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Abstract

The aim of this thesis is to study the feasibility of building a timber dome with a span of
300 metres, concerning elastic stability. The load-bearing members were modelled with the
properties of glued laminated timber GL30c with the dimensions 0.8×1.6 m2. The design
loads were 2 kN/m2 and 4 kN/m2 in symmetrical and asymmetrical load cases, respectively.
The numerical calculations were performed using the software Abaqus FEA, and compared
with analytical equations, modified using empirical data.

There are many ways to arrange the surface members in a braced dome. Common arrange-
ments include Ribbed, Schwedler, Lattice, Kiewitt, Geodesic and Three-way grid. The three
latter arrangements were compared in terms of global linear elastic stability, constructability
and stiffness, in order to find the pattern most suitable to span 300 metres. It was concluded
that the Geodesic geometry had the most suitable arrangement, primarily due to the slightly
higher critical load in symmetrical and asymmetrical load scenarios, fewer number of unique
elements lengths, and smaller deviation in the member length distribution.

The non-linear global elastic stability was studied concerning initial geometrical imperfections
using linear buckling mode shapes and creep was studied by reducing the Young’s modulus
for permanent loads. These two phenomena were also looked studied in combination. The
effect of radial and differential settlements on elastic stability, both in combination with
initial geometrical imperfections, was also studied.

It was found that the structure was highly sensitive to initial imperfections with a lower
bound critical value of only 0.135 q

qcr
, corresponding to a uniformly distributed load equal to

8.9 kN/m2, when the structure was loaded symmetrically. This critical load value represents
an outlier, over 95 % of the critical loads were above 15 kN/m2. This was compared to the
empirical formula, only applicable in the symmetrical load case, which estimated the global
failure load to 19.6 kN/m2.

Creep reduced the capacity down to 0.394 q
qcr

of the linear buckling load in an asymmetrical
load case covering 20 % of the dome area in the xy-plane. This corresponded to a uniformly
distributed load of 29.9 kN/m2. Neither radial nor differential settlements caused any de-
crease of the critical load. Combining creep and initial imperfections reduced the capacity
further, from a lower bound value of 0.135 q

qcr
to 0.081 q

qcr
, the latter corresponding to 5.4

kN/m2. No synergistic effect was found. It was therefore concluded that global stability
likely will not cause the dome to collapse, given that the design loads were significantly lower
that the stability critical failure loads.

Material failure was also investigated in relation to initial geometrical imperfections as well
as the combined effect of creep and imperfections. It was found that the stress level in the
most critical beam would cause material failure if the maximum imperfection was larger than
0.8 metres, or D/375, leading to the conclusion that, perhaps, the primary cause for concern
would be imperfection induced stresses, not imperfection induced global stability failure.





Sammanfattning

Denna rapport avser en stabilitetsanalys för att undersöka möjligheten att bygga en kupol i
trä med en spännvidd på 300 meter. Alla lastbärande delar har modellerats med limträ av
klassen GL30c och med dimensionerna 0.8×1.6 m2. Lastfallen valdes till 2 kN/m2 respektive
4 kN/m2 för symmetriska och asymmetriska snölaster. De numeriska beräkningarna utfördes
i finita element-mjukvaran Abaqus FEA och har jämförts med analytiska ekvationer, som
modifierats med experimentell data.

Det diskreta skalet av kupolen kan bestå av en mängd olika mönster. Namnen på några
vanliga mönster är Ribbed, Schwedler, Lattice, Kiewitt, Geodesic och Three-way grid, varav
de tre sistnämnda jämfördes inom områdena elastisk stabilitet, styvhet och fördelar kring
tillverkning och byggnation. Det fastställdes att kupolmönstret av typ Geodesic var mest
fördelaktig och valdes därför för en vidare analys. Anledningarna till valet var den högre
instabilitetslasten detta mönster hade vid både symmetriskt och asymmetriskt lastfall, färre
antal unika balklängder och en mindre spridning på balkarnas längder.

Den olinjära globala elastiska stabiliteten studerades genom att ansätta modformer, med
olika skalfaktorer, för att modellera imperfektioner. Krypning modellerades genom att re-
ducera elasticitetsmodulen för permanenta laster. Sättningar undersöktes, både som en ver-
tikal differenssättning och som en radiell sättning av en eftergivlig dragring. Den elastiska
stabiliteten vid krypning och sättningar undersöktes också i kombination med imperfektioner.

Analysen visade att kupolen var väldigt känslig för imperfektioner, varav den olinjära knäck-
ningslasten visade en undre gräns på 0.135 q

qcr
, vilket motsvarar en jämt utbredd symmetrisk

snölast på 8.9 kN/m2. Detta antogs vara ett avvikande värde då 95 % av imperfektionerna
som undersöktes hade knäckningslaster på över 15 kN/m2. Detta jämfördes med knäcklasten
som beräknades analytiskt, vilket uppskattade denna till 19.6 kN/m2, för ett symmetriskt
lastfall.

Krypningen i trämaterialet reducerade knäcklasten som mest till 0.394 q
qcr

i ett asymmetriskt
lastfall där endast 1/5 av kupolens area var täckt. Detta motsvarade jämt utbredd snölast på
29.9 kN/m2. Varken radiell sättning eller vertikal differenssättning påverkade den elastiska
stabiliteten avsevärt. Kombinationen av krypning och imperfektioner reducerade knäck-
ningslasten ytterligare, från 0.135 q

qcr
till 0.081 q

qcr
vid den undre gränsen, där den senare

motsvarar en last på 5.4 kN/m2. Någon synergieffekt mellan imperfektioner och krypning
kunde dock inte urskiljas. Analysen av den globala elastiska stabiliteten sammanfattades
därmed att kupolen inte utgjorde någon risk för instabilitet, då den dimensionerande brott-
lasten var avsevärt lägre än knäckningslasten.



Materialbrottet undersöktes i samband med initiala imperfektioner samt kombination av im-
perfektioner och krypning. Det observerades att spänningsnivåerna i den mest utsatta balken
skulle genomgå materialbrott om imperfektionerna skulle utgöras av en maximal förskjutning
på 0.8 meter, motsvarande D/375. Slutsatsen drogs att en större vikt av analysen på kupolen
bör möjligen läggas på spänningar som uppstår av imperfektioner, framför stabilitetsbrott
orsakad av imperfektioner.
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Chapter 1

Introduction

The aim of this thesis is to study the feasibility of building a timber dome with a span of 300
metres, concerning non-linear elastic stability. The numerical calculations were performed
using the software Abaqus FEA, and compared with analytic equations.

1.1 Background

Domes are half-spherical structures that can offer a very large span. The technique date back
to 700 BC with masonry structures[1], and in AD 120-124, the Pantheon dome in Rome was
built. While the diameter of 44 metres is today an outdated record, it turned out to be the
largest dome in the world for almost 1800 years[1].

In modern times, continuous domes of concrete have been replaced with more efficient retic-
ulated domes of lighter materials, primarily steel but also timber, making it possible to span
longer distances. The domes are usually no longer governed by their self-weight, but by sen-
sitivity to imperfections and asymmetrical loads. These two aforementioned "phenomena"
led to the January 1963 collapse of the large span dome in Bucharest, the roof structure of
the National Economy Exhibition Pavilion[2]. The failure was due to local accumulation of
snow, causing local buckling of the thin reticulated dome which quickly propagated, leading
to global failure.

While most domes use steel as the load-bearing material, several large spanning timber domes
have been built. Four are listed below in order of their span[3].

• Superior dome - 163 metres - completed 1991

• Tacoma dome 161.5 metres - completed 1982

• Odate Jukai dome - 157 metres wide and 178 metres long - completed 1997

• Walkup Skydome - 153 metres - completed 1977

1



1.2 Purpose Introduction

A timber dome with a span of 300 metres was considered to be built in China. This would
nearly double the current world record: the Superior dome, with a free span of 163 meters.
The current status of the project is unknown at this time, but the idea has raised interest in
the feasibility of such a structure. This is also the main question of this thesis.

1.2 Purpose

The main purpose of this thesis is to investigate the non-linear elastic stability of a 300 metre
span timber dome.

Question formulation

• Which dome geometry is most suitable to cover a span of 300 metres?

• How sensitive is a timber dome to imperfections applied in the shape of eigenmodes?

• If so, is there an easy/fast way to determine the non-linear elastic stability capacity, or
does it require the study of several mode shapes?

• Can hand calculations accurately estimate the stability load?

• Can hand calculations accurately estimate the forces and the bending moments?

• How does creep influence the non-linear elastic stability capacity?

• How does the combined effect of creep and imperfections influence the non-linear elastic
stability capacity?

• How does radial ring displacement/settlement negatively affect the elastic stability?

• How does differential vertical settlement negatively affect the elastic stability?

• Is it feasible to build a timber dome with a span of 300 metres when non-
linear elastic stability and material failure is taken into account?

1.3 Limitations

The primary focus will be on the effect imperfection and creep has on the stability of the
dome. Dynamic loads such as, but not limited to, earthquakes will not be studied. Nor will
the effect of wind, rise and span ratio, and connection rigidity be included in the analysis,
due to time constraints, which otherwise would have been interesting to study. Other areas
outside the scope, perhaps not directly related to elastic stability, is the erection procedure
as well as a potential optimisation of the dome geometry.

2



Chapter 2

Timber as a structural material

The following chapter concerns timber, both its properties as well as its use as a structural
material. The material compounds will be described, which in turn will explain its behaviour
in terms of strength, stiffness and movement due to creep. Engineering products like Glu-
lam and trusses will be presented. Their properties and dimensional limitations concerning
delivery and production are important factors to consider when designing a timber dome.

2.1 Why timber?

There are many reasons for using timber. As trends are ever-changing,the concept of building
environmentally friendly is on the rise[4]. Sustainability and climate change are common ar-
guments when discussing upcoming projects, and it is no doubt that timber has an advantage
in that regard when comparing it to other commonly used structural materials.

Apart from the environmental argument, timber has fire resistant advantages as well. Despite
being used as fuel in fireplaces, timber behaves seemingly favourably in terms of fire resistance.
During combustion, timber decomposes and provides a layer of charring wood, which will
slow down the temperature progression from reaching further in the section[5].

Another important advantage of using timber is its performance to carry its self weight.
Consider the example of the column seen in fig. 2.1 to be loaded by its self weight. By use of
the equations 2.1-2.4[6][7], it can be shown that the critical length lcrit is higher for a timber
material than for steel, when same cross section area considered. This is summarised in
table 2.1. This is because the ratio between stiffness and density of timber is favourable[8].

3
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q
l

x

Figure 2.1: Column loaded by self weight, in-
spired by T. Wierzbicki[6].

lcr = 3

√
7.84EI

q
(2.1)

q = A · ρg (2.2)
A = πr2 (2.3)

lcr = 1.25 3

√
Er2

ρg
(2.4)

Table 2.1: The self-weight buckling length of a steel and timber column, respectively

Material MOE [MPa] Density [kg/m3] Radius [m] lcr [m] E
ρg

Steel S355 210000 7850 0.1 37.4 2.68
Glulam GL30c[9] 13000 390 0.1 40.2 3.33

2.2 Strength and stiffness properties

Wood is an orthotropic material[10], which means that the material properties show a unique
behaviour perpendicularly to each other in the three directions: Longitudinal, tangential and
radial[11]. In the case of timber, the direction of the fibres are set as the reference when
defining the three axis. The distinction between radial and tangential directions is usually
disregarded and the stress is instead related to the orientations parallel σ// or perpendicular
to the grain σ⊥[10].

Likewise, the stiffness properties, modulus of elasticity E, shear modulus G and Poisson’s
ratio v, all have different values depending on the direction. Again, the radial direction is
disregarded, which leaves six variables: E//, E⊥, G//, G⊥, v//, v⊥

[10].

2.2.1 Tension and compression parallel to the grain

Tension along the fibre is where timber reaches its peak in terms of ultimate strength[10].
Compression in the same direction is close or only slightly less[10]. A tension-strain-curve
shows an almost linear elastic curve, followed by a brittle failure when the limit is reached.
The failure is caused either when the lamella between the fibres, or fibres themselves reach
the limit[10], see fig. 2.2a.
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(a) Two failure modes in tension (b) Failure in compression

Figure 2.2: Failure behaviour due to tension and compression parallel to the grain, inspired by M.
Johansson[10].

Compression parallel to the grain on the other hand shows a more non-linear behaviour. That
is due to the local buckling of the fibres which causes local plasticity to develop[10], as seen in
fig. 2.2b. Once the strength reaches its peak, the deflection will continue to approximately
3 times the strain level during strength limit. Compared to tension, compressing a timber
member causes a slightly less brittle failure.

2.2.2 Tension and compression perpendicular to the grain

Unlike the strength properties along the longitudinal axis, strength limits perpendicular to
the grain are significantly smaller than strength parallel to the grain. When subjected to
tension, it does not take much until the fibres are cut open and reach failure. Although
linear, the modulus of elasticity shows a stiffness of a considerably smaller value[10].

When the grain is compressed perpendicularly, it is harder to determine a strength limit. The
fibre tubes will be crushed, but it does not necessarily result in a direct failure. Depending
on the rest of the cross section, the stress levels might rise again prior to ultimate failure,
and it is therefore difficult to determine an exact failure mode. The ultimate strength is still
low, just as for tension in the same direction. The stiffness behaves more non-linearly in this
case, but the initial modulus of elasticity is not much different from the one in tension[10].

2.2.3 Shear

The shear strength is higher in cases when planes are parallel to the grain, whereas the
plane perpendicular to the fibres has a strength level of about half[10]. The latter case is
also known as rolling shear and means that failure behaves in a manner where the fibres are
rolling instead of direct breaking. This phenomena is however rarely governing and is seldom
taken into consideration. There are a few cases where it is necessary to examine, like in the
case of a glulaminated I-beam for instance[10].
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Rolling shear

τRT

τRL τTL

Shear longitudinal-tangentialShear longitudinal-radial

Figure 2.3: The three directions of shear, inspired by M. Johansson[10].

Out of the two other cases, the tangential-longitudinal stress, τTL, is slightly lower than the
radial-longitudinal, τRL. This is due to the direction of the plane, where τRL is going right
through layers of both early and late wood, while τTL has layers of only weaker early wood.
It is not motivated to distinguish the two cases during the design phase, meaning it is only
necessary to control the latter[10].

2.3 Creep

When a wooden member is subjected to a constant load for a prolonged time, the member
will not only become instantly stretched due to linear elastic strain theory, but the strain will
also increase over time. The time dependent deformation is non-linear and the rate decreases
gradually[12]. This is explained by timber being defined as a viscoelastic material, and the
behaviour is called creep[12].

D
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Load removed

Plastic

Delayed elastic

Elastic

Irrecoverable

creep

Recoverable

creep

t
1

Constant load

Figure 2.4: Load over time-deformation curve due to creep, inspired by J.M. Dinwoodie[12].

As seen in fig. 2.4, the effects of creep cause the deformation curve to split into three sections:
instant elastic, delayed elastic and plastic. The instant elastic part is explained by the fact
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that the load will cause the cross section to deflect according to Hooke’s law, meaning it
will also retract completely when unloaded. The other two components are due to creep,
where the delayed elastic part is gradually recoverable after unloading, and the plastic zone
is irrecoverable[12].

By limiting the scope to elastic compression, it can be seen in a load-deflection curve how
the deflection starts increasing linearly with an increasing load. The linear manner will later
transition into a non-linear, gradually decreasing, stiffness. The point of transition is known
as the limit of proportionality[12]. The slope of a load-deflection curve is also known as
Young’s modulus (MOE, modulus of elasticity). When designing timber members, Young’s
modulus is usually approximated, either by taking the tangent of the linear section, or by
drawing a straight line starting from zero stretching to the end of the curve, known as the
secant modulus, as seen in fig. 2.5.

Deflection

L
o
a
d

Secant modulus

Tangent modulus

Figure 2.5: Load-deflection curve under compression, inspired by J.M. Dinwoodie[12].

It should be noted that these approximations are viable if the material response is truly
elastic. This is however not exactly the case, as it was stated earlier that a part of the
creep consists of a permanent plastic deformation. Fortunately, the degree of divergence is
sufficiently small to still accept these approximations[12].

There are several governing factors when determining the creep magnitude, caused by the
material itself and the surrounding environment. The behaviour is governed by the material
stiffness, occurrence of knots, temperature, moisture and the load direction[10][12].

Eurocode treats creep as a factor added to the Young’s modulus, to compensate for the
extended non-linear long term deformation[10]. The method defines the creep factor kdef as
deformation due to loading for an extended time. Equation (2.5) shows how the modulus
is reduced[13]. Note that the modulus of elasticity does not decrease due to creep, but it is
lowered to represent the reduced stiffness during permanent loads, meaning that the initial
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stiffness is used for imposed loads.

Emean,fin = Emean
1 + kdef

(2.5)

2.4 Strength grading

Just like for any other material, the characteristic strength properties of timber are defined
as the 5th percentile in a normal distribution, which is the point where 5 % of the samples are
weaker. The normal distribution curve of timber is of special concern considering the large
deviations of strengths timber tends to have due to properties reviewed above. In addition,
the occurrence of knots in a member plays a significant role, as it has been shown in tests of
Norway spruce that 90 % of the failures are caused by knots[10].

Grading and classification of timber is, according to most standards, carried out based on its
characteristic bending strength[10]. Softwood of class C20 for instance, has a characteristic
bending strength of 20 MPa.

2.5 Glulam - Glued laminated timber

Glulam was used as early as 1906, patented by Otto Hetzer, and it consists of a number
of wood laminations glued together[14]. The purpose is to allow for a greater variety in the
section geometry, as well as reducing the frequency of defects in order to achieve a high
quality structural element[14].

2.5.1 Strength

While tests show that glulam is not significantly different than structural timber in terms
of mean strength, its primary advantage is the smaller width of the Gaussian distribution
curve. This makes the characteristic value significantly higher for glulam than for structural
timber, as seen in fig. 2.6[10][14].
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Difference in characteristic strength Difference in mean strength
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Figure 2.6: Comparison of distribution of strength between glulam and structural timber, inspired by M.
Johansson[10] and Svenskt trä[14].

This is known as the lamination effect, which counteracts the influence of local weaknesses[14].
This results in a lower risk of knots appearing in the same section, thus preventing cases of
bad timber samples. It is also possible, if desired, to vary members of different classes within
a cross section. Having stronger classes in the upper and lower lamellas is beneficial in
situations where stronger bending strength is important, but it is of lesser significance in
case of pure compression.

2.5.2 Limitations of members

Dimensions of glulam members have few geometrical limitiations, and these are usually gov-
erned by machinery or transportation[14]. It is possible to achieve a greater variety of cross-
sections, such as I- or box-sections, when comparing to conventional timber elements[14]. The
longitudinal shape can be altered by initial curvature of a member[14].

In Sweden, the ordinary rectangular shapes usually have a limit in width of 215 millimetres,
but gluing two beams side-by-side would allow for a larger width. The height is governed by
the machinery limitations, which is approximately 2 meters[14]. The length is also restricted
by transportation method and traffic regulations. Members up to 30 metres are acceptable
in Sweden, while longer members require special permission[14].
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2.6 Timber trusses

In a structural system, such as a roof structure, there are various methods to manufacture
engineered members as a substitute to massive beams. The idea is to optimise the element
to be able to reach a longer span. One alternative to massive beams is using timber trusses,
which not only allows for very large spans, but also saves on the use of material[14].

Timber trusses replace massive structures with smaller elements, considered as bars. These
bars are connected in a triangular pattern, with joints considered as pinned in design, making
the web members of the trusses free from bending moment[15]. This is not entirely true
however, due to imperfections, eccentricities and partially stiff joints, meaning that a perfect
ideal truss system is seldom achieved[15]. This raises challenges in terms of design, and a
method is to consider two cases: one with perfect pinned and one with rigid joints[15].

When replacing a massive beam, parallel trusses are commonly the equivalent to use. These
consist of one straight upper chord and one lower, connected to each other with web members.
The web members can either be loaded in compression or tension, depending on how they
are configured[15]. Usually, diagonals in compression offer easier design of the connections,
since the forces can be distributed through contact of each member[15]. The drawback of
using longer diagonals in compression is the risk of member buckling[15].

As a general rule, use of trusses is usually a financial advantage as long as the span is over
roughly 25-30 metres[15], but there are several issues to consider. First of all, the amount of
connections should be limited to the least possible amount[15]. Secondly, in order to achieve
a feasible optimum, the angles of the truss members should be close to 45 degrees[15]. And
lastly, the bars should not be too slender and receive as little bending moment as possible[15].

In terms of transportation, truss members have the same restrictions as for ordinary members,
as described earlier. The advantage found in a truss system is that it can be transported in
several parts and be assembled on site[15].
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Chapter 3

Shell Theory

This chapter introduces shells as an element and describes shell structures, primarily domes.
The theory concerns both continuous and reticulated shell structures, and will begin by
describing the mechanical use of shells.

3.1 Shells in general

Structural member are often described by straight lines, curved lines or surfaces, where exam-
ples of these are beams, arcs and plates[16]. A shell element is described by a curved surface,
where the curvature can be in several directions, like a cooling tower, or a single direction, like
a tube[16]. By the geometrical definition, a shell structure is also able to withstand tension
forces, where a sail or a balloon are examples of such geometries[16]. Members in pure tension
are, however, left out of the study since shell structures primarily use combined tension and
compression.

3.1.1 Plate analogy

A shell element functions through membrane and bending action[16]. Describing these phe-
nomena is best executed by using plate analogy. Therefore, consider the plate shown in
fig. 3.1 as an example. The loads are acting both in and out of its plane, and an equilibrium
involving the normal stresses σx, σy and shear stresses τxy = τyx is shown in eq. (3.1)[16].

∂σx

∂x
+ ∂τyx

∂y
= qx

∂τxy

∂x
+ ∂σy

∂y
= qy

(3.1)

Where qx and qy are out of plane external forces per unit area. Three variables and two
equations make plane stress statically indeterminate[16], but if only plane stress is regarded,
fig. 3.1a, qx and qy equals zero and the quantities can instead be expressed by the Airy stress
function φ, see eq. (3.2)[16].
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σx = ∂2φ

∂y2 , σy = ∂2φ

∂x2 , τxy = τyx = ∂2φ

∂x∂y
(3.2)

x

y

σy		

σx

τxy

τyx

(a) Plane stress (b) Plate bending

Figure 3.1: Physical principles of a plate, inspired by C. Williams[16].

Inserting the relations from eq. (3.2) into eq. (3.1) shows that the equilibrium is indeed sat-
isfied for any function φ. The basic stress-strain relationships for plane stress are introduced
in eq. (3.3).

εx = ∂ux
∂x

= 1
E

(σx − vσy)

εy = ∂uy
∂y

= 1
E

(σy − vσx)

γxy = ∂uy
∂x

+ ∂ux
∂y

= 2(1− v)τxy
E

(3.3)

where ux and uy are the displacements in each direction, E is Young’s modulus and v is
Poisson’s ratio. The relations between the strains can be set up by the compatibility equation
in eq. (3.4).

∂2εx
∂x2 −

∂2γxy
∂x∂y

+ ∂2εy
∂y2 = 0 (3.4)

Combining all the equations, 3.1 to 3.4 yields the biharmonic equation, seen in eq. (3.5)[16].
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∇4φ = ∂4φ

∂x4 + 2 ∂4φ

∂x2∂y2 + ∂4φ

∂y4 = 0 (3.5)

Note that this biharmonic function is a general function for any plate and is essential for the
membrane action of a shell.

3.1.2 Membrane action

A shell uses the same equilibrium equations as the plate in eq. (3.1), with the three variables
σx, σy and τxy. However, considering the curvature given for a shell, a third equilibrium, per-
pendicular to the tangent of the shell, is needed in order to make it statically determined[16].
Based on the biharmonical equation given in eq. (3.5), the third equilibrium is defined in
eq. (3.6)[16]. The quantity p is the load acting in a plane area and z is the third coordinate
describing the height of the shell.

p = ∂2φ

∂x2
∂2z

∂y2 − 2 ∂2φ

∂x∂y

∂2z

∂x∂y
+ ∂2φ

∂y2
∂2z

∂x2 (3.6)

The concern with membrane action in a structure is that it is largely depending on the shape
and the boundary conditions. If the function φ is unsolvable for a desired shape, the shell
is likely a mechanism, as long as only membrane action is regarded[16]. Domes and cooling
towers are, by their geometry, examples of viable shapes for pure membrane action. A dome
with a hole at its apex, however, cannot fulfill the conditions for membrane action and the
structure might undergo inextensional deformations[16].

