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Abstract 

Green areas in urban environments can have recreational, environmental and health benefits 

but for them to be utilized, high accessibility for inhabitants is necessary. In an expanding city 

like Gothenburg, maintaining geographic accessibility to green areas can be challenging. This 

study performs an accessibility analysis to assess whether Gothenburg has sufficient 

accessibility to green areas, and whether any spatial inequality occurs. It also aims to compare 

the accessibility by public transport to other modes of transport: walking, biking and driving car.  

Earlier research of accessibility analysis to green areas have rarely included network analysis of 

public transport. For green areas in Gothenburg, no network analysis of any transport mode has 

previously been performed.  

This study found that the accessibility is sufficient for most of the population of Gothenburg. 

Although the accessibility is not evenly distributed, no spatial inequality with regards to income 

was found. Compared to other transport modes public transport seems to be preferable 

primarily in relatively long-distance travels.  

Keywords: Geography, Geographical information systems, GIS, Geographic accessibility, Public 

transport, Green areas, Location Quotient  
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1. Introduction 

Green areas are important components in the urban environment. They have several health 

benefits for the city inhabitants (Konijnendijk et al. 2013). In addition, they provide positive 

environmental impacts by increasing biodiversity, increasing carbon sequestration, improving 

air quality and cooling urban heat (Konarska et al. 2016;  Konijnendijk et al. 2013).  

For green areas to be used they need to have high geographic accessibility for the inhabitants 

of the city. The geographic accessibility notion concerns the ease with which people may reach 

desired sites (Gregory and Johnston 2009). According to Boverket Sverige (2007), a park needs 

to be within 300 meters access for a resident to use it regularly. In a study of the urban park 

Slottskogen in Gothenburg it was found that the accessibility was the most important factor for 

people to visit the park, followed by thermal environment (temperature) and park design 

(Thorsson et al. 2004). Hence, accessibility to green areas in cities is an important issue in urban 

planning. 

Studies have shown that the accessibility to green areas can be insufficient (Nicholls 2001). 

Although most Swedish cities have recently tended to gain higher accessibility to forests in 

proximity to urban areas, the largest cities (which includes Gothenburg) tends to gain lower 

accessibility (Olsson 2013). Low accessibility to green areas in the urban environment might 

lead to health issues such as obesity, reduced physical activity and increased mortality 

(Konijnendijk et al. 2013;  Coutts et al. 2010). 

300 meters distance between resident and green area has been the standard in urban planning 

in Sweden the last decades (see section 2.3.2) (Boverket Sverige 2007;  Grahn and Stigsdotter 

2003). Malmö municipality is one of the governing bodies that have performed accessibility 

analysis on this basis (Malmö stad 2003). A similar analysis of green area deficiency was also 

performed in the municipality of Gothenburg (Göteborg stad 2014). The analysis found several 

zones with more than 300 meters from green areas. This analysis used the Euclidean distance, 

meaning straight-line distance, rather than distance along a street network. No network 

analyses of accessibility to green areas have been carried out in Gothenburg. However, the 

goals of Gothenburg municipality is not set in distance but rather in travel time (Göteborg stad 

2014). The goals are: (1) parks should be accessible in 15 minutes by walking; and (2) natural 

experiences should be accessible in 30 minutes by public transport. Nevertheless, no analysis 

according to these goals have been carried out by Gothenburg municipality. Hence, this paper 

performs a geographic accessibility study according to these travel time goals, to determine 
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whether the accessibility is sufficient. This contributes to the knowledge of accessibility in 

Gothenburg. 

Studies have also shown that accessibility to green areas can be unevenly distributed in the 

urban environment (Oh and Jeong 2007;  Jonnerby 2014;  Comber et al. 2008). Since there are 

many health benefits with high accessibility to green areas (Konijnendijk et al. 2013;  Coutts et 

al. 2010) issues regarding spatial inequality of green area accessibility have recently been 

subject to debate in sustainable urban planning (La Rosa 2014;  Paquet et al. 2013). These 

issues mainly include health inequalities and environmental justice. It is generally 

acknowledged that low-income residents benefit more from high access to green areas (La Rosa 

2014;  Gupta et al. 2016). Spatial inequality has been studied with regards to attributes like 

income, ethnicity and gender (Talen and Anselin 1998;  Nicholls 2001;  Comber et al. 2008) with 

varying results, but no studies have been carried out in a Swedish context. Hence, secondly, this 

study performs a spatial inequality analysis, both in general and in relation to income. This 

analysis may contribute to the development of methods for studying spatial inequalities of 

accessibility in Sweden.  

A classical approach to geographic accessibility analyses to green areas have been to utilize 

Euclidean (straight-line) distances (Nicholls 2001;  Göteborg stad 2014). However, several 

recent studies use network analysis methods instead, where distances are calculated along a 

walking network (Jonnerby 2014;  Nicholls 2001;  Oh and Jeong 2007;  Zhou and Kim 2013). 

Network analysis provides more precise and more accurate results than Euclidean distance 

analysis (La Rosa 2014). Nonetheless, there are few studies that have used network analysis of 

other transport modes than walking e.g. public transport, biking or car driving. Consequently, 

few analyses have compared different transport modes regarding accessibility to green areas. 

Hence, lastly, this paper performs a comparison between different transport modes which may 

contribute to developing methods for accessibility analysis comparison.  

1.1 Aim 

The primary aim of this thesis is to study the relationship between place and accessibility to 

green areas in Gothenburg. A secondary aim is to explore the discrepancy between different 

modes of transport, to explore whether public transport is a viable choice compared to the 

other modes of transport: car-driving, biking and walking. The research questions of this project 

are as follows: 
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• Does Gothenburg have a sufficient geographic accessibility to green areas? The 

sufficiency will be determined according to the set time travel goals (Göteborg stad 

2014)  

• Is there spatial inequality, in general and in relation to income, in the geographic 

accessibility to green areas in Gothenburg? 

• How time-efficient is public transport compared to other modes of transport when 

accessing green areas? 
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2. Background and previous research 

2.1 Definitions of accessibility 

To be able to study geographic accessibility a definition of the term needs to be established. It 

is a broad term with several definitions, and it is difficult to find an operational and theoretically 

sound one (Geurs and van Wee 2004). A well-known definition comes from Hansen (1959); “the 

potential of opportunities for interaction”. Moreover, Burns (1980) use a different one: “the 

freedom of individuals to decide whether or not to participate in different activities” and Ben-

Akiva and Lerman (1979) defines it as: “the benefits provided by a transportation/land-use 

system”.  

However, the one used in this study is as follows: 

“…the ease with which people can reach desired activity sites, such as those offering 

employment, shopping, medical care or recreation.” (Gregory and Johnston 2009). 

The concept of accessibility can be divided into four components, as this more elaborated 

definition pinpoints: 

“The extent to which the land-use transport system enables (groups of) individuals or 

goods to reach activities or destinations by means of a (combination of) transport 

mode(s).” (Geurs and Ritsema van Eck 2001). 

Within this definition, the four components can be identified and together they form the term 

geographic accessibility (Geurs and Ritsema van Eck 2001;  Larsson et al. 2014b): 

• Transport component – the ease of reaching a destination. Includes the limitations of 

the transport system. 

• Land use component – the distribution of the opportunities in space, such as the 

localization of homes, jobs, culture and recreation. It is also important to consider the 

internal competition among those sites. 

• Temporal component – the time that the activities are available may differ throughout 

the day, week or year, as well as the travel time and costs to reach the localization of 

the activity. Also, the time budget of the individual is a constraint to consider. 

• Individual component – beyond the three components mentioned above, also individual 

values, opportunities and constraints affects a person’s choices of how and what to 

access. 
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Another distinction that should be made here is the difference between access and accessibility 

(Geurs and van Wee 2004). Access regards the perspective of an individual; i.e. if a person may 

reach the desired activity. Accessibility regards the perspective of a location; e.g. how many 

people that can reach a particular site in a set time frame. 

In summary, geographic accessibility is the ease with which people can reach desired activity 

sites, and it is affected by: (1) the transport system; (2) the availability of the destinations in 

space and time; and (3) the individual choices.  

2.2 Measurements of accessibility 

The definition “the ease with which people can reach desired activity sites”(Gregory and 

Johnston 2009) (see section 2.1) opens up for a discussion of how to measure the rather vague 

word “ease”. Finding suitable measurements has been subject to much research and in the 

following paragraphs common accessibility measures are divided into four categories (Geurs 

and van Wee 2004):  

• Infrastructure-based measurements are used to assess the performance of transport 

infrastructures. They are often used in transport planning. This includes e.g. measuring 

levels of congestion, average speed and limitations and barriers of the transport 

network. They focus on the transport infrastructure and may risk to give a limited 

picture of the connection between the transport network and the surrounding activities, 

such as housing, job opportunities and welfare services (Larsson et al. 2014b). The roads 

are seen as its own entities, rather than just being tools that are useful when trying to 

reach a site. 

• Location-based measurements regards the accessibility at locations, meaning the 

spatially distributed activities that one wishes to access (Geurs and van Wee 2004). 

These measurements are typically used in urban planning and geography studies. One 

example of a location-based measurement is to calculate the travel time from one 

starting point to several destination points. Another example is the counting of the 

number of jobs within 30 minutes travel time from a specific origin (Larsson et al. 

