
Master’s Dissertation
Structural 

Mechanics

 Report TV
SM

-5226
ERIK

 LA
RSSO

N
 and LU

C
A

S M
A

G
N

U
SSO

N    EV
A

LU
A

TIO
N

 O
F SEISM

IC
 A

C
TIO

N
 IN

 SW
ED

EN
 U

SIN
G

 TH
E EU

R
O

PEA
N

 SEISM
IC

 H
A

ZA
R

D
 M

O
D

EL

ERIK LARSSON and LUCAS MAGNUSSON

EVALUATION OF SEISMIC ACTION
IN SWEDEN USING THE EUROPEAN
SEISMIC HAZARD MODEL

5226HO.indd   15226HO.indd   1 2017-10-10   15:12:402017-10-10   15:12:40





DEPARTMENT OF CONSTRUCTION SCIENCES

DIVISION OF STRUCTURAL MECHANICS

ISRN  LUTVDG/TVSM--17/5226--SE (1-77)  |  ISSN 0281-6679

MASTER’S DISSERTATION

Supervisors: Professor PER-ERIK AUSTRELL, Div. of Structural Mechanics, LTH
and LINUS ANDERSSON, MSc, Scanscot Technology AB.

Examiner: Professor KENT PERSSON, Div. of Structural Mechanics, LTH.

Copyright © 2017 Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Sweden.

Printed by Media-Tryck LU, Lund, Sweden, June 2017 (Pl).

For information, address:
Division of Structural Mechanics,

Faculty of Engineering LTH, Lund University, Box 118, SE-221 00  Lund, Sweden.

Homepage: www.byggmek.lth.se

ERIK LARSSON and LUCAS MAGNUSSON

EVALUATION OF SEISMIC ACTION
IN SWEDEN USING THE EUROPEAN 

SEISMIC HAZARD MODEL





Preface
This thesis was initiated by Jan-Anders Larsson at Scanscot Technology and was carried
on in cooperation with the Division of Structural Mechanics at Lund University during
the spring of 2017. This will conclude our five years as civil engineering students at the
Faculty of Engineering LTH.

We would like to address our sincerest gratitudes to our supervisor Linus Andersson at
Scanscot Technology for the continuous support during the project. Furthermore, we
want to thank all the employees at Scanscot Technology for valuable input and support,
specially Jan-Anders who initiated and continued to review this thesis. We also would
like to thank our second supervisor Prof. Per Erik Austrell at the Division of Structural
Mechanics for his valuable help.

Finally, we would like to show our gratitude to our families, friends and fellow students
that made the past years enjoyable.

Lund, June 2017

Erik Larsson Lucas Magnusson





Abstract

In 2013 the European Seismic Hazard Model 2013 (ESHM13) was released as a result of
the EU-funded project Seismic Harmonization in Europe (SHARE). This hazard model
provides seismic data applicable for structural engineering for every location in Europe
and Turkey that directly correlates to the seismic regulations provided by Eurocode 8.
Currently, earthquake engineering according to Eurocode is not standard procedure for
structures in Sweden due to the low regional seismicity. The objective of this thesis is to
employ the data from ESHM13 and evaluate if there is reason to consider earthquakes
in relation to building construction in Sweden. Specifically, the response from seismic
loads for buildings of normal importance (e.g. apartment buildings) and building of vital
importance (e.g. hospitals) were examined.

Eurocode 8 states that buildings of normal importance should be designed for an earth-
quake with a return period of 475 years. The way to differentiate building in terms of
reliabilities in Eurocode 8 is to scale the reference seismic action for buildings of ordinary
importance with a factor depending on importance class. This factor is a nationally de-
termined parameter, and since these are absent in the Swedish annex it was shown that
the recommended factor approximately correlates to an implicit return period of 1300
years for buildings of vital importance.

With the use of hazard data for Lund, modal response spectrum analyses were carried
out on simple 2D models and a more complex 3D FE-model. The results were compared
to static analyses on the same models using the wind load as comparative action. From
parametric studies, that varies a range of levels and stiffnesses, the resulting base response
was compared between wind load and seismic load. Spectra with return periods correlating
to 475- and 1300-year were used. An additional case study was carried out on a five story
building, comparing sectional forces in a shear wall due to seismic loads and wind loads.

The parametric studies clearly showed that the base response when using a 1300-year
spectrum envelopes the base response from the wind load for almost every single param-
eter. In some cases, even a 475-year spectrum gives a higher response compared to the
wind. Since the seismic response is mass-dependent and the wind response is surface-
dependent, it was shown that the 475-year spectrum could easily envelope the wind for
elongated building when analyzed in the long direction.

The comparison of the sectional forces in the case study suggests that the base response
is a relevant measure when the overall response is compared for seismic load and wind
load. However, it was shown that the seismic response is not necessarily largest at its
base which suggests that the critical findings in the parametric study are potentially on
the non-conservative side.

Keywords: SHARE, ESHM13, Modal Response Spectrum Analysis, Linear Dynamics.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Seismic Hazard Harmonization in Europe (SHARE) . . . . . . . . . . . . . 2

1.2.1 European Seismic Hazard Model 2013 (ESHM13) . . . . . . . . . . 2

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 5

2.1 Probabilistic Seismic Hazard Assessment (PSHA) . . . . . . . . . . . . . . 5

2.1.1 Return Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Return periods in relation to wind loads . . . . . . . . . . . . . . . 6

2.2 Representations of Seismic Action in Civil Engineering . . . . . . . . . . . 7

2.2.1 Peak Ground Acceleration (PGA) . . . . . . . . . . . . . . . . . . . 7

2.2.2 Uniform Hazard Spectrum (UHS) . . . . . . . . . . . . . . . . . . . 8

2.2.3 Design spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Modal response spectrum analysis . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Effective earthquake force . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 K- and M- orthogonality of modes . . . . . . . . . . . . . . . . . . . 14

2.3.4 Modal expansion of displacements . . . . . . . . . . . . . . . . . . . 15

2.3.5 Modal expansion of earthquake forces . . . . . . . . . . . . . . . . . 16

2.3.6 Modal Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.7 Time independent modal analysis . . . . . . . . . . . . . . . . . . . 20

2.3.8 Modal combination rules (SRSS and CQC) . . . . . . . . . . . . . . 20

2.3.9 Multi directional response summation . . . . . . . . . . . . . . . . . 21

3 Seismic design in Eurocode 23

3.1 Importance factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Elastic Design Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Integration of SHARE outputs with Eurocode 8 . . . . . . . . . . . . . . . 28



4 Method 33

5 Parametric study of idealized structures 35

5.1 Method of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.3 Seismic load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.4 Wind load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Analysis of modes and effective mass . . . . . . . . . . . . . . . . . 43

5.2.2 Size effect- Largest theoretical base shear . . . . . . . . . . . . . . . 45

5.2.3 Shear building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.4 Cantilever building . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Parametric study of realistic 3D FE-model 53

6.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 FE-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.2 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.3 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Comparison of beam model and 3D FE-model . . . . . . . . . . . . . . . . 57

6.2.1 Effective mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 Comparison of base shear . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Case study : 5-story building 65

7.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Conclusion 71

8.1 Buildings of ordinary importance . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Buildings of vital importance . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 Final remarks 73



A Blue print 77



1 Introduction

1 Introduction

1.1 Background

In Sweden, the events of earthquakes are very rare and a lot of citizens will never expe-
rience it during a lifetime. Nevertheless, there are several earthquakes in Sweden every
year. Usually they are of such small magnitude that they can only be measured with seis-
mographs and not felt by humans. One of the more resent "major" earthquake happened
in 2008. The earthquake was felt by many people in Skåne, but it only caused minor
damage. The largest recorded earthquake in Sweden happened in 1904. This incident
caused some damage to structures, chimneys fell over and cracks in walls were registered.
There were no casualties associated with the incident.

When it comes to structural engineering it is regulated by the Eurocode and the Swedish
authority Boverket. Boverket decides what parameters in Eurocode that should be used
and which should be decided as nationally determined parameters. Because of the low
seismicity nature of Sweden, Boverket has decided not to implement Eurocode 8 (Ec8),
which regulates seismic design in Europe. It is only special structures that are engineered
with regard to earthquakes. Nuclear facilities is one example, but the requirement is not
set by Boverket. It is regulated by the Swedish Radiation Safety Authority (Strålsky-
ddsmyndigheten).

In 2013 a new hazard model called European Seismic Hazard model 2013 (ESHM13) was
released from a project called Seismic Hazard Harmonization in Europe (SHARE). The
model is showing that the hazards around the west coast and southern Sweden are slightly
higher than the rest of Sweden, see Figure 1. These new predictions might be of relevance
for structures in Sweden. Especially structures of vital importance e.g. hospitals, fire
station etc, which are vital if a major earthquake would occur.

Figure 1: Hazard map over Europe according to ESHM13.
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1 Introduction

1.2 Seismic Hazard Harmonization in Europe (SHARE)

Earthquake engineering in the European countries has in the past been based on countries
individual hazard assessments. With assessments performed individually by different
countries the consequences are that there are often large differences in hazard levels along
country borders. In order to overcome such differences the EU funded the project "Seismic
Hazard Harmonization in Europe" (SHARE), which aimed to provide a reference hazard
model for Europe and Turkey that was not constrained by country borders. The result
of the SHARE project is the hazard model "European Seismic Hazard Model 2013"[1].

The Eurocode 8 committee was actively involved in SHARE, through specifying required
output from the project. One of the SHARE objectives was to maintain a direct con-
nection to Eurocode 8 and its applications [2]. Furthermore, it was envisaged that the
outputs were designed to anticipate future revisions to the code [3].

The project documentation is available at SHARE’s website (www.share-eu.org).

1.2.1 European Seismic Hazard Model 2013 (ESHM13)

As previously stated the model ESHM13 is a result of the SHARE-project. When develop-
ing ESHM13 a lot of effort was given to transparently document and making data, results
and methods available to the public. Through the European Facility for Earthquake Haz-
ard and Risk (www.efehr.org) all this information can be retrieved. The website provides
users to obtain hazard assessments for every location all over Europe and Turkey.

1.3 Objective

The purpose of this paper is to evaluate the predictions from ESHM13 in southern Sweden,
whether these "new" possible earthquakes could generate forces that are of significance
when compared to wind loads. Since the main source of horizontal loads on buildings
today are wind loads, and in most cases are what determines the capacity and geometry
of a structures stabilizing system, it is considered to be a relevant measure to compare.

The comparison between seismic action and wind action are made within the scope of
a design situation. This means the loads are designed according to Eurocode, however,
since Eurocode 8 is not implemented in Sweden guidelines from the SHARE project are
used to interpret the code.

This paper only presents an investigation of the load effects. The capacities of structures
in relation to the loads are not evaluated for several reasons:

• Ductile behavior of structures may or may not be accounted for in seismic design.
This is however highly dependent on the design of the structure itself and it is a
difficult parameter to include in a general scope like this.

2



1 Introduction

• As a general safety verification Eurocode 8 (clause 4.4.1 (2)) states that the ultimate
limit state could be considered satisfied if the total base shear force due to a seismic
design situation is less than that due to the other relevant action combinations for
which the building is designed on the basis of a linear elastic analysis [4].

• The latter is only sufficient for low-dissipative structures, which is reasonable for
most structures in Sweden as there are no "engineered" ductility in general since
Eurocode 8 is not implemented.

Based on these points, the base shear force will be compared for several models within the
scope of linear elastic analysis. It will be investigated whether or not the ultimate limit
state could be considered satisfied without further adoption of design rules according to
the writings in Eurocode 8. This is not necessarily conclusions equivalent to collapse or
no collapse, but from a design stand point it could challenge the absence of seismic design
in Sweden.

The objective is to find general properties of structures that can be considered critical to
seismic action. It will be investigated whether the seimic action in Sweden can be treated
as a designing load case if Eurocode 8 and the hazard levels from ESHM13/SHARE were
to be implemented. The base shear force is investigated through parametric studies of two-
dimensional beam models and complemented with a similar study of a three-dimensional
FE-model in order to validate the beam models.

Furthermore it will be illustrated how seismic forces can be distributed through out a
building by doing a case study of a building that is considered to be critical. This is
to show how relevant the total base shear force is in relation to local section forces and
moments in higher stories.

