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Abstract 

Study quality is of paramount importance in clinical studies to ensure patient safety and reliable 

evaluation of the treatment, where the latter also entails the safety of future patients. Therefore, for 

example monitoring is required to minimise any risk of quality loss. Traditionally, the method for 

monitoring has been 100% source data verification which is costly and not sufficient. Today, authorities 

worldwide recommend risk based monitoring (RBM), which is a tool to monitor study site activities and 

it signals for unexpected deviations in processes or in data. RBM is to a large extent based on central 

statistical monitoring (CSM) using statistical analysis, and organisations involved in clinical studies are 

in the process of implementing these recommendations. However, since the methods are still in a stage 

of development further knowledge on the subject is needed. In this thesis, RBM was reviewed and 

selected methods were used to monitor a subsection of data from a clinical study conducted by TFS 

(Trial Form Support, Lund, Sweden). The key risk indicators for adverse events and serious adverse 

events were analysed using supervised and unsupervised statistical analysis which resulted in 19% of 

the sites being flagged for further investigation. Further adjustments of the methods are needed. The 

major difficulties in implementing RBM lie in the set-up and especially in that of supervised analysis. 

Further studies that share technical details and hands-on experience of CSM are needed to drive the 

development of RBM in clinical studies globally for general study quality improvement. 
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2. Introduction  

2.1. Clinical studies  

Phase I-IV clinical studies aim to evaluate a novel treatment paradigm, such as a potential 

pharmaceutical, in humans (appendix 1). Phase III studies are randomized controlled trials (RCT), these 

involve a large number of study subjects and are conducted at several sites and generally in several 

countries. By including subjects across a multitude of countries and sites, the study group is more 

diverse, resulting in a group that is more representative of the general population. Furthermore, the 

treatment groups are assumed to differ only in the administered treatment due to randomisation at site 

level. Therefore, any treatment effect should be replicated at all sites where the trial is conducted. 

However, as a consequence several medical professionals as well as several pieces of technical 

equipment are involved in the data collection in a given study. Hence, statistical variance can depend 

not only on normal variations but on study site or country. In turn, this can be caused by differences in 

equipment calibration, in local medical practices, climate, culture etcetera. Also, human error can be a 

source of data variation leading to increased statistical variance.  

2.2. Study quality and risk of reduced quality 

Study quality is required for two reasons; study subject safety and unbiased evaluation of the treatment, 

where the latter also entails the safety of future patients. This is concluded by the International 

Conference of Harmonization (ICH) and its Guidelines for Good Clinical Practice (GCP) (ICH E6 (R2) 

GCP). In the concept of study quality, emphasis can be put on different sections of a study such as study 

site quality, data quality, process quality, compliance to protocol and quality has to be ensured within 

all these sections (Timmermans 2016). 

A way to ensure quality is to consider the risk of quality loss. In risk theory, risk is defined by a hazard 

and its potential impact. In clinical studies, the relevant hazards are classified as; design errors, 

procedural errors, recording errors, and analytical errors and in terms of data quality procedural and 

recording errors are considered (Timmermans 2016). The potential impacts were mentioned above; 

namely patient safety and validity of the treatment assessment. The risk of reduced quality is handled 

by monitoring any issues that interfere with the above quality aspects and by acting on these. Four 

different types of issues have been described based on their causes and the related intent behind each 

cause; error, sloppiness, tampering and fraud. In practice, this refers to for example technical problems, 

misunderstandings leading to procedural errors, sloppiness leading to data entry errors or incorrect data 

due to tampering (i.e. manipulation of data with or without intention to affect the study outcome). 

To ensure study subject safety it is crucial to monitor adverse events (AE). AE are unexpected biological 

measurements or side effects identified in the study subjects (the definition of AE is given below, quoted 

from the ICH E6 (R2) GCP Guidelines). The severity and the frequency of AE, and that of serious AE 

(SAE) need to be monitored.  

[An adverse event is:] “Any untoward medical occurrence in a patient or clinical investigation subject 

administered a pharmaceutical product and which does not necessarily have a causal relationship 

with this treatment. An adverse event (AE) can therefore be any unfavourable and unintended sign (in-

cluding an abnormal laboratory finding), symptom, or disease temporally associated with the use of a 

medicinal (investigational) product, whether or not related to the medicinal (investigational) 

product.” 
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2.3. Monitoring 

Several tools are used to ensure quality in clinical studies; for example to set up an explicit strategy for 

a given study and ensure that all involved parties understand and agree to this strategy, and to monitor 

the ongoing processes to make sure ethical questions are given top priority and that the protocol is fol-

lowed. Traditionally, study monitoring has been done by 100% source data verification (SDV). SDV 

entails for example site visits and thorough screening of the transcription between the source data and 

the clinical data base to find erroneous or extreme values that require evaluation and measure or correc-

tion. This is a very costly and slow method and thus not the best option for all studies. Furthermore, it 

has been reported that SDV may not be as effective as alternative approaches (Andersen 2014).  An 

alternative approach to study monitoring is to use source data review (SDR) which focuses on the pro-

cess behind the data transcription rather than the transcription itself. SDR combines local and centralised 

monitoring and focuses the efforts to where risk of quality loss is identified (TransCelerateBioPharma 

2013). This reasoning is referred to as risk based monitoring (RBM) and is now recommended by the 

Food and Drug Administration (FDA, USA) and the European Medicines Agency (EMA, EU). RBM is 

performed centrally and aims to find potential issues by using for example statistical approaches to 

compare across countries and study sites, respectively. Globally, organisations working with clinical 

studies have already or have started to implement RBM and are still adopting to these guidelines. There-

fore, there is a need to explore the concept of RBM further and to evaluate the methods involved to 

allow for efficient development of strategies. 

3. Aim and Objectives 

The aim of this thesis is to further the theoretical and practical understanding of RBM (Risk Based 

Monitoring). 

The objectives of this thesis are to: 

 Review the meaning of RBM in the GCP (Good Clinical Practice) context, including the con-

cepts of CSM (Central Statistical Monitoring) and KRI (Key Risk Indicators). 

 Perform a study simulating RBM to evaluate selected aspects of CSM. More specifically: 

o Compute KRI outcome for each site and/or country to evaluate their compliance, for 

one (or more) selected KRI(s) for which thresholds have been defined.  

o Explore suitable variable(s) to identify deviant sites and/or countries, for one (or more) 

selected KRI(s) for which thresholds have not been defined. If possible, propose sensi-

ble threshold levels. 

o Explore univariate and multivariate analysis of continuous variables to identify deviant 

sites and/or countries.  

4. Review 

4.1. Risk based monitoring 

Risk based monitoring (RBM) is performed centrally and aims to find potential issues by comparison 

across countries and study sites, respectively (TransCelerateBioPharma 2013). Furthermore, the goal in 

using RBM is to focus efforts to where risk of quality loss is identified rather than focus on 100% SDV.  

It allows for analysis of data at an ongoing basis. The statistical part of RBM is usually referred to as 

central statistical monitoring (CSM). However, the involved terms are not used consistently and both 

RBM and CSM can pertain to different aspects of a general centralised monitoring depending on em-

phasis. See figure 1 for a proposed schematic representation of the RBM concept with a focus on statis-

tical analysis. 
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RBM serves to monitor 1) the process (including project planning, data collection and analysis) and 2) 

the data. The methods used to ensure compliance to GCP are either statistically driven (CSM) or of other 

types; such as safety reports or audits. In this study, only CSM, that is, monitoring of data and of the 

process to collect data, will be considered since other processes are monitored using methods that are 

not relevant from a statistical point of view. CSM can be split into the categories supervised and un-

supervised analysis (Oba 2016), which are described further below. In practise, CSM is performed at 

selected time points in between first patient in (FPI; meaning the date when the first patient is recruited) 

and database lock (the date after which no more data is entered into the study data base, the data is 

considered clean; meaning no outstanding queries, medical events are coded and approved and the in-

vestigator has applied his/her signature) to monitor the progress of the study (figure 2). The benefits 

from using an array of methods has been discussed previously and a combination of supervised and 

unsupervised analysis is recommended (Buyse 2014). On can also refer to KRI-based analysis which 

may include both supervised and unsupervised analysis. Taken together, RBM have the potential to 

result in a more efficient method compared to local monitoring, thereby increasing the quality in clinical 

studies while possibly decreasing costs (eClinical Forum 2012). 

 

 

Figure 1. Structure and methods of risk based monitoring (RBM), including central statistical monitoring (CSM) 

and key risk indicators (KRIs) with (w/) and without (w/o) thresholds. 

 

 
Figure 2. Time flow of a clinical study with respect to central statistical monitoring (CSM) of an ongoing study. 

FPI; first patient in; meaning the date when the first patient of a study is recruited. 

 

 

4.2. Supervised analysis 

Regarding data quality, supervised analysis can be used to monitor processes (of data collection) and to 

monitor the data itself. Supervised process monitoring is monitoring of compliance to protocol, meaning 

how and when procedures are initiated, performed and/or completed in relation to how they ought to be 

initiated, performed and/or completed. This monitoring is performed to ensure quality in the data col-

lection phase of the process. These procedures could be for example study subject inclusion based on 

inclusion criteria, study subjects filling out questionnaires, and handling of data queries at the study 

sites. All this information is collected in software systems and can be extracted as data for analysis. 
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Supervised data monitoring is performed in a similar manner and concerns for example missing data 

and the number of data queries (e.g. question about possible data errors). Overall, supervised analysis is 

based on the use of predefined key risk indicators (KRIs) which are tools created to describe the perfor-

mance of a site. Example of KRIs are;  

 Percent of incorrect inclusions. 

 The time from when a study subject is issued a study questionnaire to when it is completed. 

 The time from when a study site is sent a query to when it is resolved. 

 The amount of missing data or queries.  

 The number of reported adverse events. 

