the CASI natively. The chain, illustrated in figure 6.2, is comprised of a Trans-
actor to CASI signal splitter, a CASI to generic SystemC adapter and a generic
SystemC to CASI signal adapter. These components had to be designed to not
introduce wait-states in the chain or have any latency, in order to ensure that the
sequence of the signal handshaking in the AHB protocol between the Core M (bus
master) and the AHB to AXI-stream bridge (bus slave) is satisfied, and to not
compromise the cycle-accuracy of the whole simulation.

Figure 6.2: AHB Transactor signal conversion chain consisting of
three blocks which convert a CASI transactor signal into generic
SystemC signals and enhances communication protocol accu-
racy.

6.4.1 AHB transactor to CASI signal splitter

This component instantiates one transactor AHB port and the subset of AHB
CASI signals shown in figure 6.2. On every clock-cycle it requests the value of
the transactor for each of the signal through the AHB Transactor API, updates
its internal CADI registers with the value, and drives out the same value on the
CASI signal ports.

As seen in figure 6.3 and 6.4, the input signals to the ports of the transactor
splitter block are forwarded through to the output signals in the same clock cycle.
Thus, the transactor signal splitter does therefore not introduce any delay or affect
the signals coming to and from between the microcontroller and the connected
block.

Co-design and Integration of Hardware Blocks 37

Figure 6.3: Waveforms of signal chain from transactor signal splitter
to CASI to SystemC block with zero latency. Signals from the
bus matrix is shown above the corresponding signals going to
the CASI to generic SystemC conversion block.

Figure 6.4: Waveforms of signal chain from transactor signal splitter
to bus matrix with zero latency. The first three signals are
input to the transactor signal splitter and the following three
are output signals going back to the bus matrix.

38 Co-design and Integration of Hardware Blocks

6.4.2 CASI Signal to SystemC Signal adapters

This block similarly to the AHB Transactor splitter, only read the instantiated
CASI ports, update the internal CADI register and write out to the corresponding
value of each signal to the respective Generic SC master ports.

6.4.3 Verifying translation signal chain

A similar procedure as the verification of the AHB transactor to CASI signal
splitter, which entailed comparison between the input and output signals, was
applied to CASI to SystemC block and confirmed that no extra clock cycles were
introduced by checking the signal registers of the components with CADI for the
same clock-cycle.

6.5 Generating SoC Designer models

To generate a SoC Designer component, all the CASI compliant source code for
the model needs to be compiled and linked into a shared object file (.so) that is
compliant with the SoC Designer run-time environment. The tool utilized for the
shared object generation was the GNU Compiler Collection (gcc version 4.8.3).
The compilation was thus carried out with the C++ compiler (g++) using the po-
sition independent code directive (-fPIC) and including the expanded SystemC
library from SoC Designer which includes the ESL APIs. The linking was there-
after done with the -shared option while including the SoC Designer common
libraries included within the installation directory of the tool.

6.6 Hardware IP block cycle-count measurements

This section describes the methodology for measuring the latency of both the
uplink and downlink HW accelerators on the two target platforms. The latency
were measured the exact same way by executing a test case with the same data
length and values.

6.6.1 FPGA

The existing target FPGA hardware configuration had to be altered to add an
integrated logic analyzer (ILA) to the implementation which was set to trigger on
the positive edge of the measured i_last and o_last signals for each of the HW
accelerator blocks. This implementation was then synthesized and programmed
into the FPGA. The measured signals are high (logic value one) exclusively during
the clock cycle at which the last input data value is received and when the last
output value is sent from the block. The difference between the edges of the signals
thus represents the latency of the block in clock cycles as the ILA samples once
per clock cycle.

Co-design and Integration of Hardware Blocks 39

6.6.2 SoC Designer

The performance of the blocks were measured by triggering CADI register brake
points when the value of the i_last and o_last signals connected to the respective
internal ports of the SystemC block inside the CASI component transitioned from
low to high.

6.7 RTOS hardware-software synchronization

In order to verify hardware-software synchronization from a RTOS driven full
system perspective, FreeRTOS was ported to the virtual prototype. The hardware
configuration used together with the RTOS contained a microcontroller, a direct
memory access controller (DMAC), a downlink HW accelerator and a uplink HW
accelerator, which is illustrated in fig 6.6.