Despite the involved differential equation presented in eq. (3.6), domes in particular become
seemingly easy to analyse in terms of membrane action. Methods for calculating forces in
reticulated domes are reviewed in section 3.3.

3.1.3 Bending action

In situations where membrane action is insufficient to satisfy equilibrium, bending stiffness
is necessary[16]. In practice however, due to geometrical imperfections and asymmetrical load
cases such as wind and snow, bending action will always be present, regardless of geometry[16].

Bending action also takes a central role when considering buckling[16]. Particularly, due to
the optimised shapes of shells, buckling needs to be analysed thoroughly[16]. The efficient
geometry results in tiny, and in most cases, negligible deformations prior to sudden buckling
collapse[16]. Buckling and instability in general is discussed in more detail in chapter 4.
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In comparison to the membrane action, bending action is far more complicated and thus
important to consider in a shell structure[16]. Since hand calculations of this kind are difficult,
if not even impossible in practice, it leaves no other choice but to use computer analysis
including large deformation analysis[16], also known as third order theory, which will be
discussed in chapter 4. Even the results of a computer software should be treated with
care and, if possible, should also be compared with various sources and perhaps even with a
physical model.

3.2 Dome structures

The shape of a dome is defined as synclastic with a positive Gaussian curvature[16], meaning
the curved surface is bent to the same side in every direction. By its definition, a dome is
not necessarily accompanied with a circular bottom surface and might as well have an oval
shape. When the outer shape of a dome is following a hemisphere, it is known as a spherical
dome. The following section will primarily regard spherical domes.

3.2.1 Reticulated dome structures

As development progressed, new materials and new methods were created[17]. Domes made
of timber and aluminium do not only weigh less, but also optimise the skeleton of the shell
using a reticulated grid to mimic the behaviour of a continuous shell. The development of
these types of domes turned out to be attractive as they offered an economic solution lowering
the material use in relation to the open floor space, which in turn made them suitable for
sports complexes of different kinds[1]. While the design of masonry domes is governed by self-
weight, reticulated domes are instead challenged by asymmetrical loads as they may cause
instability[17][1].

3.2.2 Dome patterns

There are several ways on how the grid of the dome can be performed. The dome pat-
terns covered in this report are: Ribbed, Schwedler, Three-way grids, Kiewitt, Lattice and
Geodesic. They can be seen below in fig. 3.2.
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(a) Ribbed (b) Schwedler (c) Three-way-grid

(d) Kiewitt (e) Lattice (f) Geodesic

Figure 3.2: Different dome geometries, inspired by W.F Chen, and E.M. Lui[18].

The ribbed dome, fig. 3.2a, is built by a set of rotated meridional members and a ring-
structure[18]. The Schwedler pattern seen in fig. 3.2a, introduced by the German engineer
J.W. Schwedler, is a continuation of the ribbed pattern, with the addition of diagonals in the
trapezoidal spaces of the ribbed dome[18].

The three-way grid shown in fig. 3.2c consists of an equilateral triangular plane which is
projected onto the spherical surface. According to theoretical analysis, this pattern dis-
tributes forces seemingly well, even during asymmetrical loading, thus making three-way-grid
economical[18].

The configuration shown fig. 3.2d is a lamella pattern, usually called Kiewitt, after its founder
G. R. Kiewitt[19][18]. Much like the ribbed and the Schwedler configurations, the lamella
patterns are based on rings. The Kiewitt pattern consists of several sectors, normally six or
eight, in its circular plan[18]. In each sector, the stiffness is enhanced by additional two-way
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rib system, creating the pattern shown in fig. 3.2d[18].

The lamella pattern shown in fig. 3.2e is sometimes referred to as lattice dome[17]. A way to
obtain the geometry of such pattern is to start by rotating circles, both counter clockwise and
clockwise, that are tangent to the center-point of the dome. This will generate the curved
lines seen in fig. 3.2e. Adding circles in the horizontal plane will complete the generation of
the nodes. According to the dome construction company Geometrica[20], the location of the
rings can be changed such that equilateral triangles are created on each level.

Lastly, in fig. 3.2f, is the Geodesic grid, patented by Buckminister Fuller[21]. The Geodesic grid
can be created in at least two ways: By use of an icosahedron[21] and by tilting planes[22][17].
The former method uses a platonic solid icosahedron which is a polyhedron with 12 vertexes,
20 faces and 30 edges, as seen in fig. 3.3a. Every face can be sub-divided into smaller faces,
which is then exploded to the sphere in which the icosahedron is encapsulated[21]. The result
becomes the spherical pattern shown in Fuller’s patent in fig. 3.3b.

(a) Regular Icosahedron.
(b) Fuller’s patent of a Geodesic
dome, inspired by R.B. Fuller[21].

Figure 3.3: Construction of an icosahedron based dome geometry

The second way to create the geometry is based on tilting planes. According to Lüning[22],
this is done by dividing a circle in the xy-plane into six sectors and drawing extended lines
from those sectors, as seen in fig. 3.4a. Three great circles are drawn from these locations as
a first step. The next step is to repeatedly tilt two great circles from each of the initial three.
The intersections generated will be the node locations. A thorough definition of the node
location of the Geodesic, Lace and Kiewitt domes is performed in section 6.3. The Geodesic
dome created by means of tilting planes will, however, not be discussed further.

16



Shell Theory 3.2 Dome structures

1 2

93

8

101112

413

514

615

16 17

7

(a) Tilting planes seen from above

α1 α2

19

2

7

5

17

6

a

c

b c

a

o

b

(b) Great circles intersecting each other

Figure 3.4: Creation of geodesic dome by use of tilting planes, inspired by E. Lüning[22].

Despite new designs appearing as years have passed, some of the older models are still being
used as they might offer advantages of their own. In general, the factors to consider are as
following:

• design[22]

– The number of members of different lengths[17].
– The number of unique connections needed[17].
– The complexity of jointing[17].

• production energy[22]

• assembly[22]

• transport[22]

• fire resistance[22]

• strength[22]

• rigidity[22]

3.2.3 Rise and span

The rise to span ratio is an important factor that needs to be considered in the design stage.
The ratio plays an important role concerning deflection, axial force, and buckling[23]. The
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latter is discussed in section 4.4. To get a sense of suitable height to span ratio, one can start
by looking at large span timber domes that have already been built. Table 3.1 shows that
the ratio is close to 0.3 for most large timber domes, the Oulu dome in Finland being the
only outlier with a ratio close to 0.2.

Table 3.1: Height to span ratio for large timber domes

Dome Name Location Height [m] Span [m] H/D
Tacoma Dome[3] Tacoma, USA 48 161.5 0.30
Federico II (1)[24] Brindisi, Italy 46 143 0.31
Federico II (2)[24] Brindisi, Italy 49 143 0.34
Superior Dome[3] Marquette, USA 49 163 0.30
Izumo Dome[3] Izumo, Japan 49 143 0.34
Konohana Dome[25] Miyazaki, Japan 38 122 0.31
Odate Jukai Dome[3] Oguni, Japan 52 178 0.29
Oulu Dome[3] Oulu, Finland 23.9 115 0.21
Walkup Skydome[3] Flagstaff, USA 43.3 153 0.28

Pan and Girhammar[23] show that the 0.3 ratio will result in a low relative deflection value as
well as a normal force that is trending downwards, fig. 3.5a fig. 3.5b, respectively. The 0.30
ratio is also close, although not at a minimum point, when regarding the maximum relative
bending moment.

(a) Relative maximum deflection versus height to
span ratio

(b) Relative maximum normal force versus height
to span ratio

Figure 3.5: Relative maximum displacement and normal force as a function of the height to span ratio
(H/D), figure from D.H. Pan and U.A. Girhammar[23].

wmax/wH/D=0.5,max Deflection ratio depending on rise versus span
wH/D=0.5,max Maximum deflection when H/D = 0.5
Nmax/NH/D=0.5,max Deflection ratio depending on rise versus span
NH/D=0.5,max Maximum normal force when H/D = 0.5
D Dome span
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H Height(rise) of the dome

3.3 Analysis of reticulated domes

When analysing a reticulated dome, there are mainly two approaches: The equivalent con-
tinuous shell analogy and the discrete structure method[26]. The first method is suited for
the preliminary design, as it is relatively easy to use and allows for hand calculations. This
method involves using the properties of a continuous shell in membrane action, whereas its
computed forces are translated into the reticulated grid thanks to the similar behaviour of
the grid shell.

The latter method, the discrete structure method, regards computational finite element cal-
culations of a model containing every single member in a reticulated structure[26]. This
approach goes directly onto analysis of the actual structure and is able to thoroughly deter-
mine stresses in terms of both membrane and bending action which makes it a useful tool to
compare and complete the preliminary design gained from the first method. The computer
calculation is also able to trace the non-linear behaviour of domes and determine buckling,
which is often a critical case for domes[26]. Since buckling is the main topic of this thesis, it
will be more thoroughly described in chapter 4.

Although the computer method is supposedly superior in every regard when analysing domes,
it is important to highlight how the hand calculation approach can be used to validate the
output gained from computers. The following section presents the formulas needed for the
preliminary design.

3.3.1 Membrane forces in a continuous shell element

Consider a small continuous shell element seen in fig. 3.6. The element has a thickness t and is
arbitrarily located in a general shell structure. The geometrical parameters are accompanied
by two radii, Rϕ and Rθ, defined in the same direction as dSϕ and dSθ. Depending on
the structural shape, the radii can vary differently and independently from each other. A
cylinder, for instance, has the radii Rϕ =∞ and Rθ = constant and a spherical surface has
two equal radii Rϕ = Rθ

[27].
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Figure 3.6: Shell element, inspired by Mukhanov K.K.[27].

With the geometrical parameters presented, the element is subjected to a uniformly dis-
tributed load p directed perpendicularly to the surface, which is taken by axial reaction
forces, T eϕ and T eθ . Based on all of the external forces, an equilibrium can be set up according
to eq. (3.7).

2T eϕ sin dϕ2 + 2T eθ sin dθ2 − pdA = 0 (3.7)

T eϕ = σϕdSθt, T eθ = σθdSϕt [N] (3.8)

The forces T eϕ and T eθ are from the membrane stresses acting on the sections in each direction,
described in eq. (3.8). The angles dϕ and dθ are considered infinitesimal, therefore sin dϕ

2 = dϕ
2

and sin dθ
2 = dθ

2 . Finally, by expressing the angles in terms of the ratios dϕ = dSϕ/Rϕ and
dθ = dSθ/Rθ yields the relation given in eq. (3.9)[27].

p =
T eϕ

Rϕ dSθ
+ T eθ
Rθ dSϕ

(3.9)

The relation can also be expressed in terms of stresses by using eq. (3.8), resulting in
eq. (3.10)[27].

σϕ
Rϕ

+ σθ
Rθ

= p

t
(3.10)
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3.3.2 Loads and forces in domes

Force distributions

For a spherical dome, two directions are used when describing the internal force distribution:
The meridian and the hoop directions[27]. The meridian direction goes from its apex to the
base, whereas the remaining hoop or annular direction, goes in a horizontal line around the
dome[27].

A typical force distribution of a dome is shown in fig. 3.7 when uniformly load applied. The
meridional force increases as it reaches the base, and are withstood by the hoop forces in
tension[27]. Consequently, this ends up in a relatively large tension force along the base, which
is usually taken by a larger tension ring that needs to be designed[27].

Meridional forces

Hoop forces

Figure 3.7: Force distribution in meridian and hoop of a dome

The force equilibrium of a dome is assembled by eq. (3.9) and by making use of the equal
radii, Rϕ = Rθ = R. Let Tϕ and Tθ denote the meridional and annular forces in the dome
respectively. Note that these forces are now defined as force per metre, thus the element
length dS is no longer necessary. The new relation is found in eq. (3.11)[27].

Tϕ + Tθ = pR (3.11)

In the case of a perpendicular pressure p, Tϕ and Tθ are equal, which means that the relation
in terms of stress is written according to eq. (3.12)[27][28][29].

σϕ = σθ = pR

2t (3.12)

This expression is, however, not useful for cases concerning vertical loads, such as dead load

21



3.3 Analysis of reticulated domes Shell Theory

or snow load, nor is it compatible with wind loads. The formula will instead remain useful
presenting the buckling pressure of a spherical shell in section 4.2.

Dead load

T�T�

q

g

R

r = D/2

� y

H

Figure 3.8: Dome subjected to dead load and uniformly distributed load, inspired by K.K Mukhanov[27].

When the dome is subjected to a dead load g, the equation describing the total load by a
function starting from the apex is defined by Mukhanov[27] as in eq. (3.13), with y given as
the vertical distance from the apex. The total load G is given in kN.

G = −g2πR(R− y) (3.13)

The reaction force of the dead load must be taken vertically by reaction forces. This is
balanced by Tϕ as seen in eq. (3.14).

Tϕ 2 π r sinϕ = G (3.14)

Where ϕ is the latitudinal angle from the centre of origin. Thus, a relation of the meridional
force in terms of dead load is found as shown in eq. (3.14). The rightmost part is obtained
when translating the Cartesian coordinate y to a spherical: y = R cosϕ.

Tϕ = G

2 π r sinϕ = −g R2

R + y
= −g R

1 + cosϕ (3.15)

Likewise, going back to the equilibrium in eq. (3.11) yields Tθ in terms of either a distance y
or angle ϕ, shown in eq. (3.16).

Tθ = −Rg
(

cosϕ− 1
1 + cosϕ

)
= −gy

2 + yR−R2

y +R
(3.16)
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A verification of these formulas can be made. Shown in eq. (3.17) in the case at the apex of
the dome, y = R or cosϕ = 0 yields in equal compression for both Tϕ and Tθ. The bottom
of the dome, y = 0, results in an equal magnitude in force for Tϕ and Tθ, but in different
direction, where Tϕ will remain in compression.

y = R, cosϕ = 1 −→ Tϕ = Tθ = −gR2
y = 0, cosϕ = 0 −→ Tϕ = −Tθ = −gR

(3.17)

Uniformly distributed load

Similar to the dead load, uniformly distributed load q is in this case independent on the
height and therefore described as in eq. (3.18)[27].

G = −qπr (3.18)

Again, the meridional and annular forces Tϕ and Tθ are obtained through eq. (3.13) and
eq. (3.11). These are presented in eq. (3.19).

Tϕ = −qR2
Tθ = −qR2 cos 2ϕ

(3.19)

This makes the meridional force constant throughout the section, while the annular goes from
compression at the apex to tension with same magnitude at the bottom of the half sphere.

T  + T  at

the apex

(compression)

T  + T

at the base

(compression)

(a) Meridional force

T
θ,DL

 + T
θ,SL

 at

the apex

(compression)

T
θ,DL

 + T
θ,SL

 at

the base

(tension)

(b) Hoop force

Figure 3.9: Theoretical force variation vs height using formulas found in this secion.
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Wind load

Considering the case described by Mukhanov[27], the wind pressure qw is based on the vertical
design wind load qw,v. The wind pressure is written,

qw = qw,v = sinϕ sin θ (3.20)

and the meridional and annular forces become as in eq. (3.21) and eq. (3.22), respectively.

Tϕ = qw,vR
cosϕ
sin3 ϕ

(2
3 − cosϕ+ 1

3 cos3 ϕ
)

sin θ (3.21)

Tθ = qw,vR

[
sinϕ− cosϕ

sin3 ϕ

(2
3 − cosϕ+ 1

3 cos3 ϕ
)]

sin θ (3.22)

Forces in reticulated members

Reticulated domes are, by their geometry, indeterminate structures of a high degree[30]. Doing
repetitive calculations with varying sections could end up in a cumbersome process, which
makes shell analogy a useful tool when estimating forces in the early design stage. This
theory is based on a few conditions listed below.

• The reticulated dome pattern is of a regular uniform mesh[30].

• The members of the dome should all be equal in both section and length[30].

• The dome does not have any large openings or any other discontinuity in its pattern[30].

Even if all these conditions are seldom fulfilled, comparisons by hand calculations and exper-
iments shows that they in most cases give a fairly accurate result[30].

With the given meridional and annular forces derived in the previous sections, it is possible
to estimate actual forces in a reticulated system, if the members of interest follow either the
meridian or the hoop. Starting from a geodesic icosahedron dome seen in fig. 3.10 for instance,
five lines extend from the apex downwards to the circle. The forces in these members are
determined by the meridional force Tϕ multiplied by the effective width, a, found in the mesh
density. Likewise, the force in any member that coincides with the annular direction can be
determined similarly by multiplying the annular force Tθ with its effective width b[27].
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a
b

Figure 3.10: Influence width to be multiplied with the meridian and hoop forces, K.K Mukhanov[27].
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Chapter 4

Stability

4.1 General stability

According to Samuelson[28], the instability phenomena can be described using the simple
examples of a ball representing the equilibrium condition in a system. The ball can be located
in a stable, indifferent or unstable condition, where fig. 4.1a-c would be stable, indifferent
and unstable respectively. This is explained by considering a disturbance in the system,
which would cause the ball to move out of position. The concave surface in fig. 4.1a would
cause the ball to fall back to its original position, thus ensuring stability. If the curve on the
other hand is convex, as shown in fig. 4.1c, a disturbance would cause the ball to move even
further, resulting in large deformations. The indifferent condition means that the potential
energy for moving the ball is equal to zero, as presented in fig. 4.1b.

a) b) c)

d) e) f)

g)

Figure 4.1: Example of a ball representing equilibrium conditions, inspired by L.A. Samuelson, and S.
Eggwertz[28].

The shape of the curve is widely depending on the structural system and it is not always
as simple as concluding a collapse in a single unstable case. As can be seen in fig. 4.1f for
instance, a small disturbance in equilibrium causes a displacement followed by a new stable
condition. As for shell structures in particular, their sensitivity to buckling is described in
fig. 4.1g, explaining that a small disturbance in the system could cause a sudden change in
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position[28].

Having the equilibrium and instability phenomena introduced, they can in practice often
be used as the definition of structural collapse[31]. The reason is that instability tends to
lead to very large deformations, which in turn either reach the material strength limit, or it
changes the structural shape to such a degree that the building is unserviceable. Runesson
et al.[31] point out the importance of instability as it usually occurs instantaneously, without
any cautionary displacement for instance.

Second order theory

First order theory in mechanics regards simple linear elastic analysis with displacements direct
proportional to the subjected force, while second order theory also takes small deflections
in geometry into consideration. Although the change is small, it could be significant in the
equilibrium as it adds additional loads to the system[31].

An example is shown by considering a beam as seen in fig. 4.2. The beam, with the length L,
is pinned in one end and supported by a spring with the stiffness k in the other, while being
subjected to a transverse force F and an axial force P according to fig. 4.2a. The equilibrium
equation around point A, with respect to the deformed shape beam in fig. 4.2b, can be seen
in eq. (4.1). As opposed to a first order analysis, the stiffness of the system is reduced due
to the compression force[32]. As stated before, second order theory assumed that the angle θ
is small. Meaning, cosθ ≈ 1, and sinθ ≈ θ.

A

F

P

L

k

(a) Beam supported by a spring

A

F

PL

k

(b) Moment equilibrium with respect to the de-
formed shape

Figure 4.2: Example of second order theory, inspired by Gustafsson[32]

.

x
A : FL+ Pu− kuL = 0 =⇒ F =

(
k − P

L

)
u (4.1)
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Third order theory

Based on second order theory, third order theory takes into account that the displacements
may no longer be small. This leaves a non-linear behaviour of forces and displacements,
which are calculated iteratively, in small increments, to find an equilibrium path[31].

Figure 4.3 used to illustrate third order theory and it is a continuation of the previous example
seen in fig. 4.2. Large deformations are assumed, thus the horizontal length l is introduced
such that l =

√
L2 − u2. The equilibrium around A can be seen in eq. (4.2).

F

P

u

A

k

l

L

Figure 4.3: Equilibrium assuming large deformations, inspired by Gustafsson[32].

x
A : Fl + Pu− kul = 0 ⇒ F = ku− P u

l
⇒ F =

k − P

L

1√
1− (u/L)2

u (4.2)

In comparison to the second order equilibrium shown in eq. (4.1), the third order results in
a non-linear stiffness, P

L
1√

1−(u/L)2
, governed by the deformation u[32].

4.1.1 Buckling of columns - Euler’s formula

Consider a single two-pinned column of a length l, as seen in fig. 4.4a. When loaded with
a concentrated force P , only axial strain will be present as long as first order theory is
concerned. If the critical buckling load is reached, the column might undergo lateral dis-
placement, thus going from a stable to an unstable condition[29]. In order to understand this
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behaviour, a small lateral imperfection y must be considered at the midpoint of the same
column. An equilibrium in terms of the moment is set up according to eq. (4.3)[33].∑

M(0) = 0⇒ P · y −MS = 0 (4.3)

MR = EIy′′ (4.4)
where

MS Destabilising moment
MR Stabilising moment
y′′ The second derivative of y with respect to x
EI Bending stiffness

By setting the destabilising moment MS equal to the stabilising moment MR from eq. (4.4),
and let then α2 to represent P

EI
, a differential equation is set up according to eq. (4.5)[33].

y′′ + α2 · y = 0 (4.5)

The equation is solved by use of a general solution y = A sinαx + B cosαx, which in this
case gives the solution α = π/l as the lowest value[33]. The buckling load is determined in
eq. (4.6).

α2 = π2

l2
= P

EI
⇒ P = Pcr = π2EI

l2
(4.6)

By assuming different boundary conditions, Euler’s buckling formula can be expressed in more
general terms as in eq. (4.7), where β is chosen according to the cases seen in fig. 4.4[33][29][31].

Pcr = πEI

(βl)2 (4.7)
1

a) b) c) d)

pcr pcr pcr pcr

β = 1 β = 2 β = 0.7 β = 0.5

Figure 1: interesting results

l1

2

2

2 2

2

Figure 2: interesting results

Figure 4.4: Euler column buckling shapes, inspired by K. Runesson et al.[31].

Despite Euler’s column buckling formula being related to simple columns, it can be utilised
in more advanced structural systems as well[31]. When analysing frameworks or continuous
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beams, the buckling formula can be used on a single member extracted from the larger
system.

4.1.2 Instability of a structure in 2D

The following section introduces the non-linear instability phenomenon in a two-dimensional
system[34]. The system involves two bars in a low rise two-pinned triangle structure, as seen
in fig. 4.5a, where the distance a is considerably smaller than b. The stiffness of the bars
is equal to EA, and the system is subjected to a load f downwards, causing compression
stress in the bars. Whilst in compression, the node subjected to the load will be displaced
vertically by a distance u. Let l0 and l denote the initial and the current length of a bar,
respectively. The non-dimensional engineering strain εE is defined in eq. (4.8)[34].

εE = l − l0
l0
' a

l0

u

l0
+ 1

2

(
u

l0

)2
(4.8)

The right-hand side of the equation consists of one linear and one non-linear term, which
makes the function of strain behave non-linearly in relation to the displacement. The ex-
pression also shows that if the displacement u is much smaller than the length l0, a linear
approximation is viable, but the fact that the structure behaves in a non-linear manner is
clear[34].

a

b b

EA EA

f

(a) 2D bar system

A

B

C

D

E

F

u

f

(b) Force-displacement curve

Figure 4.5: Example of a 2D bar system with corresponding response curve, inspired by S. Krenk[34].

With the non-linear behaviour introduced, the entire displacement history in terms of force
is presented in fig. 4.5b. The non-linearity is prominent, but what is even more interesting is
the limit point B, where the load starts decreasing. The structure is losing its stiffness which
allows for increasing deformations. At point C, the structure is horizontal and will continue
to deform to a downwards inverted shape with stretched bars.
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By looking at this behaviour in practice, this means that the load on the structure will con-
tinue deform the geometry without any greater effort until it reaches point F. This instability
phenomena is known as a snap-through, i.e. the change in geometry is sudden as can be re-
called from fig. 4.1g. Particularly, these types of instability issues involving a limit point are
of greater significance in shell structures[31].

4.1.3 Instability of a structure in 3D

The previous section explained instability in 2D by introducing the limit point and snap-
through phenomena. When looking in a 3-dimensional space, new challenges arise regarding
structural imperfection. To explain this, a similar triangular structure is introduced as in
fig. 4.6, but this time, the length a is no longer significantly smaller than b, which reduces the
risk of snap-through. The top node needs to be stabilised laterally by an arbitrary stiffness in
order to avoid a direct mechanism, explaining the spring shown in fig. 4.6. An initial lateral
imperfection c is introduced, but is initially equal to zero.

c

a

b
b

f2 , u2

f1 , u1

f2 , u2

f1 , u1

c

a

Figure 4.6: Two-elemement truss in 3D, inspired by S. Krenk[34].