The selection of which KRIs to investigate is based on the risk that deviation may cause quality loss, as 

previously recommended (TransCelerate 2014). Thresholds are set for each KRI and visualised as 

“traffic-light signs” where green corresponds to an interval within a cut-off threshold where a KRI value 

entails no risk of quality loss, yellow an interval beyond the cut-off where a KRI value entails a possible 

risk and red an interval beyond a greater cut-off and a probable risk. The obtained result determines if 

further actions (e.g. directed site visits) are required. The KRI thresholds are set based on various factors; 

such as the type of study and indication, the patient group and age, since these determine the expected 

levels of the KRIs. Below follows an invented example of how KRIs can be used to monitor study 

quality. 

An example: a study on a given indication had an expected inclusion rate of 25% with green cut-offs at 

20-30%, red cut-offs >40% and <10%, and yellow in between. Supervised analysis was performed a 

time after the recruitment started. Inclusion percentage was computed for each country and site. All 

sites in country A had inclusion rates >40% and were flagged red and site B in country B had 35% and 

was flagged yellow. The rest of the sites had inclusion rates between 20-30% and where flagged green. 

Further investigation of data from the sites in country A showed that patients here were too generously 

included into the study. The sites were contacted. It was found that a translation error had led to incor-

rect inclusion criteria in that country and new criteria was set up. Further investigation of data from 

site B in country B showed nothing unusual. Additional actions were deemed pending a later RBM. 

4.3. Unsupervised analysis 

Unsupervised monitoring is statistical analysis of data during the data collection phase without precon-

ception of possible findings. It aims to identify study sites or countries which deviate in data values or 

data pattern and/or to identify extreme data values or errors. This can be done either with a focus on 

KRIs, but without predefined thresholds, or by considering all collected data. Simply, this means using 

statistical methods of either univariate or multivariate analysis (Buyse 1999), to test hypotheses of dif-

ferences in distribution and to identify outliers in KRI-related data or other data, for example biological 

measurements. Unsupervised analysis is hence a tool applicable for multi-centre studies with sufficiently 

large amounts of data for these types of analysis and is therefore typically used for phase III studies.  

Extreme values can be more easily identified by using unsupervised analysis due to analysis of larger 

data sets, compared to the traditional approach of local monitoring (as described above). Also, only 

significantly erroneous data are considered since small errors will potentially be statistically insignifi-

cant. This gives the benefit of reducing the amount of work that is not crucial or required. If extreme 

values or deviant behaviour is found further investigations may be in order.  

More complex methods are also available; for example data mining (Venet 2012). In data mining all 

current data from a study is used to compute an array of p-values and to create a numeric “finger print” 

for each study site or country. These “finger prints” are then used to identify deviances. Data mining is 

beyond the scope of this thesis and will not be discussed further here. 
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5. Methods 

5.1. TFS 

The current study was conducted in collaboration with TFS (Trial Form Support). TFS is a global mid-

size contract research organization with its origin in Lund, Sweden. TFS conducts contracted clinical 

studies of all phases to aid the life science industry in the pursuit to relieve and treat patients in need. 

Geographically, TFS has its headquarter in Sweden and have global operations and offices in 21 

countries. Their key therapeutic areas include oncology, dermatology, ophthalmology, and cardiovas-

cular disorders, but their experience and competence encompass a wide range of areas.  

5.2. SAS 

The software used for all statistical analysis and output was SAS Base version 9.4 (TS1M3) with 

SAS/STAT 14.1 and SAS Enterprise Guide 7.12 by SAS Institute Inc. (Raleigh, NC, USA), except for 

the output of demographic statistics where Office Excel 2016 by Microsoft Corp. (Redmond, WA, USA) 

was used.  

5.3. The data and descriptive statistics 

The data set used in this study was derived as a subsection from a clinical study conducted by TFS. All 

data, data variables and parameter information were blinded and/or transformed to disable identification 

of the study, the TFS customer, the study subjects and sites. The data consisting of age of the patients 

was transformed to not reveal the age group of the patients. The data had been collected at clinical sites 

in various countries by clinical professionals from recruited patients. The clinical study is conducted 

according to current regulations and has been approved by relevant global and local ethical committees. 

5.4. Choice of variables and flow of CSM analysis  

In the current study, data concerning the procedures of adverse events (AE) and serious AE (SAE) were 

chosen for both supervised analysis and unsupervised KRI-based analysis. Two efficacy biomarkers 

were chosen for a multivariate unsupervised non-KRI-based analysis. These choices were based on 

availability of data and determined the detailed structure of the following CSM analysis. Data was ex-

tracted at a given time point and prepared for analysis. At an early stage, the question of whether or not 

all data should be included in the analysis arose. Generally, a certain amount of data is needed for reliable 

analysis and sites with very short patient time will likely have low amounts of reported events. 

Therefore, prior to the analysis an inclusion criteria was set. AE and SAE data formed basis for the 

inclusion criteria, since these variables were the chosen KRIs. A proposed flow of preparation for 

analysis of AE is given in figure 3. The flow of analysis was designed in order to include only sites 

where deviations in AE or SAE could lead to risk and therefore to exclude sites with low probability of 

having any reported AE. Verification of low reporting level among these sites is not of interest, since 

that is as expected. Identification of high levels of reported AE among these sites could be interesting 

but they are likely due to random variation. Taken together, these sites were excluded at the given time 

point (theoretically, to be considered at a later CSM). The inclusion criteria was based on, time to first 

AE, 𝑡0, which was estimated with 95% probability, as described in the text box below. All sites with a 

total patient time exceeding the estimated 𝑡0 were included in the CSM analysis. The included data were 

used for supervised and unsupervised analysis with methods described in detail further on.  
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Figure 3. Flow chart of central statistical monitoring (CSM) for adverse events (AE). 𝑡𝑖; total patient time per 

site at time of CSM, 𝑡̂; estimated time for at least one event to be probable. 

 

 

 

The computed example above concludes that any sites with a total patient time exceeding 𝑡̂0,0.05 has a 

less than 5% probability of zero AE, meaning they ought to have at least one AE and are thus included 

in the CSM analysis. Congruently, 𝑡̂0,0.10 = −ln0.90/𝜆̂ is the estimation of time to first event with 90% 

probability and so on. 

Data from all sites with a probability of zero AE of less than 5% were included in the CSM analysis. 

Data from all sites with a probability of zero SAE of less than 20% were included in SAE rate compu-

tations. These levels were chosen to be generous in order to include more data at this investigatory stage. 

In addition, any included sites that had not reported any AE or SAE were investigated to identify unex-

pectedly low levels, i.e. large amount of patient time while having no reported AE or SAE, respectively.  

5.5. Supervised analysis 

The variables AE rate (number of AE/patient time) and SAE rate (number of SAE/patient time) were 

investigated for threshold-based outcome, where patient time is the sum of all patients’ individual time 

in the study, i.e. the number of days from randomisation to the date when data was extracted for this 

fictive CSM. In addition, SAE/AE rate was computed for all included sites and countries to provide a 

Computation of estimated time to first event (AE or SAE, respectively) 

Let 𝑋(𝑡) ∈ 𝑃𝑜(𝜆𝑡) where 𝑋(𝑡) is a random variable (r.v.) describing the occurrence of (serious) adverse 

events, 𝜆 is the rate of the occurrence and 𝑡 is time, where 𝑃𝑜(𝜆𝑡) is the Poisson distribution with mean 

𝜆𝑡. 

Then, the time between each occurring event is described by r.v. 𝜏 ∈ 𝐸𝑥𝑝(1 𝜆𝑡⁄ ), where 𝐸𝑥𝑝(1 𝜆𝑡⁄ ) is 

the exponential distribution with mean 1 𝜆𝑡⁄ . 

𝜆̂ = 𝑀𝐿𝐸(𝜆) =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑡𝑖𝑚𝑒
   

ℙ(𝜏 ≤ 𝑡0) = 1 − 𝑒−𝜆𝑡0 , 𝑤ℎ𝑒𝑟𝑒 𝑡0 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑖𝑟𝑠𝑡 𝑒𝑣𝑒𝑛𝑡. 

Meaning that ℙ(𝑋(𝑡0) = 0) = ℙ(𝜏 > 𝑡0) and ℙ(𝑋(𝑡0) ≠ 0) = ℙ(𝜏 ≤ 𝑡0). 

Example: Let ℙ(𝜏 ≤ 𝑡0) = 0.95. Then, the estimated time to first event, 𝑡̂0,0.05 = −ln 0.05/𝜆̂. Also, 

ℙ(𝑋(𝑡0) = 0) = 0.05 and ℙ(𝑋(𝑡0) ≠ 0) = 0.95. 
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description of AE and SAE reporting behaviours. The thresholds had not been previously defined and 

therefore various threshold levels were considered. The following ways to set up threshold cut-offs were 

used: 

 Literature-based thresholds; ±15% of the median, as previously described (Oba 2016). 

 Intervals based on standard deviation (std), such as ± 𝑠𝑡𝑑 of the median. 

 Intervals based on standard deviation (std), such as ± 𝑠𝑡𝑑 of the median, on the logarithm of 

the data. 

 Intervals based on median absolute deviation (mad), such as ± 𝑚𝑎𝑑 of the median. 

The threshold analysis based on median and median absolute deviation (MAD), was defined as visual-

ised in figure 4 and the outcome flagged as GREEN (G; as expected), YELLOW (Y; possible deviation), 

and RED (R; probable deviation). MAD is the median distance between each data point and the median 

of the data points.  Furthermore, the limits were set by taking into account the right skewness of the data 

as discussed in section 6.2. 

 

 
Figure 4. Threshold analysis; limits for the three thresholds; GREEN, YELLOW and RED, as intervals about the 

median created by ± numbers of MAD (median absolute deviation). 

 

 

The normality of data was investigated using descriptive statistics, histograms and qq-plots.  