6.7.1 FreeRTOS port

FreeRTOS version 9.0.0 was used as the RTOS as there existed a port for the
Core M. However, low level details such as the definition of interrupt handlers,
scatter file details and hardware addresses were updated to convey with the virtual
prototype’s hardware configuration. Drivers for the downlink and uplink HW
accelerator blocks as well as drivers for the DMAC were also developed.

6.7.2 DMAC

The DMAC was introduced in the hardware configuration to simulate a more
complex system where the handling of data transfer from peripherals and memories
are carried out by the DMAC instead of the processor, increasing the complexity
of the bus accesses representing a more realistic full system, where the processor
is not the only bus master. It also serves to verify the functionality of peripheral
interrupts inside the simulation environment.

6.7.3 Full system simulation

Figure 6.6 shows the final hardware of the virtual prototype. To verify this system,
a use-case with three threads was implemented consisting of: a simple printing
thread, one thread to read and write to the downlink HW accelerator directly, and a
thread interacting with the uplink HW accelerator through a DMAC. The threads
were constructed to have both a critical section making the AHB transactions
and printing thread safe. Verified data from existing test-benches was utilized for
each of the threads and the passing conditions were set to asserting the expected
data was correctly received after the correct number of AHB read transactions;
comparing each value as it is read. Furthermore, the threads yield between sending
data to a HW accelerator to not stall the system until it is either scheduled again
by the RTOS due to an appropriate time passing, or after receiving an terminal
count interrupt from the DMAC, in which its handler prompts a read request to the
HW accelerator. One possible execution of the system use-case test is illustrated

40 Co-design and Integration of Hardware Blocks

in figure 6.5. All the treads were run continuously in a loop as an embedded
system would managing all the resources. The execution was both debugged and
verified by utilizing the CAPI software trace function of the processor which shows
a historical view of the program’s execution in a function by function manner.

Figure 6.5: Sequence diagram for one possible execution of HW/SW
co-simulation test program excluding printing thread.

Co-design and Integration of Hardware Blocks 41

Fi
gu

re
6.

6:
T
he

Fi
na
lv
irt
ua
lp
ro
to
ty
pe
.
T
he

sy
st
em

is
di
vi
de
d
in
to

th
re
e
se
ct
io
ns
,a

m
ic
ro
-c
on

tr
ol
le
ri
nc
lu
di
ng

a
D
M
A
C

to
th
e
le
ft
,
a
D
ow

nl
in
k
H
W

ac
ce
le
ra
to
r
to

th
e
up

pe
r
rig

ht
an
d
an

U
pl
in
k
H
W

ac
ce
le
ra
to
r
to

th
e
lo
w
er

rig
ht
.
B
ot
h
th
e
D
ow

nl
in
k
an
d
U
pl
in
k
H
W

ac
ce
le
ra
to
rs

ar
e
co
nn

ec
te
d
to

th
e
m
ic
ro
-c
on

tr
ol
le
r

bu
s
m
at
rix

th
ro
ug

h
a
si
gn

al
pr
ot
oc
ol

tr
an
sl
at
io
n
ch
ai
n.

T
he

pr
ot
ot
yp

e
ex
ec
ut
ed

al
l
th
e
te
st

th
re
ad
s

co
nc
ur
re
nt
ly
,p

as
si
ng

al
lt
es
ts

at
an

av
er
ag
e
cl
oc
k
cy
cl
e
si
m
ul
at
io
n
fr
eq
ue
nc
y
of

10
.6

kH
z.

42 Co-design and Integration of Hardware Blocks

Chapter7
Results

The following chapter consists of a condensed presentation of the quantitative re-
sults achieved in this thesis. The results are comprised of the comparisons between
the co-simulated virtual platform and the reference development board and FPGA
in terms of software performance, cycle count, simulation speed and SystemC HLS
model to FPGA synthesized IP component fidelity.

7.1 Sotfware performance of virtual microcontroller proto-
types and development board

This section presents the results from chapter 5 and evaluates the software perfor-
mance of the various targets on which the test-bench was executed.

Table 7.1 lists and labels the different virtual prototype configurations (VP
A-F) used throughout the test cases as described in section 5.2. The different
aspects investigated are modeled memory latency, modeled bus and its arbitration
scheme. Matrix being a model of the existing multi-layer bus matrix component
and ideal referring to an ideal behavioural model.