(2εG + κ)v2 = 0 (4.9)
A new state of equilibrium in terms of strain is derived and shown in eq. (4.9)[34], which leaves
two solutions: either the lateral displacement v2 or the parenthesis (2εG+κ) is equal to zero.
The first case corresponds to a perfect symmetry and causes the snap-through behaviour
reviewed earlier. The second case corresponds to a non-symmetric solution and means that
the structure undergoes a lateral displacement[34]. The various possible paths are shown in
fig. 4.7, where point B to D’ and D” corresponds to the paths for the non-symmetric solution.

32



Stability 4.2 Buckling of continuous shells

f1

u2

u1

D'

D

D''

B'

B C

A

B C

Figure 4.7: Load paths in a 3D-system, inspired by S. Krenk[34].

The point where the structure undergoes lateral displacement is known as the bifurcation
point and can, depending on the stiffness, be located before or after the limit point[34]. This
concludes the instability of a perfect 3D-dimensional bar structure, i.e. c = 0. If the top node
is displaced initially, the limit point cannot be reached[34], but with smaller imperfections,
close to perfect symmetry, the paths are similar to those presented in fig. 4.7, which is why
the perfect symmetry gives useful information of a stability issue in 3D[34].

4.2 Buckling of continuous shells

The following section regards buckling of a continuous shell structure, based on shell formulas
previously presented. A shell element with thickness t and curvature R will, according to
elastic buckling theory, undergo buckling at the stress level given in eq. (4.10), with the
corresponding buckling pressure load equation pcr. The equation was originally derived by
Zoelly back in 1915 and is in fact the same buckling stress formula given for cylindrical shells
under axial pressure[29][28][35].

σcr = E√
3(1− v2)

t

R
(4.10)

Samuelson and Eggwertz[28] ensure the validity to be within certain limits: the ratio R/t
should be below 3000 and a parameter β, defined in eq. (4.11), should be in the interval 7 to
50. The angle ϕ0 in the equation is the maximum central angle of the dome, i.e. the angle
from its apex to the supports.
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β =
√

2ϕ0
R

t
(4.11)

The corresponding buckling pressure, pcr, is derived using the relation found in eq. (3.12)
back in the previous chapter, and gives the expression found in eq. (4.12).

pcr = 2E√
3(1− v2)

(
t

R

)2
= k · E

(
t

R

)2
(4.12)

If linear buckling is considered, the buckling load is determined according to eq. (4.12).
Timoshenko[29] and Samuelson et al.[28] further state that the value gained from the elastic
buckling pressure formula is significantly overestimated and therefore unsafe, as this seldom
or never will be the case in reality. This statement is also emphasised by Williams[16], as
was mentioned back in the previous chapter. The reason is due to its extreme sensitivity
to imperfections, which results in a sudden collapse[29]. Several experiments also seem to be
widely scattered along a spectra of critical pressures.

In order to deal with non-linear behaviour of shells, suggestions, based on experiments, have
been made on how the buckling formula can be adjusted. A simple modification is made by
altering the variable k in eq. (4.12). Douglas Wright has provided a collection of results from
old experiments, primarily based on smaller spherical caps made of steel and aluminium.
Some experiments performed by von Karman/Tsien suggest a lower bound of k = 0.366[2].
Some data has shown even lower results, which according to Wright, consists of samples with
clear initial imperfections[2]. Results regarding almost perfect shaped shells show an average
of k = 0.7[2].

In addition, Timoshenko[29] suggests a modified equation of the buckling pressure, presented
in eq. (4.13).

pcr =
(

1− 0.175ϕ
◦ − 20◦
20◦

)(
1− 0.07R/t

400

)
0.3E

(
t

R

)2
(4.13)

4.3 Buckling analysis and numerical methods

With the theory of the general instability and buckling reviewed, this section introduces the
methods used when analysing these behaviours. Before doing so, it should be noted that the
software Abaqus, a finite element software with numerical solution methods, was used in the
analysis. The major part of the theory behind finite element method is outside the scope of
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this thesis, but the analysis depends heavily on the stiffness matrices, and therefore, a brief
introduction to the finite element method is necessary.

A state of equilibrium in terms of loads f , displacements a and stiffness Kt is expressed in
eq. (4.14). The first order theory only involves the stiffness of the initial system (Kt = K0),
i.e. it is independent of both forces and deformation, and instead relies on the material
properties and geometry of the structure. The stiffness matrix, Kt, will continue to develop
when the effects of the other levels of theory are introduced.

Kta = f (4.14)

4.3.1 Methods of second order theory

This short theory introduction is, if nothing else is mentioned, based on the works of
Persson[36] and Krenk[34]. The second order theory includes the impact of the loads on
the structure, which is done by introducing the matrix Kσ. The total stiffness of the second
order system is written,

Kt = K0 +Kσ (4.15)

where Kt is the tangential stiffness matrix. The point of second order theory is to calculate
the loads that cause the structural instability, and the buckling mode shape associated with
each corresponding load case. This is done by calculating the displacements, a, when the
tangent stiffness becomes zero according to eq. (4.16)

Kta = 0 (4.16)

The buckling loads are solved by formulating this as an eigenvalue problem,

(K0 + λiKσ)xi = 0 (4.17)

where λi is the eigenvalue, or the load multiplier. The buckling load, calculated in Abaqus,
will therefore be the eigenvalue multiplied by the initial load. The vector xi contains the
buckling mode shape of each corresponding eigenvalue. Finding the eigenvalue and its mode
shape is an iterative process, and one of the methods Abaqus uses is Lanczos Algorithm[37].
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4.3.2 Methods of third order theory

Finally, third order theory includes the impact of the deformations as well. This is done by
increasing the load in small steps until failure is reached, updating the stiffness of the system
to account for the changes created by the deformation. This is done to calculate the actual
load-bearing capacity, and it is written

Kt = K0 +Kσ +Ku (4.18)

Several algorithms can be used to trace the non-linear equilibrium path. A common method
is Newton-Raphson, which is based on iterations of small load- or displacement-increments[34].
There are several problems with this method, the most significant being that it tends to miss
important points, such as the limit point or the bifurcation point[34][38].

In order to deal with this issue, various arc-methods have been developed, originally in-
troduced by Riks[34]. The idea is to combine the iterative equilibrium of Newton-Raphson
method with additional constraint that limits the distance to the next step on the equilibrium
path. A version of the Riks method is implemented in Abaqus, defined as the modified Riks
algorithm[39].

4.4 Buckling of reticulated shells

4.4.1 Background

This section aims to review the current research into buckling of reticulated shells. The
purpose is to reduce the scope of the analysis by removing buckling-prone dome geometries.
The January 1963 collapse of the large span dome in Bucharest, the roof structure of the
National Economy Exhibition Pavilion[2], sparked the interest of many researchers, but design
guidelines are still limited in comparison to other, more commonly used, structural systems.
It is thus necessary to conduct a thorough investigation into the possible modes of failure
when designing a dome.

4.4.2 Instability modes

There are five distinct failure modes of reticulated shells as was outlined by Gioncu[38] and
they are shown in figures 4.8a-4.8e. These are: member buckling, node instability, torsional
node instability, general instability, as well as combined member and node buckling[38].
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Member
buckling

(a) Member buckling

Node
instability

(b) Node instability

General
instability

(c) General instability

Torsional
     instability
          of node

(d) Torsional instability
Member and 
  node buckling

(e) Member and node buckling

Figure 4.8: The five distinct failure modes, inspired by V. Gioncu[38].

The seemingly most simple form of instability is member buckling, seen in fig. 4.8a, where a
single member loses stability without affecting surrounding members. Gioncu[38] states that
design of members still is a problem that remains, and the reason for this issue is the difficulty
of identifying the most critical member given the large number of elements.

Node buckling initiates when the axial strain of all members connected to a node becomes
too large, making them unable to carry any external load. This behaviour is seen in fig. 4.8b.
Wright[2] argues that node buckling will only occur if the connection between members is
pinned, stating that the phenomenon should disappear completely if the connection is fixed.
Node instability can theoretically be studied in isolation, which can be seen in fig. 4.9.
Elastic springs are introduced in figure a) to simulate the stiffness of the removed bars in b).
Simplifying the structural system in that way should be avoided according to Gioncu[38], the
reason why will be explained below.

37



4.4 Buckling of reticulated shells Stability

P

P

P

P

P P

P

(a) Cell type with springs
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(b) Cell type without springs

Figure 4.9: Cell types, with and without elastic springs, inspired by V. Gioncu[38].

The nodes exhibit snap-through buckling. Figure 4.10 shows the different snap-through
buckling modes depending on which type, and the size, of the cell analysed. Gioncu concluded
that the larger cell is more susceptible to this buckling type[38]. If enough computational
power exists, it is preferable to include as much of the reticulated shell in the analysis as
possible. This should reduce the likelihood of error, as an introduction of elastic springs is
dependent on the knowledge of their stiffness, and thus making it more likely to find the
lower limit load for node buckling. The size effect can be seen in fig. 4.11.

snap-through

snap-through

a) b)

P
P P

WW

Figure 4.10: Snap-through buckling buckling modes for different cell sizes, inspired by V. Gioncu[38].
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Figure 4.11: The decrease in load factor with network size, inspired by V. Gioncu[38].

Torsional instability, see fig. 4.8d, can be a problem if the joint itself is very rigid in bend-
ing around the principle axis in comparison to the out of plane direction rigidity of the
members[40]. This can then cause the node to rotate and initiate torsional buckling[38][41].

The general instability mode occurs when all the nodes and members in a large section of the
shell structure buckle simultaneously, see fig. 4.8c. This takes place when the critical length
is greater than the individual length of each member involved[38].

The final mode is the member and node buckling that can be seen in fig. 4.8e, which is
a coupled instability mode. This occurs if the member and node instability modes share
critical values, or values that are in close proximity. The slenderness parameter S, defined in
eq. (4.19), can also be used to determine whether the coupled instability phenomenon might
occur[38]. The combined member and node instability is more likely to happen when S has
a value close to 3. Gioncu[38] suggests that the designer should increase the stiffness of the
hoop members, normally in tension, in dome structures to limit this interaction, even if the
forces in those elements are quite low.

S = L√
R
· 4

√
K

D
(4.19)

R Dome radius
L Typical member length
K Equivalent stretching rigidity
D Equivalent bending rigidity
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4.4.3 Causes of failure modes

After concluding how a reticulated shell can fail, it then becomes important to discuss the
causes for these failure modes. The next section covers the effect of geometrical imperfections,
the dome pattern, height to span ratio, non-linear behaviour, network density, boundary
conditions, and creep.

Imperfections

Only geometrical imperfections will be discussed below. Other types of structural imperfec-
tions include[42]:

• loading imperfections,

• structural imperfections, varying cross-section due to tolerances in production,

• system imperfections, different stiffness in connections than assumed e.g. semi-rigid
joints instead of perfectly fixed

Gioncu states that solid shells are sensitive to geometric imperfections[38]. The question
is whether this is true for reticulated shells as well, and how to model such imperfections
appropriately if that is the case. As there is very little data available on the construction
errors in dome-type structures, one must find a way to incorporate reasonable values into the
model. Imperfections can be applied in many ways, a few of the available methods are listed
below.

• Random initial node imperfections
Random imperfections can be introduced at a global level following a Gaussian shape,
using construction tolerances to scale the imperfections to size[43]. It can also be done
at a member level to simulate initual curvature, where the member axis rotation can
be randomly generated in combination with the size of the maximum deflection as
proposed by Fan et al[44].

• Scaling linear displacement
This is done by calculating the linear displacement of the studied load case, including
the self-weight of the structure.[42].

• Eigenmodes
A commonly used method is to impose the imperfection in the shape of an eigen-
mode. This can be done either using single modes, or combining several[43]. Many
researchers[45][42][46] have found that the it is not always the first mode that yields the
worst response, it could instead be the linear combination of several base shapes or sim-
ply a higher eigenmode. The eigenvalue problem is defined in section 4.3.1 eq. (4.17).
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• Displacement to a subset of the nodes
A simple method, proposed and studied by Gidófalvy and Katula[41], is to randomly
introduce vertical displacement to a subset of the nodes. This method does however
result in a lower reduction rate, and thus a higher remaining capacity, than all the
other methods on this list.

In each of the methods the imperfection needs a metric value added to the dimensionless
shape. However, there does not exist much guidance on the size of the geometrical im-
perfections in dome structures, apart from 3.0D/1000 suggested in the Chinese code for
reticulated steel shells according to Zhou et al[47]. It is thus often necessary to conduct a
parameter study regarding the sensitivity to imperfections, which was done in the following
articles:[41][42][48][46][47][44].

Dome pattern

The domes in table 4.1 are compared in terms of strength and rigidity. From the figure
it appears that a geodesic member distribution is superior in both. However, the avail-
able research seldom includes any direct strength comparison between different geometries,
even though these exact numbers, possibly from the same source, are present in several
publications[22][17][49].

Table 4.1: Strength and rigidty for four types of domes[17]

Dome Type Strength [-] Rigidity [-]
Geodesic 100 100
Lattice 50 54
Kiewitt 70 100
Schwedler 30 5

Height to span ratio

It appears that a height to span ratio of 0.3 is the obvious choice after looking at table 3.1.
But it is perhaps an overly simplistic conclusion, this because the different ways of creating
the dome geometry are important when it comes to height to span ratio. Lüning[22] states
that a ratio of 0.2 is preferable if the geodesic geometry is based on tilting planes. He states
that it is better to use a geodesic configuration based on the icosahedron if the design requires
an increased ratio above 0.2. Any strength comparison between different geodesic domes is
not offered, hence further investigation is required. In contrast, Pan and Girhammar[23] state
that a ratio between 0.23 and 0.38 is acceptable, 0.29 being ideal[23], and that the designer
should avoid a relationship that falls below 0.16. This is when the relative buckling pressure
falls below 1.0, seen in fig. 4.12.
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4.4 Buckling of reticulated shells Stability

Figure 4.12: Height to diameter ratio and relative maximum buckling pressure, from D.H. and U.A.
Girhammar[23].

Non-Linearity

In fig. 4.13 the sensitivity to material and geometrical non-linearity is shown on the x, and
y axes, respectively. Notably, the analysis of single-layer reticulated shells needs to include
geometric non-linearity, a point which is strongly emphasised by Gioncu[38]. The effect of
geometrical non-linearity is also the dominating factor for larger spans, which certainly applies
to a span of 300 meters.

The discrepancy between linear and non-linear analysis is shown in fig. 4.14 using the slen-
derness parameter S[50][38]. It can be seen that the ratio between the linear and non-linear
buckling load is in the range of 1.3 to 1.6, depending on the value of S.
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Figure 4.13: The effects of non-linearity depending type of shell, inspired by V. Gioncu[38].
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4.4 Buckling of reticulated shells Stability

The slenderness parameter also corresponds to different forms of buckling. Perhaps the limit
point where S equals 3 is worth mentioning. Values above indicate member buckling, while
a lower value suggests node or general buckling.

Mesh Density

Another important aspect when designing a dome structure is the maximum member length,
or the mesh density of the shell. Gioncu[38] argues that the stiffness is reduced, which of course
means the buckling load is reduced as well, if the network density is increased. The point
is further emphasised by fig. 4.14, where one can see that the critical load increases with
an increasing slenderness parameter (S). Meaning, the shell will increase the load-bearing
capacity the more sparse the mesh.
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Figure 4.15: The effect of grid density, inspired by V. Gioncu[38].

The opposite is stated by Pan and Girhammar[23]. They introduce a relative timber volume
parameter, defined as

Vrel = Vn,m,k
Vn,m,k=10

(4.20)

n Number of sectors
m Division of arc length
k Division of bottom ring length
Vn,m,k Volume of timber for a dome with a certain mesh density,
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Stability 4.4 Buckling of reticulated shells

i.e., a combination of n, m and k
Vn,m,k=10 The maximum value of timber, when n=m=k=10

Using the relative timber volume parameter, Vrel, they showed that the buckling capacity
increases with increasing mesh density. This relationship can be seen in fig. 4.16. They
further conclude that an increase in mesh density improves the overall behaviour of the dome
in terms of relative maximum deflection and bending moment.

Figure 4.16: The relationship between the relative timber volume and the relative critical buckling pressure,
from D.H. Pan and U.A. Girhammar[23].

The mesh density was studied in order to determine how it relates to the critical load and
the maximum stress, see section 7.3.1.

Boundary Conditions

Boundary conditions also play a significant role on the buckling load and behaviour, see
fig. 4.17. The shell with a full pinned boundary buckles globally, whereas the shell with roller
supports buckles locally. However, the buckling loads are much larger when using pinned
connections.
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Figure 4.17: The effect of critical load when pinned or roller supports are used, inspired by V. Gioncu[38].

Creep

Creep reduces the buckling load of timber structures. Zhou et al.[47] show the effect of creep
in relation to the load level, see fig. 4.18. The figure shows that the load level cannot exceed
35 % of the instant non-linear buckling load of the reticulated shell, if a service life of 50
years or more is intended.
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H.Z. Zhou et al. / Engineering Structures 32 (2010) 2912–2918 2917

Table 1
Creep buckling time of shells with respect to different load levels (days).

Structural parameter Load level
Span (m) Rise/Span Cross-section (mm) 80% 70% 60% 50% 40% 37% 35%

30

1/7 150× 200 48.0 120 290 1180 5600 16200 22300
210× 210 48.1 120 291 1182 5615 16 230 22 328

1/6 150× 200 50.1 127 307 1218 5811 16623 22687
210× 210 52.0 133 323 1253 6000 17 000 23 033

1/5 150× 200 53.7 139 338 1285 6177 17355 23 359
210× 210 53.0 136 331 1272 6102 17205 23222

1/4 150× 200 50.0 126 306 1216 5801 16602 22668
210× 210 53.4 138 335 1280 6149 17298 23306

1/3 150× 200 52.7 135 329 1267 6077 17155 23175
210× 210 52.9 136 331 1271 6099 17199 23215

40

1/7 150× 200 50.0 126 307 1217 5807 16614 22679
210× 280 53.2 137 333 1275 6122 17245 23258

1/6 150× 200 48.5 121 294 1189 5653 16307 22398
210× 280 53.3 137 334 1277 6132 17265 23277

1/5 150× 200 52.2 134 325 1257 6020 17041 23071
210× 280 52.4 134 326 1260 6040 17081 23108

1/4 150× 200 49.8 126 305 1213 5780 16560 22630
210× 280 48.2 120 292 1185 5629 16259 22354

1/3 150× 200 53.4 138 335 1279 6144 17289 23299
210× 280 48.5 121 294 1190 5658 16317 22407

50

1/7 200× 300 48.2 120 292 1184 5624 16248 22344
240× 240 48.5 121 294 1189 5651 16302 22393

1/6 200× 300 51.3 131 317 1241 5935 16870 22914
240× 240 53.5 138 336 1281 6155 17311 23319

1/5 200× 300 48.4 121 293 1188 5645 16290 22383
240× 240 53.4 138 335 1280 6147 17294 23302

1/4 200× 300 48.5 121 294 1190 5655 16310 22401
240× 240 51.8 132 321 1250 5982 16965 23001

1/3 200× 300 53.1 137 332 1273 6111 17222 23237
240× 240 48.7 122 296 1193 5672 16345 22433

Fig. 8. Long-term buckling behaviour of the shell.

shell will long last. The load below the intersection of the buckling
load–time curve and the line drawnvertical at the time of basic ser-
vice life, 50 years as specified in China, which will not precipitate
creep buckling within the service life, is defined as the safety load.
The shadowed area in this figure is defined as the safety zone, the
shell under the load falling in this zone will be safe against buck-
ling, in a sense of design practice. The effect of creep on the shells
investigated is so significant that the long-term load carrying ca-
pacity (the safety load) is only about 35% of the instant nonlinear
elastic buckling load.
By fitting the FE results, an exponential polynomial in the form

of Eq. (23) is found suitable to describe the relationship of the
averaged creep buckling load against the buckling time.

SL = 0.35+ 0.25e−
t
0.1 + 0.21e−

t
1.0 + 0.19e−

t
10.0 (23)

Fig. 9. Buckling load level versus buckling time.

where t is in years. For a given buckling time t , the corresponding
creep buckling load level can easily be obtained by substituting t
into this equation; and for a given load level, the buckling time can
also be obtained by solving this equation using the trial-and-error
method.

5. Conclusions

Compression and tension tests of LVL were conducted to evalu-
ate the creep behaviour. Based on the test results, the constitutive
relationship dealing with creep of LVL was established using the
generalizedKelvin–Voigtmodel. IncorporatingABAQUS, FEmodels
to predict the long-term behaviour of reticulated LVL shells, buck-
ling in particular, were developed.

Figure 4.18: Buckling load level versus time, from H.Z. Zhou et al.[47].

4.4.4 How to analyse buckling of a reticulated dome

A method that is employed by many researchers is to study the load deflection curve
[44][48][51][52][53][54][55][56][57][58][59], sometimes referred to as the nonlinear equilibrium path, of one
or several nodes. This method allows one to clearly see when the structure loses stability,
and it also allows the study into the effects of initial imperfections.

Software

A brief study of the software used by researchers has been performed. Many choose to
implement their own finite element routine, while a few use commercially available soft-
ware. The two most commonly used commercial programs were Abaqus[47][60][56][58] and
ANSYS[51][48][44][57].

4.4.5 Determining buckling loads by hand calculation

The following section is a review of the hand approach of determining buckling loads in a
reticulated dome. The formulae are derived by Douglas T. Wright[2].
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4.4 Buckling of reticulated shells Stability

Member buckling

The member buckling load is determined according to eq. (4.21), and works seemingly well
even for rigid nodes[2]. Remark that the buckling load pcr,member is oriented radially, i.e. a
pressure load. This may cause a small deviation in comparison to actual vertical load.

pcr,member = 2
√

3 · π2 · EI
Rl3

[N/m2] (4.21)

R Spherical radius
l Length of an individual member

Nodal buckling

The nodal buckling is limited within a bound, since it widely depends on the flexibility of
the system as a whole.

l

1 22

2 2

22

(a) Seen from above

l

r

W

1
22

(b) Seen from the side

Figure 4.19: Elements involved in nodal buckling.

The upper bound is considering the pinned joints marked ’2’ in fig. 4.19 to all be inextensible
for movement. The nodal buckling force, in terms of concentrated force, Wcr, is determined
according to eq. (4.22).

Wcr = 2AEr√
3 l3

, [N] (4.22)

The nodal load shown in eq. (4.22) corresponds to a uniformly distributed load seen in
eq. (4.23).
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pcr = A E l

6 R3 [N/m2] (4.23)

It is however inevitable that the nodal buckling will be lower, as long as only pinned connec-
tions are concerned[2]. A lower bound is introduced to take account for extensible members.
The concentrated force needed is introduced in eq. (4.24).

Wcr = AEr√
3 l3

, [N] (4.24)

And thus the limit for the nodal buckling load is summarized in eq. (4.25).

AEl

12R3 ≤ pcr,nodal ≤
AEl

6R3 (4.25)

Global buckling

Determining the global buckling of a reticulated dome is done with help of continuous shell
analogy. Therefore, the global buckling is based on the linear buckling formula for a contin-
uous shell, seen in eq. (4.26).

pcr = k · E ′
(
t′

R

)2

(4.26)

While eq. (4.26) looks similar to its origin eq. (4.12), its thickness, t′, and Young’s modulus,
E ′, are reduced to account for a reticulated shell. Young’s modulus is reduced according to
eq. (4.27)[2].

E ′ = 2AE√
3lt′

(4.27)

Where the thickness t′ is determined in eq. (4.28)[2]. Note that for massive cross sections,
the thickness remains unchanged.

t′ = 2
√

3
√
I

A
(4.28)
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4.4 Buckling of reticulated shells Stability

Just as for continuous shells, to account for non-linearity in elastic buckling load, the variable,
k, should be adjusted. Without further research on reticulated shells specifically, Wright
proposes a k-value of 0.4, based on an assumption that a reticulated shell should behave
seemingly well[2].
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Chapter 5

Preliminary Design

Prior to the analysis, a dome with a span of 300 m was preliminary designed using various
calculation methods: One where the necessary cross section area was approximated by help of
formulas of an arch, and the other by use of shell analogy. The capacity of the cross section
was checked according to Eurocode 5: Design of timber structures – Part 1-1: General –
Common rules and rules for buildings.

