
Feedforward neural networks with ReLU activation
functions are linear splines

Magnus Hansson & Christoffer Olsson
hansson.carl.magnus@gmail.com olschr2@gmail.com

supervised by
Najmeh Abiri & Claus Führer

August 2017

Department of Numerical Analysis
Lund University

Abstract. In this thesis the approximation properties of feedforward artificial
neural networks with one hidden layer and ReLU activation functions are examined.
It is shown that functions of these kind are linear splines and the number of spline
knots depend on the number of nodes in the network. In fact an upper bound can be
derived for the number of knots. Furthermore, the positioning of the knots depend
on the optimization of the adjustable parameters of the network. A numerical
example is given where the network models are compared to linear interpolating
splines with equidistant positioned knots.

Key words: artificial neural networks, ReLU, splines

1

Populärvetenskaplig sammanfattning p̊a svenska

Artificiella neurala nätverk tillhör en framväxande tvärvetenskaplig gren
av matematik, statistik och datavetenskap kallad maskininlärning. Dessa
nätverk är fr̊an början inspirerade av en biologisk hjärna. B̊ade den ar-
tificiella hjärnan och den biologiska hjärnan best̊ar utav neuroner som är
sammankopplade, ju fler neuroner desto mer komplext och snabbt blir sys-
temet. P̊a samma sätt som en biologisk hjärna lär sig av erfarenhet lär sig
ett artificiellt neuralt nätverk av erfarenhet, men i form av observerade dat-
apunkter inlästa i en dator. En artificiell hjärna kan precis som en biologisk
lära sig att köra en bil ifall komplexiteten är tillräckligt hög och tillräckligt
med erfarenhet, även kallat träning, ges. I dag ser vi dessa nätverk användas
dolt inom diverse omr̊aden i v̊ar vardag, till exempel datorapplikationer som
bildigenkänning.

I denna uppsats undersöks hur ett specifikt nätverk kan förklaras och
sammankopplas med befintliga konventionella koncept inom den matema-
tiska grenen numerisk analys. Tv̊a ansatser, gällande nätverkets approxima-
tionssätt, är anförda i uppsatsen och sedermera bevisade. Satserna förklarar
hur det artificiella neurala nätverket bedriver sin generalisering av träningen
och lär sig efterlikna underliggande funktioner genom ett styckvist definierat
linjärt system, kallat i matematiken, linjära splines.

2

Contents

Populärvetenskaplig sammanfattning p̊a svenska 1
Author’s preface 3
Glossary 4
List of abbreviations 6
1. Introduction 7
1.1. Purpose 8
1.2. Thesis outline 8
2. Feed forward network mapping 9
2.1. One hidden layer network 9
2.2. The activation function 10
2.3. General derivation of backpropagation 11
2.4. Network training with gradient descent 13
2.5. Stochastic gradient descent 14
2.6. Universal approximation theorem 16
3. The Error Surface 17
3.1. Features of the error surface in relation to the size of the

network 17
4. Training networks is hard 18
4.1. Cross Validation 19
4.2. Over fitting 19
4.3. Methods to combat over fitting 19
5. The ReLU network model 22
5.1. ReLU activation function 22
6. Theoretical Results 23
6.1. ReLU nets are splines 23
6.2. Upper bound of knots in one layer network 24
7. Spline interpolation 25
8. Numerical Experiments 25
8.1. Instructions of how the approximation, using neural networks,

was performed. 26
9. Discussion 30
10. Concluding remarks 31
11. References 33
Appendix A. Numerical packages 35

3

Author’s preface

As understood it is not too common that two students collaborate in writ-
ing their Bachelor’s thesis in mathematics. That said, we are grateful to our
supervisors Najmeh Abiri and Claus Führer who from the beginning of the
project have been encouraging. Since the start we have lived by the philos-
ophy of full transparency and whatever knowledge one acquired everyone in
the project needed to fully understand. This has been especially important
since the subject of neural networks is an interdisciplinary subject with its
roots in mathematics, statistics, numerical analysis and computer science.

Since starting the project in November 2016 we have iteratively under-
stood the subject more and more comprehensively. The field of neural net-
works is extremely wide. Most commonly they are used as a tool to do
regression, classification or predictions within machine learning. One of the
major challenges has been to pick a sufficiently small sub-field within the
literature to investigate. One of the reasons why this has been a difficult
task is because in order to choose something precise one has to understand
the field thoroughly.

After understanding the mathematics and the mechanics behind the neu-
ral network, a natural way forward was to start programming and experi-
menting, which was a large part of our learning curve. We discovered how
neural networks could be used for approximation, regression and classifica-
tion within machine learning. When the larger picture was starting to clarify
our interest shifted into the questions such as How are artificial neural net-
works really connected to mathematics, or more precisely, approximation
theory and numerical analysis? Digging deeper into these questions we un-
derstood that by answering a small part of these questions artificial neural
networks could easier be explained to mathematicians familiar with numer-
ical analysis.

During Christmas we discovered a paper by Kevin K. Chen, The upper
bound on knots in neural networks (Chen 2016), we understood how we
could connect neural networks to numerical analysis, and in particular spline
theory.

4

Glossary

Artificial neural network · · · A numerical method inspired by the struc-
ture of the biological neural network. In the most general definition it would
be a mapping from Rn → Rm. Where n and m are natural numbers.

Activation function · · · In neural networks the modelling of the activation
function is inspired by neurology, where information is sent to a biological
neuron. The neuron has some kind of activation, which fires a signal to
connected neurons if the neuron gets stimulated. An activation function is
wrapped around each node or neuron in the artificial neural network. The
activation function gives the neural network its characteristics, i.e, e.g, if
the neural network yields a regression or a classification.

Backpropagation · · · A method in which the gradient of the error function
of a neural network is calculated. Backpropagation is used in the optimiza-
tion process of the error function, i.e. its minimization.

Batch · · · Each iteration in the training of a neural network is done given
some data points. The whole data set can be divided into batches, and these
batches are the data points for each iteration.

Deep network · · · An artificial neural network with many layers, which
means a lot of adjustable parameters.

Deep learning · · · When deep networks are used within machine learning.

Epoch · · · An epoch is a forward and backwards pass using backpropaga-
tion through the network. If the training is performed batch-wise an epoch
is a full pass of a batch forward and backwards through the network. If the
training is sequential an epoch is simply one forward and backwards pass
through the network.

Error function · · · The objective function that is to be minimized in a
neural network. E(y), where y is the output of the network. Mean squared
error is an example of a common error function, MSE = 1

n

∑n
i=1(yi − ti)2.

t is some target value.

Error surface · · · The graph of the error function can be referred to as the
error surface.

5

Feedforward network · · · A simple neural network structure. The data
is fed into the network in the input layer, is fed forward in the network
through the hidden layers and eventually becomes the output through the
output layer.

Hidden layers · · · The layers between the input layer and the output layer.
They are called hidden because, generally, one only sees the input and out-
put and what happens inbetween is hidden.

Learning rate · · · The learning rate is a variable or constant that is part of
the optimization. The learning rate is at what fraction the optimization is
moving in the opposite direction of the gradient of the error function. If the
learning rate is large the optimization goes fast, although convergence can
be hard to find. If the learning rate is small the probability of convergence
is higher, but the optimization is slow. This is why an adaptive learning
rate is often used in modern optimization.

Machine learning · · · Machine learning is a commonly used term referring
to a set of numerical methods used to perform data analysis and artificial
intelligence. The subject is a combination of computer science, mathemat-
ics and statistics. Some examples of machine learning methods are artificial
neural networks, logistic regression, k-nearest neighbour and principal com-
ponent analysis, and even polynomial regression.

Network training · · · Iteratively minimizing the error function of a neural
network.

Over fitting · · · A machine learning phenomena where some model ”over
fits” to a training set. I.e, the model tries so hard to get good results on the
training set so that it performs poorly outside of the training set.

Regularization · · · Methods with which one can handle over fitting.

Vanishing gradient · · · A problem that appears when certain activation
functions are used in a neural network setting. The sigmoid function is one
of the functions suffering from the problem. The sigmoid function had its
name because it’s geometrically shaped as a S. For small and large values the
derivatives are close to zero. If one has a lot of sigmoidal functions stacked
in a neural network setting, there is a risk that the gradient vanishes when
the individual derivatives are multiplied together because of the chain rule,
used in the backpropagation.

Weights (w) & biases (b) · · · The adjustable parameters of a neural
network. An analogy would be as k and m in y = kx+m.

6

List of abbreviations

AI · · · Artificial intelligence.

ANN · · · Artificial neural network.

API · · · Application programming interface.

GPU · · · Graphics processing unit.

ML · · · Machine learning.

MSE · · · Mean squared error.

NLP · · · Natural language processing.

ReLU · · · Rectified linear unit.

7

1. Introduction

Artificial neural networks (ANN) have been on the rise during the last
decade. This has mainly been due to the increasing availability of com-
puting power and data. An introduction of several programming libraries,
specifically built for mathematical computations useful in fields like ma-
chine learning (ML) and neural network computations, has given ANN a
given part in contemporary machine learning and data analysis. One of the
most distinguished libraries is TensorFlow (Abadi et al. 2015) (see appendix
A.0.1), developed by Google. TensorFlow also comes with an easy to use
application programming interface (API). Nowadays one can see applica-
tions of ANN’s in areas such as artificial intelligence (AI), natural language
processing (NLP), image recognition and control systems. For instance the
graphics processing unit (GPU) developer Nvidia is using neural networks
in their development of self driving cars.

Although, there definitely is a high-tech-side to neural networks, there is
also a very interesting theoretical mathematical side. One could argue that
the theory behind neural networks began with the article Logical Calculus
of the Ideas Immanent in Nervous Activity (McCulloch & Pitts 1943) in
which a mathematical model for neurons was derived. Later in 1957 Rosen-
blatt developed the Perceptron, which is a feedforward neural network with
a step activation function (Olazaran 1996). The theory of neural networks
accumulated to an important result, the universal approximation theorem.
There are several versions of the theorem and it has been extended from the
initial version. The theorem states that a single hidden layer neural network
with an arbitrary number of hidden nodes can approximate any given contin-
uous function with some assumptions stated in the theorem (see section 2.6).

In modern neural network theory a vast number of sub-models to the orig-
inal networks have been invented, each exhibiting different numerical prop-
erties. The number of hidden layers in the networks have also expanded,
called deep networks. A natural evolution of different activation functions
has followed this development. The rectified linear unit (ReLU) function
has become common to use as activation for the hidden layers in deep net-
works because of its numerical properties. Sonoda and Murata proved that
the universal approximation theorem holds when using ReLU as activation
function as well (Sonoda & Murata 2015). Chen discussed the relation of
neural networks with ReLU activation to spline theory (Chen 2016) and de-
rives an upper bound for the number of knots in a deep layered network.

Although, the mathematical theory of neural networks is nearly a cen-
tury old what is usually emphasized is its direct applications. Too little
emphasize is directed to understanding the mathematical theory behind the
approximations. In this thesis the focus will be on the connection between

8

single hidden layer feedforward networks with ReLU activation functions
and its relationship to linear splines, commonly found in approximation the-
ory. With inspiration from Chen’s paper (Chen 2016) two theorems will be
stated and proved regarding the single hidden layer case. Chen’s results are
advanced which makes intuitive interpretation hard. Hopefully this thesis
will help to explain why neural networks with ReLU activations are splines
and shed light upon its differences compared to interpolating splines.

From here on the abbreviations of artificial neural network, ANN, neural
net, network, net, etcetera will be used interchangeably.

1.1. Purpose. The purpose of this thesis is to investigate how the single
hidden layer feed forward neural network with rectified linear unit (ReLU)
activation functions is connected to approximation theory. Furthermore,
providing an understandable document describing the major findings within
the subfield.

In this thesis the following questions will be considered,

• How does a single layer ANN with ReLU activation function approx-
imate a function?

• How is a single layer ANN with ReLU activation function related to
approximation theory?

• How does the approximation change when adding or subtracting
nodes?

• How does the approximation of a continuous function with the ReLU
ANN compared to an interpolating linear spline with equidistant
spaced knots?

1.2. Thesis outline. In Section 2 a background of the mathematics behind
feed forward neural networks is presented. This section considers the general
structure of a feed forward neural network, how to optimize such a network
and its universal approximation property. In Section 3 properties of the
error surface spanned by the error function and its properties are discussed.
Section 4 is called training neural networks is hard, and discusses some of
the problems that crop up when one tries to use a neural network in real
world applications. In Section 5 a network model with one hidden layer and
ReLU activation is presented. This model will be the foundation for the
theoretical and numerical results. In Section 6 two theorems with proofs
are stated and derived describing how the ReLU networks are linear splines
with an upper bound on the number of knots. Section 7 presents a small
discussion of interpolation. In Section 8 the numerical results are shown. In
Section 9 some discussion about the thesis and its’ results are made. The

9

thesis is concluded with Section 10, followed by the reference list and the
appendix.

2. Feed forward network mapping

This part is dedicated to explain feed forward neural networks and its
training process, i.e. optimization. The first part 2.1 describes a multilayer
network with one hidden layer. 2.2, the second section, discusses the activa-
tion function. The third part 2.3 derives the backpropagation algorithm for
a general multilayer network. The fourth Section 2.4 is considering network
training with gradient descent. These parts are based on Neural networks
for pattern recognition (Bishop 1995). Section 2.5 discusses stochastic gra-
dient descent and Adam optimization. Section 2.6 presents the universal
approximation theorem.

2.1. One hidden layer network. Consider the following equation,

(1) yk = g̃

 M∑
j=1

w
(2)
kj · g

(
D∑
i=1

w
(1)
ji · xi + w

(1)
j0

)
+ w

(2)
k0

 , k = 1, . . . ,K

describing a neural network with one hidden layer.

g̃ and g are activation functions. Depending on how these functions are
defined different characteristics are given to the network. E.g. if the prob-
lem is of regression type nature g̃ would be the identity function, g̃(aj) = aj .
If the problem is of classification nature e.g. a sigmoid function could be

used. Furthermore, w
(1)
ji and w

(2)
kj are the adaptive weights between each

layer. w
(1)
j0 and w

(2)
k0 are the biases. These are the parameters that are

changed throughout the training of the network. The constant M is what
determines the hidden number of nodes in the network. The constant D
determines the size of the input layer and the dimension of the input vec-
tor x. The input vector x consists of a D-dimensional vector of real values
x = (x1, x2, ..., xD). Finally this equation equals to a vector component
called yk. Combining all the K output values yk into a vector produces the
total output of the whole of the network.

Figure 1 is a visual representation of Equation 1, where there areD inputs,
M hidden units, and K outputs.

10

Figure 1. Feed forward network with one hidden layer.

Equation 1 can easily be generalized by stacking more layers into the
network, thus making it a multi-hidden-layer network. This is not in the
scope of this thesis however.

2.2. The activation function. As touch upon in the previous Section,
2.1, g̃ and g in Equation 1 are activation functions. An activation function
in ANN terminology is a function that defines how the output of a certain
node will look like. An analogy would be the binary activation of a node in
a computer circuit, which can be either 1 or 0. Indeed, if the binary function
in Equation 2,

(2) ĝ(a) =

{
1 if a > 0

0 otherwise

is used as activation in a zero hidden layer neural network, the ANN is
called a Perceptron.

Another famous activation function is the sigmoidal function,

(3) s(a) =
1

1 + e−a

which when plotted forms the shape of an S. Because of the geometrical
shape of the sigmoidal activation function, it’s derivative at small and large
arguments is close to zero. This can yield a problem often called vanishing
gradient. The problem occurs because of the use of the chain rule in the

11

backpropagation algorithm used to calculate the gradient (see Section 2.3).

A popular alternative to the sigmoidal function has lately become the
rectified linear unit, ReLU, function (Sonnoda & Murata 2015),

(4) g(a) ≡ max(0, a) and g′(a) =

{
1 if a > 0

0 otherwise

which solved the problem of vanishing gradient because of its derivative.

2.3. General derivation of backpropagation. In order for a network to
learn a suitable mapping from the input data to the output data it needs
training. Network training consists of optimizing an error function with re-
spect to the weights and biases. In order to optimize the error function,
the gradient of the error function needs to be calculated. This is done by a
method called backpropagation.

In this section a derivation of backpropagation for a general feed forward
network is given.

Consider the following,

(5) aj =
∑
i

wjizi + wj0

which describes a node in a general feed forward network, where zi is the
activation of a node from the previous layer. wj0 is the bias. Now, consider
again a non-linear wrapping of aj by a differentiable function g(·),

(6) zj = g(aj)

Note that some or all of zi could be input variables fed into the network,
in which case they are denoted xi. Note also that the units aj could be an
output unit, in which case its activation is called yk.

Remember that the goal is to find suitable values for the weights and
biases of the network. In order to do so an error function is needed to be
defined,

(7) E =
K∑
j

E(j)

The error function is described by a sum since the output is a vector.
Further it is assumed that E(j) is differentiable and can be written as a
function of the output, aj .

12

(8) E(j) = E(j)(a1, ..., ac)

Notice that the output from the network, yk, is a function of the weights
and biases, i.e. the adjustable parameters of the network. This means that
Ê can be defined as a function of w, Ê(w) := E(a(w)). With a little abuse

of notation Ê will now be referred to as E.

Now consider differentiating the error function for a particular output,
E(j), with respect to some weight, wji. Note that E(j) depends implicitly

on wji through aj , see Equation 5, since E(j) is assumed to be a function of
aj . This means the chain rule can be utilized in order to split the derivative.

(9)
∂E(j)

∂wji
=
∂E(j)

∂aj

∂aj
∂wji

Now the deltas, also referred to as errors, are defined, i.e. the error from
the above layer,

(10) δj ≡
∂E(j)

∂aj

Using Equation 5 the local derivative becomes,

(11)
∂aj
∂wji

= zi

Substituting Equation 10 and 11 into 9,

(12)
∂E(j)

∂wji
= δjzi

One thing to note here is that Equation 12 has the same form as it would
have if it were derived from a single layer network. Thus Equation 12 states
that the derivative is obtained by multiplying the error, i.e. delta, which is
the error calculated from the layer above, with the local derivative.

Considering the output nodes, the activation in Equation 6 is now denoted
yk and the following expression is formed,

(13) δk ≡
∂E(j)

∂ak
= g′(ak)

∂E(j)

∂yk

The derivatives for the hidden units needs also to be evaluated, the chain
rule is used again,

13

(14) δj ≡
∂E(j)

∂aj
=
∑
k

∂E(j)

∂ak

∂ak
∂aj

Now consider the following algorithm for backpropagation,

(15) δj = g′(aj)
∑
k

wkjδk

One arrives at the backpropagation formula, i.e. Equation 15, by noticing
that in Equation 14 the variation in aj goes though ak and by substituting
Equation 10 into 14 and make use of Equation 5 and 6.

This may seem complicated but the fact is that the δ’s for the output
units is known and therefore we can apply Equation 15 recursively on any
feed forward network of given depth.

Algorithm 1 is showing the backpropagation algorithm as pseudo code.

Result: Matrix of gradients
initialization;

while Not First Layer of Weights + 1 do
for each weight wi in layer do

if Final Layer then

set δi = δE
δai
g′(ai) ;

else
set δi = g′(ai)

∑
k wkiδk ;

end
save δi to Matrix

end

end
Algorithm 1: Backpropagation pseudo code

2.4. Network training with gradient descent. Network training con-
sists of minimizing the error function. In Section 2.3 a method of calculating
the derivatives of the error function was presented – backpropagation. The
error function is a function of the adaptive weights and biases of the network,
which can be represented by a vector, w. Analytically one would like to find
for which vector, w, such that, ∇E = 0. Notice that this is an optimization
problem of very high dimensionality, since the weight space is generally large.

Backpropagation helps one to find the derivatives of the error function.
Furthermore a method which finds the vector, w, that minimizes the error
function is needed. One of the most common and simplest methods is gra-
dient descent.

14

The gradient descent algorithm starts with an initial guess of the weight
vector, w(0). It then evaluates the gradient of the error function, using
backpropagation, at that point and moves the point in the opposite direction.
I.e. at step τ , the algorithm moves a point a short distance in the direction
of the negative gradient, evaluated at wτ ,

(16) ∆wτ = −α∇E|wτ
where α is the learning rate.

The basic version of the gradient descent method is indeed a target for the
non-convexity trap, in which the algorithm converges to a minimum which
is not the global as the objective function is not convex.

2.5. Stochastic gradient descent. Since the basic version of the gradient
descent is not an optimal way of numerically optimizing, several slightly
more advanced methods yielding significantly better results have been de-
veloped. SGD (stochastic gradient descent) is a family of methods which
usually outperforms the basic method. The SGD methods calculate only a
part of the gradient at each iteration.

Suppose that the objective function that is about to be minimized is as
Equation 7 in Section 2.3 General derivation of backpropagation,

(17) E =
K∑
j

E(j)

Instead of calculating the gradient of the full batch, i.e. of all j′s, the
gradient is calculated of a random subset. Hence, the SGD optimization is
functioning the same way as the ordinary gradient descent with the difference
that the gradient is calculated for a subset of the objective function. This
yields a faster optimization.

2.5.1. Adam optimizer. Adam (adaptive moment estimation) is a SGD method
introduced by Ba and Kingma (Ba & Kingma 2015). The Adam algorithm
updates the gradient in each step based on a momentum method. The
method calculates dynamical learning rates for each time step based on the
first, mt, and second, vt, moments of the gradient, i.e. the mean and the
uncentered variance of the gradient.

Algorithm 2 is showing the Adam algorithm (Ba & Kingma 2015).

15

g2t indicates the elementwise square gt ◦ gt. Good default settings for the
tested machine learning problems are α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 10−8. All operations on vectors are element wise. With βt1 and βt2 we
denote β1 and β2 to the power t.

Require: α: Stepsize.
Require: β1, β2 ∈ [0,1): Exponential decay rates for the moment
estimates.

Require: E(w): Stochastic objective function with parameter w.
Require: w0: Initial parameter vector.
m0 ← 0 (Initialize 1st moment vector).
v0 ← 0 (Initialize 2st moment vector).
t← 0 (Initialize timestep).
while wt not converged do

t← t+ 1
gt ← ∇wEt(wt−1) (Get gradient w.r.t stochastic objective at
timestep t)
mt ← β1 ·mt−1 + (1−β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second moment
estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment
estimate)
wt ← wt−1 − α · m̂t/(

√
v̂t + ε)

end
Result: wt (Resulting parameters)

Algorithm 2: Adam optimization pseudo code

An important implication of the Adam algorithm is its adaptive learning
rate. Consider the last line in the pseudo code of Algorithm 2, also assume
ε = 0. The rate at which the parameters are updated at time t becomes,

(18) ∆t = α · m̂t/
√
v̂t

16

2.6. Universal approximation theorem. One of the most classic theo-
rems within the mathematics of neural networks is the universal approx-
imation theorem. The theorem states that a feed forward network with
one hidden layer and a finite number of nodes can approximate arbitrary
well any continuous map from one finite-dimensional space to another. One
of the first papers investigating the universal approximation properties is
Approximation by superpositions of a sigmoidal function (Cybenko 1989).
Cybenko proved the theorem for the sigmoid activation function. Hornik
later showed that the theorem is not limited by the sigmoidal activation
function and proved the theorem for an arbitrary activation function under
some assumptions (Hornik 1991).

A version of the theorem is stated in Neural networks: a comprehensive
foundation (Haykin 1998),

Universal approximation theorem. Let g(·) be a nonconstant, bounded,
and monotone-increasing continuous function. Let ID denote the D-dimensional
unit hypercube [0, 1]D. The space of continuous functions on ID is denoted
by C(ID). Then, for all f ∈ C(ID) and ε > 0, there exist an integer M and

sets of real constants, {w(2)
j , w

(1)
ji , w

(1)
j0 | i = 1, . . . , D and j = 1, . . . ,M}

such that the approximate realization of f(·)

(19) F (x1, ..., xD) =
M∑
j=1

w
(2)
j g

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)

satisfies

(20) |F (x1, ..., xD)− f(x1, ..., xD)| < ε

for all (x1, x2, ..., xD) ∈ ID.

Note that Equation 19 is in fact a variant of Equation 1, which means
that it is a one hidden layer neural network with D input nodes and M
hidden nodes. Furthermore, in this version of the theorem the activation
function is assumed to be nonconstant, bounded, and monotone-increasing.
Thus, the logistic function and the sigmoid function are e.g. meeting these
assumptions, however the ReLU function is not since it is in fact unbounded.

Sonoda and Murata investigated the universal approximation theorem
with respect to the ReLU activation function (Sonoda & Murata 2015). The
main reason for this was that the ReLU function is the new standard for
deep learning. In their paper they showed that a neural network with ReLU
activation function still satisfies the universal approximation property.

17

3. The Error Surface

It is common to refer to the graph of the error function E(w) as the error
surface. In this section some properties of the error function and the error
surface is discussed.

The error function of neural networks is non-convex (Lipton 2016). As
a result one can not guarantee that any local minimum found during op-
timization is a global minimum. This transforms the training of a neural
network into a complicated problem as one can never guarantee that a found
value for the error function is any close to a global minimum. This is fur-
ther amplified by the fact that the error function is often incredibly high
dimensional. If one looks at the error function, E(w) Section 2.3, one sees
that the dimensionality of the error surface is directly correlated with the
number of weights in the network.

3.1. Features of the error surface in relation to the size of the net-
work. Choromanska et al. did extensive analysis on how the error surface
of neural networks looks like. Three important features can be directly
extracted from the report (Choromanska et al. 2015),

(1) ”For large-size networks most local minimas are equivalent and yield
similar performance on a test set.”

(2) ”The probability of finding a ’bad’ (high value) local minimum is
non-zero for small-size networks and decreases quickly with network
size.”

(3) ”Struggling to find the global minimum on the training set (as op-
posed to one of the many good local ones) is not useful in practice
and may lead to over fitting.” (Choromanska et al. 2015).

What this implies is that, it is generally better to opt for a larger network
when trying to train a neural network, as the probability of the training
algorithm to get stuck in a bad local minimum decreases with network size.
However one has to be wary of over fitting when training larger networks.
Over fitting is further discussed in Section 4.1 and 4.2.

However, any good value on an error function might not be any of these
good valued local minimum. It might be the case that the optimization al-
gorithm has reached a bad valued plateau. That is a large area on the error
surface which is seemingly flat (Dauphin et al. 2014). This emphasizes the
importance of having a good update rule such as the Adam-optimizer dis-
cussed in Section 2.5.1, as it might help the algorithm to traverse the plateau
in a reasonable amount of time. If the algorithm does not take sensible step

18

sizes to get away from the plateau, the training algorithm might perform
all of its iterations or be lead to believe that it has reached a minimum,
without even leaving the plateau. Thus leaving the value of the error higher
than it could potentially be and as a result, negatively impact the networks
performance after training.

Another way to tackle the problem of bad plateaus, and bad local minima
in small networks even, is to initialize the neural network with different
initial weights when one retrains it due to poor performance, as the network
might by luck, avoid the bad valued areas on the error surface altogether.

4. Training networks is hard

In most real world applications of neural networks one wants to predict
some out-of-sample result, based on an in-sample data. In the scope of this
thesis only in-sample approximation is considered as more emphasis is put
onto the mathematical structure of the feed forward neural network as op-
posed to any real world application. However, this section will be treating
neural networks used for predicting out-of-sample data as it sheds light on
some interesting problems regarding data driven prediction in general and
how one generally solves these problems when they arise regarding neural
networks.

As discussed in Section 3 one generally needs a somewhat large amount
of nodes to solve any non trivial problem, due to the properties of the error
function. That is, maybe a solution to a specific problem can be constructed
with a neural network using the right weights, biases and some number of
nodes. However, as the proper values for the weights and biases are not
known beforehand, they have to be found using the training algorithm.
Even though a good local minimum might exist, the network can still get
stuck in some bad local minimum during training. Due to the fact that
fewer nodes reduces the dimensionality of the error function. This means
that the training algorithm is unable to find suitable values for the weights
and biases and thus the error may remain high in any measure.

The obvious solution to this problem is to provide the network with more
degrees of freedom. In the case of a general neural network that means more
layers and nodes. In the case of the single layer feed forward network more
nodes. As is discussed in Section 6 giving the single hidden layer feed for-
ward neural network with ReLU activation units more nodes is equivalent to
increasing the potential number of knots in a linear spline. This way one can
see that increasing the number of hidden nodes increases the expressibility
of the neural network as the approximation can more accurately model more
complex functions.

19

This is good for in-sample approximations but can lead to a problem
called over fitting when doing out-of-sample predictions.

4.1. Cross Validation. One way to evaluate how well a model might pre-
dict out-of-sample, is to split the data set used to train the network into two
sets, a training set and a validation set. The ratio between these sets varies
but generally the validation set is smaller than the training set. The model
is then trained on the training set, and then has its accuracy validated on
the validation set.

The reasoning to do this split is that the network can use one part of
the data set to learn some generalisation of the underlying distribution of
the data set as a whole and the other set to validate that it is learning a
generalisation that might be good to predict out-of-sample. Basically what
one tries to achieve is some sort of simulation of out-of-sample prediction
using the validation set.

It is important that the split of the data set is done randomly, as the
underlying distribution of the whole data set has to be preserved both in
the training set and the validation set.

4.2. Over fitting. If an approximation of a function has too many free
variables it can be over fitted to the data. That is the approximation fol-
lows the data points so closely, that out-of-sample predictions become bad.

This can be illustrated, see Figure 2, using polynomial regression. In the
following example ten equally distant data points in the range xi ∈ [1, 10]
are mapped to the function y(x) = x + N(0, 0.4), where N(µ, σ) is the
normal distribution. One would expect the value of y(11) to be 11 ± 0.4.
A decent approximation for this can thus be constructed using polynomial
regression of degree 1. However if one approximates the function using a
polynomial interpolation of degree 6. The out-of-sample prediction becomes
very incorrect.

Even though the second interpolation has more free variables to adjust,
in order to solve the problem at hand, the prediction became worse. The
same principle applies to neural networks. More nodes does not necessarily
mean a better out-of-sample prediction.

4.3. Methods to combat over fitting. As stated before neural networks
are prone to over fit as they generally contain more free variables than is
necessary to directly solve a problem, as it is hard to train them otherwise.
The result is that various techniques to combat over fitting has been de-
veloped. What follows is a description of some of the most common and
effective method to combat over fitting.

20

(a) Degree 1 Prediction (b) Degree 6 Prediction

Figure 2. Plots of Polynomial interpolation of two different
degrees

4.3.1. Early stopping. If one suspects that the models accuracy has stopped
improving one can simply stop the training of the network. One way to
detect this is to measure whether the error of the validation set has converged
with some threshold. If the validation error indeed has stopped improving
this can be an indication that the network is starting to over fit to the
training data.

4.3.2. Regularization. Another way to hinder over fitting is to regularize the
error term used in the backpropagation algorithm (Bishop 2006). That is,
one tries to punish over generalization while still keeping the expressibility
of the neural network high.

This is achieved by adding some penalizing term to the error function
thus reducing the smoothness of the curve produced by the neural network.
As seen in the polynomial interpolation example above a too high degree of
smoothness can be devastating for out-of-sample predictions.

One example of a regularization term is the L2 term defined as,

(21) L2 =
λ

2

∑
w

w2

where w are the weights of the network. λ is a constant the adjusts how
aggressively the regularization term affects the error.

This term is then simply added to the error function as following

(22) E(w) =
K∑
j

E(j) + L2

The intuition behind this kind of regularization is that it punishes the net-
work for learning weights that have too large values. Thus if a weight is to

21

receive a large value it has to considerably increase the accuracy for the net-
work. This helps keeping the degree of smoothness lower as the likelihood
that one single weight becomes too large is diminished.

The L2 is just one example of a regularization term. There are several
different regularization terms good for different scenarios depending on the
specific problem.

Another regularization technique is called dropout (Srivastava 2014). Ev-
ery time a feed forward propagation is started some portion of the inner
nodes in the network are disabled. The ratio varies but something like 50%
of the nodes being disabled is not uncommon.

This also helps reduce over fitting as the network has to be able to solve
the problem at hand over several subset of nodes. That is, it can not rely
on one single subset of its nodes in order to solve some specific problem or
input. Therefore it has to spread its generalization more across the whole
of the network.

The problem with having an expressive network, that is a network with
many inner nodes, is that eventually the network might become a so called
”glorified lookup table”. That is more or less each node in the network has
learned to correspond to a certain input. This produces good accuracy on
the training set but bad accuracy on the out-of-sample predictions. If nodes
are disabled at random this might prevent the network to over fit.

4.3.3. Reduce the size of the network. One last method presented here is
simply to reduce the size of the network. If the problem is simply that the
network is too expressive one can reduce the number of hidden nodes in the
network. The high degree of expressibility might be what allows the network
to generalise the problem at hand, but if it can achieve the same task with
fewer nodes over fitting could be reduced by decreasing the number of hidden
nodes.

22

5. The ReLU network model

The neural network model that will be investigated in this thesis is a
network with one single hidden layer, with an arbitrary number of nodes,
and the rectified linear unit as activation function for the hidden layer and
the unit function as final layer. The network maps one input value to one
output value. Hence, y : R→ R. Thus the network can be expressed as:

(23) y =
n∑
i=1

w
(2)
i zi + b(2)

where,

(24) zi = g(w
(1)
i x+ b

(1)
i)

Figure 3 is a visual representation of Equation 23 and Equation 24.

Figure 3. Feed forward network mapping one input to one
output.

5.1. ReLU activation function. The ReLU (rectified linear unit) func-
tion has become a widely used and popular activation function within neural
networks, especially deep neural networks. In the beginning researchers were
inspired to use ReLU activation function because of its biological similar-
ity. Later the function showed empirical improvements in training speed of
neural network and good results. One explanation why the ReLU function
might yield great out-of-sample predictions is due to its simplicity. Another
documented reason for increased performance is the functions derivative.

23

The derivative is easily computed and does not suffer from the problem of
vanishing gradient. Vanishing gradient is a problem that occurs if sufficiently
many derivatives close to zero are multiplied together due to backpropaga-
tion. The famous sigmoidial activation function experiences this problem.

The ReLU function is defined as follows,

(25) g(a) ≡ max(0, a) and g′(a) =

{
1 if a > 0

0 otherwise

Notice that the derivative of the ReLU function is analytically solvable,
which makes the function easy to use as an activation function in a neural
network.

6. Theoretical Results

6.1. ReLU nets are splines. One curious property of feed forward net-
works with ReLU activation functions in their hidden layers is that they are
equivalent to linear splines. The theoretical results in this thesis is inspired
by Chen’s paper The upper bound on knots in neural networks (Chen 2016).

In order to show that the ReLU net is a linear spline it is helpful to first
define what a linear spline is.

Definition of linear spline. A function, S, is called a linear spline or a
spline of degree 1 if for a finite set of knots x0, x1, ..., xn the following two
conditions hold

(1) on each interval [xi−1, xi], S is a polynomial of maximal degree 1
(2) S is continuous

Theorem (1): Single hidden layer neural networks with ReLU ac-
tivation functions are linear splines. Let y be a neural network defined
by Equation 23 and 24 with the ReLU activation function defined as in Equa-
tion 25. y is a function R → R satisfying the conditions in the definition
of the linear spline and is thus a linear spline. The knots are defined by the
networks’s weights and biases.

Proof:

(1) Let g(a) be the ReLU function. g(a) is a linear spline with knots
X = {amin, 0, amax}

(2) Let z be an inner node of the neural network y defined as z =

g(wx+ b). z is a linear spline with knots X = {xmin−bw , −bw ,
xmax−b

w }
(3) The whole network y is an affine transformation of the inner net-

work nodes z1, z2, ..., zn Such that: y(x) = w
(2)
1 g(w

(1)
1 x + b

(1)
1) +

w
(2)
2 g(w

(1)
2 x+ b

(1)
2) + ...+ w

(2)
n g(w

(1)
n x+ b

(1)
n) + b(2).

24

By creating the set of knots Xy for y as the union of all the knots of the
inner network nodes, X1, X2, ..., Xn such that: Xy = X1 ∪ X2 ∪ ... ∪ Xn.
Then y is defined by a set of knots. As y consists of a linear combination
of zi’s the two conditions for linear splines are preserved in y. Combining
these results one sees that y is a linear spline. �

6.2. Upper bound of knots in one layer network.

Theorem (2): The number of inner spline knots is bounded by the
number of inner network nodes. The number of inner knots, k, of a
spline, y, defined by Equation 23 and 24 with activation function as defined
in Equation 25, is bounded by the number of inner network nodes, n. That
is, the number of inner spline knots satisfies the relation k ≤ n.

Proof: Writing Equation 23 as y = w
(2)
1 z1 + w

(2)
2 z2 + ... + w

(2)
n zn + b(2),

where zi is defined as in Equation 24. The derivative of y with regard to x

is, y′ = w
(2)
1 z′1w

(1)
1 + ... + w

(2)
n z′nw1n

(1). The derivative consists of n terms
z1, z2, ...zn. The terms can at most be discontinuous at one point. That

is when the argument for zi(x) is x =
−b(1)i
w

(1)
i

. Hence, there are at most n

discontinuities in y′.

The relation is k ≤ n due to the fact that two knots can overlap one

another if (
−b(1)i
w

(1)
i

) = (
−b(1)j
w

(1)
j

) for two different network nodes zi and zj The

knots can also lie outside of the range of [xmin, xmax] if
−b(1)i
w

(1)
i

< xmin or

−b(1)i
w

(1)
i

> xmax �

Using Theorem 1 one can see that if two or more of the n terms y′ have
their discontinuity at the same position their knots will coincide. That is

if
b
(1)
i

w
(1)
i

=
b
(1)
k

w
(1)
k

happens to coincide for the two network nodes zi and zk. If

w
(1)
i also is small or if b

(1)
i is large the knots might lie outside of the set of

knots X as this set is bounded. Since y is defined in a finite interval then
that knot will not exist for y as it is defined by its knots.

25

7. Spline interpolation

In Section 8, numerical experiments, a neural network with one hidden
layer and the ReLU activation function is compared to a linear interpolating
spline with equidistant placed knots. This section will give a short overview
of spline interpolation (Süli & Mayers 2003) (Powell 1981). In Section 6,
Theoretical results, the definition of a linear spline is stated and it is shown
that the ReLU network is a spline, however it is not an interpolating spline
by definition.

The word interpolate means simply to put something in between other
things. In numerical analysis interpolation is used to estimate values be-
tween known values. Given some points, {x0, ..., xn}, a function f is inter-
polating another function g at the given points if f(xi) = g(xi) at those
points. There are several ways to find functions that share the same value
as the function one wants to interpolate, although polynomial interpolation
of different degrees is common.

Linear spline interpolation builds upon the idea of polynomial interpo-
lation of degree one, i.e. linear functions, that are piecewise defined. An
example of equidistant linear spline interpolation would be if one has some
equidistant placed points {x0, ..., xn} and one connects these points with
lines, then the piecewise defined linear function that connects these points
is a linear spline.

8. Numerical Experiments

In this section the theoretical results from the previous section will be
demonstrated. It will be shown by example that feed forward neural net-
works with one hidden layer are equivalent to some linear spline with some
set of knots. The network will be compared to a linear spline constructed
using interpolation with equidistant knots. This is done so that their errors
can be compared. The network will also be plotted with the knots marked
as red lines. This is done to illustrate the property that the number of inner
knots is bound by the number of network nodes.

An artificial neural network with an upper bound on the number of knots,
k ≤ n, is compared to a linear spline with n knots. That is, the network will
have at most as many knots as the linear spline function it will be compared
to. The task is to approximate Runge’s function,

(26)
1

1 + 25x2
, x ∈ [−1, 1]

Runge’s function is famous from Runge’s phenomenon. The phenomenon
appears when one tries to interpolate Runge’s function. Oscillation is cre-
ated at the beginning and end of the interval, [−1, 1], when the degree of

26

the interpolating polynomial is increased. The interpolation inconvenience
can be adjusted by instead using splines. However, the problem of choosing
the position of the knots is still present. An usual methodology is to use
equidistant knots, although this is usually not the optimal choice but de-
pends on the function one tries to approximate. As was shown in Section 6,
the neural networks investigated in this thesis are splines, the inner knots are
present at the points −biwi , also shown in the theoretical results Section 6. The
weights and biases of the networks are adjustable parameters decided by the
training of the network, hence the placement of the knots is decided in the
optimization of the weight-space of the network. To measure accuracy of the
approximation the mean-squared-error function, MSE = 1

n

∑n
i=1(ŷi − yi)2,

was used.

8.1. Instructions of how the approximation, using neural networks,
was performed. Thanks to the Universal Approximation Theorem dis-
cussed in Section 2.6 it was known that a single hidden layer neural network
with ReLU-activation units in the hidden layer and linear activation units
in the output layer was potentially sufficient to find an arbitrary good ap-
proximation for Runge’s function.

To realise the network, Google’s computational library TensorFlow was
used. TensorFlow comes with a Python wrapper and thus one can write
TensorFlow code in the Python language. An API called Keras which is
written over TensorFlow was also used as the API provides powerful and
easy to use tools for working with artificial neural networks. What follows
is a short instruction on the program that was written in order to realise
the numerical approximation of the Runge’s function. In addition to Keras
and TensorFlow the Python library Numpy was also used, as it offers tools
for working with mathematical objects in the Python language.

First of: a simple Python function which generated a Sequential() object
from the Keras models package with a variable number of hidden layers with
ReLU activation function was written.

model = createNetwork(NoHiddenNodes)

This way: model is a TensorFlow computational graph which represents the
neural network discussed in this thesis. The parameter ’NoHiddenNodes’
allows one to change how many hidden nodes the model contains.

To generate data for the training a list of 10000 elements in the range
[−1, 1] was generated using Numpy in the following way.

x = np.random.rand(1000,1)*2

x = x-1

27

All of these values was mapped to Runge’s function.

runge = lambda x: (1/(1+25*x**2))

y = runge(x)

After that, the network was trained to be able to approximate Runge’s
function. Here Keras offers a myriad of tools to realise the training. First of
the ”Adam” optimizer was used. The learning rate was set to lr = 0.0001.
Different parameters were tested but it was settled on this learning rate as
it worked well. One could probably speed up convergence if one were to
investigate a more optimal learning rate. The optimizer is created in Keras
as following:

adam = keras.optimizer.adam(lr=0.0001)

In order to speed up the training between different variations of networks
”EarlyStopping” from the keras package callbacks was used. That is, if the
error of the validation set stops improving the training stops. The early
stopping was configured to listen to the MSE value for the validation set
after each epoch. If the value of the MSE had not improved in the last two
epochs training was stopped and the model was returned. This looks like
the following in code:

early_stopping = EarlyStopping(monitor=’val_loss’,patience=2)

’monitor’ is which error the EarlyStopping listens to. ’Patience’ is how many
epochs the EarlyStopping is waiting before stopping the training.

One has to compile the model object before it can be trained.

model.compile(loss =’mean_squared_error’, optimizer=adam)

Finally the network is trained in the following piece of code:

model.fit(x, y, nb_epoch=50000, batch_size=8000,

verbose=1,validation_split=0.2,callbacks=[early_stopping])

The parameter ’x’ is the list of values containing 10000 random elements in
the range [−1, 1]. The parameter ’y’ is the 10000 corresponding values from
Runge’s function.

One has to settle on a number of epochs that the network should iter-
ate over before it stops the training. As early stopping was used a very
high number of epochs was chosen. In none of the many trainings that
was performed did the various networks ever reach 50000 epochs before the
EarlyStopping fired.

28

As the data was very simple in this application the whole batch was fed
into the network at the same time. That is: ’batchsize’ = 8000. The reason
that ’batchsize’ was not set to 10000 was that 2000 of the elements was used
in the validation set. This was determined by the parameter ’validationsplit’
= 0.2.

Finally ’verbose’ was set to 1 as this provided some information about how
the training is performing in the console of the Python program. EarlyStop-
ping was also passed as an argument so that the training had the ability to
stop early if the validation error stopped improving.

When the training was done the approximation of Runge’s function was
retrieved from model in the following way. Some random data was created
in the interval x ∈ [−1, 1] sampled from the normal distribution with mean
0 used for testing the function.

approximation = model.predict(np.sort(x, axis=0))

’approximation’ is now a NumPy array containing the predicted function
values.

The numerical approximation constructed by the neural networks was
also compared to a linear spline using equidistant knots. This was done
using the Python library SciPy, using the module ”Interpolate”.

The two different approximations were plotted over Runge’s function. The
MSE for both approximations was compared in all the cases. What follows
below are a few selected examples. In the column to the left the approxima-
tions are compared. In the column to the right the network approximation
is plotted with its corresponding knots inside the domain xi ∈ [−1, 1], using
the formulae devised to calculate the position of the knots in Section 6.1,
xi = −bi

wi
.

Figure 4 shows three different networks compared to three different linear
interpolating splines with equidistant knots. Figure 4 (A) shows a network
with 2 nodes, yielding 2 inner knots, and 4 in total including the end points.
It is plotted together with a interpolating linear spline that also exhibits
2 inner knots and 4 in total including the end points. One can see that
the error of the network is 0.0110 while the error for the linear spline is
0.0633. In Figure 4 (B) the network is plotted together with lines showing
the position of the knots. The same structure follows the rest of the plots
in Figure 4.

29

(a) 2 nodes

MSE spline: 0.0633. MSE network: 0.0110.
(b) 2 nodes: Location of knots

(c) 3 nodes

MSE spline: 0.0070. MSE network: 0.0079.
(d) 3 nodes: Location of knots

(e) 5 nodes

MSE spline: 0.0008. MSE network: 0.0007.
(f) 5 nodes: Location of knots

Figure 4. Runge’s Function, Interpolating Spline and Neu-
ral Network.

30

9. Discussion

• How does a single layer ANN with ReLU activation function approx-
imate a function?

As shown in this thesis a neural network with a single hidden layer with
ReLU activation is a linear spline. Thus the approximating function is built
up by piece wise linear functions, as e.g. shown in Figure 4. This can ex-
plain one of the reasons why the ReLU function is such a popular activation
function, and performs well. In Section 4.1 and 4.2 over fitting was discussed
and an example with polynomial interpolation was given (Figure 2). If the
approximating function has a too high sensitivity and over fits to the train-
ing data, one is exposed to the risk of bad out of sample prediction. Since it
is shown that ReLU approximates with piece wise defined linear functions
it is the least sensitive function in the family of polynomial splines.

• How is a single layer ANN with ReLU activation function related to
approximation theory?

In approximation theory splines and spline interpolation is commonly
studied and since ReLU networks are essentially splines the two areas in-
tersect. However, the statement that ReLU networks are splines doesn’t
necessarily make them interpolating splines. The definition of interpolation
is nowhere to be found when we are defining the ReLU neural network. In-
stead the networks knots are placed using a training algorithm, trying to
minimize some error.

• How does the approximation change when adding or subtracting
nodes?

