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Chapter 1

Introduction

In this project we aim to describe the lateral interactions between protein molecules
adsorbed onto a planar interface, such as membranes or mineral surfaces. These in-
teractions have implications for both biological function and technical applications.

The strategy is to use statistical mechanical theory to create simplified models for
protein interactions and, by gradually increasing the detail level, study the role of an-
isotropic interactions due to molecular shape and charge distribution.The project
will be done in collaboration with experimentalists and we aim to create a com-
putational tool for analysing experimental data using generalized Van der Waals
(GvdW) theory. Moreover, we will explore the validity of the simplified models
using Metropolis Monte Carlo (MC) simulations. Lastly, we aim to develop a web
interface for the developed model which will be publically available and easy to
copy or download to modify both online and offline.
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Chapter 2

Theory

The goal is to model interactions between proteins that are studied in an hydro-
dynamic trapping of molecules in lipid bilayers by Jönsson et al.¹ using simple models
and simulations. Below is a short summary of the methods in the paper mentioned
above, followed by theory of the tools that will be used to model and simulate this
experiment.

The simplest description of the experiment would be to model the proteins as hard
disks on a flat surface with no pair interaction potential except for space exclusion.
Such a system can be modelled by Virial expansion, the Van der Waals equation of
state and using a Monte Carlo system. Chapter 4 compares the predictions of these
three models. The theory is discussed below.

The simple hard disk model can be improved by also modelling an interaction
between the particles. This model can also be captured by Van der Waals and Gen-
eralized Van der Waals theory. Again, results will be compared to the exact Monte
Carlo simulations.

Even more interesting properties can be modelled with Monte Carlo simulations.
For example, the orientation of the proteins with respect to the surface may change
as the concentration increases. Using results from physical experiments allows to
incorporate the effect of orientation into the model in Monte Carlo simulations.

1 Introduction to the experiment

The experiment features proteins attached to a bilayer. An external flow of liquid
right above the bilayer creates a hydrodynamic force on molecules protruding from
the bilayer, which in turn creates a concentration gradient along the bilayer. We
are interested in the relation between the chemical potential gradient and the con-
centration gradient.

The bilayer is a supported lipid bilayer (SLB). Streptavidin was the protein used in
the original study¹. This protein is special because it binds strongly to the biotin
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Figure 2.1: The experiment features proteins on a bilayer (A). By applying an ex-
ternal potential (B), the concentration of proteins varies along the bilayer (C).

receptor, which makes it useful for studies such as these. More experiments are
currently being carried out for the proteins CD4 and CD2. For more data on these
proteins, see section 2.

The bilayer and the proteins are submerged in an aqueous solution. A pipette was
placed with the tip slightly above the surface. Siphoning the liquid from the solu-
tion into the pipette creates a force along the bilayer towards the tip of the pipette.
This force in turn moves the proteins closer to the tip of the pipette creating an area
of higher density.

To measure the density of the proteins on the surface, the proteins are labelled with
a fluorescent marker. A picture of the intensity of the fluorescently labeled protein
reveals the number density of the protein as a function of position. The force field
created by the water flow can be simulated numerically. Knowledge of the density
by location and force by location allows for a fitting of the chemical potential as a
function of density.

2 Generalized Van der Waals

The simple Van der Waals equation of state was introduced in 1873² as an improve-
ment to the ideal gas law. The assumptions made in this model are quite crude
but works well at low concentrations. It takes into account the volume of particles
(the excluded volume effect) and a binding energy (the net effect of attractive and
repulsive forces). Although the approximation is crude, it does provide a way to
analytically model a gas using its physical properties.

The well known Van der Waals equation of State in three dimensions is:

(
p + n2a

V2

)
(V − nb) = nRT (2.1)

If the constants a and b would be zero the equation above would reduce to the ideal
gas law, where p, V, n, R, and T are the pressure , volume, amount, gas constant
and temperature. The constant a is the binding energy constant (with units J m³ /
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Figure 2.2: This data is result of the aggregation of many experiments, each of a
shorter range of protein concentrations. These experiments were carried out with
a salt concentration of 150 mM and a pH of 7. The larger proteins (CD2 has a
higher excess chemical potential then the smaller CD4 proteins. These results will
be further discussed in section 4

mol²) which is a measure for how strongly the gas molecles attract each other. The
constant b has units m³ / mol and is a measure of the excluded volume per mole.