The estimations used should be applicable to any dome geometry. The formulas were however
calculated with the Geodesic dome in mind, which made some geometrical parameters unique
to this very case. The following assumptions were made prior to the calculations:

• Design load: qd,tot = gd + qd = 2 + 2 = 4 kN/m2

• Diameter, D = 300 m, rise, H = 90 m, spherical, radius R = 170 m

• The length of a beam in the grid was up to 20 m long. The median length was 18 m.
See chapter 7 for a thorough member distribution comparison.

• Approximated influential width on reticulated surface: a = 13.6 m near apex and base.
a = 15.5 m midway.

• Beams are braced laterally by the roof sheeting, i.e. restricted against bending in their
weak axis

• Connections are assumed to be rigid

5.1 Arch stress relation

By using a stress formula based on the horizontal forces in an arch, a comparison with the
coal depot dome in Brindisi was made. The formula is presented in eq. (5.1)[61].

σ = qD2

8HA (5.1)
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5.2 Continuous shell analogy Preliminary Design

q uniformly distributed line load [kN/m]
D span of an arch (Diameter of a dome) [m]
H rise [m]
A cross section area [m2]

Based on information from the timber domes in Brindisi, a relation in terms of normal stress
of an arch with similar geometry was performed.

Essential information about the Brindisi dome were as following:

• Design load: qd,Brsi = gd + qd = 1 + 0.6 = 1.6 kN/m2

• Diameter, DBrsi = 143 m, rise, HBrsi = 39 m

• Cross section: ABrsi = w × h = 0.18 · 1.13 = 0.2 m2

In order to achieve a similar stress level for a larger dome/arch, a relation based on eq. (5.1)
was set up to determine the required cross-sectional area A, which was done in eq. (5.2)
through (5.4).

σ = σBrsi −→ qD2

8HA = qBrsiD
2
Brsi

8HBrsiABrsi
(5.2)

A = qD2

qBrsiD2
Brsi

· HBrsiABrsi
H

(5.3)

A = 5 · 3002

1.6 · 1432 ·
39 · 0.2

90 = 1.19 m2 (5.4)

The cross section area needed was estimated to 1.19 m2. The massive beam dimension was
chosen to w × h = 0.8 × 1.6 m2, which corresponds to an area of 1.28 m2. The increase in
area was to create a safety margin.

5.2 Continuous shell analogy

5.2.1 Normal force estimation

The normal force was determined through the formulas regarding membrane forces in con-
tinuous shells found in section 3.3. The normal force in a member in its meridional direction
is determined by equation eq. (5.5).
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N = Tϕ · a (5.5)

Tϕ Force along the meridian [kN/m]
a Influential area in the reticulated grid = 13.6 [m]

Tϕ was determined in terms of both dead load and snow load using eq. (5.6).

Tϕ,DL = − gd
R2

R + y
0 < y < H

Tϕ,SL = − qd
R

2

(5.6)

Tϕ,DL Meridional force due to dead load = 2 [kN/m]
Tϕ,SL Meridional force due to uniformly imposed load = 2 [kN/m]
y Vertical distance from spherical centroid [m]

Force at the base

Tϕ,base = Tϕ,base,DL + Tϕ,base,SL (5.7)

−→ Tϕ,base = −gd
R2

R + (R−H) − qd
R

2 = −231− 170 = −401 kN/m (5.8)

Nbase = Tϕ,base · a = −401 · 13.6 = −5.4 MN (5.9)

Force at the apex

Tϕ,apex = −gd
R2

R + (R−H) − qd
R

2 = −170− 170 = −340 kN/m (5.10)

Napex = Tϕ,apex · a = −340 · 13.6 = −4.6 MN (5.11)
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5.2.2 Buckling loads

The buckling loads were calculated for the three cases mentioned in section 4.4.5: Member,
nodal and global buckling.

The buckling behaviour was predicted by using the equation for the slenderness parameter
in eq. (4.19) in section 4.4.1. The stretching and bending rigidity given in eq. (4.19) were
assumed to correspond to the axial stiffness, EA, and the bending stiffness, EI. Furthermore,
the median length of a member for a Geodesic was determined to 18 metres, see fig. 7.1 in
chapter 7. This length was used in this eq. (5.12).

S = l√
R
· 4

√
K

D
= l√

R
· 4

√
EA

EI
= l√

R
· 4

√
A

I
= 18√

170
· 4

√
0.8 · 1.6 · 12

0.8 · 1.63 = 2.0 (5.12)

The slenderness parameter calculated in eq. (5.12) was determined to 2.0, which according to
fig. 4.14 in section 4.4.3, means that the dome is prone to undergo a general/global buckling.

Member buckling load

Since member buckling only concerns a single member in the system, one of the longer
members in the domes were chosen for calculation. For the case of the geodesic dome,
the longest member was determined to 20 metres. The member buckling load is shown in
eq. (5.13).

qcr,member = 2
√

3 · π2 · EI
Rl3

= 2
√

3 · π2 · 10.8 · 109 · 0.8 · 1.63

170 · 203 · 12 = 73 kN/m2 (5.13)

Nodal buckling load

The nodal buckling was calculated according to eq. (5.14). The ratio 5/6 is implemented
due to the five beams that connect in the apex of a Geodesic dome, as opposed to the six
beams related to the equation. This modifications is later confirmed to be accurate, seen in
section 8.2.

AEl

12R3 ·
5
6 ≤ qcr,nodal ≤

AEl

6R3 ·
5
6 (5.14)
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1.28 · 10.8 · 109 · 18
12 · 1703 · 56 = 3.5 kN/m2 ≤ qcr,nodal ≤ 7.0 kN/m2 = 1.28 · 10.8 · 109 · 18

6 · 1703 · 56 (5.15)

While both the upper and lower bound yielded low buckling loads, it should be remarked
that eq. (5.14) regards a dome with pin-jointed connections, whereas this particular dome
has rigid connections. Nodal buckling for rigid nodes will, according to theory, not occur[2].
The results from the nodal buckling is therefore disregarded until further notice, and the
analysis of nodal buckling is later reviewed in section 8.2.

Global buckling load

The global buckling load was calculated using the continuous shell analogy.

qcr,global = k · E ′ ·
(
t

R

)2
[kN/m2] (5.16)

To account for the reticulated grid, the Young’s modulus was modified according to eq. (5.17).

E ′ = 2EA√
3lh

= 2 · 10.8 · 109 · 1.28√
3 · 18 · 1.6

= 0.554 GPa (5.17)

qcr,global,linear = 1.21 · 0.55 · 109 ·
( 1.6

170

)2
= 59.4 kN/m2 (5.18)

To account for non-linearity, variable k was set to the recommended value of 0.4, thus giving
the buckling load presented in eq. (5.19).

qcr,global,non = 0.4 · 0.55 · 109 ·
( 1.6

170

)2
= 19.6 kN/m2 (5.19)

By use of the latter calculated buckling load, the equivalent normal buckling force in a beam
near the base was calculated to eq. (5.20).

Ncr,global = qcr,global ·R
2 · a = 19.6 · 103 · 170

2 · 13.6 = 22.7 MN (5.20)
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5.2.3 Moment estimation

The formulas for membrane forces do not account for any bending moment in the dome,
and bending action in shell structures is too complex to determine analytically, as stated in
section 3.1.3. A method to estimate the bending moments had to be developed, as it was
assumed that asymmetrical loads and rigid connections would inevitably lead to bending
moments.

The estimation was instead primarily based on the simple elementary case of a rigidly sup-
ported beam. The second order moment was assumed by consideration of imperfections
similar to the mode shape given in fig. 8.1 in chapter 8.

Moment from a fixed supported beam

By assuming that the connections between the discrete grid of members are rotationally stiff,
the elementary loading case, seen in fig. 5.1, was used to estimate the bending moment. In
this case, a beam of the median length of 18 m was used to determine the supporting moment
given in eq. (5.21).

1

pcr

Figure 1: interesting results

A B
18 m

qd

Figure 2: interesting resultsFigure 5.1: Elementary load case of fixed sup-
ports combined with line load.

MA = −qdL
2

12 (5.21)

An approximation of the line load along the beam was calculated by use of eq. (5.22) and
was applied to eq. (5.21). The result can be seen in eq. (5.23).

qd = (g + q) · a = 4 · 13.6 = 54.4 kN/m (5.22)

MA = −54.4 · 182

12 = −1.47 MNm (5.23)

Second order moment due to imperfections

The normal forces near the base were estimated to 5.4 MN. A small initial imperfection will
presumably add to the bending stresses. An estimation of the second order bending moment
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was therefore performed. The mode shape obtained from chapter 5 in fig. 8.1 was used as
the initial imperfection. A scaling factor of D/300 gives an imperfection of 0.2 metres near
the base.

M ′′ = MA +NEd · e [MNm] (5.24)

e = e0 ·
1

1− NEd

Ncr

= 0.2 · 1
1− 5.4

22.7
= 0.26 m (5.25)

M ′′ = MA +NEd · e = 1.47 + 5.4 · 0.26 = 2.88 MNm (5.26)

5.3 Capacity

The design was made using two separate methods. The first method reduced the normal force
capacity by taking the slenderness of the cross-section into account, and it also only considered
the first order bending moment. The second method used the second order moment directly
and it did not reduce the normal force capacity.

The dome was preliminary designed with capacity formulas from Eurocode 5[13].

Material strength

fmd = kmod · fm,k
γM

= 0.8 · 30
1.25 = 19.2 [MPa] (5.27)

fcd = kmod · fc,k
γM

= 0.8 · 24.5
1.25 = 15.7 [MPa] (5.28)

ftd = kmod · ft,0,k
γM

= 0.8 · 19.5
1.25 = 12.5 [MPa] (5.29)

fd Design value for strength parameter
fm,k Characteristic bending stress parallel to grain
fc,k Characteristic compression stress parallel to grain
ft,0,k Characteristic tension stress parallel to grain
kmod Modification factor taking into account the effect on
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strength parameters of the duration of load and service class
γM Partial coefficient for material, 1.25 for glulam

Normal force capacity

Nc,Rd = fcdAkc (5.30)

Normal force capacity without respect to slenderness reduction

Nc,Rd = 15.36 · 0.8 · 1.6 = 19.66 MN (5.31)

Normal force capacity with respect to slenderness reduction

λrel =
√
fck · A
Ncr

=
√

24 · 1.28
22.7 = 1.16 (5.32)

k = 0.5(1 + βc(λrel − 0.3) + λ2
rel) = 0.5(1 + 0.1(1.16− 0.3) + 1.162) = 1.22 (5.33)

kc = 1
k +

√
k2 − λ2

rel

= 1
1.22 +

√
1.222 − 1.162

= 0.63 (5.34)

Nc,Rd = 15.36 · 0.8 · 1.6 · 0.63 = 12.39 MN (5.35)

Moment capacity

MRd = fmdW (5.36)

MRd = 19.2 · 0.8 · 1.62

6 = 6.55 MNm (5.37)

Combined action

The combined effect of bending moment and normal force was controlled using eq. (5.38)
from Eurocode 5, both for first and second order theory.
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Preliminary Design 5.4 Summarised result of the preliminary design

MEd

MRd

+ NEd

NRd

≤ 1 (5.38)

First order moment regarded. Slenderness reduction taken into account:

1.47
6.55 + 5.4

12.39 = 0.22 + 0.44 = 0.66 ≤ 1 (5.39)

Second order moment regarded. No slenderness reduction taken into account:

2.88
6.55 + 5.4

19.66 = 0.44 + 0.27 = 0.71 ≤ 1 (5.40)

5.4 Summarised result of the preliminary design

By use of the shell analogy, the design normal force for a governing member in ultimate limit
state was determined to 5.4 MN. Based on moment assumptions, the design moment for the
same member was estimated to 1.5 MNm and 2.9 MNm, with and without respect to second
order theory respectively.

The buckling loads were determined to 73 kN/m2 for member buckling, 3.5-7.0 kN/m2 for
nodal and 19.6 kN/m2 for global buckling, where the global buckling was considered to be
the governing case of buckling.

The combined effect of normal force and moment showed a cross section utilisation of 0.66
and 0.71. The beam should therefore be OK in ultimate limit state, according to these hand
calculations.

The chosen cross section and material properties are summarised in fig. 5.2 and table 5.1,
and will be used for analysis in Dome comparison in chapter 7 and for the stability analysis
in chapter 8.
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Figure 5.2: Beam dimensions
800×1600 (w × h) [mm].

Table 5.1: Properties of the chosen beam cross section.

Width w [m] 0.80
Height h [m] 1.60
Area A [m2] 1.28
Second moment of area I [m4] 0.273
Section modulus W [m3] 0.341
Material GL30c
Young’s modulus E [GPa] 10.8
Design strength in compression fcd [MPa] 15.7
Design strength in bending fmd [MPa] 19.2
Design strength in tension ftd [MPa] 12.5
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Chapter 6

Method of analysis

6.1 Geometry studied

Out of the dome patterns presented in fig. 3.2 in chapter 3, three were chosen for further
study, seen in fig. 6.1.

• Kiewitt/lamella pattern with 8 sectors and 9 meridional members from the apex to the
base

• Geodesic dome based on truncated icosahedron with a frequency of 11

• Three-way triangulated grid with a frequency of 10

(a) Kiewitt (b) Geodesic (c) Three-way grid

Figure 6.1: Dome geometries studied.

The reasoning behind the choices of Kiewitt and Geodesic was primarily based on their
strength and rigidity attributes, as presented in table 4.1. The third geometry, the three-way
grid, was chosen due to lack of information about its performance.
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6.2 Analysis outline Method of analysis

The frequency and sectors of every pattern were chosen in order to make the comparison
study between the patterns fair. Therefore, the patterns were made to make the median
length of the member distribution, and their total member length nearly equal.

All domes were spherical, with a base diameter, D, of 300 meters. A rise-to-span-ratio of 0.3
was chosen based on the literature review in section 4.4.3. The height of the Kiewitt and the
Three-way grid geometries was 90 metres. The Geodesic pattern had a height of 92.7 metres,
due to inconvenience when projecting the surfaces from the icosahedron onto the sphere.

6.2 Analysis outline

6.2.1 Continuous shell analogy

A dome with a continuous shell was studied to understand the general behaviour of shell
structures. Therefore, a numerical analysis of a continuous dome geometry was performed,
and the result of the simulation was compared with hand calculations, to safeguard against
numerical errors and thus increase the level of confidence in the result. The analysis was
limited to studying linear and non-linear buckling.

The analysis was carried out on a shallow spherical dome with a continuous timber shell.
The diameter D was set to 300 m with a rise H of 92.7 m and the thickness t = 1.6 m.
Since the rise/span-ratio was 0.3, the spherical radius was calculated to 168.3, according to
eq. (6.1).

R = H

2 + D2

8 ·H = 92.7
2 + 3002

8 · 92.7 = 167.71 m (6.1)

D

H

R

← t

Figure 6.2: Dome geometry.
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Method of analysis 6.2 Analysis outline

6.2.2 Local instability - snap through

One of the buckling load formulas provided by Wright[2] involved snap-through buckling of
a pinned system. The buckling load formula was confirmed with numerical analysis, and
checked numerically for other connection types and combinations, see fig. 6.3.

1

pcr

Figure 1: interesting results

A B
18 m

qd

Figure 2: interesting results
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2
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2

Figure 3: interesting results(a) Pinned connections
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2

2

2 2

2

Figure 4: interesting results

l

1 22

2 2

22

Figure 5: interesting results

l

r

W

1
22

Figure 6: interesting results

(b) Rigid/continuous con-
nections

l1

2

2

2 2

2

(c) Rigid mid point. Pinned
base nodes.

Figure 6.3: Studied connection types at the apex of the Geodesic dome.

Consider the three cases of rigidity found in fig. 6.3. The first case consisted of only pins
while the second was modelled with stiff joints. The third case was meant to represent the
behaviour of the actual dome more accurately, where rotation in the pinned connection was
allowed to simulate the movement of the cell within the global framework.

6.2.3 Comparing dome geometries

Three dome geometries, Kiewitt, Geodesic and the Three-way grid, were studied to find the
best geometry. The comparison covered:

• distribution of member length,

• number of unique element lengths,

• linear buckling load in load cases one and two (see fig. 6.15),

• stiffness.

6.2.4 Suitable subdivision

Once the best geometry had been decided, a suitable subdivision was chosen based on the
stresses developed. The subdivisions studied were: 9,10 and 11, where the subdivision number
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6.2 Analysis outline Method of analysis

indicates the number of elements from the apex to the base along a meridian. A second order
moment induced by an initial imperfection of D/300 was used. The study included all three
load cases, using a load of 2 kN/m2 and 4 kN/m2, for symmetrical and asymmetrical load
cases, respectively.

6.2.5 Imperfections

The effect of initial imperfections on global elastic stability was studied in two ways. A broad
analysis considering six imperfections in the range of D/150 to D/1000, see table 6.1, using
positive and negative signs on the initial imperfection scaling factor, for the first 7 mode
shapes of each load case was performed. The mode shapes used can be seen in fig. 8.5 and
fig. 8.6. The aim was to study how much the linear buckling load was reduced due to the
initial imperfection and the effect due to the initial imperfection and mode shape.

Table 6.1: Initial imperfections, ± indicates that each imperfection mode in fig. 8.5 and fig. 8.6 was inverted

Initial imperfection relative to span D/150 D/300 D/375 D/500 D/750 D/1000
Initial maximum imperfection [m] ± 2.00 ± 1.00 ± 0.80 ± 0.60 ± 0.40 ± 0.30

The effect of initial imperfections on the stiffness of the structure, adding the imperfection
D/10000 corresponding to 0.03 metres and no imperfection to the imperfections in table 6.1,
was also studied, using load-deflection curves.

6.2.6 Sensitivity to creep

The effect of creep on global elastic stability was studied by reducing the Young’s modulus
for permanent loads. Five Young’s moduli were tested: 7,8,9,10 and 10.8 GPa, where the
latter is the characteristic value for Gl30c glulam, and therefore provided an upper bound
control value in each load case.

6.2.7 Combined effect of creep and imperfections

The combined effect of creep and imperfection was investigated by repeating the steps taken
in section 6.2.5 reducing the Young’s modulus to 7 GPa for permanent loads.
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6.2.8 Sensitivity to settlements

The stability of the dome was studied for two cases of settlements: a radial settlement where
the base was allowed to move outwards, and a differential settlement where half of the dome
was displaced vertically.

Radial settlements

The dome was given a fictitious base tension ring that allowed for radial elongation of the
base. While the Young’s modulus of the ring was kept constant at 30 GPa, the cross section
was changed from 0.25 to 25 according to Aring in table 6.2

Table 6.2: Relative axial stiffness in relation to the largest cross section 5x5

Cross section, Aring 0.5x0.5 0.8x0.8 1x1 1.5x1.5 2x2 3x3 5x5
Rel. axial stiffness 0.01 0.03 0.04 0.09 0.16 0.36 1.00

The radial settlement was analysed using only load case 1 as imposed load, see fig. 6.15 for
load cases. The load was applied until elastic stability failure. Meanwhile, the load path was
traced.

Differential settlement

A differential settlement was applied along half of the dome. Half of the base nodes were
displaced vertically, linearly decreasing displacement from point A(u = δmax) to B(u = 0)
and C(u = 0) , seen in fig. 6.4. The value of δmax was changed in the parameter study
according to table 6.3.

Figure 6.4: Differential settlement, δmax at point A,
zero displacement in B and C.

Table 6.3: Values of max vertical displacement δmax

at point A.

δmax [m]
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
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6.3 Generating geometry Method of analysis

In every parameter study, both in radial and differential settlements, the structure was loaded
with constant self weight and then imposed load until elastic stability failure. The load path
was traced to study how the settlement could affect the elastic stability.

6.2.9 Stresses in ultimate limit state

The stresses of the structure had to be studied in order to know if the critical imposed loads,
either caused by imperfections or creep or the combined effect of the two, occurred at stress
levels above or below the maximum stress level of the material. The stresses were calculated
using eq. (6.2).

σ = Nc

A
+ M ′′

W
(6.2)

6.3 Generating geometry

The node locations for the three dome patterns presented in section 6.1 will be defined below
in detail. The description regards a general geometry for each pattern and not the exact
pattern used in analysis. The geometries used for the comparison and analysis are found in
MATLAB-scripts presented in appendix C.

6.3.1 Kiewitt

The Kiewitt nodes were created from equally spaced rings. The Kiewitt dome derived in
this example has six sectors, which means that the first ring lies on a regular hexagon. The
number of sectors is equal to number of nodes on the first ring, or the order of the polygon.
The order of the polygon on the following ring increases with the number for the first. In
other words, the number of nodes on the first three rings becomes: 6, 12 and 18, if based on
a hexagon. In more general terms:

nr = r · s (6.3)

nr Number of nodes on ring number r
r ring number
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s Number of sectors

The relationship in eq. (6.3) was used to calculate the initial angle for the first node on each
ring, see eq. (6.4).

αr = 2π
nr

(6.4)

Figure 6.5: Kiewitt6s,4r 6 with 4 rings. The angles 60, 30, 20 correspond to α1, α2, α3.

The coordinates were calculated according to:

xi,r = D · r
2 · rt

· cos(αi · ni,r) (6.5)

yi,r = D · r
2 · rt

· sin(αi · ni,r) (6.6)

D Span
rt total number of rings
ni,r node i on ring r
D·r
2·rt

the radius for ring r

The z-coordinates were calculated according to eq. (6.7).

zi,r =
√
R2 − x2

i,r − y2
i,r (6.7)
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6.3 Generating geometry Method of analysis

6.3.2 Geodesic

The geodesic geometry was defined by using an icosahedron, which consists of 12 vertices and
20 faces/triangles. The number of subdivisions of each triangle, other times referred to as the
frequency, had to be decided in order to define a sphere, or a dome, from the icosahedron.
An example of a 3-frequency subdivision is shown in fig. 6.8. The number of subdivisions
indicate how many times each triangular face of the icosahedron has been divided, shown in
fig. 6.6. This only serves as an introduction, the frequency in the studied dome was increased
to obtain suitable element lengths. An attempt was made to describe subdivisions of higher
order in more general terms.

sub = 2 sub = 3 sub = 4

1

2
3

4

1

2

3

1

2

Figure 6.6: Subdivision 2 to 4.

The nodes in the icosahedron were placed such that the crown(point a) was in the position
{0, 0, 1}. The variables used to define the icosahedron include the angles α1−α4, the lengths
H1 −H3, R, S, and the x and y coordinates of point c.

S = 2 Side length of the icosahedron inscribed the unit sphere
R = S

2 sin(α4) Radius of the sphere, fig. 6.7c
H1 = R cos(α4) fig. 6.7c
H2 =

√
S2 −R2 fig. 6.7d

H3 =
√

(H1 +R)2 −H2
1 fig. 6.7c

Z1 = (H3 −H2)/2 fig. 6.7e
Z2 = Z1 +H2 fig. 6.7
α1 = 2π/5 The angle between nodes b and c
α2 = π/10 The angle between the x-axis and node c
α3 = −3π/10 The angle between the x-axis and node d
α4 = π/5 The angle between node d and the y-axis
cx = R cos(α2) x coordinate of point c
cy = R sin(α2) y coordinate of point c

The twelve vertices can be defined, see fig. 6.7 and fig. 6.7a especially.

a = {0, 0, Z1}
b = {0, R, Z2}
c = {cx, cy, Z2}
d = {S/2,−H1, Z2}

e = {−S/2,−H1, Z2}
f = {−cx, cy, Z2}
g = {0,−R,−Z2}
h = {−cx,−cy,−Z2}
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Method of analysis 6.3 Generating geometry

i = {−S/2, H1,−Z2}
j = {S/2, H1,−Z2}

k = {cx,−cy,−Z2}
l = {0, 0,−Z1}

a

b

cd

e f

g

h i

j
k

l

Y

X

Z

(a) An icosahedron with nodes
labeled[62].

X

Y

b

c

de

f

g

h

i j

k

(b) An icosahedron viewed from the
top[62].

α

α

α
α

1

2

3

4

(c) Calculating the X and
Y coordinates for points b,
c, and d[62].

S

a

eb
R

H2

(d) The top of an icosahedron[62]. (e) The side of an icosahedron[62].

Figure 6.7: Icosahedron.

In order to obtain the coordinate locations, for a 3-frequency subdivision, the intermediate
nodes along the triangle boundary had to be calculated first[63]. Vectors were defined starting
from the origin ~O = {0, 0, 0}. The equations 6.8-6.10 uses the vectors ~Ai and ~Ji.
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Figure 6.8: A 3 subdivision (3-frequency) icosahedron triangle, inspired by D. Bertels[63].

