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Abstract

In this thesis we investigate the work output from an Otto-engine operating simple, few-
body quantum systems under quasi-static driving. We consider 1D systems using the
infinite square well as the trapping potential. The aim is to more deeply understand how
the working medium of the engine affects the work output, and under which conditions
(such as temperatures of the heat reservoirs, particle number etc) a particular working
medium is favourable over another. We will first look at how the work output using
non-interacting, spin-polarised fermions and bosons differ in the Otto engine. Then, we
continue by examining what effect particle number has and how the work output of the
non-interacting quantum particles corresponds to that of using a classical, ideal gas as
the working medium. After that, a two-body interaction, with a tunable interaction
strength is introduced. We will take the interaction to be of the same form as an effective
1D Coulomb interaction for a system under strong cylindrical confinement. We examine
how the interacting system compares to the non-interacting one, and what happens when
the interaction strength is varied. For the non-interacting case, we find that fermions
and bosons can have significantly different work output. The difference will be due to a
combination of their respective particle statistics and the monotonically increasing energy
level spacings of the infinite square well. Additionally, fermions are seen to be able to
have a larger work output than a classical ideal gas, while for bosons, only a system of one
or two particles can. Including the two-body interaction, we find that it allows for both
fermions and bosons to have a larger work output compared to the non-interacting case.
We also see that increasing the interaction strength high enough, fermions and bosons
tend to the same work output.
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Chapter 1

Introduction

An important topic of classical thermodynamics is that regarding heat engines. The basic
idea of an engine is to convert energy from some form to another, in which it can be uti-
lized for a desired purpose. Heat engines specifically, convert energy transferred as heat
into energy that is transferred as mechanical work. The petrol-engine of a car is a good
example of a heat engine that is used in everyday life. In the petrol-engine, one makes use
of the energy released as heat when the fuel is ignited. The heat is partly transformed to
mechanical work by making the piston in the cylinder move (which in turn makes the car
move). A normal car engine can be described with classical thermodynamics, in terms of
the macroscopic quantities involved. But what would happen if we make the engine very
small, such that quantum effects become significant? Maybe we could use a large number
of these very small engines to improve e.g. work output, efficiency or power compared
to a normal-sized car engine? These questions motivate for detailed studies of quantum
effects related to heat engines, which is the topic of this thesis.

The idealised version of a petrol-engine is an Otto engine, where the thermodynamic cycle
undergone is known as the Otto cycle. In this thesis, we want to consider the Otto cycle
applied on few-body systems of quantum particles and see what effects particle statis-
tics and particle interaction have on the engine’s work output. Few-body systems are
interesting to consider as experimental realisations of heat engines working single-particle
systems have been proposed, see e.g. Refs. [1], [2]. We can thus hope that effects and
applications of few-body heat engines could be studied in experimental settings in the
foreseeable future, making theoretical studies of the topic important.

Elementary quantum systems undergoing the Otto cycle and fundamental concepts re-
lated to it have been considered at length, see e.g. Refs. [3] and [4]. Recently, further
investigations on quantum systems undergoing the Otto cycle have been done, where the
effects of different set-ups have been examined. The effects of trap geometry and particle
statistics have been treated in Ref. [5] and effects of particle interaction and sudden-
quench driving are considered in Ref. [6].

For this thesis, we will focus on how the work output changes between different non-
interacting and interacting few-body quantum systems, when considering quasi-static
driving of a one-dimensional (1D) Otto engine. We investigate how the work output
depends on the particle type used as working medium, the temperatures of the heat
reservoirs in the cycle, and how it varies with the number of particles in the system.
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This allows us to assess the specific conditions for which a particular working medium is
favourable to another. Additionally, to give us some idea about how engines operating
quantum particles compare to ”normal” engines, operating classical particles, we will also
compare the Otto engine operating non-interacting quantum particles to when it is oper-
ating classical, ideal gas particles.

In Ch. 2 we treat the essentials of an Otto engine, looking at the engine operating with
classical, ideal particles (Sect. 2.1) and with non-interacting quantum particles (Sect. 2.2).
In Ch. 3 we look a bit into the details related to the numerical methods used to deal with
the problem at hand, and some relevant theoretical concepts. In Ch. 4 and 5 we present
the results found for a working medium of non-interacting respectively interacting par-
ticles. The results are discussed and we look at possible explanations of the underlying
physics. The thesis ends with an outlook in Ch. 6.
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Chapter 2

Theory

In this chapter the ideal Otto engine is described, with Sect. 2.1 serving as the introduction
by looking at the cycle undergone by classical systems. As an example we will express
the average work output per cycle when the working medium consists of classical, mono-
atomic, ideal gas particles in 1D. In Sect. 2.2 we turn over to the Otto cycle operating
quantum systems, and express the work output for non-interacting, identical particles
that exhibit a scaling property in their Hamiltonians.1

One important note is that the ideal Otto cycle is undergone quasi-statically. A quasi-
static process is a thermodynamic process that occurs infinitely slow, such that the system
under consideration will be in equilibrium throughout the process. Having the system in
equilibrium allows for well-defined macroscopic variables, and therefore one can track the
entire change of a system in terms of these variables (see e.g. Ref. [7]). The treatment
of the Otto cycle will thus be greatly simplified by it being quasi-static. However, it
also necessarily means that the cycle cannot be realised in real life. But, a quasi-static
study can be seen as a first step when studying the engine, providing results that should
hold in the infinite-time limit of a realistic engine and adding insights about properties
of the engine. Additionally, for realistic engines operating the cycle very slowly, we could
imagine that the quasi-static predictions would hold to some approximative degree.

2.1 The Otto cycle with classical working media

The concepts of heat and work are central to understanding the Otto cycle. Heat and
work are the two ways we can transfer energy into and out of a system. The first law
of thermodynamics states that energy is conserved (see any standard physics textbook
dealing with thermodynamics or general physics, e.g. Refs. [7], [8], [9]). If then the
internal energy is changed in a system, it must be a consequence of heat going into or out
of the system and/or work being performed by or on the system. Thus, if the internal
energy of the system is denoted by U , infinitesimal heat transferred to the system denoted
by /dQ and infinitesimal work done by the system denoted by /dW , an infinitesimal change
in the internal energy, dU , is given by

dU = /dQ− /dW . (2.1)

We use the symbol /d to indicate that the infinitesimal transfer of heat and work are not
exact differentials, but path dependent (see e.g. Ref. [10]).

1The meaning of a Hamiltonian with a scaling property is discussed later on, in Sect. 2.10b.
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The Otto engine can be seen as a heat engine with two heat reservoirs, a heat reservoir
being a large system such that its temperature does not decrease when coupled to a
relatively smaller system. By having two heat reservoirs at different temperatures, we get
a heat transfer from the hotter reservoir, with temperature Th, to the colder reservoir, with
temperature Tc. By putting our engine in between the two reservoirs, we can transform
some of that heat into work. The leftover heat2 is dumped into the colder reservoir. The
process is illustrated in Fig. 2.1 (left), where the energy flow of a general heat engine with
two heat reservoirs is shown.

More specifically, we can represent the Otto engine as a thermodynamic cycle between
four states, denoted A,B,C,D. The Otto cycle then runs as A → B → C → D → A,
which we sketch in Fig. 2.1 (right) by displaying the pressure versus the volume of the
system (called a pressure-volume diagram, or a PV-diagram for short). If we start in state
A, our system is coupled to the hot reservoir and in thermal equilibrium with it (such that
its temperature, TA, is TA = Th). We then decouple the system from the hot reservoir
and let it expand, ending up at B. The expansion is done adiabatically, which means
that no transfer of heat occurs. At B, the system is coupled to the cold reservoir and
cooled down. The cooling down occurs as an isochoric process, meaning that the volume
is kept fixed throughout the process (and hence the volume at B and C are the same, we
define Vc ≡ VB = VC). When state C is reached, the system is in thermal equilibrium
with the cold reservoir and has reached the reservoir’s temperature (i.e. TC = Tc). The
cycle is continued by decoupling the system from the cold reservoir and compressing it
adiabatically to D, where it is coupled to the hot reservoir and heated isochorically to A
(so the volume at D and A are the same, and we define Vh ≡ VD = VA).

W
Engine

Hot reservoir, Th

Cold reservoir, Tc

Qin

Qout

P

V

W

A , Th

C , Tc

B
D

Vh Vc

Figure 2.1: (Left) Energy flow of a general heat engine, where Qin is the heat transfer from the hot
reservoir, Qout the heat transfer to the cold reservoir and W the work output of the engine. (Right) The
PV-diagram of an Otto cycle, where Vh and Vc are the volumes when the system is coupled to the hot
reservoir (and fully compressed) respectively when it is coupled to the cold reservoir (and fully expanded).

The system in the Otto cycle is represented as a working medium in some volume that can
expand and compress, for example the car engine with the fuel as the working medium
and the cylinder-piston as the volume that can expand and compress. As such, we see that

2The leftover heat is present as a consequence of entropy, see e.g. Ref. [8].
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performing work is related to changing the pressure and volume of our system. We have
/dW = P dV , with P being the pressure and V being the volume. The total work output,
W , of the cycle is therefore the enclosed area in the PV-diagram (coloured light-grey in
Fig. 2.1 (right)).

Another consequence of /dW = P dV is that during the isochoric processes, B → C and
D → A, no work is performed since the volume is constant throughout these processes.
The total work output, W , is given by the sum of the work contribution from the expan-
sion, process A → B, and the work cots of the compression, process C → D. We will
refer to these as Wexp and Wcomp, respectively.

Work output for a mono-atomic, ideal gas

Let us now consider a working medium consisting of mono-atomic, ideal gas particles in
1D. Consequently, we can make use of the ideal gas law

PV = NkBT,

where N is the number of particles in the gas and kB is Boltzmann’s constant (kB ≈
1.381 × 10−23 J/K). We can use the ideal gas law to find the work for the expansion
(compression)

Wexp(comp) =

∫ Vc(h)

Vh(c)

P dV = NkB

∫ Vc(h)

Vh(c)

T dV

V
.

To proceed, we recall that the expansion and compression strokes are done adiabatically.
Using (2.1) with /dQ = 0, we have dU = −/dW = −P dV . Next, we can make use of
the equipartition theorem (see e.g. Ref. [8]), which states that every quadratic degree of
freedom contributes (on average) kBT/2 to the internal energy. As we are dealing with
a 1D mono-atomic, ideal gas, the energy of each particle is just the translational energy
mv2/2. Thus, the equipartition theorem tells us that the internal energy of a system
with N such particles is U = NkBT/2, and hence the change in energy should equal
dU = NkB dT/2. Using the ideal gas law to eliminate P we therefore find

dU = −P dV ⇒ NkB dT

2
= −NkBT dV

V
⇒ dT

T
+ 2

dV

V
= 0 .

This leads to
V 2T = constant ≡ K ,

which we now can use to evaluate the integral above. We find

Wexp(comp) = KNkB

∫ Vc(h)

Vh(c)

dV

V 3
=
NkB

2

K

V 2
h(c)

(
1−

V 2
h(c)

V 2
c(h)

)
,

which we can finally express as

Wexp(comp) =
NkB

2
Th(c)

(
1−

(
Vh(c)
Vc(h)

)2)
. (2.2)

Thus, we find that the total work output per cycle, W , is

W = Wexp +Wcomp =
NkB

2

[
Tc

(
1−

(
Vc
Vh

)2)
+ Th

(
1−

(
Vh
Vc

)2)]
, (2.3)
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where the ratio Vc/Vh is known as the compression ratio, Vc/Vh > 1.

By looking at (2.2), we see that if we keep increasing the compression ratio, with fixed
temperatures and particle number, the expansion work goes to a fixed value while for the
compression it blows up to negative infinity. Therefore, in order for the work output to
be positive, we must take the expression in brackets of (2.3) to be greater than zero. We
find

Th > Tc

(
Vc
Vh

)2

, (2.4)

which shows that in order to do positive work in the Otto cycle, the lower temperature
limit of the hot reservoir does not only depend on the cold reservoir’s temperature, but
also on the compression ratio. The inequality (2.4) thus gives important information
about what parameter space to consider, and what limitations to take into account when
constructing an engine.

We could further look into how to maximize the work output (2.3), given a fixed compres-
sion ratio while satisfying (2.4). To start, we see that we can obtain a larger work output
by adding more particles, and that the work output scales linearly with the particle num-
ber, N . For an ideal gas, this is expected, as each particle should behave independently
and thus each contribute the same amount to the total work. Secondly, we also see from
(2.3) that if we keep Tc fixed we will increase the work output by increasing Th. This is
also expected, as a higher Th means that more heat is added to the system from the hot
reservoir and consequently we obtain a larger work output.

If we instead now let the compression ratio vary, but keep the particle number and tem-
peratures Th and Tc fixed, how does the work output change? By taking the derivative of
(2.3) with respect to the compression ratio, it is found that the maximum occurs when
Vc/Vh = (Th/Tc)

1/4. We can realise that there should be some maximum by looking at the
extreme values of the compression ratio. First, for Vc/Vh = 1 there would be no expansion
at all, so surely no work is performed here. Second, by continuously increasing Vc/Vh we
will at some point contradict the positive work condition in (2.4) and hence reach a point
where we have zero work (on the border between having a positive or a negative work
output). In between these extremes we thus expect there to be at least one maximum.

2.2 The Otto cycle with quantum working media

In this section we will follow a similar procedure as in the previous section, but treating
working media consisting of non-interacting quantum particles. Let us begin by consid-
ering the system in the Otto engine at the point in the cycle were it is coupled to the hot
reservoir, and has been for long enough such that the two are in thermal equilibrium (this
corresponds to being in state A in Fig. 2.1 (right)).3 This implies that the system occupies
its internal states, i.e. its energy levels, according to a Boltzmann distribution (see e.g.
Ref [8]). Thus, the probability, Pn, to occupy the nth energy level, En, at temperature T
is given by

Pn =
e−En/(kBT )

Z
, (2.5)

3We could just as well have started at the point were the system is coupled to and in thermal
equilibrium with the cold reservoir (which corresponds to being in state C in Fig. 2.1 (right)).
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where the exponential factor in the numerator is known as the Boltzmann factor and

Z =
∑
n

e−En/(kBT ) ,

is the partition function [8].