Van der Waals arrived at this equation by making several assumptions about the
potential and density of the gas molecules. Equation 2.17 above is an expression
for the pressure in terms of V, n, R, and T. The way that Van der Waals derived
this equation is not shown here. Instead the same formula can be derived starting
from the partition function and the same assumptions. This method derives an
expression for the pressure (the equation of state and also for the chemical potential
µ in terms of V, n, R, and T. This derivation will be shown below.

3 Derivation from the partition function.

Starting from the canonical partition function Q to describe all degrees of freedom
in the system:

Q(V,T,N) = QtransQint (2.2)

where Qtrans is the translational partition function:

Qtrans = λ−3NVN

N!
(2.3)

where λ is the thermal De Broglie wavelength given by:

λ = h√
2πmkBT

(2.4)
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where h is plack’s constant, m is the mass of the particle, kB is Boltzmann’s constant
and T is the temperature

The internal partition function Qint is given by:

Qint = qNint (2.5)

where qint is the internal partition function per molecule which is:

qint = exp
(

− E
kBT

)
(2.6)

where E is an internal energy

Combing equations 2.2 - 2.6 is the starting point of the derivation:

Q = 1
λ3NN!

VN exp
(

−NE
kBT

)
(2.7)

From here Van der Waals made two assumptions:

• The volume of each particle reduces the volume available to other particles.
Therefore, let the free volume Vfree be the total volume minus the excluded
volume: Vfree = V − Vexcluded

• The Mean field approximation: assume that the potential energy per particle
only depends on the particle density n.

Or in formulas:

Vfree = V − Vexcluded = V − bN (2.8)

where b is the excluded volume per molecule. With the mean field equation the
interaction energy is given by:

E = 1
2

∫ ∞

0
4πr2 n(r) u(r) dr = 1

2N/V
∫ ∞

0
4πr2 g(r) u(r) dr = N/Va (2.9)

where u(r) is the pair interaction potential and g(r) is the radial distribution func-
tion. The integral will result in a single value, a, which is the binding energy con-
stant.

We now have a partition function from which the Van der Waals Equation of State
can be derived:

Q = (V − bN)N

λ3NN!
exp

(
−N2a
VkBT

)
(2.10)
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We’ll need Stirlings’ approximation to simplify the factorial term:

ln(N!) ≈ N ln(N) − N (2.11)

Or equivalently:

N! ≈ NN

eN
(2.12)

Using the approximation gives:

Q =
(

(V − bN)e
λ3N

)N

exp
(

−N2a
VkBT

)
(2.13)

From here we can calculate the Helmholtz free energy A:

A = −kT lnQ

= kTN ln
(
λ3Ne−1

V − bN + N2a
V

) (2.14)

The pressure can now be calculated using the thermodynamical relation (at constant
temperature T):

p = −
(
δA
δV

)
T

(2.15)

which gives:

p = NkT
V − bN − N2a

V2 (2.16)

which can be rewritten to

(
p + n2a

V2

)
(V − nb) = nRT (2.17)

which is the same as equation 2.17 as we wanted to show.

Now, we are interested in the chemical potential µ instead of the pressure p and
would like to work in 2 dimensions instead of 3. This derivation is shown in the
next paragraph:
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3.1 Van der Waals in two dimensions

We’ll start from equation 2.13 above but modify it for two dimensions. The factor
λ3 is replaced by the factor λ2 and the volume V is replaced by the surface Y. Now
the constant b means excluded surface instead of excluded volume. The integrals
for calculating a are slightly different but the idea is the same.