1
3
~ABi = 2~Ii + ~Ji

3 (6.8)

2
3
~ABi =

~Ii + 2~Ji
3 (6.9)

The location of a central node was calculated according to

1
2
~ABi =

~Ii + ~Ji
2 (6.10)

The calculations for the node locations shown in fig. 6.8 are presented below in table 6.4.
The coordinates for ~A, ~I and ~J belong to the icosahedron and therefore also the sphere.

Table 6.4: Node locations in fig. 6.8

Node Name ~AI1 ~AI2 ~AJ1 ~AJ2 ~IJ1 ~IJ2 ~AIJ

Equation 2 ~A+ ~I

3
~A+ 2~I

3
2 ~A+ ~J

3
~A+ 2 ~J

3
2~I + ~J

3
~I + 2 ~J

3
~AI2 + ~AJ2

2
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The same principle was applied to subdivisions of higher frequency, by using the general
formulation in eq. (6.11)[63].

v

w
~AB = (w − v) ~A+ v ~B

w
(6.11)

v The number of steps from the first node
w Number of subdivisions
~A The vector from the origin to a node on the icosahedron
~B The vector from the origin to a node on the icosahedron

The projection of the nodes onto the sphere was done by dividing each coordinate with its
corresponding radius[63], and thus normalising the coordinate. The radius was calculated
according to eq. (6.12).

R v
w
~AB =

√
x2

v
w
~AB

+ y2
v
w
~AB

+ z2
v
w
~AB

(6.12)

Normalising the coordinates and projecting them onto the sphere:

v

w
~ABnorm = (w − v) ~A+ v ~B

w ·R v
w
~AB

(6.13)

The triangle consists of the three corner nodes, the boundary nodes, and the interior nodes.
The number of nodes can be expressed according to eq. (6.14)-(6.15) and are valid for a
frequency 3 and above.

nc = 3 nb = 3(f − 1) ni =
ftot∑
f=3

(f − 2) (6.14)

ntotal = 3f +
ftot∑
f=3

(f − 2) (6.15)

The process of defining the node locations based on an icosahedron can be summed up as
follows:

1. Determine the frequency

2. Calculate the nodes based on eq. (6.11)
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6.4 Finite element modelling Method of analysis

3. Project the nodes onto the sphere by dividing the vector, coordinate, by its radius
defined in eq. (6.12)

4. Copy and rotate the nodes of the one original triangle

5. Removing the redundant nodes below the level of the supports

6. Complete the dome by adding nodes to get a circular base

6.3.3 Three-way grid

The three-way grid was constructed using a hexagon as the base polygon, but it can be
done with several other regular polygons as well. Thus, in this example, the nodes were
obtained by generating equally spaced hexagons, which then were subdivided seven times.
The subdivision process was identical to the one mentioned in section 6.3.2.

This process generated a hexagonal shape in the xy-plane. Nodes were placed radially from
the origin, equal to the number of subdivisions, to get a circular base and the coordinate
locations of the intermediate supports. The z-coordinates were then obtained using eq. (6.7).

Figure 6.9: Three-way grid with hexagonal polygonal pattern and 7 elements from the apex to the base.

6.4 Finite element modelling

6.4.1 Continuous shell

The continuous shell dome was modelled in Abaqus/CAE, using rectangular shell elements.
The continuous dome was intended to represent the analogy of the reticulated dome. There-
fore, the shell thickness was set to 1.6, equal to the beam height.
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The material was defined using the property-module in Abaqus. The material was modelled as
isotropic with a modulus of elasticity(E) of 0.55 GPa, and Poisson’s ratio equal to 0.3, which
was the same used in the reticulated domes. The section was defined as shell, homogeneous.

The mesh was generated using rectangular elements of type S4R with an approximate global
size equal to 1. Second-order accuracy was turned on. A pressure load of magnitude 1
was applied, i.e. uniformly distributed load perpendicular to the surface. The boundary
conditions were set to pinned along the base ring.

In the step-module, linear perturbation, buckle were chosen with Lanczos algorithm. The
result output gave an eigenvalue for the corresponding mode shape which corresponded to
the computed linear buckling load of the dome.

After running the linear buckling analysis, a Static, Riks-procedure was set up to analyse any
non-linear response according to third order theory. A pressure load equal to the eigenvalue
obtained in the linear buckling analysis step was set. An upper bound non-linear critical
pressure was established using a geometry without any imperfections. Next, a parameter
study was performed using imperfections based on the first mode shape. The scaling factors
are listed in table 6.1.

6.4.2 Modelling of local snap-through

Snap through was modeled in Abaqus by looking at a five member cell in isolation, see fig. 6.3.
The beam element B31 was used and the cross-section was set to 0.8x1.6 m2. The beams
were 14.31 meters long, the same length as the members connected to the apex, and were
assembled according to fig. 6.3. The midpoint rise was set to 0.6 metres.

Snap through was studied by looking at three scenarios in fig. 6.3. The connection was mod-
elled using multi point constraint, MPC. The settings used were: pin for a pinned connection
and tie for a fixed/rigid node. The boundary conditions for the five supports were: pinned,
fixed encastre, pinned, in Case 1, 2, and 3, respectively. Encastre is the boundary condition
equivalent to fixed in Abaqus. The beams were braced, see section 6.4.7.

A concentrated force was applied at the midpoint node, and increased incrementally to take
non-linearity into account.

6.4.3 Elements

The entire model was modeled by discrete beam elements of type B31[64] according to Abaqus
standard, meaning linear beam elements in 3-dimensional space. Each beam in the dome was
modelled as 20 B31 beam elements in order to properly simulate the bending behaviour.
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6.4.4 Material

Despite timber being an orthotropic material, it was not motivated to model a detailed
material property on such a large scale structure, using line elements. The material setting
only included the stiffness, Young’s modulus equal to 10.8 GPa, and the Poisson’s ratio set
to 0.3.

6.4.5 Beam section and orientation

In Abaqus, a generalised beam section was chosen with the following input parameters:

A Cross sectional area
I11 & I22 Moment of inertia in each primary axis
I12 Product of inertia
J Torsion constant

The parameters are all independent from each other, meaning that adjusting the cross sec-
tional area does not automatically change any other parameter. The parameters were instead
calculated by a Matlab sub-routine prior to model implementation. The torsion constant, J ,
was determined according to eq. (6.16).

J = hw3
(

1
3 − 0.21w

h

(
1− w4

12h4

))
(6.16)

h Height of the cross section
w Width of the cross section

The members were also oriented such that they followed the normal of the enclosing sphere.
This is shown schematically in fig. 6.10, where n1 is a beam close to the apex and n2 show a
beam closer to the base.
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n1

n2

Beam orientation near 

the base

Beam orientation 

near the apex

Spherical centroid

Figure 6.10: Beam orientation rotated around the spherical centroid.

6.4.6 Boundary conditions and node rigidity

Beams connected to the base were modelled with fixed supports. The tension ring was
assumed to be infinitely stiff and it was therefore not included in the initial model. It
was, however, introduced when radial settlement was studied, see section 6.4.10. The use
of encastre supports over pinned was chosen as a result of the assumed cantilever erection
procedure. The nodes were assumed to be fixed for the same reason. The model was created
as one entire part, resulting in rigidly connected members.

6.4.7 Simulating roof bracing

To avoid global torsional failure, see fig. 4.8d, and control lateral torsional buckling, the
lattice structure was assumed to be restrained by the secondary roof structure carried by the
dome. The presumed roof bracing was modelled by prohibiting rotation of five intermediate
nodes and the ends of every beam, see fig. 6.11.
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Figure 6.11: Rotational boundary conditions applied at discrete points along the beams to prevent lateral
bending. The dots represent start/ending points of the B31 elements used in Abaqus, and the arrows represent
boundary locations.

6.4.8 Modelling imperfections

The imperfections were modelled by introducing base modal shape imperfections from the
seven first eigenshapes, for each corresponding load case, resulting in 21 different initial
imperfection shapes. The initial imperfections were scaled according to table 6.1. The self
weight of the structure was included in all linear buckling calculations. The mode shapes
were obtained by performing an eigenvalue analysis employing the Lanczos method.

6.4.9 Modelling creep

Creep was modelled by modifying the Young’s modulus. The stiffness was reduced only
during the first step, where the self weight was applied. During the imposed load, the
modulus was reverted to its default value. Table 6.5 shows the implemented procedure.

Table 6.5: Operational steps of simulating creep. See fig. 6.12.

Step Case Young’s modulus
1 Self weight Reduced
2 Imposed load Constant (10.8 GPa)
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g

(a) Deformed shape caused by creep, self
weight (g) (Step 1)

q

(b) Deformation caused by imposed load
(q) and self weight (Step 2)

Figure 6.12: Schematic method used to study creep.

6.4.10 Modelling settlement

Radial settlements

The boundary conditions were altered to simulate a radial displacement of the base. The
changed boundary conditions are listed below, and a graphical representation can be seen in
fig. 6.13.

• Restriction of vertical movement of every base node,

• Node A was fully restricted to move in the horizontal plane,

• Node B was only restricted in one direction in the horizontal plane

This configuration allowed for radial settlement, while preventing rigid body motion.
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→
↑↑

Radial settlement

B A

Ring elements

Vertical boundaries

Figure 6.13: Boundary conditions applied to capture the radial settlement.

The outwards movement was governed by the introduced tension ring, seen in fig. 6.13. Note
that the ring is fictitious and does not necessarily represent a realistic one. The tension
stiffness was varied by changing the cross sectional area, whilst keeping the modulus of
elasticity constant, equal to 30 GPa.

Remark that this type of boundary setup, combined with ring elements, was only applied in
the case of radial settlements.

Differential settlements

The differential settlements were modelled by displacement controlled operation along one
half of the base nodes. Maximum displacement, δmax, was applied to node A, in fig. 6.14.
The displacement was set to zero in nodes B and C, decreasing linearly from A.
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C

A

u = 0

No settlements

linearly decreasing

towards B

linearly decreasing

towards C

B u = 0

u = δ
max

Figure 6.14: Differential settlement applied to the
base nodes.

Table 6.6: Operational steps of simulation

Step Case Control type
1 Self weight Force
2 Settlement Displacement
3 Imposed load Force

The Abaqus model had a two step procedure, including self weight and imposed load, before
adding the displacement controlled settlement. This step was added in between the two
initial steps, as outlined in table 6.6. The added step included non-linear behaviour, just like
the first step, analysed using the Newton-Rhapson method.

6.4.11 Applying loads

The load on the structure consisted of dead load and imposed snow load. The self weight of
the structure included the load carrying elements as well as the secondary structure. Since
the roof was not included in the model, the weight of the secondary structure was added by
increasing the density of the elements using eq. (6.17) and eq. (6.18)

qlb,eqv,d = ρV g

A
(6.17)

ρeqv = ρ
[qlb + qsecondary

qlb

]
(6.18)

qlb,eqv,d The equivalent design area load of the load bearing elements [kN/m2]
ρ The density of glulam GL30c, 430 [kg/m3]
V Volume of the load bearing members [m3]
g Acceleration, 9.81 [m/s2]
A Area of the dome
qsecondary,d Design load of the secondary roof structure, assumed to 0.8 [kN/m2]
ρeqv The equivalent density of the load bearing elements including the weight
of the secondary structure [kg/m3]

Three snow load cases were studied, see fig. 6.15, including full coverage, half and one sector,
respectively. These were modelled as line loads, which were converted to area loads according
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to eq. (6.19). The line loads were adjusted to more accurately represent a horizontally
projected snow load. This was done by reducing the applied load by the factor seen in
eq. (6.19).

(a) Load case 1: 100% (b) Load case 2: 50% (c) Load case 3: 20%

Figure 6.15: Percentage snow coverage, where the dashed lines were unloaded and blue(full) lines were
loaded with snow.

3

l1

2

2

2 2

2

Figure 7: interesting results

lxy

lxyz

qxy

qxyz

Figure 8: interesting resultsFigure 6.16: Adjusted line load.

qeq,d =
∑[
qxy · lxy

lxyz

]
Acovered

(6.19)

qxy Line load [kN/m]
lxy fig. 6.16
lxyz fig. 6.16
Acovered The area covered by the snow, 20, 50 and 100% of the dome area
qeq Equivalent area load [kN/m2]

The design load, in [kN/m2], was written according to eq. (6.20),

qd = Gd + qeq,d (6.20)
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Method of analysis 6.4 Finite element modelling

where Gd = qlb,eqv,d + qsecondary,d is the self weight of the structure and qeq,d is the imposed
design load.

6.4.12 Mesh convergence study

In order to verify that the beam element, B31, in the model was behaving according to theory,
a mesh convergence study was performed, see appendix A. The study involved linear buckling
analysis on a simply supported column and an arch with various amount of elements. The
results are seen in the appendix, and the members were finally given 20 elements each.
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Chapter 7

Dome comparison

The three dome patterns, Kiewitt, Three-way grid, and Geodesic were compared in terms of
strength, stability and design considerations. The geometries were designed in order to have
approximately the same total length, number of nodes and number of supports, summarised
in table 7.1.

7.1 Design considerations

The design considerations included member length distribution and number of unique element
lengths, fig. 7.1 and fig. 7.2 respectively. From fig. 7.1 it was concluded that the Geodesic
sub 11 has a favourable distribution, where 99 % of the lengths are in the interval 14.3–20.1
metres compared to 12.8-32.8 and 13.7-23.6 for the Kiewitt and Three-way grid, respectively.
An additional advantage is the maximum length of 20.1 metres, which is possible to produce,
whereas lengths above 30 could pose a problem in production, and/or in transport.

Table 7.1: Linear buckling comparison of the dome patterns, sorted by critical load capacity.

Dome pattern nn ns nE Ltot [km] Lrel

Geodesic sub 11 386 60 1035 18.45 1.00
Three-way grid 391 66 1038 18.88 1.02
Kiewitt 8 sectors 9 rings 361 72 936 19.21 1.04

nn Number of nodes
ns Number of supports
nE Number of elements
ln The number of loaded nodes
Ltot The sum of the element lengths
Lrel The relative length with the Ltot Geodesic sub 11 as base value
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Figure 7.1: Member length distribution comparison of the dome patterns.

In order to reduce the cost, the number of unique elements has to be reduced. Elements
cannot be produced to the exact node-to-node distance produced by the Matlab code, and
since the actual tolerance is unknown the number of unique elements was studied by a
tolerance interval from 1 to 20 millimetres. The number of different lengths was similar for
the Kiewitt and the Geodesic geometries, which can be seen in fig. 7.2.
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Figure 7.2: Number of unique element lengths depending on tolerance.
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Dome comparison 7.2 Strength and stiffness

7.2 Strength and stiffness

The three domes were compared in terms of stiffness and strength, where stiffness was com-
pared based on the maximum vertical displacement in each load case and strength on the
linear buckling load. This was done for load cases one and two, with an imposed load of 3
kN/m2. The deflection for the Kiewitt, the Three-way grid, and the Geodesic sub 11 was:
88, 115 and 155 mm, respectively for load-case one, and 120, 117 and 138 mm for load-case
2. Strength was measured by the linear buckling load, in load case 1 and 2. The result can
be seen in table 7.2.

Table 7.2: The strength and stiffness compared by linear buckling in load case 1 and 2, for the different
surface arrangements.

Strength qcrit [kN/m2] Stiffness [mm]
Arrangement LC1 LC2 LC1 LC2
Kiewitt 62.9 53.0 88 120
Three-way grid 61.6 60.3 115 117
Geodesic 66.1 61.1 155 138

7.3 Choice of dome - Geodesic

The Geodesic pattern was chosen for further study based on

• The higher stability load
Table 7.2 shows that the Geodesic geometry was favourable in both symmetrical and
asymmetrical load cases. The difference was quite small between the Kiewitt and the
Geodesic surface arrangements in load case 1, and the Three-way grid and the Geodesic
in load case 2. Nevertheless, a higher critical failure value was seen as important since
one of the main purposes of the thesis was to conclude that a dome with a span of 300
metres would not collapse due to the loss of stability.

• The lower deviation of member lengths
The results seen in fig. 7.1 show a more concentrated distribution of member lengths
for the Geodesic dome when compared to the Kiewitt and the Three-way pattern.
Another important factor was the outlying element lengths, where the Geodesic domes
had outliers that were shorter than the median length. The Three-way grid and Kiewitt
had elements with lengths of over 30 metres, which are not practical in production and
transportation.
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7.3 Choice of dome - Geodesic Dome comparison

• The number of unique element lengths
The cost of the dome would likely decrease if the number of unique element lengths
was low. The Geodesic geometry was slightly more favourable in that regard, as can
be seen in fig. 7.2.

The only area of weakness of the Geodesic surface arrangement was the lower stiffness,
particularly in load case 1, see table 7.2. This could potentially increase the non-linear
behaviour of the structure.

7.3.1 Suitable subdivision - mesh density

Three different versions of the Geodesic geometry were compared, see fig. 7.3. These were
subdivisions 9,10 and 11, where the number indicate the number of elements from the apex
to the base along a meridian, seefigs. 6.6 and 7.5.

(a) Geodesic sub 9 (b) Geodesic sub 10 (c) Geodesic sub 11

Figure 7.3: Three different Geodesic subdivisions, where the subdivision is equal to the number of elements
from the apex down to the base along a meridian.

The subdivision comparison included controls for combined bending and axial compression
as well as tension. These were expressed in relation to the largest allowable stress in each
case, and can be found in eq. (7.1) and eq. (7.2). The result is presented in tables 7.3-7.7 for a
Geodesic dome with subdivisions 9-11. The material properties were calculated in chapter 5.

Nc

A
· 1
fcd

+ M ′′

W
· 1
fmd

< 1 (7.1)

Nt

Ar
· 1
ftd

< 1 (7.2)
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Dome comparison 7.3 Choice of dome - Geodesic

Nc Axial compression [N]
M ′′ Second order moment [Nm].

Based on an initial imperfection factor of D/300, see section 6.2.4
W Section modulus, bh2/6, [m3]
Nt Axial tension [N]
Ar Reduced cross sectional area to account drill holes, for example.

Assumed to be 0.7 · A, [m2]
fcd Design strength in compression 15.7 MPa
fmd Design strength in bending 19.2 MPa
ftd Design strength in tension 12.5 MPa

Table 7.3: Controls for combined bending and axial
force, and tension according to eq. (7.1)-(7.2). Im-
posed loading q = 2 [kN/m2], loadcase 1.

Sub/Control eq. (7.1) eq. (7.2)
Subdivision 9 0.66 0.22
Subdivision 10 0.52 0.23
Subdivision 11 0.42 0.20

Table 7.4: Controls for combined bending and axial
force, and tension according to eq. (7.1)-(7.2). Im-
posed loading q = 2 [kN/m2], loadcase 2.

Sub/Control eq. (7.1) eq. (7.2)
Subdivision 9 0.67 0.13
Subdivision 10 0.59 0.12
Subdivision 11 0.55 0.12

Table 7.5: Controls for combined bending and axial
force, and tension according to eq. (7.1)-(7.2). Im-
posed loading q = 3 [kN/m2], loadcase 1.

Sub/Control eq. (7.1) eq. (7.2)
Subdivision 9 0.83 0.28
Subdivision 10 0.65 0.29
Subdivision 11 0.59 0.25

Table 7.6: Controls for combined bending and axial
force, and tension according to eq. (7.1)-(7.2). Im-
posed loading q = 3 [kN/m2], loadcase 2.

Sub/Control eq. (7.1) eq. (7.2)
Subdivision 9 0.87 0.17
Subdivision 10 0.77 0.15
Subdivision 11 0.72 0.14

Table 7.7: Linear buckling values, qcr,linear for subdivisions 9-11, load case 1.

Subdivision/frequency qcr [kN/m2]
Subdivision 9 50.4
Subdivision 10 59.0
Subdivision 11 66.1

Two sources were presented in section 4.4.3 regarding the effect of mesh density, Gioncu[38]

concluding that longer elements would increase the critical load, and Pan[23] arguing that
increasing the mesh density would do the opposite, and also improve the general behaviour
of the dome. From the results in table 7.4-7.7, it can be concluded that increasing the
subdivision from 9 to 11 in a Geodesic dome improved the linear buckling load and also
reduced the stresses. For this reason, a Geodesic of frequency 11 was chosen.
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7.3 Choice of dome - Geodesic Dome comparison

7.3.2 Geometrical description

This section serves to summarise the geometry of the chosen dome. The span and height can
be seen in fig. 7.4. The study was performed on a Geodesic subdivided 11 times. How to
count the subdivision has been emphasised in fig. 7.5. The dimensions of the beam were set
to 0.8×1.6 m2, see section 5.4, made out of Glulam GL30c.

Figure 7.4: Geometry of the Geodesic sub 11. All distances are in metres.

Figure 7.5: Sector of a Geodesic sub 11, where the numbers show how to count the subdivision/frequency.
The meridians have been highlighted with thicker lines.
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Chapter 8

Results and discussion of stability
analysis

8.1 Continuous shell analogy analysis

A numerical simulation of a continuous shell was performed and compared with the formulas
provided in chapter 4. The stiffness of the shell was adjusted according to eq. (5.17) in
chapter 4 to account for a reticulated shell.

8.1.1 Hand calculations

The formulae are only valid within certain intervals, as described by Samuelson et al[28], and
were checked in eq. (8.1).

R/t < 3000 167.7/1.6 = 104.8

7 < β < 50 β =
√

2ϕR
t

=
√

1.1 · 104.8 = 10.7
(8.1)

The buckling pressure loads used were eq. (8.2) by Zoelly, and the modified version by Timo-
shenko in eq. (8.3). The k-values used in eq. (8.2) were 1.21 according to linear theory[29][28][2],
the lower bound of 0.366[2] and the recommended value of 0.4[2]. The results are presented
in table 8.1.

pcr = k · E ′
(
t

R

)2
(8.2)

pcr =
(

1− 0.175ϕ
◦ − 20◦
20◦

)(
1− 0.07R/t

400

)
0.3E ′

(
t

R

)2
(8.3)
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8.1 Continuous shell analogy analysis Results and discussion of stability analysis

E ′ 0.554 GPa
t 1.6 m
R 167.7 m
ϕ 63◦

Table 8.1: Non-linear buckling load results from a continuous shell dome.

Equation k-value Failure load [kN/m2] Ratio p/plinear

eq. (8.2) 1.21 (linear) 61.0 1.00
eq. (8.2) 0.366 (lower bound) 18.5 0.30
eq. (8.2) 0.4 (recommended) 20.2 0.33
eq. (8.3) — 9.3 0.15

8.1.2 Numerical results

The linear buckling analysis in Abaqus determined the eigenvalue to 60.9 kN/m2, which is
in good concordance with the hand calculated buckling loads presented in table 8.1. This
ensures the numerical analysis to go along well with the theory of linear buckling of shells.

The axisymmetrical mode shape found in the numerical analysis is presented in fig. 8.1. No
source was found to confirm the accuracy of this mode shape. The 2-dimensional cut in
fig. 8.1 does, however, show a behaviour similar to the buckling of a continuous beam or a
beam resting on spring supports.

← 0.2

← 1

Figure 8.1: Axisymmetrical mode shape received from simulation.
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Results and discussion of stability analysis 8.1 Continuous shell analogy analysis

The results of the non-linear buckling analysis is presented in fig. 8.2. Note that the load
path showing perfect geometry makes a sudden collapse without any clear sign of lost stiff-
ness. When the mode shape was applied in different magnitudes, the elastic buckling load
reduced drastically, where the smallest imperfection of D/1000 had a remaining linear buck-
ling capacity of 47 %. The results of failure load for each imperfection are summarised in
table 8.2. Note that for the largest imperfections, D/300 and D/150, the buckling load was
rising again, albeit their initial stiffness is considerably lower than the others seen in fig. 8.2.
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Figure 8.2: Results of non-linear buckle analysis in comparison to the linear. The imperfections D/3000,
D/600 and D/300 are based on the mode shape gained from the linear buckle.

Table 8.2: Non-linear buckling load results from a continuous shell dome.

Imperfections Failure load [kN/m2] Ratio p/plinear k-value for eq. (8.2)

None 53.4 0.88 1.06
D/1000 28.8 0.47 0.57
D/750 25.1 0.41 0.50
D/500 20.3 0.33 0.40
D/375 19.6 0.32 0.39
D/300 20.8 0.34 0.41
D/150 22.5 0.37 0.45

The miniature domes in fig. 8.2 show the buckle behaviour of the perfect geometry, and for
the imperfections D/500 and D/150. Since the vertical displacement of the apex is seemingly
linear for the perfect dome, it can also be observed in its failure shape that the buckled area
is near the base. The stronger the imperfection, the more keen the dome becomes to buckle
near its apex.
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8.2 Snap-through analysis Results and discussion of stability analysis

8.1.3 Discussion

In comparison to the hand calculated estimations of total buckling load, the numerical results
showed a lowest buckling load of 19.6, which is close to the recommended hand calculated
buckling load to consider when using continuous shell analogy for reticulated domes. The
estimated load in eq. (8.3) deviated even further from the numerical results. It can be
concluded that, while the hand calculations and the numerical analysis agree well regarding
linear buckling, the non-linear results should be treated with care, as the results seem to be
scattered along a wider spectra, depending on magnitude of the imperfection.