Included sites and countries with zero reported AE were not flagged as above. Instead, unexpectedly 

low levels of AE were identified by computing the probability to have zero AE. The outcomes were 

flagged in a similar manner as above, G for >5% probability; Y for 1-5% probability; R for <1% prob-

ability. Data was reported only for sites with Y or R flags. 

Detailed data of countries and sites with Y and R flags following the supervised analysis were investi-

gated further as deemed appropriate. 

5.6. Unsupervised analysis 

AE and SAE rates were chosen also for the unsupervised analysis to enable comparison of findings from 

supervised and unsupervised analysis. The same inclusion criteria as for AE supervised analysis was 

used. In addition, two efficacy biomarkers were chosen in order to use methods possible on continuous 

data, namely to perform the proposed multivariate analysis of Mahalanobis distance. The chosen 

methods have previously been described for use in RBM (Kirkwood 2013, Oba 2016). 

5.6.1. Descriptive statistics and identification of outliers 

The data was visualised in box plots and scatter plots in order to visually apprehend the data and to 

notice country and/or site deviant behaviour. AE, SAE and SAE/AE rates as well as the efficacy 

biomarkers were plotted as a total and by country in boxplots to also identify outliers. AE, SAE and 

SAE/AE rates were plotted against total patient time per site in scatterplots. Values farther than 1.5*IQR 

(inter quartile range) from 75-percentile were considered outliers in the box plots.  
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5.6.2. Chi-square goodness of fit test 

The Chi-square goodness of fit test is used to test a difference in observations of frequencies from two 

(or more) distributions (see text box below for theoretical calculations). 

 

5.6.3. One-way analysis of variance 

The one-way ANOVA tests difference in mean between independent observations from two or more 

normal distributions with equal variances where the residuals of the test model are normally distributed 

(see text box below for theoretical calculations).  The normality of the residuals was investigated using 

histograms and qq-plots. Any highly influential data points were identified using Cook’s distance (theo-

retical details not shown here). The equality variances was tested using a test of homogeneity (Folded T 

test; theoretical details not shown here).  

 

Post hoc analysis was performed on any statistically significant result in the ANOVA analysis; meaning 

for example if an ANOVA showed statistically significant difference in means between countries the 

post hoc analysis was used to identify which country that was significantly different from the rest. The 

Theory of the Chi-square goodness of fit test 

Let 𝑛 independent observations from a random sample be classified in 𝑘 number of categories resulting in 

the values 𝑥1, … , 𝑥𝑘. Let 𝑝𝑖  be the probability that an observation is classified into the 𝑖𝑡ℎ category. Then, 

the expected number of observations in each category is 𝑚𝑖 = 𝑛𝑝𝑖  for all 𝑖, where 

∑ 𝑝𝑖
𝑘
𝑖=1 = 1 and ∑ 𝑚𝑖

𝑘
𝑖=1 = 𝑛 ∑ 𝑝𝑖

𝑘
𝑖=1 = 𝑛. 

Test null-hypothesis (as relevant in this thesis) Η0: 𝑝𝑖 = 1
𝑘⁄  for all 𝑖 with alternative hypothesis Η1: 𝑝𝑖 ≠

1
𝑘⁄  for some 𝑖. 

Then, Χ2 = ∑
(𝑥𝑖−𝑚𝑖)

2

𝑚𝑖

𝑘
𝑖=1  is Chi2 distributed with 𝑘 − 1 degrees of freedom. 

Theory of the one-way ANOVA (analysis of variance) 

Let 𝑦𝐴1, … , 𝑦𝐴𝑛 , 𝑦𝐵1, … , 𝑦𝐵𝑛 and 𝑦𝐶1, … , 𝑦𝐶𝑛  be independent observations of the random variables 𝑌𝐴 ∈

𝒩(𝜇𝐴, 𝜎2), 𝑌𝐵 ∈ 𝒩(𝜇𝐵, 𝜎2) and 𝑌𝐶 ∈ 𝒩(𝜇𝐶 , 𝜎
2) with unknown 𝜇𝐴, 𝜇𝐵, 𝜇𝐶 and  𝜎2. Estimations of the 

treatment means are 𝜇̂𝐴 = 𝑦̅𝐴, 𝜇̂𝐵 = 𝑦̅𝐵 , 𝜇̂𝐶 = 𝑦̅𝐶 and of the grand mean is 𝜇̂ = 𝑦̅. 

Test null-hypothesis Η0: 𝜇𝐴 = 𝜇𝐵 = 𝜇𝐶  with alternative hypothesis Η1: 𝜇𝑖 ≠ 𝜇𝑗, for some 𝑖 ≠ 𝑗. 

The ANOVA model is built so that the data deviation from grand average equals the treatment deviation 

from grand average plus a residual.   

Estimation of 𝜎2 between treatments is 𝑠𝑇
2 =

∑ (𝑦̅𝑗−𝑦̅)2𝐶
𝑗=𝐴

3−1
. 

Estimation of 𝜎2 within treatments (of residuals) is 𝑠𝑅
2 =

∑ ∑ (𝑦𝑗,𝑖−𝑦̅𝑗)
2𝑛

𝑖=1
𝐶
𝑗=𝐴

3𝑛−3
. 

Then, 𝐹0 = 𝑛𝑠𝑇
2 𝑠𝑅

2⁄ ∈ 𝐹(3 − 1, 3(𝑛 − 1)).  
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choice of post hoc analysis; here unpaired t-test or Wilcoxon ranked-sum-test, depended on the data 

distributions as described below.  

5.6.4. Unpaired t-test 

The unpaired t-test was used to test difference in means between independent observations from two 

normal distributions with equal variance (see text box below for theoretical calculations). The normality 

of data was investigated using descriptive statistics, histograms and qq-plots and the equality of vari-

ances was tested using Levene’s test (detailed descriptions not given here).  

 

5.6.5. Wilcoxon ranked-sum test 

The Wilcoxon ranked-sum test (Wilcoxon test), also called the Mann Whitney U test, is an alternative 

to the unpaired t-test. It is used to test difference in rank between observations from two distributions 

without assuming normal distribution (see text box below for theoretical calculations).  

 

5.6.6. Mahalanobis distance 

Mahalanobis distance is an entity that describes the number of standard deviations between a data point 

in a multivariate distribution and the mean of the distribution taking into account the different variances 

of the variables (De Maesschalck 2000). All variables are assumed to be normally distributed and if 

their variances are equal then Mahalanobis distance is reduced to the Euclidian distance. If computed 

Theory of the unpaired t-test 

Let 𝑦1, … , 𝑦𝑛𝑌
 𝑎𝑛𝑑 𝑥1, … , 𝑥𝑛𝑋

 be independent observations of the random variables 𝑌 ∈ 𝒩(𝜇𝑌, 𝜎
2) and 

𝑋 ∈ 𝒩(𝜇𝑋, 𝜎2) with unknown 𝜇𝑌, 𝜇𝑋, and 𝜎2. Estimations of the unknowns are 𝜇̂𝑌, 𝜇̂𝑋, and 𝑠2, 

respectively, 

where 𝜇̂𝑌 = 𝑦̅, 𝜇̂𝑋 = 𝑥̅ , and 𝑠2 =
∑ (𝑦𝑖−𝑦̅)2

𝑛𝑌
𝑖=1

+∑ (𝑥𝑖−𝑥̅)2
𝑛𝑋
𝑖=1

𝑛𝑌+𝑛𝑋−2
. 

Test null-hypothesis Η0: 𝜇𝑌 = 𝜇𝑋 with alternative hypothesis Η1: 𝜇𝑌 ≠ 𝜇𝑋. 

Then, 𝑡0 =
(𝑦̅−𝑥̅)−0

𝑠√
1

𝑛𝑌
+

1

𝑛𝑋

∈ 𝑡(𝑛𝑌 + 𝑛𝑋 − 2).  

Theory of the Wilcoxon ranked-sum test 

Let 𝑦1, … , 𝑦𝑛 𝑎𝑛𝑑 𝑥1, … , 𝑥𝑛 be independent observations of the random variables 𝑌 ∈ 𝐴 and 𝑋 ∈ 𝐵 where 

𝐴 and 𝐵 are unknown distributions with equal variances. 

Test null-hypothesis Η0: 𝐴 = 𝐵 with alternative hypothesis Η1: 𝐴 ≠ 𝐵. 

Let there be a list of all observations ordered in ascending order. Then, rank is a number from 1 to 2n 

given in order to the items of the list with 1 assigned to the smallest observation and so on. 

The sum of ranks for the observations in 𝑌 is 𝑤𝑌 = ∑ 𝑡ℎ𝑒 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑦𝑖
𝑛
𝑖=1 , where 𝑤𝑌 ∈ 𝑊𝑌, and 

equivalently for 𝑋. 

Then, 𝛼 = 2ℙ(𝑊𝑌 ≥ 𝑤𝑌) for upper tail or = 2ℙ(𝑊𝑌 ≤ 𝑤𝑌) for lower tail, or equivalently for 𝑋. 
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for a univariate standard normal distribution, 𝒩(0,1), the distance is reduced to the (positive) z-score. 

Detailed information on the calculation of Mahalanobis distance is given in the text box below. Since 

the Mahalanobis distance is a measure of distance from the mean only outliers away from zero (and not 

towards zero) are considered relevant. 

 

5.6.7. Alpha-level 

An alpha-level of 5% was considered statistically significant for all tests. The alpha-level is the risk of 

rejecting the null-hypothesis when indeed the null-hypothesis is true. The null-hypothesis in all per-

formed tests was no difference in mean, rank, or distance.  