3





2 Theory

2 Theory

In this study the analyses are made using modal response spectrum analysis (RSA). In
order to perform such an analysis the first step is to identify a hazard correlated to
a specific probability of exceedance, which is done using a probabilistic seismic hazard
assessment. The hazard is described as peak accelerations corresponding to a frequency of
a single degree of freedom system (SDOF-system) and a probability of exceedance. Using
these accelerations, a spectrum can be created usually plotted against natural periods.
When the modal analysis is performed an acceleration for each natural period is retrieved
from the spectrum. The result from the modal analysis will give an approximated solution
to what the structures response will be when its exposed to an earthquake. These concepts
and the connected theory will be explained in the following sections. A section describing
the wind load is also found in the following sections. This will become relevant to the
evaluation of the analysis at the end of the study.

2.1 Probabilistic Seismic Hazard Assessment (PSHA)

To make one able to analyze structures for seismic loads a model/prediction of possible
earthquakes is necessary. Probabilistic Seismic Hazard Assessment (PSHA) is the most
common method of addressing the seismic threat in civil engineering. The method is based
on earthquake catalogues that covers data from past earthquakes in a specific region. Due
to the fact that the earthquake catalogues usually covers a relatively short time period
it is necessary to make some predictions based on regional geological and seismological
data. With the data and predictions combined a source zone model, that is calibrated to
the regions specific properties (e.g distance from faults, types of earthquakes etc.) can be
created, which is the foundation of a PSHA [5].

The output from the assessment is the probability that a certain ground motion intensity
measure (e.g. peak ground acceleration) will exceed a threshold limit during a certain
time period. Hence, the magnitude of the intensity measure is often corresponding to a
"return period". In other words, the return period controls the seismic action and the
choice of return period depends on the target-reliability of the structure.

2.1.1 Return Period

If the number of events where the magnitude exceeds the threshold limit during a time
period TL is assumed to be Poisson distributed, the relationship between the return period
TR and the probability of exceedance P can be calculated as:

TR = −TL/ ln(1− P ) (1)

Within earthquake engineering the time period of reference TL is normally 50 years thus
the return period TR corresponds to a specific probability of exceedance in 50 years.

5



2 Theory

As an example, an earthquake with a magnitude m that has a 10 % probability of ex-
ceedance a threshold M during 50 years has an approximate return period of:

TR = −50/ ln(1− 0.10) ≈ 475 years (2)

In Eurocode 8 (Ec8) the return period is a so called nationally determined parameter
(NDP), the recommended value for structures of ordinary importance is however 475
years, i.e. 10% probability of exceedance in 50 years [4]. This recommendation is made
with regard to design for the Ultimate Limit State (ULS).

2.1.2 Return periods in relation to wind loads

Variable loads in different parts of Eurocode are normally designed for a return period of
50 years, i.e. 2% probability of exceedance in 1 year. This is also used for wind loads.
The wind load can be scaled with the factor cprob to obtain the characteristic wind load
for different return periods [6]. It is used by directly multiplying it with the basic wind
velocity (vb). With Equation 3 the scale factor can be calculated usingK, which is a shape
parameter depending on the coefficient of variation of the extreme-value distribution, p,
which is the desired probability of exceedance in one year and n, which is the exponent.
The values of K and n are NDPs and they are set to 0.2 and 0.5 respectively. Figure 2
shows how cprob varies for different return periods.

cprob =

(
1−K · ln(− ln(1− p))
1−K · ln(− ln(0.98))

)n
(3)
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Figure 2: Plot of scale factor cprob and correlated return periods.

The values of cprob range from 1.0 for a return period of 50 years to approximately 1.23
for a return period of 5000 years, see Figure 2. This goes to show that the wind load
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2 Theory

does not statistically become significantly larger than the characteristic value. The same
principle is not applicable for an earthquake with a return period of 475 years, which will
be shown in this paper becomes significantly larger for longer return periods.

2.2 Representations of Seismic Action in Civil Engineering

Engineers need a meaningful representation of ground motion in their definitions of seismic
action and thus common outputs from PSHA are expected accelerations in terms of ground
values or spectrum over a range of frequencies. Intensity measures of displacements and
velocities can also be obtained from PSHA, however this paper focuses on accelerations
as these correlates to seismic forces which are to be evaluated.

Some of the most common representations of seismic action are presented in the sections
below.

2.2.1 Peak Ground Acceleration (PGA)

Peak ground acceleration (PGA) is the maximum acceleration in a point on the ground
during an earthquake. From PSHA the PGA can be estimated based on the probability
of exceedance (PE). Figure 3 shows the PE as a function of PGA at a specific site (Lund,
Sweden)[7].
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Figure 3: Probability of exceedance as a function of PGA.

There is one significant weakness with the use of PGA. If the PGA-value increases it
does not directly correlate with an increase of structural damage. The reason is that
the response in a structure subjected to dynamic loading is dependent on the natural
frequency/period of the structure and PGA does not provide any information about the
frequencies of the ground motion. PGA is however a commonly used parameter in building
codes, e.g. Eurocode 8, as a basis for shaping design spectrum [4]. This will be further
explained in Section 3.2.
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2.2.2 Uniform Hazard Spectrum (UHS)

The peak displacement max(|u(t)|) in a SDOF-system with a frequency ωn can be cal-
culated from a ground motion or as an envelope from several ground motions. This is
known as spectral displacement, SDn.

SDn ≡ max(|u(t)|) (4)

As such, the peak displacements can be represented in a spectrum for a range of SDOF-
systems with different frequencies ωn. The spectral velocities SVn and accelerations SAn
are given by:

SVn = ωnSDn (5)

SAn = ω2
nSDn (6)

These quantities are sometimes referred to as pseudeo-velocity and pseudeo-acceleration.
The reason is they are not actually the peak velocities and accelerations. The spectral
velocity correlates to a kinetic energy that is exactly the same as the maximum strain
energy obtained from the spectral displacements. Assuming the velocity V is related to
the displacements D as V = ωnD, the strain energy is given by

E =
kD2

2
=
k(V ωn)2

2
=
mV 2

2
(7)

where the right side of the equation is the expression for kinetic energy. In other words,
V can only be interpreted as peak velocity if there is a continuous transfer between strain
energy and kinetic energy. Since the velocity spectrum is not used in this paper, there
is no reason to analyze the implications of this approximation in depth. However the
acceleration spectrum is, which similarly can be derived from the largest forces in the
system. If the acceleration is related to the displacements as A = ω2

nD, the force (base
shear force) is calculated as

f = kD = mω2
nD = mA (8)

As such, the pseudo-acceleration actually provides the true forces of the system [8]. From
here on there are no distinctions made between pseudo-acceleration and true spectral
accelerations, as the pseudo-acceleration provides the true forces.

The magnitude of a specific SAn can be expressed in terms of probability of exceedance.
With extractions from a range of SAn a Uniform Hazard Spectrum can be assembled. In
Figure 4 it is shown how a UHS assembled. In the upper part of the figure hazard spectra
of natural periods of 0.5 respectively 1.0 seconds are plotted. From these curves, values of
SAn with a probability of exceedance of 10% in 50 years are chosen and then transfered

8



2 Theory

to a UHS (lower part of the figure). One of the benefits of a UHS is that it considers the
specific characteristics of a region. Dependent on what types of earthquakes (e.g. near
fault or far fault earthquakes) are common in a region different periods of SAn will be
more or less excited.
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Figure 4: Explanation of UHS from individual Hazard spectra.

The spectral ordinates, SA(1.0s), SA(2.0s) etcetera, are estimations of the mean peak
response at the site a certain distance from the earthquake source. Thus, the UHS for
e.g. 475 years is not an envelope of a "worst considered earthquake" during 475 years
as it not intended to envelope all earthquakes at all spectral periods during that time
period. As an example, recorded spectral accelerations at 1 second was recorded for the
1999 Chi-Chi earthquake in Taiwan at different sites as shown in Figure 5. At a given
distance from the source, different sites experienced different ground motions resulting in
a wide range of spectral ordinates [9].

9



2 Theory

Figure 5: Observed spectral acceleration values from the 1999 Chi-Chi, Taiwan earthquake
[9].

The spectral ordinate that could be used to predict the hazard at a site is the mean value
of all spectral ordinates at a given distance from the source. Consequently, the UHS could
also be expressed as +/− X number of standard deviations for more or less conservative
approaches. In this paper, the UHS referrers to the mean spectrum.

Each spectral ordinate is also a function of the damping ratio ζn for each mode. Normally
the values of each spectral ordinate are given for a fixed value of ζn and these values can
be re-calculated for other damping values. The spectral ordinates from ESHM13 are given
for SDOF-systems with 5% damping.

2.2.3 Design spectrum

The design spectrum has a central role in earthquake engineering and the intention of
constructing a design spectrum is to characterize the effects of ground motion on buildings
in a practical way. The design spectrum is essentially an idealized UHS that is derived
from parameterized seismic conditions. It is comprised of different branches, where SDOF-
systems with different natural periods Tn are expected to reach constant peak values of
either accelerations, velocities or displacements within each branch. Most notably, the
largest acceleration is expressed as a constant branch over a wide range of periods as seen
in Figure 6.

10



2 Theory

Figure 6: Design spectrum containing spectral accelerations A as a function of natural
periods Tn.

Various damping ratios can be used which reflect on the variety of different building struc-
tural properties. In Figure 6 a design spectrum is presented, representing peak spectral
accelerations (A(Tn, ζ) ≡ max |ü(t, Tn, ζ)|) for different values of ζ. Other peak responses
that could be used in a similar spectrum is peak velocity (V (Tn, ζ) ≡ max |u̇(t, Tn, ζ)|) or
peak displacements (D(Tn, ζ) ≡ max |u(t, Tn, ζ)|) [8].

2.3 Modal response spectrum analysis

The most intuitive method to apply an earthquake load is perhaps to expose a structure
to a simulated ground motion. Recorded time series from different sites can be scaled
to fit a design spectrum for a specific site of interest and then be used in such analysis.
Synthetic time series can also be used for the same purpose. A more common method
in a design situation is however, and required by Eurocode 8, to apply the force directly
from the design spectrum without involving time series. This method is known as Modal
response spectrum analysis and it is possible since the pseudo response, e.g. spectral
acceleration, for all modes and earthquakes are covered by the design spectrum.

A system subjected to an earthquake load responds very close with the natural frequencies
of the system. The key notion here is that each frequency is linked to a certain mode
shape and inertia forces are required to produce it. Each mode distributes the masses
differently and since the acceleration is known for each mode (from the design spectrum)
the inertia forces can be found by solving the eigenfrequencies/periods fn/Tn of the system.
Each mode contribute to the response and how much depends on mode shape φ(Tn) and
spectral acceleration Sa(Tn, ζn).

The theory presented in this section covers the essential information needed to understand
how a modal response spectrum analysis is performed. Necessary assumptions are required
and a solution to the most obvious drawback with loosing the time aspect in a spectrum
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analysis is presented. The theory can be found in, although slightly differently formulated
here, Dynamics of Structures by Anil K. Chopra [8].

2.3.1 Effective earthquake force

In order to explain the method behind modal response analysis it is useful to understand
the general concept behind the equation of motion in relation to earthquakes. Since the
excitation of structures, represented in this case by a multi degree of freedom (MDOF)
system, during an earthquake is induced through displacement of the ground it is necessary
to be able to express the relative displacement of the structure, see Figure 7. The MDOF
system is composed by j = 1 to N masses (representing stories). The total displacement of
the system is denoted by utj. To describe the total displacement, the ground displacement,
ug, and the relative displacement, uj, is used, see Equation 9.

Figure 7: Illustration of relative displacement.

utj(t) = ug(t) + uj(t) (9)

Equation 9 can be written on matrix form as

ut(t) = ug(t)ι+ u(t) (10)

where the vector ι in Equation 10 is an influence vector describing the displacement of
the systems N masses when applying a static displacement of a unit ground displacement.
Each element in ι equals the projection of the unit ground displacement onto the corre-
sponding degree of freedom. Each element is equal to 1 if the unit ground displacement
is parallel to the corresponding degree of freedom in ι as seen in Figure 8.

12
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Figure 8: Visualization of influence vector ι.

The equation of motion is in matrix format given in Equation 11.

mü+ cu̇+ ku = p(t) (11)

The equation consists of four parts. mü is the mass matrix and the acceleration vector
which represents the inertia forces of the system. cu̇ is the damping matrix and the
velocity vector which represents the damping forces of the system. ku is the stiffness
matrix and the displacement vector which represents the elastic forces in the system.
The vector p(t) is the load vector which contains the external forces. When analyzing
earthquakes no external loads will be applied and the load vector is zero, i.e. p(t) = 0.