The reasons as for why the results of the non-linear numerical buckle analysis differ from the
results presented in table 8.1 may be many. The analysis was limited to a single mode shape
as the initial imperfection, and the size of the initial imperfection was chosen arbitrarily
in order to study the impact of an increasing imperfection. Further, it should be noted
that the physical experiments of continuous shells have most likely been performed on test
considerably smaller in size and with use of different material, as stated back in section 4.2.

8.2 Snap-through analysis

The cases described in fig. 6.3 correspond to the upper bound in eq. (4.22). As the number of
members involved in this case were five as opposed to the six members described by Wright[2],
an assumed reduction of the formula by 5/6 was made.

Wcr = 2AEr3
√

3 · l3
· 5

6 = 2 · 1.28 · 10.8 · 106 · 0.63
√

3 · 183
= 591.2 · 5

6 = 492.7 kN (8.4)

Numerical results & discussion

The numerical results of the three cases studied, as well as the results from hand calculation
are presented in fig. 8.3. As can be seen, the hand calculation coincides accurately with the
first case studied (pinned connections), which corresponds to the upper bound formula by
Wright[2]. The nodal load of 493 kN was converted to a uniformly distributed load equal to
7.0 kN/m2, using eq. (4.23) from section 4.4.5. The lower bound would then be 3.5 kN/m2,
if worst case considered.
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Figure 8.3: Resulting load path of the three cases studied.

Snap through failure was only observed in the completely pinned system, whereas in the
two other cases, the load just kept increasing without stability failure, as seen in fig. 8.3.
According to the theory explained in section 4.4.2, this should be the case.

The connections in the dome would not be completely pinned even after erection, nor would
they be completely fixed either, even if they were modelled as such. In reality, the rotational
stiffness of the connections would be somewhere in between the lower and upper bound
values, likely closer to the latter. It can be expected that the dome will most likely have
snap-buckling load higher than the upper bound found in formula used in eq. (8.4), if there
is any local instability problem caused by snap through buckling at all.

8.3 Imperfections

8.3.1 Imperfection modes

The 7 first buckling modes, fig. 8.5 and fig. 8.6, in each load case were used as initial imper-
fections when calculating the non-linear limit point. The load cases are shown in fig. 8.4.
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X

Y

Z

(a) Load case 1 X

Y

Z (b) Load case 2
X

YZ

(c) Load case 3

Figure 8.4: The load cases in Abaqus.

Step: Step−2, Buckling analysis
Mode         1: EigenValue =  2.91053E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01

Scale Factor: −1.00

(a) Mode 1 LC1 (b) Mode 1 LC2 (c) Mode 1 LC3

Step: Step−2, Buckling analysis
Mode         2: EigenValue =  2.92344E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01

Scale Factor: +1.00

(d) Mode 2 LC1 (e) Mode 2 LC2 (f) Mode 2 LC3

Step: Step−2, Buckling analysis
Mode         3: EigenValue =  2.92344E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01 (g) Mode 3 LC1 (h) Mode 3 LC2 (i) Mode 3 LC3

Figure 8.5: Modes 1-3 used as initial imperfections, scaled 15 times.

94



Results and discussion of stability analysis 8.3 Imperfections

Step: Step−2, Buckling analysis
Mode         4: EigenValue =  2.93222E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01

Scale Factor: −1.00

(a) Mode 4 LC1 (b) Mode 4 LC2 (c) Mode 4 LC3

Step: Step−2, Buckling analysis
Mode         5: EigenValue =  2.96275E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01

Scale Factor: −1.00

(d) Mode 5 LC1 (e) Mode 5 LC2 (f) Mode 5 LC3

Step: Step−2, Buckling analysis
Mode         6: EigenValue =  2.96275E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01 (g) Mode 6 LC1 (h) Mode 6 LC2 (i) Mode 6 LC3

Step: Step−2, Buckling analysis
Mode         7: EigenValue =  2.97996E+05
Primary Var: U, U2
Deformed Var: U   Deformation Scale Factor: +1.500e+01

(j) Mode 7 LC1 (k) Mode 7 LC2 (l) Mode 7 LC3

Figure 8.6: Modes 4-7 used as initial imperfections, scaled 15 times.

95



8.3 Imperfections Results and discussion of stability analysis

Figure 8.7 show the sensitivity to imperfections depending on size and mode shape. From
the tests it was concluded that, generally, the capacity was reduced as the size of the initial
imperfection increased.
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Figure 8.7: Imposed failure load when taking imperfections into account. Mode shapes 1-7 and initial
imperfection D/300-D/1000. Note that the self weight, qsw = 2.2 kN/m2, is not included.

96



Results and discussion of stability analysis 8.3 Imperfections

When studying fig. 8.9a and fig. 8.9b it can be seen that the lowest ratios q/qlinear were 0.135,
0.295, and 0.231 in order of the load cases. This corresponded to imposed failure loads of
8.9, 18.0, and 17.5 kN/m2.

It is often stated that reticulated structures are particularly sensitive to asymmetrical load
cases. However, such a trend was not found either at a relative critical level or at critical
imposed load level. This sensitivity may be caused by the low self weight of common shells,
as low as 0.25 kN/m2 in short span reticulated metallic shells[2], but up to 0.8[1] kN/m2 in the
Houston Astrodome, also in steel. In contrast, the self weight of this dome was estimated to
2.2 kN/m2, which could increase the capacity in asymmetric loading scenarios. In fig. 8.7 it
can be seen that the remaining capacity in load case 1 and 2 were similar, while the critical
loads in load case 3 were slightly higher, echoed by their corresponding median values of 24.1,
24.2, and 27.4 kN/m2, respectively.

A general trend of the critical load at a mode-shape-level was difficult to observe, noting that
mode shape 4, for instance, in load case 1 increased almost linearly, while mode 2 in load
case two initially decreased when the imperfection decreased. The reason for this could be
the infinite number of load paths that exist, as discussed in section 4.1.3. In addition, the
location of the failure changes depending on the size of the imperfection as well as the sign
of the initial imperfection factor.

The size of the initial imperfection also affects the stiffness of the dome. It was observed
that, in almost every case, a smaller imperfection increased the stiffness. This effect can be
found in appendix in fig. A3-A7. In addition, in cases where a lower critical load was found,
despite a smaller initial imperfection, such as in load case 2 mode shape 1, seen in fig. 8.8,
the stiffness of the structure was increased when the imperfection decreased. It was also seen
that the non-linearity of the load-deflection curves was reduced along with a reduction in the
initial imperfection.

The initial imperfection thus increases the deflection by lowering the stiffness, as well as
causing a significant reduction in the imposed load when compared to linear buckling.
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Figure 8.8: Load deflection curves for mode shape 1, fig. 8.5b, in load case 2. Initial imperfections D/150
to no imperfection.

The lower bound critical load values from fig. 8.7 can be seen in fig. 8.9b, where it can be
seen that load case 1 had the lowest limit load. However, the second load case will be the
most critical when considering the design load is double that of load case 1, to account for
snow accumulation. Regardless of load case, the stability failure loads remain above the
design load of 2 and 4 kN/m2 respectively. It was stated in section 4.4.3 that mode shape
one will not always induce the most severe reduction from the linear buckling load, which
was replicated in this study where it had the largest impact in 11 out of 18 cases, fig. 8.9.
The outliers (mode shape 4 in load case 1, mode shape 5 in load case 2, and mode shape 6 in
load case 3) suggest that other mode shapes should be included when introducing through
failure modes.
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Figure 8.9: Lowest imposed failure load for each initial imperfection and corresponding mode shape, for all
three load cases, extracted from fig. A1 and fig. 8.7.

The sensitivity to imperfections should be translated into erection tolerances to ensure two
things. First, that a sufficiently high critical load can be assured, and secondly that the
stiffness of the dome remains high. The maximum initial imperfection is contingent on what
the contractor can guarantee, but it can be seen that a construction error of D/150, corre-
sponding to 2 metres, should be avoided. Note that D/750, 0.4 metres, may be advantageous
as tolerances better than this would only improve the performance.

8.4 Creep

The deformation caused by creep was studied parametrically through variation of the modulus
of elasticity, from 7 GPa to 10.8 GPa, for permanent loads, and restored to 10.8 GPa for
imposed loads. This was done for a perfect geometry without any imperfections.
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The load-deflection curves in each load case can be seen in fig. 8.10 - 8.12. It can be seen that
creep lowered the critical capacity by ∆q in all three load cases, from 46.0 to 37.5, 42.5 to
34.7, and 39.3 to 29.9 kN/m2, in load case 1-3, respectively. Meaning a lower bound relative
capacity of 56.8, 58.7, and 39.4 % in load cases 1-3 when compared to the linear buckling
value corresponding to each load case, and 81.5, 81.6, 76.1 % if instead compared to the
upper bound non-linear limit point. Creep alone thus reduces the capacity by 18.5, 18.4, and
23.9 % in load case 1 to 3 when the Young’s modulus was reduced from 10.8 to 7.0 GPa.
These data points were summarised in table 8.3.

Table 8.3: Summarised result of the reduction of the elastic buckling load due to creep.

Load case ∆ q qcreep/qqr,linear [%] qcreep/qqr,non−linear [%] Creep reduction [%]
1 8.5 56.8 81.5 18.5
2 7.8 58.7 81.6 18.4
3 9.3 39.4 76.1 23.9

0 1 2 3 4 5 6 7 8 9

Vertical deflection of the apex node [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 i
m

p
o
s
e
d
 l
o
a
d
 q

/q
lin

e
a

r, 
lo

a
d
 c

a
s
e
  
1

Load case 1

E = 7 GPa

E = 8 GPa

E = 9 GPa

E = 10 GPa

E = 10.8 GPa

0

10

20

30

40

50

60

Im
p
o
s
e
d
 l
o
a
d
 (

q
) 

[k
N

/m
2
],
 L

o
a
d
 c

a
s
e
 1

 

Figure 8.10: Parameter study of creep induced instability for various Young’s modulus, load case 1.
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Figure 8.11: Parameter study of creep induced instability for various Young’s modulus, load case 2.
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Figure 8.12: Parameter study of creep induced instability for various Young’s modulus, load case 3.

As was shown here, creep reduced both the stiffness as well as the limit stability capacity and
can therefore not be ignored when analysing reticulated shells. Creep buckling did however
occur, for all values of E and for every load case, at loads, q, significantly higher than the
imposed design loads of 2 an 4 kN/m2. The reason why it still should be considered is its
potential combined effect with other causes of failure, as imperfections for instance.
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8.5 Imperfections and creep combined

The combined action of creep and imperfections was studied by performing non-linear anal-
yses for the first seven mode shapes, each mode shape studied for six different initial scalers
of imperfection, for all three load cases, while keeping the Young’s modulus constant at 7
GPa for permanent loads and 10.8 GPa during imposed loading. The study covered both
positive and negative mode shapes scaling factors, resulting in 252 data points. In fig. 8.13,
the lowest imposed failure load for each mode shape and imperfection is presented.
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Figure 8.13: Imposed failure load when taking imperfections and creep into account by reducing the Young’s
modulus to 7 GPa for permanent loads. Mode shapes 1-7 and initial imperfection D/300-D/1000 for load
cases 1-3. Note that the self weight, qsw = 2.2 kN/m2, is not included.
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Figure 8.14: Lowest imposed failure load for each initial imperfection and corresponding mode shape, for
all three load cases, extracted from fig. A1 and fig. 8.7.

The reduction in capacity due to creep was established in section 8.4. The combined effect
of creep and imperfections showed no synergistic effect, given the method used to study
creep. The reduction in critical imposed load would have to increase, in comparison to creep
alone, for there to be any such effect to be established. It appears that the effect of creep
was reduced for larger imperfections, see fig. 8.15b. However, the smallest reduction was for
mode shape 4 in load case 1, approximately 3.6 kN/m2, as can be seen in fig. 8.15a. A similar
pattern was also found in the other two load cases, see fig. A8.

The fact that creep dominated the reduction for small imperfections is almost self evident.
The initial deformed shape of the dome tends towards the geometry without any mode-shape-
induced imperfections as the imperfections get smaller. The reverse, a totally diminished
effect from creep would likely not occur even for imperfections outside the chosen interval.
It would appear as if, at least for the studied Young’s modulus equal to 7 GPa, the creep
deformation and the mode shape imperfections add to the reduction of the critical load. This
relationship could be simplfied to: large deformations reduces the effect from creep.
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Figure 8.15: Comparison of reduction due to creep.

8.6 Settlements

Radial settlement

Stability failure due to radial settlement was investigated for a perfect geometry, presented
in fig. 8.16-8.17. The cross sections used are presented in table 8.4.

Table 8.4: Relative axial stiffness in relation to the largest cross section 5x5.

Cross section [mxm] 0.5x0.5 0.8x0.8 1x1 1.5x1.5 2x2 3x3 5x5
Rel. axial stiffness 0.01 0.0256 0.04 0.09 0.16 0.36 1

Figure 8.16 shows the radial settlement for all ring sections under loading until failure. The
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weakest ring, a relative stiffness of 0.01, expands radially up to roughly 6 meters before
elastic failure. The expansion is drastically reduced, in combination of an increased failure
load, when the cross section increases. A relative stiffness of 0.09 and higher yields failure
load equal to the one of a perfect geometry, without modelling settlement.
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Figure 8.16: Load path curve showing the radial settlements during loading of imposed load for various
base ring elements. The dome geometry has no imperfections and load case 1 is applied.

Figure 8.17 shows the vertical displacement of the apex node during the same simulation
as for fig. 8.16. The results shows a decreased stiffness for smaller cross sections, but for
1.5x1.5 and larger, the difference in stiffness becomes smaller. The decreased level of failure
load for cross sections corresponding to relative stiffness 0.01, 0.03, and 0.04 is likely due to
different failure modes induced by the slender ring. The smaller cross sections cause a general
snapping near the base, as opposed to the apex snapping which occurred for the larger cross
sections.
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Figure 8.17: Load path curve showing the vertical displacement of the apex node during loading of imposed
load for various base ring elements. The dome geometry has no imperfections and load case 1 is applied.

When the same model was given imperfections by its first linear mode shape and a magnitude
of D/300, the difference in results became less significant. Generally, the elastic stability
failure load level stays close to the results reviewed earlier in section 8.3, as can seen in both
fig. 8.18 and fig. 8.19.

In fig. 8.18, the radial displacement is presented. Not only are the ring expansions smaller
before undergoing failure, but this time it is only the smallest cross section, 0.5x0.5, that
yields a decreased failure load.

When studying fig. 8.19, the load paths for all ring elements, except for the most slender
one, nearly coincide with each other. From this graph it can be seen that the impact of
settlement, when imperfection is added, is negligible.
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Figure 8.18: Load path curve showing the radial settlements during loading of imposed load for various
base ring elements. Mode shape 1, D/300, is applied as imperfection and load case 1 is in action
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Figure 8.19: Load path curve showing the vertical displacement of the apex node during loading of imposed
load for various base ring elements. Mode shape 1, D/300, is applied as imperfection and load case 1 is used.

Differential settlement

The differential settlement was implemented through displacement controlled base nodes.
The maximum settlement used in each case was ranging from 0.01 to 2 m and the results
are presented in fig. 8.20 and fig. 8.21 where the latter figure shows the effect of combined
imperfection and settlement. As opposed to load case 1 used in radial settlement, load case
2 was instead used in this parameter study, as this case was expected to be more critical in
this study.
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The results of elastic stability from a differential settlement of a dome with perfect geometry
are presented in fig. 8.20. The vertical displacement of a node near apex, were stability
snapping occured, is plotted against the imposed load applied.

The load path curves for each settlement seem to coincide close to each other, albeit the
slight offset sideways for larger settlements. Even in its most extreme case of 2 meter in
maximum settlement, the collapse load is merely slightly less than the others.
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Figure 8.20: Load path curve showing the vertical displacement of worst displaced node near dome apex.
No imperfection added and load case 2 is used.

In fig. 8.21, mode shape 1 of load case 2 was applied, with an imperfection of D/300 and
new load paths were created. Again, the the results stay close to the achieved load paths
presented in fig. 8.8 when studying imperfections alone. Only the worst case of settlement
of 2 meters shows a deviation of roughly 5 % from the other test results.
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Figure 8.21: Load path curve showing the vertical displacement of worst displaced node near dome apex.
Mode shape 1, D/300, is applied and load case 2 is used.
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Chapter 9

Result and discussion of ULS analysis

9.1 Stresses with imperfections

The stresses have to be known in order to determine if material failure occurs prior to the
loss of stability. The stresses caused by the third order moment and normal forces have been
plotted in fig. 9.1-9.3. An increased imperfection clearly causes the stresses to increase as
well, primarily through a larger moment. The normal stress remained almost constant in
each load case, apart from a few instances when the initial imperfection was D/150, and did
not increase drastically when the imposed load was doubled.

The asymmetrical load cases, 2 and 3, induced the highest stresses. The only case when that
did not occur was for mode shape number 4 with an imperfection of D/150, see fig. 8.6a, the
mode shape and imperfection with the lowest stability load (see fig. 8.9).

The maximum stress caused by mode shape 4, see fig. 8.6a, and imperfection can be seen
in fig. 9.3. The mode shape causes considerable moment, comparable to the asymmetrical
load cases. This might be the reason its critical stability load is so much lower - it forces
the structure to act more via bending action, rather than through membrane action, at least
more so than any other mode shape.
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Figure 9.1: Utilization and stresses as a function of the mode shape 1 imperfections in fig. 8.5a-8.5c. Note
that σ = N/A + M/W is the most utilized cross section for a given imperfection and load case, whereas
N/A and M/W only highlight the worst instance of normal force and moment, respectively, irrespective of
location.
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Figure 9.2: Utilization and stresses as a function of the mode shape 2 imperfections in fig. 8.5d-8.5f. Note
that σ = N/A + M/W is the most utilized cross section for a given imperfection and load case, whereas
N/A and M/W only highlight the worst instance of normal force and moment, respectively, irrespective of
location.
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Figure 9.3: Utilization and stresses as a function of the mode shapes imperfections 4-6 in fig. 8.6a, 8.6e,
and 8.6i . Note that σ = N/A + M/W is the most utilized cross section for a given imperfection and load
case, whereas N/A and M/W only highlight the worst instance of normal force and moment, respectively,
irrespective of location.

The imperfections cause the stresses to increase through bending. It is thus important,
just like in the discussion in section 8.3 with imperfections relating to stability, to reduce
the imperfections during construction, perhaps even more so. The calculated stresses only
account for normal forces and bending moments. Stresses caused by other phenomena could
possibly make it necessary to put even more stringent demands on the construction errors,
below D/300 seems reasonable, possibly even lower to obtain a satisfactory margin of safety.

9.2 Bending moment in the connections

The bending moments for a reduced amount of modal imperfections have been studied and
can be seen in fig. 9.4. The bending moment was sensitive to the initial imperfection, with
values over 5 MNm in all three load cases. It also seemed, perhaps unsurprisingly so, that
there was an increase in bending moment when the load was asymmetrical, in load case 2 and
3. It is perhaps worth noting that the bending capacity of the beams was calculated to 6.55
MNm, so imperfections over D/375 should be regarded as unacceptable. This means that
if the size of the initial imperfections is < D/375 failure is likely to occur due to instability
rather than reached material strength.
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Figure 9.4: Maximum moment in the connections in load case 1-3 using mode shape imperfections 1,2,4-6
found in fig. 8.5a-8.5c, fig. 8.5d-8.5f, fig. 8.6a, 8.6e, and 8.6i.

The connections in the Brindisi domes can be seen in fig. 9.5a, and the connection type is
explained in fig. 9.5b. The capacity in the connection was determined to approximately 900
kNm, according to Crocetti[65]. The height of the Brindisi beams is 1.13 metres, compared
to 1.60 metres in this report. Hand calculations in combination with laboratory tests would
need to be performed in order to determine how much more the bending capacity could be
increased.
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(a) Connection in one of the Brindisi domes,
from R. Crocetti[65].

(b) Connection explanation, from A.
Jorissen[17].

Figure 9.5: Possible connector.

9.2.1 A comparison of force distribution - Theory VS. Numerical

The theory concerning the distribution of meridian and hoop forces in a reticulated shell was
compared with the corresponding member forces obtained in the computational model. By
using the same dimensions and both self weight and snow load, the forces were plotted from
the apex to the base, seen in fig. 9.6 and fig. 9.7.

When comparing the force along the meridian in fig. 9.6, it can be seen how the theoretical
curve to the left ranges from approximately 5 MN to almost 6 MN. In fig. 9.6b, the member
forces from Abaqus ranges from 3 MN at the apex to 4 MN at the base, while peaking roughly
5 MN on a 30 metres height.
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(b) According to Abaqus

Figure 9.6: A comparison of meridional forces from the apex to the base.

The result of the hoop force distribution is presented in fig. 9.7, where fig. 9.7a shows the
distribution of the theoretical curve, previously presented in chapter 3. The theoretical
distribution ranges from negative 5 MN at the apex, to positive 3 MN at the base, meaning
a change from compression to tension along the dome. A similar behaviour was observed
in the numerical analysis, seen in fig. 9.7b. The force distribution ranged from negative 3.5
MN to positive 1 MN, significantly lower than the theoretical. The point of transition from
compression to tension is also located higher in the numerical analysis.
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(a) According to formulas
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(b) According to Abaqus

Figure 9.7: A comparison of hoop forces from the apex to the base.

In summary, the forces gained when tracing the members along the meridian in Abaqus,
did not reach the values achieved by formulas, nor was the shape of the distribution curve
completely coinciding for neither meridian forces or hoop forces. There are arguably some
similarities concerning the curves. The meridian force increased towards the base and the
hoop force transitioned from compression to tension, just as the theory predicted. Another
detail is the decrease of force near the base in the numerical analysis, for both the meridian
and the hoop cases. The reason for this could possibly be that stiffness is not the same in all
directions, as is assumed in the theoretical formulas, leading to different load paths. Another
possible reason could be the assumed influence width is different in reality, and possibly not
constant, as was assumed.
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Chapter 10

Conclusions

Research question formulation

• Which dome geometry is most suitable to cover a span of 300 metres?

• How sensitive is a geodesic timber dome to imperfections applied in the shape of eigen-
modes?

• If so, is there an easy/fast way to determine the non-linear elastic stability capacity, or
does it require the study of several mode shapes?

• Can hand calculations accurately estimate the stability load?

• Can hand calculations accurately estimate the forces and the bending moments?

• How does creep influence the non-linear elastic stability capacity?

• How does the combined effect of creep and imperfections influence the non-linear elastic
stability capacity?

• Does radial ring displacement/settlement negatively effect the elastic stability?

• Do differential settlements negatively effect the elastic stability?

• Is it feasible to build a timber dome with a span of 300 metres when non-
linear elastic stability and material failure is taken into account?

The Geodesic arrangement was chosen based on the lower deviation of member lengths, the
lower number of unique element lengths, and the higher linear buckling value in both load
case 1 and 2.

The geodesic dome was very sensitive to imperfections, and the capacity and stiffness were
reduced as the initial imperfections increased. It does however require many simulations to
create a lower bound failure envelope, and it should be noted that it was not always the first
eigenshape that produced the biggest reduction rate.
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Conclusions

The study used cross sections that were estimated by help of hand calculations, which them-
selves did not deviate far too much from the numerical results. While the estimated normal
forces never quite reached the values from the simulation, the buckling load did on the other
hand end up close to its correspondent. The experience of using the formulas concludes that
they work well considering the complexity of the structure, but should be taken with care,
and should always be compared to secondary source. An issue was the limitation in load
cases, where an asymmetrical snow load was not possible to calculate by hand.

Creep caused the structure to deflect symmetrically downwards, increasing deflection as the
Young’s modulus decreased. The structure subsequently lost stiffness and the elastic stability
load decreased linearly. However, the reduction was less than the reduction caused by the
geometrical imperfections. The capacity was further reduced when creep and imperfections
were combined. However, the two did not have any synergistic effect. Meaning, the critical
loads caused by only applying imperfections were always reduced by a value less than the
maximum creep reduction in table 8.3.

