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Abstract

This thesis studies the problem of finding the optimal placement of a directed
link in a graph representation of a social network in order to maximize the
induced gain of the opinion equilibrium. The model assumes the presence of
a set of stubborn nodes and applies a standard DeGroot opinion dynamics
model. First we show that an added directed link should point to a stubborn
node in order to maximize the impact of the link. The resulting problem re-
duction then allows for explicit solutions of where the directed link should
origin in a few common network topographies such as the line graph and the
barbell graph. A formula for the optimal tail placement for general graphs is
then presented along with a distributed algorithm. Implementation and simu-
lation are then performed again first on a few common network types and then
on a small sub-network of Facebook.
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1

Introduction

During the last decade, the modelling, analysis and synthesis of social sys-
tems have gained increasing attention in the area of controls systems research
[Friedkin, 2015]. This includes, for example, the study of social learning and
opinion dynamics [Acemoglu and Ozdaglar, 2011; Acemoglu et al., 2013;
Como and Fagnani, 2010]. Also the problems of influence maximization in
social networks [Kempe et al., 2003; Vassio et al., 2014] that is more closely
related to what is treated in this thesis.

This thesis deals with controlling the opinion of people by finding the
optimal placement of a link in order to maximize the influence of a given node
in a social network. In essence, a social network is composed of a number of
persons and co-interacting connections between these or some of these people.
A commonly known example of a social network is Facebook, but in reality,
any collection of individuals — from two individuals to seven billion— can also
be interpreted as a social network.

The main target of this thesis is to find a way to modify a social network in
order to sway the opinion of individuals in one way. Consider there being two
poles, A and B, of a matter of opinion. This thesis helps a person convinced
of for example opinion B to find the optimal person to influence the state of
the network towards opinion B.

In Chapter 2 we present general theory where the social network is given a
mathematical interpretation. Upon this a variant of the well established DeG-
root opinion dynamics model [Degroot, 1974; Friedkin, 2010; Harary, 1959]
will be used to model opinion. This variant includes the role of stubborn nodes
as introduced in [Acemoglu et al., 2013; Como and Fagnani, 2016]. Then,
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Chapter 1. Introduction

in Chapter 3, the problem will be formulated theoretically and the solution
will be presented for a few common network topologies. Chapter 4 presents
a general formula solving the problem for general networks, followed by a
distributed implementation. Chapter 5 presents results from simulations using
the algorithm. Finally, in Chapter 6 we draw a few conclusions regarding our
results and expectations.

In essence, Chapter 2 is a literature review of well established theory. The
important Theorem 4.1 is a contribution from Giacomo Como as well as the
use of random walks in approximating the diagonal of K. Remaining devel-
opments such as Chapter 3 and Chapter 5 are my own contributions.

1.1 Notation

For the set V, |V| denotes the number of elements in the set. If a vector x is
defined on RY, this is equal to a vector with || elements each defined on
R.. The same definition is used for matrices so that if a matrix A is defined
on RY*S, then A is a matrix of size |V| x |S| with each element defined on
R. Also note that 1 denotes a column vector with all elements equal to one.
This is especially useful when expressing the sum of for example a column
vector x € RY so that

in =x1=1'x
iy
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2

Background

This chapter provides an introduction to relevant graph-theoretical notions and
opinion dynamics models in social networks. Initially, the social network will
be given a mathematical interpretation in Section 2.1 introducing standard ex-
pressions and definitions in the area. The subsequent Section 2.2 introduces
how opinion is modelled by using the DeGroot opinion dynamics model. In
Section 2.3 this theory is extended with the introduction of stubborn nodes
and their impact on the network. Section 2.4 and Section 2.5 show how the
opinion dynamics is related to random walks and electrical networks respec-
tively. Finally, Section 2.6 presents some previous work and its connection to
the electrical network interpretation.

2.1 Social networks as graphs

A social network can be modelled as a directed weighted graph denoted as
G =(V,E,W), where V is a set of nodes or agents, £ a set of links or edges
and W a weight matrix. A simple visualization of a graph is provided in Fig-
ure 2.1. In this representation of a graph, nodes are the existing individuals
in the network, the links or edges define the direct social connections be-
tween these individuals and the weight matrix define the importance of the
social connections. The nodes in V are in general labelled as {1,...,n} where
n = |V| is the number of nodes and also the size of the network.

An edge between two nodes i, j € V is defined as the pair of nodes (i, j) €
E. The edge is directed in such a way that i is influenced by j, this is also
known as the edge having its tail in i and its head in j. This is depicted as
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Chapter 2. Background

Figure 2.1 A simple network.

Figure 2.2 Directed link from i to j.

D= (O—

Figure 2.3 Visual interpretation of two directed links.

an arrow in Figure 2.2. Note that when there is also a link from j to i, it is
visualized as just a link without any arrow, see Figure 2.3. For a link (i, j), the
node j is an (out)-neighbour of i and all neighbours to i are said to constitute
the (out)-neighbourhood of i. If all nodes in the network have each other as
neighbours, the network is said to be complete, an example can be seen in
Figure 2.4. Throughout, it will be assumed that every node has at least one
out-neighbour. This causes no essential loss of generality, as we can always
add a self-loop (i,i) to every node with no out-neighbours. While, in general,
nodes with no out-neighbours other than themselves are known as sinks, they
will be referred to as stubborn nodes here. These stubborn nodes belong to the
subset S C V. All nodes which are not stubborn are called regular and belong
to the subset R = V\ S.

The final part of the graph definition is the weight matrix, W & ]RKXV,
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2.1 Social networks as graphs

Figure 2.4 A complete graph.

which defines the strength, or the weight, of links. For example, if (i, j) € &,
then W;; > 0. The larger this number is, the more influence is exerted on i
by j. If there is no edge from a node i to a node j, that is if (i, j) ¢ &, then
W;; = 0. For simplicity, in this thesis we will generally consider unweighted
graphs, i.e., graphs such that the weight of every edge is equal to one so that
W € {0,1}V*Y. We shall also refer to a graph as undirected if its weight
matrix W is symmetric. Otherwise, if W is not symmetric, we shall refer to
the graph as directed. A matrix related to W, which will be found useful, is
the normalized weight matrix, P, defined as

P=D"'W, D=diag(w), w=WIL. (2.1)

where w; the out-degree for node i, defined as the aggregate weight of links
stemming out of node i. This matrix, P, is stochastic, meaning that the row
sum is equal to one and that every entry can be considered a probability.

If there is a path of edges from a node i to node j, then j is said to be
reachable from i. If all nodes in a network is reachable from each other, then
the network is said to be connected otherwise it is disconnected. An example
of a disconnected network can be seen in Figure 2.5. Another example is if
there is a stubborn node j € S present in the network, no other nodes can
be reached from this node and thus the network is disconnected. It will be
found useful to define a set of nodes as globally reachable if it is reachable
from every node in the network. These statements can be concluded in the
following definition.
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Chapter 2. Background
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Figure 2.5 A disconnected graph.

DEFINITION 2.1
Given a network G = (V,£,W) and two nodes i, j € V then

(1) jis reachable from i if there is a path of directed links from i to j.

(ii) the subset A C V is reachable from i € V if a node j € A is reachable
from i.