Elastic and damping forces are only dependent on the relative displacement u, since
the displacement of the ground resembles a rigid body motion of the whole structure.
However the inertia forces are dependent on the total acceleration, üt, of the masses. If the
relation in equation 10 is differentiated two times an expression for the total acceleration is
generated. If this relationship is used in equation 11 with p(t) = 0 the following equation
is given:

mü+ cu̇+ ku = −mιüg(t) (12)

If equation 11 and 12 are compared one can see that they are the same with an exception
for the load vector. The ground motion can therefore be expressed as a load vector
described as effective earthquake force:

peff (t) = −mιüg(t) (13)

2.3.2 Eigenvalue problem

Since analyzes made in this paper are made within the scope of modal analysis, the natural
frequencies have to be calculated. To be able to retrieve the natural frequencies, ωn, and
the corresponding mode shape vector, φn, of a system, the following equation( called the
matrix eigenvalue problem) needs to be solved:
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kφn = ω2
nmφn (14)

The equation will only supply the solution without consideration of damping, hence a
damped system is determined by the complex eigenvalue problem. Both matrices k and
m are known and what to be determined is the scalar ω2

n and its correlated vector φn.

[k − ω2
nm]φn = 0 (15)

With equation 14 rewritten as above its intuitive that one solution to the problem is
φn = 0. This is the trivial solution which implies that the system is exposed to no
motion. The non trivial solution is given if the following equation is fulfilled:

det[k − ω2
nm] = 0 (16)

If a system has N elements, when expanding the determinant a polynomial of order N in
ω2
n is given. The polynomial has N number of real and positive roots for ωn. The N roots

describing the natural frequency ωn is sorted in an increasing manner(ω1, ω2, ....., ωN). By
using each natural frequency ωn, N individual mode shape vectors φn are produced when
solving equation 15. The shape vector does not contain information about the magnitude
of the displacements. It only contains the relative displacement.

2.3.3 K- and M- orthogonality of modes

The mode vectors orthogonality is an important property that is used when doing a modal
expansion. The following condition needs to be fulfilled, when ωn 6= ωr. The mode vectors
are orthogonal with k and m according to equation 17.

φTnkφr = 0 φTnmφr = 0 (17)

In order to prove this relationship, equation 14 is premultiplied with φTr (the transpose of
φr). The equation is satisfied for nth natural frequency and mode which gives,

φTr kφn = ω2
nφ

T
rmφn (18)

If the same procedure is done for the rth natural frequency and mode, but premultiplying
with φTn , this gives,

φTnkφr = ω2
rφ

T
nmφr (19)

The transpose of the matrix on the left side of equation 18 will equal the transpose of the
matrix on the right side of the equation, thus
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φTnkφr = ω2
nφ

T
nmφr (20)

Here the symmetry property of the stiffness and mass matrix has been utilized. If equation
19 is subtracted from equation 20 the following equation is given,

(ω2
n − ω2

r)φ
T
nmφr = 0 (21)

This shows that the equation to the right in equation 17 is true when ω2
n 6= ω2

r . For
systems with only positive natural frequencies this implies that ωn 6= ωr. By substituting
the right part of equation 17 in equation 19 it is shown that the left part of equation 17
is true when ωn 6= ωr.

2.3.4 Modal expansion of displacements

The mode vectors φr form an orthogonal base in which any displacement u(t) can be
expressed as linear combination of the mode vectors as shown in Equation 22.

u(t) =
N∑
r=1

φrqr(t) (22)

qr(t) are time dependent scalars and are known as modal coordinates. Derivation once
and twice of Equation 22 yields after insertion in the equation of motion:

N∑
r=1

mφrq̈r(t) +
N∑
r=1

cφrq̇r(t) +
N∑
r=1

kφrqr(t) = peff (t) (23)

The same equation can also be multiplied with φTn on the left side of each term as shown
in Equation 24.

N∑
r=1

φTnmφrq̈r(t) +
N∑
r=1

φTncφrq̇r(t) +
N∑
r=1

φTnkφrqr(t) = φTnpeff (t) (24)

For n 6= r the terms φTnmφr and φTnkφr equals zero due to orthogonal properties of modes
with distinct frequencies (ωn 6= ωr). For n = r the terms become scalars Mn = φTnmφn
and Kn = φTnkφn. The equation can be rewritten as:

Mnq̈n(t) +
N∑
r=1

Cnrq̇r(t) +Knqn(t) = Pn,eff (t) (25)

where Cnr and Pn,eff are defined as:

Cnr = φTncφr Pn,eff = φTnpeff (26)
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For n = 1 to n = N Equation 25 yields a set of N coupled equations. On matrix form
these can be written as:

Mq̈+Cq̇+Kq = Peff (27)

M and K are diagonal but C may or may not be. The equations are coupled since the
modal velocity q̇r for r = 1 to N is represented in every equation n. However, if classical
damping is assumed C becomes diagonal, i.e. Cnr = 0 and Cnn = φTncφn. This uncouples
all equations in (27) which is a fundamental assumption for the rest of this paper. Each
equation in (27) are then given by:

Mnq̈n(t) + Cnq̇n(t) +Knqn(t) = Pn,eff (t) (28)

Dividing the equation with Mn yields:

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) =

Pn,eff (t)

Mn

(29)

where ζn is the damping ratio for mode n. The damping ratio is defined as:

ζn =
Cn

2Mnωn
(30)

which explains the transition from Equation 28 to 29. The denominator 2Mnωn is the
smallest damping value Cn can have that prevents oscillation of mode n completely. Equa-
tion 30 is not explicitly implemented in this paper, instead mode n is assigned a value ζn.
In other words, a building is assumed to have a certain damping. In this case, all modes
are assumed to have a damping ratio ζn = 0.05.

2.3.5 Modal expansion of earthquake forces

The effective earthquake force is given by:

peff (t) = −mιüg(t) (31)

The influence vector ι can be expressed as a combination of mode vectors as shown in the
equation below.

ι =
N∑
n=1

Γnφn (32)

Γn is a scalar with different values for each mode n. It follows that

mι =
N∑
n=1

sn =
N∑
n=1

Γnmφn (33)
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where sn = Γnmφn is the inertia distribution of mode n. Figure 9 shows the expansion
of mι = [2m;m] for a two story frame with φ1 = [1

2
; 1] and φ2 = [−1; 1].

Figure 9: Illustration showing modal expansion of mι.

In this case the values of Γ1 and Γ2 are 4/3 and −1/3 respectively. These values can be
found by multiplying both sides of Equation 33 with φTr in order to obtain

φTrmι = Γrφ
T
rmφr (34)

by using orthogonal properties of the mode vectors on the right side of the equation. For
convenience the subscript r is changed back to n and an expression for Γn is found:

Γn =
φTnmι

φTnmφn
=

Ln
Mn

(35)

Recalling the equation of motion:

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) =

Pn,eff (t)

Mn

(36)

where the effective modal force is given by:

Pn,eff (t) = φTnpeff (t) (37)

Combining Equation 31, 33 and 37 yields:

Pn,eff (t) = −
N∑
r=1

Γrφ
T
nmφrüg(t) (38)

From orthogonality of modes the following expression is obtained:

Pn,eff = −ΓnMnüg (39)

Insertion of Equation 39 into the equation of motion gives the modal equation specialized
for earthquake excitations:

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) = −Γnüg(t) (40)
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2.3.6 Modal Response

The equation of motion for a SDOF system with a frequency ω = ωn and damping ζ = ζn
is given by:

D̈n + 2ζnωnḊn + ω2Dn = −ug(t) (41)

where Dn is the displacements. The subscript n is used since it can be compared easily
with the modal equation for a MDOF system with the same damping and frequency
below.

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) = −Γnüg(t) (42)

It can be established that
qn(t) = ΓnDn(t) (43)

if ω = ωn and ζ = ζn. In other words, the modal coordinates qn are proportional to the
displacements of a SDOF system with the same damping and frequency as the nth mode
of the MDOF system. Thus, the contribution of the nth mode to the nodal displacements
can be calculated as:

un(t) = φnqn(t) = ΓnφnDn(t) (44)

The equivalent external static forces fn(t) required to produce un(t) at time t is calculated
as

fn(t) = kun(t) = ΓnkφnDn(t) (45)

Recalling the eigenvalue problem kφn = ω2
nmφn and the intertia distribution sn =

Γnmφn equation 45 can be rewritten as:

fn(t) = snω
2
nDn(t) = snAn(t) (46)

where An = ω2
nDn is the acceleration for a SDOF system with frequency and damping ωn

respectively ζn. The modal response (of any quantity) rn(t) in a structure is determined
by static analysis of the structure subjected to external forces fn(t). If rstn denotes the
static modal response due to a "force" sn, the modal response due to an external force
fn can be calculated as:

rn(t) = rstn An(t) (47)

sn is here falsely denoted as a force as it has units of mass but the quantity satisfy
sn = kustn as:

ustn = k−1sn =
Γn
ω2
n

φn (48)

and substituting ustn as rstn in Equation 47 yields

un(t) =
Γn
ω2
n

φnAn(t) = ΓnφnDn(t) (49)

which is exactly the same as Equation 44. This goes to show that any response quantity
rn can be calculated according to Equation 47. The modal static response rstn due to a
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force sn is however calculated differently depending on response quantity.

The most straight forward static response quantity to determine is the static modal base
shear force V st

bn . For a multistory frame building with masses located at floor levels as
seen in Figure 10, the static base shear is solved for equilibrium with sn.

Figure 10: Illustration of modal static base shear and base moment.

The modal static base shear force can be calculated as

V st
bn = sTnι = Γnφ

T
nmι = ΓnLn (50)

where Γn and Ln are repeated here for a summary of the theory:

Γn =
φTnmι

φTnmφn
=

Ln
Mn

(51)

The modal static base shear force V st
bn is exactly equal to the effective modal mass, an

important concept in modal analysis. The effective modal mass is defined as

M∗
n = ΓnLn (52)

A SDOF-system is 100 % effective in producing base shear force, since all inertia is
transfered down to the ground. A MDOF system oscillating in mode n can however only
produce a base shear force proportional to M∗

n. The contribution from the nth mode to
the base shear is calculated by combining Equation 47, 50 and 52:

Vbn = M∗
nAn(t) (53)

The total mass of the building Mt is equal to the sum of each effective modal mass, i.e:

Mt =
N∑
n=1

M∗
n (54)
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2.3.7 Time independent modal analysis

The ground motion of a particular earthquake üg(t) can produce an acceleration An(t)
for each mode n. The peak acceleration for each mode, known as spectral acceleration
Sa(Tn, ζn) is dependent on the damping and natural period of vibration of that mode, for
that particular earthquake. By exposing a set of SDOF-systems with different Tn and ζn
to a ground motion üg(t) the spectral acceleration for each mode n can be calculated. As
an example the response spectrum for El Centro earthquake for ζ = 0.02 is shown in the
figure below.

Figure 11: Response spectrum from El Centro earthquake showing the ground motion
ζ = 0.02.

If the response spectrum is known for a particular earthquake, the maximum response for
each mode rno can be calculated according to the equation below.

rno = rstn An,max = rstn Sa(Tn, ζn) (55)

The information of which time t the response rno occurs is lost thus it is unknown how
rno for each mode n coincide in time. There are however different methods of combining
the response for each mode n, two of which are explained in the next section.

Since the scope of this project is to investigate all possible earthquakes during a certain
time period one response spectrum is not enough. Instead a design spectrum is used,
explained in Section 3.2, since this is an idealized envelope of all possible earthquakes. The
procedure is however not changed, Equation 55 is still valid but the spectral acceleration
Sa(Tn, ζn) is a representation of all possible earthquakes.

2.3.8 Modal combination rules (SRSS and CQC)

As described in the previous chapter the values of rno (n = 1, 2, ..., N) represents the
peak modal responses. In general different modes reach their peak value at different time
instances. If one were to sum the absolute values of each modal contribution, it would be
equivalent to say that the peak response for each mode coincide in time. This is usually
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considered to be too conservative. There are several modal combination rules that can be
used instead, of which two are presented here and preferred by Ec8 [4].

Square Root of Sum of Squares (SRSS) is a modal combination rule accepted for structures
with well separated frequencies. The total response is estimated by summing the square
roots of the modal responses as shown in equation 56.

ro '

(
N∑
n=1

r2no

)1/2

(56)

If the modes are closely spaced in frequencies the Complete Quadratic Combination CQC
method is preferred as it takes the correlation of close frequencies into account. The CQC
combination rule is presented in Equation 57 below.

ro '

(
N∑
n=1

r2no +
N∑
i=1

N∑
n=1

ρinriorno

)1/2

, where i 6= n (57)

The correlation factor ρin depends on the frequency ratio βin = ωi/ωn and the modal
damping ζ , assuming ζ= ζi = ζn, as:

ρin =
8ζ2(1 + βin)β

3/2
in

(1− β2
in)2 + 4ζ2βin(1 + βin)2

(58)

The correlation factor can vary between 0 and 1 and note for ρin = 0 the CQC method is
reduced to SRSS, i.e. well separated frequencies.