The study has shown that settlements, both radially and vertically, cause little to none impact
on the elastic stability, within the range investigated. Even when boundaries were pushed
with seemingly extreme settlements, the difference in elastic collapse load was negligible.
While it can be concluded that the elastic stability remains unaffected. It is, however,
reasonable to suspect the stress distribution to be affected, possibly increasing the stresses
such that the material strength capacity is insufficient. This would, however, require more
information about the actual ground conditions in order to find a reasonable limit in total
settlement.

The main question was whether this dome is feasible to build, primarily from a stability point
of view, but also in terms of material failure. The critical stability safety factor, assuming
rigid connections, was at least 2.5, 3, and 2.9, for the worst most severe initial imperfection in
combination with the lowest Young’s modulus in load case one, two and three, respectively.
The global elastic stability for the Geodesic dome was studied thoroughly and a stability
failure envelope was created. A global stability failure therefore seems to be unlikely.

The material failure was more critical with stresses reaching the utilisation limit at the given
design loads. Given that many stress inducing factors remain to be studied, it cannot be
said for certain that this cross section is suitable. However the stresses could remain within
the capacity of the material, if stringent imperfection controls were implemented, or, if the
dome was placed in a different snow zone, with a lower design load.
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Chapter 11

Proposed further research

Connection fixity
The connections in the studied dome were assumed to be rigid. This was, of course, a sim-
plification that needs to be studied further, specifically, would the global elastic stability be
reduced significantly if there was some rotation in the connections? This should ideally be
done in conjunction with a laboratory test regarding the rotational stiffness of the connection.
It is, of course, possible to perform another parametric study, but the critical load in the
range from pinned to fixed could be too large, other than possibly obtaining a lower bound
value.

Rise to span ratio
The Geodesic dome proposed has a height of over 90 metres, which could create an unneces-
sarily large indoor volume or possibly cause problems during construction. It should therefore
be studied how the rise and span ration relates to both the stability and the stresses, which
has already be done for other geometries by Pan[23] and Bulenda[42]. They suggest that the
dome will be less stable and that the stresses will increase.

Double layer
The cross-section used in this thesis was 0.8x1.6 (wxh), resulting in a quite heavy structure.
Further, the main issue was the stresses induced by the bending moments and not the axial
stress induced by the normal forces. It could therefore be possible to improve the utiliza-
tion of the material by introducing a truss system, and thus creating a double-layer dome.
Double-layer systems are less imperfection prone according to Gioncu[38], which needs to be
verified for this particular geometry.

Bracing stiffness
The bracing was modelled with discrete points not allowing any rotation, this made the as-
sumption that the roof structure could provide the necessary stiffness to support the bracing
purlins. This should be looked at thoroughly because it is possible to get a torsional stability
failure, which occurs at a lower imposed load, if this assumption is false.
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Proposed further research

Wind
Makowski[1] stated that any dome design should include the effect of wind. He also argued
that it is difficult to predict the actual pressure distribution and that some assumed pressure
distributions have turned out to be false in light of wind tunnel tests. The Eurocode[66] has a
proposed wind distribution, it is however uncertain if it applies to such large scale structures.
It is therefore pertinent to perform a wind tunnel test to understand the effect of wind.
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Appendix A

Verification of Abaqus

A.1 Column and arch

Geometry & material

A linear buckling analysis was performed on a 5 m tall simply supported column in com-
pression and an arch with uniformly distributed load over a span of 20 m and rise of 6 m.
The material was set to isotropic with E = 13 GPa and v = 0. The column had a quadratic
section with side 0.2 m while the arch had bxh = 0.2x0.5 m2.

Abaqus simulation

Both cases were modeled as a wire of beam elements in 2D-space, i.e. type B21. The number
of nodes were varied as a parametric study to check its convergence.

linear perturbation -> buckle were chosen in step-module, with Lanczos algorithm. The
eigenvalue produced as a result corresponds to the buckling load, given in N for the column,
and in N/m for the arch.

Hand calculations

The buckling load for the simply supported column corresponds to one of Euler’s buckling
load cases where the critical length is the same as the original, i.e. β = 1. The buckling load
is calculated in eq. (A.1).

Pcr = π2EI

(βl)2 = π2 · 130 · 109 · 0.24

52 · 12 = 684.3 kN (A.1)
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A.1 Column and arch Verification of Abaqus

The linear buckling load for a uniformly compressed circular arch is determined by eq. (A.2)
by Timoshenko[29], where l in this case corresponds to the span of 20 m. The factor γ2 is
governed by the rise/span and hinge configuration, which in this case is a two-hinged arch.
According to Timoshenko[29] γ2 = 40.9.

qcr = γ2
EI

l3
= 40.9 · 13e9 · 0.2 · 0.53

203 · 12 = 138.5kN/m (A.2)

Conclusion

A mesh study was performed to verify the program’s concordance with Euler buckling and
Timoshenko’s buckling equation for circular arches subjected to uniform compression.
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Figure A1: Critical loads for a column and an arch

The result of this is that the numerical solution in Abaqus is in need of several nodes along
the arch or column in order to capture the theoretical values. At least 20 nodes for the
column would be sufficient, while the arch should have 30 or closer to 40.
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Figure A3: Load deflection curves for mode shape 1, fig. 8.5a, in load case 1. Initial imperfection D/150 to
no imperfection
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Figure A4: Load deflection curves for mode shape 3, fig. 8.5g, in load case 1. Initial imperfection D/150 to
no imperfection
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Figure A5: Load deflection curves for mode shape 4, fig. 8.6b, in load case 2. Initial imperfection D/150 to
no imperfection
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Figure A6: Load deflection curves for mode shape 1, fig. 8.5c, in load case 3. Initial imperfection D/150 to
no imperfection
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Figure A7: Load deflection curves for mode shape 2, fig. 8.5f, in load case 3. Initial imperfection D/150 to
no imperfection
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Appendix C

Matlab Code

C.1 General scripts

C.1.1 Generating beam elements

C.1.2 Linear buckling

function makeinput_linearbuckling(filnamn,All_Nodes,Main_Nodes,
Topology_Matrix,Topology_Matrix_All_El,density,
h,b,section_A,I_11,I_22,J,loaded_members,redfac,boundary,div,
description,length_quota)

if (exist([filnamn,'.inp']))
delete([filnamn,'.inp']);

end
diary([filnamn,'.inp'])

disp('*HEADING');
disp(description);
disp('SI units (kg, m, s, N)')
disp('1-axis horizontal, 2-axis vertical')
disp('*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES')
disp('**')
disp('** Model definition')
disp('**')

Dofload=1:length(Main_Nodes);
Dofload(boundary)=[];
for i=Dofload

disp(['*NODE, NSET=Mainnode-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),

', ',sprintf('%1.6f',(All_Nodes(i,3))),', ',sprintf('%1.6f',
(All_Nodes(i,2)))];
disp(node)

end
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disp('**')
for i=boundary

disp(['*NODE, NSET=Base-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),

', ',sprintf('%1.6f',(All_Nodes(i,3))),', ',sprintf('%1.6f',
(All_Nodes(i,2)))];
disp(node)

end

start_i=length(Main_Nodes);
for i=1:length(Topology_Matrix)

disp('**')
disp(['*NODE, NSET=Node-set-',num2str(i)])
for j=1:div-1

node=[sprintf('%d',start_i+j),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,1))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,3))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,2)))];

disp(node)
end
start_i=start_i+j;

end
disp('*ELEMENT, TYPE=B31, ELSET=FRAME')
for i=1:length(Topology_Matrix_All_El)

element=[sprintf('%d',Topology_Matrix_All_El(i,1)),
', ',sprintf('%d',(Topology_Matrix_All_El(i,2))),', ',
sprintf('%d',(Topology_Matrix_All_El(i,3)))];

disp(element)
end

% %------------------------------- GENERAL SECTION-----------------------
for i=1:length(Topology_Matrix)
disp(['*Elset, elset=Set-',num2str(i),', generate'])
disp([num2str(div*(i-1)+1),', ',num2str(div*i),', 1'])
disp('** Section: BEAMUS Profile: GENERAL')
disp(['*Beam General Section, elset=Set-',num2str(i),

', poisson=0.3, density=',num2str(density),', section=GENERAL'])
disp([num2str(section_A),', ',num2str(I_22),', 0., ',num2str(I_11),', ',

num2str(J)])
n1=Main_Nodes(Topology_Matrix(i,2),:);
n2=Main_Nodes(Topology_Matrix(i,3),:);
nm=(n1+n2)*0.5;
nm=[nm(1) nm(3) nm(2)];
nm_norm=nm*1/norm(nm);
disp([sprintf('%d',(nm_norm(1))),

', ',sprintf('%d',(nm_norm(2))),', ',sprintf('%d',(nm_norm(3)))]);
disp('10.8e9, 4.212e9')
end

disp('*MATERIAL, NAME=GLULAM')
disp('*DENSITY')
disp(num2str(density))
disp('*ELASTIC')
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disp('10.8E9, 0.3')
disp('**')
disp('** History data')
disp('**')
disp('*BOUNDARY')
for i=1:length(boundary)

bc=[sprintf('%d',boundary(i)),', ','ENCASTRE'];
disp(bc)

end
disp('**')

for i=Dofload
disp('**')
disp(['*TRANSFORM,NSET=Mainnode-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=Main_Nodes(i,:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),

', ',sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),
', ',sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])
node=[sprintf('%d',i),', 4'];
disp(node)

end

start_i=length(Main_Nodes)+1;
startind=length(Main_Nodes)+round(div/2);
j=startind:div-1:length(All_Nodes);
for i=1:length(Topology_Matrix)

disp(['*TRANSFORM,NSET=Node-set-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=All_Nodes(Topology_Matrix_All_El(j(i),2),:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),

', ',sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),
', ',sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])
for k = start_i+1:4:start_i+div-2

node=[sprintf('%d',k),', 4'];
disp(node)

end
start_i=start_i+div-1;

end
disp('**')
disp('** STEP: Static self weight')
disp('** ')
disp('*Step, name="Static self weight", nlgeom=NO')
disp('*Static')
disp('1., 1., 1e-05, 1.')
disp('** ')
disp('** LOADS')
disp('** ')
disp('** Name: self weight Type: Gravity')
disp('*Dload')
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disp(', GRAV, 9.81, 0., -1., 0.')
disp('** ')
disp('** OUTPUT REQUESTS')
disp('** ')
disp('*Restart, write, frequency=0')
disp('** ')
disp('** FIELD OUTPUT: F-Output-2')
disp('** ')
disp('*Output, field, variable=PRESELECT')
disp('** ')
disp('** HISTORY OUTPUT: H-Output-1')
disp('** ')
disp('*Output, history, variable=PRESELECT')
disp('*End Step')
disp('*STEP')
disp('Buckling analysis')
disp('*BUCKLE, EIGENSOLVER=LANCZOS')
disp('10,')

disp('*DLOAD')
for i=1:length(Topology_Matrix)

if ismember(i,loaded_members)
disp(['Set-',num2str(i),', PY, ',num2str(-1*length_quota(i))])

else
disp(['Set-',num2str(i),', PY, ',num2str(-1*redfac*length_quota(i))])

end
end

disp('*******************')
disp('*Output, field, variable=all')
disp('*FILE FORMAT, ASCII')
disp('*NODE FILE')
disp('U')
disp('*END STEP')
diary off
%-----------------------------------------------------------------------------------------------------------------

C.1.3 Non-linear buckling

function makeinput_riks(filename,All_Nodes,Main_Nodes,Topology_Matrix,
Topology_Matrix_All_El,density,h,b,section_A,I_11,I_22,J,loaded_members,
redfac,boundary,div,description,eigenvalue,length_quota,
mode,scaling,jobname_linbuck)

if (exist([filename,'.inp']))
delete([filename,'.inp']);

end

diary([filename,'.inp'])
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disp('*HEADING');
disp(description);
disp('SI units (kg, m, s, N)')
disp('1-axis horizontal, 2-axis vertical')
disp('*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES')
disp('**')
disp('** Model definition')
disp('**')
Dofload=1:length(Main_Nodes);
Dofload(boundary)=[];
for i=Dofload

disp(['*NODE, NSET=Mainnode-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),

', ',sprintf('%1.6f',(All_Nodes(i,3))),', ',
sprintf('%1.6f',(All_Nodes(i,2)))];

disp(node)
end
disp('**')
for i=boundary

disp(['*NODE, NSET=Base-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),

', ',sprintf('%1.6f',(All_Nodes(i,3))),', ',
sprintf('%1.6f',(All_Nodes(i,2)))];

disp(node)
end

start_i=length(Main_Nodes);
for i=1:length(Topology_Matrix)

disp('**')
disp(['*NODE, NSET=Node-set-',num2str(i)])
for j=1:div-1

node=[sprintf('%d',start_i+j),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,1))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,3))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,2)))];

disp(node)
end
start_i=start_i+j;

end

disp('*ELEMENT, TYPE=B31, ELSET=FRAME')
for i=1:length(Topology_Matrix_All_El)

element=[sprintf('%d',Topology_Matrix_All_El(i,1)),', ',
sprintf('%d',(Topology_Matrix_All_El(i,2))),', ',
sprintf('%d',(Topology_Matrix_All_El(i,3)))];

disp(element)
end

%-------------------------------- GENERAL SECTION--------------------------
for i=1:length(Topology_Matrix)

disp(['*Elset, elset=Set-',num2str(i),', generate'])
disp([num2str(div*(i-1)+1),', ',num2str(div*i),', 1'])
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disp('** Section: BEAMUS Profile: GENERAL')
disp(['*Beam General Section, elset=Set-',num2str(i),

', poisson=0.3, density=',num2str(density),', section=GENERAL'])
disp([num2str(section_A),', ',num2str(I_22),', 0., ',

num2str(I_11),', ',num2str(J)])
n1=Main_Nodes(Topology_Matrix(i,2),:);
n2=Main_Nodes(Topology_Matrix(i,3),:);
nm=(n1+n2)*0.5;
nm=[nm(1) nm(3) nm(2)];
nm_norm=nm*1/norm(nm);
disp([sprintf('%d',(nm_norm(1))),', ',sprintf('%d',
(nm_norm(2))),', ',sprintf('%d',(nm_norm(3)))]);
disp('10.8e9, 4.212e9')

end
%----------------------------------------------------------------------------------------------------------------

disp('**')
disp('** History data')
disp('**')
disp('*BOUNDARY')
for i=1:length(boundary)

bc=[sprintf('%d',boundary(i)),', ','ENCASTRE'];
disp(bc)

end
disp('**')

for i=Dofload
disp('**')
disp(['*TRANSFORM,NSET=Mainnode-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=Main_Nodes(i,:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),

', ',sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),
', ',sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])

node=[sprintf('%d',i),', 4'];
disp(node)

end

start_i=length(Main_Nodes)+1;
startind=length(Main_Nodes)+round(div/2);
j=startind:div-1:length(All_Nodes);
for i=1:length(Topology_Matrix)
disp(['*TRANSFORM,NSET=Node-set-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=All_Nodes(Topology_Matrix_All_El(j(i),2),:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),', ',

sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),', ',
sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])
for k=start_i+1:4:start_i+div-2

node=[sprintf('%d',k),', 4'];
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disp(node)
end
start_i=start_i+div-1;
end
disp(['*IMPERFECTION, FILE=',jobname_linbuck,', STEP=2'])
disp([sprintf('%d',mode),', ',sprintf('%1.2f',scaling)])
disp('** STEP: Static egentyngd')
disp('** ')
disp('*Step, name="Static egentyngd", NLGEOM=YES, INC=100')
disp('*Static')
disp('1.E-5, 1.0, 1.E-5, 0.1, 1.0')
disp('** ')
disp('** LOADS')
disp('** ')
disp('** Name: egentyngd Type: Gravity')
disp('*Dload')
disp(', GRAV, 9.81, 0., -1., 0.')
disp('** ')
disp('** OUTPUT REQUESTS')
disp('** ')
disp('*Restart, write, frequency=0')
disp('** ')
disp('** FIELD OUTPUT: F-Output-2')
disp('** ')
disp('*Output, field, variable=all')
disp('** ')
disp('** HISTORY OUTPUT: H-Output-1')
disp('** ')
disp('*Output, history, variable=all')
disp('*End Step')
disp('*STEP, NAME="Variabel Riks", NLGEOM=YES, INC=200')
disp('*STATIC, RIKS')
disp('1.E-5, 1.0, 1.E-5, 0.01, 1.0')

disp('*DLOAD')
for i=1:length(Topology_Matrix)

if ismember(i,loaded_members)
disp(['Set-',num2str(i),', PY, ...

',num2str(-eigenvalue*length_quota(i))])
else

disp(['Set-',num2str(i),', PY, ...
',num2str(-eigenvalue*redfac*length_quota(i))])

end
end
disp('** ')
disp('** OUTPUT REQUESTS')
disp('** ')
disp('** ')
disp('** FIELD OUTPUT: F-Output-2')
disp('** ')
disp('*Output, field, variable=all')
disp('*NODE PRINT')
disp('U,')
disp('RF,')
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disp('*Output, field, variable=all')
disp('*EL PRINT')
disp('S,')
disp('SF,')
disp('SM,')
disp('** ')
disp('** HISTORY OUTPUT: H-Output-1')
disp('** ')
disp('*Output, history, variable=all')
disp('**********************************')
disp('** OUTPUT FOR ABAQUS QA PURPOSES')
disp('**********************************')
disp('*FILE FORMAT, ASCII')
disp('*EL FILE')
disp('S,')
disp('SF,')
disp('*NODE FILE')
disp('U, RF')
disp('*END STEP')

diary off

C.1.4 Non-linear creep buckling

function makeinput_riks_creep(filnamn,All_Nodes,Main_Nodes,Topology_Matrix,
Topology_Matrix_All_El,density,h,b,section_A,I_11,I_22,J,loaded_members,
redfac,boundary,div,description,eigenvalue,length_quota,sub,
jobname_linbuck,E,G,mode,scaling)

if (exist([filnamn,'.inp']))
delete([filnamn,'.inp']);

end

diary([filnamn,'.inp'])

disp('*HEADING');
disp(description);
disp('SI units (kg, m, s, N)')
disp('1-axis horizontal, 2-axis vertical')
disp('*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES')
disp('**')
disp('** Model definition')
disp('**')
Dofload=1:length(Main_Nodes);
Dofload(boundary)=[];
for i=Dofload

disp(['*NODE, NSET=Mainnode-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),', ',

sprintf('%1.6f',(All_Nodes(i,3))),', ',
sprintf('%1.6f',(All_Nodes(i,2)))];

disp(node)
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end
disp('**')
for i=boundary

disp(['*NODE, NSET=Base-',num2str(i)])
node=[sprintf('%d',i),', ',sprintf('%1.6f',(All_Nodes(i,1))),', ',

sprintf('%1.6f',(All_Nodes(i,3))),', ',
sprintf('%1.6f',(All_Nodes(i,2)))];

disp(node)
end

start_i=length(Main_Nodes);
for i=1:length(Topology_Matrix)

disp('**')
disp(['*NODE, NSET=Node-set-',num2str(i)])
for j=1:div-1

node=[sprintf('%d',start_i+j),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,1))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,3))),', ',
sprintf('%1.6f',(All_Nodes(start_i+j,2)))];

disp(node)
end
start_i=start_i+j;

end

disp('*ELEMENT, TYPE=B31, ELSET=FRAME')
for i=1:length(Topology_Matrix_All_El)

element=[sprintf('%d',Topology_Matrix_All_El(i,1)),', ',
sprintf('%d',(Topology_Matrix_All_El(i,2))),', ',
sprintf('%d',(Topology_Matrix_All_El(i,3)))];

disp(element)
end

%-------------------------------- GENERAL SECTION--------------------------
for i=1:length(Topology_Matrix)

disp(['*Elset, elset=Set-',num2str(i),', generate'])
disp([num2str(div*(i-1)+1),', ',num2str(div*i),', 1'])
disp('** Section: BEAMUS Profile: GENERAL')
disp(['*Beam General Section, elset=Set-',num2str(i),

', poisson=0.3, density=',num2str(density),
', section=GENERAL, dependencies=1'])

disp([num2str(section_A),', ',num2str(I_22),', 0., ',
num2str(I_11),', ',num2str(J)])

n1=Main_Nodes(Topology_Matrix(i,2),:);
n2=Main_Nodes(Topology_Matrix(i,3),:);
nm=(n1+n2)*0.5;
nm=[nm(1) nm(3) nm(2)];
nm_norm=nm*1/norm(nm);
disp([sprintf('%d',(nm_norm(1))),', ',sprintf('%d',(nm_norm(2))),', ',

sprintf('%d',(nm_norm(3)))]);
disp([sprintf('%1.1f',(E)),', ',sprintf('%1.6f',(G)),', 0, 0, 1'])
disp('10.8e9, 4.212e9, 0, 0, 2')

end
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disp('**')
disp('** History data')
disp('**')
disp('*BOUNDARY')
for i=1:length(boundary)

bc=[sprintf('%d',boundary(i)),', ','ENCASTRE'];
disp(bc)

end
disp('**')

for i=Dofload
disp('**')
disp(['*TRANSFORM,NSET=Mainnode-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=Main_Nodes(i,:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),', ',

sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),', ',
sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])

node=[sprintf('%d',i),', 4'];
disp(node)

end

start_i=length(Main_Nodes)+1;
startind=length(Main_Nodes)+round(div/2);
j=startind:div-1:length(All_Nodes);
for i=1:length(Topology_Matrix)
disp(['*TRANSFORM,NSET=Node-set-',num2str(i),',TYPE=S'])
coord1=[0 0 0];
coord2=All_Nodes(Topology_Matrix_All_El(j(i),2),:);
print=[sprintf('%1.6f',coord1(1)),', ',sprintf('%1.6f',coord1(3)),

', ',sprintf('%1.6f',coord1(2)),', ',sprintf('%1.6f',coord2(1)),', ',
sprintf('%1.6f',coord2(3)),', ',sprintf('%1.6f',coord2(2))];

disp(print)
disp(['*BOUNDARY'])
for k=start_i+1:4:start_i+div-2

node=[sprintf('%d',k),', 4'];
disp(node)

end
start_i=start_i+div-1;
end

disp('*Initial conditions, type=field, variable=1')
for i=Dofload

disp(['Node-set-',num2str(i),', ','1'])
end
for i=boundary

disp(['Base-',num2str(i),', ','1'])
end
for i=1:length(Topology_Matrix)

disp(['Node-set-',num2str(i),', ','1'])
end
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disp(['*IMPERFECTION, FILE=',jobname_linbuck,', STEP=2'])
disp([sprintf('%d',mode),', ',sprintf('%1.1f',scaling)])
disp('** STEP: Static egentyngd')
disp('**')
disp('*Step, name="Static egentyngd", NLGEOM=YES, INC=100')
disp('*Static')
disp('1.E-5, 1.0, 1.E-5, 0.1, 1.0')
disp('** ')
disp('** LOADS')
disp('** ')
disp('** Name: egentyngd Type: Gravity')
disp('*Dload')
disp(', GRAV, 9.81, 0., -1., 0.')
disp('** ')
disp('** OUTPUT REQUESTS')
disp('** ')
disp('*Restart, write, frequency=0')
disp('** ')
disp('** FIELD OUTPUT: F-Output-2')
disp('** ')
disp('*Output, field, variable=all')
disp('** ')
disp('** HISTORY OUTPUT: H-Output-1')
disp('** ')
disp('*Output, history, variable=all')
disp('*End Step')
disp('*STEP, NAME="Variabel Riks", NLGEOM=YES, INC=150')
disp('*STATIC, RIKS')
disp('1.E-5, 1.0, 1.E-5, 0.05, 1.0')
disp('*Field,variable=1')
for i=Dofload

disp(['Node-set-',num2str(i),', ','2'])
end
for i=boundary

disp(['Base-',num2str(i),', ','2'])
end
for i=1:length(Topology_Matrix)

disp(['Node-set-',num2str(i),', ','2'])
end
disp('*DLOAD')
for i=1:length(Topology_Matrix)

if ismember(i,loaded_members)
disp(['Set-',num2str(i),', PY, ...