Virtual prototype Memory latency Bus Arbitration
configuration

VP A standard matrix fixed
VP B standard matrix round robin
VP C standard ideal round robin
VP D none matrix fixed
VP E none matrix round robin
VP F none ideal round robin

Table 7.1: Virtual platform configurations where memory latency,
bus model and the arbitration scheme of the bus are inspected.

43

44 Results

7.1.1 Cycle count

Table 7.2 compares virtual platform configurations to the development board with
regard to clock cycle count when executing the test-bench. The relative average
clock cycles column expresses the difference in elapsed clock cycles for each of the
configurations as a percentage, relative to the clock-cycle count value obtained
from the reference development board.

Virtual prototype Relative average clock cycles (%)
configuration

VP A +068.77
VP B +068.77
VP C +049.68
VP D +005.05
VP E +005.05
VP F 0-005.19

Table 7.2: Software performance comparison between different vir-
tual platform configurations relative to the reference develop-
ment board.

It can be seen that VP configurations E and F are able to simulate the perfor-
mance of the reference development board within an error margin of 5%, showing
that with more detailed implementation description of the target it would be pos-
sible to replicate the performance cycle-accurately in a virtual model. See section
8.1.1 for more in-depth analysis.

Furthermore, subsets of the test-bench are presented ahead in figures 7.1-7.2
showing the clock cycle count for test functions on each of the different virtual
platform configurations as well as the reference development board. It can be seen
in these figures that there is a stable trend between the relative performance of
the different targets.

Results 45

Figure 7.1: Cycle count for subset A of the software test-bench on
the various targets.

Figure 7.2: Cycle count for subset B of the software test-bench on
the various targets.

46 Results

7.1.2 Execution time and simulation speed

Table 7.3 presents execution time and speed for execution of a complete test-bench
on both the reference development board and the different virtual prototype config-
urations. Clock rate for the development board is the actual frequency of physical
clock, whereas the clock rate for the virtual platform configurations represents the
execution speed in terms of average simulated clock cycles per second. The time
factor is the multiplicity of the total elapsed time for the test-bench to complete
for the various virtual platform configurations with respect to the development
board test. The test time is measured from the python script.

Target Clock rate (kHz) Test time (hh:mm:ss) Time factor
Development board 100000.000 00:01:19 1
VP A 000051.398 07:07:39 326
VP B 000050.169 07:16:29 333
VP C 000069.646 05:24:59 248
VP D 000049.984 05:25:46 249
VP E 000049.034 05:26:10 249
VP F 000066.781 04:12:03 192

Table 7.3: Total software test-bench execution time and simula-
tion speed on virtual platform configurations with reference to
development board target.

The time it takes for execution of the test-bench on the virtual configurations
are on average 266 times longer than the development board which can be ex-
plained by both the complexity of the models comprising the simulated system as
well as the overall host CPU load during testing. The reason behind these values
will be elaborated on in section 8.1.2.

7.2 HW accelerator block latency measurements

This section presents the results from chapter 6. In table 7.4 comparison in clock
cycles between running the pre-synthesized hardware accelerators in the virtual
platform and post-synthesized on FPGA are presented. The measurements per-
formed on the FPGA through the use of an ILA are shown in figures 7.3 - 7.4.

Accelerator FPGA Virtual platform Difference
block (clk cycles) (clk cycles) (clk cycles)

Downlink HW 50 49 1
Uplink HW 149 146 3

Table 7.4: HW block comparison in clock cycles between FPGA and
virtual prototype pre-synthesis HLS implementation.

The above table shows that there is a difference between the FPGA and the
virtual platform implementations; a delta of one and three clock cycles for the

Results 47

downlink and uplink hardware accelerator respectively. A clear source for this
additional cycles would be the HLS process introducing library implementation
specific RTL modification to adhere to physical constraints.

The following figures present the data received from the ILA output and shows
the sample number on the horizontal axis and the logic value level on the vertical
axis for the different signals. The sample rate is the clock-rate at which the ILA
was connected to, which is the same as the tested block.

48 Results

Figure
7.3:

ILA
view

of
w
aveform

s
show

ing
the

latency
of

50
clock

cycles
in

dow
nlink

H
W

block
(block

A
)

on
FP

G
A

target.
T
he

ILA
is
triggered

from
the

positive
edge

of
input

last
(i_

last)
signalto

the
block

and
the

output
last

(o_
last)

from
the

block.

Figure
7.4:

ILA
view

of
w
aveform

s
show

ing
the

latency
of

149
clock

cycles
in

uplink
H
W

block
(block

B
)
on

FP
G
A

target.
T
he

ILA
is
triggered

from
the

positive
edge

of
input

last
(i_

last)
signalto

the
block

and
the

output
last

(o_
last)

from
the

block.

Chapter8
Discussion and Conclusion

8.1 Virtual prototype versus development board and FPGA

8.1.1 Virtual micro-controller configurations

The presented results in table 7.2 by altering the virtual prototype micro-controller
configuration an error margin of approximately 5% was achieved when trying to
recreate the of the reference development boards clock-cycle performance for the
test-software. This shows that given the known design and components of a specific
silicon implementation, one can approximate the performance by behaviourally
simulating the expected wait-states introduced by a specific sub-system. More
specifically, by reducing the memory latency to zero to recreate the performance
of an optimal zero-wait flash cache the source of the cycle-count difference can
be narrowed down to the bus matrix model utilized, being less optimal than the
development boards component but not completely ideal as modeled and will,
in some cases, have at least one-clock cycle latency for a memory read access
(e.g. when a cache miss occurs or during the execution of none-sequential code
segments).

Furthermore, the lack of result variance between round-robin and fixed priority
arbitration schemes in the bus matrix model used in the virtual microcontroller
is expected due to the following. As previously shown in figure 5.1, even though
there are three bus masters coming from the processor, all of the bus accesses are
none-interfering with each other since the S-Bus exclusively accesses the RAM 2
module, whereas the I-Bus and D-Bus access the RAM 1 module sequentially as
the processor does not generate instruction and data fetches on the same clock
cycle. Therefore, as the micro-controller is the same and the instruction/data bus
is maintained as M0 with the highest priority, the arbitration scheme does not
result in any observed performance differential.

Taking the above into consideration it can be said that the virtual platform
provides the potential to cycle-accurately simulate any system given that there is
enough knowledge and information of the target system being modeled, as well as
showing that confidence in the accuracy of the integrated models into a virtual
prototype is essential.

49

50 Discussion and Conclusion

8.1.2 Execution speed

In terms of execution speed, table 7.3 shows that the virtual prototype simulations
are slower than the development board implementation by a time factor of 266 on
average. This may depending on the use case be discouraging for the methodology
however, for a simple system or subsystem of larger complex one the hardware-
software co-simulation verification possibility may be justified as an operation that
takes 1 second on an development board running at 100 MHz will take approx-
imately 4 minutes. These values are directly coupled to the complexity of the
actual models being included in the simulation; the same table shows a maximum
clock cycle frequency difference of approximately 20kHz between the two most
outlying virtual prototype configurations of the micro-controller (VP C and VP
E). The simulation speed may thus vary considerably depending not only on the
size of the system but also on the type of models integrated.

Furthermore, the SoC Designer simulation performance is coupled to the host
environment. From the observations in this investigation, the virtual platform
simulation speed is limited to the usage of a single thread and is thus highly
dependant on host system specifications on processing power and memory as well
as system load which thus affects the simulation time. This can be observed in
the results from table 7.3, where there is not a clear linear relationship between
the simulated clock cycles per second and the total simulation time taken from the
python script. Some of the non-linear behaviour can be attributed to the overhead
that arises from the time lost when a failed reception of UART packets through
TCP/IP occurs and the re-sending of these is required. However, larger differences
as the ones observed could be attributed to system load and host environment
kernel scheduling. Nevertheless, the simulation speed (in clock-cycles per second)
is a good reference to the complexity of the simulation as this value is generated
as an average of the SoC Designer scheduled time taken to simulate one full clock
cycle of the system.

Virtual prototype simulation as described in this thesis, is most suitable to
testing integration and debugging of individual sub-systems from a high-iterative
development point of view. This is due to the simulation speed correlation to
the number, size and complexity of the components in the system. Nevertheless,
a virtual prototype could also be suitable for low-iterative full system HW/SW
architecture verification runs to increase design confidence through simulation; e.g.
evaluating worst case scenarios of system load. For the continuous verification of a
full hardware-software system in late development stages an FPGA is the preferred
method as the relatively low simulation speed achieved in the virtual prototype
micro-controller is not realistic for any modern cellular IoT SoC; as it may not be
able to meet the real time requirements of synchronization with a cellular network.

8.1.3 Clocking frequency and physical factors

As SoC Designer virtual prototype is a simulation, no physical repercussions of a
target technology are accounted for as it with be done with a synthesized FPGA
target library. For example, since the simulation speed or clock cycle frequency
is determined by the models, the system and simulation environment steer the
clock rate; as opposed to an ASIC or FPGA where a physical clock dictates the

Discussion and Conclusion 51

system behaviour. Furthermore, the simulated clock frequency cannot be set to a
specific value, and it cannot realistically reach a clock cycle simulation frequency
comparable to the clocking rates possible on a development board. Therefore, there
is no good way of examining if a resulting model is viable more than functionally
and from the clock or time granularity of an RTL perspective because no signal
propagation times or levels are considered in the virtual prototype. Consequently,
there is still a need for some type of physical implementation whether that may be
ASIC or FPGA to verify the sanity of the design for any target implementation
for a given technology and clocking frequency.

8.1.4 Implementation and architecture exploration

The main advantage of this virtual prototype methodology is the possibility of
accurate hardware and software co-design from the early stages of the development
cycle from a micro-controller maturity level. The co-simulation described not
only allows for the software to be tailored and verified on the hardware under
development, but allows the observation of altering the hardware configurations
and observe the impact of hardware accelerators on software performance.

Employing virtual platform simulations provides ease of hardware configura-
tion altering by simplifying the development iterations. No logic synthesis or bitfile
gate logic programming on to the FPGA is required, leaving only C++ hardware
description compilation is needed when doing internal module changes. Conse-
quently, this methodology results in shorter development iteration time taken per
hardware change. This is specially true if using HLS pre-synthesis models, as
RTL regeneration is not strictly required per iteration and can be done once the
functionality of the model has been achieved in the virtual system to verify RTL
as a final stage once there is confidence in the high-level model. Nonetheless, the
initial overhead of creating a CASI wrapper for a raw C++ or SystemC model must
be accounted for, and any modifications that need be done to it due to port or
protocol changes.

Another benefit of incorporating the virtual prototype usage unto the devel-
opment or design cycle is reduced physical hardware requirements per target. A
completely virtual co-simulation and verification environment entails the elimina-
tion of external dependencies as the system development and system execution are
contained to only the host environment, instead of having to acquire an FPGA
board with the specific custom hard IP required. Additionally, a virtual environ-
ment not only allows for a completely custom IP solution, but even removes the
limitation that the size of the gate arrays presents in an FPGA board, as the
number and size of hardware blocks that can be synthesized is vastly higher. The
only factors to be considered thus is the memory size of the host environment and
its capacity to simulate any given large scale system at a reasonable speed.

With no physical commitment to hardware configurations there is great flex-
ibility and ease in redesign. The ease of exchanging the hardware elements thus
leads to the possibility of optimizing the current system with a wider range of
possibilities than otherwise possible with a FPGA development board or use of an
ASIC, as even the effect of swapping a processor can be inspected with relative
ease; assuming a verified RTL model is available of the IP that is to be integrated.

52 Discussion and Conclusion

8.1.5 Debugging capabilities

With the use of SoC Designer, internal hardware module visibility is vastly greater
as all internal signals and registers can be traced directly during simulation at any
point, whereas in the FPGA implementation the visibility is limited to external
block signals that are only visible when adding additional hardware such as ILA
blocks; which require additional FPGA space to synthesize and effectively alter
the design with unwanted hardware being implemented. Moreover, any modeled
hardware can be extended with CADI at any stage to fit verification needs, which
would for an FPGA implementation require hardware design changes if a physical
debug interface were to be added.

Furthermore, SoC Designer includes views to visualize the usage of the debug
functionality, whereas this could only be done with the use of both an implemen-
tation of a debug interface on the hardware component together with external
software to control and view the debug interface. One of these debug views in-
cluded in SoC Designer shows software flow through out the execution and present
clock cycle count duration per function allowing for in-depth software execution
investigation as well as ease of finding bottlenecks within the software.

Since SoC Designer deals with simulations, it is possible to add any custom
software functionality to hardware models, even functionality which would require
an additional hardware component. This is key in providing visibility into the
execution stack for a processor model and the cycle-accurate model of the UART
provided by ARM used in the microcontroller includes capability to interact over
TCP which is not present in the physical hardware.

8.1.6 CASI and SystemC wrapped systems

The methodology described in this report to achieve the final virtual prototype
system in SoC Designer includes two different types of models: native CASI im-
plementing models and SystemC models wrapped with CASI. Although the pos-
sibility of combining CASI modules generated from RTL or not, with SystemC
is convenient for early design and integration of HLS pre-synthesis model, this
presents a significant performance drop for the simulation. As it can be observed
in the results chapter, from the pure CASI model virtual micro-controller proto-
types clock simulation speeds averaging 56.2 kHz in 7.3 the speed of the complete
final prototype is reduced to 10.6 kHz.

The simulation speed decrease is mostly due to the inclusion of the CASI
wrapped SystemC uplink and downlink HW accelerators. Logically, the addition
of two subsystems to the micro-controller will decrease simulation speed, how-
ever the addition of native CASI subsystems in the development did not result
in performance differences of such magnitude. It must also be considered that
the transactor to SystemC signal translation chain developed may also introduced
some unwanted complexity to the system as it must do translation for every clock-
cycle and there are two instances of this in the final prototype which may account
of a significant part of the simulation speed loss.

It is also worth noting that the usage of SystemC type signals in an SoC
Designer simulation lacks for the support of break-points and signal value viewing
on the wires, leaving this functionality to have to be implemented to the module

Discussion and Conclusion 53

via CADI for input signal values on every clock-cycles as registers. It is therefore
more optimal to create a virtual prototype exclusively with CASI native models.

8.1.7 HLS pre-synthesis HW accelerator block latency

The difference in clock-cycle latency between the FPGA blocks illustrated in table
7.4 can be explained by the lack of library implementation specific information
that is added during the Catapult HLS process. Firstly, all blocks that do not
have an output signal register in the high-level description will receive one after
the synthesis. Since both of the HW accelerators in question did not include
such registers, this accounts for the one cycle latency difference measured in both
blocks. Secondly, the target frequency of the blocks causes the generated uplink
HW accelerator RTL to include a pipeline of two stages in order to ensure the
implementation can have enough time slack between the clock-cycle period and
the propagation delays in the critical signal paths. These delays, in addition to the
output register, results in a total expected additional latency of three clock-cycles
in the FPGA implementation.

Although the virtual prototype may not be considered cycle-accurate as per
the definition coined in section 2.2, the simulation is fully cycle-accurate to to what
the model it is executing describes. With knowledge of the target implementation
latency, the discrepancy between the two the HLS pre-synthesis models could be
adjusted to include the discussed changes that occur in the HLS and thus eliminate
the cycle-count delta. Furthermore, when using SystemC wrapped HLS models in
a SoC Designer simulation with CASI, it is vital to note that even if a completely
functionally and behaviourally accurate model is achieved, internal coherence of
the model in terms of such as structural and data organizational accuracy is not
guaranteed.

Ideally, all models should thus be created from the final RTL regardless of
HLS is being employed or not in order to guarantee model fidelity to a physical
implementation. Thus, it must be stated that having a cycle-accurate platform
will only result in a cycle-accurate system simulation if there is a very high degree
of confidence in the model accuracy through verification.

8.2 Conclusions

The outcome of this thesis is condensed into the following statements regarding the
virtual co-simulation platform developed in SoC Designer and the various virtual
prototype configurations investigated:

A fully cycle-accurate hardware and software co-simulation platform for a cel-
lular IoT system has been developed through a simulator with a cycle-by-cycle
level granularity. This drives cycle-scheduled CASI C++ models generated from
RTL, including a processor core which in turn stimulates the complete system
which includes SystemC event-driven blocks in a cycle-by-cycle basis.

A virtual prototype with co-simulation capabilities can perform software exe-
cution with reliable functional performance and cycle-accurate clock counts, given
that the models included of the target configuration are verified.

54 Discussion and Conclusion

The utilization of behavioural model components in a virtual prototype can be
used to model the desired software execution performance of a reference commer-
cial physical target hardware micro-controller within a 5% error margin, in order
to provide the constraints for IP required to match that performance. These simu-
lations are performed at an average factor of 266 times slower than a development
board clocked at 100 MHz.

The latency and functionality of C++ designed HLS pre-synthesis hardware
blocks in the final virtual prototype is cycle accurate. However, in order for the
latency to be equal to a physical FPGA or ASIC implementation the target fre-
quency of the blocks must be taken into account as the resulting RTL in the HLS
process which is synthesized for a specific library will add pipelines on critical
signal paths in order to meet timing constraints.

SoC Designer as a virtual co-simulation platform to create virtual prototypes
can provide significant reduction in development time by providing co-design ca-
pabilities from an early design phase with lower architectural commitment, no
physical component requirements, shorter iteration times between hardware de-
sign changes, increased debug visibility and at the cost of significantly reduced
system execution speed compared to an FPGA.

The final virtual prototype developed can fully co-simulate a RTOS driven
hardware-software system with multiple threading and various hardware acceler-
ators concurrently at a clock cycle simulation speed of 10.6 kHz, which could be
further improved by removing the use of SystemC models in the simulation.

8.3 Future work

Building upon the results and conclusions reached in this thesis, the consequential
task would be to expand the virtual prototype following the methodology proposed
in this thesis, to form a complete cellular IoT digital modem system to perform
basic cellular tasks such as band scan and cell search in a simulated way. The full
system, should however consider the following:

Adopting an approach that utilizes models based exclusively from RTL whether
it be generated through HLS or not, and thereafter utilizing ARM Model Studio to
generate clock-cycle scheduled CASI components of the whole system to possibly
achieve a more structurally accurate models that would result in a more cycle-
accurate representation of the models. This results could then be compared to
this investigation as well as standard RTL simulation in terms of speed, accuracy
and implementation effort.

The utilization of ARM Fast Models to develop a parallel system in which
overall simulation performance is improved at the cost of cycle-accuracy in order
to allow efficient software debugging and to possibly accelerate the simulation by
skipping none-debug system time sections such as system initialization sequences
at boot. This would entail incorporating functional, loosely-timed models in addi-
tion to cycle-accurate models and could be used in combination to swap in between
the two with the use of break-points in order to have cycle-accurate granularity
only when required and higher simulation speed otherwise when higher model
abstraction can be tolerated.

References

[1] J. Teich, “Hardware/Software codesign: The past, the present, and predict-
ing the future”. Proceedings of the IEEE, vol. 100, no. Centennial-Issue, pp.
1411–1430, 2012.

[2] J. A. Rowson, "Hardware/Software Co-Simulation", 31st Design Automation
Conference, 1994, pp. 439-440.

[3] A. Sayinta, G. Canverdi, M. Pauwels, A. Alshawa and W. Dehaene, "A mixed
abstraction level co-simulation case study using SystemC for system on chip
verification", 2003 Design, Automation and Test in Europe Conference and
Exhibition, 2003, pp. 95-100 suppl.

[4] Platform Architect MCO, Synopsys, Inc, 2017 https://www.synopsys.com/
verification/virtual-prototyping/platform-architect.html, accessed
2017-10-04

[5] Transaction Level Modeling, Mentor, 2017
https://www.mentor.com/esl/vista/tlm/, accessed 2017-10-04

[6] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. 2007.

[7] N.S Voros and K, Masselos (eds.), System Level Design of Reconfigurable
Systems-on Chip, 15-26, 2005, Springer.

[8] I.Kuon, J.Rose, “Measuring the Gap Between FPGAs and ASICs”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(Volume: 26, Issue: 2, Feb. 2007), 2007.

[9] N.Abdelli, A-M Fouilliart, N.Julien, E.Senn, “High-Level Power Estimation of
FPGA”, Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium
on.

[10] FPGA vs. ASIC, Xilinx Inc, 2017.
https://www.xilinx.com/fpga/asic.htm, accessed 2017-10-04.

[11] L.Séméria, A.Ghosh, Methodology for Hardware/Software Co-verification in
C/C++, Design Automation Conference, 2000. Proceedings of the ASP-DAC
2000. Asia and South Pacific.