(iii) the set of nodes S C V is globally reachable if it is reachable from every
iey
(iv) G is connected if V is globally reachable. O

As the topic is on social influence, it is useful to quantify the importance,
or the amount of influence or popularity, a node has in the network. This is
commonly known as the centrality of a node and different approaches can
be applied to quantify this. If a network is assumed to be connected, then a
common measurement is the Bonacich centrality [Bonacich, 1987], & € RY,
defined as

1
=7 Y Wi, i€y (2.2)
jev
or equivalently expressed in matrix form as

Ar=Wrnr, >0 (2.3)

where A > 0 is a proportionality constant. Looking at (2.3), 7 is an eigen-
vector of W’ and A the corresponding eigenvalue. According to the Perron-
Frobenius theorem for positive matrices [Holst and Ufnarovski, 2014], there
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2.2 Linear opinion dynamics in social networks

is a dominating eigenvalue and the corresponding eigenvector is the only pos-
itive eigenvector except for multiples of this. Thus, this rescaling can be done
in any way to fit ones purpose. A common way is to choose a rescaling so
that 71 = 1 and 7 is then a probability vector. Two factors contribute to a
higher centrality of a node in this case, first it is the out-degree and second the
centrality of its out-neighbours. An improved version of this is the normalized
Bonacich centrality which can be formulated as

1 « W 1 ,
==Y —n,=—=—) Pm; 2.4
RN OV @4
with corresponding matrix form

Ar=Prx (2.5)

where P is the normalized weight matrix defined in (2.1). As this matrix is
stochastic, the largest eigenvalue is equal to one, resulting in

t=Prn. (2.6)

The normalization is performed because a node with a larger neighbourhood
should contribute less to the centrality of a neighbouring node. This is not
the case in the unnormalized Bonacich centrality where every neighbour con-
tribute equally to the centrality. Another centrality measurement is the so
called PageRank centrality [Brin and Page, 1998] formulated as

n=(1-B)Prn+Bu .7

where f € (0,1] and u € IRK. This was originally developed and used in the
Google search engine to provide relevant search results.

2.2 Linear opinion dynamics in social networks

In the previous section, models for the dynamics of influence was intention-
ally left out but will receive an explanation now with the introduction of the
DeGroot opinion dynamics model [Degroot, 1974]. Assume that every node
i € V holds a value in the interval x; € [0,1] which measures their opinion,
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Chapter 2. Background

where 0 and 1 are opposite extremes. All x; are contained in the opinion (col-
umn) vector x € IRK. With DeGroot linear opinion dynamics it is possible to
model the social interaction between nodes in a network and how the opin-
ion varies over time. Consider a time depending opinion vector x(¢) defined
as the opinion of all nodes at time 7. Then according to the DeGroot opinion
dynamics, nodes update their opinion through the dynamic process

x(t+1)=Px(t), x(0)eRY (2.8)

where P is the normalized weight matrix. Thus, at every time step, every node
update their opinion as a linear combination of their neighbours opinions.

As t grows large and approaches infinity it is possible that the opinion dis-
tribution will reach an equilibrium so that x(¢ + 1) = x(¢). If this equilibrium
is denoted x* then

x* = Px*. (2.9

Since P is stochastic, and thus have a row sum of one and all of its elements
are positive, then again according to the Perron-Frobenius theorem, the only
solution to (2.9) is x* = c1, where ¢ € R is a positive constant. As one
might have observed, all nodes now have the same opinion, in other words a
consensus has been reached. It is possible to find a unique ¢ for this problem
[Holst and Ufnarovski, 2014] depending on the initial opinions of the nodes.
This can be found by using the earlier notion that the normalized Bonacich
centrality vector is 7 = P'7. Multiplication of each side in (2.8) with 7’ yields

'x(t+1) = n'Px(t) (2.10)
& a'x(t+1) = (P'm)x(t) (2.11)

then using the fact from (2.6) that 7 is stationary results in

m'x(t+1)=7'xt) (2.12)
& m'x(t) = 7'x(0). (2.13)

It is known, since 7 is a probability vector, that 7'l = ¥; 7; = 1. Using this

16



2.3 Opinion dynamics with stubborn nodes

fact, and that x* = c1, in the following statement

w'x(t) = 7'x(0) (2.14)
o 'x* = 7'x(0) (2.15)
& 7'cl = 7'x(0) (2.16)
& en'l = 7'x(0) 2.17)

& ¢ = 'x(0) (2.18)

returns the solution of ¢. Assuming that the opinion dynamics, x(), converges,
it will reach the consensus vector 7'x(0)1 as r — . One more condition is
needed for the opinion dynamic to converge. Some networks have an oscillat-
ing solution, meaning that there does not exist a unique solution. This is the
result of cycles in the network, a cycle being a path from a node back to itself,
something that in general are present in a network. For the opinion to con-
verge, it is necessary that the least common divisor of cycle lengths is equal
to one, referred to as the graph being aperiodic. The following theorem can
now be formulated.

THEOREM 2.1
If the graph G = (V,£,W) is connected and aperiodic where every node fol-
lows the DeGroot opinion dynamics

x(t+1)=Px(t) (2.19)

where P = D~'W, D = diag(W1) and initial condition x(0) € RY, then the
opinion equilibrium is

. ok
}ggx(t) =x"=n'x(0)1 (2.20)

where 7 is the normalized Bonacich centrality.

Proof [Degroot, 1974] O

2.3 Opinion dynamics with stubborn nodes

What is the result of the existence of stubborn nodes in a network? We model
a stubborn node as a node that is not influenced by any other nodes and thus
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Chapter 2. Background

has a constant opinion. Consider the case with only one stubborn node and
assume that it is globally reachable. The stubborn node will continuously in-
fluence the network until all of the nodes have reached a consensus, which
will be equal to the opinion of the stubborn node itself. More interesting and
valuable is the case when stubborn nodes of different types are present in the
network. In this case, the network can not reach a consensus as it is impossible
to change the opinion of the stubborn nodes. The regular nodes though, will
rather converge to an opinion influenced by both stubborn nodes. This can
be shown through the following. Consider a network G = (V,£,W) and let S
be a globally reachable subset of stubborn nodes. Let u € RS be a vector of
stubborn nodes’ opinions. Refer to R = V' \ § as the set of regular nodes. Let,
y € [0, 1], be the opinion vector of all regular nodes. Also, assume that x(¢),
W and P have been reordered, so that the rows corresponding to the stubborn
nodes now is placed last in the matrices. Then, P and x(¢) is

_(Q B _ | y@)
P= ( c D) x(r) = " . (2.21)
Then consider the following opinion dynamics with stubborn nodes
M(i+1)= ( ¢’ )x(t) (2.22)

or as the system of equations

{y<r+ 1) =0y(t)+Bu(t)

ult+1) =u. 223)

Since the opinions of stubborn nodes are constant, u(¢) is not changing and
can be put as a constant vector u. The matrix Q € [0,1]7*" is square and
substochastic and can be interpreted as the part of P that defines the weighed
influence between the regular nodes. The matrix B € [0,1]%*¢ can be inter-
preted as the weighed influence of the stubborn nodes on the regular nodes.

What happens to the opinion distribution as ¢ — oo? The opinions of the
stubborn nodes are, as stated, constant, but what about the regular nodes?
Looking at (2.23) and assuming that it is convergent, the equilibrium, y*, can
be found as the following

y* = Qy* +Bu. (2.24)
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2.3 Opinion dynamics with stubborn nodes

To formulate this converge as a theorem it is useful to present the following
lemma about convergence depending the spectral radius of Q.

LEMMA 2.1

Let G = (V,E,W) be a network where the set S is globally reachable, then
the corresponding block Q, from the normalized weight matrix P as defined
in (2.21), has spectral radius

p(0) <1 (2.25)

which implies that the inverse of (I — Q) exists, is non-negative and can be
computed using the following power series.