The underlying theory behind SRSS and CQC is not presented here but the it can be
derived from random vibration theory. If a series of earthquakes is represented by a mean
spectrum, CQC and SRSS provides an estimation of the peak response that is close to
the mean of the peak responses due to individual earthquakes.

2.3.9 Multi directional response summation

The theory so far has only dealt with earthquake excitation in one given direction. The
participation factor Γn was derived from a unit ground displacement and any given re-
sponse entity rno can only be interpreted as the response due to a ground motion excited
in the same direction as the direction from which the participation factor was derived.

Since the direction of an earthquake normally is unknown it is fair to say that a building
should be able to resist an earthquake from any given direction. It is possible to retrieve
the worst response without calculating the participation factors Γn,θ for every direction
θ-degrees about the main axis. Assuming the worst response r0 is obtained by spectral
input along an axis ξ which is aligned θ degrees about the x-axis as shown in Figure 12.
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Figure 12: Possible directions of excitation.

The spectral input Sξ would yield the same response r20 as summing the square roots of
the response r0 due to spectral input along the main axis x and y:

r0(Sξ)
2 = r0(Sx)

2 + r0(Sy)
2 (59)

regardless of the angle θ. Consequently, the largest response is found with use of SRSS
from orthogonal excitations:

r0(max) =
√
r0(Sx)2 + r0(Sy)2 (60)

This means that two separate earthquake analysis can be made in two orthogonal di-
rections x and y with two participation factors Γn,x and Γn,y for each mode if a three
dimensional behavior of the structure is expected.
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3 Seismic design in Eurocode

3.1 Importance factor

In Ec8 the way to differentiate constructions from each other, with regard to reliabili-
ties, is with the use of an importance factor, γl [4]. The importance factor is determined
in relation to four different importance classes. These classes are determined from the
consequence of collapse for human lives, the importance for public safety and civil pro-
tection immediately after an earthquake and the social and economical consequence after
a collapse. In Table 1 the classes and recommended corresponding factors are presented.

Table 1: Definition of Importance classes and correlated recommended Importance factors.

Importance Building type Importance factor, γI
Class (recommended value)
I Buildings of minor importance e.g.

agricultural buildings, etc.
0.8

II Ordinary buildings not belonging in the
other categories

1.0

III Buildings whose seismic resistance is
of importance in view of the conse-
quences associated with a collapse, e.g.
schools, assembly halls, cultural insti-
tutions etc.

1.2

IV Buildings whose integrity during earth-
quakes is of vital importance for civil
protection, e.g. hospitals, fire stations,
power plants, etc.

1.4

The factor is used by directly applying it to the hazard value, in this case PGA, agR:

ag = γI · agR (61)

The factors presented in Table 1 are, as previously stated, recommended values. These
values are NDP’s which are determined along with each countries policies for seismic
safety and the characteristics of the countries seismic hazard. When using the factor an
approximation of a higher or lower probability of exceedance, in TLR years, is achieved
expressed in the reference seismic actions probability of exceedance in TL years. The
different characteristics between various levels of seismicity is represented by the seismicity
exponent k. The seismicity exponent, k, is recommended to be set to 3. This represents
a region of high seismicity e.g. Italy [10]. Lower values of k corresponds to areas with
lower seismicity. The relation between the importance factor, different return periods and
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how it varies with the seismicity exponent is presented in Figure 13, which is a plot of the
relation in equation 62.

γI ∼ (TLR/TL)−1/k (62)
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Figure 13: Relation between Importance factor and return periods with different k-values.

The k-value originates in seismic hazard curves [11]. The hazard curves are plotted in a
double-logarithmic space. When retrieving the k-value one makes the assumption that
the return periods of interest, in connection to structural engineering, is approximately
linear within the log-log space that the hazard curve is plotted in, see Figure 14. A k-value
approximation of Lund, Sweden is presented in Figure 14. The approximation is made
within a range of return periods of 75 to 5000 years.
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Figure 14: Linear approximation of hazard curve, describing the hazard in Lund.
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The implicit return periods correlated to the recommended importance factors for k = 3.0
is presented in Table 2. In Table 3 the importance factors have been scaled in order to
match the same implicit return periods for k = 1.4 as for k = 3.0. It can be observed
that there is a significant difference of the importance factor in importance class IV for
k = 1.4 to reach the same implicit return period as for k = 3.0.

Table 2: Recommended importance factors and correlated implicit return periods (k =
3.0).

Importance class Importance factor, γI Implicit return period(years)
I 0.8 243
II 1.0 475
III 1.2 821
IV 1.4 1303

Table 3: Scaled importance factors and correlated implicit return periods for k = 1.4.

Importance class Importance factor, γI Implicit return period(years)
I 0.6 243
II 1.0 475
III 1.5 821
IV 2.1 1303

It should be emphasized that the method to approximate the k-value from a hazard spec-
tra is not explicitly stated in Eurocode 8. The method is described in the documentation
related to the SHARE project, more specifically in D2.2-Report on seismic hazard defini-
tions needed for structural design applications [12]. To put the scaled importance factor
in perspective it could be compared to the factors Norway, who recently adopted Ec8, are
currently using. According to Norway’s national annex the importance factor correlating
to importance class IV is set to 2.0 [13].

3.2 Elastic Design Spectrum

Eurocode gives the user an option of analyzing structures with a scaled design spectrum.
By introducing a behavior factor q the spectrum is scaled according to a type of building,
e.g. building materials, stabilizing system etc. The behavior factor takes the structures
ability to dissipate energy into account and therefore a simpler analysis can be performed
without any further attention to inelastic behavior [14]. The elastic design spectrum is
assembled with equations 63-66[4].

0 ≤ T ≤ TB : Sd(T ) = ag · S ·
[

2

3
+

T

TB
·
(

2.5

q
− 2

3

)]
(63)
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TB ≤ T ≤ Tc : Sd(T ) = ag · S ·
2.5

q
(64)

TC ≤ T ≤ Dc : Sd(T ) =

{
ag · S · 2.5q ·

[
TC
T

]
≥ β · ag

(65)

TD ≤ T : Sd(T ) =

{
ag · S · 2.5q ·

[
TCTD
T 2

]
≥ β · ag

(66)

Where
Sd(T ) is the elastic design spectrum;
T is the vibration period of a linear single-degree-of-freedom sys-

tem;
ag is the design ground acceleration on type A ground;
TB is the lower limit of the period of constant spectral accelera-

tion branch;
TC is the upper limit of the period of constant spectral accelera-

tion branch;
TD is the value defining the beginning of the constant displace-

ment response range of the spectrum;
S is the soil factor;
q is the behavior factor;
β is the lower bound factor for the horizontal design spectrum

(recommended value 0.2).

The design ground acceleration, ag, is calculated with equation 61, using the importance
factor and the reference peak ground acceleration, agR, on ground type A. Ground type A
means rock or rock-like formations with less than 5 meters of weaker material at the surface
with a shear wave velocity, vs,30, of >800 m/s. The shear wave velocity is calculated as
an average velocity of all layers in the top 30 meters of the ground. In Table 4 all ground
types are defined. In order to account for different ground types the soil factor, S, is used
to scale the design spectrum[14].
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Table 4: Description of ground types[4] and correlated parameters.

Ground type Description of stratigraphic pro-
file

Parameters

vs,30 (m/s) NSPT

(blows/30cm)
cu (kPa)

A Rock or other rock-like geological
formation, including at most 5 m
of weaker material at the surface.

>800 - -

B Deposits of very dense sand,
gravel, or very stiff clay, at least
several tens of meters in thick-
ness, characterized by a gradual
increase of mechanical properties
with depth.

360 – 800 >50 >250

C Deep deposits of dense or medium
dense sand, gravel or stiff clay
with thickness from several tens
to many hundreds of meters.

180 – 360 15 - 50 70 - 250

D Deposits of loose-to-medium co-
hesionless soil (with or without
some soft cohesive layers), or of
predominantly soft-to-firm cohe-
sive soil.

<180 <15 <70

E A soil profile consisting of a sur-
face alluvium layer with vs values
of type C or D and thickness vary-
ing between about 5 m and 20 m,
underlain by stiffer material with
vs > 800 m/s.

S1 Deposits consisting, or containing
a layer at least 10 m thick, of soft
clays/silts with a high plasticity
index (PI >40) and high water
content

<100 (in-
dicative)

- 10 - 20

S2 Deposits of liquefiable soils, of
sensitive clays, or any other soil
profile not included in types A –
E or S1

Dependent on a regions seismicity two different types of spectra are recommended. These
spectra are based on earthquakes magnitude that contributes most to an areas seismicity.
For areas of high seismicity that satisfies the condition, Ms > 5.5, a Type 1 spectrum is
can be used. For areas of lower seismicity, Ms ≤ 5.5, a Type 2 spectrum can be used.
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These spectra are defined with the intention of not overestimate the spectral ordinates for
areas that are not subjected to high magnitude earthquakes. In Table 5 the recommend
values for a Type 2 spectrum are presented. Depending on what ground type that is
chosen, values describing the soil factor and the corner periods are determined.

Table 5: Values of parameters describing Type 2 spectrum(recommended values)[14].

Ground type S TB(s) TC(s) TD(s)
A 1.0 0.05 0.25 1.2
B 1.35 0.05 0.25 1.2
C 1.5 0.10 0.25 1.2
D 1.8 0.10 0.30 1.2
E 1.6 0.05 0.25 1.2

The design spectrum is calibrated for a vicious damping (ξ) of 5%. Other values of damp-
ing can be used by the means of adjusting the factor q in accordance to specific building
materials. When concrete is used as the primary building material the q factor, for low
seismicity cases, is allowed to be chosen between 1-1.5. This also gives the opportunity
of designing the concrete elements according to Eurocode 2[4].

3.3 Integration of SHARE outputs with Eurocode 8

If the seismic hazard in Lund predicted by SHARE is plotted together with the design
spectrum given in Eurocode 8 with recommended parameters it becomes obvious that the
design spectrum grossly overestimate the seismic hazard in Lund as seen in Figure 15 .
The design spectrum is calculated for Ground type A and a behavior factor q = 1. The
reference ground acceleration ag = 0.02g is the peak ground acceleration.
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Figure 15: Comparison of design spectrum and uniform hazard spectrum in Lund for
return period of 475 years.

It can be seen that the spectral acceleration is higher for almost every spectral period
Tn and the constant acceleration branch seems wider than necessary. Arguably, the UHS
could be used directly in a seismic analysis, instead of a design spectrum, since it predicts
the actual hazard at site. However, the design spectrum, which is an idealized UHS, have
e.g. a branch of constant spectral acceleration which inhibits large response differences
for small model deviations.

SHARE provides a method [11] to better estimate the parameters in Table 5 in order to
fit the design spectrum to the UHS for a specific site. Their results for Lund is provided
in Table 6.

Table 6: Eurocode 8 controlling parameters (TB, TC and TD) optimized to fit the SHARE
uniform hazard spectrum in Lund.

TB(s) TC(s) TD(s)
0.1 0.2 1.0

The design spectrum was calculated according to Eurocode 8 but with the spectral period
limits according to Table 6. Note that the soil factor S = 1 is still assumed, i.e. ground
type A, according to Table 5. This assumption is made since the hazard calculated in
SHARE is only provided for a shear wave velocity vs,30 = 800m/s which makes a fair
comparison to Ground type A, see Table 4. Ground types other than A is beyond the
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scope of this project but it should be noted that other ground types can magnify the
seismic action significantly. The design spectrum is shown in Figure 16.
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Figure 16: Design spectrum with SHARE parameters in Lund for a return period of 475
years.

The SHARE parameters provide a much better fit to the UHS. It is far less conserva-
tive than the recommended EC8 spectra with lower values and a more narrow constant
acceleration branch.