The energy levels of the system are obtained by solving the stationary Schrödinger equa-
tion,

HΨn(x) = EnΨn(x) , (2.6)

where H is the Hamiltonian operator, Ψn(x) the nth energy eigenket and En the corre-
sponding energy. The general Hamiltonian we will consider, for a system of N particles,
has the form

H =
N∑
k=1

(
− ~2

2m

∂2

∂x2k
+ V (xk)

)
+

1

2

∑
k 6=l

v(xk, xl) , (2.7)

where V (xk) is the trapping potential for the kth particle and v(xk, xl) is a two-body
interaction between the kth and the lth particles. We will go into more detail about
the trapping potential, the two-body interaction and how we can solve the Schrödinger
equation (2.6), and hence obtain the energy levels, in the next chapter.

With the system in thermal equilibrium with the heat reservoir, the average internal
energy, U , of the system will be

U =
∑
n

PnEn . (2.8)

By taking the differential, we find

dU =
∑
n

En dPn +
∑
n

Pn dEn . (2.9)

The two terms on the right-hand side in (2.9) can be identified as infinitesimal heat and
work transfer, through (see e.g. Ref. [3])

/dQ =
∑
n

En dPn , (2.10a)

/dW = −
∑
n

Pn dEn . (2.10b)

In this way, (2.9) takes the same form as in the classical case (2.1), i.e. dU = /dQ− /dW .
We can justify the identification of heat transfer done in (2.10a) by considering its relation
to the entropy of the system, S. For a quasi-static process, one finds that /dQ = TdS
(see e.g. Ref. [8]). Thus, heat transfer is due to a change in entropy. Further, the
entropy of the system can be expressed as S = −

∑
n Pn lnPn, which only depends on the

occupation-probabilities. Consequently, a change in entropy is solely due to a change in
the occupation-probabilities, implying that heat transfer is also solely due to a change in
the occupation-probabilities, which is what (2.10a) says. Work must then be the other
way of changing the internal energy of the system, i.e. by changing the energy levels as

9



in (2.10b).4

We can use the definitions of heat and work above, to describe the full Otto cycle operating
a quantum system. We denote the nth energy level for the isochoric processes (throughout
which the energy levels are fixed) by Ei

n, where i = h, c denotes if it is the process starting
just after coupling to the hot reservoir, i = h, or the cold reservoir, i = c. In a similar way,
we can denote the occupation-probabilities for the adiabatic processes (throughout which
the probabilities are fixed) by P i

n, with i = h, c denoting the adiabatic process starting just
after decoupling from the hot reservoir (i.e. the expansion), i = h or the cold reservoir (i.e.
the compression), i = c. The Otto cycle in terms of energy and occupation-probability, is
plotted in Fig. 2.2 for the nth energy level, using the same labels, A,B,C,D, as for the
corresponding states in Fig. 2.1 (right).

En

Pn

A , Th

C , Tc
B

D

P c
n P h

n

Eh
n

Ec
n

A→ B : Adiabatic expansion

B → C : Isochoric coupling
to cold reservoir

C → D : Adiabatic compression

D → A : Isochoric coupling
to hot reservoir

Figure 2.2: The Otto cycle plotted for the nth energy level (assuming this level contributes with positive
work output, i.e. that Ph

n > P c
n).

We can obtain general expressions for the the average work performed during the ex-
pansion and compression. Using (2.10b), we find that the work performed during the
expansion (compression) is

Wexp(comp) = −
∑
n

∫ B(D)

A(C)

Pn dEn =
∑
n

(Eh(c)
n − Ec(h)

n )P h(c)
n . (2.11)

By summing up the work from the expansion and the compression we obtain

W =
∑
n

(Eh
n − Ec

n)(P h
n − P c

n) , (2.12)

which then is the total average work output per cycle, see e.g. [4].

4We can also see that work should imply a change in the energy levels by considering the effect of
the expansion and compression in the Otto cycle (which are adiabatic so no heat transfer occurs during
them). As the expansion and compression change the confinement region of the particles, it means that
the trapping potential is changed. As the trapping potential is part of the Hamiltonian, which determines
the energy levels, this should indeed affect the energy levels.
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Hamiltonians exhibiting scaling property

Let us now restrict ourselves to non-interacting particles, such that the two-body inter-
action term, v in (2.7), is zero. Different Hamiltonians, for non-interacting particles, are
then distinguished from each other by the form of their respective trapping potentials.
For certain trapping potentials (e.g. the infinite square well, the harmonic oscillator etc),
one can find that the energy levels satisfy

Eh
n

Ec
n

= ν2 , for all n, (2.13)

for some number ν > 1 [5]. We say that Hamiltonians where (2.13) holds, exhibit a
scaling property. Note that ν describes the compression ratio of the Otto engine (valid
when operating non-interacting particles).

For Hamiltonians exhibiting the scaling property (2.13), we can greatly simplify the ex-
pression for the work output, (2.12). By denoting the average energy as 〈Ei〉 =

∑
nE

i
nP

i
n,

we find
W = 〈Ec〉(1− ν2) + 〈Eh〉(1− ν−2) , (2.14)

for the average work output per cycle. A clear similarity can be seen between the expres-
sion for work using a quantum working medium (2.14) and the corresponding expression
for the classical ideal gas particles, (2.3), in the previous section. The two expressions
appear analogous by recalling that the average energy for classical, ideal gas particles is
NkBT/2 and with ν corresponding to the compression ratio, Vc/Vh. However, the values
of the work output for the classical and quantum particles need not be the same. As the
work output for the quantum medium, (2.14), depends on the energy levels, the effects
from particle statistics will enter and affect the output.

With Boltzmann distributed occupation-probabilities, it is found that we have to satisfy

Th > ν2Tc , (2.15)

in order to do positive work. We derive (2.15) in Appendix B, closely following Ref. [3].
Note that (2.15) has the same form as the positive-work condition for the Otto engine
operating a classical, ideal gas, (2.4), with ν as the compression ratio.

Excitation energies and excitation-probabilities

To simplify the discussion of the results later on, it is convenient to sometimes talk about
the energy levels in terms of their excitation energies from the ground state. We define
Ẽi
n ≡ Ei

n − Ei
0 as the excitation energy from the ground state (n = 0) to the nth level.

We can then rewrite the work output, (2.12), in terms of the excitation energies5

W =
∑
n

((Eh
n − Eh

0 )− (Ec
n − Ec

0))(P
h
n − P c

n)

=
∑
n

(Ẽh
n − Ẽc

n)(P h
n − P c

n) .

(2.16)

5We can obtain (2.16) since the occupation-probabilities are normalised to unity, such that∑
nE

i
0(Ph

n − P c
n) = Ei

0((
∑

n P
h
n )− (

∑
n P

c
n)) = Ei

0(1− 1) = 0.
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Further, we can rewrite the work output into two terms, Wh and Wc, defined as

Wi ≡
∑
n

(Ẽh
n − Ẽc

n)P i
n , (2.17)

with the total work then given by W = Wh − Wc. Since Wh only depends on Th and
Wc only on Tc, it will allow us to conveniently discuss the effect of each temperature
on the work output. Note that Wh (−Wc) corresponds to the work of the expansion
(compression), Wexp (Wcomp) in (2.11), but differing by the constant −(Eh

0 − Ec
0). This

makes Wh (−Wc) go to zero at Th = 0 (Tc = 0), while Wexp (Wcomp) goes to a constant
at zero temperature.

We see that in Wi, the excitation energy difference between the hot and the cold reservoir,
Ẽh
n − Ẽc

n, enter as a factor. When dealing with non-interacting particles, we can use the
scaling property Ẽc

n = ν−2Ẽh
n. Thus, we can write (2.17), as

Wi = (1− ν−2)
∑
n

Ẽh
nP

i
n . (2.18)

The scaling property will therefore allow us to discuss the work output in terms of the
excitation energy at the hot reservoir solely, instead of in terms of the excitation energy
difference, Ẽh

n − Ẽc
n.

Finally, we can also write the Boltzmann factors, (2.16), in terms of the excitation energies.
We have

P i
n =

e−E
i
n/(kBTi) eE

i
0/(kBTi)

Zi eE
i
0/(kBTi)

=
e−Ẽ

i
n/(kBTi)

Z̃i
, (2.19)

where
Z̃i =

∑
n

e−(E
i
n−Ei

0)/(kBTi) =
∑
n

e−Ẽ
i
n/(kBTi) .

Written on the form (2.19), we can see the Boltzmann factors as excitation-probabilities,
i.e. the probability for the ground state to be excited to a specific energy level. The
Boltzmann factors make excitations to higher energy levels less likely to occur. The tem-
perature, or rather kBTi, acts like sort of a ”cut-off” value, where excitation energies a lot
greater than kBTi, i.e. Ẽi

n � kBTi, will be heavily suppressed (P i
n ∼ 0) and excitation en-

ergies much less than kBT , i.e. Ẽi
n � kBTi, will have considerable occupation-probability

(P i
n ∼ 1/Zi), relatively speaking [8].
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Chapter 3

Method

In this chapter we will discuss how we can solve the Schrödinger equation numerically
and hence obtain the energy levels of our system, so that we are able to calculate the
work output in the Otto engine. Calculating the work output involves summing over all
energy levels, so in principle we would need to obtain all energy levels of the system. How-
ever, as our occupation-probabilities are Boltzmann distributed, the higher energy levels
are suppressed and negligible (the temperatures of the heat reservoirs effectively decide at
what energy the contributions will be negligible). Nonetheless, we must still obtain a large
energy spectrum in general, and it is for this purpose we use the so called configuration in-
teraction method. In this thesis we implement the configuration interaction method using
a B-spline basis. We apply the method utilizing the occupation-number representation of
many-body quantum mechanics. The occupation-number representation is described in
several standard textbooks treating many-particle quantum mechanics, see e.g. Refs. [11],
[12] or [13]. In this chapter we will thus treat these concepts, starting with some of the
basic theory of many-body quantum mechanics in the occupation-number representation,
before discussing the configuration interaction method and B-splines. At the end of this
chapter we will discuss the trapping potential and the two-body interaction used for our
simulations.

3.1 Many-body quantum systems in the

occupation-number representation

3.1.1 Wave function symmetry

In this thesis we will look at particles that are either bosons or fermions. Bosons have
symmetric wave functions, while fermions have anti-symmetric wave functions. We illus-
trate what this means by considering the wave function of an N -particle system, which
we denote by Ψ(x1, . . . , xk, . . . , xl, . . . , xN), where xk is the coordinate for the kth parti-
cle. Next, we define a permutation operator, Pkl, which has the effect of interchanging
the coordinates of two particles, the kth and the lth in this case. Applied to our wave
function, we find

Pkl Ψ(x1, . . . , xk, . . . , xl, . . . , xN) = Ψ(x1, . . . , xl, . . . , xk, . . . , xN) . (3.1)
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A symmetric, ΨS, and an anti-symmetric, ΨA, wave function is then defined as wave
functions that the permutation operator has the following effects on

Pkl ΨS(x1, . . . , xk, . . . , xl, . . . , xN) = ΨS(x1, . . . , xk, . . . , xl, . . . , xN)

Pkl ΨA(x1, . . . , xk, . . . , xl, . . . , xN) = −ΨA(x1, . . . , xk, . . . , xl, . . . , xN)
. (3.2)

For a non-interacting N -particle system, the symmetry properties of bosons and fermions
decide how they respectively populate the single-particle states of the system. One says
that bosons follow Bose-Einstein statistics, while fermions follow Fermi-Dirac statistics.
From the anti-symmetry of the wave functions for fermions, it follows that no two fermions
can occupy the same single-particle state or the same coordinate, which is known as the
Pauli exclusion principle. Considering, on the other hand, a system of N non-interacting
identical bosons, their symmetric wave function does not pose any problems having mul-
tiple particles occupying the same single-particle state.

Additionally, it is also found that particle statistics and spin go hand in hand. Fermions
have half-integer spin while bosons have integer spin. In this thesis, we will only consider
spin-polarised particles. This means that the particles will only have one spin state, and
therefore we ignore any effects that could occur due to spin. For further details about
fermions and bosons, see e.g. Ref. [13].

3.1.2 Occupation-number representation

To build up a complete set of many-particle basis states we use a complete set of single-
particle states, {|φk〉}, as the foundation. In the occupation-number representation, we
specify how many particles occupy each single-particle state (i.e. specify the occupation-
number). We write the many-particle states, sometimes called Fock states, on the form
|n1, n2, . . . , nk, . . .〉 , where nk denotes the number of particles in the single-particle state
k. The specific single-particle occupancies for a many-particle state is referred to as a
configuration. Note that |φk〉 = |0, . . . , 0, 1k, 0, . . .〉, where 1k means that there is one
particle in the kth single-particle state.