',num2str(-eigenvalue*length_quota(i))])
else

disp(['Set-',num2str(i),', PY, ...
',num2str(-eigenvalue*redfac*length_quota(i))])

end
end

disp('*NODE PRINT')
disp('U,')
disp('RF,')
disp('*EL PRINT')
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disp('S,')
disp('SF,')
disp('SM,')
disp('**********************************')
disp('** OUTPUT FOR ABAQUS QA PURPOSES')
disp('**********************************')
disp('*EL FILE')
disp('S,')
disp('*NODE FILE')
disp('U, RF')
disp('*END STEP')

diary off

C.2 Kiewitt

C.2.1 Main code

close all
clear all
div=20;
radius=150;
%% Section controls
b = 0.8; % b=0.8;
h = 0.8; % h=0.8;
parts=2;
sectiontype=2;
[section_A,I_11,I_22,I_12,J]=makesection(b,h,sectiontype,parts);
%------------------------------
% type s r
% 1 5 8
% 2 6 7
% 3 10 6
% 4 10 7
% 5 8 6
% 6 8 8
% 7 8 9
%------------------------------
type=7; % TYPE
loadcase = 1; % LOADCASE
redfac=0;
[Sector_coordinates ,R, rings ,sectors]=KiewittNodes(type);

Dof=1:length(Sector_coordinates);
[Topology_Matrix, Main_Nodes, Dof_big, boundary, loaded_members]
=KiewittElements(type,loadcase,Sector_coordinates,Dof, R);

[Ex,Ey,Ez]=coordxtr(Topology_Matrix,Main_Nodes,Dof_big',2);
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Dof=Dof_big;
oldDof=Dof;

[Ex,Ey,Ez]=coordxtr(Topology_Matrix(loaded_members,:),Main_Nodes,oldDof',2);

[Topology_Matrix_All_El,Dof,All_Nodes]=beamgen(Dof,Topology_Matrix,Main_Nodes,div);
[Ex,Ey,Ez]=coordxtr(Topology_Matrix_All_El,All_Nodes,Dof',2);

for i=1:length(Topology_Matrix)
distance(i)=sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)
-Main_Nodes(Topology_Matrix(i,3),2))^2
+(Main_Nodes(Topology_Matrix(i,2),3)
-Main_Nodes(Topology_Matrix(i,3),3))^2);

distance_xy(i) = sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)
-Main_Nodes(Topology_Matrix(i,3),2))^2);

end
% calculate the relation between the 2D and 3D lengths
length_quota = distance_xy./distance;

[density ,q_egt]=fakedense(distance,section_A,radius);
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C.2.2 Kiewitt nodes

function [Coord_xyz, R, s, r]=KiewittNodes(type)

%% External parameters. Geometry
if type == 1

s=5 ;
r=8;

elseif type==2
s=6;
r=7;

elseif type==3
s=10;
r=6;

elseif type==4
s=10;
r=7;

elseif type==5
s=8;
r=6;

elseif type==6
s=8;
r=8;

elseif type==7
s=8;
r=9;

end

span=300;
ratio = 0.3;
h = span*ratio;
R = h/2 + span^2/(8*h);

% Calculate number of nodes on each ring and place inside a vector
% calculate the initial angle on each ring, in radians
for i=1:r

nodes_per_ring(i) = i*s;
alpha(i) = (360)/nodes_per_ring(i);
radius(i) = span/2* i/r;

end

nodes_per_seg = 1:r-1;
radii=[radius']; ...
index=r+1;
for i=1:r-1

for j=1:nodes_per_seg(i)
radii(index+j-1) = radius(i+1);

end
index=j+index;

150



Matlab Code C.2 Kiewitt

end
index=r+1;
angles = [zeros(r,1)];
for i=1:r-1

for j=1:nodes_per_seg(i)
angles(index+j-1) = alpha(i+1)*j;

end
index=j+index;

end
nn_seg = length(radii);

angles= angles';
% Coordinates
for m=1:length(angles)

x(m) = radii(m)*cosd(angles(m));
y(m) = radii(m)*sind(angles(m));
z(m) = sqrt(R^2- x(m)^2-y(m)^2);

end
Coord_xyz = [x', y', z'];
Coord_dominus=[Coord_xyz];
for i=1:s-1

theta= (i)*pi*2/s;
for j=1:length(x)

P=[Coord_xyz(j,1) Coord_xyz(j,2) Coord_xyz(j,3)];
P = P*[cos(theta),sin(theta),0;-sin(theta),cos(theta),0;0,0,1];
Coord_dome(j,:) = [P];

end
Coord_dominus=[Coord_dominus; Coord_dome];

end

Coord_dominus = [Coord_dominus; 0, 0, R];
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C.3 Geodesic

%%%%%%%%%%%%%% Welcome %%%%%%%%%%%%%%%
format long, close all, clear all, clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% GEODESIC DOME GENERATOR %%%%%%
%%%%%% Requires CALFEM %%%%%%%%%%%%%%%
% http://www.solid.lth.se/fileadmin/hallfasthetslara/..
% ...utbildning/kurser/FHL064_FEM/calfem34.pdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Controls %%%%%%%%%%%%%%%
sub = 11; % Number of divisons (8, 9, 10 or 11)
radius_dome = 150; % Radius of the dome

% 1 = UDL over entire dome
% 2 = 1*UDL over half dome. 0.5*UDL over second half
% 3 = UDL on 1 sector of 70 degrees.
loadcase = 1; % 1-3
% Asym load reduction factor
redfac = 0;
% Number of B31 Elements per beam
div = 20;

%% Section controls
b = 0.8; % b=0.8;
h = 0.8; % h=0.8;
parts=2;
sectiontype=2;
h_tot= 2.*(h+move_vertically);

%% Geometrical parameters
% phi = (1+ sqrt(5))/2;
S=2;
t1 = 2 * pi / 5 ;
t2 = pi / 10;
t4 = pi / 5 ;
t3 = -3 * pi / 10;
R = (S/2) / sin(t4);
Ha = cos(t4) * R;
Cx = R * cos(t2);
Cy = R * sin(t2);
H1 = sqrt(S * S - R * R);
H2 = sqrt((Ha + R) * (Ha + R) - Ha * Ha);
Z2 = (H2 - H1) / 2;
Z1 = Z2 + H1;

A = [0, 0, Z1];
B = [ 0, R, Z2];
C = [ Cx, Cy, Z2];
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D = [ S/2, -Ha, Z2];
E =[ -S/2, -Ha, Z2];
F = [ -Cx, Cy, Z2];
G =[ 0, -R, -Z2];
H = [-Cx, -Cy, -Z2];
I = [-S/2, Ha, -Z2];
J =[ S/2, Ha, -Z2];
K =[ Cx, -Cy, -Z2];
L =[ 0, 0, -Z1];

triangles = [A D C;
A C B;
A B F;
A F E;
A E D];

%The varaiable Main_nodes denote the points where the beams are connected
Main_Nodes=[];
ex_supportus=[];
[len_tri,~]=size(triangles);

for i=1:len_tri
[V, radius_icosahedron, ex_support]=makevertex(triangles(i,:),sub);
Main_Nodes=[Main_Nodes; V];
ex_supportus=[ex_supportus; ex_support];

end
Main_Nodes=[0 0 1; Main_Nodes; ex_supportus];
Main_Nodes=Main_Nodes./radius_icosahedron*radius_dome;

Dof=1:length(Main_Nodes);
[Topology_Matrix boundary loaded_members ...

]=geodesic_elements(sub,loadcase,Main_Nodes,Dof);

oldDof=Dof;
%Generating the 20 B31 intermediate elements on every beam, controlled by
%div
[Topology_Matrix_All_El,Dof,All_Nodes]=beamgen(Dof,Topology_Matrix,Main_Nodes,div);
[Ex,Ey,Ez]=coordxtr(Topology_Matrix_All_El,All_Nodes,Dof',2);
% Calcuate the distance in 3D and 2D
for i=1:length(Topology_Matrix)

distance(i)=sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)-Main_Nodes(Topology_Matrix(i,3),2))^2
+(Main_Nodes(Topology_Matrix(i,2),3)-Main_Nodes(Topology_Matrix(i,3),3))^2);

distance_xy(i) = sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)-Main_Nodes(Topology_Matrix(i,3),2))^2);

end
% calculate the relation between the 2D and 3D lengths
length_quota = distance_xy./distance;

153



C.3 Geodesic Matlab Code

[section_A,I_11,I_22,I_12,J]=makesection(b,h,sectiontype,parts);
[density , q_egt]=fakedense(distance,section_A,radius_dome,sub);
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C.4 Three-way grid

clc
clear all
close all
r = 150; % Radius
w = 10; % number of elements along from the apex to the base along a ...

meridional
loadcase=2;
redfac=0;
div=20;
%------------------------------
% Section controls
%------------------------------
b = 0.8; % b=0.8;
h = 0.8; % h=0.8;
parts=2;
sectiontype=2;
h_tot= 2.*(h+move_vertically);
[section_A,I_11,I_22,I_12,J]=makesection(b,h,sectiontype,
move_vertically,move_sideways,parts);
%------------------------------

sectors = 6;
phi = 2*pi/6;
ratio = 0.3;
h=ratio*2*r;
R = h/2 + (2*r)^2/(8*h); % Radius of the sphere in the XY-plane

A = [r*cos(0) r*sin(0)];
B = [r*cos(phi) r*sin(phi)];
O = [0 0];
anglevec = (pi/33):(pi/33):pi/3;
for i=1:w

angle = anglevec(i);
S(i,:) = [r*cos(angle) r*sin(angle) (R-h)];

end

%Edge coordinates XY-plane
for v=1:w

AO_e(v,:) = ( v*A+ (w-v)*O)/w;
BO_e(v,:) = ( v*B+ (w-v)*O)/w;
AB_e(v,:) = ( (w-v)*A+ v*B)/w;

end

%Intermediate nodes Name: O_level_A_B in a triangle
O_211 = (AO_e(2,:)+ BO_e(2,:))/2; %level 2
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O_321 = (2*AO_e(3,:)+ BO_e(3,:))/3; %level 3
O_312 = (AO_e(3,:)+ 2*BO_e(3,:))/3; %level 3

O_431 = (3*AO_e(4,:)+ 1*BO_e(4,:))/4; %level 4
O_422 = (2*AO_e(4,:)+ 2*BO_e(4,:))/4; %level 4
O_413 = (1*AO_e(4,:)+ 3*BO_e(4,:))/4; %level 4

O_541 = (4*AO_e(5,:)+ 1*BO_e(5,:))/5; %level 5
O_532 = (3*AO_e(5,:)+ 2*BO_e(5,:))/5; %level 5
O_523 = (2*AO_e(5,:)+ 3*BO_e(5,:))/5; %level 5
O_514 = (1*AO_e(5,:)+ 4*BO_e(5,:))/5; %level 5

O_651 = (5*AO_e(6,:)+ 1*BO_e(6,:))/6; %level 6
O_642 = (4*AO_e(6,:)+ 2*BO_e(6,:))/6; %level 6
O_633 = (3*AO_e(6,:)+ 3*BO_e(6,:))/6; %level 6
O_624 = (2*AO_e(6,:)+ 4*BO_e(6,:))/6; %level 6
O_615 = (1*AO_e(6,:)+ 5*BO_e(6,:))/6; %level 6

O_761 = (6*AO_e(7,:)+ 1*BO_e(7,:))/7; %level 7
O_752 = (5*AO_e(7,:)+ 2*BO_e(7,:))/7; %level 7
O_743 = (4*AO_e(7,:)+ 3*BO_e(7,:))/7; %level 7
O_734 = (3*AO_e(7,:)+ 4*BO_e(7,:))/7; %level 7
O_725 = (2*AO_e(7,:)+ 5*BO_e(7,:))/7; %level 7
O_716 = (1*AO_e(7,:)+ 6*BO_e(7,:))/7; %level 7

O_871 = (7*AO_e(8,:)+ 1*BO_e(8,:))/8; %level 8
O_862 = (6*AO_e(8,:)+ 2*BO_e(8,:))/8; %level 8
O_853 = (5*AO_e(8,:)+ 3*BO_e(8,:))/8; %level 8
O_844 = (4*AO_e(8,:)+ 4*BO_e(8,:))/8; %level 8
O_835 = (3*AO_e(8,:)+ 5*BO_e(8,:))/8; %level 8
O_826 = (2*AO_e(8,:)+ 6*BO_e(8,:))/8; %level 8
O_817 = (1*AO_e(8,:)+ 7*BO_e(8,:))/8; %level 8

O_981 = (8*AO_e(8,:)+ 1*BO_e(8,:))/8; %level 8
O_972 = (7*AO_e(8,:)+ 2*BO_e(8,:))/8; %level 8
O_963 = (6*AO_e(8,:)+ 3*BO_e(8,:))/8; %level 8
O_954 = (5*AO_e(8,:)+ 4*BO_e(8,:))/8; %level 8
O_945 = (4*AO_e(8,:)+ 5*BO_e(8,:))/8; %level 8
O_936 = (3*AO_e(8,:)+ 6*BO_e(8,:))/8; %level 8
O_927 = (2*AO_e(8,:)+ 7*BO_e(8,:))/8; %level 8
O_918 = (1*AO_e(8,:)+ 8*BO_e(8,:))/8; %level 8

% Collect all the XY-nodes into one matrix
Coord_Sector_xy = [O; AO_e; AB_e; O_211; O_321; O_312; O_431; O_422; ...

O_413;...
O_541; O_532; O_523; O_514; O_651; O_642; O_633; O_624; O_615;
O_761; O_752; O_743; O_734; O_725; O_716;
O_871; O_862; O_853; O_844; O_835; O_826; O_817;
O_981; O_972; O_963; O_954; O_945; O_936; O_927; O_918
];

for i=1:length(Coord_Sector_xy)
z_coord(i) = sqrt(R^2 - Coord_Sector_xy(i,1)^2- Coord_Sector_xy(i,2)^2);
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Coord_Sector_xyz(i,:) = [Coord_Sector_xy(i,:) z_coord(i)];
end
Coord_Sector_xyz= [Coord_Sector_xyz; S];

Coord_Sector_xyz(length(O)+length(AO_e)+length(AB_e)-1,:)=[];
Coord_Sector_xyz(1,:)=[];
old_coord=Coord_Sector_xyz;
c_z = [Coord_Sector_xyz(:,3); Coord_Sector_xyz(:,3);

Coord_Sector_xyz(:,3); Coord_Sector_xyz(:,3);...
Coord_Sector_xyz(:,3); Coord_Sector_xyz(:,3)];

for i=1:length(El_tria)
Topology_sector(i,:)=[i El_tria(i,:)];

end

lEdof=length(Topology_sector);

Topology_Matrix=[];
Main_Nodes=[Coord_Sector_xyz];

for i=1:5
theta= (i)*pi/3;
for j=1:length(Coord_Sector_xyz)

P=[Coord_Sector_xyz(j,1) Coord_Sector_xyz(j,2) ...
Coord_Sector_xyz(j,3)];

P = P*[cos(theta),sin(theta),0;-sin(theta),cos(theta),0;0,0,1];
Coord_dome(j,:) = [P];

end
Main_Nodes=[Main_Nodes; Coord_dome];
Topology_Matrix=[Topology_Matrix; Topology_sector];

Topology_sector(:,1)=Topology_sector(:,1)+lEdof;
Topology_sector(:,2:end)=Topology_sector(:,2:end)+length(Coord_Sector_xyz);

end
Topology_Matrix=[Topology_Matrix; Topology_sector];

Main_Nodes=[Main_Nodes; 0 0 R];

len_El_fixus=length(El_fixus);
last_el = Topology_Matrix(end,1);
for sec=1:5

j=0;
Elements=Topology_Matrix(end,1)+1:Topology_Matrix(end,1)+len_El_fixus;
for i=Elements

j=j+1;
Topology_Matrix(i,:) =[i El_fixus(j,:)];

end
El_fixus=El_fixus+length(Coord_Sector_xyz);

end

Dof=1:length(Main_Nodes);
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j=0;
for i=Elements(end)+1:Elements(end)+length(El_sist)

j=j+1;
Topology_Matrix(i,:)=[i El_sist(j,:)];

end

Dof=1:length(Main_Nodes);

for i=1:length(Topology_Matrix)
distance(i)=sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)
-Main_Nodes(Topology_Matrix(i,3),2))^2
+(Main_Nodes(Topology_Matrix(i,2),3)
-Main_Nodes(Topology_Matrix(i,3),3))^2);

distance_xy(i) = sqrt((Main_Nodes(Topology_Matrix(i,2),1)
-Main_Nodes(Topology_Matrix(i,3),1))^2
+(Main_Nodes(Topology_Matrix(i,2),2)
-Main_Nodes(Topology_Matrix(i,3),2))^2);

end
length_quota = distance_xy./distance;
[density, q_egt]=fakedense_KW(distance,section_A,r);
oldDof=Dof;

[Topology_Matrix_All_El,Dof,All_Nodes]=beamgen(Dof,Topology_Matrix,Main_Nodes,div);
[Ex,Ey,Ez]=coordxtr(Topology_Matrix_All_El,All_Nodes,Dof',2);
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Input files

The geometry, material, element and element type, and loads were all controlled by input
files. The keywords used as well as a few sample input files are listed below. All the keywords
can be found in the Abaqus Keyword Reference Manual[68].

Keyword[68] used in Abaqus - see appendix C for Matlab scripts and appendix D for sam-
ple input files

*ELEMENT, TYPE=B31, ELSET=FRAME

Keywords[68] used in Abaqus - see appendix C for Matlab scripts and appendix D for sample
input files

*Elset, elset=Set-<Set number>, generate
<First Element>, <Last Element>, <Element Increment>
*Beam General Section, elset=Set-<Set number>, poisson=0.3,
density=<density>, section=GENERAL
<Cross-sectional Area>, <I11>, <I12>, <I22>, <Torsional constant J>
<First direction cosine of the first beam section axis>,
<Second direction cosine of the first beam section axis>,
<Third direction cosine of the first beam section axis>

Keyword[68] used in Abaqus - see appendix C for Matlab scripts and appendix D for sample
input files

*BOUNDARY
<Node number>, ENCASTRE

Keywords[68] used in Abaqus - see appendix C for Matlab scripts and appendix D for sample
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input files

*TRANSFORM,NSET=Node-set-<Set number>, TYPE=S
Global X-coordinate of point a specifying transformation,
Global Y-coordinate of point a specifying transformation,
Global Z-coordinate of point a specifying transformation,
Global X-coordinate of point b specifying transformation,
Global Y-coordinate of point b specifying transformation,
Global Z-coordinate of point b specifying transformation
*BOUNDARY
<Node number>, <4th degree of freedom>

Keyword[68] used in Abaqus - see appendix C for Matlab scripts and appendix D for sample
input files

*IMPERFECTION, FILE=’,<Jobname linear buckling>, STEP=<Step number>
<Mode number>, <Mode shape scaling factor>

D.1 Linear buckling

*HEADING
Geodesic with sub11. h = 0.8. b = 0.8. Truss, Loadcase 2. I_11 = 0.27307
SI units kg, m, s, N
1-axis horizontal, 2-axis vertical
*PREPRINT, ECHO=YES, MODEL=YES, HISTORY=YES
**
** Model definition
**
*NODE, NSET=Mainnode-1
1, 0.000000, 167.705098, 0.000000
*NODE, NSET=Mainnode-2
2, 8.408599, 167.093839, -11.573444
*NODE, NSET=Mainnode-3
.......
366, 61.380875, 82.050085, -132.759827
*NODE, NSET=Mainnode-367
367, 75.677391, 78.680597, -127.307880
**

*NODE, NSET=Base-57
57, 88.167788, 75.000000, -121.352549
*NODE, NSET=Base-68
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68, 107.900970, 75.000000, -104.198756
*NODE, NSET=Base-69
.....
385, -77.255711, 75.000000, -128.575095
*NODE, NSET=Base-386
386, 77.255711, 75.000000, -128.575095
**
*ELEMENT, TYPE=B31, ELSET=FRAME
1, 2, 387
2, 387, 388
.....
20699, 20050, 20051
20700, 20051, 386

*Elset, elset=Set-1, generate
1, 20, 1
** Section: BEAMUS Profile: GENERAL
*Beam General Section, elset=Set-1, poisson=0.3, density=674.0886, section=GENERAL
1.28, 0.068267, 0., 0.27307, 0.11537
7.744053e-02, 9.912830e-01, -1.065877e-01
10.8e9, 4.212e9
....
*Elset, elset=Set-1035, generate
20681, 20700, 1
** Section: BEAMUS Profile: GENERAL
*Beam General Section, elset=Set-1035, poisson=0.3, density=674.0886, section=GENERAL
1.28, 0.068267, 0., 0.27307, 0.11537
4.559942e-01, 4.582229e-01, -7.629555e-01
10.8e9, 4.212e9

**
** History data
**
*BOUNDARY
57, ENCASTRE
68, ENCASTRE
......
386, ENCASTRE
**
**

*TRANSFORM,NSET=Node-set-1,TYPE=S
0.000000, 0.000000, 0.000000, 49.968079, 152.259284, -48.844130
*BOUNDARY
388, 4
392, 4
396, 4
400, 4
404, 4

*TRANSFORM,NSET=Node-set-1035,TYPE=S
0.000000, 0.000000, 0.000000, -0.680270, 167.674535, 0.221033
*BOUNDARY
20034, 4
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D.2 Non-linear buckling - Riks Input files

20038, 4
20042, 4
20046, 4
20050, 4
**
** STEP: Static self weight
**
*Step, name="Static self weight", nlgeom=NO
*Static
1., 1., 1e-05, 1.
**
** LOADS
**
** Name: self weight Type: Gravity
*Dload
, GRAV, 9.81, 0., -1., 0.
**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
**
** FIELD OUTPUT: F-Output-2
**
*Output, field, variable=PRESELECT
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=PRESELECT
*End Step
*STEP
Buckling analysis
*BUCKLE, EIGENSOLVER=LANCZOS
10,
*DLOAD
Set-1, PY, -0.99128
Set-2, PY, -0.99714
.......
*******************
*Output, field, variable=all
*FILE FORMAT, ASCII
*NODE FILE
U
*END STEP

D.2 Non-linear buckling - Riks

The keywords: *NODE, *ELEMENT, *Elset, *BOUNDARY, *TRANSFORM have been
removed since they were identical to the linear buckling input file in appendix D.1. The
keyword *IMPERFECTION and the step *STATIC, RIKS have been added to the input
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file.

.....

*IMPERFECTION, FILE=LinearBuckling, STEP=2
1, -1.0
** STEP: Static egentyngd
**
*Step, name="Static self weight", NLGEOM=YES, INC=100
*Static
1.E-5, 1.0, 1.E-5, 0.1, 1.0
**
** LOADS
**
** Name: egentyngd Type: Gravity
*Dload
, GRAV, 9.81, 0., -1., 0.
**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
**
** FIELD OUTPUT: F-Output-2
**
*Output, field, variable=all
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=all
*End Step
*STEP, NAME="Variabel Riks", NLGEOM=YES, INC=200
*STATIC, RIKS
1.E-5, 1.0, 1.E-5, 0.01, 1.0
*DLOAD
Set-1, PY, -266387.4846
Set-2, PY, -267961.3362
....
**
** OUTPUT REQUESTS
**

...

*END STEP

D.3 Non-linear creep buckling - Riks

.....
*Elset, elset=Set-1, generate
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1, 20, 1
** Section: BEAMUS Profile: GENERAL
*Beam General Section, elset=Set-1, poisson=0.3, density=674.0886, section=GENERAL, dependencies=1
1.28, 0.068267, 0., 0.27307, 0.11537
7.744053e-02, 9.912830e-01, -1.065877e-01
7000000000.0, 2692307692.307692, 0, 0, 1
10.8e9, 4.212e9, 0, 0, 2

** Use the reduced Young’s Modulus E= 7 GPa
*Initial conditions, type=field, variable=1
Node-set-1, 1
Node-set-2, 1
Node-set-3, 1
....
Node-set-1034, 1
Node-set-1035, 1
**Imperfection using mode shape 4, factor -0.6 => D/500
*IMPERFECTION, FILE=LinearBuckling, STEP=2
4, -0.6
** STEP: Static egentyngd
**
*Step, name="Static egentyngd", NLGEOM=YES, INC=100
*Static
1.E-5, 1.0, 1.E-5, 0.1, 1.0
**
** LOADS
**
** Name: egentyngd Type: Gravity
*Dload
, GRAV, 9.81, 0., -1., 0.
**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
**
** FIELD OUTPUT: F-Output-2
**
*Output, field, variable=all
**
** HISTORY OUTPUT: H-Output-1
**
*Output, history, variable=all
*End Step
*STEP, NAME="Variabel Riks", NLGEOM=YES, INC=150
*STATIC, RIKS
1.E-5, 1.0, 1.E-5, 0.01, 1.0
*Field,variable=1
** Use the actual Young’s Modulus E = 10.8 GPa for imposed loads
Node-set-1, 2
Node-set-2, 2
....
Node-set-1035, 2
*DLOAD

164
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Set-1, PY, -266387.4846
Set-2, PY, -267961.3362
....
*END STEP
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