The way to differentiate reliabilities with use of an importance factor γ1 have a little
merit when the seismic hazard already is calculated for a large range of return periods.
The importance factor essentially scales a reference ground acceleration to another ground
acceleration with a different return period. Since SHARE provides PGA for return periods
up to 5000 years the importance factor is redundant and the PGA for a return period
of choice can be selected. It was however concluded that the recommended importance
factor γ1 = 1.4 implicitly means a return period of ∼ 1300 years. However, the return
period remains a matter of choice for national authorities to decide and it is impossible
to predict how Swedish authorities would approach this issue if Eurocode 8 ever would
be implemented in Sweden. In this paper, it is assumed a return period TR of 1300 years
is a reasonable choice for for building in importance class IV.

The reference ground acceleration for TR = 1300 years are ag = 0.054g. The value was
interpolated from the hazard curve in Figure 17.
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Figure 17: Hazard curve Lund, TR = 1300 and ag = 0.054g in red.

The design spectrum for TR = 1300 years was assembled with parameters according to
SHARE, soil factor S = 1 and reference ground acceleration ag = 0.054g. The 1300-year
spectra is shown in Figure 18 together with the 475-year spectra.
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Figure 18: Design spectrum used in this project.
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4 Method

The way to evaluate the seismic action were made using three different analyzes. The
first one, presented in section 5, was a parametric study of idealized structures where
a large number of different buildings were modeled as 2D-beams subjected to a seismic
load as a modal response spectrum analysis. The analyses were made using the 475- and
1300-year spectra presented in Figure 18 and the results were presented together with a
static analysis of the wind load. The purpose was to identify general characteristics of
buildings that can be considered to be critical to earthquake loads. Only the base shear
force was evaluated since it is a good indicator of how large the response is in general. A
more detailed description of the analysis is presented in Section 5.

The second analysis was a parametric study of a 3D-model in the FE-software Abaqus.
The base shear response were calculated with a varying number of floors (4 to 7 floors).
The purpose was to investigate how well the beam models can predict the response in
buildings that deviates from ideal properties. Equivalent beam properties were estimated
from the 3D-model and the response were calculated with these properties using the beam
model. A more detailed description of the analysis is presented in Section 6.

The third analysis, presented in section 7, was a case study based on the worst case
scenario from the latter analysis. The FE-model from the second analysis was used with
a fixed number of floors. The study was investigating section forces and moments from
static wind loads and dynamic earthquake loads. Both a 475- and a 1300-year spectra was
used. The purpose of the case study was to evaluate the use of base shear as a measure
of comparison in the previous analyzes. The study also provides a description of possible
differences between the static wind load and dynamic earthquake loads.
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5 Parametric study of idealized structures

Since wind usually is the designing horizontal load in Sweden it is of interest to find a
structural system that is able to produce an earthquake response that is relatively high
compared to the wind load. In this section the base shear force in idealized structures
are compared for both load types by parameterizing several structural properties. The
purpose is to identify the general characteristics of buildings that can be considered to be
critical to earthquake loads.

5.1 Method of analysis

5.1.1 Model description

A rectangular building with N stories is subjected to analysis. Each story is h meters
high and the sides of the building are d and w meters each. The floors are assumed to
be 0.3 m thick solid concrete slabs with a density of 2400 kg/m2. The vertical system is
comprised of an arbitrary amount of continuous elements. The mass of the building is
concentrated to the slabs.

The building is modeled as a vertical 2D cantilever beam with one elastic Bernoulli beam-
element between each floor. Hence, the degrees of freedom are located at the center of
each floor slab.

Figure 19: Illustration of cantilever beam model.

The element stiffness matrix is given by:

KE =


12EI/h3 6EI/h2 −12EI/h3 6EI/h2

6EI/h2 4EI/h −6EI/h2 2EI/h
−12EI/h3 −6EI/h2 12EI/h3 −6EI/h2

6EI/h2 2EI/h −6EI/h2 4EI/h

 (67)
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where EI is the equivalent stiffness of some amount of vertical elements contributing to the
horizontal stability. In this analysis EI is a parameter rather than explicitly obtained from
material properties, element shape and number of elements. Obviously, the parameter EI
has to be chosen within an appropriate range of values which are reasonable for the model.
Appropriate values of EI is highly dependent on stabilizing system (columns, shear walls,
etc.) but this topic is discussed later.

The element mass matrix for a Bernoulli beam-element is given by:

ME =
m̂h

420


156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
−13h −3h2 −22h 4h2

 (68)

where m̂ is mass per unit length of the beam. The element matrices are assembled into a
global matrix Mbeam. The floor masses mi are directly assembled into the global matrix,
as lumped masses in the diagonal for every 1 to N matrix element corresponding to a
global translational degree of freedom.

Mfloor =



m1 0 · · · · · · · · · · · · 0
0 0 · · · · · · · · · · · · 0
0 0 m2 · · · · · · · · · 0
...

...
... . . . ...

...
...

0 · · · 0 0 mN−1 0 0
0 · · · · · · 0 0 0 0
0 · · · · · · · · · · · · 0 mN


(69)

The global mass matrix becomes:

M = Mbeam +Mfloor (70)

In reality, the slabs contribute to rotational stiffness at floor level. The stiffness contri-
bution from the slabs is however difficult to estimate and to include as a parameter since
the stiffness is dependent on, aside from the slab’s own properties, the spatial distribution
of the vertical elements of which the slabs are connected to. For instance the slab in
Figure 20 contributes to more rotational stiffness about the x-axis than the y-axis since
the columns are closer spaced in the y-direction.

Figure 20: Rectangular slab on four columns.
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To clarify the fact that the frame is stiffer about the x-axis, it can be seen in Figure 21
that the rotational stiffness at the corner (k22) of the frame is dependent on the length of
the span between columns.

(a) (b)

Figure 21: Explanation of slab stiffness contribution.

Instead, the structure is analyzed from two extreme cases with regards to the stiffness
ratio ρ between the slabs and the vertical elements:

• Case 1: ρ = 0

• Case 2: ρ =∞

For Case 1 it is implied that the stiffness contribution from the slabs is negligible. This
is based on the assumption that the vertical elements are exceptionally stiff compared to
the slabs. For such assumption to be legitimate, the building is likely to be stabilized with
stiff elements like elevator shafts and/or shear walls with high moment of inertia. This
building is assumed to behave like a cantilever beam when subjected to lateral forces.

On the contrary, in Case 2 it is implied that the structure is stabilized with relatively
slender vertical elements, for instance a system of columns. When subjected to lateral
forces, the slabs shear the columns and cause horizontal translations without rotations at
floor level. Figure 22 demonstrates the principal difference between Case 1 and 2 for a
multi story frame.
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Figure 22: Multi story frame building, case 1 (left) and case 2 (right).

From here on Case 1 is referred to as cantilever building and Case 2 is referred to
as shear building. It’s worth pointing out that both buildings are modeled as one
cantilever beam with one Bernoulli beam element between each floor. However, the rota-
tional degrees of freedom are condensated using boundary conditions in the shear building.

Figure 23: Cantilever building (left), Shear building (right).

Essentially the element stiffness matrix in (67) is reduced to a 2 by 2 matrix for the shear
building:

KE =

[
12EI/h3 −12EI/h3

−12EI/h3 12EI/h3

]
(71)
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The mass in the vertical elements m̂ is assumed to be zero for the shear building. The
cantilever building has however a distributed mass m̂ = 7200 kg/m which is equivalent to
a 10 m by 0.3 m concrete wall. The results are not sensitive to this parameter since the
floors are much heavier and this is why a constant value of m̂ was assumed. The global
mass matrix for the shear building becomes:

M =


m1 0 · · · · · · 0
0 m2 · · · · · · 0
...

... . . . ...
...

0 · · · 0 mN−1 0
0 · · · · · · 0 mN

 (72)

Since Mbeam = 0 and all degrees of freedom are horizontal translations.

5.1.2 Parameters

The building is assumed to have a constant floor height h = 3.5 m and slab thickness 0.3
m. The response in the building is investigated for different stiffness EI, building depth
d, building width w and number of floors.

Table 7: Parameters and their range that are to be investigated.

Parameter Symbol Variation Range
From To

Number of floors N 1 8
Depth d 10 m 40 m
Width w 10 m 40 m

Stiffness shear building EI 0.1 GNm2 5 GNm2

Stiffness cantilever building EI 100 GNm2 2000
GNm2

The investigated range of bending stiffness EI in Table 7 was derived from a range
of concrete elements with different dimensions. For the shear building the stiffness was
calculated for circular concrete columns with an elastic modulus E = 35 GPa and moment
of inertia I given by:

I = n · πr
4

4
(73)

where r is the radius and n is the number of columns at each floor level. Similarly, the
stiffness range for the cantilever building was derived from a range of 0.3 m thick concrete
walls with a moment of inertia given by:

I = n · 0.3 · y3

12
(74)
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where y is the wall depth and n is the number of walls at each floor level. The upper and
lower bound for EI for both models was somewhat arbitrarily chosen to cover a reasonable
range of stiffness. The chosen values in Table 7 are shown together with values of EI
calculated from Equation 73 and 74 in Figure 24.
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Figure 24: Upper and lower bound for investigated parameter EI. Cantilever building
(a) and shear building (b).

A set of five discrete values of EI within the bounds were analyzed for eight buildings
with one to eight stories N and a constant depth and width d = w = 20 m. The method
of analysis was Modal response spectrum analysis and it was performed for both the
cantilever and shear building. In total the earthquake response for 80 different buildings
were calculated.

The base response in a building with a surface area S = d · w can be scaled linearly for
a similar building with a surface area S ′ = d′ · w′ (for same stories N). If both buildings
have the same amount of stabilizing elements per square meter, i.e. constant ratio between
stiffness and mass k/m, the eigen frequencies remains unchanged:

ωn =

√
k

m
=

√
k′

m′
(75)

Since the eigen frequencies are the same for both buildings the modal response ratio
Vbn(A′)/Vbn(A) is equal to the mass ratio since the modal acceleration An = A′n :

Vbn(A′n,M
′
n)

Vbn(An,Mn)
=
M ′

nA
′
n

MAn
=
M ′

n

Mn

(76)

whereMn is the effective modal mass. The modal response can thus be scaled accordingly:

V ′bn =
M ′

n

Mn

Vbn (77)
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Since the modal response can be scaled, the total response can also be scaled similarly:

V ′b =
M ′

M
Vb (78)

where M is the total mass of the building. Since the mass is proportional to the surface
area, different values of d and w can be chosen to scale the results for smaller and larger
buildings:

V ′b =
d′ · w′

d · w
Vb (79)

As a consequence the base shear is increased with a factor of 4 when the side lengths are
doubled. This can be compared to the response from the wind load, where the base shear
is only increased with a factor of 2. Furthermore, a building that is only elongated with
a factor 2 in one direction have an unchanged wind response in the same direction. The
earthquake response however is doubled.

Figure 25: Building comprised of four modules. This configuration yields wind response
x2 and seismic response x4 since the eigen frequencies remains unchanged but the mass
is quadrupled.

With the size effect in mind, it is self evident that it is possible to find a building that is
able to produce an earthquake response that envelopes the wind response. Therefore, the
parameters d and w in Table 7 are only investigated in terms of largest theoretical base
shear in order to demonstrate the size effect. The largest theoretical base shear can be
calculated by assuming that the total mass M is excited with a frequency corresponding
to the largest spectral acceleration Samax.

Vb,max = M · Samax (80)

It should be clarified that the size effect as previously defined, does not change the seismic
response in each member, as both the total seismic response and the number of stabilizing
members are proportional to the size given all assumptions previously presented in this
section. The wind response in each member would however decrease since the total wind
response is only proportional to one side of the building.
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5.1.3 Seismic load

The type 2 elastic design spectrum according to Eurocode 8 and SHARE parameters was
chosen in this analysis, see Equations 63 to 66. The analysis was made for and importance
class II and IV, i.e. the reference ground acceleration corresponds to a return period of
475 years and 1300 years respectively.

See Figure 18 in Section 3.3 for complete spectra.

The modal response summation method used was SRSS.

5.1.4 Wind load

The seismic response in this parametric study are presented together with the same re-
sponse for wind load. The wind load is calculated according to SS-EN-1991-1-4 [6] with
the following parameters:

• Reference wind speed vb = 26 m/s

• Terrain type III

The wind is assumed to act with a constant pressure on the facade corresponding to the
pressure at the highest point of the building.

The comparison of wind and seismic response was made in the context of a design situa-
tion. In general, the following condition have to be fulfilled in the ultimate limit state:

Rk

γM
≥ Ed (81)

where Rk is the characteristic value of the capacity and Ed is the designing load effect.
The partial coefficient γM takes model uncertainties into account and for a "normal"
design situation, like wind action, γM takes the value 1.5 for concrete materials. However,
Eurocode treats seismic action as an exceptional design situation where γM takes the value
1.2, i.e. uncertainties are accepted to a larger degree.

In order to compare the wind action to the seismic action, the wind pressure is modified,
Qd,mod in Equation 82, with respect to the uncertainty acceptance of the capacity, using
a factor of the ratio between γM for both design situations.

Qd,mod =
1.5

1.2
·Qd (82)

Qd is the designing wind pressure and it is design in the the ultimate limit state, thus the
characteristic wind pressure is multiplied with 1.5 according to Equation 83.

Qd = 1.5 ·Qk (83)
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By combining Equation 82 and 83, the factor that is multiplied with the wind load be-
comes:

Qd,mod =
1.5

1.2
· 1.5 ·Qk (84)

As a note, the seismic load is an accidental load case where the load combination factor
is equal to 1.0:

Ad = 1.0 · A (85)

5.2 Results

5.2.1 Analysis of modes and effective mass

Before examining the response it is interesting to see how the effective mass is distributed
between the modes. For a 8-story building the effective mass is presented in Figure 26 as
a percentage of the total mass.
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Figure 26: Effective mass content in each mode for the cantilever building (a) and the
shear building (b).

The cantilever building has ∼ 65% effective mass in the first mode while the shear building
has ∼ 85%. This goes to show why it was important to separate these models. The
stiffness cannot be arbitrary chosen without considering the stiffness ratio between the
slabs and vertical members since more effective mass will be distributed from the first
mode to the others the more rigid the vertical members become compared to the slabs.
The implications are that the shear building is very dependent on the spectral ordinate
of the first mode. If this is located in the constant acceleration branch of the spectra
(between 0.1 and 0.2 seconds) the base shear is expected to almost reach the largest
theoretical base shear, i.e:

Vb(0.1s < T1 < 0.2s) ≈ Sa(max) ·Mtot (86)
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The cantilever building however, which is only ∼ 65% dependent on the spectral ordinate
of the first mode, will also have a significant contribution from the second mode ∼ 20%.

The differences in the distribution of the effective mass can be found in the different mode
shapes, see Figure 27.

Figure 27: Comparison of first mode shape. Blue: Shear building, Red: Cantilever
building.

As can be seen the modes are separated in shape and in order to understand why the
shear building produce more effective mass in the first mode one has to realize that the
effective mass is exactly the same as the static base "shear force" V st

bn produced by static
distribution of the masses in Figure 27. Both mode vectors in Figure 27 are normalized
with respect to the mass, i.e. Mn = φTmφ = 1, which provides an opportunity to visually
compare how much static base shear both mode shapes produce. It can be seen that the
masses in the shear building have combined been displaced further away relative to the
cantilever building thus the static inertia "force" sTnι is greater.

The same principle works for differences for other modes between both models. A com-
parison would however be less intuitive since the mode shapes are more complicated to
visually compare. The first three mode shapes are presented in Figure 28.

44



5 Parametric study of idealized structures

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 1 (e) Mode 2 (f) Mode 3

Figure 28: Mode shapes. (a)-(c) Cantilever building. (d)-(f) Shear building.

Higher modes (second and above) must be produced by counteracting inertia forces which
is intuitive considering the mode shapes in Figure 28. Consequently, the vector sTn contains
both positive and negative values hence the total inertia force sTnι becomes smaller. This
explains why the effective mass is significantly lower for higher modes.

5.2.2 Size effect- Largest theoretical base shear

The modal response spectrum analysis were only performed for buildings with a surface
area of 20 · 20 m since it was concluded that a larger or smaller building would only scale
the response linearly under the assumption that stiffness/mass ratio remained constant.
This size effect is visualized in Figure 29 in terms of largest theoretical base shear. The
wind response against the short side were calculated for equivalent buildings and presented
in the same plots as dashed lines.
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Figure 29: Largest theoretical base shear. (a) Elongation in both directions, (b) Elonga-
tion in one direction.

Figure 29 shows what was mentioned in Section 5.1.2. The seismic responses in buildings
with constant stiffness/mass ratio but different surface areas d · w respectively d′ · w′ are
related through

V ′b =
d′ · w′

d · w
Vb (87)

The wind response is however only proportional to the length of the side of action, i.e.

V ′b,wind =
w′

w
Vb,wind (88)

if the side of action has the length w respectively w′. In Figure 29 (b) the wind is applied
at the short side of the building hence constant wind response in the long direction.

Equation 87 and 88 should be kept in mind for the rest of Section 5 since the following
results presented in this section are only calculated for 20 m by 20 m buildings. These
results were provided just to raise awareness that the seismic response in the forthcom-
ing results would be e.g. four times greater if 40m by 40m buildings (with the same
stiffness/mass ratio) were to be analyzed instead.

5.2.3 Shear building

The eigenperiods for the first mode are presented for 40 different shear buildings are
presented in Figure 30. These have stiffness EI varying between 100 and 5000 MNm2

and one to eight stories.
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Figure 30: (a) Eigenperiods first mode for 40 different shear buildings. (b) Relative
spectral acceleration.

If the first eigenperiod is within the dashed lines it is located in the constant acceleration
branch of the design spectra where the largest spectral accelerations can be found. As
was discussed in the previous section, these structures are expected to almost reach the
largest theoretical base shear. Most of the shear buildings that were analyzed are slender
thus containing high eigenperiods far beyond constant acceleration branch. However, the
stiffest building (EI = 5000 MNm2) have, for 1 to 3 floors, the first period within or close
to this branch and it can be seen from Figure 31 that these buildings almost tangent the
largest theoretical base shear.
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Figure 31: Shear building response for TR =475 (a) and TR =1300 (b).

As shown in Figure 31 (a) the shear building is barely able to produce base shear for the
475-year earthquake that is larger than the wind response. However, some structures with

47



5 Parametric study of idealized structures

frequencies close to the constant acceleration branch do. These are however structures
with relative low mass (few stories) in relation to the stiffness of the vertical members and
there is probably little merit in comparing these results to the wind response. It is likely
that other loads, such as accidental loads from impacts, could be the designing load case.
Furthermore, this model becomes less accurate with increasing EI since the stiffness is
assumed to be infinitely small compared to the stiffness of the slabs. The implications
are that the mode shapes, which are key in modal response spectrum analysis, could in
practice look more like that of a cantilever beam.

It is safer to say that it is very possible an earthquake with a return period of 1300
years could be the designing load case, referring to Figure 31 (b) as it envelopes the wind
response even for more slender and taller buildings. Though, perhaps it is debatable
whether these buildings in reality could exist as consequence class IV structures. It could
be assumed there is not a single shear wall located in these buildings due to the low
stiffness range that was investigated and no emphasis has been made to whether or not
these are practical structural solutions or not. The results were provided nonetheless since
the buildings in theory could exist.

Due to the low seismic response in general and practical concerns mentioned above the
shear building model was not investigated further. In the next section the results from the
parametric study of cantilever buildings are presented. These results are more interesting
as the seismic response in general is higher and the model has not the same practical
issues as the shear building.

5.2.4 Cantilever building

It can be concluded from the analysis of the shear building that these in general were
too slender to be able to produce a large seismic response. Although some examples were
found that could, the relevance of these results were debatable. However, the cantilever
buildings produce in general much more base shear due to seismic loading. The reason is,
these buildings are much stiffer thus having first natural frequency closer to the constant
acceleration branch for a wider spectrum of buildings, see Figure 32.
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Figure 32: (a) Eigenperiods first mode for 40 different cantilever buildings. (b) Relative
spectral acceleration.

Since the cantilever buildings are, in contrary to the shear buildings, more dependent on
higher modes the response is not as linearly associated to the frequency of the first mode
but the trend is still the same; cantilever buildings with the first mode in the constant
acceleration branch experience the largest base shear in relation to the wind response,
comparing Figure 32 and Figure 33.
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Figure 33: Cantilever buildings response for TR =475 (a) and TR =1300 (b).

As shown in Figure 33(a) an earthquake with a return period of 475 years produce a base
shear that envelopes the wind response for a significant amount of cantilever buildings
between 1 to 4 floors. The general response is however quite similar or less than the
wind response. The buildings that are potentially critical are short, ≤ 5 floors, as taller
buildings push the first eigen period beyond the constant acceleration branch. It is also
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noted that it is difficult to correlate the magnitude of the response with a certain stiffness
EI as these tend to overlap each other. The highest seismic/wind response ratio is in fact
found for the two story EI = 100GNm2. At this short height buildings tend to have so high
lateral stiffness that the eigen periods go to zero, i.e. the structural acceleration basically
follows the ground acceleration. Short buildings with slender elements can however push
the spectral ordinates towards peak spectral acceleration. However, it is important to
have in mind that these models (cantilever buildings) improve with the stiffness since
the slabs are assumed to be slender and the actual stiffness contribution from the slabs
becomes less significant with increasing stiffness of the vertical members. Nonetheless, the
results from the shear building also suggest short and slender buildings could be critical
as the shear building per definition has relatively slender vertical elements.

The 1300-year earthquake envelopes the wind response for almost every single parameter
investigated in this study. As seen in Figure 33(b) the seismic response is more than twice
as large as the wind response for a good portion of the investigated buildings. It must be
assumed that the cantilever buildings are stabilized with shear walls which perhaps is a
more reasonable assumption for consequence class IV buildings as well.

5.3 Concluding remarks

The parametric study of the beam models showed that shorter buildings experienced the
largest seismic response compared to the wind. For buildings ≤ 2 floors it is likely that
a more slender system is the most critical. In theory, this could also be applicable to
buildings with a soft story at ground level and a rigid second and/or third floor. An
example of a soft story building is a building with an open plan commercial ground floor
and the rest of the above stories consists of apartments separated with walls. This system
would more or less behave like a SDOF-system when exposed to an earthquake and the
majority of the mass would thus be located in the first bending mode, equivalent to a
shear building. Stiffness irregularities like this were not explicitly investigated but this
conclusion can nonetheless be made since the analysis of the shear building shows that
buildings with only one significant mode can reach a base shear proportional to the total
mass of the building. Furthermore the largest theoretical base shear could practically be
obtained for these buildings if the eigen period is within 0.1 and 0.2 seconds. This means
a large amount of mass will be shearing the columns as shown in Figure 34.
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Figure 34: Illustration of a soft story mechanism.

Although the soft story building is an interesting case, the results presented in Section 5.2
should first and foremost be seen as fairly accurate for buildings which have the following
properties:

• Symmetry in plan

• Symmetry in elevation

These points are brought up because these buildings were modeled as 2D-beams with
constant stiffness EI along the length of the beams. No 3D-effects were investigated
whereas it was assumed the earthquake only acted in one direction as it is not possible
to investigate orthogonal effects in two dimensional models. Overall, the results can only
be seen as accurate for structures where a beam model is feasible. This is certainly not
obvious for all structures.

These requirements may seem like excessive idealizations for most buildings. However,
in the next section a parametric study of a realistic 3D-model is performed. It will be
shown that it is possible to estimate a buildings equivalent beam properties in order to
obtain roughly similar response from a 2D beam model and a 3D FE-model, at least if the
orthogonal response is small when the building is excited in its main structural directions.
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6 Parametric study of realistic 3D FE-model

In addition to the parametric study that was described in Section 5 a parametric study
of a 3D FE-model has been performed. This study does not investigate the same range of
parameters, instead it has been focused on investigating the influence of various numbers
of stories with the same stabilizing system. The analyzed building is modeled according
to drawings, showing the stabilizing system, of a 7-story building. The analysis is made
using modal response spectrum analysis. In a 3D FE-model it is impossible to include
all frequencies of the system. The number of frequencies used is adjusted to fulfill the
requirements in Ec8. The requirements according to SS-EN-1998-1 is that the sum of the
effective mass for the modes taken into account should at least represent 90 % of the total
mass [4].

Parallel to the analysis of the 3D model, a 2D beam model has been analyzed with an
approximated stiffness of the 3D model. The purpose is to evaluate the accuracy of the
beam models and evaluate the results from the previous parametric study in a more
realistic context.

6.1 Model description

The building is rectangular with a width of 16.7 meters and length of 50.4 meters. The
hight of each level is 3.5 meters, see Figure 35. For more detailed measurements of the
buildings principle plan, see Appendix A.

Figure 35: 3D visualization of the models geometry.

The floors consists of 0.265 meters thick concrete hollow core slabs. The columns are
made out of steel. The thinner columns along the length of the buildings perimeter are
out of type VKR 100x100x10 mm. The inner columns consists of type VKR 400x400x10
mm. The buildings walls are made out of concrete and have a thickness of 250 mm or
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150 mm. Detailed description of the walls is presented in Figure 36. Material properties
used in the model is found in Table 8.

Table 8: Material properties for the 3D model.

Material Elastic modulus, E [GPa] Density, ρ [kg/m3]
Concrete, walls 35 2400
Concrete, slabs 35 1603a

Steel, columns 210 7800

aCombined weight of hollow core slab and quasi-permanent live
load.

As stated in Table 8 the density of the hollow core slabs include a mass equivalent to
the quasi-permanent load. The bulk density of the hollow core slabs is 1320 kg/m3. The
quasi permanent load is calculated with equation 89, according to Eurocode, with Qk=250
kg/m2 and ψ2=0.3.

Qd = Qk · ψ2 (89)

The calculated load equals 75 kg/m3 and by dividing it by the height of the hollow core
slabs it gives a density of 283 kg/m3.

Figure 36: Wall numbering and measurements.

6.1.1 FE-model

The building is modeled with shell elements to represent all surfaces, i.e walls and floors.
The connections between the slabs and the walls are prescribed as rigid connections. The
thickness of the elements are set according to the described geometry in the section above.
The elements used in Abaqus are of type S4R, these are four node shell elements that
use reduced integration. The element size of the mesh is approximately 0.4x0.4 m2. At
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ground level all wall nodes are tied to a reference point that is located at the center of
the building. The reference point is assigned boundary conditions of no translations and
no rotations.

The columns are modeled with truss element, denoted T3D2 in Abaqus. The VKR
100x100x10 and VKR 400x400x10 have a cross section area of 3000 mm2 and 16000 mm2

respectively. Each column consists of one element that is connected to the floors as hinges.
At ground level the columns are restricted from any translations.

6.1.2 Loads

The type 2 elastic design spectrum according to Eurocode 8 and SHARE parameters was
used in this analysis, see Equations 63 to 66. The analysis was only made for importance
class IV, i.e. the reference ground acceleration corresponds to a return period of 1300
years. See Figure 18 for complete spectra.

The wind load used in this study is almost the same as described in Section 5.1.4, with the
modification according to equation 82. The only difference is that the wind load is applied
as a line load at the edge of each floor. The load is calculated for the height of each story
and then multiplied with a reference height of 3.5 meters if it is an intermediate floor or
1.25 meters if it is a top floor, see Figure 37. In Table 9 the wind load is presented for
each floor. Since the number of floors is varied, floor 4-7 can both act as an intermediate
floor or a top floor.

Figure 37: Illustration of the wind load at each floor (not scaled according to magnitude).
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Table 9: Wind loads for intermediate floors and top floors.

Level Load [kN/m]
Intermediate floor Top floor

1 3.34 -
2 3.91 -
3 4.52 -
4 5.05 2.53
5 5.48 2.74
6 5.82 2.91
7 - 2.18

6.1.3 2D Model

Since the building was stabilized through shear walls it was assumed that the cantilever
building was the most appropriate 2D-model to use as a comparison. In order to make the
two different models comparable the stiffness of the building were estimated. In Table 10
the calculated moment of inertia, for each wall group described in Figure 36, is presented.
When the moment of inertia was calculated it was done for each wall group individually
and then added together.

Table 10: Wall dimensions and moment of inertia about local x- and y-axis per wall
cluster.

Wall number Ix [m4] Iy [m4]
1 3.96 4.94
2 2.81 1.88
3 2.23 11.8
4 3.89 4.12

Sum: 12.9 22.7

The cantilever model is the same as described in Section 6. The parameters used in the
model is presented in Table 11. The mass of the beam is based on the total cross sectional
area of all the walls multiplied with the concrete density.
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Table 11: Equivalent beam properties.

Parameter Value
EIx 450 GNm2

EIy 800 GNm2

mi 332 000 kg
m̂ 24 000 kg/m

6.2 Comparison of beam model and 3D FE-model

The total amount of participating mass in the beam model is approximately 100 % for all
cases. In the FE-model the participating mass is within a range of 90-96 % for all cases.
These values were produced when using 150 eigen frequencies in the RSA. This fulfills the
requirement according to Ec8, stated in previous section.

6.2.1 Effective mass

To give a better understanding of the differences between the beam model and the FE-
model the results of the accumulated effective mass are presented respectively in Figure
38.
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Figure 38: Accumulated effective mass for a 7 story building excited in the x-direction,
Beam model (a), FE-model (b).

The results show that the effective mass is decreasing with the mode number for the beam
model. This is not as clear for the FE-model. The steeper sections in Figure 38(b) are
modes containing a more significant amount of translation in the excited direction. In
some cases even torsional modes contributes to some amount e.g the first mode for a 4
story building, see Table 12 and Figure 39.

57



6 Parametric study of realistic 3D FE-model

Figure 39: First torsional mode for the 4 story case.

The amount of effective mass is marginal for the main part of the modes in the FE-
model. These stagnated areas in Figure 38(b) are modes that contains minor amount of
translation or rotations, or they contain mainly translations in the y-direction. This is a
significant difference between the models since the beam model only will produce bending
modes given in the direction of excitation. As a result the FE-model will better show the
structures behavior during an earthquake, at the same time the results get more complex
and harder to interpret.

In Table 12 and 13 the effective mass and the associated natural period for each direction
of excitation is presented for both models. It is only the first two bending modes and
in two cases the first torsional mode that are clearly defined and have more then 3 %
effective mass when analyzing the results from the FE-model. In both directions it can
be seen that for a lot of the cases modes are split. In general the amount of effective mass
within the first mode is almost the same for both models. The only exception is the first
mode for a 4 story building excited in the x-direction, see Table 12. This mode is split
into two separate parts with a small difference in natural periods. If the effective masses
were to be added, it equals 68.3 % witch is in line with the rest of the results.
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Table 12: Modes containing more than 3 % effective mass in the in the x-direction.

Abaqus Matlab
Number of floors Mode Effective mass x [%] T [s] Effective mass x [%] T [s]

4 1st torsion 3.4 0.293 - -
1st bending∗ 15.6 0.154 - -
1st bending 52.7 0.150 67.7 0.16

2nd bending∗ 3.1 0.045 - -
2nd bending 5.5 0.044 20.6 0.026

5 1st torsion 3.0 0.405 - -
1st bending 68.3 0.204 66.4 0.25
2nd bending 11.3 0.056 20.3 0.039

6 1st bending 68.1 0.262 65.5 0.35
2nd bending 8.8 0.070 20.0 0.055
2nd bending∗ 3.1 0.069 - -

7 1st bending 68.0 0.324 64.9 0.47
2nd bending∗ 4.2 0.086 - -
2nd bending 4.6 0.086 19.9 0.074

Table 13: Modes containing more than 3 % effective mass in the in the y-direction.

Abaqus Matlab
Number of floors Mode Effective mass y [%] T [s] Effective mass y [%] T [s]

4 1st bending 69.8 0.206 67.7 0.22
2nd bending 8.7 0.060 20.6 0.035

5 1st bending 67.9 0.287 66.4 0.33
2nd bending∗ 4.5 0.081 - -
2nd bending 8.8 0.073 20.3 0.052

6 1st bending 66.5 0.381 65.5 0.46
2nd bending∗ 3.3 0.103 - -
2nd bending 9.5 0.094 20.0 0.074

7 1st bending 65.6 0.488 64.9 0.62
2nd bending 13.5 0.120 - -
2nd bending∗ 3.7 0.108 19.9 0.10

In Figure 40 the two mode shapes for the split first mode, for the four story building, can
be seen respectively.
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(a)

(b)

Figure 40: First bending mode split into two. Effective mass: (a) = 15.6 % (b) = 52.7%.

This split can have a significant impact when summarizing e.g. the modal contribution
when calculating the response. Different modal summation methods will provide different
actual modal response from this mode. This will be further explained in the next section.

If an absolute summation of the effective mass would to be performed for the split second
bending mode for a 7 story building in Table 12, the effective mass presented in the table
would add up to 8.8 %. This is because the second mode is divided into multiple modes
with less than 3 % effective mass which are not included in the table. In Figure 38(b) the
multiple modes containing the different parts of the second bending mode appear between
mode 20 and 40. To give a rough estimate of the effective mass content in that region
it is approximately 17 %. This can be observed for all split modes, although the content
will be found within different mode regions and the approximated amount will vary, still
being significantly larger than what is presented in Table 12 and 13.

6.2.2 Comparison of base shear

The estimated maximum response from the modal response analysis are presented in
Table 14 and 15. The results presented in the both tables can be found plotted for each
direction in Figure 41.
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Table 14: Base shear [kN] based on direction of excitation using SRSS as modal summation
and combined results (SRSS). Comparison with equivalent beam model in matlab.

Excitation x Excitation y SRSS Matlab
Number of floors Vbx Vby Vbx Vby Vbx Vby Vbx Vby

4 1283 237 237 1586 1305 1603 1528 1402
5 1960 276 276 1398 1979 1425 1529 1183
6 1835 247 247 1269 1852 1293 1342 1095
7 1733 227 227 1237 1748 1258 1264 1132

Table 15: Base shear [kN] based on direction of excitation using CQC as modal summation
and combined results (SRSS). Comparison with equivalent beam model in matlab.

Excitation x Excitation y SRSS Matlab
Number of floors Vbx Vby Vbx Vby Vbx Vby Vbx Vby

4 1619 241 241 1605 1637 1622 1528 1402
5 1980 268 268 1433 1998 1458 1529 1183
6 1872 243 243 1342 1888 1364 1342 1095
7 1813 221 221 1321 1826 1339 1264 1132
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Figure 41: Base shear comparison. Blue showing base shear for equivalent beam model.
Orthogonal response are summed using SRSS in the Abaqus model.

Looking closer at the results in Table 14 and 15 they show that when exciting the model in
either the x- or y-direction it gives components of base shear in the orthogonal direction.
This orthogonal response indicates that there are possible other directions of excitation
that would yield larger response which is why SRSS is used to combine the same response
entity from orthogonal excitations. Even though these contribution at first sight could
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seem relevant, they have minor impact on the total reaction in each direction for this
building. It can be seen in Table 14 and 15 that the combined base shear (SRSS) is not
much different, ca 1 % greater, from the base shear components obtained from excitation
in the same direction as the component.

The results for the combined directional contributions in Table 15 indicates that the base
shear is generally larger in the x-direction. If the natural periods for each direction in
Table 12 and 13 are compared it can be seen that the periods are lower for each mode
in the x-direction for all cases. This means that the building is stiffer in the x-direction,
which correlates to the amount of shear walls in each direction, referring back to Figure
36. Looking at the first mode for each case, which have the greatest impact on the results,
their natural periods are located either on or closer to the constant acceleration branch
(between 0.1 and 0.2 seconds) in the design spectrum, i.e the results are expected to be
greater in the x-direction.

The results for a 4 story building excited in the x-direction differs significantly when using
SRSS or CQC as the summation rule for modal combination, see Table 14 respectively 15.
As described in Section 2.3.8 : SRSS is a modal combination rule accepted for structures
with well separated frequencies. For the 4 story building the first mode is split into two.
The two parts have almost the same natural period which means they are practically
the same mode and SRSS summation will not accurately sum the modal contributions.
The most reasonable summation method for a split mode would arguably be an absolute
summation. In Table 16 the result of modal combination for the two parts of the split
mode are presented, using different summation methods. The table shows that using
absolute sum (ABS) and CQC will give similar results and SRSS summation will result
in remarkably lower base shear.

Table 16: Response from the two parts of the first bending mode (4-stories) with different
summation methods.

Sum. method: ABS CQC SRSS
Vbx [kN] 1584 1570 1232

Comparing the results presented in Figure 41 the two models behave in a similar manner,
although slightly lower response in the matlab beam model. The differences can to a
great extent be explained with the wall-slab interaction which was neglected in the beam
model. The wall-slab interaction is obvious for bending about the Y-axis since the walls
are aligned in the X-direction as seen in Figure 42.
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Figure 42: First bending modes. Bending about Y-axis (left) and X-axis (right).

This interaction provides rotational stiffness and since bending about the Y-axis produce
a great amount of base shear in the X-direction this response entity is expected to differ
more between the FE model and the beam model. In general, it could be seen as the
beam model underestimate the response. However, a more correct way to look at it is
that the beam model underestimate the stiffness. The mode shapes are quite similar and
consequently the effective mass in the first mode is only different with a few percent.
Small differences in frequencies can however change the response drastically since these
correlates to spectral ordinates in a very steep spectrum. Thus, the investigated parameter
EI in the parametric study of the cantilever building should be taken with caution as
the bending stiffness of a beam and a building does not exactly correlate. However, since
a large range of values EI in the previous study were investigated the general observation
cannot be altered with; an earthquake with a return period of 1300 years would produce,
for most buildings up to 8 stories, more base shear than the wind load.

The wind load creates significantly less base shear than the modal response analysis in
the x-direction for both the beam model and the FE-model. In the y-direction the wind
still creates less forces for 4- and 5-stories.

6.3 Concluding remarks

The results presented in Section 6.2 shows that the 2D model and the 3D model gives
roughly similar results. Even though the complexity of the 3D model is much greater,
it could be argued that it shows the same tendencies as the 2D model. Notably is that
the wall assembly used, with a slight asymmetric geometry, gave some orthogonal effects.
These effects do not significantly affect the results. This suggests that the 2D model can
be used for rough estimates for buildings with symmetry in plan end elevation, but also
for buildings with a slight asymmetry in plan.

The two studies has so far only measured the differences in base shear. To complement
these studies, and give a more detailed description of the earthquake response, sectional
forces and moments will be analyzed in the next section.
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7 Case study : 5-story building

This case study is an extension of the parametric study that was carried out in the previous
section. After analyzing the results from the parametric study it was decided to further
analyze a five story building.

The model used is the same as for the parametric study, only now with a constant number
of levels. In order to make a more detailed comparison between wind loads and seismic
loads, sectional forces and moments in one of the walls will be analyzed. The wall that
is to be analyzed is Wall 3, see Figure 36. The three wall segments are assumed to act
as one cross section, i.e forces and moments are calculated for the whole cross section.
Figure 43 shows the shear center and the centroid of wall 3.

Figure 43: Position of centroid and shear center in Wall 3.

7.1 Analysis

The analysis is made using the first 150 modes in the RSA. This is considered to be
sufficient since the effective mass content is more than 90 %, which was concluded in
the previous parametric study. Both a 1300 and a 475 year return period based design
spectrum was used in the RSA to be compared with wind loads in each direction.

Forces and moments will be calculated at each floor, more specifically for the a row of
elements just above and below the floor slabs, see Figure 44.
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Figure 44: Locations of free body cuts.

By making a horizontal free body cut of the wall, the internal element forces can be
integrated and summed, resulting in modal components of section forces and moments.
The shear forces and the torsional moment will be summed at the wall’s shear center,
whereas the bending moments and normal force is summed at the centroid. This was
done for each mode, by calculating the element forces produced by the displacements
of the mode vectors. These section forces are proportional to the actual modal section
forces. Looking at equation 49, repeated here:

un = φnΓn
An
ω2
n

(90)

It can be seen that the mode vector is proportional to the modal displacements with
the scale factor Γn

An

ω2
n
. The same scale factor can be used when converting the modal

components for each mode into contributions of sectional forces and moments.

The procedure to evaluate the section forces from the displacements of the mode shapes
and then converting them with a factor Γn

An

ω2
n
is in theory the same procedure that was

done in the previous analyzes. However, it was considered important to point out this
"detour" as it is incorrect to calculate section forces from modally combined element
forces. The section forces have to be calculated for each mode as it is the section forces
that are the response entities that should be combined, not the element forces. This was
not an issue in the previous analysis as the reaction forces, which were analyzed, were
calculated for each mode by default.
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Figure 45: Correct summation path. Combined element forces cannot be integrated to a
summation point.

The contributions from each mode were combined using CQC and orthogonal effects were
combined using SRSS.

7.2 Results

The total base shear force is presented in Table 17.

Table 17: Enveloped base response [kN].

TR = 475 TR = 1300 Wind load
Vbx [kN] 748 1998 327
Vby [kN] 546 1458 988

Assume this 5-story building was designed for a total base shear force of approximately
1000 kN due to wind against the long side. This is the largest theoretical base shear in any
direction due to wind and it acts in the short direction of the building, see Vby in Table
17. If this building is analyzed using the 1300 - year spectrum, the seismic response is
≈ 2000 kN in the long direction and ≈ 1500 kN in the short direction. As a consequence,
the seismic response envelopes the largest wind response, independent of the direction of
the earthquake. In fact, the base shear is more than six times greater than that due to
wind when analyzing the structure in the long direction.
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If the building is analyzed with the 475- years spectrum, the seismic response envelopes the
wind in the long direction where it is roughly twice as large. However, the wind remains
as the most critical load case when analyzing the base shear in the short direction.

The magnitude of the reaction forces and moments (including components of normal
forces and torsion) in each wall is presented in Figure 46.
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Figure 46: Resultant forces and moments in each wall at ground level.

Overall the 1300-years earthquake produce reaction forces and moments much greater
than the wind load. This was expected due to the large differences in base shear. The
distribution of forces and moments suggests that wall 3 is relatively critical due to seismic
loading. The seismic response is weighted towards this wall since it has relatively large
moment of inertia about the y-axis. Wind against the short side follows the same pattern,
however this response is much smaller which is why this wall was interesting to analyze
further.

Section forces and moments, evaluated from the free body cuts of wall 3, are presented in
Figure 47.
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Figure 47: Section forces and moments in wall 3.

• In general the results show that the TR=1300 years spectrum consistently gives a
response greater than the wind load at all floors.

• The shape of the response shows a similar tendency i.e the wind response and
the seismic response have similar shape, with the exception of shear force in local
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y-direction where the seismic response is marginally larger at the second floor, see
Figure 47(b). This is a counter intuitive example where the seismic response deviates
from the expected behavior of a cantilever beam in bending.

• When analyzing the results for the TR =475 years spectrum they show larger re-
sponse compared to the wind for shear forces in the x-direction and bending moment
about the local y-axis. For bending about the x-axis and shear force in the y direc-
tion, a tendency of the wind response being larger at the base of the building and
at the top, the earthquake response is marginally larger than the wind.

• The plot showing normal forces, Figure 47(e), is mainly presented to show that
earthquakes due to horizontal excitement can produce normal forces relatively large
compared to the wind. The magnitude of these forces is most likely insignificant
when compared to normal forces in this wall produced by the buildings dead weight.
However, other structural parts of the building could be more critical.

70



8 Conclusion

8 Conclusion

The conclusions presented in this section are drawn from the results of the parametric
study where a pair of 2-dimensional beam models were investigated for a large range of
stiffness/mass ratios. These parameters were implemented as bending stiffness EI of the
beams and number of floors in a 20x20 m2 building. The results were concluded to be
valid for structures with symmetry in-plan and in-elevation. This was confirmed from the
parametric study of a 3D-model which showed that the beam models are able to fairly
accurate capture the behavior of a realistic 3D-model where the orthogonal response is
small. The beam models can estimate the most significant mode shapes and consequently
yield an accurate measure of the effective mass for these buildings. However, the beam
models either underestimate (cantilever buildings) or overestimate (shear buildings) the
stiffness which is why the values of the parameter EI should not be taken literately as
the bending stiffness of a building.

This paper is fairly limited to analyzes of total base shear forces. It was however shown in
the case study that the base shear is a good indicator of the overall response in a building,
when compared to the wind response. The overall seismic response was in general largest
at the base in the shear wall that was analyzed. Larger section forces was however found
one and two stories up, see Figure 47, which shows that the seismic response is not
necessarily largest at base in individual segments of a building. Furthermore, the section
forces in this wall was just one selection of response quantities that can be evaluated.
The conclusion that can be drawn from this is that the base shear is a non-conservative
measure when evaluating the seismic response to the wind response.

The objective was to find buildings with properties that could be considered to be crit-
ical to earthquakes in Sweden. The findings in this paper is highly dependent on the
target-reliability of the structure, however potentially critical buildings were found in
both investigated importance classes II and IV, each presented in Section 8.1 and 8.2.

8.1 Buildings of ordinary importance

Looking closer at the result from the first parametric study presented in Figure 33 it was
only a few buildings that exceeded the response from the wind load. As a reminder, the
plot shows the response for a quadratic building. If the same analysis was made with a
rectangular building similar to the one used in the case study, the results would show a
greater range of buildings exceeding the wind response. This can be explained by the size
effect described in section 5.1.2. The size effect is quite relevant for elongated buildings,
as most of the horizontal capacity in general are engineered for wind against the long side.
The case study is an example that shows how the seismic response envelopes the wind for
response quantities related to wind against the short side.

The case study showed that both shear forces in the long direction and bending moment
acting in the long direction exceeded the wind load response when analyzed using the
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475-year spectrum. In relation to these results it is important to consider what type
of buildings is correlated to importance class II. Apartment buildings is an example of
buildings belonging in this category, see Table 1. When designing such a building there are
codes, regulating e.g. fire safety, that will require each apartment being separated as their
own fire cell. A way of solving this is with the use of concrete walls as separating elements
between apartments. This type of solution leads to a larger amount of shear walls in the
buildings, which could make the capacity to handle horizontal loads much greater than
forces and moments produced from any horizontal action. This suggest that the findings
are not necessarily as critical as they might seem for the 475-year spectrum. It is however
obvious that the seismic load could be the designing load case, if only compared to the
wind, especially in the long direction of elongated buildings.

8.2 Buildings of vital importance

Buildings of vital importance correlates to importance class IV and these were analyzed
for an earthquake with a return period of 1300 years. It is important to point out that
this return period is not mentioned in Eurocode 8. It was concluded that using a recom-
mended importance factor γI = 1.4 in order to differentiate buildings of vital importance
yielded "actual" return periods depending on seismicity at site. Sweden and other low
seismicity areas have a stronger increase in intensity of ground motions with increasing
return periods. Thus it was decided to instead choose a ground motion corresponding to
a return period derived from recommended parameters in Eurocode since UHS for various
return periods are provided through ESHM13.

The base shear due to seismic loading enveloped the wind response for an overwhelming
amount of buildings in this category. The seismic response is often more than twice as high
for the investigated 20x20 m2 buildings. It’s easier to point out properties of buildings
in this category that are not critical to seismic loading; exceptionally slender and tall
buildings. Most buildings up to 8 floors (equivalent to 28 meters tall) would produce a
larger base shear due to a 1300-year earthquake than that due to wind.

The case study of the 5 story building is an example of a rectangular building that would
be considered to be exceptionally critical to earthquake’s if designed as a importance class
IV building. Not even a very conservative approach, to engineer the same wind capacity
in the long direction as in the short direction would be sufficient as the seismic base shear
enveloped the wind, independent of wind direction and direction of earthquake. The
same goes for any base response that was analyzed in one of the walls. In conclusion, it
is obvious that the seismic action in Sweden should not be neglected if Sweden wants to
accomplish the same reliability of structures, that are vital for civil protection during an
earthquake, as the rest of Europe.
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9 Final remarks

In this paper, the seismic response was compared to the wind response as if the wind
response somehow represented the horizontal capacity of buildings in Sweden. This topic
is discussed through out the paper and this assumption is of course not necessary true.
Even so, the wind load is a relevant measure as it is in fact the designing load case for
horizontal stabilization in most cases, although design for other accidental loads could
provide over all larger horizontal stability.

As the wind load in Sweden is a "default load case" for designers to deal with, there is
no reason to neglect the seismic load, as this paper shows, it quite easily could envelope
the wind response.

It is easy to mistake the 475 year and 1300 year return periods as too conservative if
compared to the return periods of variable actions, i.e. 50 years. The characteristic
value of variable actions such as wind actions are expected to occur during the design
working life. The seismic action on the other hand could be treated as an accidental
action and is unlikely to occur. As a consequence these actions are treated differently in
design situations regarding partial coefficients and load combination factors whereas the
characteristic values of the variables are designed with a larger degree of conservatism.
This was taken into account by designing the wind action as a variable action in the ULS.
Furthermore the designing wind action was multiplied with a factor 1.5/1.2 in order to
take differences in conservatism on the capacity for variable loads and accidental loads
into account. In total, the wind action was 1.5 · 1.5/1.2 = 1.875 times larger than its
characteristic value determined by the return period 50 years. The seismic action on the
other hand is exactly equal to the value corresponding to a given return period.

This topic is beyond the scope of structural dynamics, in which the focus of this paper
have been made. It is however a most significant topic as the seismic action is greatly
dependent on the return period. The authors of this paper can only emphasize that
these hazard levels are derived from the current European standard: 475 years are ex-
plicitly recommended for structures of normal importance and 1300 years are implicitly
recommended for structures of vital importance.
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