Further, we introduce the annihilation and creation operators a−k and a+k respectively,
which destroy and create one particle in single-particle state k, respectively. The creation
and annihilation operators satisfy the algebra

Bosons

{
[a±k , a

±
l ] = 0

[a−k , a
+
l ] = δkl

, Fermions

{
{a±k , a

±
l } = 0

{a−k , a
+
l } = δkl

, (3.3)

where [ , ] and { , } are the commutator and anti-commutator, defined as [c, b] = cb − bc
and {c, b} = cb + bc for two arbitrary operators c, b. The statistics of the fermions and
bosons are incorporated in the commutation and anti-commutation relations, (3.3). The
numerical factors when applying the operators on a state consisting of N identical bosons
or N identical fermions are

Bosons

{
a+k |n1, n2, . . . , nk, . . .〉 =

√
nk + 1|n1, n2, . . . , nk + 1, . . .〉

a−k |n1, n2, . . . , nk, . . .〉 =
√
nk|n1, n2, . . . , nk − 1, . . .〉

, (3.4)
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and

Fermions


a+k |n1, n2, . . . , 0k, . . .〉 = (−1)

∑
l<k nl |n1, n2, . . . , 1k, . . .〉

a+k |n1, n2, . . . , 1k, . . .〉 = 0

a−k |n1, n2, . . . , 0k, . . .〉 = 0

a−k |n1, n2, . . . , 1k, . . .〉 = (−1)
∑

l<k nl |n1, n2, . . . , 0k, . . .〉

. (3.5)

Now we turn to how the Hamiltonian will look using the occupation-number represen-
tation. The general Hamiltonian we will be dealing with, where we include a two-body
interaction v, is of the form

H =
∑
k

h(xk) +
1

2

∑
k 6=l

v(xk, xl) . (3.6)

Above we have introduced an abbreviated form for the one-body operators (the kinetic
term and the trapping potential), namely

h(x) = − ~2

2m

∂2

∂x2
+ V (x) . (3.7)

With this notation, we can write the Hamiltonian in occupation-number representation,
as

H =
∑
kl

〈k|h|l〉a+k a
−
l +

1

2

∑
klmn

〈kl|v|mn〉a+k a
+
l a
−
n a
−
m , (3.8)

where

〈k|h|l〉 =

∫
φ∗k(x)h(x)φl(x) dx , (3.9a)

〈kl|v|mn〉 =

∫∫
φ∗k(x)φ∗l (x

′)v(x, x′)φm(x)φn(x′) dx dx′ . (3.9b)

Note that in (3.9), φk(x) is the spatial representation of the single-particle states |φk〉,
i.e. φk(x) = 〈x|φk〉. Further, to obtain the Hamiltonian on the form in (3.8), the single-
particle basis {|φk〉} is assumed to be an orthonormal basis. For the derivation of (3.8),
we refer to e.g. Refs. [12] or [13].

3.2 Configuration interaction method

The configuration interaction method we use is not an approximative method in itself, so
we can in principle obtain any desired degree of accuracy to our solutions. Let us look
at the outline of the method scheme. We want to solve the Schrödinger equation, for a
system of N interacting particles, i.e.

H|Ψ〉 = E|Ψ〉 , (3.10)

where |Ψ〉 is an energy eigenstate and E the corresponding energy. Following the pre-
vious section, we start by choosing a single-particle basis {|φk〉}, and construct a many-
particle basis while utilizing the occupation-number representation. The general form of
the Hamiltonian is then given by (3.8). Let us write the many-particle basis states as
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{|Φµ〉}, where a specific µ corresponds to some tuple {n1, n2, . . .} describing the occupan-
cies of each single-particle state in the occupation-number representation. Utilising the
completeness relation for the many-particle states, we can expand the energy eigenstate
|Ψ〉 in the many-particle basis, i.e.

|Ψ〉 =
∑
µ

cµ|Φµ〉 , (3.11)

where cµ = 〈Φµ|Ψ〉 are the expansion coefficients. Acting with 〈Φν | on (3.10), we can
write the Schrödinger equation on matrix form in the many-particle basis, as〈Φ1|H|Φ1〉 〈Φ1|H|Φ2〉 · · ·

〈Φ2|H|Φ1〉 〈Φ2|H|Φ2〉 · · ·
...

...
. . .


c1c2

...

 = E

c1c2
...

 . (3.12)

The creation and annihilation operators inH determine which matrix elements, 〈Φν |H|Φµ〉,
are non-zero by coupling the many-particle states that affect each other. The values of the
matrix elements are then obtained by evaluating the integrals in (3.9). Once the matrix
representation for the Hamiltonian is constructed, we can diagonalise it and obtain the
eigenvalues, being the energy levels of our system. For the numerical implementation, the
diagonalisation was done using the LAPACK library, see [14].

As is seen from the outlined scheme above, the configuration interaction method does
not by itself introduce any approximations to the solution. We are instead limited by
numerical restrictions. We can in general expect the complete set of single-particle wave
functions, {|φk〉}, to be infinite. Consequently, our many-particle states would also consti-
tute an infinite set. We must then introduce a truncation in order to instead deal with a
finite set of equations, which we can treat numerically. The truncation will imply that the
energy levels obtained from solving the Schrödinger equation necessarily are approximate.
By changing the truncation to allow more many-particle states in the calculations, we can
find out if our chosen truncation is fine to use, or if it reduces the accuracy of the final
results to such an extent that they are no longer valid. If, when we change the truncation,
the results are unchanged to an appropriate degree of precision, we can imagine that we
have reached a convergent solution. We will see in more detail how the truncation is made
when discussing B-splines in the next section.

Since the number of many-particle states grows very rapidly with respect to particle
number, the configuration interaction method is limited to few-particle systems, N . 5,
depending on the specific problem. The reason why the growing number of many-particle
states is a problem is because it increases the size of the Hamiltonian, which we both
need to construct and diagonalise. We thus see that the configuration interaction method
might not be suitable for arbitrary purposes. However, if we require a large and accurate
energy spectrum, it is a useful method if we allow ourselves to be restricted to low particle
numbers.

3.3 B-splines

The library for the configuration interaction method used in this thesis has been imple-
mented using a basis built up of B-splines [15], which are piecewise polynomials. The
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jth B-splines of order p, Bj,p(x), can be specified through the recurrence relation (see
Ref. [16])

Bj,p(x) =
x− tj

tj+p−1 − tj
Bj,p−1(x) +

tj+p − x
tj+p − tj+1

Bj+1,p−1(x) , (3.13)

for p ≥ 2. The B-splines of order 1, are given by

Bj,1(x) =

{
1 , tj < x < tj+1

0 , otherwise
. (3.14)

Above, tj are called knot points, and consist of a non-decreasing sequence of numbers
tj+1 ≥ tj. Each B-spline, Bj,p(x), is only non-zero between tj and tj+p.

We can see from (3.13), that increasing the order by 1, the polynomial degree of the B-
splines increase by 1. The order thus determines the polynomial degree of the B-splines,
and we see that B-splines of order p have a polynomial degree of order p− 1. In Fig. 3.1,
we sketch the general features of how the B-splines would look. Additionally, note that
the knot points need not be distributed equidistant over the region under consideration,
but could be concentrated at convenient positions in order to improve numerical precision
at regions where it might be necessary.

x

tj tj+1 · · · tj+p

B-spline, Bj,p(x)

Figure 3.1: Sketch of a B-spline set-up. One B-spline is highlighted (black) while the others are faded
(light-grey) for clarity. The knot points, tj , are shown as circles on the x-axis.

The B-spline basis set will not in general be an orthonormal basis when constructed. How-
ever, we can instead construct an orthonormal basis from the B-spline set. A convenient
choice is to take the orthonormal basis states, |φ〉, to be the single-particle eigenstates of
the one-body term of the Hamiltonian, i.e. h given by (3.7). We then have

h|φ〉 = ε|φ〉 , (3.15)

where ε is the single-particle energy corresponding to |φ〉. Let us denote the jth B-splines,
for a fixed order, in ket-space by {|Bj〉}, such that Bj(x) = 〈x|Bj〉, where we have omitted
the subscript for the order as we keep it fixed (we will also keep the order fixed later in
our numerical calculations). We can express the single-particle eigenstates in the B-spline
basis as

|φ〉 =
∑
j

dj|Bj〉 , (3.16)
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where dj are the expansion coefficients. Substituting (3.16) into (3.15) and acting with
〈Bj′ |, we can write (3.15) on matrix form as〈B1|h|B1〉 〈B1|h|B2〉 · · ·

〈B2|h|B1〉 〈B2|h|B2〉 · · ·
...

...
. . .


d1d2

...

 = ε

〈B1|B1〉 〈B1|B2〉 · · ·
〈B2|B1〉 〈B2|B2〉 · · ·

...
...

. . .


d1d2

...

 . (3.17)

The matrix elements in (3.17) are given by

〈Bj′|h|Bj〉 =

∫
B∗j′(x)h(x)Bj(x) dx , (3.18a)

〈Bj′ |Bj〉 =

∫
B∗j′(x)Bj(x) dx . (3.18b)

Thus, by solving (3.17) we obtain the orthonormal basis states |φ〉, and can from there
proceed with the configuration interaction method as described in the previous section.

The B-spline basis size is specified directly through the B-spline order and the num-
ber of knot points, by the relation (Number of B-splines = Number of Knot Points +
B-spline order − 4). We thus see that this directly effects the size and accuracy of the
single-particle basis states, as the single-particle basis states are obtained by solving (3.17).
In this sense we see how we effectively introduce a truncation in our system. If we run
our simulation for a certain number of B-splines and compare it to the result of another
run with an increased (or decreased) number of B-splines, we imagine the solution is con-
verged if the results for the two runs are sufficiently close. We discuss the convergence
checks further in Appendix A.

3.4 System set-up

When we start to analyse the Otto engine we will first look at the non-interacting case,
so that we examine the simplest cases and observe the underlying physics. Next, we
will extend the system, such that the particles interact with each other by a two-body
interaction. In this section we therefore give some general details regarding the systems
we will consider and discuss the interaction we will use.

3.4.1 Single-particle energy levels and compression ratio

The trapping potential, V (x), that we will consider in this thesis is the infinite square
well potential. We use this potential because of its simple form, which is

V (x) =

{
0 , 0 < x < L

∞ , otherwise
, (3.19)

where L is the well length. The single-particle system in an infinite square well is described
in most standard textbooks, see e.g. [7], [11], where the energy levels (and corresponding
wave functions) are analytically known. The single-particle energy levels are given by

εk =
~2π2(k + 1)2

2mL2
= (k + 1)2ε0 , k = 0, 1, 2, . . . . (3.20)
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For a system undergoing the Otto cycle, the well length is the parameter restricting the
spatial distribution of the particles and hence is the parameter varied during the expansion
and compression. We can then realise that the compression ratio for the infinite square
well is given by

ν =
Lc
Lh

, (3.21)

where Li describes the well length at the hot and the cold reservoir for i = h and i = c
respectively.1

3.4.2 Two-body interaction

The two-body interaction we consider in this thesis is of the form

v(xk, xl) = g
~2

mL2
h

erfcx

(
|xk − xl|

2b

)
, (3.22)

where g is an interaction strength, b a parameter we will keep fixed (discussed more below)
and erfcx(x) is the exponentially scaled error function, erfcx(x) = exp(x2) erfc(x), with
erfc(x) being the complementary error function, erfc(x) = 2π−1/2

∫∞
x

exp(−t2) dt. The
full Hamiltonian can then be written as

H =
~2

mL2
h

[∑
k

(
−1

2

∂2

∂X2
k

+ V (LhXk)

)
+
g

2

∑
k 6=l

erfcx

(
|Xk −Xl|
2(b/Lh)

)]
, (3.23)

where we have introduced the dimensionless position coordinates

Xk =
xk
Lh

.

Effective 1D Coulomb interaction

The reason we use the two-body interaction (3.22), is because it is an effective 1D Coulomb
interaction for a 3D system under a cylindrical confinement that is strong enough for the
system to be frozen in the ground state of the cylindrical confinement, see Ref. [17]. The
cylindrical confinement is taken to be in the yz-plane, which we will call the transverse
direction; and it would be realised by a 2D isotropic harmonic oscillator, for which the
oscillator frequency will be denoted by ω⊥. In the x-direction, or the longitudinal direc-
tion, we will have the system we have set-up before, i.e. using the infinite square well as
the trapping potential. The full Hamiltonian is then

H =
∑
k

(
− ~2

2m

∂2

∂x2k
+ V (xk)

)

+
∑
k

(
− ~2

2m

(
∂2

∂y2k
+

∂2

∂z2k

)
+
mω2

⊥
2

(y2k + z2k)

)
+

1

2

∑
k 6=l

q2

κ|rk − rl|
. (3.24)

1We can also find ν = Lc/Lh by using the scaling property (2.13) on the single-particle energy levels
(3.20).
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where the last term is the Coulomb interaction, with q as the charge of the particles,
κ = 4πεrε0 the background permittivity, (εr being the relative permittivity and ε0 the
vacuum permittivity (ε0 ≈ 8.855 · 10−12 Fm−1)), and rk = (xk, yk, zk).

Let us now assume that the cylindrical confinement is really strong. If it is sufficiently
strong, the energy contribution from the Coulomb interaction is very low relative to the
energy needed to excite the transverse oscillator, for which we require ~ω⊥. We could
then take the system to be in the ground state of the transverse direction, such that the
wave function for the system, Ψ(r1, . . . rN), could be approximated to

Ψ(r1, . . . rN) = Φ(x1, . . . , xN)ψ(y1, z1) · · ·ψ(yN , zN) . (3.25)

Here, Φ(x1, . . . , xN) is the wave function in the longitudinal direction and ψ(y, z) is the
wave function in the transverse direction, being the single-particle ground state wave
function for a 2D harmonic oscillator, i.e.

ψ(y, z) =
1

(2πb2)1/2
exp

(
−y

2 + z2

4b2

)
. (3.26)

In (3.26), b is the oscillator length of the ground state, i.e. the square root of the mean
square displacement of a particle in the ground state of a harmonic oscillator, and given
by

b =

√
~

2mω⊥
. (3.27)

With the transverse direction fixed in its ground state, we can integrate out the transverse
degrees of freedom, and study the longitudinal direction in an effective 1D problem. The
derivation of reducing the Coulomb interaction to (3.22) is done in Appendix D, where
we follow the derivation done in Ref. [18]. Furthermore, the interaction strength g can
then be identified as

g =
mLh
~2

√
πq2

2κ(b/Lh)
. (3.28)

The space the system operates in would look like Fig. 3.2, which we could realise in e.g.
a nanowire. The system would then be confined to operate in the longitudinal direction
of the wire. Additionally, the oscillator length b could be seen as a measurement of the
radius of wire

x

Figure 3.2: Sketch of the system under a strong cylindrical confinement. The system will effectively be
confined to the x-dimension, being the longitudinal direction of the wire.

Note again that we can only identify (3.22) as an effective 1D Coulomb interaction in case
the cylindrical confinement is sufficiently strong. When our system undergoes the Otto
cycle, the increased thermal energy from coupling to the heat reservoirs could possibly
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excite the transverse system from its ground state, which we will discuss further below
how to avoid. Moreover, a large enough interaction strength, g, would mean that the
energy contribution from the Coulomb interaction to the transverse direction is no longer
negligible, and hence give rise to some amount of excitations. To increase the transverse
confinement strength, we would increase ω⊥. As we see in (3.27), ω⊥ is related to the
inverse square of b, i.e., we have

ω⊥ =
~

2mb2
. (3.29)

We would therefore increase the transverse confinement strength by decreasing b. If
the results we obtained do not change much when decreasing b, we could imagine that
it indicates that the transverse confinement is sufficiently strong for the approximation
(3.25) to hold, and hence for the interaction (3.22) to be identified with the effective
1D Coulomb interaction. We discuss this further in Appendix C, in relation to some
of the results obtained in Ch. 5. The main conclusion is that we would require further
investigation in order to be sure whether we could actually say that (3.22) can be identified
as an effective 1D Coulomb interaction in our case. However, it seems possible that it is
the case for fermions, while for bosons it seems less likely.

Temperature restriction on b

In order to at least minimise the probability to excite the transverse system due to ther-
mal energy, we can restrict the value of b such that the excitation-probability, up to some
temperature, becomes small. The excitation energy to the first excited state of the trans-
verse oscillator (being 2D and isotropic) is given by ~ω⊥. With our system following a
Boltzmann distribution, this means that we require kBT � ~ω⊥. Using (3.27), we find
that this means

b2 � ~2

2mkBT
. (3.30)

As we will consider the infinite square well, we can write (3.30) in terms of the single-
particle ground state energy level of the infinite square well, divided by kB, i.e. εh0/kB.
We obtain (

b

Lh

)2

� 1

π2T (εh0/kB)−1
.

If we then were to realise our system in a nanowire, (b/Lh) would measure the ratio of the
wire’s radius to its length (the length when the system is coupled to the hot reservoir).
To remain in the quantum regime, we focus on lower temperature values, such that
T . 100εh0/kB. With this limit, we find (b/Lh) � 0.03. Experimentally, real nanowires
can be constructed with the possibility for the length to radius ratio reaching 1000 or
more, i.e. corresponding to (b/Lh) ∼ 0.001, see e.g. [19]. We will take (b/Lh) = 0.005
and use that value henceforth.

3.4.3 Parity

The number of equations to numerically solve when finding the eigenvalues for a D ×D
is proportional to D3 [20].2 When diagonalising our Hamiltonian matrix, the computa-

2We used the LAPACK routine F08GAF (DSPEV), see Ref. [20], when diagonalising the Hamiltonian
matrix.
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tion time will therefore grow rapidly as the size of the many-body basis, given by D,
is increased. However, the computation time can be significantly reduced by using the
concept of parity. Parity is an operator that inverts the spatial coordinates, such that
r = (x, y, z)→ (−x,−y,−z) = −r. The eigenvalues of the parity operator can be shown
to be ±1. Thus, if a state is an eigenfunction of parity, it implies that its wave function,
Ψ(r), is an odd or even function, Ψ(−r) = ±Ψ(r). One says that the state is odd or even
under parity [11].

As our Hamiltonian, (3.23), is an even function of the spatial coordinates, it is invari-
ant under parity. The Hamiltonian therefore commutes with the parity operator, and
common eigenstates for the two exist [11]. We can thus split up our states in odd and
even parity states, allowing us to solve the Schrödinger equation for the odd and even
parity states separately, since the Hamiltonian will not couple the odd and the even par-
ity states. With the infinite square well as the trapping potential, the number of even
and odd states will approximately be the same in the numerical calculations, such that
we have around D/2 odd and D/2 even states. This effectively reduces the Hamiltonian
matrix to two D/2×D/2 matrices, implying that the computation time to diagonalise it
will be proportional to 2 (D/2)3 = D3/4. We can thus reduce the computation time for
the diagonalisation by roughly a factor of four, which makes an important difference for
long calculations.

22



Chapter 4

Non-interacting particles

4.1 Set-up specifics

In this and the next chapter, we will present and discuss the results for the Otto engine
using a working medium of non-interacting respectively interacting particles in the infinite
square well. The energy levels for non-interacting particles in the infinite square well are
known analytically, so we do not require to solve the Schrödinger equation numerically in
this case. When dealing with interacting particles, we do have to solve the Schrödinger
equation numerically. In this case we apply the configuration interaction method, as
described in the previous chapter.

Let us repeat the details about the systems we are going to consider:

• We will be looking at few-particle systems, N ≤ 4, consisting of either fermions or
bosons.

• The particles we treat will be spin-polarised, meaning that spin will not be a rel-
evant factor in our considerations. Thus, for N = 1, bosons and fermions will be
equivalent, so the results are the same for the two in the single-particle case.

• When the system has been coupled to the hot (cold) reservoir, it is Boltzmann dis-
tributed and maintains the same occupation-probabilities throughout the expansion
(compression) stroke, since the driving is done adiabatically.

Throughout this chapter we will use the index 0 to refer to the ground state energy. Thus,
the many-particle ground state will be denoted E0 and the single-particle ground state
ε0 = ~2π2/(2mL2).

4.2 Work output dependence on particle type

We start by comparing the work output of non-interacting fermions and bosons for fixed
compression ratio Lc/Lh = 2 and specific N . In Fig. 4.1 the ratio of work output of
fermions to bosons, WF/WB, is plotted against the temperature of the hot, Th, and the
cold, Tc, reservoirs, for N = 3. The plot shows, qualitatively, whether fermions have
a larger work output than bosons, i.e. if WF/WB > 1, or if bosons have a larger work
output than fermions, WF/WB < 1. Speaking in broad terms, it seems that fermions have

23



a larger work output than bosons at ”higher” temperatures; i.e. increasing Th or both
Th and Tc we will,1 at some point, have that fermions produce more work than bosons.
In the same way, bosons have a larger work output at ”lower” temperatures, i.e for low
values of Th and Tc.
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Figure 4.1: Non-interacting particles. The figure shows the work output ratio of three fermions to
three bosons, WF /WB , plotted against Th and Tc (in units of εh0/kB). The compression ratio is fixed
to Lc/Lh = 2. The border WF /WB = 1 is made more distinct by having a strong color shift between
WF /WB < 1 and WF /WB > 1, in order to emphasize where fermions respectively bosons have greater
work output. Light-green is used to indicate the negative work output region, i.e. the region where both
the systems of fermions and bosons have negative work output (both systems have work done to them).

We can understand the behaviour seen in Fig. 4.1 by looking at the properties of the single-
particle energy levels. The sketch in Fig. 4.2 shows the lowest single-particle energy levels
in the infinite square well with well length L. The sketch compares how a system of
three non-interacting fermions respectively three non-interacting bosons would populate
the single-particle energy levels in their respective many-particle ground states. The Pauli
principle restricts to one fermion in each single-particle energy level (as we are dealing
with spin-polarised particles), so that they populate the lowest three single-particle levels.
The bosons, on the other hand, all populate the single-particle ground state.

1As long as Tc is not increased such that the ratio Th/Tc becomes lower than ν2 = (Lc/Lh)2.
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Figure 4.2: Non-interacting particles. Sketch of the single-particle energy levels of the infinite square
well potential (denoted by k and shown as thin horizontal lines), as populated by three fermions (red
circles) or three bosons (blue squares) in their respective many-particle ground states. The well length is
denoted L.

Let us look at the excitation energy from the many-particle ground state to the first excited
state for the situation in Fig. 4.2. We see that the first excited many-particle state for the
three non-interacting fermions is to move the fermion in the 3rd single-particle level to the
4th. The excitation energy would then be (42−32)ε0 = 7ε0. For the three non-interacting
bosons, on the other hand, the excitation energy would only be (22− 12)ε0 = 3ε0, moving
one of the bosons in the 1st single-particle level to the 2nd single-particle level. In general,
the excitation energy to a specific level for a many-particle system is higher when dealing
with fermions than with bosons, i.e. Ẽn,Ferm > Ẽn,Bos. This follows from combining two
observations:

(i) The single-particle energy levels, εk, go as k2 in the infinite square well, such that
the single-particle energy level spacings are monotonically increasing.2

(ii) The Pauli principle will restrict the configuration options for fermions, such that
bosons will have more configurations involving the lower single-particle levels.

In Fig. 4.3, we plot the lowest many-particle energy levels against their excitation energies,
for three fermions and for three bosons. We see that the higher excitation energies for
the fermions give them a sparser energy spectrum.

2The level spacing go as εk+1 − εk ∼ (k + 1)2 − k2 ∼ k, and thus grow larger and larger as higher
levels are considered.
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Figure 4.3: Non-interacting particles. The energy levels of three fermions and three bosons respectively,
with the energy measured in terms of the excitation energy, Ẽ = E−E0 (in units of ε0 = ~2π2/(2mL2)).

When the systems undergo the Otto cycle, we mentioned earlier (Sect. 2.2) that the work
output could be written as W = Wh −Wc. We had defined Wi, i = h, c, by

Wi = (1− ν−2)
∑
n

Ẽh
nP

i
n , (4.1)

where ν = Lc/Lh is the compression ratio and the temperature dependence of Wh (Wc)
is only on Th (Tc). We can argue that a low enough temperature Th (Tc), will result in
Wh (Wc) being larger for bosons than for fermions. This would follow since the excitation
energy to the first excited state is lower for bosons. We can thus imagine that for a low
enough temperature Th (Tc), the bosons will be able to have non-negligible excitations to
their first excited state, while the fermions will essentially be frozen in their ground state.
Thus, we have Wh,Bos > 0 (Wc,Bos > 0), and Wh,Ferm ≈ 0 (Wc,Ferm ≈ 0).

We note that as the energy spectrum for fermions is sparser than for bosons (see Fig. 4.3),
the excitation-probability for the highest, non-negligible excitation will be higher for
fermions than for bosons. This follows since the excitation-probabilities have to add
up to unity, and as the fermions have less states than the bosons that have to split the
probabilities. Thus, as Th (Tc) is increased and the fermions start to be able to have non-
negligible excitations to their first excited state, we could expect that it will contribute
a larger factor in Wh (Wc). It therefore seems reasonable that as Th (Tc) reaches some
value, Wh (Wc) will become larger for the fermions than for the bosons.

If we now consider the total work output, W = Wh −Wc, at very low values for Tc, we
would essentially have Wc ≈ 0 such that W = Wh. We then expect bosons to have a
larger work output at lower values of Th, while fermions have a larger work output as Th
is increased over some value. This is just what we see in Fig. 4.1, when looking at Tc ≈ 0.

When letting Tc increase to non-zero values, there will be a non-negligible work cost due
to Wc. Let us increase Tc from zero by keeping Th fixed, such that Wh = constant. As
Tc starts to become high enough to excite the system, we expect Wc to be larger for
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bosons than for fermions (due to the bosons lower excitation energy). We therefore find
WFerm = Wh,Ferm − Wc,Ferm = Wh,Bos − Wc,Ferm > Wh,Bos − Wc,Bos = WBos, i.e. as Tc
becomes high enough to have an effect on the system, it decreases the total work output
for the bosons more than for the fermions. We can see this in Fig. 4.1 by that the border
WF/WB = 1 bends downwards as we increase Tc.

The temperature dependence of fermions and bosons we have observed, has been de-
scribed before in Ref. [5]. They considered a fixed Tc (with a value ”...cold enough to see
the combined effect of both energy level spacings and particle statistics”) and found that
for lower values of Th, bosons had a larger work output than fermions, while for higher
values instead fermions had a larger work output. They also argued that the reason is a
combination of the particle statistics and the specific trapping potential considered (for
the infinite square well it is the monotonically increasing energy level spacings that is the
significant feature).

4.3 Work output dependence on particle number

How would fermions and bosons compare if we were to change the particle number? We
can expect the qualitative behaviour to be the same as for N = 3 in the previous sec-
tion. This follows from that no matter what N we consider, the monotonically increasing
(single-particle) energy level spacings in the infinite square well, together with the Pauli
principle for the fermions, will make the fermions have higher excitation energies and a
sparser energy spectrum than the bosons. One difference we can note is in the actual
values of the excitation energies. Let us look at the excitation energy to the first excited
many-particle state as an example. For bosons the excitation energy to the first excited
many-particle state requires the same amount of energy for any N , since the many-particle
ground state for bosons consists of all particles in the single-particle ground state. For
the fermions, however, we need to move the particle occupying the highest single-particle
level, and it will occupy a higher level for a larger N . Because the single-particle energy
level spacings in the infinite square well are monotonically increasing, the excitation en-
ergy for the first excited state will therefore be higher as N is increased.

The result of the increased excitation energy to the first excited state for the fermions
(while the bosons’ is unchanged) when increasing the particle number, is that the fermions
will require higher temperatures in order to start producing more work than the bosons.
In Figs. 4.4a and 4.4b, we see the work ratio WF/WB plotted for N = 2 and N = 4,
respectively. We see that the qualitative behaviour for the two N cases is indeed similar
with the N = 3 case in Fig. 4.1. However, we do see that the region where WF/WB < 1
is expanded when going from N = 2 to N = 4, as we expected it to be. This agrees with
what was found in Ref. [5], where one can see that when N is increased, it requires a
higher value of Th (using a fixed Tc) for fermions to get a larger work output than bosons.
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Figure 4.4: Non-interacting particles. The figures show the work output ratio of fermions to bosons,
WF /WB , plotted against Th and Tc (in units of εh0/kB). The compression ratio is fixed to Lc/Lh = 2.
The border WF /WB = 1 is made more distinct by having a strong color shift between WF /WB < 1
and WF /WB > 1, in order to emphasize where fermions respectively bosons have greater work output.
Light-green is used to indicate the negative work output region.

There are other differences in the work output of an Otto engine that we can observe when
changing the particle number, which we see if we examine fermions and bosons separately.
For example, we could ask ourselves ”which number of particles produce the largest work
output depending on the temperatures of the hot and the cold reservoirs, Th and Tc?”

First, let us consider how fermions of different particle number would compare to each
other. As noted above, the excitation energy to the first excited many-particle state will
increase as N is increased. But we can realise that all excitation energies must increase,
since the increased N would mean that we have additional particles we have to populate
(and therefore contribute to higher energy). We see this also in Fig. 4.5a, where we plot the
lowest energy levels against their excitation energies for two and four fermions. We thus
have that a larger N have higher excitation energies and a sparser energy spectrum than a
smaller N . This is, qualitatively, how we above found that the energy spectra for fermions
and bosons compared (see e.g. Fig. 4.3). We could then imagine that, considering the work
output, we should qualitatively have similar behaviour when looking at ”fermions with
smaller N versus fermions with larger N” as when looking at ”bosons versus fermions”.

If we turn to discuss bosons of different N , we see in Fig. 4.5b that the lowest excitation
energies for the bosons are the same for N = 2 and N = 4. We actually have that all
excitation energies for N = 2 also occur for N = 4. This follows from that for bosons, the
many-particle ground state consists of all particles occupying the single-particle ground
state. Thus, for all ways we can excite the N = 2 case, we could also excite the N = 4 case
by keeping two of the bosons in the single-particle ground state. As we could also move
around the two bosons we kept in the single-particle ground state, we obtain additional
excitation energies for N = 4 as well.

It is a bit difficult to draw any expectations from the bosons’ energy spectra. As the lower
excitations are the same for bosonic systems, it is not directly clear how the weight of the
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expectation-probabilities affect the work output.
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Figure 4.5: Non-interacting particles. The energy levels using N = 2 and 4 for (a) fermions and (b)
bosons. The energy is measured in terms of the excitation energy, E−E0 (in units of ε0 = ~2π2/(2mL2)).

In Fig. 4.6, for given temperatures Th and Tc, we look at the work output for systems with
N = 1, 2, 3, 4 and display whichever has the largest work output. Thus, we plot which
N -particle Otto engine has the largest work output, W ; considering N = 1, 2, 3, 4 and a
compression ratio of Lc/Lh = 2. Fermions are considered in Fig. 4.6a, which behave as
we expected. We see that the lower N has largest work output for the lower temperatures
(i.e. low Th and low Tc). Also, the transition between different N being the top producer
looks similar to the transition between WF/WB < 1 and WF/WB > 1 when comparing
fermions and bosons (see Fig. 4.1 or 4.4).

In Fig. 4.6b we consider bosons. We see that N = 4 has the largest work output for any
temperatures Th and Tc, in stark contrast with the result for fermions. It looks like for
bosons, increasing the particle number increases the work output. Note, however, that as
we do not see how much the work output differ between the different N , it could be that
as N is increased, the increase in work output is reduced. We would then reach a point
where increasing N will not further increase the work output to any significant degree.
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Figure 4.6: Non-interacting particles. The plots show which N -particle Otto engine has the largest work
output, for N = 1, 2, 3, 4, depending on the temperatures of the reservoirs, Th and Tc. The compression
ratio is fixed to Lc/Lh = 2. Light-green is used to indicate the negative work output region.

We can also look at which N -particle Otto engine has the largest work output per particle,
W/N . This is plotted in Fig. 4.7, considering N = 1, 2, 3, 4 and a compression ratio of
Lc/Lh = 2. For fermions, Fig. 4.7a, we see that the result is qualitatively similar to
Fig. 4.6a, but that the regions for where each N is favourable has been expanded. This
could just follow from that when considering work output per particle, the output is
decreased more for higher N , shifting the temperature regions where each is favourable
to higher values. In Fig. 4.6b, we look at bosons. We see that N = 1 has largest work
output per particle at any temperatures Th and Tc. Hence, for bosons, the work output
per particle could be thought to decrease as the particle number is increased.
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Figure 4.7: Non-interacting particles. The plots show which N -particle Otto engine has the largest
work output per particle, for N = 1, 2, 3, 4, depending on the temperatures of the reservoirs, Th and Tc.
The compression ratio is fixed to Lc/Lh = 2. Light-green is used to indicate the negative work output
region.
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4.4 Comparsion to classical ideal gas for different

compression ratios

We will finish the examination of the non-interacting particles by looking at how the work
output per particle changes as the compression ratio is varied. We will at the same time
compare the work output per particle to that of a classical, mono-atomic ideal gas, for
which the work output is given by (2.3). As the work output for the classical particles is
linear in N , the work output per particle is the same for any N .

In Fig. 4.8, the work output per particle is plotted against the compression ratio for
N = 1, 2, 3, 4. We consider fermions and bosons separately, with each plot considering
different temperatures but with the same temperature ratio Th/Tc = 16. As discussed at
the end of Sect. 2.1, this means that the classical work output (per particle) is maximized
for the compression ratio Lc/Lh = (Th/Tc)

1/4 = 2, which we will denote νCL.

Let us denote the compression ratio corresponding to maximum work output by νmax,
and see how it differs for particle type, particle number, and temperature. The general
behaviour seems to be that at low temperatures (Figs. 4.8a and 4.8b), νmax > νCL for
both fermions and bosons. Moreover, we see that for fermions, νmax is higher when N is
increased, while for bosons, νmax seems to be more or less the same for all N . Increasing
the temperatures makes νmax → νCL. Sufficiently high temperatures make all N consid-
ered, for both fermions and bosons, have νmax = νCL, which we can see in Figs. 4.8e and
4.8f.

A possible explanation to the behaviour of νmax could be argued from looking at the exci-
tation energies of the fermions and bosons. As we mentioned earlier and saw in Fig. 4.5b,
the excitation energies of a system with a smaller number of bosons are also the excitation
energies of a system with a greater number of bosons. This could then be a reason to
why the bosons seem to have maximum work output at the same compression ratio. The
fermions, on the other hand, do not share excitation energies in the same way, which
could make different N have maximum work output at different compression ratios. That
all N , for both fermions and bosons, tend to have a maximum work output at νCL as the
temperatures are increased, could be thought of an indication that the systems tend to
the classical one in the high temperature limit. As the temperatures are increasing, we
will have more and more accessible excitations. At some point, it will effectively be a
continuum, and we could expect the quantum particles to behave like the classical ones.
If we look a the plots we can also see that when we increase the temperature Th from
2εh0 to 16εh0 and finally to 64εh0 (with Tc = 0.125εh0 , ε

h
0 and 4εh0 respectively), the curves in

each plot appears to become closer together, for both fermions and bosons. This indicates
that the quantum cases approach each other and the classical case, as the temperature is
increased.

Another observation that can be made from Fig. 4.8 is how the work output of the classi-
cal ideal gas compares to the fermions and the bosons. For sufficiently low temperatures,
e.g. the temperatures considered in Figs. 4.8a and 4.8b, we see that the classical ideal
gas is capable of producing more work than the fermions and the bosons. However, if
we increase the temperatures this changes. For the fermions, increasing the temperature
enough, as in Fig. 4.8e, the classical engine has lower work output than all of the N -
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fermion engines, at all compression ratios considered. For the bosons though, it seems
that having higher temperatures, Figs. 4.8d and 4.8f, only makes N = 1 and 2 being able
to have larger work output than the classical case.

The reason that the classical particles can have larger work output at very low tempera-
tures could be an effect of that the classical particles have a continuous energy spectrum.
At the low temperatures in Figs. 4.8a and 4.8b, both fermions and bosons will not have
any substantial amount of excitations. This will leave them essential frozen in their ground
states, such that very little to no work is produced. The classical case, however, is not
limited by needing temperatures high enough for any excitations to be probable, as the
energy spectrum is continuous. This could then lead to the larger work output for the
classical particles at the very low temperatures. But, when increasing the temperatures,
the occupation-probabilities, being Boltzmann factors, will give the quantum particles a
relatively large weight to the accessible excitations in the work output. Hence, the work
output of the quantum particles might become higher than the classical ones. We see that
this could be the case for the fermions, however for the bosons only N = 1, 2 get a higher
work output than the classical case. This explanation is therefore, at best, only partially
applicable. We could speculate that, since the energy spectrum for the bosons become
denser as N is increased, and the energies for a lower N appear as a subset of the energies
for a higher N (see Fig. 4.5b), the probabilities does not give a large enough weight to
shift the work output in favour to the bosons, compared to the classical particles, for the
higher N . But this would need further investigation to assess.
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Figure 4.8: Non-interacting particles. The figures show the work output per particle, W/N , for
different N -particle Otto engines, versus the compression ratio Lc/Lh. The temperature ratio
Th/Tc is kept fixed at Th/Tc = 16 for all figures, while the temperatures Th and Tc are varied.
The left-hand side plots consider fermions, while the right-hand side plots consider bosons.
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4.5 Conclusion

We have seen that non-interacting fermions and bosons behave considerably different when
undergoing the Otto cycle. The choice of trapping potential3 combined with the particle
statistics of the fermions and bosons could be seen as the root to their difference in work
output. We summarize the results and comment on the physical significance below.

• When comparing Otto engines of fermions and bosons with the same particle num-
ber, it seemed that, in general, fermions produce more work at ”higher” temper-
atures (Th high or Th and Tc high), while bosons produced more work at ”lower”
temperatures (Th and Tc low). This had also been found in Ref. [5], where they for
a fixed Tc, saw that low Th made bosons have a larger work output, while increasing
Th high enough made fermions have a larger work output. As higher temperatures
will lead to a larger total work output for any system (since the heat input from
the temperature of the hot reservoir is what we use to transform to work), we can
imagine that if we want to optimize a hypothetical, experimental engine, fermions
(e.g. electrons) could be preferable to use over bosons.

• We found that for fermions, the number of particles yielding the largest work out-
put and the largest work output per particle, depended on the temperatures of the
reservoirs. For the bosons, we saw that adding more particles resulted in a larger
work output; while a lower number of particles increased the work output per par-
ticle. When constructing an engine, one consideration could then be whether to
use a few engines with a larger number of particles in each, or many engines with
a few particles in each. As there might be other physical or experimental restric-
tions as to what case could be realised in an experimental setting, some interesting
optimization criterion might be found here.

• Finally, we compared quantum particles to classical (mono-atomic and ideal) par-
ticles. We saw that when using fermions, we could have Otto engines with higher
work output than ones using the corresponding classical cases. This would indicate
us to further study small-scaled Otto engines operating quantum particles, in the
hopes that one could possibly use several small engines running quantum particles
to compete with classical engines (here, of course, a lot more study is needed to
investigate finite-time engines).

3The main point being that since we used the infinite square well, the single-particle energy level
spacings were monotonically increasing.
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Chapter 5

Interacting particles

In this chapter we will treat the Otto engine with a working medium of particles that
interact through the two-body interaction given by (3.22), i.e.

v(xi, xj) = g
~2

mL2
h

erfcx

(
|xi − xj|

2b

)
.

As we discussed earlier, this could be seen as an effective 1D Coulomb interaction in the
limit that the system had a strong cylindrical confinement in its transverse direction. In
Appendix C, we look whether we can interpret the interaction as an effective 1D Coulomb
interaction for our results. We find that more investigation would be necessary in order
to establish if we can. However, it looks possible for the fermions, while not very possible
for the bosons.

Throughout this chapter we will keep the parameter b fixed, using b = 0.005Lh (as we
discussed in Sect. 3.4.2). The number of B-splines used for the systems in the differ-
ent figures are given in Appendix A, where we also briefly discuss how we checked for
convergence of the results in the figures, with respect to the basis sizes used.

5.1 Interaction strength and excitation energies

To understand what effect the interaction will have, let us look at how the excitation en-
ergies for the lowest many-particle levels change as the interaction strength, g, is varied,
see Fig. 5.1. The figure looks at a system with three fermions and three bosons, with a
well length L. Starting to increase the interaction strength from zero to non-zero values,
the excitation energies increase for both fermions and bosons. We can however note that
the increase is greater for the bosons. We can argue that it follows as a consequence from
that the fermions obey the Pauli principle.

The Pauli principle restricts fermions from getting into contact with each other. Hence,
the interaction will not affect fermions for the very close inter-particle distances. Bosons
will, on the other hand, be affected by the interaction at very close inter-particle dis-
tances. Thus, for ”weaker” interaction strengths, adding the two-body interaction will
not effect the fermions to the same extent as the bosons. However, increasing the interac-
tion strength to higher values, we can expect the interaction to become strong enough so
that also bosons cannot get into close contact with each other. At this point the fermions
and bosons should essentially behave the same, and the energy levels of the bosons should
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have increased in value to become the same as the fermions’ levels. In Fig. 5.1 we see that
this is the case, where the plotted energy levels of the bosons and the fermions tend to the
same value at sufficiently strong interaction strength (happening around g ∼ (15−20)L/b
for the energy levels in the figure).
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Figure 5.1: Interacting particles. Excitation energy to the nth many-particle energy level versus the
interaction strength, g. The plot considers three fermions and three bosons. The lines for the 6th and
higher excitation states are faded to make the plot more clear.

As the increase in the excitation energies for the bosons are relatively larger than for the
fermions, we would expect the bosons to have a more noticeable change in their work
output when the interaction is introduced. Further, with increased excitation energies
for the interacting fermions and bosons, we predict that the work output would decrease,
compared to the non-interacting case, if we consider low enough temperatures Th and Tc.
The reason would be that the excitation-probabilities will become more suppressed, and
we would need higher temperatures to obtain non-negligible excitations to the first excited
states. However, we could then also expect the work output to increase, for high enough
value of Th, as then the higher excitations will obtain a larger excitation-probability.1

In Figs. 5.2a and 5.2b, the work output for three fermions and bosons, respectively, are
plotted against the interaction strength, g. The figure considers a compression ratio

1Here we neglect the fact that it is the difference between the energies before and after the expansion
that enters in the work output, not just the excitation energies (which we discuss more in detail below).
For this reason, we could in principle have that the interacting case has larger excitation energies but lower
difference between the energies before and after the expansion, such that the interacting case does not
actually get a larger work output than the non-interacting case, at high Th. However, unless the excitation
energies for the interacting case have a very strong dependence on the well length, we could expect the
difference between the energies before and after the expansion to also increase for the interacting case.

36



Lc/Lh = 2 and uses a fixed temperature ratio, Th/Tc = 16, for all the curves. We
can indeed notice that for the lower temperatures, Th = 4εh0/kB and 8εh0/kB (with Tc =
0.25εh0/kB and 0.5εh0/kB), the work output decreases when the interaction strength is
increased.2 And for the higher temperatures Th = 32εh0/kB and 64εh0/kB (with Tc = 2εh0/kB
and 4εh0/kB), the work output increases as g is increased. We also note that for these higher
temperature curves, we can clearly see that the work output is increased relatively more
for the bosons than for the fermions, as g starts to get non-zero values.
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Figure 5.2: Interacting particles. The plots show the work output dependence on the interaction
strength, g. Each figure considers N = 3 with fixed compression ratio, Lc/Lh = 2. All temperatures are
given in units of εh0/kB , and all curves have the same temperature ratio Th/Tc = 16.

To be able to discuss how fermions and bosons compare to each other in some more de-
tail, we should examine how the excitation energies change as the well length is expanded;
since the difference between the energies before and after the expansion, Ẽh

n − Ẽc
n, enters

the expression for the work output.3

In Fig. 5.3a, we plot the ratio of the excitation energy for fermions to bosons, Ẽ1,Ferm/Ẽ1,Bos,
as a function of the well length, L, in units of a reference value L′. Note that the plot
only considers the excitation energy to the first excited state, however, higher excita-
tions showed a similar behaviour. The figure considers N = 3 and g = 2.5L′/b (with
b = 0.005L′). We see that the excitation energies for the fermions and bosons become
closer in value (the ratio decreases) as the compression ratio is increased. This can be

2For the bosons with Th = 8εh0/kB and Tc = 0.5εh0/kB , we do see that at the very lowest values of g the
work output increases, but then decreases as g is increased further. The reason could be that, for these
temperatures, slightly increased excitation energies still have sufficient excitation-probability to increase
the work output. But as the energies are increased further when g is increased, the excitation-probabilities
become more suppressed, which instead leads to a decrease in the work output.

3Recall that for the non-interacting case, we could use the scaling property of the excitation energies
and write Ẽh

n − Ẽc
n = Ẽh

n(1 − ν−2). Thus, as we knew that Ẽn,Ferm > Ẽn,Bos, it directly followed that

Ẽh
n,Ferm− Ẽc

n,Ferm > Ẽh
n,Bos− Ẽc

n,Bos. For the interacting case we do not longer have the scaling property
for our excitation energies and hence need to look at how the excitation energies change as the well length
is expanded.
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explained from that the non-interacting part of our Hamiltonian go as 1/L2 (since we
use the infinite square well), while the interacting part of our Hamiltonian go as ∼ 1/L
(as it can be an effective Coulomb interaction). When the well length is increased, the in-
teraction part will therefore have a relatively larger contribution to the energy, compared
to the non-interacting part. Consequently, the behaviour of the fermions and the bosons
will more and more be dominated by the interaction part, meaning that they will become
more and more similar to each other.

As a complement, Fig. 5.3b shows the relative difference between Ẽc
1/Ẽ

h
1 and4 (Lc/Lh)

−2,
where (Lc/Lh)

−2 was the value of Ẽc
n/Ẽ

h
n for non-interacting particles. Since the rela-

tive difference (for both fermions and bosons) become larger as the compression ratio is
increased, it indicates that the contribution from the interaction to the energy indeed
becomes more significant as the well length is expanded.
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Figure 5.3: Interacting particles. (a) Ratio of the excitation energies of the first excited states for
fermions to bosons Ẽ1,Ferm/Ẽ1,Bos, versus the well length L (in units of some reference length L′). (b)

Relative difference between Ẽc
1/Ẽ

h
1 and (Lc/Lh)−2 , i.e. Ẽc

1L
2
c/(Ẽ

h
1L

2
h)−1; for fermions (red dash-dotted

line) and bosons (solid light-blue line) plotted against the compression ratio Lc/Lh. Both plots consider
three fermions and three bosons, with an interaction strength g = 2.5L′/b in (a) and g = 2.5Lh/b in (b)
(with b = 0.005L′ and b = 0.005Lh, respectively).

5.2 Work output dependence on particle type

Let us recall expression (2.17), i.e.

Wi =
∑
n

(Ẽh
n − Ẽc

n)P i
n ,

where i = h, c and the total work is given by W = Wh −Wc. From the discussion in the
previous section, we found that Ẽn,Ferm/Ẽn,Bos decreased as the well length was increased.

4Again, the higher excitations showed qualitatively similar behaviour as the n = 1 case displayed
here.
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This directly leads to

Ẽc
n,Bos

Ẽh
n,Bos

>
Ẽc
n,Ferm

Ẽh
n,Ferm

⇒ 1−
Ẽc
n,Ferm

Ẽh
n,Ferm

> 1−
Ẽc
n,Bos

Ẽh
n,Bos

.

If we then use that Ẽn,Ferm > Ẽn,Bos, we find that Ẽh
n(1 − Ẽc

n/Ẽ
h
n) = Ẽh

n − Ẽc
n is larger

for fermions than for bosons. This is qualitatively similar to what we had in the non-
interacting case, so we could initially expect that the general features are similar for the
interacting case. By this we mean that bosons would have a larger work output at lower
values of Th and Tc, while fermions will have a larger work output at higher values of Th
and Tc.

In Fig. 5.4 we look at the work ratio, WF/WB, considering N = 3 with a compression
ratio of Lc/Lh = 2 (i.e. similar set-up as in Fig. 4.1, which is the corresponding plot for
the non-interacting case). An effective interaction strength, g = Lh/b, is used. We see
that at least the left part of the plot, for Tc . εh0/kB, looks qualitatively similar to the
non-interacting case. Let us consider Tc ≈ 0, such that Wc ≈ 0 and W = Wh. The lower
excitation energies for the bosons would mean that they have non-negligible excitations
at a lower value of Th and hence their work output should be larger for low Th. As Th is
increased, the fermions will begin to have some excitations. As the fermions have fewer
non-negligible, excited states, they will get a larger relative weight from the excitation-
probabilities. Further, since Ẽh

n − Ẽc
n was larger for fermions than bosons, they should

contribute to a larger value in Wh. At some Th, the fermions could therefore be thought
to get a larger work output than the bosons (just as in the non-interacting case). This is
also what we see, for the very lowest values of Tc, in Fig. 5.4.

If we keep Th fixed, such that Wh is constant, and increase Tc to values where it starts
to make Wc non-negligible, we would find that Wc,Bos > Wc,Ferm, again just as for the
non-interacting case. However, as the excitation energies for fermions and bosons are
relatively closer in the interacting case, we could expect that the difference between Wc,Bos

and Wc,Ferm is not as big as in the non-interacting case. This would then mean that the
border WF/WB = 1 should bend off downwards with a less steep slope compared to the
non-interacting case. We can see in Fig. 5.4 (and comparing with Fig. 4.1), that this is
the case for Tc . εh0/kB. However, as we increase Tc further, the border WF/WB = 1
turns upwards. Hence, for the interacting case, in contrast to the non-interacting case, we
have WF/WB < 1 for higher values of Th and Tc, as long as Tc is large enough compared
to Th.
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Figure 5.4: Interacting particles. The figure shows the work output ratio of three fermions to three
bosons, WF /WB , plotted against Th and Tc (in units of εh0/kB). The effective interaction strength is set
to g = Lh/b, and the compression ratio is fixed to Lc/Lh = 2. The border WF /WB = 1 is made more
distinct by having a strong color shift between WF /WB < 1 and WF /WB > 1, in order to emphasize
where fermions respectively bosons have greater work output. Light-green is used to indicate the negative
work output region, i.e. the region where both the systems of fermions and bosons have negative work
output (both systems have work done to them).

In Fig. 5.4, we can also see that just above the negative work output region (where
both fermions and bosons have negative work output), there is a white line indicating
that either the fermions or the bosons have negative work output while the other has
positive work output. This suggests that the positive work condition is not the same for
fermions and bosons, which it was in the non-interacting case, namely Th > (Lc/Lh)

2Tc.
In Fig. 5.5a, we plot the work output for three fermions and three bosons for fixed Th
over a range of values for Tc, using a compression ratio of Lc/Lh = 2. We can clearly see
that we do not have the same positive work output condition for the fermions and the
bosons. The bosons appear to have a lower bound, able to have positive work output for
lower temperature ratios, Th/Tc, than the fermions. Also note that Fig. 5.5a shows that
both the fermions and the bosons can have a positive work output at a lower bound than
Th > (Lc/Lh)

2Tc = 4Tc.
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Figure 5.5: Interacting particles. (a) Work output for three fermions and three bosons, plotted against
Th/Tc with fixed Th = 3ε0/kB . The interaction strength is set to g = Lh/b. (b) The plot show the work
output ratio, WF /WB , for N = 3, as a function of the interaction strength, g. All temperatures are given
in units of εh0/kB , and all curves have the same temperature ratio Th/Tc = 16. Both plots consider a
compression ratio of Lc/Lh = 2.

Finally, as increasing the interaction strength brings the excitation energies of the fermions
and the bosons closer together, we expect the work ratio, WF/WB, between the two to
become closer to unity as g is increased. We visualise this in Fig. 5.5b, where we plot
the work ratio for the curves considered in Figs. 5.2a and 5.2b. We see that independent
of the values of Th and Tc considered, the work ratio tends to unity as the interaction
strength becomes large enough, as expected.

5.3 Work output dependence on particle number

Let us look a bit into how the work output depends on particle number. First, we
will consider how the work ratio between fermions and bosons, WF/WB, differs as the
particle number is changed. We would expect the qualitative behaviour to be the same for
different N . However, as the values of the excitation energies change for different N , the
temperature values where WF/WB = 1 should also change (just as in the non-interacting
case). In Fig. 5.6 we look at the work ratio for N = 2 and 4. We use a compression ratio
of Lc/Lh = 2 and an interaction strength, g = Lh/b. The plots do show that N = 2 and 4
have qualitatively similar behaviour, as has N = 3 in Fig. 5.4. One thing to note is that
the region for where the bosons have positive work output but the fermions have negative
(white line above the negative work output region) is increased in size as N is increased.
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Figure 5.6: Interacting particles. The plots show the work output ratio of fermions to bosons, WF /WB ,
plotted against Th and Tc (in units of εh0/kB). The effective interaction strength is set to g = Lh/b,
and the compression ratio is fixed to Lc/Lh = 2. The border WF /WB = 1 is made more distinct by
having a strong color shift between WF /WB < 1 and WF /WB > 1, in order to emphasize where fermions
respectively bosons have greater work output. Light-green is used to indicate the negative work output
region.

Let us now briefly examine which N -particle Otto engine has the largest work output
depending on the temperatures Th and Tc. In Fig. 5.7 we indicate which N = 1, 2, 3, 4 has
the largest work output for given temperatures of Th and Tc, considering an interaction
strength of g = Lh/b and a compression ratio of Lc/Lh = 2. If we compare with the non-
interacting case (see Fig. 4.6) the fermions are seen to qualitatively change very little. The
bosons, on the other hand, have a more significant change. For the non-interacting case
the bosons had the largest work output for the greatest N , at all values of Th and Tc. But
for the interacting case we see that for the lower temperatures, the bosons have a larger
work output for smaller N . The plot for the interacting bosons looks qualitatively similar
to the plots for the interacting and non-interacting fermions. This is to be expected, as
introducing our interaction brings a repulsive element to the bosons now as well. For this
reason it also makes sense that the fermions do not change their qualitative behaviour
in any significant way when the interaction is introduced, as they already had the effect
from the Pauli principle.
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Figure 5.7: Interacting particles. The plots show which N -particle Otto engine has the largest work
output, for N = 1, 2, 3, 4, depending on the temperatures of the reservoirs, Th and Tc. The compression
ratio is fixed to Lc/Lh = 2. Light-green is used to indicate the negative work output region. The
interaction strength is set to g = Lh/b.

Let us now look at which N -particle Otto engine has the largest work output per particle,
plotted in Fig. 5.8. We look at N = 1, 2, 3, 4, using an interaction strength of g = Lh/b
and a compression ratio of Lc/Lh = 2.

Looking at the fermions first, and comparing the interacting case to the non-interacting
case (Fig. 4.7a), we see that they look similar. However, there are some apparent differ-
ences close to the negative work output region. We see that the temperature region where
a given N > 1 has largest work output extends with sort of a ”tail” going downwards along
the negative work output region. This can be a result of the change in the condition for
positive work output. For N = 1, there will not be any contribution from the interaction,
as there is only the one particle, and hence it needs to satisfy Th > (Lc/Lh)

2Tc, in order
to perform positive work. Higher N , which will have a contribution from the interaction,
are not subject to the condition Th > (Lc/Lh)

2Tc in order to do positive work; and as we
saw above it seemed both fermions and bosons had lower bounds than Th > (Lc/Lh)

2Tc,
in order to perform positive work.

Turning to the bosons, we recall that for the non-interacting case (Fig. 4.7b), the work
output per particle was largest for N = 1 at all temperatures. It seems from Fig. 5.8b that
when considering interacting particles, N > 1 can have largest work output per particle,
if Tc is large enough compared to Th. One reason for this could be that, as the excitation
energies are increased for interacting particles compared to non-interacting ones, they
require higher temperature in order to be excited. For sufficiently low values of Tc, we
would then have that the work cost of Wc should decrease, for the interacting particles.
As the N = 1 case is non-interacting, it will have the same work cost while the N > 1
cases have a decreased cost. Therefore, if Tc is low enough to make the N > 1 cases have
smaller Wc than their corresponding non-interacting cases, while Tc is also high enough
to give a non-negligible work cost for the N = 1 case, it could lead to the N = 1 case
having a lower work output per particle than the N > 1 cases. Increasing the interaction
strength further, to e.g. g = 5Lh/b, we found that the plot for the bosons looked similar
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to the corresponding plot for the fermions (which in turn looked qualitatively similar to
the g = Lh/b plot, Fig. 5.8a). This is what we expect, since the fermions’ and bosons’
excitation energies become closer when the interaction strength is increased.
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Figure 5.8: Interacting particles. The plots show which N -particle Otto engine has the largest work
output per particle, for N = 1, 2, 3, 4, depending on the temperatures of the reservoirs, Th and Tc. The
compression ratio is fixed to Lc/Lh = 2. Light-green is used to indicate the negative work output region.
The interaction strength is set to g = Lh/b.

5.4 Conclusion

We have seen that introducing the two-body interaction between the particles can make
a considerable difference compared to the non-interacting case. We here summarize and
comment on the observations made.

• We have seen that the interaction allows both fermions and bosons to get higher work
output compared to the non-interacting case, if the temperatures of the reservoirs
are high enough. For sufficiently low temperatures, the work output can instead
decrease. This would be important to take into account when applying the concepts
on a possible experimental engine. Depending on the temperature we will run it on,
either interacting or non-interacting would be preferable. If we then are looking to
run the engine on higher temperatures (as higher temperatures will increase the work
output), but still on low enough temperatures such that the system does not reach
the classical limit, interacting particles would seem preferable over non-interacting.
This could simplify possible experimental set-ups, by being able to use e.g. electrons
(which by default interacts with each other through the Coulomb interaction) as the
the working medium.

• We saw that the effect of including the interaction is more apparent for bosons
than fermions. This can be explained by that the fermions obey the Pauli principle,
which forbids them to get in close contact where the interaction has the largest mag-
nitude. Additionally, increasing the interaction strength sufficiently high, fermions
and bosons tend to the same work output, when undergoing the Otto engine. This
followed since for strong interactions, the interaction will dominate the behaviour
of the particles such that bosons and fermions would behave similarly.
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• Finally, we saw that the qualitative dependence on particle number was similar
for the interacting fermions considered and non-interacting fermions; in that we
had similar temperature regions for which particle number yielded the largest work
output. For experimental engines, this would just mean that the optimisation with
respect to particle number is similar for the interacting and non-interacting fermions.
The interacting bosons, we could see, instead had a different dependence on particle
number compare to the non-interacting bosons. While for the non-interacting case,
it seemed, for any temperatures, more bosons gave a larger work output; the inter-
acting case showed that different particle number had a larger work output at certain
lower temperatures (similarly to the interacting and non-interacting fermions).
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Chapter 6

Outlook

We have in this thesis looked at a quasi-statically driven Otto engine operating a 1D
quantum system confined in an infinite square well. We were interested in the work out-
put of few-body systems, and how the work output change when considering different
working media (i.e. classical particles, non-interacting quantum particles and interacting
quantum particles). The idea is that this could give us further understanding about what
considerations to take into account when constructing experimental engines, and what
restrictions there could be for different working media.

We started by examining systems consisting of non-interacting, spin-polarised fermions
or bosons. It was found that fermions and bosons had different work output, and we
argued that the underlying reason was the different particle statistics and the monoton-
ically increasing energy level spacings of the infinite square well. We further found that
for fermions, the optimal particle number to maximize work output or work output per
particle depended on the temperatures of the heat reservoirs. Overall, it appeared higher
temperatures of the reservoirs favoured higher particle number, which could be explained
by that the excitation energies increased as the particle number increased, for the fermions.
For the bosons, the work output seemed to increase when adding more particles while the
work output per particle seemed to decrease when adding more particles, independent of
the temperatures of the heat reservoirs. The reason for this is not as clear compared to
the reason for the particle number dependence of the fermions, and needs further study
to be explained.

Additionally for non-interacting particles, we found that when considering N ≤ 4, any
N -fermion engine was able to have a larger work output than the corresponding classical
case (consisting of 1D, mono-atomic, ideal gas particles), for sufficiently high tempera-
tures of the reservoirs, while for bosons only N = 1 and 2 could have a larger work output
than the classical case. We again need to investigate more to be able to address why the
bosons only have N = 1 and 2 with larger work output than the classical case. However,
the result that the fermions can have a larger work output than the classical case for any
of the N considered, encourage for further studying engines operating quantum particles,
in hopes that the quantum domain could be utilised to improve engine performance.

We moved on to include a two-body interaction in our Hamiltonian, taken to be of the
same form as an effectively 1D Coulomb interaction for a system under strong cylindri-
cal confinement. We found that it allowed both fermions and bosons to obtain a larger
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work output than the non-interacting case, depending on the temperatures of the heat
reservoir. It seemed that due to the Pauli principle restricting fermions from getting into
close contact with each other, the effect of the interaction was (for lower values of the
interaction strength) more visible on the bosons. We also found that for a sufficiently
strong interaction, fermions’ and bosons’ energy levels tended to the same values, and
therefore their work output also did; indicating that the interaction dominates the parti-
cle behaviour at this point.

The qualitative temperature dependence for which N -particle engine has the largest work
output, was similar for the interacting and the non-interacting fermions. For the inter-
acting bosons, we found that they started to have similar temperature dependence as the
(interacting and non-interacting) fermions. In case we are setting up for an experimental
engine, these results then tell us to keep in mind that the optimal number of particles in
the system depends on which temperatures of the reservoirs we are using.

There are several directions to continue the study of the quantum systems undergoing
the Otto cycle we have examined. We could continue to study the same set-ups more
thoroughly, and try to find more precise ways to deal with the analysis of the results, in
order to understand them more quantitatively. Specifically, we could try to assess to what
degree we can, for our results, identify the two-body interaction we use as the effective
1D Coulomb interaction. As we discuss in Appendix C, it does seem possible that, at
least the interacting fermions we study could have the two-body interaction identified
as the Coulomb interaction. Since we found that the interacting particles were able to
have a larger work output than non-interacting ones (and hence also larger work output
than classical, ideal gas particles), at sufficiently high temperatures, it would then be of
experimental interest to be able to use Coulomb interacting particles, such as electrons,
not only because they are common in nature, but also as they could be a competitive
working medium.

Furthermore, we could also study the efficiency, defined as

η =
W

Qin

= 1− Qout

Qin

,

where W is the work and Qin(out) is the heat transfer into (out of) the system. We could
investigate the efficiency in the same way as the work output has been examined in this
thesis, and try to optimize the efficiency and work output together.

Another continuation of the thesis would be to look at the effect from different trapping
potentials. In Ref. [5], they look at quasi-statically driven Otto engines and how the
work output ratio of non-interacting fermions and bosons compare for different trapping
potentials. They find that the work output ratio in the infinite square well and the
triangular potential show opposite behaviour; for fixed Tc, fermions were found to have
a larger work output than bosons at high values of Th in the infinite square well, while
they have a larger work output than bosons for low Th in the triangular potential. The
underlying reason is that the infinite square well has monotonically increasing energy
level spacings, while the triangular potential has monotonically decreasing energy level
spacings. We could then expect that, using a triangular potential will make fermions
relate to bosons in a similar way as how bosons relate to fermions in the infinite square
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well. We could then, for example, look into this by examining a system with a triangular
potential in a similar way as to how we have studied the infinite square well in this thesis.

In Ref. [5], they also looked at the harmonic oscillator, where fermions and bosons are
shown to have the same work output (for non-interacting particles), due to the constant
energy level spacings. It could then be interesting to investigate how the work output and
work output per particle change with particle number and compression ratio; and what
would happen when introducing an interaction.

A final suggestion, and probably the most interesting direction to continue the work in
terms of studying more realistic processes, would be to look at the Otto engine operating
under finite-time. The discussion so far has been for a quasi-statically driven Otto engine,
but moving onwards to finite-time would open up a lot more analysis and optimization
questions (in e.g. Ref. [6], they look at sudden-quench driving for bosons in the harmonic
oscillator, interacting through an inverse-square pairwise potential). Specifically, we would
be able to look at the power output (work output per unit of time) of the engine, and
could thus consider more realistic models of the Otto engine. Finite-time studies allow
to investigate how the expansion and compression speed would affect the power output,
work output and efficiency of the engine, all of which we could look into how to optimize
simultaneously. Then there is also the question of how to couple to the heat reservoirs in
finite-time, and what effects that should be taken into consideration as this is done.
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Appendix A

Numerical parameters

For the interacting particles in Ch.5 we cannot obtain analytical solutions and therefore
use the configuration interaction method with a B-spline basis, as discussed in Sect. 3.2
and 3.3. Throughout this thesis, we have set the order of the B-splines to 5 and used
an equidistant knot point distribution. The number of B-splines then determine the
single-particle basis size, which in turn determines the many-particle basis size (Note
that the number of B-splines is determined by the relation: (Number of B-splines =
Number of Knot Points + B-spline order− 4)).

As the number of many-particle states grow very rapidly as the particle number, N , is
increased, we have to consider a smaller number of B-splines for the larger N . Further,
we have also decreased the number of B-splines for simulations where we look at how
the energy levels or the work output develops over a range of interaction strengths or
well lengths (or equivalently compression ratios). This is because we have to run the
full calculations for each interaction strength and each well length (compression ratio),
and thus the runtime increases compared to when considering only one value for the
interaction strength and the well length (compression ratio).

For the surface plots, Figs. 5.4, 5.6, 5.7, 5.8 and for Fig. 5.5a, we plot for fixed values
of the interaction strength and the compression ratio. We have used 100 B-splines for
N = 1, 100 B-splines for N = 2, 80 B-splines for N = 3 and 40 B-splines for N = 4.

For Figs. 5.1, 5.2 and 5.5b, we plot against interaction strength for N = 3, and have used
50 B-splines. Finally, for Fig. 5.3 we plot against the well length (compression ratio) for
N = 3, and have used 60 B-splines.

Convergence checks

To verify the validity of our results we need to examine if they have converged to their
”true” values. If we assume we have implemented the problem correctly, we need to be
sure we choose a large enough basis in order to get accurate results. For this thesis, we
have compared the quantities we have plotted in the figures (with the number of B-splines
as specified above) to runs with lower number of B-splines, that approximately correspond
to halving the many-particle basis sizes. We then first checked that the produced figures
for the lower and the higher B-spline numbers looked similar to the eye. Second, we
examined the relative difference between the quantities in the figures for the lower and
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the higher B-spline numbers, and checked that it was . 0.005.1

We would also like to note that, even though we have analytical energy levels for the non-
interacting case, we need to make sure that we use enough of them such that the results
are converged. We therefore, also for the non-interacting case, check that the results do
not change as the amount of levels are lowered.

1Note that for cases where the values of Th and Tc implied that the work output was very close to
the border of becoming negative, the values of the work output can be very low. This then means that
the numerical accuracy might not be the best, and we could therefore have points here where the relative
difference exceeded 0.005. However, we can fairly certainly ignore these, in case we see that these points
are just confined to being very close to the border of negative work output values. In a similar sense, we
could also expect that the relative difference can become a bit larger in case we look at very low Th and
Tc, where the work output again is very low.
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Appendix B

Derivation of the positive-work
condition for non-interacting
particles

The positive-work condition, Th > ν2Tc, holds for a system of N non-interacting particles
undergoing the Otto cycle, given that their energy levels exhibit the scaling property
Eh
n/E

c
n = ν2. We will here derive this positive-work condition, closely following the

derivation in Ref. [3] where it was done for the single-particle case (i.e. N = 1).

For non-interacting particles, the many-particle energy levels are the sum of the single-
particle energy levels populated by each particle. Hence, we have

Ei
n =

∑
k

εikmn,k , (B.1)

where εik is the kth single-particle energy level and mn,k is the occupation-number of the
kth single-particle state for the nth many-particle energy level.

Since our system exhibits the scaling property, we have that the single-particle energy
levels satisfy εhk/ε

c
k = ν2. Specifically, the level dependence of the energies should then

factor out, such that we have εik = ζif(k), where, e.g., for the infinite square well ζi =
~2π2/(2mL2

i ) and f(k) = (k − 1)2, k = 0, 1, 2, . . .. We can now express (B.1) as

Ei
n = ζi

∑
k

f(k)mn,k = ζiF (n) , (B.2)

where we have defined the function

F (n) ≡
∑
k

f(k)mn,k .

If we now plug (B.2) into the expression for the work output (see (2.12)), and use that
our occupation-probabilities are Boltzmann-factors, we obtain

W = (ζh − ζc)
∑
n

F (n)

(
e−ζhF (n)/(kBTh)

Zh
− e−ζcF (n)/(kBTc)

Zc

)
. (B.3)
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Now, set γi = ζi/(kBTi) and let y = γc−γh. We can then rewrite (B.3) as a function of y,

W (y) = (ζh − ζc)
∑
n

F (n)

(
e−γhF (n)

Zh
− e−(y+γh)F (n)

Zc

)
. (B.4)

Note that ∑
n

F (n)e−(y+γh)F (n) =
∑
n

∂

∂y
e−(y+γh)F (n) =

∂Zc
∂y

.

Thus, taking the partial derivative of (B.4), with respect to y, yields

∂W

∂y
= (ζh − ζc)

∂

∂y

(
− Z−1c

∑
n

F (n)e−(y+γh)F (n)

)

= (ζh − ζc)
(
Z−2c

∂Zc
∂y

∑
n

F (n)e−(y+γh)F (n) − Z−1c
∑
n

F (n)
∂

∂y
e−(y+γh)F (n)

)

= (ζh − ζc)Z−1c
∑
n

e−(y+γh)F (n)

(
F (n)−

(
Z−1c

∑
n′

F (n′)e−(y+γh)F (n′)

))2

> 0 .

That ∂W/∂y > 0, follows from ζh−ζc > 0 and that in the last line the sum is over squared
terms.

With ∂W/∂y > 0, we have that W (y) is a strictly increasing function of y. Further,
plugging in y = 0 in (B.4), we obtain W (0) = 0. Thus, W > 0 only when y > 0.
Consequently, using that ζh/ζc = ν2,

y > 0 ⇒ γc > γh ⇒ Th >
ζh
ζc
Tc = ν2Tc ,

which is the condition for positive work output we wanted to show.
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Appendix C

Interpretation of the two-body
interaction

We will in this chapter discuss the validity of interpreting the two-body interaction (3.22),
i.e.

v(xi, xj) =

√
πq2

2κb
erfcx

(
|xi − xj|

2b

)
, (C.1)

as an effective 1D Coulomb interaction for our results. As we discussed in Sect. 3.4.2,
we can only take (C.1) as an effective 1D Coulomb interaction for a 3D system that has
a sufficiently strong, cylindrical confinement in its transverse direction (the derivation is
done below, in Appendix D). Increasing the confinement strength was equivalent to de-
crease b, since the oscillator frequency, ω⊥, deciding the confinement strength, was given
by ω⊥ = ~/(2mb2). The transverse direction will become smaller and smaller as b is de-
creased, so that in the limit b→ 0, the effective 1D system will be truly 1D. If the results
we obtained do not change much when decreasing b, we could imagine that it indicates
that the transverse confinement is strong enough for the interaction (C.1) to be identified
with the effective 1D Coulomb interaction.

Let us start by compare the potential energy of the two-body interaction (C.1), for differ-
ent values of b, with the Coulomb potential energy in the 1D limit, vC = q2κ−1/x (see also
Ref. [17], where they do a similar comparison). In Fig. C.1 we plot the potential energy
against inter-particle distance (in units of a reference length L), for the Coulomb poten-
tial, vC = q2κ−1/x, and the two-body interaction (C.1) for b = 0.05, 0.005 and 0.0005 (in
units of L). We see that for the larger distances plotted, (x ∼ 0.1L), all curves tend to
the same value, implying (C.1) correctly resembles the Coulomb interaction for all the b’s
here. However, as the distance is decreased, we see that the higher the value of b is for
(C.1), the faster the curve falls off from the Coulomb interaction (if we were to increase
the values on the y-axis, we would also see that the b = 0.0005L case moves away from
the Coulomb interaction).
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Figure C.1: The potential energy (in units of q2/(κL)) plotted against inter-particle distance x (in units
of some reference length L). The solid, light-blue curve plots the Coulomb potential energy, while the
dashed curves plot the two-body interaction (C.1) for b = 0.05, 0.005 and 0.0005 (in units of L).

Now let us see how different b affect the energy levels and work output for fermions
respectively bosons, interacting through (C.1). In Fig. C.2a, we plot Fig. 5.1 again1,
which looks at the lowest excitation energies for three fermions and three bosons, plotted
against the interaction strength g, and using b = 0.005L. We compare it with Fig. C.2b,
having the same set-up, but using b = 0.0005L. We see that the qualitative behaviour is
similar. However, we can note that for the lower value, b = 0.0005L, the bosons’ levels
tend to the fermions’ levels faster, i.e. for lower g. We can actually see that the relative
difference between the energy levels using b = 0.005L and b = 0.0005L is a a lot larger
for the bosons than the fermions, see Figs. C.3a and C.3b. For the fermions, we have
an overall relative difference that is below 0.003, for the levels plotted, while the bosons
have all levels above 0.05 for many of the interaction strengths.2 We could think that this
difference between the fermions and bosons arises due to the fact that, since the fermions
obey the Pauli principle, they are not allowed in contact; and hence, the interaction at
zero inter-particle distance is irrelevant for the fermions. It is also at the very short
inter-particle distances the interaction (C.1) differs the most when changing b, as we saw
in Fig. C.1. And since the bosons have no restriction on whether they are allowed into
contact or not, we could expect them to be more sensitive to changes of the potential at
the short inter-particle distances.

1Just for clarity, we consider a smaller region of g values here.
2Additionally, it was also found that comparing two lower values of b than the ones considered here,

didn’t seem to improve the situation for the bosons to an acceptable degree (by which we would like to
have a relative difference of less than, our around 0.005).
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Figure C.2: Interacting particles. Excitation energy to the nth many-particle energy level versus the
interaction strength, g, for (a) b = 0.005L and (b) b = 0.0005L. The plots consider three fermions and
three bosons. The lines for the 6th and higher excitation states are faded to make the images more clear.
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Figure C.3: Interacting particles. Relative difference between the excitation energies using b = 0.005L
and b = 0.0005L, for (a) fermions and (b) bosons. The plots consider N = 3 and look at the first 100
levels for a range of interaction strengths, g. Note: we used 50 B-splines to calculate the energy levels
for the respective cases considered in the plots.

Let us finally look at the relative difference between the work output using b = 0.005Lh and
b = 0.0005Lh. In Fig. C.4, the relative difference is plotted for three fermions, Fig. C.4a,
and three bosons, Fig. C.4b, for a fixed interaction strength g = Lh/b. We see that the
fermions have a fairly low relative difference between b = 0.005Lh and b = 0.0005Lh, only
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reaching above 0.005 close to the negative work output region.3 Looking at the bosons,
we do instead see a much larger relative difference than compared to the fermions (just
as for the energy levels in Fig. C.3).
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Figure C.4: Interacting particles. Relative difference between the work output using b = 0.005L and
b = 0.0005L, for (a) fermions and (b) bosons. The plots consider N = 3 and an interaction strength
of g = Lh/b. Note: we used 60 B-splines when calculating the energy levels for the respective cases
considered in the plots.

So to conclude this appendix chapter: we have seen that the interaction (C.1) is affected
the most at short inter-particle distances, when the confinement strength is increased, i.e.
b decreased. It can be argued that for this reason, we find fermions more stable to changes
in b than bosons (since the fermions are not allowed in contact due to the Pauli principle,
and hence not as sensitive to changes in the behaviour at short inter-particle distances).
From the examination above, it would seem that for the fermions, we possibly could
identify the interaction (C.1) as an effective 1D Coulomb interaction. For the bosons,
however, it would not appear to be the case. Nonetheless, in regards to experimental
settings, Coulomb interacting fermions would be of high interest to use anyway, as they
could be realised by electrons. We should still, for both fermions and bosons, do further
investigations in order to be sure how large the difference is between applying an actual
3D Coulomb interaction, and using the effective 1D interaction (C.1). In Ref. [17], they
compare the effective 1D interaction (C.1) with the results for using the full 3D Coulomb
interaction and solving the system by variational calculations on a trial wave function.
Something similar might be possible in our case (note though that Ref. [17] only looks at
the ground state energies of the systems they consider).

3Close to the negative work output region, the work output becomes very low and hence the numerical
precision can drop in the calculations. We could from that then expect a larger relative difference here
(but that does not rule out that there, in fact, could be a larger relative difference here because of some
other reason).
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Appendix D

Derivation of the effective 1D
Coulomb interaction

Here we will derive the form of the effective 1D Coulomb interaction, discussed in Sect. 3.4.2
and given by (3.22), i.e.

v(xi, xj) = g
~2

mL2
h

erfcx

(
|xi − xj|

2b

)
, (D.1)

where g is an interaction strength, erfcx(x) is the exponentially scaled error function,
erfcx(x) = exp(x2) erfc(x), and erfc(x) is the complementary error function, erfc(x) =
2π−1/2

∫∞
x
dt exp(−t2). For the derivation, we follow Ref. [18], where it is done for a

screened Coulomb interaction for a two electron system. We will also start off with a
screened Coulomb interaction and then let the screening parameter go to zero in the end
(to end up with the unscreened Coulomb interaction).1 Article [21] was the main source
used in this thesis for the idea of using the effective 1D Coulomb interaction, (3.22).

Introducing the screening, the Coulomb interaction will take the form

v(ri, rj) =
q2eλ|ri−rj |

κ|ri − rj|
,

where λ is the screening parameter (which will be set to zero at the end to obtain the
unscreened Coulomb interaction), q the charge of the particles, κ the background permit-
tivity and ri = (xi, yi, zi).

The energy term due to the Coulomb interaction between particles i and j is given by

EC =

∫
d3r1 · · · d3rN

q2eλ|ri−rj |

κ|ri − rj|
|Ψ(r1, . . . rN)|2 , (D.2)

where
Ψ(r1, . . . rN) = ψ(y1, z1) · · ·ψ(yN , zN)Φ(x1, . . . , xN) , (D.3)

with

ψ(yn, zn) =
e−(y

2
n+z

2
n)/4b

2

(2πb2)1/2
, (D.4)

1The screening is introduced in order to be able to Fourier transform the Coulomb interaction without
divergences arising.
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as discussed in Sect. 3.4.2. Note that we are working under the assumption that the
system is under a sufficiently strong cylindrical confinement in the yz-plane, such that
the approximation (D.3) is fine.

We want to start by Fourier transforming each of the terms in (D.2). For a function f(r),
where r is an n-dimensional vector, its Fourier transform, F (k), is given by

F (k) =
1

(2π)n

∫
dnr f(r) e−ik·r , (D.5)

and the inverse Fourier transform by

f(r) =

∫
dnkF (k) eik·r . (D.6)

We will denote the Fourier transform of |Φ(x1, . . . , xN)|2 by ρ(kx1 , . . . , kxN ), and the
Fourier transform of |ψ(yn, zn)|2 by ρ⊥(kyn , kzn), where kn = (kxn , kyn , kzn) are the co-
ordinates in Fourier space corresponding to rn = (xn, yn, zn). By applying (D.5) on (D.4),
we find

ρ⊥(kyn , kzn) = e−b
2(k2yn+k

2
zn

)/2 . (D.7)

Further, if we denote the Fourier transform of the Coulomb interaction by µ(kij), we find

µ(kij) =
4πq2

κ(|kij|2 + λ2)
, (D.8)

where we denote kij = (kxij , kyij , kyij) as the coordinates in Fourier space corresponding
to (ri − rj) = (xi − xj, yi − yj, zi − zj).

Plugging everything into (D.2), we find

EC =

(∏
m

∫
d3rm

)(∏
n

1

(2π)2

∫
dkyn dkzn ρ⊥(kyn , kzn)ei(ynkyn+znkzn )

)

× 1

(2π)3

∫
d3kij

4πq2

ε(|kij|2 + λ2)
eikij ·(ri−rj)

× 1

(2π)N

∫
dkx1 · · · dkxN ρ(kx1 , . . . , kxN )ei(x1kx1+...+xNkxN ) .

(D.9)

To start simplifying (D.9), we can use that the delta-function has the integral represen-
tation

1

(2π)3

∫
d3r eir(k−k

′) = δ(k− k′) ≡ δ(kx − k′x)δ(ky − k′y)δ(kz − k′z) , (D.10)

and identify all delta functions we can find in the expression. For all indices n, except i
and j, we have terms like

1

(2π)3

∫
d3rn eirn·kn = δ(kxn)δ(kyn)δ(kzn) .
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We can then directly integrate out these delta functions in (D.9), as∫
dkxn dkyn dkzn ρ⊥(kyn , kzn)ρ(kx1 , . . . , kxn , . . . , kxN )δ(kxn)δ(kyn)δ(kzn)

= ρ⊥(0, 0)ρ(kx1 , . . . , 0, . . . , kxN )

= ρ(kx1 , . . . , 0, . . . , kxN ) ,

where we note that ρ⊥(0, 0) = 1, from (D.7).

For the terms with indices i and j, we can identify the delta functions

1

(2π)3

∫
d3ri e

iri·(ki+kij)
1

(2π)3

∫
d3rj eirj ·(kj−kij) = δ(ki + kij)δ(kj − kij) .

Carrying out the integrations over ki and kj in (D.9), along with the integrations for all
other n as discussed above, we are left with

EC =
1

2π2

∫
d3kij

q2

κ (|kij|2 + λ2)
ρ⊥(−kyij ,−kzij) ρ⊥(kyij , kzij) ρ(0, . . . ,−kxij , . . . , kxij , . . . , 0) .

The wave function along the longitudinal direction ρ(0, . . . ,−kxij , . . . , kxij , . . . , 0) have
non-zero input only for the ith and jth argument, being −kxij and kxij respectively.
We can simplify the above expression by noting that (D.7) tells us that ρ⊥ is even in
both its arguments. Further, we rename the (dummy) variable kij = (kxij , kyij , kzij) to
k = (kx, ky, kz), for simplicity. We end up with

EC =
1

2π2

∫
d3k

q2

κ (|k|2 + λ2)
ρ⊥(ky, kz)

2 ρ(0, . . . ,−kx, . . . , kx, . . . , 0) .

Using the inverse Fourier transform to express ρ(0, . . . ,−kx, . . . , kx, . . . , 0) as

ρ(0, . . . ,−kx, . . . , kx, . . . , 0) =

∫
dx1 · · · dxN |Φ(x1, . . . , xN)|2 eikx(xi−xj) ,

and plugging it into the expression above, yields

EC =

∫
dx1 · · · dxN |Φ(x1, . . . , xN)|2 q2

2π2κ

∫
dky dkz ρ⊥(ky, kz)

2

∫
dkx

eikx(xi−xj)

k2x + (k2y + k2z + λ2)
.

The energy term is now on the form of an expectation value, w.r.t. the longitudinal direc-
tion (i.e. the x-direction), for a function describing an effective 1D Coulomb interaction,
v(xi, xj), with the form

v(xi, xj) =
q2

2π2κ

∫
dky dkz ρ⊥(ky, kz)

2

∫
dkx

eikx(xi−xj)

k2x + (k2y + k2z + λ2)
.

The integral over kx can be evaluated using Cauchy’s residue theorem, by integrating in
the complex plane and closing the contour in the upper or lower plane if xi − xj > 0 or
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xi − xj < 0 respectively; note that the poles of the integrand are kx = ±i
√
k2y + k2z + λ2.

We are left with

v(xi, xj) =
q2

2πκ

∫
dky dkz

e−
√
k2y+k

2
z+λ

2|xi−xj |√
k2y + k2z + λ2

e−b
2(k2y+k

2
z) ,

where we plugged in the explicit expression for ρ⊥, (D.4). Changing (kx, ky) to polar
coordinates (kr, θ) and integrating out θ, we obtain

v(xi, xj) =
q2

κ

∫
dkr

r√
r2 + λ2

e−
√
r2+λ2|xi−xj | e−b

2r2 .

Performing the variable transformation kr → k = b
√
k2r + λ2 + |xi − xj|/(2b), we find

v(xi, xj) =
q2

κb
eλ

2b2e|xi−xj |
2/(4b2)

∞∫
|xi−xj |/(2b)+λb

dk e−k
2

.

This finally gives us

v(xi, xj) =

√
πq2

2κb
eλ

2b2 erfcx

(
|xk − xl|

2b
+ λb

)
.

We have hence obtained the desired form of the effective 1D, screened Coulomb interac-
tion, which reduces to (D.1) when letting the screening go to zero, λ→ 0, and having the
interaction strength, g, given by

g =
mLh
~2

√
πq2

2κ(b/Lh)
.
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