Q =
(

(Y − bN)e
λ2N

)N

exp
(

−N2a
YkBT

)
(2.18)

Now the Helmotz free energy is:

A = −kT lnQ

= kTN ln
(
λ2Ne−1

Y − bN

)
+ N2a

Y
(2.19)

Now the chemical potential can be calculated with the relation:

µ = δA
δN

= kT
(

+2 lnλ+ ln
(

N
Y − bN

)
− Y

bN2 − NY

)
+ 2Na

Y

(2.20)

To simplify this expression we define â = a/kT. Furthermore, absolute values of
the chemical potential are here unimportant, so we ignore the constant term 2 lnλ:

µ/kT = ln
(

N
Y − bN

)
− bN

bN − Y + 2Nâ
Y (2.21)

and introduce the quantity n = N/Y, the surface number density to simplify the
expression:

µ/kT = ln
(

n
1 − bn

)
+ bn

1 − bn + 2nâ (2.22)

In an ideal gas, where the particles have no size and don’t interact, the values for a
and b would be zero. So for an ideal gas, the potential is:

µ/kT = ln n (2.23)
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4 Virial theory

Virial theory is another way to describe the equation of state for a gas, where the
pressure of the gas is expressed as a polynomial of density:

p
kT = ρ+ B2(T)ρ2 + B3(T)ρ3 + . . .+ Bm(T)ρm = ρ+

∑
i
Bi(T)ρi (2.24)

where k is the Boltzmann constant and ρ is the density in either two or three di-
mensions. The derivations below are in terms of ρ and are thus valid for both two
and three diminsions.

The first term ρ has no coefficient, that is the term for the ideal gas law. Higher
terms Bi are called Virial coefficients. This expression is an approximation for the
pressure at low densities.

To transform this into an expression for chemical potential µ we use this relation
between the Gibbs free energy G, and the pressure p:

dµ
kT = dG

N = Y
Ndp =

dp
ρ

(2.25)

The chemical potential can then be found through the following integral:

µ =
∫ p

p0

1
ρ
dp′ =

∫ ρ

ρ0

1
ρ

dp
dρ′ dρ

′ (2.26)

Plugging in equation 2.24 into the expression above yields:

µ
kT =

∫ ρ

n0

dn′ 1
ρ

d
dρ′

(
ρ+

∑
i=2

Biρ
i

)

=
∫ ρ

n0

dn′ 1
ρ

(
1 +

∑
i
Bi=2 i ρi−1

)

=
∫ ρ

n0

dn′

(
1
ρ

+
∑
i=2

Bi i ρi−2

)

= ln ρ+
∑
i=2

Bi
i

i − 1ρ
i−1

(2.27)

The first few terms look like:

µ
kT = ln ρ+ 2B2ρ+ 3

2B3ρ
2 + . . . (2.28)
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4.1 Virial coefficients for the Van der Waals equation of state

Using Taylor expansion the Van der Waals equation of state can be written in the
form of a Virial expansion to compare them.

From equation 2.16:

p
kT ≈ n + (b − â) n2 + b2n2 + . . . (2.29)
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Figure 2.3: Figure The excess chemical potential for hard disks as expressed by Van
der Waals theory and Virial expansion. The Virial coefficients for the plotted line
are those up to B9

4.2 Virial coefficients for hard disks

The Virial coefficient Bi represents the ith order interaction. For hard disks the
interaction can be calculated analytically for the first 3 coefficients. From Hemmer³:

B2 = 2
B3 ≈ 3.128017947
B4 ≈ 4.257854656

(2.30)

Higher terms have been calculated in Monte Carlo simulations. From Hu and Yu⁴:
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B5 = 5.33689664
B6 = 6.363
B7 = 7.352
B8 = 8.319
B9 = 9.272

(2.31)

5 Simulation

The analytical methods introduced above are useful for simple interactions but are
limited for more complex interactions. The equation for the potential derived from
the Van der Waals equation of state captures the binding energy in a single constant.
A numerical simulation of particles allows interactions, charge distributions and
steric interactions to be taken into account. In this paper we will use the software
tool Faunus⁵ for numerical simulations of gasses of particles. It uses Markov-chain
Monte Carlo simulations for its simulations. This technique will be introduced
below

5.1 Metropolis Monte Carlo simulation

The “Monte Carlo” method is numerical method for calculating quantities using
random sampling. The Metropolis algorithm is an application of the Monte Carlo
method that uses importance sampling.⁶ It provides a straightforward algorithm
for approximating integrals of the type:

⟨E⟩ =
∫
drNE(rN) exp(−βu(rN))∫

drN exp(−βu(rN))
(2.32)

where β = 1/kT and exp(−βu(rN)) is the Boltzman factor that weights the contri-
bution of that energy state,

The idea is to favor the sampling of configurational states that are more likely and
thus contribute more to the above integral. Instead of generating random states
afresh, the Metropolis algorithm generates a new state from a perturbation from a
previous state and favor it in a ratio based on their relative likeliness. That is, from
the old state, make a trial move to a new state, and with some acceptance function
acc(old → new), accept the new state, or reject and maintain the old state. In the
equation above it is the Boltzmann factor that determines the likeliness of the state.
Thus the likeliness of transitioning from an old state to a new π(old → new) should
satisfy:

π(old → new)
π(new → old)

= acc(old → new)
acc(new → old)

= exp (−β (u (new) − u (old))) (2.33)
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(The above only holds if the underlying Markov Matrix is symmetric). The standard
acceptance function that satisfies the above is:

acc(old → new) = min (1, exp (−β(u(new) − u(old)))) (2.34)

Thus randomness is used in two circumstances. Firstly a trial move is generated by
randomly translating, rotating or otherwise moving any part of the configuration.
The acceptance for this transition is calculated, and a second random number is
generated to decide whether the move is accepted or rejected.

The algorithm in words is:

1. make a trial move

2. calculate the acceptance probability a

3. generate a random number r on the interval [0, 1⟩

4. accept the move if a > r else reject

6 Widom particle insertion

The previous section describe how to the Monte Carlo effectively samples the rel-
evant configuration of a system of particles. In this section we are interested in
how we can calculate the chemical potential for such configurations. One such
method is known as the “Widom insertion method”, which was first introduced by
B. Widom in his paper “Some Topics in the Theory of Fluids”⁷.

In the section 3.1 above on Van der Waals theory we used the following formula
for the chemical potential: (i.e. how does the energy change when the number of
particles changes)

µ = ∂A
∂N (2.35)

The same rationale can be applied to the numerical simulation: How does the
energy of the configuration change if one particle were added to it? This is what
the Widom insertion method does. In formula:

µexcess = −kT ln ⟨ exp (−βψ(r)) ⟩r (2.36)

Where β = 1/kT and ψ is the interaction potential of the inserted particle with all
the other particles, r is the coordinate vector and ⟨ ⟩r signifies the average over all
space.

The equations below aim to derive 2.36

Consider the configuration integral ZN of a fluid.
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ZN =
∫

· · ·
∫
V

exp (−βWN(r1, . . . , rN)) dr1 . . . drN (2.37)

Where WN is the potential interaction energy of all particles as a function of the
positions of all particles.

Then consider adding a single particle. Let ψ be the interaction potential of the
added particle with all the other particles.

ZN+1 =
∫

· · ·
∫
V

exp (−βWN(r1, . . . , rN)) exp (−βψ(rN+1)) dr1 . . . drN+1

= ZN

∫
V

exp(−βψ(r)) dr

= ZNV ⟨exp(−βψ(r))⟩r
(2.38)

The Helmoltz free energy, A, can be calculated from the configuration integral
which in turn can be used to calculate the chemical potential:

A = −kT lnZ

µ = ∂A
∂N = −kT∂ lnZ

∂N
(2.39)

The derivative in 2.39 can be estimated directly using the result from
[eqn:widom_conf ].

d lnZ
dN ≈ − lnZN − lnZN+1

1

= ln ZN+1
ZN

(2.40)

The excess potential is then:

µexcess = −kT ln
⟨

exp
(

−ψ(r)
kT

)⟩
r

(2.41)

6.1 Dilute hard spheres

As an example, we could use the Widom insertion method to calculate the potential
for hard disks. The interaction potential for hard disks is either 0 or ∞ so the
exponent term in 2.42 is either 1 or 0. Consider a dilute gas of harddisks as shown
in figure \ref{fid{hardwidom} below. The gas is assumed to be so dilute that the
chances of two particles being close enough to have overlapping excluded areas is
assumed to be negligibly small.
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Figure 2.4: A box filled with hard disks. In this figure the particles are colored or-
ange. Surrounding each particle there is an area where (the center) of other particles
can not be: the excluded area. In this figure the excluded area of each particle is
colored red.

Let the radius of disks with r. Now consider what happens if a ghost particle is
inserted. There are only two options, either it overlaps with another particle, or it
does not. An overlap would occur if the center of the particle is inserted anywhere
in the excluded area of the particles in the box (the red areas in the figure). If the
particles overlap the interaction potential is ∞, and if they do not the interaction
potential is 0. Since there are only two values that the interaction potential can
take we can expand the expectation value in equation 2.42:

µexcess = −kT ln
⟨

exp
(

−ψ(r)
kT

)⟩
r

= −kT ln
(
exp(−∞)poverlap + exp(−0)(1 − poverlap)

)
= −kT ln (0 · bn + 1 · (1 − bn))
= −kT ln (·(1 − bn))

(2.42)

where n is the surface particle density and b is half the excluded area per particle.
(The definition of b is the same as in the section on van der Waals theory, see section
3.1)

The chemical potential is then (adding the ideal term kT ln n):

µ = kT ln
(

n
1 − 2bn

)
(2.43)
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By taking a series expansion the expression above and for the expression for the
chemical potential derived for hard disks using the Van der Waals theory in equation
2.22 for the variable n around 0 we see that the terms are the same up to the first
order series expansion:

µ
kT ≈ ln n + 2bn + O(n2) (2.44)

6.2 Monte Carlo simulations

In his paper B. Widom describes the averaging as follows:⁷

Imagine that in a fluid which is in thermodynamic equilibrium the mo-
tion of the molecules suddenly ceases at some arbitrary instant, so that
the molecules become rigidly fixed in one of the infinitely many pos-
sible configurations characteristic of the equilibrium fluid. Now add
to the system another molecule, identical to those of which the fluid
is composed, and let it wander among the fixed molecules, measuring,
at each point, its energy of interaction ψ with the fixed molecules, or
exp(−ψ/kT), or any other function of position. Then the average value
of such a function of position, assigning equal weight to equal elements
of volume in evaluating the average, is symbolized by ⟨ ⟩.

He has described exactly what we would do in a Monte Carlo simulation. At every
step of the simulation we already have a “rigidly fixed configuration”. We add a test
particle and let it “wander” by repeatedly inserting and removing the same particle.

We have implemented the Widom insertion method into the Faunus⁵ Monte Carlo
simulation framework. The C++ code of the implementation is included in ap-
pendix C

6.3 Weeks Chandler Andersen potential

The hard sphere potential is simple but the discontinuity of its step function makes
it impossible to calculate forces. The Weeks Chandler Andersen (WCA) potential is
a continuous potential which can approximate a hard sphere potential by choosing
the parameters such that it becomes very steep.

The WCA potential is similiar to the Lennard-Jones (LJ) potential but it is cut and
shifted at the minimum. See figure 2.5. This separates the repulsive part and the
attractive part of the potential.

u(r) = 4ϵ


(
b
r

)12
−
(
b
r

)6
+ 1/4 r < rmin(

b
r

)12
−
(
b
r

)6
r > rmin

(2.45)

By setting the ϵ to a very large value value and ignoring the attractive part, the
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Figure 2.5: Lennard-Jones and Weeks-Chandler-Andersen potentials

potential effectively becomes a hard-sphere potential, but it remains continuous
everywhere so that forces can be calculated.

6.4 Electrostatic potential

In Monte Carlo simulations, water molecules of the solution are not explicitly in-
cluded in the simulation. Instead the water is modelled implicitly as a continuous
dielectric medium. The presence of water effectively attenuates the strength of the
electric field. The electric field is described with a screened coulomb potential. (or
Yukawa potential)⁸.

u(r) =
λBzizj
r exp (− r

λD
) (2.46)

where zi and zj are the charges of the interacting particles, r is the distance between
the particles. The Bjerrum length λB and the Debye length λD are defined below:

λB = e2

4πϵ0ϵrkBT

λD =

√
4πq2

kBT

(2.47)

where e is the elementary charge, ϵ0 is the vaccuum permittivity and ϵr is the relative
dielectric constant. For water at room temperature, ϵr is about 80 which makes λB
equal to about 0.7 nm.
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Chapter 3

Model Development

Running a simulation for a large surface full of proteins with an exact molecular
structure and charge distribution is computationally expensive. Each additional
particle could interact with all the existing particles, and the computation time thus
increases quadratically with the number of particles. We could therefore reduce the
number of molecules in the simulation or the number of atoms that these molecules
are made out of. In the extreme case we can replace the entire protein by a single
charged sphere. In this way we retain the effects of the volume exclusion and the
monopole electrostatic interactions, but lose the effects of steric interactions and
higher order electrostatic interactions (dipole, quadrupole, etc.). It might just be
the case that these interaction are dominating the potential at least at low densities.
An additional advantage of the simplification is that it allows for analytical solution
to be found for the potential.

We can start with the most basic case: a hard disk. It has only repulsive interactions,
no orientation, it only occupies space. This provides a good baseline. The chemical
potential is defined as the amount of free energy it takes to add a single particle to
the system. Hard disks do take space, and therefore it is harder to add a particle to
a surface of high density of hard disks than a low density.
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Table 3.1: Coarse-graining of CD4

The complete structure of the
protein 1CDJ shown here with
all of its 1384 relevant
(excluding hydrogen) atoms.

Each amino acid has been
replaced by a single sphere
with the same size, charge and
center of mass as the sum of
its constituent atoms

A single sphere a represent the
protein makes for the fastest
calculations.

1 Monte Carlo compared to Generalized van derWaals
and Virial

We are interested in the chemical potential of hard disks as a function of surface
coverage. We can use several methods to plot this relation. Firstly, Generalized
Van der Waals theory yields a simple analytical expression that approximates the
chemical potential. Secondly, from the standard Virial expansion of the relation
between compressibility and surface coverage we can obtain an expression for the
chemical potential. Finally experimental data obtained from Peter.
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Chapter 4

Theory compared with
experimental data

1 Harddisk MC simulation and Virial Theory

The potential of hard disks can be very accurately modelled by Virial theory. The
expression for the potential expressed in terms of surface coverage in Virial theory
is shown in (See eqn. (2.24). Using the coefficients for this expression (See eqn.
2.30, 2.31) we can plot this relation for hard disks. This relation is plotted below in
Figure 4.1.

Since the Virial theory provides such a reliable estimation for the potential this
reinforces that the Widom insertion method has been implemented correctly.
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2 Table of Proteins

The original study on which this study is based¹ studies streptavidin. Current re-
search by Peter Jönsson extends this research by studying a wider range of proteins
which are similar in structure to streptavidin: CD2 and CD4. (the name CD stands
for cluster of differentiation). Each of these proteins is found on the surface of T-cell
and are thus involved in the immune response. These proteins cover a wide range
of sizes from 178 residues for CD4. The structure data was obtained from the Pro-
tein Data Bank (PDB⁹) and UniProt¹⁰ in a pdb format. This file was subsequently
uploaded to the PDB2PQR Server to prepare the structure for continuum electro-
statics calculations¹¹. The service processes the uploaded .pdb file and estimates the
titration states and protonating biomolecules in a manner consistent with favorable
hydrogen bonding. This process yields a .pqr file which includes the estimated (par-
tial) charges. The service also uses APBS (Adaptive Poisson-Boltzmann Solver)¹² to
calculate the electrostatic potential around the molecule. The structural .pqr data
along with the spatial electrostatic data were loaded into VMD¹³ to produce the
thumbnails below (red areas designate positive charge and blue negative).

The size of the proteins was determined numerically, by randomly sampling points
in a box enclosing the molecule and checking if the point was contained in the
molecule or not. This feature is available in Faunus.geometry::calcVolume.⁵.

Name CD4 CD2

PDB id 1CDJ 1HNF
UniProt P01730 P06729

Thumb
Residues 178 351

Charge (at pH=7) 4.27 - 4.42 5.48 - 5.66
Volume (nm3) 18 18.6

Table : The method of calculating the charge and the volume is described in the
text above.
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3 Experimental data and Monte Carlo Simulations

One of the goals of the Monte Carlo simulations was to find the effect of charges
on the chemical potential. Using a coarse-grained model of 1CDJ (amino acids as
atoms) we set up two similar simulations. In one of the simulations all the charges
were neutralized. Both of the simulations had the following setup: 20 proteins were
put in a plane ( a cuboid geometry with one coordinate constrained to be zero) with
a Weeks-Chandler-Andersen potential for the interaction of neutral atoms and an
additional Yukawa potential for the screened electrostatic interaction. Both setups
were the same, but in one of the two all charges were set to 0. Using Widom
insertion analysis the potential of both systems was calculated for both setups. The
results are shown below in figure 4.2:
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Figure 4.2

The proteins in this simulations (1CDJ) have a size of 18 nm³. The dashed line in
figure 4.2 plots the potential of hard disks of the same size using the Virial expan-
sion (eq 2.28 ). The plot above shows that the shape of the proteins does have an
influence on the potential, but the charges do not influence the potential much.
It is known that the electrostatic interactions are shielded by the presence of salt
in the solution. It could be that a stronger effect of the electrostatic interaction is
found at lower salt concentrations.
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Figure 4.3: Snapshot of the simulation. This experiment has a square box of 400Å
where the centers of mass of the 20 proteins are fixed to the x, y-plane. The pro-
teins interact with Weeks-Chandler-Andersson potentials of strength 0.005kT and
a Yukawa electrostatic interaction with a Debye-length of 10, which corresponts to
an electrolyte concentration of 0.1 M.
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Chapter 5

Interactive notebook

One of the goals of this thesis is to make theory that it discusses more easily available.
To this end I have created an online tool which enables interactive exploration of
the Van der Waals interactions for proteins in two dimensions. The tool is aimed at
experimentalists, and make it easy for them to upload their own data, compare their
data with some already defined potentials, change the parameters for those poten-
tials to see how they affect the potential, and finally to define their own potentials
themselves.

The tool was created using a Jupyter notebook, which is an open-source web ap-
plication that allows you to create and share documents that contain live code,
equations, visualizations and explanatory text.[kluyver2016jupyter]

The source code for the interactive notebook is available on Github, where it can
be viewed, downloaded or copied by anyone.¹

A free live hosted example of the notebook is available on the Microsoft Azure
cloud²

1 Technical details

I have created a interactive example that uses the python plotting library
matplotlib which renders high quality graphics. The interactivity is provided by
the Jupyter notebook. When the value of the sliders changes a new png image is
drawn by matplotlib. The old static image is quickly replaced by a new static
image. The result is a high quality image

Additionally I have created a version of the notebook which uses the bokeh plot-
ting library which produces a dynamically generated graph, which allows zooming

¹The full link is https://github.com/Zweedeend/interactive-2d-gvdw . The url shortened link is
goo.gl/uok86F

²The full link is notebooks.azure.com/kallgaard/libraries/interactive . The url shortened link is
goo.gl/NZSvm2
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Figure 5.1: Interactive Matplotlib example

and panning within the graph. Since the data can be updated dynamically, the
interaction is much more smooth.
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Chapter 6

Discussion

In this project I aimed to describe the lateral interactions between protein molecules
adsorbed onto a planar interface. I mainly focused on finding a effect of the protein
density on the chemical potential. I have done this using theoretical considerations
of Generalized Van der Waals theory and the Virial theory and numerical consid-
erations using Monte Carlo simulations.

Considering the proteins as hard disks on a planar surface already gives a rough
estimation of the chemical potential. Especially the Generalized Van der Waals
theory is useful for exploring the effect of interaction potentials on the chemical
potential. Since this relationship is a simple function it can be plotted interactively
as I have done in a an interactive Jupyter notebook.

By using Monte Carlo simulations, a numerical attempt was made to explore the
effect of the structure of and charge distribution of the protein on the chemical
potential. To investigate the chemical potential the Widom insertion method was
implemented for Faunus. I first performed a few simulations with hard disks to
verify that it matches with Virial theory for hard disks which is a very good approx-
imation for hard disks.

For a single protein (1CDJ) I have performed simulations using a coarse-grained
model of the protein structure. The molecules were constrained in a 2D plane. The
experiment was repeated for several box sizes to find the relation between the num-
ber density of proteins and the chemical potential. This led to a few preliminary
results shown in figure 4.2. These results suggest that the charges are screened by
the presence of salt.

The simulations that were performed were relatively simple because the space was
restrained to 2 dimensions, the number of molecules was as low as 20, and the
protein was coarse-grained to substitute amino acids for single ‘atoms’.

To expand on this research it would be interesting to restict the rotational movement
of the proteins. In the biological system the proteins are attached to the bilayer on
one end of the protein. This tethering resticts the rotational freedom of the protein.
This has not been taken into account yet in my model. Perhaps a simulation could
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be set up where not the protein center of mass but rather the tether point is restricted
on the 2D plane. Also the center of mass would be restrained to stay above the plane.
This would mimic the tethering.

To expand on the tethering there is an interesting paper Glycosylation and Lipids
Working in Concert Direct CD2 Ectodomain Orientation and Presentation¹⁴ which
concerns exactly the 1CDJ protein (CD4). In the paper the researchers have enu-
merated the probabilties for angles of the protein relative to the surface. These
probabilities can be translated into energies using the Boltzmann relation. These
energies can then be incorporated in the Monte Carlo simulations.
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Appendix A

Protein details

The images below show a high-resolution representation of the proteins listed in
table 2.

Figure A.1: 1HNF

1 Titration curves

One of the outputs that Propka provides is a titration curve. These are shown below.
The Monte Carlo simulations in this experiment are run at neutral pH.
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Figure A.2: 1CDJ
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Appendix B

Simple example of a Monte
Carlo simulation

To explore techniques of Monte Carlo simulations I created a small python script
that illustrates the workings that has all of the basic parts.

This program simulates 100 particles in a one-dimensional harmonic potential. The
particles are first uniformly distributed on the interval [−1, 1]. We take 100,000
steps in total, and every 1000 steps we take a sample of the total energy.

import random
import math

# constants
BETA = 10 # beta = 1/kT
MACRO_STEPS = 1000
MICRO_STEPS = 1000
DX = 0.1 # displacement

positions = []
samples = []
for i in range(1000):

positions.append(random.randrange(-1, 1))

def energy(x):
"Harmonic potential"
return x * x

def mcmove():
"Attempt to move 1 randomly chosen particle by
a random displacement"
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particle_id = random.randrange(len(positions))
old = positions[particle_id]
new = old + random.uniform(-0.5, 0.5) * DX
energy_change = energy(new) - energy(old)
if random.random() < math.exp(- BETA * energy_change):

positions[particle_id] = new

def sample():
"Calculate the total energy in the system"
total_energy = 0
for pos in positions:

total_energy += energy(pos)
samples.append(total_energy)

def main():
"Main loop"
for step in range(MACRO_STEPS):

for micro_step in range(MICRO_STEPS):
mcmove()

sample()

# start the main loop
main()

Simple Monte Carlo Simulation
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Figure B.1: The plot on the left shows the total energy in the system at each of
the samples we took in each macro step. The histogram on the right shows the
distribution of the particles at the end of the experiment
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Appendix C

Widom C++ Implementation

Implemented in Faunus/include/faunus/analysis.h in the namespace
Faunus::Analysis

template<typename Tspace>
class WidomMolecule : public AnalysisBase {

private:
typedef Energy::Energybase <Tspace> Tenergy;
Tspace *spc;
Energy::Energybase <Tspace> *pot;
int ninsert, molid;
string molecule;
Point dir;

public:
Average<double> expu, rho;

void _sample() override {
typedef MoleculeData<typename

Tspace::ParticleVector> TMoleculeData;
auto rins = RandomInserter<TMoleculeData>();
rho += spc->numMolecules(molid) / spc->geo.getVolume();
rins.dir = dir;
rins.checkOverlap = false;
for ( int i = 0; i < ninsert; ++i ) {

// ('spc->molecule' is a vector of molecules
auto pin = rins(spc->geo, spc->p, spc->molecule[molid]);
// energy between "ghost molecule" and system in kT
double u = pot->v2v(pin, spc->p);
expu += exp(-u); // widom average } } }
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