=

-0~ '=Yo" (2.26)

k=0

Proof [Como and Fagnani, 2016] Since Q is a non-negative matrix, it follows
from the Perron Frobenius theory that its spectral radius p is an eigenvalue
with associated non-negative eigenvector v, i.e., Qv = pv. Let 7 C R be the
support of v, that is the non-zero elements for each row in Q. Since P is a row-
stochastic matrix with at least one link to a stubborn node and Q is a block of
P corresponding to the regular nodes, there is at least one row in Q with row
sum of less than one, so that

i ij < L. 2.27
ggl;jGZJQ,, (2.27)

This implies that

pY vi=Y Yo=Y Yopm<Yw (2.28)

jeg JjeTJIER jegiedg ieJ
and hence it must hold that
p <l (2.29)

In order to prove the second statement of the lemma, it follows from Gelfand’s
formula [Holst and Ufnarovski, 2014], that

lim \/||Q¥||=p < 1 (2.30)
k—soo
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Chapter 2. Background

and hence the root test can be applied to show that the series

i o (2.31)
k=0
converges. Subsequently
(I-0) i OF=1-0"1" 7 (2.32)
k=0
which results in
Yo =(-0 (2.33)
k=0 O

Using this lemma it is now possible to prove the convergence of the opinion
dynamics in a graph with stubborn nodes.

THEOREM 2.2
Let G = (V,€,W) be a network and S be a globally reachable set of stubborn

nodes. Let u € RS be a vector of stubborn nodes’ opinions and let
x(t) = [ y(0) } (2.34)

be the opinion vector of the opinion dynamics (2.22) with stubborn nodes.
Then

limy(r) = (I— Q) 'Bu=y* (2.35)

=300

Proof 1t follows directly from Lemma 2.1 that

t—ro0 n—oo

limy(r) = lim Z Q'Bu= (I1-Q) 'Bu. (2.36)
t=0

20



2.4 Relation to random walks on networks

2.4 Relation to random walks on networks

The random walk on graphs can be described as the action of randomly walk-
ing from node to node in the network. It is then possible to compute the prob-
ability to be in a certain node at a certain time. A starting node is chosen for
the walk, then at every time step the walk travels along an edge to a randomly
selected neighbouring node, where the process continues. Consider a graph
G = (V,&,W) with transition probability matrix P, then the random walk on
a graph is defined as the stochastic variable V() with state space V. Then if
a walk starts at node i at time ¢ = 0 it randomly chooses a neighbouring node
according to the probabilities in P where it will be in ¢t = 1. If the walk is in
node i at time ¢ = 0, then the probability to be in j at time ¢ is

P(V(1) = jlV(0) = i) = (P');j. (2.37)

More generally, if the walk starts in node i at f = 0, then the probability distri-
bution is a column vector x(0) with all elements zero except x(0); = 1. Then
x(r) will be the probability distribution at time ¢ so that

x(t41) = P'x(t). (2.38)

This is the same dynamics as for the normalized Bonacich centrality vector.
The relation between random walks and opinion dynamics can be illuminated
with the case when two or more stubborn nodes are present so that Sy, Sy #
0. If a walk ends up in a stubborn node it can not travel from there and is
considered to be absorbed. If a walk starts in node i it can then be absorbed
by either Sy or S; as ¢ grows. The probability to end up in S; instead of Sy
will then coincide with the opinion equilibrium y*. This can be stated with the
following theorem

THEOREM 2.3

Consider the graph G = (V,£,W) where S is globally reachable and y* the
opinion equilibrium described in (2.24). If i € V, then the random walk V (¢)
on G, with V(0) =iand V() = s; € S; will show the following convergence
lim P(V (1) = 51|V (0) =i) = [(I - Q)" 'B],, =V} (2.39)

t—ro0
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Chapter 2. Background

Proof The probability for a walk starting in i to be in j at time ¢ is described
earlier as

(P")ij. (2.40)

As stubborn nodes are present, recall the block partition of P in (2.21) and
study the case when t — co. Also initially assume that |S;| = 1.

] B\ " Q"'B+..-+0B+B
(8 11,18 e,
ij tj
(2.41)

(8 )= (e,
(2.42)

It can then be observed that the random walk will be absorbed in the stubborn
nodes as t — oo. Then

limP(V(1) =s51|V(0) =i) = [(1-Q)7'B] (2.43)
If Sy, the probability to reach any node in j € S; from i is
Y [1—0)'B] i (2.44)
JESI
coincidentally, this is equal to
[(1—-0Q) 'B] eSS (2.45)
where u is the opinion of the stubborn nodes. o

Later on, the sum of the probability for a walk to return to its origin node will
be useful. The following theorem shows an alternative way for that expression.

THEOREM 2.4
Consider the graph G = (V,E,W) where S is globally reachable. If a random
walk V(¢) on G with V(0) = i has the probability p; to ever return to i then

- 1

Y (0Yii =

k=0 I—pi

(2.46)
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2.5 The electrical network interpretation

Proof [Gravner, 2014] Begin by study the following equality
Y (@Y= Y P(V(k)=ilv(0)=i)=E (Z(IkW(O) = i)) (2.47)
k=0 k=0 k=0

where [, = Iy (y)=;;k = 0,1,2... is the indicator function. The last equality in
(2.47) shows that the sum of the return probability is equal to the expected
number of returns. The expected number of returns has a geometric distribu-
tion since the probability for n returns is

P (1= pi). (2.48)

Then the expected number of returns is

E(i(IkW(O)i)) L (2.49)

k=0 I=pi

Thus,

Y (0Yi=—. (2.50)

2.5 The electrical network interpretation

In this section we will present another interpretation of the opinion dynamics
with stubborn nodes, namely as an electrical network. Although the electrical
network interpretation will not be utilized in the development of the results in
this thesis, it gives insights about how similar previous work is done.

In a network with two poles of an opinion such as the two types of stub-
born nodes, it is possible to translate it into an electrical network. The opinion
of every node can be considered to be voltages in the network and all link
weights conductances. The result of this interpretation is that it is possible to
use laws and operations normally used on electrical networks such as the laws
of Ohm and Kirchoff.
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Chapter 2. Background

If the conductance be defined as C;; = W;; in the matrix C, then if every
edge is numbered 1,2,...,|&| the conductances can be placed on the diagonal
in the diagonal matrix Dc € R€*€. The voltages V € RY are equal to the
opinion of every node so that V = x. Also assume an incidence matrix B €
{0,1,—1}¢*Y so that for every edge e; = (i, j) € £, By; = 1 and Bij=—1.In
other words, every row is an edge with entry 1 for the tail placement and —1
for the head placement. Let ® € R€*¢ be the current flow along each edge
and 1) € RY the external current input or output. Then according to Ohms law

® = DcBV (2.51)
and Kirchoffs law
B®=n. (2.52)

Noting that resistance is the inverse of conductance, it is possible to use some-
thing called effective resistance, so that if two nodes i and j are in two different
parts of the network, the paths between them can be collapsed to one with a
certain effective resistance using serial and parallel laws. Since nodes with the
same voltage has zero resistance towards each other, it is possible to rewrite
all these same-voltage nodes as one, called gluing.

2.6 Previous work

Among the previous work done in the field of opinion dynamics, the work by
DeGroot is especially important, who studied conditions for social consensus
in groups of people using mathematical models. The method used in this thesis
to model social interactions in networks in is in fact called DeGroot opinion
dynamics.

The main problem in this thesis deals with modifying the network or the
social group in a way that can be interpreted as introducing a person in a
community and expose a person to that new persons opinions. In more de-
tail finding the optimal person to be exposed so that the new persons opinion
spreads the most. Previous work in this area deals with a variation of this
problem and rather tries to find the best person in the network to radicalize in
order to reach the same goal, analogous to transform a node from regular to
stubborn. Even if the problem is similar, the simplest example will later show
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2.6 Previous work

that the solution differs. For example in [Vassio et al., 2014], they use the
electrical network interpretation. They derived an algorithm using something
called message passing with extensive use of effective resistance. The benefit
of doing this is that the impact of turning a node into a stubborn can be com-
puted by just knowing the impact of its neighbours. The resulting algorithm
solves the problem of finding the optimal person perfectly on certain network
types and, after modifications are done, at least gives an approximation on
general networks. This algorithm is later proved to be convergent [Rossi and
Frasca, 2016], but it does not converge to the right solution for all types of
networks. However, the solution might still be sufficient enough to find the
optimal placement in relation to other options.
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3

Influence maximization
problem

For various reasons, there could be a desire to affect the opinion distribution of
a network, for example, to favour one opinion or to reduce polarization in the
network. This could potentially be achieved by modifications in the network
such as an artificial addition or removal of a connection between two or more
individuals, in theory done by adding or removing a link. Other changes could
include increasing or decreasing the exposure to already present connections
by increasing or decreasing the current link weight. In this chapter, the first
case will be studied — how the addition of a directed connection in the network
can benefit in the objective to maximize the total opinion distribution. That is,
to find the optimal position of this link to skew the opinion of nodes towards
one side. A theoretical representation of this will be presented in Section 3.1.
The subsequent Section 3.2 will show that the optimal placement of the head,
of such a directed link, is to a stubborn node of the desired opinion and thus
simplify the problem. The last Section 3.3 finds the solution for a few common
network topologies, such as a line and a barbell.

3.1 Theoretical formulation of the influence
maximization problem

The problem formulation can be given a theoretical representation through
the following. Consider a nominal network G = (V,£,W) where a directed
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3.2 Where should the additional link point to?

link then is added from node i to node j to create the modified counter part
G = (V,€,W). The action of adding a does not change the node set, why the
node sets are equal. The set of edges and the weight matrix will be modified
in the following way

E=Eu{(i,))} 3.1)
W =W + 50 (32)

and the resulting changes to the normalized weight matrix will change the
blocks O and B as

i ' . 1
gl Wi PUY) 3.3
Q(lvj) W,+1Q+ w;+1 G-3)
) , : o
Bli i) = &) Wi B ()~ 4
(i) =00 B GH

Assume the stubborn node set S C V with two different kind of stubborn
nodes Sy € S and §; C S. Then the objective is to modify the network in such
a way that the opinion equilibrium changes in favour of the opinion of S;. For
modelling purposes however, assume the earlier defined stubborn nodes with
opinion 0 and 1, so that Sy = Sy and S} = S. The maximization problem can
then be formulated as

max Y yi= max Y [(1-0(.)) 'Bli.ju],. (35

i€R,jEV i€R.jEV

where ¥* is the opinion equilibrium in G. Thus it is a two dimensional opti-
mization problem since it is necessary to locate both an optimal position for
the head, j, and the tail, i, of the directed link. The next section will show that
it is possible to reduce the problem to one variable.

3.2 Where should the additional link point to?

Knowing a priori where to connect the head would contribute to reducing the
complexity of the problem. A logical assumption would be to place the head
in a node with as strong opinion as possible. In this case would be a stubborn
node s1 € S; with the opinion x;, = 1. The following lemma proves that the
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Chapter 3. Influence maximization problem

Figure 3.1 The two cases where to connect the head, in 51 or in j.

sum of the opinion distribution will be higher if the head is placed in S; than
if it is not. Figure 3.1 provides a visualization of these choices, where the
networks are equal except for the two different link placements.

LEMMA 3.1

Let G = (V,E,W) be a network and let S C V be a globally reachable set.
Let s; € S; and u € RS be such that u; = 1 for s € S; and u; = 0 for all
s € Sp. Let G = (V,€,W) be such that W = W — §0:/) 4 §0s1) 1 je Y\ S.
Letx* € RY and * € RY be the opinion equilibrium for G and G respectively
corresponding to the stubborn node opinion vector u#. Then the following is
true

B>x, kev. (3.6)

Proof Consider a Markov coupling of two random walks V(¢) and V (¢) on V
with transition probability matrix P and P, respectively, defined as the follow-
ing. When V(t) # V (t) they move independently with transition probabilities
P and P, respectively and when V() =V (t) = h # i, V(¢) and V(¢) move to-
gether to anew state V(¢ +1) = V(¢ + 1) = k chosen with probability P = By.
When V(t) = V(t) = i, then

PV(+ 1) =Vi+ ) =klV{)=V(t)=i)=Pp=Pr  k#j

PV(+1)=jV+1)=si[V(t)=V(1) =i) =P =Py .

<
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3.3 Where should the additional link stem from?

It is then clear that, if started from the same node %, it can never occur that
V(¢) is absorbed in s; when V(¢) is not, so that

P(V (1) =51|V(0) =k) =P(V(t) = 51|V(0) =k, (0) = k) (3.7)
<PV (1) =s1|V(0) =k, V(0) =k) (3.8)
=P(V(t) =5V (0) =k) (3.9)

for all r > 0. It then follows from Theorem 2.4 that
x= lim P(V(¢) =51|V(0) = k) < ,Er+n P(V(t) =s1|V(0) =k) = 5.

t—roo
(3.10)
O

The lemma shows that it is indeed more beneficial to put the head of a directed
link in a stubborn node in order to maximize the total opinion distribution.
This fact simplifies the previously stated problem of finding i and j in G.
Thus, the head j will always be assumed to be in the set S; and it is only
necessary to find the placement of the tail i.

3.3 Where should the additional link stem from?

As it is now known that the head of an added directed link, should be placed
in a stubborn node belonging to S, a logical extension would be to explicitly
derive the tail placement for a few simpler network models. This is an effective
way to build intuition and understanding on the path to a possible general
solution. Initially, the line graph, Figure 3.2(a), will be studied for any choice
of n. Then these results will be used to find the placement when two line
graphs of different size are present, Figure 3.2(b). Finally the barbell graph,
Figure 3.2(c), will be studied. During these derivations it will also be assumed
that every network contain one stubborn node of each extreme opinion so that

So| = [S1| = 1.

Line graph

The problem of finding the optimal link placement in a line graph is depicted
in Figure 3.3. The following proposition shows and proves the explicit solu-
tion on this graph. Some assumptions in this proof uses Matlab simulation
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Chapter 3. Influence maximization problem

(a) Line graph with n =5 and two (b) Two line graphs and two stubborn
stubborn nodes. nodes.

(c) Barbell graph with n = 16 and two stubborn
nodes.

Figure 3.2

Figure 3.3 A line graph with n+ 1 nodes and a directed link from node i to
n.

results presented in Figure 3.4. The figure depicts an approximation of the so-
lution computed with the built in Gaussian elimination based linear systems
solver. The curve v/n — 1 is added as a comparison.

PROPOSITION 3.1
Consider the graph, G = (V,£,W), where V = {0,1,2,...,n—1,n} and £ =
(L,0o)u{1,2}U...{n—2,n—1}U(n—1,n) and also where Sp = 0 and S; =n.
Assume that n > 7. If a directed link (k,n) is added, then (3.5) is fulfilled for
ke (i3,

Proof Let x be the opinion vector of the line network with n 4+ 1 nodes and
two stubborn nodes with opinion xo = 0 and x; = 1. A link is added from node
k€ V\S tonode n € S;. Let x¥) be the opinion of the network with the added
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3.3 Where should the additional link stem from?

30r

Optimal node
>
N

/ —— Simulation

— a2 4

5 . . . .
0 200 400 600 800 1000

Network size-1

Figure 3.4 Optimal tail placement in line graphs of increasing size.

link. The action of adding a link results in the following average opinion gain

1 1
%= y W Y X (3.11)

ntlolm, ' ntlolz,
Since the opinion changes linearly from node 0 to node n, the opinion of the

unmodified network is

xj:;, 0<j<n. (3.12)

Using the same linear assumption about the opinion after the link is added
gives the following result

MONS ix,ﬁ") 0<j<k (3.13)

J
B _ 0 f_k(px,ﬁ")) k<j<n (3.14)
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Chapter 3. Influence maximization problem
with the opinion of the node with the added link as

o 1« k
x,E )= g( l(chl+x1<c—>1+1)-

The combination of the above equations (3.14), and (3.15), results in

(0 _ k(1n—k)
kT ntkn—k2

The average opinion gain is then, with the insertion of x¥), equal to

1 n (k) 1 n
Y = x5 = X
n—i—ljgb J n—i—ljgb /

1 k ] *) n 17x](ck) n ]
= z —k _yZ
kD) 0=kt D) -k 1
- 2(n+1) 2(n+1) n+1 2
7nx,<{k)fk
~ 2(n+1)

_ k(n—k)?
- 2(n+1)(n+nk—k?)

n2
= s

where
x(1—x)?
glx) = 14+nx—nx2’
Hence,
2
max ¥ = max  g(x).

k=0,1,....n 2(n+1) 912 4

iR
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3.3 Where should the additional link stem from?

We are then interested in relaxed problem of finding the maximum of g(x) on
the interval [0, 1]. Towards this goal, first note that differentiation of yields

1oy (L=x)h(x) _ 2
g(.x)—m, h(.x)—n.x (x_l)_3x+l, (325)
Since the term (1 —x)/(nx? —nx — 1)? is positive for x € (0,1), we are inter-
ested in the sign of /(x). Note that, /(x) is a third-order polynomial and, for
n > 2, it satisfies
h(-1)=2-2n<0,  h(0)=1>0, (3.26)
h(l)=-2<0,  h(2)=4n—5>0. (3.27)
Hence, h(x) has exactly one zero in each of the intervals (—1,0), (0, 1), and
(1,2), respectively. We will now show that

h (M> >0 h(ﬁn_l) <0. (3.28)

n

so that the only zero of /(x) in the interval (0, 1) actually belongs to the subin-
_3
terval (@, @) Towards this end, observe that

n

BV = L i - i (aa e 629

n n? n n
1
- (2n3/2(a— 1) —na2+3a2\/ﬁ—a3) . (3.30)
Then,
-1
h (ﬁ ) = n+3vn—1<0, n>7, (33D
n
h Vn-3/2 —ﬁ—2n+£\/ﬁ—g>o n>17 (3.32)
n T2 4"y g~ = '
Hence, the only zero of h(x) in the interval (0, 1) actually belongs to the subin-
_3
terval (#, %_1) so that
3
~3 Jn—1
argmax g(x) € Q, L . (3.33)
x€[0,1] n n
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Chapter 3. Influence maximization problem

This in turn implies that

argmax g(x) € <\/ﬁ %, \/71> . (3.34)

k=0,1,...n

Multiple lines

There might be cases where multiple line graphs are present. If a directed
link is added to a stubborn node in order to maximize the sum of the opinion
equilibrium, where should the tail then be placed? The following proposition
proves that it is to be placed in the longest one, that is, the one with the most
nodes. This is done by showing that the total opinion distribution increase
when the network size increases.

PROPOSITION 3.2

Consider a line graph G = (V,€,W) of size n with two stubborn nodes of
different opinion placed in the end points as described in Proposition 3.1 and
a directed link with the head in S; and the tail in node (y/n— 1). If n increases,
then the sum of the opinion equilibrium x* increases for n > 7.

Proof Showing that the sum of the opinion equilibrium is larger when the
size of the line graph increases is equivalent to showing that the derivative of
(3.23) for n > 7 is strictly positive. Starting from (3.23) and inserting x = %
results in

k(k* —2nk+n?)

g(k) = k2 (3.35)

and assume k = \/n— 1 as this is close to the middle of the optimal interval in
Proposition 3.1. Also substitute y/n = s, then

5 4 3 2
s° — 35"+ 557 —55°+3s—1
8(s) = 2252425 : (3.36)

Differentiation yields the following

(s —s+1) (28 =7s* + 115> =557 —25+2)

/
8\s)=
) 2 (s2 —2s+2)*

(3.37)
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3.3 Where should the additional link stem from?

where the sign depending on s now can be studied. First term in the numerator
and the whole denominator is greater than zero for s > 1. Left is to prove that
the right part of the numerator also is greater or equal to zero. This can be
shown through the following:

(2s577s4+11s375s272S+2) (3.38)
7

=25 (s2 — 2) + 1157 =55 —25+2 (3.39)
7., 4

=24 (sff)zf—9 +11s° — 55> —25+2 (3.40)
4’ 16
7., 39

=25 —Z)2+§53—5s2—2s—|—2 (3.41)
7., 39 40 16

=283 (s— =)+ =5 (P ——=s—— | +2 3.42

S8 4)+8S<s 39° 39>+ (042)

which is greater than zero whenever

40 16 20 202 16 4 16

2

— S5 — — — — — = = — 2. 4
s 395 39>0(:>s>39+ 392+39 3<:>n>9 (33D)

It has now been shown that the total opinion gain is larger when the tail of the
additional link is connected to a longer line graph.

Barbell graph

The barbell graph consists of two complete graphs, each containing 5 nodes,
where one node in one side is linked to a node in the other side. Then, to
align this with the model, one node in each side of the barbell is turned into a
stubborn node, see Figure 3.5. One, s¢, with opinion 0, placed in side A, and
one, s, with opinion 1, placed in side B. There are now four different kind of
nodes where the tail of the directed link could be placed:

* a - regular node in side A
* ay - regular node in side A but connected to node by in side B

* b - regular node in side B
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Chapter 3. Influence maximization problem

(a a) b

<

Figure 3.5 A barbell graph with two stubborn nodes of opposing opinion.
Left part is side A and right part is side B.

* bp- regular node in side B but connected to node ag in side A.

The following proposition proves that the optimal placement of the tail in this
case is from node a( to maximize the sum of the opinion equilibrium.

PROPOSITION 3.3

Consider two complete graphs Ga = (V4,€4,Wa) and Gg = (Vg,E,Wp),
where | V4| = |VB| =n/2,n > 6, modified so that so C V4 and Sy C Vg, |So| =
|S1] = 1. Resulting in no out-going links from Sy or S;. Then let the nodes
ap € V4 \ Sp and by € Vg \ S| be connected through the edges (agp,bp) and
(bo,ap). Then if a directed link is added so that (i,s1),i € VAUV \S,s1 € Si,
the choice of i that maximizes the sum of the opinion equilibrium is ag.

Proof If the node, from where a directed link is added, is denoted, i, then the
total opinion can be calculated for each of the four cases.

Case 1: Tail of stubborn node connected to node of type a First a system
of equations is set up with the expression of the opinion of every present kind
of node. Note that x;, = 0 and x;, = 1, e.g. the opinion of the stubborn nodes.
Also x; is the opinion of the node i, or the node of type @ where the tail of the
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3.3 Where should the additional link stem from?

directed link is added.
2 odn—
o= ﬁ((%_ﬂxa"_xao + X0 +2y) Yoo = %
1 24120
Xa 21 ((% — 4)xa + x5y + Xa —&-x,-) Xa = M#lfm
1 246n—
Xay = n2 ((%_3)xa+-xso +-xb0 +-xi) = Xaq :2%
1 3 2 _
= ey (5= 3%+ +3,) ey T
1 348n’4+16n—-32
Kby = 2 ((5 = 2)x5 + x5, +ap) Kby = 1:[3-:r12nn2t—124nn—16
(3.44)
Then the total opinion is given by the sum
n n
x,(,f) =x;+ (5 — 3) Xq +Xay + (E — 2) Xp + Xpy + Xy + X5 (3.45)
n(n3+14n2+32n—40) (3.46)

2n3 +24n>+48n—32
In the same way, remaining cases can be solved

Case 2: Tail of stubborn node connected to node of type ay Expressions

Ya '1/21—l ((% —3)xa + s +x“0) Xa =4 n2+’g§+16
2
Xi = Xag n/21+l ((5 = 2)xa + x5 + 213 + 5, ) Xi = Xaq :Sm
—_ 1 ((r_3 <\« _ n2+10n+16
Xb = n2=1 ((5 = 3)xp +x5, +253) b T 120416
1 4
Xby = n2 ((% —2)xp +xy +xu0) Xby = %
(3.47)
Total opinion
(@) 1>+ 180> +84n+96 (3.48)

S Y B VIS D)

Case 3: Tail of stubborn node connected to node of type b  In this case x; is
the opinion of the node i, or the node of type b where the tail of the directed
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link is added. Expressions

((

n

— 3) Xq + Xg, —l—xao)

2n+8

1
Xa ? 2 nziIZHIZZS
_ __4nt
Xag = % ( (% - 2) Xag + Xs +xbo) o = ngﬂgnigi
xXp = T ((g 74)xb +xi+xb0+xsl) S35 = Zzﬂzz 8
+4
by = ((53) % +xgg +5i+ ) Yoy = n2$112n)+28
_2 24100428
i ~n ((% - 3) b +xb() + zxsl) Xi = :21123128
(3.49)
Total opinion
nn+8)(n+4
<) =t 8)(ntd) (3.50)
2n*+24n+56
Case 4: Tail of stubborn node connected to node of type by Expressions
1
Ya =7 (5 =3)xa+x5 +%a) Ya = e
Xag = % ((5 =2) xag + x5 +x,) Xao - "girll;nlilé
Xb = %1,1 ((%_3)xb+xbo+x31) b :%
1 4
xi:xbo = %+] ((%72))%4’)&10 +2x51) xi:xbo :%
(3.51)
Total opinion
2
n(n-+12n+24

Hor = o 1240+ 32
Now when all different possibilities of link placement have been found it is
possible to compare them and determine which yields the the largest opinion
gain and for what 7 this is the case. There is an assumption the the placement
in ag is the optimal and the following calculations will prove that it is the case.
Begin by compare ag and a. In this case, the total opinion, %, of the unmod-
ified network is subtracted from the total opinion of the modified network to
simplify the calculations.

@ _ (a) n(n+6)(n—2)

n
in = ot T3 = 3.53
Xeain = Xtot 2 B+ 12n2+24n—16 ( )
2
(ap) _ (ag) M _3n"+34n+48
n =%l T 5 = T 5,16 3.54
Xgain tot ) n2+12n+16 ( )
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Then study the inequality

x> (3.55)
24 34n+4 -2
3n"+34n+ 8> n(n+6)(n—2) (3.56)
2+ 12n+16 ~ m+12r2+24n—16
& (3n% +34n448) (n® 4 12n% +24n — 16) > n(n+6)(n —2)(n> + 12n 4 16) (3.57)
<31 +70n* +528n% + 13441 46081 — 768 > n° + 16n* +52n> —80n®> —192n  (3.58)
& 210 +54n* + 4761 +1424n% +800n — 768 > 0 (3.59)
which is fulfilled for all n > 1. Next compare ag to b
()  (b) . MW +18n*+84n+96 _n(n+8)(n+4)
Xjor | > Xpop & > (3.60)

2n?+424n432 2n?424n+56
& 120 +2721° + 206410 + 59841+ 5376 > 0 (3.61)

which holds for all n > 0. Finally compare ag and by

o o0 n® + 18n% +84n+96 >n(n2+12n+24)
fot 2n2+24n+32 2n2424n+32
& 6n>+60n+96>0 (3.63)

(3.62)

(a)
Xtor

which is true for all n > 0. Thus it is proved that ag is the optimal placement
in a barbell graph. g
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4

A distributed algorithm
for social influence
maximization

In the previous chapter explicit solutions were introduced for a few specific
network topographies. While this is useful for insight, it provides little benefit
for broad application. A distributed algorithm working on any network would
be ideal and this is the goal for this chapter. First, in Section 4.1, a formula
providing a solution for general network types is presented and proved as well
as an attempt for an intuitive understanding of it. Then, in Section 4.2, steps
are made to perform a suitable distributed implementation as well as a few
brief comments on computational complexity.

4.1 Derivation of general formula

As explained earlier, it would be valuable to find a general formula to find the
optimal link placement for a maximization the total opinion distribution. The
following theorem provides a formula which computes the total opinion gain
when a directed link is added from a regular node i to a stubborn node in Sj.
The optimal placement can then be discovered if this is calculated for every
node.

40



4.1 Derivation of general formula

THEOREM 4.1

Consider the two networks G = (V,£,W) and G\ = (V,£0) W) so that
EW = (EU(i,s1)). Where 51 € S} #0, So # 0 and i € R. If y* and 5) are the
opinion equilibria in G and G(¥) respectively. Then the opinion gain between
the two graphs is

G (1=y7)

':]1/~<i>—]l/ *
n=ny Y wi + Kii

4.1
where

Y =Qy'+b, b=Bu, K=(1I-0)"' z=Kl, w=W1 (42
Proof LetK = (1— Q)" and b = Bu then

x=K'b 4.3)
=K1 (4.4)

This assumes that (I — Q") and (I — Q) is invertible. Since Q fulfils the require-

ments of Lemma 2.1, then (I — Q) is invertible. Then it follows that (I — Q")
is invertible from

(I-0) Y =(U-09))'=1-0)" 4.5)

If the sum of x is the total opinion in the network, then the relationship be-
tween opinion dynamics and network flow can be acquired as following

1'y=1K'b=7b. (4.6)

For the network with an added directed link from node i the following changes
are needed

B0 — o L0050 @.7)
w;+ 1
» 1§50 (50
Dy — QoM (M) 4.8
(") o (4.8)
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then K can be written and simplified, using the Sherman-Morrison formula
presented in Appendix, as

-1
. INOIFI0NY NOIFIONS 4
kO = I—Q'—i—M :K_M (4.9)
Wl+1 wi+1 i
150K L]
KQ/3(1')(5(1))/K/ KQ/5(1')(5(£))/K/
=K— : ~=K-———————. (4.10)
wi+ 14 (8W)YKQ'8W w; + Kii
Then finally
) s KQ'8W(80)K'1 KQ'5U)z
0 = g = g1 — =7——="= (4.11)
wi + Kij wi + Kij
The gain of a link added to node i is then computed through
y=150 -1y = 0y — /b 4.12)
_ (I=b)a zi(Qy)i  z(1—5i)(8(i))'KQ'S(i) @.13)
wi+1l  wi+Kii (wi+ 1) (w; + Kiz) '
wi+l  wi+Ki  (wi+1)(wi+Ki)
i(1—yi
- % (4.15)
Wl + 11 D
Looking at the resulting formula
zi(1—yi)
= ———= 4.1
e (4.16)

some thoughts can be given on the interpretation of the different components.
Consider again a line graph with ten nodes, computation of the formula com-
ponents for the regular nodes yields the results presented in Figure 4.1 An
interesting observation is that all components are unbiased to the target opin-
ion except (1 —y;). It is intuitive that (1 — y;) provides a larger gain if the
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z 1
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Figure 4.1 Computation of the algorithm components for regular nodes in a
line graph with ten nodes.

previously held opinion y; is smaller since there is more room for increase.
The term z; can be given an understanding by looking at its dynamics

Ar+1) =071 +1 (4.17)
with equilibrium
=07 +1 (4.18)

and compare it to the previously presented PageRank centrality (2.7). It is not
directly translatable but it does give an indication that z; is a measurement of
centrality. The opinion gain is then normalized by w; and Kj;. First, the out-
degree w; stems from the normalization of the added link is then intuitive to
remain. From Theorem 2.4 it is known that K;; can be translated to

1

K: =
1] l—pl

(4.19)

43



Chapter 4. A distributed algorithm for social influence maximization

where p; is the probability for a random walk starting in i to ever return to
i instead leaving the network. Thus this term will be larger if the node i is
placed further away from the stubborn nodes which also is given from the
computation results. A larger gain will be provided if the node is closer to
a stubborn node. Note that this Kj; and all other terms is calculated for the
network before the directed link is added. All in all, everything except (1 —y;)
can be considered as a centrality measurement for the node i.

4.2 The quest for a distributed implementation

To use the algorithm in practice it is necessary to find z, y, w and K. From the
graph definition, W, Q, B and u are already provided. Then make the following
definitions

w=Ww1 (4.20)
b = Bu. 421

where w is earlier known as the vector where every element w; is the out-
degree for node i. The term y* is the equilibrium of the previously used opin-
ion dynamics

y(t+1)=0y(t)+b (4.22)
and can then be calculated by solving the linear system
(I-Q)y*=b (4.23)

usually done by the use of a Gaussian elimination based solver. The com-
putational complexity of this is of order O(n®). In general, sparse matrices
are used which reduces the complexity. However this is still not optimal for
larger matrices and it is not distributed. Instead an iterative approximation can
be found by simply iterating the opinion dynamics, reducing the computa-
tional complexity to O(|€]) for each step. While this is likely to be slower
because of a large number of needed iterations, it is less prone to numerical
errors and above all it is distributed. The approximation of z* can be done in
a similar way. While it also can be computed using a Gaussian elimination
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based solver, the same benefits of a distributed iterative method applies here.
The dynamics for z is then

Z(t+1)=0z(1t)+1 (4.24)

for some z(0) € R. As the opinion dynamics, this can be assumed to have
converged sufficiently close to z* after a limited amount of iterations.

4.3 Distributed computation of K;;

To calculate the K-matrix exactly it requires the computation of the inverse
of (I — Q). This generally results in numerical errors, especially if (I — Q')
is close to singular. Since only the diagonal of K is needed, this can be given
another interpretation. As shown in Theorem 2.4, K;; can be interpreted as

Ki=(1-0) = Y (@) =1+ = 1 (4.25)
k=0 —PDi 1- Pi
where p; is the probability for a random walk, starting in i, will ever return to
the origin i before leaving the network. This probability is found by simulating
random walks on the network, by starting in node i and count every time it has
returned to itself and every time it has exited the network by hitting a stubborn
node. Then the probability will be

Nreturns
pi= s (4.26)
l Nretums + Nexits

where Nieturns 18 the number of returns and Ngyis the number of exits. As a
random walk can take a lot of time to return or exit the network it can for
example be considered to have left the network after a certain amount of steps.

Alternatives for K-approximation

A common approach to estimate the matrix inverse is first to rewrite it using
the power series expansion

oo

K=(1-0)"=Y (@) (4.27)

k=0
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Chapter 4. A distributed algorithm for social influence maximization

which indicates that a sufficient approximation of K can be made by truncating
this power series after a sufficiently large amount of iterations. This results in
the estimation

N

Kesr = Z (Q/)k (428)

k=0

where N is the number of iterations. The direct implementation is very com-
putationally heavy as the computational cost is O(N(N + 1)n*). However, a
simplification can be made by using the exponential (Q')¥ when computing
(Q")¥*+1. This results in the following iterative scheme

(@) =@ (@ +I), 1<k<N. (4.29)

This reduces the computational cost to O(Nn?). Both of these methods are
non-distributed and should not be considered.
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Numerical simulations

In this chapter, simulations are done using the algorithm presented in the
previous chapter. First, in Section 5.1, a description of the different network
topologies are presented as well as the placement of stubborn nodes. To ver-
ify the results of simulations on these networks, an approximation of the real
solution is needed. These methods are presented in Section 5.2. Finally, in
Section 5.3 simulations are done and the results are presented along with a
comparison of the approximated real solution.

5.1 Data sets

The algorithm was implemented on a few networks. First a few artificial net-
works of varying sizes were chosen and implemented, these include the now
familiar line graph and a toroid. A toroid with n = 144 nodes can be seen in
Figure 5.1. The two stubborn nodes are placed in the same circle around the
toroid in such a way that if there are n; = 12 nodes in that that circle, the
stubborn nodes have position 1 and "7‘ = 6. In this kind of toroid, one line
circling the center of the toroid have the same number of nodes that circles a
line around the side. This result in the total number of nodes being a square
number. The toroid used in the simulations have a total of 100 nodes num-

bered around the center, 1-10 in the first line, 11-20 in the second etcetera.
A real dataset were acquired from SNAP [Leskovec and Krevl, 2014] and

include a part from Facebook with n = 4039. As stubborn nodes were not
present, they had to be added and 30 of the nodes with the highest indegree
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Chapter 5. Numerical simulations

Figure 5.1 Toroid with n = 144 nodes and two stubborn nodes.[Acemoglu
etal., 2013]

were converted into stubborn nodes. In total the algorithm was used on the
following networks:

* Line graph with 10 nodes

* Line graph with 50 nodes

* A toroid with 100 nodes

¢ Facebook network with 4039 nodes.

5.2 \Verification of results

To be able to verify results from running the algorithm on actual networks, it
is important to have at least an approximate answer to compare with. For the
line graph this solution is explicitly known from Chapter 3. For the toroid, the
matrix Q is assumed to be far enough from singular to be able to solve the
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5.3 Simulations

linear system
(I— 0z = gy (5.1

with a sufficiently small enough numerical error. This is done for every i to
get the opinion equilibrium for every possible positioning of the tail of the
added link. Then

Y=Y (5.2)
J J

yields the opinion gain when a the tail of the directed link is placed in i. As
earlier, x*, is the opinion equilibrium for the unmodified network. For the
Facebook network, the opinion dynamics

x(t+1)=0x(t)+Bu, 0<t<1000 (5.3)

is used for all choices of the modified Q and B matrix.

5.3 Simulations

For the networks, the dependence on two different parameters in the algorithm
were studied. They are presented as steps and K-steps. Steps are the number of
iterations that are done in the approximation of x and z described in (4.22) and
(4.24). The method used to estimate Kj; is the random walk method described
in Section 4.3. The number of iterations, K-steps, in this case is the least
amount of random walks performed for each node. To calculate the relative
error the following formula is used

_ H’}/Sim - ’Vreul”

;= (5.4)
[ Yreat|

where 7, is the simulated gain for every node and ¥, the verification value
described in the former section

Line graph with 10 nodes

Figure 5.3 depicts how the simulated gain varies with different choices of
K-steps when the number of normal steps is set to 10000. In Figure 5.2 the
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Chapter 5. Numerical simulations

Relative error: Linegraph, n = 10, steps = 10000
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K-steps

Figure 5.2 Relative error in a line graph with 10 nodes depending on regular
node. Number of K-steps varying from 10 to 10000. Amount of steps is set to
10000.

relative error versus number of K-steps is presented. Even though ten K-steps
provides a large error, the algorithm shows a maximum in node 2, which is
the optimal placement. However this result is unlikely to be consistent con-
sidering the stochastic nature of the random walk method. Then at least 1000
K-steps seems to provide a reliable solution.

Conversely, in Figure 5.4, the number of K-steps is held constant at 10000
and the amount of steps is the variable to be studied. Figure 5.5 shows the
relative error in this case. In this case 100 steps and above seems to provide
an accurate result.

Line graph with 50 nodes

The same is done for a line graph with 50 nodes. First, in Figure 5.6, the gain
for every node when the number of K-steps is varied and steps held constant
at 10000. The relative error is presented in Figure 5.7. When the number of
nodes is increased, the unreliability of the random walk method for few iter-
ations is more apparent. At least 10000 K-steps should be used, perhaps even
more since the maximum of the simulation does not coincide with the maxi-
mum of the true gain. Then, K-steps is held constant at 10000 and the total
gain for every node is presented in Figure 5.8 for different number of steps.
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Line graph, n = 10, steps = 10000
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Figure 5.3 Gain in a line graph with 10 nodes depending on regular node.
Number of K-steps varying from 10 to 10000. Amount of steps is set to 10000.

Linegraph, n = 10, K-steps = 10000
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Figure 5.4 Gain in a line graph with 10 nodes depending on regular node.
Number of steps varying from 10 to 10000. Amount of K-steps is set to 10000.
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Relative error: Linegraph, n = 10, K-steps = 10000
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Figure 5.5 Relative error in a line graph with 10 nodes depending on regular

node. Number of steps varying from 10 to 10000. Amount of K-steps is set to
10000.
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Figure 5.6 Gain in a line graph with 50 nodes depending on regular node.
Number of K-steps varying from 10 to 10000. Amount of steps is set to 10000.
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Relative error: Linegraph, n = 50, steps = 10000
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Figure 5.7 Relative error in a line graph with 50 nodes depending on regular
node. Number of K-steps varying from 10 to 10000. Amount of steps is set to
10000.

The relative error can be seen in Figure 5.9. In this case, at least 10000 steps
is needed for the algorithm to be close to the true gain. Again, the maximum
does not coincide perfectly with the true gain. If this remains consistent this
could be an indication of an implementation error.

Toroid

Same thing is done for a toroid with varying K-steps in Figure 5.10 and cor-
responding relative error in Figure 5.11 as well as with varying number of
steps in Figure 5.12 and relative error in Figure 5.13. As the node numbering
is not as intuitive as the line graph, the figures depicting gain as a function
of node numbers can be considered less important. These results gives a few
interesting observations, even though the number of nodes is twice that of the
line graph in the previous section, the convergence seems to be faster. At just
1000 steps and the equal amount of K-steps, the error is considerably small.
Thus, the number of needed iterations does not only depend on network size,
but also how close to each other the nodes are. In the line graph, the longest
path between two nodes is around 50, while in the toroid it is around 20.
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Linegraph, n= 50, ksteps = 10000

True gain
Steps = 10
Steps = 100
Steps = 1000
Steps = 10000

Gain
3

Node

Figure 5.8 Gain in a line graph with 50 nodes depending on regular node.
Number of steps varying from 10 to 10000. Amount of K-steps is set to 10000.

Relative error: Linegraph, n = 50, K-steps = 10000
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Figure 5.9 Relative error in a line graph with 10 nodes depending on regular
node. Number of steps varying from 10 to 10000. Amount of K-steps is set to
10000.
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Relative error: Toroid, n = 100, steps = 10000
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Figure 5.11 Relative error as a function of number of K-steps in a toroid
with 100 nodes. Normal steps is set constantly to 10000.

Figure 5.10 Gain for every regular node in a toroid with 100 nodes. Amount
of K-steps is set to 10000.

Facebook

Finally, simulations were done for the Facebook-network. This is more im-
portant as it is more of a real world example. Then the previous simulations
can be considered as a verification that the algorithm is working. Figure 5.14
provides a comparison between the simulated value along with the verifica-
tion value described earlier. Observing this it is apparent that most options
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Toroid, n = 100, K-steps = 10000
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Figure 5.12 Gain for every regular node in a toroid with 100 nodes. Amount
of K-steps is set to 10000.

Relative error: Toroid, n = 100, K-steps = 10000
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Figure 5.13 Relative error as a function of number of steps in a toroid with
100 nodes. K-steps is set constantly to 10000.
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do not change the total opinion considerably but there are some nodes that
do, for example the nodes numbered above 4000. The optimal solution in this
case would provide an opinion gain of 22, which is equal to an total opinion
increase by 1.5%. The relative error as a function of step numbers is provided
in Figure 5.15. The reason why it is enough with just ten K-steps is because
depending on the positioning in the network of nodes, some will take a longer
time to reach a total number of ten exits and returns. In this time, many other
nodes have reach several thousand, why it still provides high enough accuracy.

Facebook, 30 stubborn nodes, iter = 10000, kiter = 10

— True gain
Error = 5.5% Simulation

Real best node = 3951
Predicted best node = 3951

25

20

15

0 Ll ]
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Node

Figure 5.14 Simulated and real gain in the Facebook-network.

Looking at the computation times provided in Figure 5.16, the results are
confusing. While it is apparent that the Kj; approximation contributes most
to the computation time. When increasing the number of steps for x and z
approximation, the total computation time actually decreases, which does not
make sense. As this remains consistent for several simulation runs, I want to
attribute this to coding error. Other unlikely reasons could be that Matlab use
previously done computations to refrain from repetitions. To compare with the
truncated power series method, simulations were done for varying truncations
lengths. The relative error is provided in Figure 5.17 and it is quickly clear
that 1000 iterations is not close to enough and the error is almost 100%. The
computation time is also considerably large, see Figure 5.18, which does not
make it a viable option.
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error: Facebook, 30 nodes, K-steps =10
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Figure 5.15 Relative error for the Facebook-network as a function of num-
ber of steps. K-steps is set to 10.

590 Computation time: Facebook, 30 stubborn nodes, K-steps = 10
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Figure 5.16 Computation time for the whole algorithm when varying the
number of steps.
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Figure 5.17 Relative error when using the truncated power series method.
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Figure 5.18 Computation time for the whole algorithm
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Conclusion

The objective in this thesis was to find the optimal placement of a directed
link in order to maximize the resulting influence in the network. It has been
shown that the complexity of this problem can be reduced by always letting
the directed link point to a stubborn node of desired opinion. The result is that
it is only necessary to find the node from which the directed link should stem.
We then progressed into finding the optimal tail placement for the line graph
and the barbell graph as well as the case when multiple lines are present.

Next, we formulated a formula, for general network topographies, to com-
pute the induced gain brought by the addition of a directed link. We proceed
by introducing a distributed algorithm using this formula. Simulations shows
the speed of convergence in a few different network types.

The benefit that a distributed implementation has been found working on
general graphs cannot be stressed enough. A distributed implementation in-
creases the possibilities for actual use. If again we compare to the similar
problem of turning a node into a stubborn node, this was not fully achieved in
the works studied.

A real life implementation of the algorithm raises further questions. If we
want to add many links, what is the optimal approach? Should we run the
algorithm once and use the best nodes or should one instead use an iterative
approach by adding one link and then run the algorithm again? Perhaps it
is possible to find a middle ground in this case. Other issues is how we can
quantify the opinion of people. And how can we quantify the strength of social
connections? Future work could try and answer these questions.

There are also some things not modelled in this thesis that should be taken
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Chapter 6. Conclusion

in consideration, such as the degree of self confidence of a node. This can
be modelled by adding a self loop to every node so that their own opinion is
taken into consideration in the update process.
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Appendix

The Sherman-Morrison formula

The Sherman-Morrison formula [Sherman and Morrison, 1950] gives an ex-
pression for how the inverse changes of a matrix when one element in said
matrix has been changed. Consider the invertible matrix A with inverse A~
Let

B=A+A 6.1)
A=adP8W | 4eR 6.2)

where a can be interpreted as the change of index (i, j) in the matrix A. Then
the inverse of B can be written as

L aA 180§ At

B = (A48 =A" = A5

(6.3)
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