2014b). Other more complex measurements include, e.g. the use of distance decay, 

where the importance of a destination point is given a higher weight if it has a shorter 

distance from the origin point, and lower weight if it is further away. This can give a 

more realistic measurement of the accessibility. However, it loses simplicity and may be 

harder to present in an understandable manner, making it less used in planning. Other 
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complex measurements can include weights representing the importance of origin and 

destination points, e.g. including demographic properties.  

• Person-based measurements looks at the accessible activities for an individual at certain 

times. Here, the time schedule of the individual is central (Geurs and van Wee 2004). 

These measurements have their foundation in the time-geography concept 

(Hägerstrand 1970). Time-geography refers to the idea that individuals have a time-

budget which involves being at different activity locations at specific times of the day. 

For example, if an individual wants to take a walk in the park and has 40 minutes’ 

opportunity during lunch break, maybe parks within 10 minutes’ travel distance is the 

only ones that fit in the time-budget. 

• Utility-based measurements is mainly used in economic studies and includes analyses of 

the economic benefits in the accessibility to different activities (Geurs and van Wee 

2004;  Larsson et al. 2014b). The strengths of these measurements are the strong 

connection to, which also requires a level of knowledge of, economic utility theory.   

2.2.1 Network analysis in accessibility research  

Calculating Euclidean distances is one approach in accessibility analysis, but calculating travel 

time along a network gives a better result, especially in peripheral parts of a city (Jordan et al. 

2004;  La Rosa 2014). For example, barriers can have large impacts on travel time but they are 

not accounted for in Euclidean distance analysis. Barriers are geographical hinders such as hills, 

rivers or coastlines, which may be impassable and therefore add largely to the travel time. 

Consequently, network analysis is widely used in recent accessibility analyses.  

A network consists of: (1) network links, lines representing roads, power lines or rivers etc.; and 

(2) network nodes, points that connect links with each other (Heywood et al. 2011). A network 

also contains information of impedance, the cost for traversing a network link and for stopping 

at, turning at or visiting a node. Impedance might be e.g. travel time, distance or monetary 

cost. Network analysis can be used for several purposes. One typical is to analyze the shortest 

path between two points. It can also be used for location-allocation modelling, where an 

allocation of resources can be modelled from demand data.  

To summarize section 2.2, there are several ways to measure accessibility and they can be 

categorized by whether they are based on: (1) the transport infrastructure; (2) the location of 

activities; (3) the time-budget of individuals; or (4) economic utility theory. In this study 

location-based measurements are used, looking at the number of residents that reaches green 
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areas, in certain time spans. The more complex measurements using e.g. weights or distance 

decays, are not used. Network analysis is often used when measuring accessibility, which is the 

case in this paper. A network consists of links, nodes and impedance, and it can be used in a 

range of analyses. In this paper, an Origin-Destination cost analysis is performed, where each 

origin point finds the route of least impedance to one of the destination points. 

2.3 The role of green areas in cities 

The term accessibility has been considered in previous sections and now the focus moves over 

to green areas. First, studies of the importance of green areas in cities are discussed. Secondly, 

the different standards for green areas used in Swedish planning are presented.  

2.3.1 Studies of green areas in the urban environment 

Parks are important for the human health of urban dwellers (Chiesura 2004). For example, 

parks in urban areas may reduce stress and provide a sense of peacefulness and tranquility. 

Furthermore, urban parks increases peoples physical activity and reduces obesity (Konijnendijk 

et al. 2013).  

Studies have also shown that parks contribute to noise reduction, air pollution removal, carbon 

sequestration and stormwater/run-off management (Konijnendijk et al. 2013). Moreover, 

urban parks are often hotspots for biodiversity, and are therefore suitable for education and 

tourism. Another consequence of parks is that they have positive effect on property values at 

the adjacent buildings. This effect languishes quickly with distance from parks though.  

Parks also have local cooling effects (Konarska et al. 2016). The occurrence of raised 

temperatures in cities, called the Urban Heat Island, is reduced with urban vegetation, an 

occurrence called Parks Cooling Island. This has been observed in Gothenburg, along with 

several other places in the world (Konarska et al. 2016;  Skoulika et al. 2014;  Sugawara et al. 

2006).  

New urbanism is a movement that believes that closer access to amenities such as parks, will 

increase the pedestrian travels in that area (Lund 2003).This idea has been found to have some 

truth even though personal attitudes and other factors also influence the choice of travel mode 

and distance of travel. 

2.3.2 Standards in green area accessibility 

According to an official policy document for the municipality of Gothenburg, a document called 

“the strategy of green areas”, the goal is that natural experiences should be within 30 minutes 
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travel time by public transport (Göteborg stad 2014). It also states that urban district parks, 

suitable for activities like child play, strolling and having picnic, should be within 15 minutes 

walking distance. Urban district parks, urban parks and larger natural areas has been digitized in 

this policy document. The latter two are providing natural experiences which, therefore, should 

be within 30 minutes’ travel time with public transport. An analysis of accessibility insufficiency 

was produced in the policy document. In the analysis, Euclidean distance was used, instead of 

implementing the stated travel time standards. Areas with more than 300 meters to the closest 

park were marked as insufficient, and larger roads and great altitude differences were set as 

barriers.  

The standard of 300 meters is set by the Swedish administrative authority for physical planning, 

Boverket, who claims that a green area need to be within this distance for a person to use it 

regularly (Boverket Sverige 2007). Accessibility to parks has seen several standards in Swedish 

physical planning over time. The standards are mainly set in distance rather than travel time 

(Lundgren Alm 2004). More elaborated standards from Boverket Sverige (1999) includes 

different types of parks:  

• Within 500 meters, Urban district parks of minimum 10 ha. 

• Within 200 meters, parks of minimum size 0.3 ha, with e.g. ball play as a possible 

activity.   

• Within 50 meters, small parks where e.g. small children can play. 

To summarize section 2.3, the role of green areas in the urban environment: many positive 

effects on human and natural health have been found in studies of green areas in cities. Hence, 

it is important to give guidelines in planning for green areas. These guidelines include the 

distance to, and size of, green areas. In this paper the standards set by Göteborg stad (2014) 

are used, since the study area in large parts overlaps the geographical extent of this policy 

document. Moreover, travel time is much more suitable than distance when studying public 

transport. Hence, travel time is the impedance used in this paper. 

2.4 Spatial analysis of accessibility 

There are many studies that use accessibility analysis within a GIS environment, with examples 

in all from studying accessibility to hospitals (Elldér et al. 2012;  Loh et al. 2009;  Eklund and 

Mårtensson 2012) to exploring the claims of better local access in the new urbanism movement 

(Lund 2003;  Naess 2011). Some noteworthy studies, also including accessibility to green areas, 

are presented in the following paragraphs. 
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Hägerstrand (1970) presented ideas about time-geography that has relevance today when 

studying accessibility (mentioned in section 2.2). Time-geography upholds the notion that 

individuals care for a daily time-budget that affects the activity choices, and the accompanied 

travels. Some activities are relatively fixed, in space and/or in time, and acts as anchors in the 

daily schedule, which also moderate individual’s opportunity to participate in activities and 

travels in space–time. This space–time fixity and flexibility of activities is a crucial part when 

studying accessibility, mobility, travel behavior and transportation issues (Kwan 1998;  

Hägerstrand 1970). In this paper, studying accessibility to green areas, location-based 

measurements are used rather than person-based measurements even though person-based 

measurements are more connected to time-geography (see section 2.2). Nevertheless, the 

public transport analysis was made during the hours when green areas in Gothenburg has the 

most visitors. Possibly these are the times that green area visits generally fit best with peoples’ 

time-budget.   

The access to green areas has received growing recognition as benefits for health and well-

being (Higgs et al. 2012). Coutts et al. (2010) found that the amount of green areas within 

defined distances associates with mortality, both all-cause and cardiovascular (see also section 

2.3.1). 

Dony et al. (2015) found that inner-city areas have more access to parks while city outskirts 

have more access to natural areas. This is an issue in measuring accessibility to green areas. The 

analysis in this paper tries to address this (see section 3.3.5).  

The manner in which data of green areas are represented also impact the accessibility analysis 

results. Research has investigated whether distance to parks should be measured to the central 

point of the park, to nearest park boundary, to park entrances or to other known access points 

(Nicholls 2001;  Comber et al. 2008). Studies suggest that using multiple park entrances enables 

the park shape to be accounted for. This is the adapted approach in this paper.  

In Sweden several projects of accessibility analysis has taken place, though rarely including 

green areas. Dahlgren (2008) used accessibility analysis to assist the Swedish National Rural 

Development Agency in the aim to develop national accessibility instruments. In the Västra 

Götaland region, containing Gothenburg, Larsson et al. (2014a) produced an accessibility 

instrument and an accessibility atlas including public transport and car travel. 

An interesting result from accessibility studies is the so called accessibility paradox (Haugen 

2012;  Haugen and Vilhelmson 2013). With increased access to service amenities, shorter travel 

times should be needed. Nevertheless, travel times in service related trips have seen an 
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increase in such cases, which is paradoxical. The authors showed that other factors and 

preferences are more important than proximity when choosing e.g. a school. This implies that 

promoting local access may be insufficient when planning for more sustainable travel behavior. 

This may also be applicable to green areas, as they may differ greatly in terms of appearance 

and suitable activities, among many other properties. Hence, short travel time may not be the 

sole most important factor when choosing which green area to visit.   

In conclusion, many accessibility analysis studies have been performed in a GIS environment. 

Some ideas worth considering include the time-geography concept, and the paradox that better 

accessibility does not necessarily mean that people choose to travel less. Concerning 

accessibility to green areas, short distances have proven health benefits.  

2.5 Studies of spatial inequality 

In this section, spatial inequality and inequity in accessibility is presented.  

Equality means that everyone should have equal access. Spatial equality refers to equal access 

for people grouped by geographical location. Equity is a related concept, normally referring to 

the fairness in the distribution of goods and services among groups of individuals (Geurs and 

Ritsema van Eck 2001). Two kinds of equity can be distinguished. Horizontal equity refers to the 

fairness when it comes to both costs and benefits, i.e. the people who pay most taxes should 

have the highest benefits. Vertical equity on the other hand, claims that costs and benefits 

should reflect people’s needs and abilities; for example, disabled people should be provided 

special public transport services. The equity concept has several dimensions. First, spatial 

equity, in which the areas are divided geographically. Secondly, social and economic equity, 

where the grouping of individuals is done through aspects such as age, gender, ethnicity, 

household size or income.   

A study of accessibility to Sahlgrenska Hospital, a major employer in Gothenburg, shows an 

uneven distribution of the residences of the workers (Elldér et al. 2012). Low-income female 

workers could save more travel time by choosing car instead of public transport, compared to 

their high-income male colleagues.  

Nicholls (2001) studied the accessibility to public parks in Bryan, Texas. The recommendations 

at the time was that 10 acres (4.1 hectares) of open space should be available per 1000 

residents. However, those standards left out the spatial distribution of the parks, a problem 

which the authors tried to overcome. The spatial distribution was studied using Euclidean 

distances, but that method had weaknesses, e.g. it did not follow actual travel routes and it 
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excluded barriers. Another problem with the Euclidean distance analysis was the assumption 

that one may enter a park at all points of the park boundaries. In reality, one might need to 

travel further to reach an entry point. Hence, in addition to Euclidean distance analysis this 

study also used network analysis along a walking network. It also looked at equity, based on 

attributes of the population such as race, income and age, but found no inequity. 

To summarize, spatial equity refers to the fairness in geographical distribution, and both studies 

of workplaces and parks have been performed in this manner. In this study equality is in focus 

since no breakdown into groups of different needs has been performed. The equality studied in 

this paper will be both in general and in relation to income. 

2.6 Analysis for detecting spatial inequality 

This section describes the Location Quotient and Moran’s I for spatial autocorrelation, two 

methods for detecting spatial inequality in general. 

Location Quotient is a mathematical measure that is useful in, among others branches, 

economic development research (Miller et al. 1991). It is a basic tool that measures the 

contribution of a smaller area to the whole area (Moineddin et al. 2003). E.g. the proportion of 

cancer patients Ohio state compared to the proportion of cancer patients in the whole of 

United States. The location quotient for the ith area is defined as: 

𝑙𝑞𝑖 =

𝑥𝑖
𝑛𝑖
𝑥
𝑛

=
𝑟𝑖
𝑟

 

Here xi denotes the outcome in the ith area, and ni denotes the population size of the ith area. 

Similarly, x and n are the outcome and population size of the total area, respectively. An lq 

below 1 means that the event is underrepresented; a number above 1 means that the event is 

overrepresented. 

Measures of spatial autocorrelation, such as the Moran’s I-formula, can be used to statistically 

determine if a pattern is clustered or random. It is widely used within geography and is for 

example useful when studying geographical differences in health issues (Getis and Ord 1992). 

With regard to transport and accessibility, Górniak (2016) measured the spatial autocorrelation 

of accessibility of motorways in selected parts of Europe. In Black and Thomas (1998), a 

network spatial auto-correlation method was applied in a study of accidents on motorways. A 

significant clustering was identified. Talen and Anselin (1998) looked at the equality in which 

public playgrounds were distributed in Tulsa, USA. Tulsa was divided into census tracts and the 
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playground count of each tract was the basis for the Moran’s I analysis. The results indicated a 

random distribution despite a seemingly clustered pattern on the map. 

Spatial autocorrelation is based on both feature locations and feature values (ESRI 2017). In this 

context “feature” refers to a point, line or polygon. If neighboring feature values are similar and 

deviates from the mean, i.e. the values are spatially clustered, a positive value is returned. 

Whereas a negative value is returned if the neighboring feature values are dissimilar. Hence, a 

positive value means spatial clustering. A negative value means dispersion. Values close to zero 

indicate that the spatial distribution is random. Moreover, the analysis produces a p-value and 

z-value, which indicate the significance of the index. Moran’s I is defined as 

𝐼 =
𝑁

∑ ∑ 𝑤𝑖𝑗𝑗𝑖

∑ ∑ 𝑤𝑖𝑗𝑗𝑖 (𝑋𝑖 − 𝑋̅)(𝑋𝑗 − 𝑋̅)

∑ (𝑋𝑖 − 𝑋̅)2𝑖

 

where 𝑁 is the number of units indexed by 𝑖 and 𝑗. 𝑋 is the variable of interest. 𝑋̅ is the mean of 

𝑋. 𝑤𝑖𝑗 is an element of a matrix of spatial weights. 

In summary, Location Quotient and Moran’s Index spatial auto-correlation are two measures 

that can be used to evaluate the spatial equality. Both methods are used in this paper.  

2.7 The use of public transport 

Lastly, some notes about studies of public transport. Studies have found several aspects that 

affect the use of public transport.  Larger cities generally have higher usage of public transport 

(Santos et al. 2013). Other aspects that tends to increase the use of public transport are: (1) a 

high number of students; (2) low numbers of elderly; (3) low numbers of families with children 

below 17; (4) many public transport vehicles; (5) low fares; and (6) few rainy days. 

Individuals experience the time spent outside of vehicle, i.e. walking and waiting, as more 

burdensome than the time spent on-board a public transport vehicle (Small 2012). 
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3. Material and methods 

In this section, the data gathered and used is presented, followed by the methodology. The 

methodology in this thesis consists of four main steps: (1) construct network datasets for 

common types of transportation modes; (2) perform analyses of accessibility to green areas 

using the network datasets; (3) spatially analyze the inequality in accessibility to green areas; 

and (4) compare the types of transportation modes with regards to geographic accessibility. 

3.1 Data and study area 

In this section, the datasets used in the paper is presented (table 1) along with a presentation 

of the study area. The data comes from several sources. The main data sources are 

OpenStreetMap, data of public transport, income and population data from Statistics Sweden, 

as well as green areas data from the municipality of Gothenburg. The study area is the city of 

Gothenburg together with conurbations in proximity to the central city. 

3.1.1 Data 

The OpenStreetMap (OSM) data is used to a large extent in this paper (see table 1). OSM is a 

free of charge worldwide map that is being built by volunteers. It is released with an open-

content license (OpenStreetMap Wiki 2017). It contains a wide range of geographical 

information in both point, line and polygon formats, in all from walking paths to beekeepers 

and waterfalls (OpenStreetMap Wiki 2016a). Since it is an ongoing project much information is 

still missing and further investigation on the quality of the data is needed (Brinkhoff 2016;  

OpenStreetMap Wiki 2017). Will (2014) performed a study of OSM quality in Gothenburg in 

relation to data from Lantmäteriet (Swedish National Mapping Agency). OSM was found to be 

of sufficient data quality, with some reservations regarding the accuracy of attributes. It was 

also found that the completeness of the OSM data was higher in areas with a high number of 

attributes; i.e., the central parts of the city. This may introduce a systematic error when 

comparing central parts with peripheral parts of the city. 

The OSM data does not include an attribute table with columns, such as the shapefile-format 

used by ArcGIS, but instead includes an unrestricted amount of tags for each feature 

(OpenStreetMap Wiki 2016b). This free tagging system always have a key tag and a value tag in 

the format “key=value”. E.g. the key tag highway includes all transportable routes, and value 

tags include motorways, roads, paths, cycleways etc. 

General Transit Feed Specification (GTFS) is a common standard for public transport schedules 

and the associated geographical information (Google developers 2016). It is constructed 

through several text-files containing information about agencies, stops, routes, trips, stop 
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times, calendar, calendar dates, and possibly a few more optional files. In this case an open 

GTFS dataset covering all of Sweden is used (table 1). The dataset is provided by the Trafiklab 

project of Samtrafiken, a collaboration of several public transport operators of Sweden. 

Swedish legislation compels public transport operators to provide time schedules to 

Samtrafiken (Smith 2015;  Lund 2017).   

The income data from the official Swedish statistics governing body “Statistics Sweden” (SCB) 

represents purchasing power of households per consuming unit (table 1). The purchasing 

power is divided according to the number of consuming units the household contains, 

according to a standard at Statistics Sweden that makes households comparable to each other 

(SCB 2016). 

The data about green areas within Gothenburg municipality are provided by Göteborg stad 

(Finsberg 2017). It is data from the “green strategy” policy document (Göteborg stad 2014) and 

includes: (1) urban parks, larger multifunctional parks that attracts visitors from all over the 

city; (2) urban district parks, medium-sized parks that is visited by inhabitants of the district; 

and (3) larger natural areas, areas with many biological and recreational values.   
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Table 1: the data used  

Description Source Type/ 
Geometry 

Spatial 
resolution  

Year URL 

Roads, streets, 
paths, 
cycleways etc. 

OpenStreetMap – 
key tag: highway 

Line  2007-
2017 

mapzen.com 

Public transport 
data 

Trafiklab - GTFS 
Sverige 2 

GTFS  2017 trafiklab.se 

Parks and 
natural areas 
(within 
Gothenburg 
municipality) 

Göteborg stad – 
urban district parks, 
urban parks and 
larger natural areas 

Polygon  2014 Provided by 
mail from 
Göteborg 
stad 

Parks and 
natural areas 
(outside 
Gothenburg 
Municipality) 

OpenStreetMap – 
tags: certain value 
tags under key tags: 
natural, landuse and 
leisure 

Polygon  2007-
2017 

mapzen.com 

Population data © SCB - B1: 
Befolkning efter 
ålder 

Raster  250 
meters 
(urban) 

2015 Maps.slu.se 
(available for 
students at 
Swedish 
universities)  

Income data © SCB - IH1: Hushåll 
(20+ år) efter 
köpkraft 

Raster 250 
meters 
(urban) 

2014 Maps.slu.se 
(available for 
students at 
Swedish 
universities)  

Car parking OpenStreetMap – 
tags: 
Amenity=parking 

Polygon   2007-
2017 

mapzen.com 

Road barriers 
(traffic lights, 
stop signs etc.) 

OpenStreetMap point  2007-
2017 

mapzen.com 

Municipality 
borders, labels 
(own revision) 

© Lantmäteriet - 
GSD-Administrativ 
indelning 1:250 000 

Polygon  2015 Maps.slu.se 
(available for 
students at 
Swedish 
universities)  

Coastline, water 
bodies 

OpenStreetMap – 
tags: Natural=water, 
waterways 

Polygon, 
line 

  mapzen.com 
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3.1.2 Study area 

The geographical extent of this study is the Swedish city of Gothenburg, the second largest city 

of the country (Encyclopædia Britannica 2015). It is the principal city on the southwest coast of 

Sweden and is situated at the mouth of the Göta River. It was founded in year 1603 and still 

carries historical remains with old forts, churches and moats that encircle the old parts. The city 

has a history of building automobiles and ships. Some of the larger parks, besides the Liseberg 

amusement park, are Slottskogen, the Botanical gardens, and Trädgårdsföreningen.  

Table 2: population development of metropolitan Gothenburg (Storgöteborg) which is a larger 

area than the study area in this thesis (SCB 2017). 

Year 1980 1985 1990 1995 2000 2005 2010 2015 

Population 734,956 747,417 777,432 815,504 844,802 879,298 928,629 982,360 

Gothenburg is a growing city, which means there is an increase in space needed for homes and 

services for the growing population (Göteborg stad 2009, 2014). The policy documents for the 

physical planning in the municipality still stresses the importance of preserving natural heritage 

as well as providing access to greenery (Göteborg stad 2009). It is also claimed that losses of 

nature, cultural and recreational values in the growing city will be compensated for. To develop 

an attractive public transport service is also stated as an important part in creating sustainable 

development of the growing city. 

In 2013 a congestion charge was introduced in Gothenburg with the objective to reduce traffic 

congestion, improve environment and raise funding for a new infrastructural project, the West 

Swedish Agreement (Borjesson and Kristoffersson 2015;  Andersson and Nassen 2016). The 

implementation of the congestion charge was preceded by improvements to the public 

transport system through implementations of individual bus lanes, longer trains and platforms, 

higher frequencies etc. (Andersson and Nassen 2016). The congestion charge was conflicting in 

the public sphere and in a local referendum the public vote was opposed. However, the 

referendum was only advisory and the charge was not removed (Andersson and Nassen 2016). 

Although the public attitude was more positive after the implementation of the charge, 

(Borjesson et al. 2016) the total traffic amount was not reduced as much as in other cities 

where similar processes have taken place (Andersson and Nassen 2016). According to 

Andersson and Nassen (2016) higher accessibility to public transport could reduce the 

propensity to use private cars in Gothenburg during this time.  
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3.2 Methods 

In the GIS analysis, travel time is used as a measure for the accessibility of green areas; thus, 

excluding other measures like the monetary cost or access for people with disability. The 

accessibility is measured through location-based measurements (Geurs and van Wee 2004), 

analyzing the travel time from inhabitants residences to the location of the closest green area 

entrance (see section 2.2). 

3.3 Network creation 

This section describes the construction of the network datasets using the OpenStreetMap 

(OSM) data about roads, streets, paths, cycleways etc. First, four different travel networks were 

produced, one for each travel mode: walking, public transport, biking and car travel (see figure 

1). Thereafter, origin points were estimated from the population raster dataset. Entries into 

green areas were used as destination points (figure 2 and table 3).  

The OSM data was downloaded as a rectangular shape including Gothenburg urban area and 

close conurbations, as well as a surrounding buffer zone. Hence, network and green area data 

for a larger area than the actual study area was used. Consequently, no transport routes in the 

larger urban area was cut off. In addition, including green areas outside the actual study area 

was important. For some residents inside the study area, the closest green area could still be 

outside.  

3.3.1 Walking 

To create the walking network the appropriate OSM line features (key tag: highway) were 

chosen. Some of the features were deemed non-traversable for walking (value tags: 

abandoned, construction, motorway, motorway link, trunk and trunk link). The travel time for 

each feature was calculated with the walking speed of 1.4 m/s which is a regularly preferred 

walking speed (Browning et al. 2006). With these properties, a walking network was built. The 

network included; no restrictions, U-turns was allowed, and the same walking speed was used 

in all line features (see example in figure 1).  

The network had many segments that were not connected to the rest of the network, which 

resulted in a problem when adding network locations (origins and destinations, see section 

3.3.5 and 3.3.6). Origin and destination points needs to be snapped to the closest line segment 

of the network for the analysis. A problem occurred when the points were snapped to 

unconnected street segments. These points could not reach any location on the rest of the 

network, the analysis would not work. To remove the unconnected segments a service area 

analysis was carried out on the network, from one origin point, with line features as output and 
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a very high number (900 minutes) as maximum distance. This resulted in a network that 

excluded unconnected parts, and the network was rebuilt.   

3.3.2 Public transport 

The public transport network is a multimodal network. It uses the walking network from 

previous step as a foundation, and connects the public transport (GTFS) data to it. Hence, to get 

from an origin to a destination with the public transport network one: (1) walks from the origin 

point to a public transport stop; (2) travels by a specific transit trip; (3) possibly transfers to 

another trip at another stop; and (4) walks from the final stop to the destination point (see 

figure 1) It does not necessarily mean that the route chooses the public transport stop that is 

closest to the origin/destination. Instead, the analysis determines the quickest route combining 

the walking time and the public transport time. If the quickest route is to not use public 

transport at all, but only use walking, the analysis will choose that option.  

The downloadable ArcGIS toolbox, “add GTFS to a network dataset” was used to produce this 

public transport network (Morang 2017). 

• The first step (after preprocessing the GTFS data) was to run the tool that generated 

transit lines and stops from the GTFS data. The tool also created a database of the time 

schedules.  

• The second step was the creation of connector lines that connected the transit stops and 

the walking network. A point layer was created representing where the stops were 

snapped to the walking network streets. A new walking network street layer was created 

that included vertices at these points, since line features only connect to each other at 

vertices in the analysis.  

• The third step was to create a new network dataset.  

o Here the connectivity settings were important. The transit lines were connected to 

the connector lines (at transit stops). The connector lines were in turn connected to 

the walking network streets (at “stops snapped to streets”). This ensured that the 

only place to switch from walking to public transport was at transit stops. A public 

transport vehicle cannot be exited in between two stops. 

o Speed parameters were set. A speed of 1.4 m/s was specified for each walking street, 

same as in the walking network. The connectors were given a constant of 15 seconds, 

representing a delay when entering or exiting a vehicle, as presented in the user’s 

guide (Morang 2017). This is not a representation of the time waiting for the transit 
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vehicle, but rather a representation of the time it takes to board/exit the vehicle.  For 

the transit lines, the speed was set according to other rules, namely referring to a 

software extension that made a request from the public transport schedule database 

every time an analysis was performed. This particular GTFS dataset (see table 1) was 

set up using data about every single date, instead of data about generic weekdays. 

Hence, appropriate settings for such occasion needed to be made.   

• The fourth step was to finalize the network by providing the public transport schedule 

database with ID numbers connecting it to the newly built network.  

• When adding origin and destination points (section 3.3.5 and 3.3.6) they were set to only 

snap to the streets of the walking network and not to the transit lines, since one cannot 

start the travel on a public transport vehicle between two transit stops. The settings were 

also set to use specific dates. 

To acquire a fair travel time, an analysis was made starting every minute during an hour. For 

some of the highly-visited green areas of Gothenburg (the Botanical Gardens, Slottskogen and 

Trädgårdsföreningen) the most common visiting times is weekdays between 12:00-13:00 and 

weekends between 13:00-14:00 (Google maps 2017a, b, c) Therefore, a batch analysis is made 

for every minute between 12:00-13:00 on a Wednesday and between 13:00-14:00 on a Sunday. 

The mean value of these 120 analyses is calculated with the aid of Microsoft Excel. Salonen and 

Toivonen (2013) added half a headway time to the total travel time in one of their public 

transport networks, as representative of the time spent waiting for a transit vehicle. That is not 

done in this analysis in this thesis because the time spent waiting is inherently incorporated in 

the analysis. Because one analysis starts at each minute the time spent waiting for a vehicle is 

subject to the time between when one reaches the transit stop, and when the next vehicle 

departs.  

3.3.3 Biking 

In the GIS environment, a toolbox (OpenStreetMap toolbox) was used, since it had prepared 

settings for creating a biking network. It created a built network dataset from a complete OSM-

file, without requiring a selection of what categories of data that should be encompassed. An 

included configuration process determined the properties of the network. The properties that 

was given through the configuration are stated in the appendix. In general terms, all roads 

traversable by bike were included and a general biking speed of 16 km/h was implemented. 

However, the speed was slower if the surface quality of the road was worse. A time penalty was 

added at barriers such as traffic lights and stops.   
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3.3.4 Car travel 

As with the other networks, OSM is used for creating the network for car travel. Same as with 

the biking network, prepared setting from the OpenStreetMap toolbox was used to create the 

car travel network. The properties given through the configuration is presented in the 

appendix. In general terms, all roads traversable by car was included. Speed was set as the 

speed limit of the road, if such information was included in the data. Otherwise, a speed was 

added according to the road category (see appendix). However, the speed was slower if the 

surface quality of the road was worse. A time penalty was added at barriers such as traffic lights 

and stops. 

The problem with using speed limits as an approach in calculating travel time is that it excludes 

several factors that add to the total travel time, namely walking times to and from parking 

space, time spent to find a parking space and traffic congestion (Yiannakoulias et al. 2013;  

Salonen and Toivonen 2013). Salonen and Toivonen (2013) studied differences between car 

travel networks with different sophistication levels in Helsinki, a city of similar size to 

Gothenburg (SCB 2017;  Salonen and Toivonen 2013), and the above-mentioned factors were 

taken into account. In the analyses in this thesis, the same factors are introduced.  

• When adding congestion data to the analysis, the travel times were 1.76 times longer 

than if the speed limits were used. Hence, the drive times in the analysis are multiplied 

with 1.76.  

• A general time of 0.73 minutes was added for finding a parking space (Kalenoja and 

Häyrynen 2003). 

• The distance walking to and from parking space (from origin point and to destination 

point, respectively) were 180 meters in central parts of the city and 135 meters outside 

the central parts (Kurri and Laakso 2002). However, in this analysis the destination point 

were parking spaces within 100 meters of green area entrance (see section 3.3.5. 

Therefore, the middle value of 50 meters for walking from parking space to destination 

point were used.  
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Figure 1: a close-up on central Gothenburg presenting results of a route analyses for all four 

transport modes. The route is the quickest between a chosen origin point and a chosen 

arbitrary destination point (not necessarily the closest destination point in the following 

analysis). The parts of the public transport route that uses walking are marked with black 

stripes in the line. The routes are labelled with the travel time in minutes. For the driving route, 

the destination is set at the parking space closest to the destination in this example. The public 

transport lines are represented with straight lines between stops rather than by the actual 

route taken by the vehicle, since the GTFS data does not include actual route information.  
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3.3.5 Destination points (green areas)  

The creation of the destination points consisted of two main steps: (1) selection of green areas; 

and (2) creation of destination points that represent green area entrances.   

First, for destination points in the network, two different selections of green areas were made: 

Parks and nature and Nature. The selections are described in table 3 and visualized in figure 2. 

Parks and nature consists of a higher number of green areas than Nature. All green areas 

included in Nature is also included in Parks and nature. The data originated from two sources: 

within Gothenburg municipality the data came from Göteborg stad, and from the other 

municipalities OSM data are utilized. The selections were based on the policy goals of 

Gothenburg municipality (Göteborg stad 2014): urban district parks should be within 15 

minutes walking distance, whereas natural areas and urban parks should be within 30 minutes 

travel time with public transport.  

There is a reason that there is no selection of only parks that excludes natural areas. The 

selections are made to make central and peripheral parts of the city comparable. The majority 

of the urban district parks were located in the densely populated central areas of Gothenburg; 

thus, an analysis of only urban district parks would indicate poor accessibility in the less densely 

populated areas in the outskirts of the city. However, these peripheral areas are generally 

closer to natural areas, which can also supply opportunities to perform the desired activities of 

urban district parks. 

For the Parks and nature selection within the borders of Gothenburg municipality, data about 

urban district parks, urban parks and larger natural areas were used. This data had been 

digitized along with the creation of the policy document “ the green strategy” (Göteborg stad 

2014). It was digitized with a low accuracy, and few details, since the intended use of the data 

was for overview maps of Gothenburg (Finsberg 2017). For one urban district, Örgryte-

Härlanda, a specific policy document has been produced by the municipality, along with a layer 

with more detailed park polygons. Some urban district parks in this district has been removed 

and some new is added. Hence, for the analysis in this paper the old park polygons in the 

district were replaced by the new ones. For the Parks and nature selection all green areas from 

this source was included. 

Secondly, outside the Gothenburg municipality borders, such official data was not provided. 

Instead data about green areas were obtained from OpenStreetMap. The Parks and nature 

selection here was based on classification and area size (see table 3). Park polygons were 

selected if they were larger than 1 ha (tag classification: Leisure=garden, park, recreation 
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ground or playground). Nature polygons larger than 100 ha were also selected (tag 

classification; Natural=grassland, meadow, marsh, scrub, wood, wetland, scree, bare rock or 

rock; Landuse=village green, recreation ground, meadow, greenfield, grass, forest or flowerbed) 

For the Nature selection, the urban parks and larger natural areas from Göteborg stad was very 

abundant. This meant that for most of the population, Nature would be well within 30 minutes’ 

travel time with public transport. Although this result would be interesting, it would render the 

public transport analysis unused. This is because most of the analysis results would be the same 

for the walking network and the public transport network, meaning it would almost always be 

quicker to walk than to use the public transport. Therefore, the available technique of analyzing 

the public transport would be of no value. In the light of this, a size requirement was introduced 

(table 3). The Nature selection included: urban parks over 100 ha, and larger natural areas over 

300 ha. However, if the area was situated along the coastline, a size over 100 ha was deemed to 

be sufficient, since the ocean in itself could be considered to enrich a nature experience. The 

Gothenburg municipality was the only one in the study area that had any coastline; hence, no 

consideration was needed to whether natural areas outside Gothenburg was seaside and 

needed special treatment.  

For the Nature selection outside Gothenburg municipality the same tag classification was used 

as with the Parks and nature selection, with the difference being a stricter size requirement: 

>100 ha for parks; and >300 ha for nature. 
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Table 3: characteristics of the green area selections: Parks and nature and Nature. The data 

used differed whether it was inside or outside the Gothenburg municipality borders  

Geographical 
extent 

Source Green 
area 
type 

Name Parks and 
nature - 
Size 

Nature - 
Size 

Inside 
Gothenburg 

Göteborg Stad Park Urban district 
parks 

All None 

Urban parks All > 100 ha 

Nature Larger natural 
areas 

All > 300 ha, or 
if seaside > 
100 ha 

Outside 
Gothenburg 

OpenStreetMap 
polygons 

Park Key tag “Leisure” > 1 ha > 100 ha 

Nature Key tags “Natural” 
and “Land use” 

> 100 ha > 300 ha 
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Figure 2: the two green area selections and the entrances to them in the walking and the public 

transport network. All areas in Nature are also included in Parks and nature.  

In the second step, a point layer was created that represented entries into these green area 

selections. The points were positioned at the intersections of the walking network lines and the 

edge of the green area polygons. The public transport network used the same points as the 

walking network, but for the biking network a new green area entrance layer was made since 

the networks differs slightly.  

For the car travel network, the method of creating green area entries needed to be different 

compared to the other travel modes because cars need parking spaces. Here, amenities 
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classified as parking in the OSM data was used. With the help of the QGIS program, all tags in 

the OSM data for the parking polygons were extracted and inspected. Some parking spaces 

were removed, namely those categorized as private, no access, and commuter parking. Those 

spaces with a max-stay of three hours or less were also excluded in the analysis. However, most 

of the parking spaces did not include any of the above-mentioned information. Therefore, the 

analysis included a large number of parking spaces. In reality, many of these parking spaces 

were probably private or unsuitable in another way, but the lack of information in the dataset 

prevented a correct selection of them. The polygons were thereafter converted into a point 

layer. The points within 100 meters’ distance from the Nature entrances in the walking 

network, were selected. The resulting Nature adjacent car parking spaces were set as 

destination points in the car travel network. 

3.3.6 Origin points (Population) 

The population dataset obtained from SCB (see table 1) was used to create origin points, which 

represented the starting locations of the travels. In the population dataset, each pixel value 

represents the total population in that area. The pixel size was 250 meters in urban areas, and 

1000 meters in rural areas. However, since this thesis primarily focuses on urban areas, the 

rural pixels were excluded. The central point of each pixel was used as origin points.    

3.4 Spatial analysis 

Presented in this section is the analysis carried out investigating the accessibility, spatial 

inequality and comparison between transport modes.  

3.4.1 Accessibility in Gothenburg 

The methods for assessing the accessibility in Gothenburg was based on the standards in the 

policy document “the Green strategy” (Göteborg stad 2014). That is, urban district parks should 

be within 15 minutes walking distance, and nature experience should be accessible by public 

transport within 30 minutes travel time. 

Two analyses are performed in this section. One walking analysis and one public transport 

analysis. First, for the walking analysis the Parks and nature selection of green areas was used. 

An analysis tool called Origin-destination cost matrix was used. The tool found the closest 

destination for each origin. Each origin point received a number representing travel time in 

minutes to closest destination. These numbers were connected to the population grid for 

visualization. The travel times of the points were also categorized for further statistical 

visualization. 



29 
 

The public transport analysis was performed in a similar way as the walking analysis. The 

difference being that the walking network was replaced by the public transport network, and 

the destination points were replaced by the entrances to the Nature selection. Moreover, the 

analysis was carried out for each minute for two hours, one on a weekday and one on a 

weekend (see section 3.3.2). Mean values were found for each origin point.  

3.4.2 Spatial Inequality 

For this section, methods for detecting spatial inequality were implemented. Both linear 

regression in relation to income, and general spatial inequality measures of Location Quotient 

and Moran’s I, were calculated.  

The linear regression analysis explored whether there was a relationship between income levels 

and travel time (to Nature by public transport). The income data, purchasing power of 

households per consuming units, were provided in the same geographical extent and resolution 

as the population data, a grid with pixel size 250 meters within urban areas. Hence, it was 

joined with the results from the travel time analysis (section 3.4.1). The income data included 

both the mean value in Swedish crowns (SEK) and four income categories showing number of 

households with low, medium-low, medium-high and high income levels. The relation between 

the mean income and travel time was calculated with linear regression. The four income 

categories were also reflected upon in relation to the travel time spectrum.  

Location Quotient (LQ) calculations required a mean value for the total study area for each of 

the four transport modes. For each pixel (origin point) the inhabitant count was multiplied by 

the travel time. The sum of the resulting numbers was divided by the total population. This 

gave a mean travel time for the total study area. The travel times of the pixels were divided by 

these mean values to give an LQ value (see section 2.6).  

Moran´s I Spatial Autocorrelation was calculated in the GIS with an appropriate tool (see 

section 2.6). A zone of indifference of 2500 meters, corresponding the length of 10 pixels, was 

used in the analysis. I.e. all pixels within 2500 meters gained equal weight in the analysis and 

pixels further away were given descending weights with increased Euclidean distance. This was 

done since the resolution of the pixels was high in comparison to the abundance of green areas. 

A Moran’s I analysis with only the neighboring pixels would give an unrepresentative value 

since it is rather expected that neighboring values have similar values. 
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3.4.3 Comparison between transport modes 

Here, a comparison is made in travel time between the four transport modes. Calculations were 

also made of the distribution among different travel time categories, as well as the mean travel 

time, for all transport modes. Lastly, Location Quotient-comparisons were produced by 

subtracting the LQ values of car and bike travel respectively, from the LQ values of public 

transport travel. This indicates what areas of the study area that has a well-developed public 

transport network relative to the networks of car and bike travel.  
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4. Results 

The results of this thesis are divided into three main sections: (1) accessibility in Gothenburg by 

public transport and walking; (2) spatial inequality in accessibility; and (3) transport mode 

comparison. 

4.1 Accessibility in Gothenburg 

This section assesses to what extent the accessibility to green areas in Gothenburg is sufficient. 

It is divided into two parts: (1) Parks and nature should be within 15 minutes walking distance; 

and (2) Nature should be accessible by public transport within 30 minutes. These standards are 

based on the policy goals set by the Gothenburg municipality (Göteborg stad 2014). 

4.1.1 Walking time – Parks and nature 

Figure 3 shows that most areas in Gothenburg are within 15 minutes’ walk to the closest Park 

or nature. The sparsely populated Arendal has the longest distance with two pixels having 

values over 45 minutes. Parts of Hisings Backa, Torslanda, Björlanda and Angered have also 

relatively long walking times. Most of these areas are relatively peripheral to the city, except 

the area in southern Hisings Backa. Figure 4 shows that about 93 % of the inhabitants in the 

study area have less than 15 minutes’ walk to the closest Park or nature. Therefore, the goal set 

by the municipality of Gothenburg is fulfilled for 93 % of the population. 
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Figure 3: walking time to the closest Park or nature in Gothenburg city. The pixels represent 

resident areas and the color of the pixels represents the walking time in minutes. 
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Figure 4: the diagram shows the number of inhabitants within each walking time category on 

the left axis (and labelled by the staples) and the cumulative percentage on the right axis. 
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4.1.2 Travel time by public transport – Nature  

Most areas are within 30 minutes’ travel time by public transport to the closest Nature (figure 

5). However, some areas in Torslanda, Hisings Backa and Hisings Kärra comprise longer travel 

times. Some similarities with the previous map (walking to Parks and nature) can be seen 

(figure 3). E.g. some of the areas in Hisings Backa and Torslanda have low accessibility in both 

cases. Both analyses fulfill the accessibility goals with over 90 % of the population, figure 6 

shows that about 98 % of the population have less than 30 minutes’ travel time to the closest 

Nature, which is even higher than in the previous analysis (walking to Parks and nature). 

Figure 5: travel time by public transport to closest Nature in Gothenburg city. The pixels 

represent residents and the color of the pixels represents the travel time in minutes. 
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Figure 6: the number of inhabitants within each travel time category on the left axis (labelled by 

the staples) and the cumulative percentage on the right axis (labelled by the points). 

4.2 Spatial inequality 

This section presents the results of the spatial analyses with regards to inequality in 

accessibility. First, an analysis of the relationship between income and travel time is presented. 

Thereafter, a Location Quotient comparison map is presented with the result of the Moran´s I 

spatial auto-correlation. 

Figure 7 shows the correlation between income levels and accessibility to green areas by public 

transport. The result show that there is no significant correlation. The regression function 

(figure 7) gives a relatively low negative x-value, meaning that higher income correlates with 

further distance from green areas. However, since the R-square is close to zero that model 

explains little of the variability in the income data. Figure 8 displays a similar pattern as figure 7. 

In up to 30 minutes’ travel time the distribution is relatively even among the income categories. 

However, at above 30 minutes, a pattern appears where further distance seemingly correlates 

with higher income.  
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Figure 7: a scatter plot with travel time by public transport in minutes on the horizontal axis. 

Purchasing power of households per consuming unit, is on the vertical axis. The least square 

regression line is presented together with the function and R-square value. 

Figure 8: the distribution of categories of income levels (purchasing power of households per 

consuming unit) per travel time category. On the x-axis is the travel time by public transport to 

closest Nature. On the y-axis is the percentage of households in each income category.  

Figure 9 shows the LQ values (the travel time of each pixel as a quota of the mean travel time of 

the whole area) of the two analyses. Note that the walking map was analyzed with Parks and 
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nature (a higher number of green areas) and the public transport analyses used Nature (the 

more restrictive selection). Hence, it is not a comparison between transport modes, rather a 

comparison of the two goals of green area accessibility.  

The maps have both similarities and differences. In general, central parts seem to have slightly 

higher accessibility in the walking to Parks or nature analysis, than in public transport to Nature. 

In both cases, large portions of Hisings Backa have higher LQ, meaning longer travel time than 

the global average. Moreover, in both cases parts of Torslanda have high values, even though 

the areas are not completely overlapping. For the public transport map, it seems as the 

majority of the southeastern parts, Partille, Öjersjö, Mölnlycke and Kållered, have generally low 

LQ. A difference in the maps is found in the northern parts of the map, in Hisings Kärra on the 

west side of the river. Here, the LQ is high in the walking map but low in the public transport 

map. The opposite is true on the other side of the stream, in western Angered.  

In figure 9 the Moran’s I measures of spatial autocorrelation are also presented. The Moran’s I 

was 0.40 and 0.17 for the travel times of public transport and walking, respectively. The z-

scores are very high, and the p-values are very close to zero, in both cases. Both z-scores and p-

values are associated with the standard normal distribution. A z-score above 2.58 corresponds 

to a p-value of 0.01, meaning there is a confidence level of 99 % to reject the null hypothesis 

that there is complete spatial randomness in accessibility.  Hence, no randomness in 

accessibility is observed in the results. Because the index in both cases also are positive we can 

also determine that a spatial clustering occurs in both cases. The spatial clustering is stronger in 

the public transport map. Remember that the walking analysis includes a higher number of 

green areas.  
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Figure 9: a comparison of the Location Quotient values for the Public transport analysis (travel 

time to Nature) and the walking analysis (travel time to Parks and nature). The Moran’s I 

analysis results are also presented.  

4.3 Comparison between transport modes  

This section presents the comparison between the four transport modes (walking, public 

transport, biking and car). Note that in this section all transport modes are analyzed by the 

travel time to Nature.  

Figures 10 and 11 shows that the accessibility is higher for biking and driving compared to 

public transport and walking. Note that biking has a much shorter travel time compared to 

public transport.  
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Figure 10: Comparison between the transport modes travel time to closest Nature.  
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Figure 11: the mean travel time (to Nature) of the study area for each transport mode.  

Figure 12 shows a comparison of the distribution of residents in each time category and for 

every transport mode. Biking is faster than the other travel modes, with almost 60 % within the 

0-5 minute’s category. Car travel is also relatively quick, with most of the inhabitants residing 

within the 5-10 minutes category. In short distance travels, up to 10 minutes, public transport is 

rather similar to walking. In time categories above 10 minutes there is a difference in favor of 

public transport, compared to walking. 
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Figure 12: a comparison in travel time (to Nature) of all four transport modes. The figure shows 

the percentage of people that resides in each travel time category.  

Figure 13 and 14 compares the location quotient values between different transport modes. 

Public transport LQ has been compared with car travel (figure 13) and biking (figure 14), 

respectively.  

Pixels having values below zero (green colors) represent areas where the accessibility by public 

transport has a lower LQ than the accessibility by car or bike. Pixels with values above zero (red 

colors) are areas where car or bike travel has lower LQ than public transport (figure 13 and 14). 

This is not a representation of which transport mode that has the shortest travel time, but 

rather an indication of where the public transport infrastructure is better developed in relation 

to the infrastructure for cars and bikes, respectively. 

The LQ comparison between car and public transport (figure 13) shows that when there are 

short distances to Nature, the LQ values are lower for the public transport. However, in these 

areas travelling by public transport (which is a multimodal network with both public transport 

and walking) are almost only done through walking. Travelling by car seems very favorable at 

longer distances compared to travelling with public transport. 

The comparison of the public transport and biking networks indicates where the public 

transport network is well-developed; for example, the central parts of Gothenburg, and the 

eastern parts of Hisings Backa. At the same time, the western parts of Hisings Backa have a 

relatively less developed public transport. Southern Torslanda has also substantial variations on 
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a relatively small scale, within the district. The western part has considerably better accessibility 

than the eastern part.  

Figure 13: a comparison between the location quotient values of public transport and car. A 

value below 0 represents areas where public transport has a lower LQ than car, and vice versa.  
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Figure 14: a comparison between the location quotient values of public transport and bike. A 

value below 0 represents areas where public transport has a lower LQ than bike, and vice versa. 
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5. Discussion 

The discussion consists of five sections. The first three sections discuss the results, whereas the 

latter two discuss the methods and possible future studies.  

5.1 The geographic accessibility in Gothenburg 

The results from the accessibility analysis shows that 93 % of the population in the study area 

resides within 15 minutes walking time to closest Park or nature. Hence, the accessibility to 

green areas in Gothenburg is generally sufficient according to the goals set by Gothenburg 

municipality (Göteborg stad 2014). However, some areas do have a deficiency in this aspect. 

Possibly, the most noteworthy finding is southern Hisings Backa, which is a relatively central 

part of the city. In this area the Frihamnen district is located (Dahl 2017). Frihamnen is 

experiencing redevelopment from an old harbor into a new urban district. In this context, a new 

urban park is planned, called the Jubileepark. The harbor environment and user participation is 

incorporated in the long-term park development process. Other than this area, mainly smaller 

peripheral parts of the city are outside 15 minutes’ walk to green areas, e.g. parts of Torslanda, 

Angered and Västra Frölunda. Several of these areas are located seaside. Maybe the sea is 

considered a natural experience even without green areas adjacent to it. This may be taken into 

consideration in the physical planning process. During the analysis process of this paper it was 

found that the OSM data within Gothenburg municipality, that eventually was not used, 

included no parks or nature along the coastline of Västra Frölunda. An accessibility analysis with 

this data would have resulted in very low accessibility in this area. In conclusion, the 

accessibility to Parks and nature by walking is sufficient for most areas and the areas of 

deficiency are compensated by being seaside or having a new park planned. 

Furthermore, the accessibility to Nature by public transport fulfill the requirements to a higher 

degree than in previous case (walking to Parks and nature). Results show that 98 % are within 

30 minutes to closest Nature by public transport travel. Remember that the selection of Nature 

is even more restrictive than the selection of urban parks and larger natural areas that 

Gothenburg municipality (Göteborg stad 2014) produced. Thus, the number of people reaching 

urban parks or larger natural areas within 30 minutes, which is the actual goal set by the 

municipality, is even higher than 98 %.  

5.2 Spatial inequality 

Even though the accessibility is clustered no spatial inequality of accessibility in relation to 

income was found in the study. However, no thorough analysis of income and accessibility to 

green areas has been carried out in this paper. Other variables potentially affecting the 
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accessibility should have been controlled as well. Hence, no complete conclusion can be drawn, 

but some notable outcomes can be discussed. The linear regression analysis shows no relation 

between income and distance to Nature by public transport. In contrast, a study of accessibility 

to a major workplace in Gothenburg showed inequality regarding income (Elldér et al. 2012). 

Their study does not involve green areas, but still it indicates spatial inequality in accessibility 

by public transport in Gothenburg. Even though no relation is found in the linear regression in 

this paper, the result also show that very long travel times tends to have an overrepresentation 

of high income residents. Dempsey et al. (2012) points out that low density villa suburbs are 

often in high demand even though they may have relatively poor access to urban services. High 

income residents might have long travel times since they reside in low-density districts with 

poorer access to urban services. Note that the low-density districts are not rural areas since 

they are excluded in this analysis. Moreover, relatively few people reside in these areas. Less 

than 2 % of the total population of Gothenburg have more than 30 minutes’ travel time from 

Nature. These areas are mainly found in the peripheral parts of the city, the southern parts of 

Torslanda and northern parts of Hisings Kärra. For most of the population there still seems to 

be little relation between income and travel time.  

The income distribution of residents in close proximity to green areas show a small 

overrepresentation of high income people. This may suggest that green areas increase adjacent 

property values, which has been found in other studies (Konijnendijk et al. 2013). The reviewed 

studies in Konijnendijk et al. (2013) have also observed that the increase in property values 

disappear rapidly with distance from green areas, which seem to support the result in this 

paper. Hence, living very close to a park or natural area seem to be desirable.  

The Moran’s I results showed that the values of accessibility to green areas are clustered. A 

significant spatial autocorrelation for the LQ values of both public transport and walking 

occurred. The spatial clustering was highest for the public transport accessibility. There is a 

relatively low count of green areas compared to the large number of origin points, 

consequently, it is rather expected that origin points adjacent to each other share similar 

values. The Nature selection of green areas is more restrictive than the Parks and nature, thus 

including fewer green areas. Hence, the results of the public transport analysis show even 

higher levels of clustering.  

5.3 Comparison between transport modes 

Comparing public transport to the other travel modes resulted in some notable differences and 

similarities. There are substantial differences in travel times between public transport and 
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car/bike. For both car and bike travel about 90 % can reach Nature within 10 minutes; for public 

transport about 40 % can reach nature within 10 minutes. The travel times by public transport 

are considerably higher than car and bike. Compared to walking the difference is smaller. Close 

to green areas there is no difference in travel times between walking and public transport. This 

is expected since the public transport network is a combination of walking and public transport, 

and may exclude public transport travel if it is quicker to walk between origin and destination. 

In short distances walking typically is quicker. In longer distance travels the differences between 

walking and public transport becomes more apparent. For example, in the central parts of the 

city, northern Västra Frölunda and Hisings Backa, the travel times are shorter by public 

transport. These areas appear to have well developed public transport. However, a smaller 

difference between walking and public transport is found in southern Torslanda, despite the 

long distance. This area seems to have a less developed public transport infrastructure, which 

may be because it is a peripheral district with rather low population density. In this analysis, no 

consideration has been taken to comfort. Travelling by bike or walking for extended periods of 

time may not be desirable. Therefore, public transport may be preferred, regardless of longer 

travel times, but this study does not acknowledge that. Conclusively, travelling with public 

transport is preferable primarily in long distance travels, in comparison with walking and biking. 

The LQ comparisons goes beyond just focusing on the differences in travel times between the 

different transport modes. Instead it measures the geographic distribution of accessibility by 

one travel mode, and compare it with the geographic distribution of another. It may assess the 

quality of the networks, indicating areas with poor/well developed public transport. However, 

the comparison between car and public transport is unsuccessful in indicating the level of 

development of the public transport. The added time of the car travel in the start and the end 

of the travel has a large impact in short distances. Thus, in short distances, walking (in the 

public transport network) is generally almost as quick or maybe even quicker than car travel. In 

long distance travels the difference is much more distinct in favor of driving. Therefore, the LQ 

comparison only show lower LQ for public transport close to nature, and lower LQ for car 

driving at long distances. On the contrary, the LQ comparison between biking and public 

transport gives more information on the spatial distribution of how well developed the public 

transport network is. These two transport modes have higher comparability since the biking 

travel time does not include a general added time penalty such as the car travel network. The 

central parts of Gothenburg seem to have well developed public transport infrastructure. In 

Hisings Backa the public transport seems to mainly traverse in the eastern part of the district 

and in north-south direction. It is also possible to distinguish some hotspots for the public 

transport, e.g. central Mölndal, parts of Eriksberg, Torslanda and northern Västra Frölunda. This 
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is possibly public transport hubs that acts as transit stops for many routes. In summary, the LQ 

comparison between bike and public transport can be used to assess the quality of the 

geographic accessibility by public transport.   

5.4 Methods discussion 

The measurements used in this paper connects green area entrances (destination points) and 

inhabitant’s homes (origin points) to networks. Hence, the measurements are location-based, 

using localizations of activities around the travel networks rather than only focusing on the 

networks. Thereafter, travel times between origin points and destination points were 

calculated and used as the impedance in these measurements, instead of e.g. distance or 

monetary cost. This is further discussed in section 5.5. 

One major challenge of the study was to select which parks and natural areas to include in the 

analysis. There is a difference in how green areas are distributed in the centrum and the 

periphery of the city. Generally, in the central parts of a city there is a high abundance of parks 

but few natural areas. In the outskirts, the opposite is true. This has been shown in Dony et al. 

(2015). It is a challenge to find a way to counterbalance these differences to make centrum and 

periphery comparable. The selections of green areas in this paper are made in appreciation of 

this. Even though general rules of e.g. size, classification and localization of the green areas are 

set, the selections are still arbitrary, since the rules are arbitrary. With different rules, the 

results would have been vastly different. Another issue is that the selection is made of data 

from two different sources that are produced for diverse purposes and on various levels of 

detail. To combine them in the analysis here is somewhat inherently problematic. For example, 

the lower level of detail in one of the datasets might mean that green areas intersect with the 

network at places where the roads in reality do not enter the green area, thus producing a false 

entrance. Meanwhile, the higher level of detail in the other dataset excludes this problem. To 

summarize, data of green areas are fundamental for the study but it is difficult to make an 

unbiased selection of them.   

A wide range of properties may determine the sophistication of the networks. The car travel 

network is rather generalized in this paper. In reality, car travel differs according to several 

parameters, e.g. congestion, individual driving speed, number of turns etc. The added time 

penalties for congestion, walking to and from parking space and finding parking space, are 

based on studies of a similar city, Helsinki. Still, these numbers are relatively generalized and 

could have been better estimated, e.g. by introducing congestion data at different times of the 



49 
 

day, considering the distance from car parking to green area entrance and examining whether 

the parking spaces have fees. 

For the walking and biking networks, the speeds are generalized in this paper, but in reality 

they can be affected by slope, weather, individuality etc. Another issue in the walking/biking 

networks is that several walkable areas are not representable as line segments; e.g., squares, 

parking spaces and some grass areas. In reality, these areas are often traversable in many 

different directions, which cannot be represented as line segments. Instead they are 

represented as polygons in the OSM data and are thus excluded from the walking network. The 

public transport network has several issues as well. First, the transit stops were given as a single 

point in the GTFS data when, in actuality, a stop might have several platforms/localizations in 

proximity to each other. At several occasions in this analysis, stops were in reality dually located 

on walking paths or platforms on each side of the road. However, in the data they were 

represented as only one point in between. Therefore, the stop was snapped to the road in 

between. Hence, the walking route needed to reach the stop would be longer or shorter than if 

the stop would have been correctly located on the paths or platforms. Another issue might be 

that there is no time penalty when switching public transport vehicle at stops. Moreover, the 

public transport network cannot handle priorities of transport modes. Even if walking is quicker, 

one might prefer travelling long distances by public transport instead, but this is not considered 

in the analysis. In closing, the networks are flawed models of the reality and can have various 

levels of sophistication. Without rejecting the methods of this paper, several issues still need 

acknowledgement.   

However, it might not matter how sophisticated the method is, if the data quality is 

inadequate. The quality of the OSM data is seen as adequate, but since the data is open source 

and a work in progress, it is partly unfinished, especially in peripheral parts of Gothenburg 

(OpenStreetMap Wiki 2017;  Will 2014). Some data quality issues needed handling during the 

work: (1) some of the roads were unclassified and therefore included in both walking, biking 

and driving networks (with a generalized speed); (2) most of car parking places did not include 

the information of whether it had private or public access; thus, all parking places that did not 

have this information were considered accessible in the analysis. Also, some roads were 

included in the networks that probably should not be. For the biking network all roads that 

might be usable for biking is included. In reality, cyclist may prefer to avoid some larger roads. 

Another issue is that some origin points were snapped to large roads, even though inhabitants 

rarely start their travel in the middle of a large road. At occasions, this led to long re-routes. In 

closing, the OSM data include high levels of detail but the quality has some issues.  
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Some finishing notes on the statistical analysis. First, the linear regression could use weighted 

population points according to number of inhabitants, instead of each point having the same 

weight. Secondly, maybe another approach to using Moran’s I could be used. For example, 

dividing the study area in larger districts, counting the number of green areas within each 

district and calculate Moran’s I from that. However, parks and natural areas are of very 

different sizes and qualities and may need some ranking system in that case. Also, the 

accessibility along networks will not be accounted for in such an analysis.  

5.5 Future studies/Outlook 

In future studies, other location-based measures could be used to develop the results. In the 

results of this paper most residents reached Nature in less than 30 minutes despite a more 

restrictive selection of green areas than in the analysis of Gothenburg municipality (Göteborg 

stad 2014). An alternative approach could be to instead calculate the number of green areas 

reached within 30 minutes’ travel time of each origin point. Distance decay could also be 

introduced, where green areas could be given weights depending on how close they are. 

Furthermore, the green areas could be given weights based on certain properties; e.g., whether 

they are classified as urban district park, urban park or natural area. Different green areas have 

dissimilar properties that may influence the choice of which one to visit. Hence, a larger 

number of green areas within reach increases the chance of one of them being preferable. 

Maybe the measurement could indicate how many different types of green areas that are 

reached within 30 minutes. Another way to analyze the accessibility could be to assess if more 

classical standards are met, where a certain size of green areas per inhabitant should be 

available (see section 2.5 and Nicholls 2001). Other than amending the measurements, some 

details in the method could be improved. If congestion data is introduced, the car network 

could be analyzed at the same hours as the analysis of public transport, i.e. the hours the green 

areas are most visited. More correct data of public car parking amenities would also increase 

the accuracy of the car network. Furthermore, the statistical analysis of spatial inequality could 

be elaborated and include other socioeconomic parameters. To conclude, some details could be 

amended to improve the method in the future. However, the most interesting outlook would 

probably be to develop other location-based measures.  
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6. Conclusions 

The aim of this paper is to study the geographic accessibility to green areas in Gothenburg. The 

purpose is to determine whether the accessibility: (1) is sufficient according to set goals 

(Göteborg stad 2014); (2) has spatial inequality; and (3) varies in different transport modes. 

The methods utilized travel time in location-based measurements to evaluate the accessibility. 

Network analysis in a GIS environment was performed on four travel modes: public transport, 

walking, biking and driving car. Residents were set as origin points. The destination was the 

closest entrance into a green area.  

Few studies of accessibility to green areas have included public transport travel in the analysis. 

In Gothenburg, no studies of accessibility to green areas have used network analysis of any 

transport mode. The results of this paper showed that the accessibility was sufficient according 

to the Gothenburg municipality goals, for most of the urban population. Although a few areas 

experienced a deficiency, the results showed no indications of spatial inequality with regards to 

income and accessibility. However, no complete analysis of the relationship between income 

and accessibility was carried out in this thesis. That is, all possible variables that may influence 

the relationship between income and accessibility were not analyzed. Therefore, further studies 

on this topic are needed. Accessibility by public transport was rather unfavorable compared to 

both biking and driving, at both short and long distances. Compared to walking it is mainly 

favorable in long-distance travels. The comparison to other transport modes also shows that 

public transport network is well developed in central parts of the city and in a rather well 

distributed sense in the whole study area. However, the differences can be substantial on a 

smaller scale, within districts. 

To conclude the discussion about the methods: the results in this paper are greatly affected by 

the inevitably subjective selection of green areas. Since a city contains a wide range of green 

areas with great differences in properties, it is a challenge to perform an unbiased selection. 

Furthermore, the networks contain several points of improvement potential, e.g. the use of live 

congestion data for the car network. Methods could also include other location-based 

measurements.  
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Appendix 

Detailed methods for creating bike and car networks are presented here, including what tags, 

parameters and values that were used. 

Biking network details 

• Including a number of line segment categories, namely those with the tags Highway= 

primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, unclassified, 

residential, living_street, service, track, cycleway, footway, bridleway, pedestrian, path 

(Excluding some not suitable for biking, e.g. Highway= steps, abandoned, construction, 

motorway, motorway_link, trunk and trunk_link). However, if the segment had the tag 

bicycle=no it was restricted. 

• Applied a general biking speed of 16 km/h (or 4.44 m/s) that was divided by a certain 

number if the features had the following tags (table 4):  

Table 4: speed penalty for biking and driving car. 

Key tag Value tag Speed divided by 

Surface Compacted 1.25 

Metal 1.5 

Unpaved, gravel, 
fine_gravel, pebblestone, 
sand, dirt, grass 

2 

Smoothness Intermediate 1.25 

Bad 1.5 

Very_bad 1.75 
Horrible 2 

Very_horrible 3 

Impassable 5 

 

• At barriers, such as stops and traffic signals, 0.1 minutes were added to the cycle time. 

Car travel network details 

• Including motorcar navigable roads, namely those with tags Highway=motorway, 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, 

tertiary, tertiary_link, living_street, residential, unclassified or road (excluding e.g. 

service, cycleway, footway, bridleway, pedestrian, path) 
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• Using the speed limitations that is given in tags. Although, many segments do not 

include that tag, in which case table 5 shows the given speed per tag. 

Table 5: the speed given to segments that do not include a tag with max speed.  

Key tag Value tag Speed kph 

Highway Motorway 110 

Motorway_link, Trunk 90 

Trunk_link, Primary 70 
Primary_link, secondary 60 

Secondary_link, tertiary 55 

Unclassified 50 

Tertiary_link 45 
Residential  40 

Living_street 10 

 

• Multiplied driving speed with 1.76 

• Adding time for walking to and from parking space, and finding parking space. 

o 3.47 minutes inside city center (all origin points inside a radius of 2500 

meters from city center point). 

o 2.94 minutes outside city center. 

• Adding a speed penalty in the same manner as with biking (table 4) 

• Access was restricted if these tags were present Access=no, destination, delivery, 

agricultural, forestry or private (tags Access=yes, designated, official or permissive 

is not restricted) 

• One-way streets were restricted in the wrong direction. 

• Barriers, like stops, traffic_signals and toll_booths, gave 0.1 extra minutes.  

• Barriers, like block, bollard, chain, debris, jersey_barrier, lift_gate, log, spikes and 

swing_gate were restricted. 
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