Theorem 2 states that the number of knots of the linear spline is bounded
by the number of inner nodes of the network. By adding a node/neuron into
the neural network one is adding one degree of freedom to the network which
makes it possible, although not a must, for the network to create one more
knot to the spline. The reason why one more knot is not automatically
created is because knots can intersect. As stated in the proof of Theorem 2,

(
−b(1)i
w

(1)
i

) could happen to be equal to (
−b(1)j
w

(1)
j

), for two different network nodes

zi and zj , in this situation one more knot would not be added to the linear
spline although one more inner node was added to the network. When sub-
tracting an inner node from the ANN one reduces the maximum number of
knots of the spline by one.

31

• How does the approximation of a continuous function with the ReLU
ANN compared to an interpolating linear spline with equidistant
spaced knots?

As discussed in the thesis the position of the knots of the spline created
by the neural network is decided by the weights and the biases of the neu-
ral network. This means that the positioning of the knots are part of the
optimization problem. When the error function is minimized the adjustable
parameters are changed, hence the weights and biases are changed, hence
the positions of the knots are changed. An interpolating spline with equidis-
tant placed knots has no flexibility in the position of the knots but to have
them placed with equal distance. Furthermore, the interpolation has the
constraint of being equal to the function it interpolates at a certain point,
this does not apply to the neural network.

10. Concluding remarks

The ReLU activation function has been used successfully within neural
networks during the last years. When looking at the simple hinge function it
is not clear how it helps the network model to approximate anything at all.
With some imagination one slowly starts to understand the connection to
linear splines and how the mechanisms work. In the fast paced environment
one lives in today it is easy to interpret machine learning and neural net-
work theory as much more of a trial and error subject than a science. Data
scientists might use algorithms and methods without exactly knowing how
they work, as long as they perform well in the moment. For these reasons it
has been delightful to investigate how a popular activation function, such as
the ReLU function, actually helps the networks to approximate functions. If
results like these are further investigated for other activation functions and
other types of neural networks the field will more easily be understood by
non-machine learning engineers, such as mathematicians, which could help
the field of neural networks to continue improving.

Apart from the sources referenced in this thesis there is some other note-
worthy material to read regarding neural networks. The feed forward neural
network discussed in this thesis is in a way the most simple of the neural
networks. There are two other common types of neural networks that are
important today, the convolutional neural network and the recurrent neural
network.

The convolutional neural network (Krizhevsky et al. 2012) is simply a
deep feed forward neural network but it also contains convolutional and
pooling layers. That is, the input is fed into a layer that applies a convo-
lution operation to the input before passing it forward. This is done for
a variable amount of layers before the data is passed into a pooling layer,

32

which reduces the dimensionality of the data using some stride. A stride of
say 2 means that the pooling layer takes 2x2 neighbouring data points in
the data matrix and down samples it into a single data point. This can be
done using something like the largest value in each stride or an average of
the values in the stride. The down sampled data is then further fed into a
variable amount of convolutional/pooling layers, heavily dependent on the
problem at hand. When the convolutional/pooling phase of the feed forward
propagation is over the data is fed into one or several layers of feed forward
fully connected layers. After that back propagation can be applied to the
network with respect to some sensible error function. What the convolu-
tional nerual network allows one to do is to take something like a picture,
find various edges and shapes in the picture and then analyse them using
a deep feed forward network. These kind of networks have been very suc-
cessful regarding image processing and convolutional neural network have
been deployed in many applications where out-of-sample prediction regard-
ing data like pictures is necessary.

Recurrent artificial neural networks are a class of neural network that
are related to autoregressive functions, in e.g. time series analysis, where
yt depends upon yt−1. An example of a structure of a recurrent networks
could be, after data has been processed by a node it is not send forward in
the network but again reprocessed by that node. One can think of recurrent
neural networks have a feedback loop. There are several types of recurrent
neural networks depending on the structure of the network. A common
and popular recurrent network type is LSTM (long short-term memory)
networks (Hochreiter & Schmidhuber 1997). The LSTM networks consist
not of nodes but of LSTM blocks and has memory, that is the output of the
network can depend on structures lagged in time. These LSTM networks
can in fact store arbitrary long autoregressive structures. The recurrent
networks, LSTM included, are often used for language processing and time
series analysis.

33

11. References

Adadi. M., Google Research et al. (2015). TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems. Preliminary White
paper, November 9, 2015.

Ba L. J., Kingma P. D. (2015). Adam: A Method for Stochastic Opti-
mization. Working paper arXiv:1412.6980.

Bishop M. C. (1995). Neural Networks for Pattern Recognition. Cam-
bridge, UK: Oxford University Press.

Bishop M. C. (2006). Pattern Recognition and Machine Learning. Cam-
bridge, UK: Springer.

Chen K. K. (2016). The Upper Bound on Knots in Neural Networks.
Working paper arXiv:1611.09448.

Choromanska A., Henaff M., Mathieu M., Arous G. B., LeCun Y. (2015).
The Loss Surfaces of Multilayer Networks. Journal of Machine Learning
Research 38:192-2014.

Cybenko G. (1989). Approximation by Superpositions of a Sigmoidal
Function. Math. Control Signals Systems 2:303-314.

Dauphin Y. N, Pascanu R., Gulcehre C.,Cho K., Ganguli S., Bengio
Y. (2014). Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. NIPS’14 Proceedings of the 27th
International Conference on Neural Information Processing Systems:2933-
2941.

Haykin S. (1998). Neural Networks: A Comprehensive Foundation. Hamil-
ton, Ontario, Canada: Pearson Education. 2nd edition.

Hochreiter S., Schmidhuber J. (1997). Long Short-Term Memory. Neural
Computation 8:1735-1780.

Hornik K. (1991). Approximation Capabilities of Multilayer Feedforward
Networks. Neural Networks 4:251-257.

Krizhevsky A., Sutskever I., Hinton E. G. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. Working paper at conference
Neural Information Processing Systems 2012.

34

Lipton Z. C. (2016). Stuck in a What? Adventures in Weight Space,
Department of Computer Science and Engineering, University of California.
Working Paper arXiv:1602.07320.

McCulloch W., Pitts W. (1943). A Logical Calculus of the Ideas Im-
manent in Nervous Activity. The Bullentin of Mathematical Biophysics
5:115-133.

Olazaran M. (1996). A Sociological Study of the Official History of the
Perceptrons Controversy. Social Studies of Science 26:611-659.

Powell M. J. D. (1981). Approximation Theory and Methods. Cambridge,
UK: Cambridge University Press.

Sonoda S., Murata N. (2015). Neural Network with Unbounded Activa-
tion Function is Universal Approximator. Faculty of Science and Engineer-
ing, Waseda University. Working paper arXiv:1505.03654.

Süli E., Mayers D. (2003). An Introduction to Numerical Analysis. Cam-
bridge, UK: Cambridge University Press.

Srivastava N., Hinton G., