
Text classification of short messages

Anton Lundborg

MASTER’S THESIS | LUND UNIVERSITY 2017

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2017-14

Text classification of short messages

(Detecting inappropriate comments in online user debates)

Anton Lundborg
dic12alu@student.lu.se

September 1, 2017

Master’s thesis work carried out at Ifrågasätt Media AB.

Supervisors: Pierre Nugues pierre.nugues@cs.lth.se,
Gustav Hjärn, gustav@ifragasatt.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:dic12alu@student.lu.se
mailto:pierre.nugues@cs.lth.se,
mailto:gustav@ifragasatt.se
mailto:jacek.malec@cs.lth.se

Abstract

Almost every large Swedish online newspaper has disabled comments under
their articles due to problems with hateful and offensive comments. In this
Master’s thesis, we explore different ways to detect toxic comments using ma-
chine learning. We carry out a comparison of classification algorithms and
evaluate a number of different feature sets with the goal of optimizing accu-
racy for the classification of comments. We carry out the experiment with a
manually labeled data set.

The best classifier was logistic regressionwith the f-score of 0.47 and recall
of 0.50. We incorporated the classifier into a moderation tool for comments
to help streamline the moderation process.

Keywords: Machine learning, text classification, hate speech, Linear classification,
neural network, natural language processing, word2vec

2

Acknowledgements

I would like thanks Pierre Nugues for being so helpful and committed during this pro-
cess. I also want to thank Gustav at Ifrågasätt for proposing this idea and providing all the
resources needed for this project.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Related Work . 7
1.3 Goals . 8
1.4 Research Questions . 9
1.5 Constraints . 9

2 Theory 11
2.1 Machine Learning . 11

2.1.1 Linear Classification . 11
2.2 Algorithms . 12

2.2.1 Support Vector Machines . 12
2.2.2 Logistic Regression . 12
2.2.3 Neural Networks . 12

2.3 Features . 14
2.3.1 Bag-of-words Model . 14
2.3.2 Character n-gram Model . 15
2.3.3 Word2vec . 16

2.4 Evaluation Metrics . 16
2.4.1 K-fold Cross Validation . 16
2.4.2 Confusion Matrix . 16
2.4.3 Precision and Recall . 17
2.4.4 F-score . 17
2.4.5 Inter-Rater Agreement . 18

3 Method 19
3.1 Business Understanding . 20
3.2 Data Understanding and Preparation . 20

3.2.1 Swedish Language data Set . 20
3.2.2 Annotation . 21

5

CONTENTS

3.2.3 English Language Data set . 22
3.3 Modeling - Feature Extraction and Engineering 23

3.3.1 N-gram Features . 24
3.3.2 Linguistic Features . 24
3.3.3 Sentiment Feature – Version 1 24
3.3.4 Sentiment Feature – Version 2 25
3.3.5 Spellchecker Using SALDO . 26
3.3.6 Syntactic Features . 26
3.3.7 Embedding Derived Features . 27
3.3.8 Other Features . 27
3.3.9 Feature Selection and Elimination 28

3.4 Evaluation Methods . 28

4 Results 31
4.1 Annotation . 31
4.2 Feature Selection . 32
4.3 Classifier Comparison . 32

4.3.1 Neural Network . 32
4.4 Feature Comparison . 33
4.5 Comparing Data Sets . 34
4.6 Baseline Performance . 34
4.7 Tuning the Decision Limit . 34

5 Application 37

6 Discussion 41
6.1 The Annotation Process . 41
6.2 Machine Learning . 42

6.2.1 Features . 42
6.2.2 The Algorithms . 42

6.3 Applications . 42

7 Conclusion 45
7.1 Future work . 45

Bibliography 47

6

Chapter 1
Introduction

1.1 Background
Ifrågasätt is a company developing an online debating platform in the form of a plug-in
module that can be included on websites. This platform is intended to be used by compa-
nies active in the media business, such as online newspapers, blogs and similar. In Sweden,
almost every large newspaper has disabled comments under their articles due to problems
with hateful and offensive comments. The idea of Ifrågasätt is to perform some kind of text
analysis when a user publishes a comment, and decide instantly if the comment is either
threatening, explicit, or inappropriate in some other way. The text analysis of comments
is currently done by simply checking if the comment contains words from a predefined list
of unsuitable or explicit words. The purpose of this Master’s thesis is to explore ways to
perform the analysis of comments in a more advanced way.

In this thesis, we have investigated the possibility to use natural language processing
(NLP) and machine learning (ML) algorithms to identify inappropriate comments. The
research covers the entire process: Collecting and annotating data, feature extraction and
engineering, evaluating the performance of different algorithms, and lastly integrating the
algorithm into the Ifrågasätt moderation tool to help streamline the moderation process.

1.2 Related Work
Yin et al. (2009) applied machine learning techniques to detect harassment online. In this
paper, they define harassment as:

Communication in which a user intentionally annoys one or more others in a
web community.

Using a combination of term frequency–inverse document frequency(TF/IDF), sentiment
and contextual features, they were able to achieve the f-score of 0.481. They suggest fur-

7

1. Introduction

ther research to incorporate more types of features, such as user information, as well as
improving on the ones used in their research.

Dinakar et al. (2011) performed ML experiments on Youtube comments trying to de-
tect cyber-bullying. They find that binary classifiers for each individual topic (sexuality,
race, intelligence) perform better than multiclass classifiers. They mention the fact that
each comment is treated as an individual, possibly missing context from the related article
and previous comments.

Dadvar et al. (2012) investigated whether gender information improves the accuracy
detecting cyber-bullying. Their result shows that classification accuracy can improve by
incorporating gender information. However, the improvement was not more than one per-
cent for the f-score.

Dadvar et al. (2013) showed how user-based features can improve the accuracy. Ex-
amples of features used in the study are: history of user activity, frequency of profanity in
previous comments by the user as well as the average length of comments and the age of
the user.

The work presented by Nobata et al. (2016) is centered around finding the state-of-art
method for detecting abusive user content online. They train a regressionmachine learning
algorithm with years of labeled user comments from Yahoo news. Their result shows that
a combination of word and character n-grams, linguistic, syntactic, and distributional se-
mantics features yields the highest accuracy. However, character n-grams performs almost
on par with all the features combined.

Mehdad and Tetreault (2016) performed experiments on the same data set as Nobata
et al. (2016). They managed to improve the f-score by simply using a character n-gram
model (1...5) and a support vector machine with Naive Bayes (NB) features as classifier.
They used a Support vector Machine (SVM) variant using NB log-count ratios as fea-
ture values which consistently performed well across different tasks and data sets. They
released an implementation in Python. 1

In this thesis, manual annotation of comments is needed to be able to train a supervised
machine learning algorithm. Annotation is a very time consuming and expensive process,
which is why it is important to explore ways to speed up the annotation. Experiments on
manual annotation made by Marcus et al. (1993) show a significant increase in annotation
speed when providing annotators with automatically tagged data. The annotators are then
asked to correct instead of tagging unlabeled data. The speed increase was as much as
20 minutes vs. 44 minutes per 1,000 words. The tagging process includes 87 simple tags
which is far more than the four tags used in this our thesis. This probably explains why
the increased efficiency was so large.

1.3 Goals
The goal of this thesis is to streamline the moderation process of user-generated content
online by using machine learning algorithms. The idea is to have a method which requires
nothing but previously annotated comments to function, i.e. no need to have updated lists
of bad words or phrases. The algorithm should also perform better as the number of manu-
ally annotated comments increase, which is basically the whole idea of machine learning:

1https://github.com/mesnilgr/nbsvm/blob/master/nbsvm.py

8

1.4 Research Questions

Using knowledge about previous data to predict the things about new data. This thesis
will explore ways to detect and sort comments based on how toxic they are. Hopefully, the
results could contribute to similar application where real time text classification of short
messages is needed.

1.4 Research Questions
The research questions we would like to answer can be summarized as:

• Which algorithms give the best accuracy for this problem?

• How can pre-processing and feature extraction help improve the accuracy?

• How can the final classifier be used to help streamline the moderation process and
decrease the number of toxic comments online?

1.5 Constraints
Previous research has to a very large degree been centered around the English language,
while in this thesis, we limit ourselves to the Swedish language. We are limited to a certain
amount and quality of data, which in turn limits how well the algorithm can perform. To
successfully train the algorithm, we need to annotate the data set. When annotating data,
we need to look at how well two humans agree annotating the same data in order to know
how much ambiguity there is in the data set. Probably the largest limiting factor is the
quality of the annotated data set, where the data set is not only small, but also houses a
lot of ambiguity and errors. Given more time and money, a more diverse set of comments
could have been collected, as well as having annotators trained for the task perform the
annotation. This would probably have given a better inter-annotator agreement score and
data set with less errors.

The focus of the thesis is not limited to just develop and evaluate algorithms, but also
to develop integrate the algorithm into a useful application. This wider focus means time
has not only been spent on finding ways to improve the model performance, but also re-
searching ways to integrate the classifier in an application.

Looking at different classifiers, we have not developed our own models, but instead
used already implemented ones. We have limited ourselves to looking at the ones available
through scikit-learn and Keras. Scikit-learn (Pedregosa et al., 2011) is a machine learning
library for python including numerous classification algorithm suitable for this project.
Keras is a high-level neural networks API, written in Python and capable of running on
top of TensorFlow2. Scikit-learn can be used in conjunction with the Keras classifiers
making development quicker when one can reuse code.

2https://keras.io/

9

1. Introduction

10

Chapter 2
Theory

2.1 Machine Learning
Machine learning tasks are usually divided into two categories: supervised and unsuper-
vised learning. In supervised learning, the algorithm is given an input and an output and
the goal is to find a mapping between the two which generalizes well to new input. In
unsupervised learning, the algorithm is given only an input and the goal is to find some
kind of structure in the data. For the problem in this report, we are looking at a supervised
learning problem. The goal is to decide for new comments, which class they belong to.

Regardless of which machine learning algorithm is used to solve a problem, one needs
to specify what the algorithm should consider as data. The observations in the training data
are translated into quantitative or qualitative properties called features. Multiple features
are combined into a feature vector which is used as input to themachine learning algorithm.
The training data is translated into feature vectors which are fed into the algorithm with
their corresponding class.

There is a large number of supervised learning algorithms available, and the ones eval-
uated in this thesis: logistic regression, support vector machine and neural networks, will
be described in Section 2.2.

2.1.1 Linear Classification
In this thesis we evaluated three classifiers which are all linear classification algorithms.
We first briefly describe what linear classification is.

Given a set of data points, each belonging to one of two classes, the goal is to decide
to which class any given new data points belong. A linear classifier makes the decision
based on the value of a linear combination of the feature vector. The linear classifiers can
be seen as a function y = f (w, x) which maps a set of inputs x to an output y, through a
set of weights w. The algorithm tries to find a hyperplane (in the 2-dimensional case, a

11

2. Theory

line) which maximizes the separation between the two categories. The data points can be
seen as p-dimensional vector where the (p − 1)-dimensional hyperplane tries to separate
the data points. The n data points with dimension p are represented by:

(~x1, y1), . . . , (~xn, yn) (2.1)

where each ~xi represents a p-dimensional vector and each yi is represented by either 0 or
1 indicating which class the point ~xi belongs. We then want to find the hyperplane which
separates the points ~xi for which yi = 1 from the ones where yi = 0 with the maximum
possible margin. For logistic regression and neural networks the convention is to use 1 or
0 to represent the two binary classes, but for SVM, the convention is to use 1 or −1.

2.2 Algorithms
2.2.1 Support Vector Machines
Support vector machines (SVM) are a form of supervised learning algorithm which can be
used to solve classification and regression problems (Cortes and Vapnik, 1995). As shown
by Joachims (1998), SVM tend to perform well for classification of text because of its
ability to generalize into high dimensions, which is often the case with text categorization.
SVMs are also known to perform well in cases where the number of features is greater
than the number of training samples, which is the case in this thesis.

2.2.2 Logistic Regression
Logistic regression gives an output which is the probability that the given input points
belong to a certain class. The output is most often used with a threshold value that decides
which class a probability should be assigned to. This threshold value is usually 0.5, but can
be set to other values in some applications. Logistic regression is also considered to be a
linear classifier. Let us say we have two classes, 1, and 0, by providing a set of data points
x, logistic regression can predict which of the classes 1, or 0 is the most probable one,
or with other words, can perform classification with a probabilistic outcome. Finding the
parameters which estimate the probability of the classes can be done in several different
ways. When training the algorithms, one can use different optimization methods to fit
the data to a model. The most appropriate optimization method to use depends on how
large the data set is and how many features is used, but common ones used are: coordinate
descent (implemented in liblinear1) and stochastic average gradient (SAG).

2.2.3 Neural Networks
A neural network can be described as a network of layers (input, hidden and output layers)
where each layer consists of nodes. Figure 2.1 shows the structure of a neural network.
All the nodes of the input layer are connected to all the nodes of the next hidden layer with
adjustable weights. The neural network can be seen as a linear classifier if using a linear

1https://www.csie.ntu.edu.tw/ cjlin/liblinear/

12

2.2 Algorithms

activation function. Adjusting the weight according to a given set of x and y is what is
referred to as training the network. Usually the training is done by randomly initializing
the weights of the network and using the backpropagation algorithm to adjust the weights
with the goal of minimizing the error of the output. The process can be split into two parts:
propagation and weight updates.

Figure 2.1: Neural Network

Propagation
This process can be repeated several times and one forward + backward propagation is
sometimes referred to as one epoch. Before running the first epoch, one randomly initiate
the weights of the neural network. For each propagation of the network:

1. Run a forward propagation, meaning, feeding the input through the network to gen-
erate the network predicted output(s).

2. Run a backward propagation, starting with the actual output and calculating the er-
rors, called the deltas (predictions - actual values), for each weight.

Weight updates
For each weight of the network:

1. The weight’s output is multiplied with the delta to get the gradient.

2. The gradient is multiplied with the learning rate and is subtracted from the weight.

13

2. Theory

The learning rate can be chosen arbitrary and will affect how quickly and accurately the
model is learning. A large value will train the model faster, but a small value will do it
more accurately.

2.3 Features
One of the most important aspects of machine learning is to decide which features to use.
For various types of text classification problems similar to the one in this thesis, the most
common baseline approach is the bag-of-words model.

2.3.1 Bag-of-words Model
The bag-of-words (BOW)model considers each message as a set of words that each occurs
a certain number of times. The representation of the document is entirely orderless, as each
word is treated independently of the previous and upcoming word. As an example, we have
a data set consisting of only two messages:

The cat is better than the dog

and:

The weather is better than yesterday.

Table 2.1 shows the representation of the two vectors.

Table 2.1: Bag-of-words feature example

the cat is better than dog weather yesterday
Vector one 2 1 1 1 1 1 0 0
Vector two 1 0 1 1 1 0 1 1

As the number of samples grow, the number of unique words will increase. Since each
unique word is represented by a specific position in the vector, these vectors will naturally
grow larger as well. The vector will have the length of the total number of unique words
that exists in the data set, but can also be limited to only include the X number of most
common words of the data set.

N-gram model
The N-gram model accounts for word order by counting sequences of words, where N is
the number of words to include in a sequence. By including sequences of words, we are
able to account for a deeper meaning in the sentences and capture more nuances in text. If
using the first sample of the previous example and set N = 2, we would get:

14

2.3 Features

Table 2.2: Word n-grams feature example

the cat cat is is better better than than the the dog
1 1 1 1 1 1

Syntactic n-grams
Syntactic n-grams are similar to BOW n-grams, but instead of creating sequences of word
from words occurring next to each other, the sequences are given by the syntactic depen-
dencies of the words in a sentence. The syntactic dependencies are given by a dependency
parser. The result of such a parser can be visualized like in Figure 2.2

Figure 2.2: Syntactic dependencies

Using these dependencies, one could as an example create features from the word and
its parent and a feature vector for the same example sentence as previously (The cat is
better than the dog) would be:

Table 2.3: Syntactic dependencies feature example

the cat cat is is ROOT better is than better the dog dog than
1 1 1 1 1 1 1

2.3.2 Character n-gram Model
Character n-grams are similar to word n-grams, but instead of creating vector representa-
tions of words and word combinations, we create a vector representation based on charac-
ters and character combinations. As a result of this, one is able to more easily account for
misspellings and obfuscated profanity words such as idi0t. As an example we use the text:

one dog, one cat

and 2-gram we would get the following feature vector (representing space-characters with
_):

Table 2.4: Character n-grams feature example

on ne e_ _d do og g, _o _c ca at
2 2 2 1 1 1 1 1 1 1 1

15

2. Theory

2.3.3 Word2vec
Word2vec is a word embedding technique presented by Mikolov et al. (2013), capable
to capture degrees of similarity between words. In natural language processing, word
embedding is the name of techniques used to map words or phrases to vectors of real num-
bers and word2vec is a technique capable of producing these vectors, where words with
similar meaning or context will occur close to each other in the vector space. Word2vec
can use two different models to produce the vectors, Continuous bag-of-word (CBOW) or
Skip-gram, each of which has some different characteristics. CBOW uses the surround-
ing words but predictions do not depend on the order of these words. Skip-gram predicts
the surrounding words based on the current word. According to Mikolov et al. (2013),
the Skip-gram model overall increases the quality of the word vectors, especially in the
semantic similarities and for less occurring words, but also increases the computational
time needed by approximately a factor of 3.

The resulting word vectors have interesting and somewhat surprising properties. Look-
ing at a word2vec model trained with Swedish twitter messages2, the 5 closest vectors of
the word Stockholm are: sthlm, stockholm, Göteborg and Malmö and Uppsala, meaning
the distance in vector space somewhat captures the similarities between the cities (large
cities in Sweden). Another example is the 5 closest vectors to the word katt which are:
hund, kanin, vovve, kisse and katten. Words which often occur close to each other in sen-
tences will have vectors located close to each other in the vector space.

2.4 Evaluation Metrics
2.4.1 K-fold Cross Validation
K-fold cross validation is a model validation technique used to assess how well the model
generalizes to new independent data. For a machine learning problem, the data is usually
split into two parts: One training set which is used to train the model and one one test set
which is used to evaluate the accuracy/performance of the model. In k-fold cross valida-
tion, the data is split into k numbers of equally sized subsets. If we have k subsets, one
of the subsets is used as a test set and the remaining k − 1 number of subsets are used as
a training data. The process is repeated k times, meaning that each subset will be used
as a test set once. The results from each fold can then be summed together into a final
estimation.

2.4.2 Confusion Matrix
A confusion matrix can be used as a way to visualize the results of a classification algo-
rithm. For the binary case where 1 and 0 is the two possible outcomes, the algorithm can
be used to predict whether a test sample is either 0, or 1. As a way to measure how well
the algorithm performs, we can count four different metrics, here 1 defined as positive and
0 defined as negative:

2https://mattiasostmar.wordpress.com/tag/word2vec/

16

2.4 Evaluation Metrics

1. True positive (TP), the algorithm classifies 1 where the correct class is 1.

2. False positive (FP), the algorithm classifies 1 where the correct class is 0.

3. True negative (TN), the algorithm classifies 0 where the correct class is 0.

4. False negative (FN), the algorithm classifies 0 where the correct class is 1.
The confusion matrix is simply these four values visualized in one table, see Figure 2.3

Figure 2.3: Confusion matrix

2.4.3 Precision and Recall
As a way to evaluate the performance of an machine learning algorithm, one can use pre-
cision and recall. Precision is defined as:

precision =
TP

TP + FP
(2.2)

And recall defined as:

recall =
TP

TP + FN
(2.3)

A very high precision means that the algorithm classifies almost no inputs as positive
unless they are positive. A high recall would mean that the algorithm misses almost no
positive values.

2.4.4 F-score
The f-score (or F1-Score) is the harmonic mean of precision and recall. The f-score is
defined as:

F1 = 2 ·
precision · recall
precision + recall

(2.4)

This means that an algorithm with a precision of 1 and recall 0 would still get a f-score
of 0.

17

2. Theory

Micro
Calculating the f-score with k-fold cross validation, it is possible to calculate the average
f-score for the k folds in different ways. The results of the Forman and Scholz (2010)
study shows that the method with the least bias is micro f1 where the true positives, false
positives and false negatives from each fold are summed together and calculated by:

F1 =
2 · TP

2 · TP + FP + FN
(2.5)

2.4.5 Inter-Rater Agreement
Inter-rater agreement is the degree to which two or more raters agree when rating or clas-
sifying something. It can be measured in several different ways, where the most basic way
is joint probability of agreement:

accuracy =
TP + TN
Allratings

(2.6)

The problem with joint probability is that is does not take into account that raters can
agree purely by chance. To improve on joint probability, one can use Cohen’s Kappa
(Cohen, 1960) which is calculated like this:

κ =
po − pe

1 − pe
, (2.7)

where po is the accuracy and pe is the hypothetical probability of two raters agreeing. If
two raters agree completely, the Kappa score would be 1 and if there is no agreement other
than what can be expected by chance, the score would be 0.

18

Chapter 3

Method

Our process has to a large degree been exploratory, coming up with different ways to pro-
cess the data, engineer features and evaluate them continuously throughout the process
to ensure decisions are made based on results instead of gut feeling. Our work flow was
mainly influenced by the the data mining process: cross industry standard process for
data mining (CRISP-DM), which can be split into 6 phases: Business understanding, data
understanding, data preparation, modelling, evaluation and deployment. The process is
iterative and can be seen in Figure 3.1. This chapter will be organized with sections corre-
sponding to each step of the CRISP-DM process (with the exception of Deployment which
is presented in Chapter 5, named Application).

Figure 3.1: The CRISP-DM Methodology (Jensen, 2012)

19

3. Method

3.1 Business Understanding
The goal of Ifrågasätt is to provide an online debating platform where the moderation
process can be handled more efficiently. Most online news papers have disabled comments
on their websites because of problems with offensive, hateful comments and one part of
Ifrågasätt’s unique selling point is to solve the problems with toxic comment. It is therefore
of greatest importance that Ifrågasätt can detect and remove the toxic comments as quickly
and efficiently as possible. In conjunction with Ifrågasätt, we have identified the needs for
them:

• Detecting the toxic comment before the user posts the comment, which makes the
user aware of their potentially toxic comment. This way users are encouraged to
change their comment before posting it, and the moderator load can be decreased.

• Prioritizing the work of the moderators by presentingmoderators with the most toxic
comments first. This way, the most severe comments can be handled before less
severe ones.

• Improving the solution used currently by Ifrågasätt. The text analysis of comments is
currently done by simply checking if the comment contains words from a predefined
list of unsuitable or explicit words.

3.2 Data Understanding and Preparation
User generated content, like comments, forum post or tweets are available publicly in
great numbers online. The problem with this content is that it is mainly un-annotated or
that the toxic comments have already been removed, which mean it is not possible apply
a supervised machine learning algorithm. To our knowledge, there is currently no public
labeled data sets of toxic comments in Swedish language. To successfully experiment with
different machine learning methods for detecting inappropriate comments, a labeled data
set is needed to train and evaluate the accuracy of these methods. It is important to have
a data set consisting of both good and bad examples, which can be hard to find online, as
most bad comments are moderated and removed from online discussions.

Two different data sets were used; One Swedish language data set, manually labelled
by two students at LTH and one in English language data set from a Kaggle competition
detecting insults in social commentary1. The focus will be towards developing a model
that works well for the Swedish language, but the English data set will be used as a way
to evaluate the models multilingual capabilities as well as way to evaluate to what degree
the data is affecting the accuracy of the algorithm.

3.2.1 Swedish Language data Set
When looking for potential unlabeled data sets online, one of the few sites which still
allows comments was the Swedish blog / news site Avpixlat. This led us to collect com-
ments from Avpixlat. This site has been described as a racist, hateful, xenophobic and

1https://www.kaggle.com/c/detecting-insults-in-social-commentary

20

3.2 Data Understanding and Preparation

right wing site by other Swedish, and international medias and it is one of the few Swedish
news-websites which allow (anonymous) user comment on articles. Their policy on which
comments are allowed is not very restrictive, meaning a lot of hateful and inappropriate
comments are still available online. This fact is of great importance if one want to have
a representative data set. Avpixlat use a commenting platform called Disqus2, which pro-
vide API:s to download comments without spending to much time building an advanced
HTML parser.

A set of 12,500 comments downloaded from articles written in the period 1 Jan 2017
- 15 Feb 2017. The data contains a lot of platform-specific information related to the user,
e.g. the number of up- and down-votes. To ensure an algorithm which can be applied
in other places than Disqus, all the information except the time stamp and the actual text
of the comment was removed from the data set during pre-processing. Previous attempts
have been made, trying to to benefit from data such as age, gender and how long the person
has been registered as a user (Dadvar et al., 2013), but since this information is not present
in the data set, we chose not to investigate this type of meta-data any further.

These comments are unlabeled and the training data must first be manually labeled to
train a machine learning algorithm to detect bad comments.

3.2.2 Annotation
Classes
In order for a machine to accurately classify comments into different classes, the classes
must be properly defined. As a baseline, straight up illegal comments should always be
detected. However some comments might not be illegal, but would be considered inappro-
priate by most persons. To be able to differentiate between these comments, we defined
four different categories: illegal, inappropriate, SPAM and OK, with the hope of capturing
different types of toxic comments in the different categories.

According to Swedish law, some written comments can be considered unlawful. (Åk-
lagarmyndigheten, 2016) describes four different types of crimes which can be expressed
in text:

1. Slander, oral or written, occurs when someone describes another person as a crim-
inal or leaves derogatory information about the person.

2. Offensive comments occurs when judgments or accusations is directed against a
person.

3. Hate speech occurs when spreading public statements about a group of people with
allusion to race, color, national or ethnic origin, religious belief or sexual orientation.

4. Unlawful threats occurs when the threatened person feel fear for their lives or
health. This may include threats of personal assault.

These four crimes are all considered illegal by our definition. Inappropriate comments
are comments that are not illegal but contains things like racism, sexism, hatred and bul-
lying. The third category called SPAM includes comments which are incoherent, has bad

2https://disqus.com/

21

3. Method

grammatical structure or could be considered general SPAM. The fourth category is called
OK and essentially contains the remaining comments not beloning in any of the other three
classes.

Manual annotation process
The annotation process was made during one day (8 hours) by two LTH students in their
fourth year. They are not by any means educated or experienced within the area of com-
ment moderation, but are still reasonably educated and skilled in the Swedish language.
The annotators, called person A and person B were given the same set of 500 comments to
annotate together with instructions defining what comments belong in each class. The pur-
pose of letting them annotate the same comments were to be able to measure the inter-rater
agreement, i.e to what degree their annotation decisions match. After they had finished the
first 500 comments they were each given a set of 6,000 unique comments each to classify,
which is far more comments than one would expect a person to annotate during one work-
ing day (but rather too many than too few). At the end of the day, a total of 3,448 unique
comments had been annotated, where person A annotated 1,259 comments and person B
annotated 2,189 comments during the same period of time.

The data set used to train the machine learning algorithms consists of all the uniquely
annotated comments. The first 501 comments were annotated by both person A and B,
which is why we chose only to include the 501 comments from person A in the final data
set. The combination of these comments gave us a total of 3,949 comments.

Evaluation
We calculated the inter-annotator agreement between the two annotators using Cohen
Kappa and f-score. The Cohen Kappa was calculated using the scikit-learn method co-
hen_kappa_score. When calculating the f-score, person A’s set were chosen as the gold
standard and person B’s set were considered the classifier. The results were not as sat-
isfactory as we hoped, which is why we tried to group the three bad categories (Illegal,
Inappropriate and SPAM) as one category and calculated the scores for this binary anno-
tation as well. These results were more acceptable to use for training.

Tool
To use the annotators time as efficiently as possible, we developed a basic graphical inter-
face in which the annotators were able to classify the comments in a quick way, see Figure
3.2.

3.2.3 English Language Data set
The website Kaggle runs programming contests to crowdsource machine learning solu-
tions, and usually makes data sets available for the public during and after the competition.
From the competition Detecting insults in social commentary (Kaggle, 2012) Kaggle re-
leased a data set consisting of 6,591 labeled training data. In addition to the training data

22

3.3 Modeling - Feature Extraction and Engineering

Figure 3.2: A graphical interface for comment annotation.

they also released a verification set of 2,232 labeled comments. The goal of the com-
petition was to detect comments that are insulting to a person who is a part of the larger
blog/forum conversation, but not insults directed to non-participants. Insults could contain
profanity, racial slurs, or other offensive language, but often times, they don’t. Comments
which contain profanity or racial slurs, but are not necessarily insulting to another person
are considered not insulting.

The two data sets were combined into one data set consisting of 8,823 labeled com-
ments. The comments consist of the following information:

Table 3.1: Kaggle data point

Insult Date Comment
0 or 1 20120618192155Z But how would you actually get the key out?

The label is either 0 meaning a neutral comment, or 1 meaning an insulting comment.
Since the comments in the Kaggle data set are already labeled, there is no need to manually
annotate the comments.

3.3 Modeling - Feature Extraction and En-
gineering

Finding the appropriate features for a ML-problem is no trivial task. The process often
includes a lot of trial and error trying to identify what patterns in the data are representative
of each class. Finding features is often considered an iterative process and in our case the
process was exploratory.

We started by implementing a baseline, where previous work has shown that character
n-grams are quite efficient features when identifying hate speech in English user online
content (Nobata et al., 2016). In their discussion section, they mention that:

Given how powerful the two n-gram features were in English, these would
probably fare well in other languages given enough training data.

23

3. Method

Nobata et al. (2016) also conclude that adding more features, such as linguistic, syn-
tactic and distributional semantics features, can increase the f-score with a few percent,
but the character n-gram still provides a very good baseline. This section will describe
the different features and give some background to why they were tried. Some ideas for
features were discarded at an early stage and are just mentioned briefly at the end of the
section.

3.3.1 N-gram Features
We started out by trying different lengths of the n-grams, 1-3 word n-grams and 1-6 charac-
ter n-grams. We also experimentedwith removing stopwords, which are themost common
words in a language and tried different maximum number of words or characters to use.

3.3.2 Linguistic Features
With linguistic features, the idea is to capture things like bad grammar, and patterns which
are not captured by character or word n-grams. Looking at the data set, a lot of the com-
ments were written with an incorrect sentence structure, and often contained unreasonably
many or few punctuation. This is why the following features were crafted:

• Number of words and characters.

• Number of uppercase words and number of uppercase words per number of words.

• Number of uppercase characters and number of uppercase characters per number of
characters.

• Longest word and average word length.

• Number of one letter tokens and number of one letter tokens per number of words.

• Number of punctuation, spaces, exclamation marks, question marks, at signs and
commas.

When looking at which features are most indicative of being a toxic comment we found
that the number of exclamation marks, number of one letter tokens and number of upper-
case words per number of words were the three strongest ones. The strongest indicative of
non-toxic comments were the number of words used in the comment.

3.3.3 Sentiment Feature – Version 1
The simplest approach to perform sentiment analysis is based on the assumption that cer-
tain words are more indicative of positive or negative sentiment. We therefore chose to
explore a lexicon based approach similar to the baseline explored by Pang et al. (2002).
They manually chose 7 positive and 7 negative words from the training and test sets which
seemed representative for each polarity. The decision to whether a sample was positive or
negative was then made by counting the number of words existing in each of the lists and
simply considering a sample positive if the number of positive words are more than the

24

3.3 Modeling - Feature Extraction and Engineering

number of negative ones. The approach we chose is rather similar, but the lists of positive
and negative words are much longer, and is not based on the training and test set. The list of
words used were presented in a recent paper by Nusko et al. (2016) where they started with
a small set of core words that is expanded semi-automatically using the lexical-semantic
relations of the network structure in SALDO. SALDO is an extensive electronic lexicon
for modern Swedish language.3The result is a lexicon consisting of 2,067 words or expres-
sions with a polarity score (-4 to 4) (and a confidence score varying between 0.25 and 1).
As a baseline version, we use a basic lexicon look up method where each word is stemmed
and looked up in the lexicon. For all words found in the lexicon, we summed all the neg-
ative polarity scores and all the positive polarity scores. These two scores were then both
divided with the number of words in the comment yielding two different features.

There are several problems with this approach, as it only captures the words found
in this particular lexicon. The language used in social media is often filled with slang
which is not found in this list. It would also fail to capture any negations like not stupid
or intensifiers like very stupid. Also, a comment can be toxic without containing a lot
of negative words, or the first sentence could be toxic and the remaining sentences in the
comment could consist of a lot of positive words.

3.3.4 Sentiment Feature – Version 2
The second version is also based on the assumption that certain words are more indica-
tive of positive or negative sentiment, but we are utilizing another set of words. The list
of words consist of 1,000 negative and 1,000 positive words generated by Östmar (2016).
These words have been generated using a word2vec model trained on 47 million Swedish
tweets, using 150 dimensional vectors to represent the words. Words not occurring more
than 30 times were discarded from the model, as well as two word expressions or names
such as inte bra or Svenska Dagbladet. The list of negative and positive words were gen-
erated by asking the Word2Vec-model to find the 1,000 words, which have the closest
distance in vector space to the 3 negative (idiot, svin, lögnare) and 3 positive words (före-
bild, hjälte, hjältinna).

The actual features implemented which use this data are the following:

• The number of negative words.

• The number of positive words.

• The number of positive words divided by the total number of words.

• The number of negative words divided by the total number of words.

Initial test showed that this using these sentiment features performed better than the
first version

3https://spraakbanken.gu.se/resurs/saldo

25

3. Method

3.3.5 Spellchecker Using SALDO
SALDO is a Swedish word association lexicon used in different types of language research.
When looking through the data set, we found that a lot of the comments which were classi-
fied as bad had a lot of misspellings. We therefore wanted to find an easy way to measure
the number of words which have not been correctly spelled and capture this property as a
feature. A pretty simple way tomeasure the number of misspellings is to perform a look-up
of each word in the SALDO lexicon. If the word does not exits, count it as a misspelling,
otherwise, count it as a correctly spelled words. This approach is likely to not be 100%
accurate, but will mostly likely capture the comments with a lot of misspelled words. We
derived two different features from this method: The number of misspelled words and the
number of misspelled words divided with the number of words in total.

3.3.6 Syntactic Features
As mentioned earlier, word n-grams can fail to capture the true relation between words,
since the tuples created from the sentences are essentially the word and the word next to
it, rather than the parent or child of the word. The idea is that crafting features using a
dependency parser can capture more complex relations in a sentence, and complement a
baseline solution using word or character n-grams.

We ran the entire data through the Langforia language analysis pipeline (Klang and
Nugues, 2016) that produces a dependency tree which returns the parsed text in a tab
separated format:

Table 3.2: Vilde data format

form cpostag feats id lemma pos head deprel
I ADP _ 1 i PP 5 RA
den DET UTR|SIN|DEF 2 den DT 4 DT
blå ADJ _ 3 blå JJ 4 AT
himlen NOUN UTR|SIN|DEF|NOM 4 himmel NN 1 PA
bor VERB PRS|AKT 5 bo VB 0 ROOT
fåglar NOUN UTR|PLU|IND|NOM 6 fågel NN 5 SS

This information is best represented by a graph:
For the features we have built, the most important fields are the id, which gives the

position of the word in the given sentence, pos which gives the part of speech, head which
gives the id of the parent of the word.

All words were lower cased. Using this information, we crafted features consisting of
different tuples. Concretely, the different tuples implemented can be seen in the list below,
including examples of how the tuples would look like for the given example in Table 3.2
and Figure 3.3.

• Word + Parent, i_bor, den_himmel, blå_himmel, himmel_i, bo_ROOT, fågel_bo.

• Word+Grandparent, i_ROOT, den_i, blå_i, himmel_bo, bo_ROOT, fågel_ROOT.

26

3.3 Modeling - Feature Extraction and Engineering

Figure 3.3: Dependency parsed data visualized in a graph.

• Word + POS of parent, i_VB, den_NN, blå_NN, himmel_PP, bo_ROOT,
fågel_VB.

• Word + POS of grandparent, i_ROOT, den_PP, blå_PP, himmel_VB, bo_ROOT,
fågel_ROOT.

• Word + Children(s), i_himmel, den_, blå_, himmel_den_blå, bor_fågel, fågel_.

3.3.7 Embedding Derived Features
The same trained word2vec model as presented in Section 3.3.4 was used to craft these
features. The idea here is that these vectors potentially carry some type of information
about the words which are not captured by the other features. However the challenge is to
find a way to design a feature based on the word2vec vectors. The first method we tried
was as follows:

1. Split the comment into an array of words.

2. For each of the words, get the 150 dimensional vector from the word2vec model.

3. Sum all the vectors and divide with the number of vectors. This single 150 dimen-
sional average of all the vectors was then used as a feature.

The second method:

1. Split the comment into an array of words.

2. For each of the words, get the 150 dimensional vector from the word2vec model.

3. For each of the vectors, calculate the sum of all the coordinates.

4. Pick the vector with the smallest and largest sum and average them. This single 150
dimensional average of the two vectors was then used as a feature.

3.3.8 Other Features
Other features have also been explored and discarded due to poor performance and will
not be presented in the results.

27

3. Method

Timestamp
We looked at using the time-stamp to create features measuring which day of the week the
comment was posted as well as which hour of the day. However these features turned out
to have the same accuracy as simply deciding on pure chance.

Bad words
The solution used by Ifrågasätt before exploring this thesis was to use a word-list of man-
ually defined bad words and expressions. Using the same list of bad words, we tried to
construct a feature which is simply the total number of bad words and expressions in the
comment.

Extended bad words
We used the trained word2vec model to get the 5 word closest words in vector space to all
the words in the bad word list. By extending the original list, the idea was to get a more
complete list. However, by manually inspecting the list, we concluded that there is simply
too much noise/errors for it to be useful as a feature.

3.3.9 Feature Selection and Elimination
When stacking several features, some feature will increase and other will decrease the
accuracy. Feature selection methods can be used to identify and remove unnecessary or
redundant features from themodel. Using few features is usually desirable, since it reduces
the complexity of the model (hence decreasing the time needed to train the model) and
gives a better understanding of the model and data.

We implemented a forward selection algorithm to extract the best features. In Forward
selection we tried each feature individually and chose the feature which give the best f-
score. We then added the feature which improves the f-score the most until the f-score
does not improve any more when adding features. This method is not guaranteed to give
the global optimum, but will provide a reasonably good result without having to try every
combination of features.

To further ensure we have the best combination of features, we perform a backward
elimination on the features given by the forward selection. Backward elimination is basi-
cally the opposite of forward selection, removing one feature at the time and choosing the
subset which improves the f-score the most until the f-score can’t be improved further.

3.4 Evaluation Methods
Evaluation of different features and classifiers was done in several different ways:

• Measuring precision, recall and f-score using 10-fold cross validation.

• Plotting learning curves

• Computing the confusion matrix

28

3.4 Evaluation Methods

The final classifier evaluation was performed by testing each feature individually, all
together, and with the features from the feature selection with logistic regression and SVM.
For the neural network, we used all features except the dependency parser features and
experimented with one and two hidden layers. For the first layer, we tried 128, 256, 512,
1,024 and 2,048 nodes and for the second layer 0, 64, 128, 256, 512, 1,024 nodes yielding
5 * 6 = 30 different combinations. Each of these combinations were run with 5, 10, 20 and
50 epochs evaluating the f-score for each and every one of these.

For the best performing classifier, we experimented with the decision variable. This
decision variable is usually set to 0.5, but by changing this variable, a different ratio be-
tween precision and recall can be achieved. Depending on the use case of the classifier, a
tradeoff where i.e. a very good precision is needed but recall is not as important.

29

3. Method

30

Chapter 4

Results

4.1 Annotation

Two persons annotated the same set of 501 comments. Measuring the multiclass inter-rate
agreement of the two persons, the agreement rate is 0.820 and the Cohen’s Kappa score is
0.466. If merging the three categories illegal, inappropriate and SPAM into one category,
the agreement rate increased to 0.860 and the Cohen’s kappa score increased to 0.553.

If considering the annotation of person A as the source of true labels and computing
the f-score compared to the annotations of person B we get an f-score of 0.639. These
results should be kept in mind when looking at the accuracy of the classifiers, since one
could not expect to have a classifier performing better than the annotators. One could also
note that the there is approximately 19% bad and 81% good comments in the data set used
for training and evaluation of classifier performance.

Table 4.1: Annotation of identical 501 comments

Person A Person B
OK 402 406
Oseriös 36 32
Olämplig 48 40
Olaglig 15 23
Total Bad 99 95
Total 501 501

31

4. Results

Table 4.2: Annotation of different comments

Person A Person B A + B
Total 1,259 2,189 3,949
OK 884 70% 1,905 87% 3,191 81%
Oseriös 91 7% 43 2% 170 4%
Olämplig 257 20% 196 9% 501 13%
Olaglig 27 2% 46 2% 88 2%
Total Bad 375 30% 285 13% 759 19%

4.2 Feature Selection
The feature selection and backward elimination process yielded two different set of features
for logistic regression and SVM.

Logistic regression
• Character n-grams

• Word2vec

• Spellchecker

• Sentiment 1

SVM
• Character n-grams

• Word2vec

• Word + Grandparent

4.3 Classifier Comparison
Logistic regression and SVM were evaluated with the same method. We ran forward se-
lection and backward elimination for each of the classifiers individually to get the best
features. The neural networks evaluations was made without the syntactic features since
the input layer was simply too large to be able evaluate different layer sizes, numbers and
epochs within a reasonable time frame. The precision, recall and f-score for each of the
three classifiers is presented in Table 4.3.

4.3.1 Neural Network
The experiments with different number of layers, layer sizes and number of epochs re-
sulted in a certain combination of these parameters performing best. The winning set of

32

4.4 Feature Comparison

Table 4.3: Classifier comparison

precision recall f-score
Logistic regression 0.44 0.50 0.47
SVM 0.44 0.49 0.47
Neural network 0.44 0.43 0.44

parameters was a neural network with two layers, the first hidden layer with 1,024 nodes,
the second hidden layer with 128 nodes and trained with 20 epochs.

4.4 Feature Comparison
The following results are tested on the Swedish language data set. In Table 4.4 each of
the feature have been evaluated individually and is presented with precision, recall and
f-score.

Table 4.4: Evaluation of all features individually, together and
after feature selection

Logistic regression SVM
P R F1 P R F1

character n-gram 1-2 0.33 0.54 0.41 0.33 0.53 0.41
character n-gram 1-3 0.38 0.51 0.44 0.38 0.50 0.44
character n-gram 1-4 0.41 0.47 0.44 0.41 0.45 0.43
character n-gram 1-5 0.44 0.43 0.44 0.45 0.42 0.43
character n-gram 1-6 0.45 0.40 0.42 0.46 0.38 0.42
word n-gram 1-1 0.32 0.44 0.37 0.32 0.44 0.37
word n-gram 1-2 0.36 0.35 0.35 0.36 0.35 0.35
word n-gram 1-3 0.39 0.29 0.33 0.39 0.28 0.33
manual 0.27 0.39 0.32 0.28 0.29 0.28
sentiment 1 0.20 0.64 0.30 0.20 0.64 0.30
sentiment 2 0.28 0.56 0.37 0.28 0.52 0.37
spellchecker 0.25 0.35 0.29 0.24 0.34 0.28
word2vec average 0.30 0.60 0.40 0.30 0.60 0.40
word2vec max min 0.24 0.55 0.33 0.24 0.55 0.33
dependency Tuples 0.26 0.34 0.30 0.26 0.34 0.30
dependency grand tupels 0.25 0.37 0.30 0.25 0.36 0.30
dependency POS 0.31 0.42 0.35 0.31 0.41 0.35
dependency Grand POS 0.30 0.41 0.34 0.30 0.41 0.34
dependency Children 0.27 0.38 0.31 0.27 0.39 0.32
all Features 0.44 0.49 0.46 0.44 0.49 0.47
feature selected features 0.44 0.50 0.47 0.44 0.49 0.47

33

4. Results

4.5 Comparing Data Sets
To verify that the methods used for the Swedish data set are working well, we test the two
data sets with the same features and algorithm to see how the accuracy compares. Results
from SVM and logistic regression were really similar, which is why the comparison of
data sets is only presented for logistic regression in Table 4.5

Table 4.5: Comparison English and Swedish data set, logistic re-
gression with C = 0.01

Swedish English
f-score f-score diff

character n-gram 1-2 0.412 0.591 30%
character n-gram 1-3 0.44 0.616 29%
character n-gram 1-4 0.439 0.631 30%
character n-gram 1-5 0.435 0.638 32%
character n-gram 1-6 0.423 0.637 34%
word n-gram 1-1 0.372 0.57 35%
word n-gram 1-2 0.354 0.579 39%
word n-gram 1-3 0.327 0.575 43%
manual 0.315 0.423 26%
C (1-5) W(1-2) Manual 0.431 0.643 33%

4.6 Baseline Performance
Before starting this project, a-word-list based solution was used to detect inappropriate
comments. The solution is not based onmachine learning, but simply classifies a comment
as bad if it includes a word or phrase from a predefined list. We used this method on the
Swedish data set to get the precision, recall and fscore of this solution. The results can be
seen in Table 4.6

Table 4.6: Baseline method results

Precision Recall f-score
Baseline solution 0.58 0.03 0.05

4.7 Tuning the Decision Limit
The logistic regression classifier gives a probability that a certain sample belongs to a
certain class. By default, this limit is set at 0.5, but by changing the value for this limit, one
can tweak the ratio between precision and recall. In Figure 4.1, one can see that precision
gets better and recall worse when raising the limit. The opposite can be observed when
lowering the limit, recall gets better but precision gets worse.

34

4.7 Tuning the Decision Limit

Figure 4.1: Precision, recall and f-score for different decision lim-
its.

35

4. Results

36

Chapter 5
Application

The algorithm developed in this thesis must be incorporated into some sort of application
to be useful. Considering the accuracy of the classifier at this stage, automatic removal of
comments is not desired since the ratio of OK comments being removed would simply be
too high. That is why we have decided to incorporate the classifier into the moderation
tool of Ifrågasätt rather than using it for automatic removal of comments or showing the
score for the users. As seen in Figure 5.2, the annotators are given an option to show the
toxic score for the comments sorted to show the comments with the highest score first.
As seen in Figure 5.3, one also has the option to filter out all the comments with a score
higher than e.g. 0.6. This way, the moderators can start by annotating the comments with
high toxic scores and work their way down.

As seen in Figure 5.1, the classifier runs on a separate server which themain application
server queries with every new comment in the system. The response from the server will
be the toxic score for that particular comment, which is saved in the database and can be
retrieved by moderators when needed.

37

5. Application

Figure 5.1: Architecture of the system with the classifier con-
nected.

Figure 5.2: View for moderators, showing all un-annotated com-
ments sorted on toxic score.

38

Figure 5.3: View for moderators, filtering out all comments with
a toxic score lower than 0.6.

39

5. Application

40

Chapter 6
Discussion

When starting this work, the goal was to find ways to streamline the moderation process
by using machine learning techniques, concretely by exploring which algorithms, pre-
processing and feature extracting gives the best accuracy for a classification problem. Lo-
gistic regression and SVM turned out to have really similar performance for this given data
set, however logistic regression scored slightly higher and has the advantage of providing a
probability score describing the certainty that a comment belongs to one of the two classes.
Due to the relatively low f-score, the classifier could not be used for automatic removal of
comments without removing too many OK comments, but by utilizing this score, a more
practically useful application was implemented.

When comparing the method to previous work, the same type of features and algorithm
is used, but one wonders, why is the performance not on par with Nobata et al. (2016).

6.1 The Annotation Process
Whenwe looked at the results of themulti class inter-rater agreement, the result was simply
not good enough to be useful. We therefore discarded the idea of labeling bad comments
in three different categories, and went for the binary case instead (OK vs not OK). The
company also realized that they do not need that level of detail, but rather have a binary
classification which is also makes the moderation process faster.

Despite a very similar method compared to Nobata et al. (2016), the resulting f-score
is not at the same level (0.82 vs 0.47). If presuming all the implementations measurements
are done correctly, the reason for the low score is probably due to the data set. The Cohen
Kappa measurements of the Inter-rater agreement showed rather large difference in how
the two raters classified the comments. This means that the data set has a lot of ambiguity,
where really similar comments are rated differently. Comparing the inter-rater agreement
of the Yahoo Evaluation data set and our data set, 0.843 vs 0.553, it is quite clear that
a high inter-rater agreement, helps to achieve a higher f-score. The size of the Yahoo

41

6. Discussion

Evaluation data set was 2,000 comments, which is lower than our data set. This indicates
that the size of the data set is not the main problem, but rather the level of ambiguity. These
assumptions were confirmed by our test where we used our features (the ones which are
not language specific) and algorithms to train and evaluate the performance of the Kaggle
data set. When testing the same models at the Kaggle data set, we reach approximately a
30% higher f-score. Looking at the learning curve we could see that the increase in f-score
is not due to the Kaggle data set being slightly bigger, but most likely because the data set
has less errors.

So how to deal with the low inter-rater agreement? More precise instructions and use
professional annotators instead of students. Even though the students were given rather
precise instructions on what is OK and what is not, their opinions could differ. One could
also extend the instructions with some example of edge cases where it is clear how com-
ments should be rated.

6.2 Machine Learning

6.2.1 Features
As previously shown for English data sets, character n-grams work really well on their
own for our data set as well. The feature selection process for logistic regression and SVM
both had character n-grams and word2vec as the most important features.

The results of the feature selection gave a slightly better result for logistic regression
but almost no significant increase for SVM. Despite only a small accuracy increase, one
could argue that feature selection is important anyway. Fewer features with the same ac-
curacy means a model which is simpler, easier to explain and easier reason about. On the
other hand, a more complex model might capture more complex patterns and possibly be
useful when the data set grows. It is therefore recommended to do feature selection when
retraining the model with more data.

6.2.2 The Algorithms
Conducting experiments with neural networks were far more time consuming than exper-
iments with SVM and logistic regression. If we had more time, we would probably have
explored more parameters and types of neural networks.

6.3 Applications
The integration of the classification algorithm in the application is just one way how the
classifier can be used. It would be possible to show the score to the user before it posts the
comment as a way to remind the user that others may find their comment inappropriate.
The user would always be allowed to post the comment despite a high score, but by making
the score visible to the user, the number of inappropriate comments could possibly be
decreased before even reaching the platform and moderators.

42

6.3 Applications

The solution implemented with the toxic score in the moderation tool is a way to ensure
that it works as expected before releasing it in some form for the users. If the results are
satisfactory, the next step would be to use the score earlier in the process, i.e. show it in
real time for the user during typing, or notify the user when it publishes a comment with
a high toxic score. Another solution could be to let users filter the comments based on the
score, and hiding comments with a score higher than a certain threshold.

43

6. Discussion

44

Chapter 7
Conclusion

We have completed a data mining process including gathering and annotation data, evalu-
ating different features and classifiers, and finally implementing an application which uti-
lizes the output from the classifier to streamline the moderation of comments. The feature
engineeringwas done in an exploratory and iterative way, whichmost likely helped coming
up with and implementing features. The annotated Swedish data set was the largest lim-
iting factor for the accuracy of the classifier. Logistic regression with character n-grams,
word2vec, spellchecker and sentiment 1 turned out to be the winning classifier. It scored a
f-score of 0.47, precision of 0.44 and recall at of 0.49. This translates into 49% of the not
ok comments are found, and that 44 % of the comments classified as not ok really are not
ok. Comparing to the solution previously used, the f-score increase is huge, an increase
from 0.05 to 0.47.

Overall, we are satisfied with the final performance of the classification algorithm,
as well as the application utilizing the output of the algorithm. Comparing the solution
developed by us with the one word list solution used by Ifrågasätt, we can proudly say we
now can detect a much larger amount of not ok comments. The research questions defined
in the beginning of the report are answered and the goal of streamlining the moderation
process is fulfilled.

7.1 Future work
The most limiting factor is by far the data set, and the thus the moderation process must
get better for the classifier to perform better. More research into the the annotation process
could help sort out how can one achieve a better inter-rater agreement. One could look
into what factors are important when designing guidelines and processes for moderation?

One could explore ways to do the moderation process differently by moderating each
sentence individually. Detect which part(s) of the comment is the problematic part to make
the moderation faster for moderators. This would require annotations sentence by sentence

45

7. Conclusion

which could be quite time consuming.
The current solution implemented for the application relies on manual retraining when

new comments are added to the system. It would be interesting to implement a model
which retrains every time a new comment enters the system to faster to adopt to changes
in language and decrease the time spent on manual retraining.

Word embedding in the form of word2vec proved to be useful, but no more tests or
investigations with word embedding for entire sentences or comments has been done. This
could possibly help increase the accuracy. One could also explore more ways how one can
use word embedding to construct features in more creative ways.

46

Bibliography

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psycho-
logical measurement, 20(1):37–46.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–
297.

Dadvar, M., de Jong, F., Ordelman, R., and Trieschnigg, D. (2012). Improved cyberbul-
lying detection using gender information. In Proceedings of the Twelfth Dutch-Belgian
Information Retrieval Workshop (DIR 2012), pages 23–25, Ghent, Belgium. University
of Ghent.

Dadvar, M., Trieschnigg, D., Ordelman, R., and de Jong, F. (2013). Improving cyberbul-
lying detection with user context. In European Conference on Information Retrieval,
pages 693–696. Springer.

Dinakar, K., Reichart, R., and Lieberman, H. (2011). Modeling the detection of textual
cyberbullying. In The Social Mobile Web, Papers from the 2011 ICWSM Workshop,
Barcelona, Catalonia, Spain, July 21, 2011.

Forman, G. and Scholz, M. (2010). Apples-to-apples in cross-validation studies: pit-
falls in classifier performance measurement. ACM SIGKDD Explorations Newsletter,
12(1):49–57.

Jensen, K. (2012). IBM SPSS modeler CRISP-DM guide, ftp://public.dhe.ibm.com/ soft-
ware/analytics/spss/documentation/modeler/18.0/en/modelercrispdm.pdf.

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. In European conference on machine learning, pages 137–142.
Springer.

Kaggle (2012). Detecting insults in social commentary, https://www.kaggle.com/
c/detecting-insults-in-social-commentary.

47

BIBLIOGRAPHY

Klang, M. and Nugues, P. (2016). Langforia: Language pipelines for annotating large col-
lections of documents. In 26th International Conference on Computational Linguistics
(COLING), 2016, pages 74–78.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

Mehdad, Y. and Tetreault, J. (2016). Do characters abusemore thanwords? InProceedings
of the SIGdial 2016 Conference: The 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and Chang, Y. (2016). Abusive lan-
guage detection in online user content. In Proceedings of the 25th International Confer-
ence on World Wide Web, WWW ’16, pages 145–153, Republic and Canton of Geneva,
Switzerland. International World Wide Web Conferences Steering Committee.

Nusko, B., Tahmasebi, N., and Mogren, O. (2016). Building a sentiment lexicon for
swedish. Linköping Electronic Conference Proceedings, 126(006):32—-37.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: sentiment classification
using machine learning techniques. In Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing-Volume 10, pages 79–86. Association
for Computational Linguistics.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Yin, D., Xue, Z., Hong, L., Davison, B. D., Kontostathis, A., and Edwards, L. (2009).
Detection of harassment on web 2.0. Proceedings of the Content Analysis in the WEB,
2:1–7.

Åklagarmyndigheten (2016). Förtal och förolämpning, https://www.aklagare.se/om-
brottsligheten/olika-brottstyper/fortal-och-forolampning/.

Östmar, M. (2016). Filtering out negative and positive words,
https://github.com/mattiasostmar/notebooks/blob/master/filter_out_negative-
positive_words.ipynb.

48

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2017-08-25

EXAMENSARBETE Text classification of short messages
Detecting inappropriate comments in online user debates
STUDENT Anton Lundborg
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

Bättre debatter online med hjälp av
maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Anton Lundborg

Fler och fler tidningar online inaktiverar sina kommentarsfält på grund av att diskus-
sioner urartar. Detta arbete har utforskat maskininlärning som ett sätt att förenkla
och effektivisera moderatorernas arbete.

I mitt examensarbete har jag tittat på hur mask-
ininlärning kan användas för att identifiera vilka
kommentarer som är olämpliga i ett kommentars-
fält. Tidigare har man matchat kommentarer mot
ordlistor med svordomar för att att fånga upp de
värsta kommentarerna. När jag testade metoden
med ordlistor visade det sig att enbart några få
procent av de dåliga kommentarerna hittas medan
majoriteten passerar obemärkta förbi. Med mask-
ininlärning drar man nytta av kommentarer som
modererats tidigare och använder vetskapen om
huruvida en kommentar är lämplig eller olämplig
för att träna algoritmen. Den tränade algoritmen
används sedan för att bedöma lämpligheten i nya
kommentarer.
Efter att ha experimenterat med olika typer av
algoritmer och språktekniska sätt att extrahera
olika egenskaper ur text, kom vi fram till en al-
goritm. Den metoden som fungerade bäst lyck-
ades hitta ungefär hälften av alla olämpliga kom-
mentarer, men fångar samtidigt upp ungefär lika
många kommentarer som egentligen är lämpliga.
För att sätta dessa siffror i ett sammanhang så
skulle det innebära att man genom att gå igenom
20% av de totala antalet kommentarer kan hitta
50% av de olämpliga kommentarerna.
Algoritmen ger dessutom varje kommentar ett
tal mellan 1 och 100, där 100 representerar en

kommentar som är olämplig och 1 en lämplig
kommentar. På så sätt kan man prioritera
vilka kommentarer som modereras först och öka
chanserna att de "värsta" kommentarerna tas
bort först. I detta arbete tog jag fram ett grafisk
gränssnitt där moderatorerna får möjligheten
att både filtrera och sortera kommentarerna på
talet som algoritmen räknade fram. Talet skulle
även kunna användas på flera andra sätt, tex att
författaren av kommentaren i realtid kan se hur
lämplig kommentaren bedöms vara medan den
skrivs.

Förhoppningsvis kan maskininlärningen göra att
moderatorernas arbete blir lättare och mer ef-
fektivt, samt även på sikt bidra till att diskus-
sioner i kommentarfält kan få fortgå utan att
förstöras av hat-, hot- och trollkommentarer. Det
finns ekonomiska incitament för tidningarna att
ha kommentarsfält eftersom fler återkommande
användare ger fler sidvisningar och reklamintäk-
ter. Dessutom finns ett demokratiskt värde i att
man låter läsare ifrågasätta och tycka till om in-
nehållet i tidningarna.

	Introduction
	Background
	Related Work
	Goals
	Research Questions
	Constraints

	Theory
	Machine Learning
	Linear Classification

	Algorithms
	Support Vector Machines
	Logistic Regression
	Neural Networks

	Features
	Bag-of-words Model
	Character n-gram Model
	Word2vec

	Evaluation Metrics
	K-fold Cross Validation
	Confusion Matrix
	Precision and Recall
	F-score
	Inter-Rater Agreement

	Method
	Business Understanding
	Data Understanding and Preparation
	Swedish Language data Set
	Annotation
	English Language Data set

	Modeling - Feature Extraction and Engineering
	N-gram Features
	Linguistic Features
	Sentiment Feature – Version 1
	Sentiment Feature – Version 2
	Spellchecker Using SALDO
	Syntactic Features
	Embedding Derived Features
	Other Features
	Feature Selection and Elimination

	Evaluation Methods

	Results
	Annotation
	Feature Selection
	Classifier Comparison
	Neural Network

	Feature Comparison
	Comparing Data Sets
	Baseline Performance
	Tuning the Decision Limit

	Application
	Discussion
	The Annotation Process
	Machine Learning
	Features
	The Algorithms

	Applications

	Conclusion
	Future work

	Bibliography
	Tom sida
	Tom sida