6. Results 

6.1. The data and descriptive statistics 

The data set used in this study was a subsection of the data of a clinical study conducted by TFS. At the 

time of data extraction the patient demographic description of this subsection was as described in total 

and by country in table 1 (demography data by site is not shown). The sectioned data had been collected 

from 75 sites in 11 countries with 1-8 sites per country. The patient group consisted of more women 

than men. Age and sex proportion varied across the recruiting countries; age was significantly lower in 

Country 04 and 07 compared to the rest (t-test; data not shown) and the proportion female patients was 

significantly high in Country 08 while not in the other countries. The data was collected during 

approximately the same time period in all countries except for one country which was opened later and 

where the first randomisation took place more than 6 months later than the rest. From the above data, 

Theory of Mahalanobis distribution 

Let 𝑥𝑖,𝑗 be the ith independently drawn observation (i=1,…,n) on the jth random variable (j=1,…,p) with 

multivariate normal distribution with mean vector 𝝁 and covariance matrix Σ. Then, the sample mean 

vector, 𝒙, is a vector whose jth element is the average value of the n observations of the jth variable: 

𝑥̅𝑗 =
1

𝑛
∑ 𝑥𝑖,𝑗

𝑛
𝑖=1  , the mean vector is given by: 𝒙 =

1

𝑛
∑ 𝒙𝑖

𝑛
𝑖=1 =

[
 
 
 
 
𝑥̅1

⋮
𝑥̅𝑗

⋮
𝑥̅𝑝]

 
 
 
 

, and the sample covariance matrix is 

an 𝑝 × 𝑝 matrix, 𝑸, given by: 𝑸 =
1

𝑛−1
∑ (𝒙𝑖∙ − 𝒙)(𝒙𝑖∙ − 𝒙)𝑇𝑛

𝑖=1  , with each entry: 𝒒𝒋,𝒌 =
1

𝑛−1
∑ (𝑥𝑖,𝑗 −𝑛

𝑖=1

𝑥̅𝑗)(𝑥𝑖,𝑘  − 𝑥̅𝑘)
𝑇
 

Given an observation 𝒙𝑖 from the distribution above, the squared Mahalanobis distance (𝑑) from 𝒙𝑖  to 𝝁 

is the number of standard deviations between the two. This is given by the formula: 

 𝑑 =  √(𝒙𝑖  − 𝝁)𝑇 Σ−1(𝒙𝑖  − 𝝁) 

, where  

Σ =  𝐸[(𝒙𝑖  − 𝝁)(𝒙𝑖  − 𝝁)𝑇] =  [
𝐸[(𝑥1 − 𝜇1)(𝑥1 − 𝜇1)] ⋯ 𝐸[(𝑥1 − 𝜇1)(𝑥𝑛 − 𝜇𝑛)]

⋮ ⋱ ⋮
𝐸[(𝑥𝑛 − 𝜇𝑛)(𝑥1 − 𝜇1)] ⋯ 𝐸[(𝑥𝑛 − 𝜇𝑛)(𝑥𝑛 − 𝜇𝑛)]

] 

which is estimated by 𝑸 and where 𝝁 is estimated by 𝒙. 
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51 sites in ten countries were included in the analysis and, from these, a total of 685 AE and 43 SAE 

had been reported over 97548 patient days. 

Table 1. Demographic details of the study group in total and by country. 

  

Patient time, days 

(%) 

Age,  

mean (std) 

Female,  

% Chi2 (df, p) 

Total 103352 (100) 4.32 (0.11) 56.1 10.1 (1, 0.002) 

     

Country:     

-01 240 (0.2) 4.26 (0.14) 25.0 1.00 (1, 0.32) 

01 11235 (10.9) 4.33 (0.10) 57.1 1.29 (1, 0.26) 

02 19765 (19.1) 4.34 (0.12) 52.9 0.29 (1, 0.59) 

03 4251 (4.1) 4.36 (0.09) 60.0 0.80 (1, 0.37) 

04 14675 (13.2) 4.28 (0.11) 60.0 2.20 (1, 0.14) 

05 2794 (2.7) 4.34 (0.15) 58.3 0.33 (1, 0.56) 

06 8900 (8.6) 4.34 (0.11) 38.1 2.38 (1, 0.12) 

07 881 (0.9) 4.22 (0.12) 33.3 1.00 (1, 0.32) 

08 11379 (11.0) 4.30 (0.11) 70.2 9.28 (1, 0.002) 

09 18222 (17.6) 4.30 (0.12) 51.3 0.05 (1, 0.82) 

10 9212 (8.9) 4.34 (0.09) 64.9 3.27 (1, 0.07) 

11 1798 (1.7) 4.34 (0.11) 85.7 3.57 (1, 0.06) 

F (df1, df2, p) =  4.43 (11, 711, <0.0001) 
 

 Patient time: the sum of days in study for each patient. Age: transformed actual age.  

df: degrees of freedom. p: p-value. The proportion of females in each country was 

tested with Chi2 test and any difference in age between the countries was tested with 

ANOVA (F statistic). 

 

6.2. Supervised analysis – Adverse events 

The time to first event, AE and SAE respectively, was estimated as described in the methods section to 

establish which sites to include in the CSM analysis (table 2, see Appendix 3.1 for the SAS code).  

Based on the inclusion criteria, 24 sites (including one country) were excluded from the CSM analysis 

(appendix 2.1). AE and SAE/AE rates were investigated on data from the remaining 51 sites in ten 

countries. SAE rate was investigated on data from five individual sites and on summarised data from 

eight countries.  

Table 2. Estimation of time to first event, 𝑡̂0,𝛼 (days), via estimation of the rate of events, 𝜆̂, for adverse events 

(AE) and serious adverse events (SAE), respectively. 

 AE SAE 

𝜆̂ = 0.006889… 0.0004354… 

𝑡̂0,0.05 = 434.9 6880 

𝑡̂0,0.20 = − 3696 

The starting point was to use literature-based thresholds, such as ±15% of the median, as previously 

described (Oba 2016). However, this resulted in very small intervals about the median with signals for 

further investigation of nearly all sites and counties (data not shown). The next idea was to create inter-

vals based on standard deviation (𝑠𝑡𝑑), such as ±1.5 𝑠𝑡𝑑 of the median. This resulted in a bulk of sites 

and countries not signalled for further investigation (data not shown) but an assumption for this threshold 
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analysis was to have symmetrically distributed data. By nature, this is of course not the case for AE and 

SAE rates which can be assumed to be Poisson distributed or seen as very right-skewed normal. There-

fore, threshold analysis was additionally performed on transformed; logarithmic, data. Transformation 

made AE data fairly symmetric since a rather large number of AE were reported (figure 5). However, 

for SAE the transformation did not lead to a symmetric distribution and led to a high proportion of 

missing data since many sites had zero SAE. Still, it may be possible that by combining threshold analy-

sis on both non-logarithmic and logarithmic data sufficient outputs would be produced. Still, the analysis 

would have to be adjusted for each parameter and was not considered general enough.  The chosen and 

reported threshold analysis was based on median (m) and median absolute deviation (𝑚𝑎𝑑), defined as 

visualised in figure 4 and the outcome flagged as GREEN (G; as expected), YELLOW (Y; possible 

deviation), and RED (R; probable deviation). This allowed for more efficient investigation of non-

normal data since 𝑚𝑎𝑑 is the median distance between each data point and the median of the data points.  

Furthermore, the limits were set by taking into account the right skewness of the data; values >

𝑚𝑒𝑑𝑖𝑎𝑛(𝑚) − 0.5 𝑚𝑎𝑑 and < 𝑚 + 2.0 𝑚𝑎𝑑 flagged G; values < 𝑚 − 1.0 𝑚𝑎𝑑 and > 𝑚 + 4.0 𝑚𝑎𝑑 

flagged R, and values in between flagged Y. 

 

AE 

N=51 

ln(AE) 

N=46 

SAE 

N=51 

ln(SAE) 

N=24 

    
Figure 5. CSM – Supervised analysis; histograms of AE and SAE data with no transformation and logarithm-

transformed (ln), respectively. Axis are not described in detail since considered unimportant and approxiamtions 

are possible. 

 

Country-wise, the supervised CSM analysis revealed a probable data deviation in Country 10 and pos-

sible data deviations in countries 01, 04, and 07 (table 3). Country 10 had a rate higher (R) than average 

and the latter countries had lower (Y). Country 04 had also a low SAE rate (R) compared to average 

while all other countries had SAE rates as expected. At site-level, nearly all sites in Country 10 had 

individually high levels (Y or R) compared to average (appendix 2.2). Apart from those in Country 10, 

another four sites had high AE rates (Y) and thirteen had low AE rates (R or Y). One site had high SAE 

rate (R) compared to average and two sites had low (Y).  

No countries were flagged for low probabilities of zero AE or SAE, respectively, and no sites were 

flagged for low probability of zero SAE (appendix 2.2). Of the sites with zero AE, three were flagged 

(R); C01-S04 with ℙ(𝑧𝑒𝑟𝑜 𝐴𝐸) = 0.48%, C04-S02 and C04-S05 both with ℙ(𝑧𝑒𝑟𝑜 𝐴𝐸) < 0.01%; and two 

were flagged (Y); C03-S08 with ℙ(𝑧𝑒𝑟𝑜 𝐴𝐸) = 1.1% and C07-S01 with ℙ(𝑧𝑒𝑟𝑜 𝐴𝐸) = 1.7%. 

A summary table of all findings from KRI-based analysis on AE and SAE is given in appendix 2.5. 
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Table 3. CSM – Supervised analysis; adverse events summary; total rates and rates by country. 

 

Patient time  

(days) AE SAE AE /pat.year SAE /pat.year SAE/AE 

Total 97548 685 43 2.56 0.161 6%  

       

Country 01 9880 19 2 0.70-Y 0.074-Y 11%  

Country 02 18851 139 11 2.69 0.203 8%  

Country 03 4077 33 3 2.96 0.258 9%  

Country 04 14360 25 1 0.64-Y 0.025-R 4%  

Country 05 2112 22 2 3.80   9%  

Country 06 8900 75 3 3.08 0.123 4%  

Country 07 588 0 0 1.74%-Y   0%  

Country 08 10615 46 4 1.58 0.16 9%  

Country 09 17489 96 12 2.00 0.241 13%  

Country 10 8878 210 3 8.64-R 0.119 1%  

Country 11 1798 20 2 4.06   10%  

AE: number of AE, SAE: number of SAE, /pat.year: per patient year. Probability flags; Y (YELLOW); Prob(no 

AE or SAE) 1-5%, R (RED); Prob(no AE or SAE) <1%. Rate flags; Y (YELLOW): Rate value in intervals -

1.0MAD to -0.5MAD or +2MAD to +4MAD from median. R (RED): Rate <1.0MAD or >4MAD from median. 

GREEN flags are not indicated. SAE rates were investigated only if the total patient time was sufficiently long 

(Prob(no SAE) <20). 

 

6.3. Unsupervised analysis – Adverse events 

The boxplot of AE rates showed that Country 10 may have high levels compared to total and Countries 

01, 04, and 07 may have low (figure 6). Congruently, one-way ANOVA on AE rates was significant 

depending on country (F10,40=8.91; p<0.0001, r2=0.69). The residuals from fitting the one-way ANOVA 

model was found normally distributed and no highly influential observations as seen by the Cook’s 

distance (figure 7). Variances were significantly different between countries but the absolute differences 

were considered negligible (data not shown). However, the post hoc analysis (Wilcoxon) between each 

country and the remaining countries together showed that Country 01 (Z=-1.84; p=0.03), Country 04 

(Z=-2.60; p=0.005) and Country 10 (Z=4.08; p<0.0001) differed from the rest while the remaining coun-

tries did not have deviant AE rates (data not shown). In the total, two sites were outliers; Country 10 

Site 02 (C10-S02) and C10-S07, but they were not outliers within Country 10 alone. In addition, sites 

C01-S08 and C02-S07 were outliers within their respective countries, but not in the total. The scatter 

plot of AE rates versus total patient time showed that sites C01-S03, C04-S01, C04-S02, C04-S05, C04-

S06, and C09-S06 may have low rates and that at least three sites in Country 10 may have high rates 

(figure 8).  

  



Results  Risk based monitoring in clinical studies 

- Improving data quality 

22 

 

 

Figure 7. CSM – Unsupervised analysis; boxplot of AE rates, by country and total. Individual site values are 

marked (country number – site number) if outliers; i.e. values farther than 1.5*IQR (inter quartile range) from 

75-percentile. Refline is mean of total. 

 

 

A. B.  

Figure 7. CSM –Unsupervised analysis; diagnostics of one-way analysis of variance of AE rates (NaeR) includ-

ing QQplot of residuals (A) and Cook’s distance (B) showing no highly influential data points. 
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Figure 8. CSM – Unsupervised analysis; scatter plot of AE rates versus patient time (days). /pat.year: per patient 

year. Reflines are mean and median of AE/pat.year and Patient time, respectively. 

 

The boxplot of SAE rates showed large variation between countries with no obvious trends by individual 

countries (figure 9). This was confirmed by the one-way ANOVA on SAE rates which did not show 

significant difference depending on country (F10,40=0.50; p=0.8817). The residuals from fitting the one-

way ANOVA model was found to be questionably normally distributed and no highly influential obser-

vations as seen by the Cook’s distance (figure 10). Variances were not significantly different between 

countries (data not shown). In the total, sites C03-S10, C06-S02, C09-S08, and C10-05 were outliers 

with high rates and all but C09-S08 were outliers in their countries, respectively, as well. Within each 

country, two additional outliers with high rates (C01-01 and C04-S03) were found and one with low 

rate (C08-S05). The scatter plot of SAE rate versus total patient time showed that sites C02-S02, C04-

S01, C04-S02, C01-S03, and C09-S06 may have low rates and that sites C03-S10, C06-S02, C09-S08, 

and C10-S05 may have high rates (figure 11).  

Similar to that of SAE rates, the boxplot of SAE/AE showed large variation and no obvious trends by 

countries (appendix 2.3), confirmed by the one-way ANOVA test on SAE/AE which did not show sig-

nificant differences depending on country (F10,40=0.81; p=0.6239; residual diagnostics not shown). In 

the total, sites C05-S01, C06-S02, and C09-S12 were outliers with high SAE/AE of which the latter two 

were outliers within their countries, respectively, as well. In addition, sites C03-S10, C04-S03, and C10-

S05 were outliers with high SAE/AE and C08-S05 with low SAE/AE, within their countries, respec-

tively. Scatter plot of SAE/AE showed that sites C02-S02, C04-S01, and C04-S02 may have low 

SAE/AE rate and that site C09-S12 may have high (appendix 2.4).  

A summary table of all findings from KRI-based analysis on AE and SAE is given in appendix 2.5. 
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Figure 9. CSM – unsupervised; boxplot of SAE rates by country and total. Individual site values are marked 

(country number – site number) if outliers; i.e. values farther than 1.5*IQR (inter quartile range) from 75-

percentile.  /pat.year: per patient year. Refline is mean of total. 

 

 

A. B.  

Figure 10. CSM –Unsupervised analysis; diagnostics of one-way analysis of variance of SAE rates (NsaeR) in-

cluding QQplot of residuals (A) and Cook’s distance (B) showed no highly influential data points. 
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Figure 11. CSM – unsupervised; scatter plot of SAE rates versus patient time (days). /pat.year: per patient year. 

Reflines are mean and median of SAE/pat.year and Patient time, respectively. 

 

6.4. Unsupervised analysis – Efficacy biomarker 

The box plots of efficacy biomarker 1 (eff1) and 2 (eff2) were alike in distributions (eff1; figure 12A, 

eff2; appendix 2.6) and closely correlated (data not shown). Countries 01 and 06 seemed to have low 

levels and countries 03, 07, 08, and 11 seemed to have high levels compared to total. One-way ANOVA 

tests confirmed a difference in levels depending on country (eff1; F10,430=2.74; p=0.0028; r2=0.06, eff2; 

F10,430=2.81; p=0.0022; r2=0.06; residual diagnostics not shown). The post hoc analysis (Wilcoxon) 

showed that Country 01 had significantly lower levels of both biomarkers (eff1; 27.8 vs. 32.1; Z=-3.51; 

p=0.002, eff2; 57.5 vs. 62.1; Z=-3.51; p=0.002), Country 04 had higher levels (eff1; 33.5 vs. 31.3; 

Z=1.73; p=0.042, eff2; 63.5 vs. 61.3; Z=1.73; p=0.042) as did Country 11 (eff1; 36.9 vs. 31.5; Z=1.67; 

p=0.048, eff2; 66.9 vs. 61.5; Z=1.67; p=0.048), compared to the remaining countries, respectively. No 

other countries had significantly different levels (data not shown). Further tests on these countries, 

respectively, showed no significant differences depending on site (data not shown). One-way ANOVA 

tests showed significant differences in eff1 and eff2 depending on site in the whole data set (eff1; 

F50,390=1.59; p=0.0087; r2=0.170, eff2; F50,390=1.60; p=0.0083; r2=0.170). Site C03-S06 was outlier with 

high eff1 and eff2 levels, in the total groups as well as in Country 03. It was confirmed to have signifi-

cantly higher eff1 and eff2 levels compared to the rest (eff1; 42.0 vs. 32.5; Z=2.66; p=0.0039, eff2; 72.0 

vs. 61.4; Z=2.66; p=0.0039). No other sites were tested. 
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Figure 12. CSM – Unsupervised analysis; efficacy biomarker 1 (A; eff1v1) and Mahalanobis distance of the 

same (B; eff1v1md) across countries; means for each site. Number (N) of patients and sites are given for each 

country, respectively. Individual site values are marked (country number – site number) if outliers; i.e. values 

farther than 1.5*IQR (inter quartile range) from 75-percentile. Refline is mean of total.  
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Similarly to above, the box plots of the univariate Mahalanobis distance for eff1 (eff1md) and eff2 

(eff2md), respectively, were alike in distribution (eff1md; figure 8B, eff2md; appendix 2.7). Larger 

Mahalanobis distance than total (which is the relevant direction to study for Mahalanobis distance) was 

seen for Country 01, 06, 07, and 11. However, testing could not identify any significant differences 

depending on country or site for eff1md or eff2md (data not shown). The box plots of the multivariate 

Mahalanobis distance for eff1 and eff2 showed that Country 01 and possible 06 and 07 had large distance 

compared to total (figure 13). However, as for the univariate analysis, testing did not confirm any sig-

nificant differences (data not shown). Still, site C05-S09 was an outlier in the total of the univariate 

Mahalanobis distances and site C10-S04 in the multivariate.   

 

 

Figure 13. CSM – Unsupervised analysis; Mahalanobis distance for efficacy biomarker 1 and 2 (multivariate 

analysis) across countries; means for each site. Number (N) of patients and sites are given for each country, re-

spectively. Individual site values are marked (country number – site number) if outliers; i.e. values farther than 

1.5*IQR (inter quartile range) from 75-percentile. Refline is mean of total. 

 

7. Discussion and Conclusions 

7.1. Data findings 
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studies. Nine sites were flagged red (and no countries) which may constitute a more reasonable level of 

deviations. Seven of these sites were identified also in unsupervised analysis which, in total, resulted in 

twenty sites in eight countries being flagged as having deviant data in either AE or SAE. Also, the same 

three countries as in supervised analysis were identified in unsupervised analysis. However, since 

unsupervised analysis on SAE was done using the AE-based inclusion criteria (which for example super-

vised analysis on SAE was not) many observed outliers were due to deviant SAE rates in sites with short 

patient time. Actually, only one site in the data set had sufficient patient time for a probability of zero 

SAE of less than 5%. Furthermore, outliers within each country that were not outliers in the total group 

may likely be disregarded. Guided by this reasoning, the unsupervised analysis resulted in that seven 

sites only were flagged as deviant in unsupervised analysis. As expected, most findings in supervised 

and unsupervised analysis overlapped and the combined findings resulted in eleven sites in five coun-

tries being flagged which was equivalent to 19% of the sites that passed the inclusion criteria and 15% 

of the sites in the sectioned data. The final findings are summarized in table 4. 

Table 4. Final summary of selected KRI-based (supervised and unsupervised analysis) results. All given sites were 

flagged in supervised analysis. Squares mark findings in also unsupervised analysis. 

    

Patient time 

(days) AE SAE 

AE 

/pat.year 

SAE 

/pat.year Comments 

Country 01 9880 19 2 0.70-Y  
Overall low levels in Country 01 

with no significant difference 

between sites.  

Country 01 Site 03 6080 6 1 0.36-R 0.060-Y 

Country 01 Site 04 775 0   0.48%-R   

Country 04 14360 25 1 0.64-Y 0.025-R 

 Overall low levels in Country 04 

with no significant difference 

between sites.  

Country 04 Site 01 3031 5 0 0.60-R   

Country 04 Site 02 4963 0   0.00%-R   

Country 04 Site 05 1254 0   0.02%-R   

Country 08 Site 05 700 1 0 0.52-R   Low levels at site C08-S05.  

Country 09 Site 06 7620 16 1 0.77-Y 0.048-Y  Low levels at site C09-S06.  

Country 10 8878 210 3 8.64-Y  

Overall high levels in Country 10 

with no significant difference 

between sites.   

Country 10 Site 02 1457 45 0 11.28-R   

Country 10 Site 03 2049 54 0 9.63-R   

Country 10 Site 05 633 15 2 8.66-R   

Country 10 Site 07 1082 41 0 13.84-R   

AE: number of AEs, SAE: number of SAEs, /pat.year: per patient year. Y; yellow flag, R; red flag.  

 

Flags due to low levels signals for further investigations at each site, since more information is unlikely 

found in the data. However, situations with flags due to high levels may benefit from further data inves-

tigations. These findings may be caused by “harmless” errors such as technical duplications or reporting 

traditions which may be revealed by investigating the data more closely. In fact, sites in Country 10 

seem to be pertinent in reporting one adverse event every time a patient experience it leading to several 

reported events where other sites may report this as one event only.  

How well the findings presented here correspond to previous findings is unclear since no previous pub-

lications reporting the outcome of KRI-based supervised analysis of adverse events have been found. 

Supervised and unsupervised analysis gave largely the same result, meaning the flagged sites and coun-

tries of the two overlapped. On one hand, this could indicate that the results were reliable. On the other 

hand, one could argue that the two types of analysis used similar methods (although different tests) since 

the supervised analysis method was based on the current data and not previously validated.  
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7.1.2. Efficacy biomarkers 

Unsupervised analysis of the efficacy biomarkers resulted in identification of three potentially deviant 

sites; a different one for each type of analysis (raw data, univariate and multivariate Mahalanobis dis-

tance, respectively). However, the absolute differences were small and may be negligible depending on 

the nature of the efficacy biomarkers. Therefore, it is difficult to speculate if these variations are of 

importance. The two biomarkers in this study were highly correlated. This correlation may be the reason 

as to why multivariate analysis did not result in further information compared to univariate. Overall, the 

data of the two efficacy biomarkers seemed to have no evident risk of quality loss. Still, improved meth-

ods for unsupervised analysis may have revealed other findings. 

Outliers were investigated to find extreme patients or sites or countries and potential differences between 

sites and countries, respectively, were tested. Another interesting aspect in this data would have been to 

investigate rounding errors by considering digit preference, as previously described (Al-Marzouki 

2005).  

7.2. Method findings 

7.2.1. Supervised analysis 

Performing KRI-based CSM with pre-set thresholds may seem to be a straightforward process. How-

ever, a major difficulty lies in setting up the method which needs to be pre-defined, programmed, tested, 

and validated which has previously been noted (Buyse 2014). Which methods to use for the set-up de-

pends firstly on which KRI to investigate, how these are defined and which deviations of these are 

important to identify. One aspect is to set the threshold limits. When analysing AE and SAE, both high 

and low deviations are of interest. High levels of AE are normally not a problem but may pose problems 

for reliable efficacy evaluation (due to for example extreme patients). High levels of SAE is a concern 

since this may signal an unexpectedly unsafe patient situation or a misunderstanding of the concept 

SAE. Low levels of AE or SAE are of crucial importance to identify since this may be due to failure to 

report these events and thus cause safety and quality problems. While both directions are important, 

safety is top priority in clinical studies and therefore low levels of adverse events are of especial im-

portance to identify. This is challenging since the reporting of adverse events is a counting value starting 

from zero and a certain minimum exposure time is needed before AE or SAE can be expected. Hence, 

early in a study too low reported levels may be hidden by the fact that low levels are likely. In the current 

study several thresholds were considered in order to find appropriate ones and the use of combined non-

log and log may be valuable but should perhaps not be considered for data with high proportion of zero 

valued data. The use of median absolute deviation with arbitrary cut-off limits, as currently used, may 

be a reasonable solution. However, by using statistics as basis for the threshold some sites will always 

be flagged as deviant in the given data. By using a completely arbitrary basis for the thresholds one may 

gain more relevant results. Still, it does not solve the problem with having many zero-valued data points 

and the choice of cut-off limits is very sensitive to this problem on the left side of the distribution. Here, 

the yellow flags may have been too generous while the red flags may have been reasonably defined. The 

cut-off limits need to be further refined and verified by evaluating what a detailed site investigation 

actually brings after the site being signalled as possibly deviant.  

Another challenging aspect in KRI-based CSM is the inclusion criteria. Early in a study some sites may 

have only a handful of recruited patients and limited amounts of data. They may have no reported AE 

and this may be normal depending on total patient time, indication etcetera. However, this poses a 

dilemma as to how to deal with them statistically. This dilemma goes hand-in-hand with the one 

described above and stems from the facts that the levels of adverse events (as many other KRIs) is a 

counting value. In the current study, an inclusion criteria based on exposure time set from the estimated 

probability to have an event was used. This seems reasonable but separate inclusion criteria would be 
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required for each KRI to investigate. SAE are less frequent than AE. Hence, the problems described 

above are greater for SAE than for AE and greater efforts are needed to set up the thresholds for SAE. 

It may be questionable if reliable deviations in SAE rates can be identified at all at site level using the 

current methods and with this size of data.  

A solution to the challenges described above may be to estimate the probabilities for each site to have 

the number of events that they have given their individual patient times and base the KRI-analysis on 

these data instead of the raw AE and SAE rates. This may lead to normally distributed data without a 

large proportion of zero values which could possibly allow for easy setting of threshold limits. It may 

also allow inclusion of all current data rather than inclusion of sites with sufficient patient time. Alter-

natively, in terms of SAE, analysis on sites with zero reported events may be sufficient since SAE is a 

KRI with generally low numbers of events. However, then high levels of reported SAE would not be 

identified. 

Taken together, a great deal of knowledge regarding a given indication in combination with the type of 

study is needed to set up methods for KRI-based supervised analysis in a given study. Therefore, one 

starting point may be to perform unsupervised analysis of previous studies on the same indication to 

collect sufficient data to set for example threshold limits. Naturally, another aspect would be to utilise 

professional experience of clinical studies and that on relevant medical indications since for example 

healthy volunteers or patients with mild disorders will have very different levels of AE and SAE 

compared to for example cancer patients. 

7.2.2. Unsupervised analysis 

Contrarily to supervised analysis, when performing unsupervised analysis one has the benefit of being 

able to use existing statistical methods. Also, the choice of methods is determined by the data at hand 

and no preconceptions are needed. Therefore, the set-up and performance of an unsupervised analysis 

for a given study may be straight forward. However, this situation proposes other challenges such as 

sufficient amounts of data to allow for effective and reliable statistical analysis. Overall, the current 

study was of a sufficiently large data set and the methods used worked well for the KRI AE. However, 

this was not the case for SAE where a large proportion of the data had the value zero resulting in a much 

skewed distribution and loss of data points. Therefore, logarithmic transformation of data was not suf-

ficient. Still, a logarithmic transformation may be useful for AE which had a smaller proportion of zero-

valued data.  The large inclusion of sites for analysis on SAE might have hindered the analysis and it is 

plausible that probability levels of 5% for also SAE (as for AE) would be a more appropriate inclusion 

criteria. Again and as for supervised analysis, this problem would arise for any KRI that consists of a 

counting value.  

The choice of statistical test is another challenge. One-way analysis of variance may not be a good 

choice for SAE since the residuals were only questionably normal and other tests such as non-parametric 

tests should be considered. The data itself was not normal and neither was that of AE. Still, scatter plots 

seem to be an efficient way to identify some sites with possible deviant behavior. However, a potential 

solution for the described challenges in terms of adverse events is the same as proposed for supervised 

analysis: analysis on the probabilities of rates rather than the actual rates. If this can be proposed for 

other KRIs as well needs to be investigated.  

As in supervised analysis, inclusion criteria is a relevant challenge in unsupervised analysis. In the cur-

rent study, the unsupervised analysis (both adverse events and efficacy biomarkers) was done on the 

same data set as for the supervised analysis and the effect of varying the inclusion was not tested. 

Naturally, one could argue that it makes sense to use the same inclusion criteria for adverse events 

regardless of analysis type. However, in terms of efficacy biomarkers this makes little sense other than 

out of ease if efficacy biomarkers alone are the variables to analyse. Still, in an actual RBM many KRIs 
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and other variables are tested and it may not be feasible to have different inclusion criteria for each sub-

analysis. One reasonable proposition may be to create an over-all inclusion criterion and then perform 

all evaluation on this. Another may be to create parallel data sets with decreasing inclusion and find the 

optimal one for each KRI. 

The purpose of CSM is to find signals in collected data that may indicate problems with patient safety 

and/or data quality and that therefore merits further investigation (TransCelerateBioPharma 2013, FDA 

2017). Often a very larger number of tests are done while correction for multiple testing typically are 

not. This means that the risk of type I errors is great. However, this is generally not considered a problem 

since the outcome is not treated as evidence of findings but as indicators of possible risks of quality loss. 

If further investigation finds, following a significant finding of deviant data, that no risk is present then 

the initial finding is no longer of interest. Congruently, no corrections for multiple testing was done in 

this study. Still, it is reasonable to discuss which alpha levels that ought to be considered significant. 

CSM aims to find extremes and slight deviations are probably not important in terms of risk of quality 

loss. Therefore, on one hand, it ought to be reasonable that the alpha level is set at a low risk. On the 

other hand, there is no loss (in quality) for finding more indicators of risk than necessary. Furthermore, 

the outcome from an early CSM compared to a late CSM may differ at a given alpha level due to differ-

ences in data size. Hence, the alpha levels probably need to be determined depending on the circum-

stances for each CSM. However, another possibility would be to use different methods depending on 

where in a study the CSM takes place. Statistical analysis ought to become more standard towards the 

end of a study when large data is available while early CSM may demand specific statistical methods 

such as for example non-parametric tests rather than parametric.  

Mahalanobis distance has previously been used with success in finding outliers and the idea is that 

multivariate analysis ought to reveal more outliers than univariate (Oba 2016, De Maesschalck 2000). 

However, the method may not have been thoroughly evaluated here since the evaluation of efficacy 

biomarkers did not reveal (much) deviant behaviour. It may be that the chosen biomarkers were not 

optimal for a method evaluation. 

One problem that was experienced when computing Mahalanobis distance in multivariate analysis for 

several biomarkers (not reported here) was that it amplified the number of missing data. If one variable 

has a missing data then the multivariate Mahalanobis distance will be missing. In the current data, many 

biomarkers where not measured at the same visit for every patient. Without information on if these could 

be equivalent and possibly combined, this led to large amounts of missing data of the multivariate Ma-

halanobis distance.  

7.3. Concluding remarks 

Risk based monitoring using central statistical monitoring has previously been shown to possibly im-

prove the monitoring process compared to source data verification (Lindblad 2014) and the implemen-

tation of it may thus increase the quality of clinical studies. Here, some of the involved aspects were 

used on a subsection of data from a clinical study conducted by TFS. The use of key risk indicators 

(KRIs) in either supervised or unsupervised analysis seems effective. The greater difficulties lie in the 

set-up of appropriate methods, especially for supervised analysis, and more investigations are needed 

for this process. KRI-based supervised analysis may seem to be a straight forward process but at least 

in terms of AE and SAE it proved to be rather complex. Several aspects require consideration; such as 

inclusion criteria, data distribution and transformations, zero-probabilities, basis for thresholds and cut-

off limits for these, choice of statistical tests, alpha-levels etcetera. Unsupervised analysis using non-

KRIs could not be satisfactorily evaluated here. Overall, more studies are needed that share professional 

experience of RBM and hands-on knowledge of the concepts to drive the enhancement of quality in 

clinical studies. 
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9. Appendices 

9.1. Background information 

Appendix 1.1. Description of the clinical trial phases. 

Phase N Subjects and doses Primary goal 

Pre-

clinical 

unlimited In vitro or in vivo, not human 

subjects. 

To test efficacy, toxicity and pharmacokinetic 

properties of potential drug candidates. 

 

0 10 Healthy volunteers and 

(ultra)sub-therapeutic doses. 

To test safety and pharmacokinetic properties; 

such as bioavailability and half-life, of drug 

candidates. Can be combined with phase I. 

 

I 20-100 Healthy volunteers and sub-

therapeutic doses (patients if 

cancer drugs).  

To test safety and pharmacokinetic properties; 

such as bioavailability and half-life, of drug 

candidates. 

 

II 100-300 Patients and therapeutic doses. To determine existence of efficacy in human 

and to identify side effects of drug candidate. 

 

III 300-3000 Patients and therapeutic doses. To assess efficacy and to monitor safety of the 

therapeutic. 

 

IV unlimited Patients that have been 

prescribed the pharmaceutical. 

 

Postmarketing surveillance, to monitor safety 

and efficacy of the therapeutic. 
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9.2. Result tables and figures 

Appendix 2.1. CSM – Supervised analysis; excluded sites. 

Country 

Sites Subjects 

Patient 

time (days) AE SAE 

Country -01 

All sites 4 240 0 0 

Site 01 3 169 0 0 

Site 02 0 . 0 0 

Site 05 1 71 0 0 

Country 01 

Site 02 1 213 3 0 

Site 05 2 429 3 1 

Site 06 3 343 0 0 

Site 09 3 370 1 0 

Country 02 

Site 08 1 268 0 0 

Site 09 2 202 0 0 

Site 10 3 296 0 0 

Site 11 1 148 0 0 

Country 03 

Site 03 1 174 8 0 

Country 04 

Site 04 1 315 1 0 

Country 05 

Site 04 2 415 0 0 

Site 07 1 267 1 0 

Country 06 

Site 04 0 . 0 0 

Country 07 

Site 02 0 . 0 0 

Site 03 4 293 3 0 

Site 07 0 . 0 0 

Country 08 

Site 01 3 356 1 0 

Site 04 2 408 2 1 

Country 09 

Site 04 3 429 0 0 

Site 05 2 304 2 0 

Country 10 

Site 06 1 334 2 0 

AE: number of AE, SAE: number of SAE. 
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Appendix 2.2. CSM – Supervised analysis; adverse events summary; total, total country rates and rates 

by site. 

  

Patient time 

(days) AE SAE 

Prob  

(no AE) 

Prob  

(no SAE) 

AE 

/pat.year 

SAE 

/pat.year SAE/AE 

TOTAL 97548 685 43     2.56 0.161 6% 

Country 01                 

All sites 9880 19 2     0.70-Y 0.074-Y 11% 

Site 01 1682 5 1     1.09-Y   20% 

Site 03 6080 6 1     0.36-R 0.060-Y 17% 

Site 04 775 0 0 0.48%-R         

Site 07 443 1 0     0.82-Y   0% 

Site 08 900 7 0     2.84   0% 

Country 02                 

All sites 18851 139 11     2.69 0.213 8% 

Site 01 1601 7 0     1.60   0% 

Site 02 2999 15 0     1.83   0% 

Site 03 2835 19 1     2.45   5% 

Site 04 2004 14 1     2.55   7% 

Site 05 4879 27 3     2.02 0.225 11% 

Site 06 1437 9 2     2.29   22% 

Site 07 3096 48 4     5.66-Y   8% 

Country 03                 

All sites 4077 33 3     2.96 0.269 9% 

Site 01 1429 14 0     3.58   0% 

Site 04 513 1 0     0.71-Y   0% 

Site 06 478 1 0     0.76-Y   0% 

Site 08 649 0 0 1.14%-Y         

Site 10 1008 17 3     6.16-Y   18% 

Country 04                 

All sites 14360 25 1     0.64-Y 0.025-R 4% 

Site 01 3031 5 0     0.60-R   0% 

Site 02 4963 0 0 0.00%-R         

Site 03 3272 16 1     1.79   6% 

Site 05 1254 0 0 0.02%-R         

Site 06 1840 4 0     0.79-Y   0% 

Country 05                 

All sites 2112 22 2     3.80   9% 

Site 01 812 4 1     1.80   25% 

Site 02 580 7 0     4.41   0% 

Site 09 720 11 1     5.58-Y   9% 

Prob (no AE) and Prob(no SAE): the probability for each site or country to have no AEs or SAEs, respec-

tively. Computations as described in the methods section. AE: number of AEs, SAE: number of SAEs, 

/pat.year: per patient year. Probability flags; Y (YELLOW); Prob(no AE or SAE) 1-5%, R (RED); Prob(no 

AE or SAE) <1%. Rate flags; Y (YELLOW): Rate value in intervals -1.0MAD to -0.5MAD or +2MAD to 

+4MAD from median. R (RED): Rate <1.0MAD or >4MAD from median. GREEN flags are not indicated. 

SAE rates were investigated only if the total patient time was sufficiently long (Prob(no SAEs) <20). 

Appendix 2.2 continues on next page.  
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Appendix 2.2 continued.  

  

Patient time 

(days) AE SAE 

Prob 

(no AE) 

Prob  

(no SAE) 

AE 

/pat.year 

SAE 

/pat.year SAE/AE 

Country 06                 

All sites 8900 75 3     3.08 0.123 4% 

Site 01 1631 9 0     2.02   0% 

Site 02 447 4 1     3.27   25% 

Site 03 799 6 0     2.74   0% 

Site 05 3854 39 2     3.7 0.190 5% 

Site 08 1181 15 0     4.64-Y   0% 

Site 10 988 2 0     0.74-Y   0% 

Country 07                 

All sites 588 0 0 1.74%-Y         

Site 01 588 0 0 1.74%-Y         

Country 08                 

All sites 10615 46 4     1.58 0.138 9% 

Site 03 2288 11 1     1.76   9% 

Site 05 700 1 0     0.52-R   0% 

Site 06 2526 8 1     1.16-Y   13% 

Site 07 2118 11 1     1.9   9% 

Site 08 2983 15 1     1.84   7% 

Country 09                 

All sites 17489 96 12     2.00 0.251 13% 

Site 01 2254 11 0     1.78   0% 

Site 06 7620 16 1     0.77-Y 0.048-Y 6% 

Site 08 4047 46 9     4.15 0.812-R 20% 

Site 10 987 12 1     4.44   8% 

Site 11 1839 9 0     1.79   0% 

Site 12 742 2 1     0.98-Y   50% 

Country 10                 

All sites 8878 210 3     8.64-R 0.123 1% 

Site 01 1813 22 1     4.43   5% 

Site 02 1457 45 0     11.28-R   0% 

Site 03 2049 54 0     9.63-R   0% 

Site 04 739 13 0     6.43-Y   0% 

Site 05 633 15 2     8.66-R   13% 

Site 07 1082 41 0     13.84-R   0% 

Site 08 1105 20 0     6.61-Y   0% 

Country 11                 

All sites 1798 20 2     4.06   10% 

Site 01 1798 20 2     4.06   10% 

Prob (no AE) and Prob(no SAE): the probability for each site or country to have no AEs or SAEs, respec-

tively. Computations as described in the methods section. AE: number of AEs, SAE: number of SAEs, 

/pat.year: per patient year. Probability flags; Y (YELLOW); Prob(no AE or SAE) 1-5%, R (RED); Prob(no 

AE or SAE) <1%. Rate flags; Y (YELLOW): Rate value in intervals -1.0MAD to -0.5MAD or +2MAD to 

+4MAD from median. R (RED): Rate <1.0MAD or >4MAD from median. GREEN flags are not indicated. 

SAE rates were investigated only if the total patient time was sufficiently long (Prob(no SAEs) <20). 
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Appendix 2.3. CSM – unsupervised; boxplot of SAE/AE rates by country and total. Individual site values are 

marked (country number – site number) if outliers; i.e. values farther than 1.5*IQR (inter quartile range) from 

75-percentile. Refline is mean of total. 

 

 

Appendix 2.4. CSM – unsupervised; scatter plot of SAE/AE rates versus patient time (days). Reflines are mean 

and median of SAE/AE and Patient time, respectively.
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Appendix 2.5 CSM – Summary of findings from KRI-based analysis of AE and SAE. Countries and 

sites with some deviant data are listed. Non-bolded text is result from supervised analysis. Boxes mark 

findings from both supervised and unsupervised analysis. Bold text marks additional findings (outli-

ers) from unsupervised analysis.   

Country Site 

Patient time 

(days) AE SAE 

AE 

/pat.year 

SAE 

/pat.year SAE/AE 

Country 01 All sites 9880 19 2 0.70-Y 0.74-Y  

Country 01 Site 01 1682 5 1 1.09-Y High OUT  

Country 01 Site 03 6080 6 1 0.36-R 0.060-Y  

Country 01 Site 04 775 0   0.48%-R    

Country 01 Site 07 443 1 0 0.82-Y    

Country 01 Site 08 900 7 0 High OUT    

Country 02 Site 02 2999 15 0   Low OUT  

Country 02 Site 07 3096 48 4 5.66-Y    

Country 03 Site 04 513 1 0 0.71-Y    

Country 03 Site 06 478 1 0 0.76-Y    

Country 03 Site 08 649 0   1.14%-Y     

Country 03 Site 10 1008 17 3 6.16-Y High OUT High OUT  

Country 04 All sites 14360 25 1 0.64-Y 0.025-R  

Country 04 Site 01 3031 5 0 0.60-R    

Country 04 Site 02 4963 0   0.00%-R     

Country 04 Site 03 3272 16 1   High OUT High OUT 

Country 04 Site 05 1254 0   0.00%-R     

Country 04 Site 06 1840 4 0 0.79-Y     

Country 05 Site 01 812 4 1     High OUT 

Country 05 Site 09 720 11 1 5.58-Y    
Country 06 Site 02 447 4 1   High OUT High OUT 

Country 06 Site 08 1181 15 0 4.64-Y    

Country 06 Site 10 988 2 0 0.74-Y    

Country 07 Site 01 588 0   1.74%-Y     

Country 08 Site 05 700 1 0 0.52-R Low OUT High OUT 

Country 08 Site 06 2526 8 1 1.16-Y    

Country 09 Site 06 7620 16 1 0.77-Y 0.048-Y  

Country 09 Site 08 4047 46 9   High OUT   

Country 09 Site 12 742 2 1 0.98-Y   High OUT 

Country 10 All sites 8878 210 3 8.64-Y   

Country 10 Site 02 1457 45 0 11.28-R    

Country 10 Site 03 2049 54 0 9.63-R    

Country 10 Site 04 739 13 0 6.43-Y    

Country 10 Site 05 633 15 2 8.66-R High OUT High OUT 

Country 10 Site 07 1082 41 0 13.84-R    

Country 10 Site 08 1105 20 0 6.61-Y    

AE: number of AE, SAE: number of SAE, /pat.year: per patient year. Y; yellow flag, R; red flag. OUT: outlier. 

For sites with zero AE, the probability to have zero AE is given instead of AE rate. 
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Appendix 2.6. CSM – Unsupervised analysis; Efficacy biomarker 2 (eff1v1) across countries; means for each 

site. Number (N) of patients and sites are given for each country, respectively. Individual site values are marked 

(country number – site number) if outliers; i.e. values farther than 1.5*IQR (inter quartile range) from 75-percen-

tile. Refline is mean of total.  

 

Appendix 2.7 CSM – Unsupervised analysis; Mahalanobis distance for efficacy biomarker 2 (eff2v1md) across 

countries; means for each site. Number (N) of patients and sites are given for each country, respectively. Individ-

ual site values are marked (country number – site number) if outliers; i.e. values farther than 1.5*IQR (inter 

quartile range) from 75-percentile. Refline is mean of total.  
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9.3. SAS® Code 

Appendix 3.1. Code to estimate mean of the assumed poisson distributions, for AE and SAE, respec-

tively; to exclude sites with to small patient time. 

%MACRO sum(VAR=); 

proc univariate data=sitetemp3 noprint; 

 var &var; 

 output out=sum sum=&var.S; 

run; 

%global &var.S; 

proc sql noprint; 

 select &var.S into :&var.S from sum; 

quit; 

%MEND; 

%sum(VAR=Nae); 

%sum(VAR=studtm); 

%sum (VAR=Nsae); 

data lambdadata; 

 lambdaAE=(&naeS/&studtmS); 

 lambdaSAE=(&nsaeS/&studtmS); 

run; 

data lambda; 

 set lambdadata; 

 t_5p=-log(0.05)/lambdaAE; 

 t2_20p=-log(0.2)/lambdaSAE; 

run; 

%MACRO globalmacrovar(VAR=); 

%global &var; 

data _null_; 

 set lambda; 

 %let &var="&var"; 

 call symput("&var",&var); 

run; 

%MEND; 

%globalmacrovar(VAR=t_5p); 

%globalmacrovar(VAR=t2_20p); 

data ad.excluded; 

 set ad.site; 

 if studtm<&t_5p; 

run; 
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Appendix 3.2. Code to compute and flag threshold analysis. 

%MACRO threashold(VAR=,LIMIT=);  

proc univariate data=aeinclude noprint; 

where studtm>&limit and site ne 'TOTAL' and site ne 'All sites'; 

 var &var; 

 output out=stat median=median mad=mad; 

run; 

data _null_; 

 set stat; 

 %let x="&var.median"; 

 call symput("x",median); 

 %let mad="&var.mad"; 

 call symput("mad",mad); 

run; 

data &var.result; 

 set aeinclude; 

 format &var.THR $char6.; 

 if &var=0 then &var.THR='.'; 

 else if &var='' then &var.THR='.'; 

 else if studtm<&limit then &var.THR='N/A'; 

 else if &var<=&x+2*&mad and &var>=&x-0.5*&mad  

   then &var.THR='GREEN'; 

 else if &var>&x+2*&mad and &var<=&x+4*&mad 

or &var>=&x-1*&mad and &var<&x-0.5*&mad  

   then &var.THR='YELLOW'; 

 else if &var>&x+4*&mad or &var<&x-1*&mad  

   then &var.THR='RED'; 
else &var.THR='.'; 

 keep site country id &var.THR; 

run; 

proc sort data=ad.aeincluded; by id; run; 

proc sort data=&var.result; by id; run; 

data ad.aeincluded;  

 merge ad.aeincluded(in=start) &var.result(in=result);  

 by id; 

run; 

%MEND; 

%threashold(VAR=naer,LIMIT=&t_5p);  

%threashold(VAR=nsaer,LIMIT=&t2_20p); 
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Appendix 3.3. Code to compute Mahalanobis distance, univariate and multivariate, respectively. 

Univariate: 

%MACRO mahalanobis(IN_OUTFILE=,VAR=);  

proc princomp data=&in_outfile std out=out outstat=outstat noprint; 

    var &var; 

run; 

data mahala; 

    set out; 

  &var.md = sqrt(uss(of prin:)); 

 drop prin1; 

run; 

proc sort data=&in_outfile; by subjid; run; 

proc sort data=mahala; by subjid; run; 

data &in_outfile; 

 merge &in_outfile mahala; 

 by subjid; 

run; 

%MEND; 

%mahalanobis(IN_OUTFILE=ad.effwide,VAR=eff1v1); 

%mahalanobis(IN_OUTFILE=ad.effwide,VAR=eff2v1); 

 

 

Multivariate: 

%MACRO multi_mahalanobis(IN_OUTFILE=,VAR1=,VAR2=); 

proc princomp data=&in_outfile std out=out outstat=outstat noprint; 

    var &var1 &var2; 

run; 

data mahala; 

    set out; 

  &var1.&var2.md = sqrt(uss(of prin:)); 

 drop prin:; 

run; 

proc sort data=&in_outfile; by subjid; run; 

proc sort data=mahala; by subjid; run; 

data &in_outfile; 

 merge &in_outfile mahala; 

 by subjid; 

run; 

%MEND; 

%multi_mahalanobis(IN_OUTFILE=ad.effwide,VAR1=eff1v1,VAR2=eff2v1); 

 