55

56 References

[12] T.Grötker, S.Liao, G.Martin and S.Swan, (2002). System design with Sys-
temC. Boston : Kluwer Academic, c2002.

[13] P.Schaumont, A Practical Introduction to Hardware/Software Codesign, 22-
24, 2012, Springer Science & Business Media.

[14] A.Khan, M.Vijayaraghavan, S.Boyd-Wickizer and Arvind, “Fast and Cycle-
Accurate Modeling of a Multicore Processor”, Performance Analysis of Systems
and Software (ISPASS), 2012 IEEE International Symposium on.

[15] P.Coussy, A.Morawiec, High-Level Synthesis: From Algorithm to Digital Cir-
cuit. New York: Springer, c©2008.

[16] C. Economakos, H. Sidiropoulos and G. Economakos, "Rapid prototyping
of digital controllers using FPGAs and ESL/HLS design methodologies," 2013
19th International Conference on Automation and Computing, London, 2013,
pp. 1-6.

[17] Catapult High-Level Synthesis, Mentor graphics,
https://www.mentor.com/hls-lp/catapult-high-level-synthesis,
accessed 2017-10-04

[18] IEEE Standard for the Standard SystemC Language Reference Manual, IEEE
Std 1666-2011 (Revision of IEEE Std 1666-2005), IEEE Computer Society, 2012.

[19] SystemC, Accellera System Initiative, 2016.
http://accellera.org/downloads/standards/systemc, accessed 2017-10-04

[20] OSCI TLM-2.0 LANGUAGE REFERENCE MANUAL, Open SystemC Ini-
tiative (OSCI), document version JA32, 2009.

[21] ARM SoC Designer, ARM Ltd.
https://developer.arm.com/products/system-design/cycle-models/
arm-soc-designer, accessed 2017-10-04.

[22] ARM IP Exchange, ARM Inc.
http://www.armipexchange.com, accessed 2017-10-04.

[23] B.Neifert, Rob Kaye, “High Performance or Cycle Accuracy? You can have
both”, ARM White paper, ARM Ltd. 2012.

[24] Cycle Model Studio, ARM Ltd.
https://developer.arm.com/products/system-design/cycle-models/
cycle-model-studio, accessed 2017-10-04.

[25] SoC Designer Version 9.1.0, ESL API Developer’s Guide. ARM Ltd.
2017 http://infocenter.arm.com/help/topic/com.arm.doc.dui1090a/
cycle_models_SoCD_ESL_API_Developer_Guide_v9_1_0_DUI1090A_en.pdf,
accessed 2017-10-04.

[26] Arbitration and locked transfers, AMBA Design Kit Technical Reference
Manual. ARM Ltd. 2017. http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0243c/I1020077.html, accessed 2017-10-04.

[27] ARM v7-M Architecture Reference Manual (Issue E.b), ARM, 2014.

References 57

[28] Tailoring input/output functions in the C and C++ libraries, ARM Limited,
2014.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
dui0808g/chr1358938930366.html, accessed 2017-10-04.

[29] Target dependencies on low-level functions in the C and C++ libraries, ARM
Limited, 2014-2016.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
dui0808g/chr1358938930615.html, accessed 2017-10-04.

[30] ARM Compiler 5 Documentation, ARM Developer, ARM Ltd 2017.
https://developer.arm.com/products/software-development-tools/
compilers/arm-compiler/docs/version-5, accessed 2017-10-04.

[31] ARM compiler armlink user guide, ARM Limited, 2014.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
dui0803g/pge1362065970010.html, accessed 2017-10-04.

[32] CMSIS - Cortex Microcontroller Software Interface Standard, ARM.
https://www.arm.com/products/processors/cortex-m/
cortex-microcontroller-software-interface-standard.php,
accessed 2017-10-04.

[33] GNU ARM Embedded Toolchain 5-2015-q4-major
https://launchpad.net/gcc-arm-embedded/5.0/5-2015-q4-major,
accessed 2017-10-04.

[34] GNU make, Free Software Foundation, Inc.
https://www.gnu.org/software/make/manual/make.html,
accessed 2017-10-04.

[35] FreeRTOS. Copyright (C) 2010-2016 Real Time Engineers Ltd.
http://www.freertos.org, accessed 2017-10-04.

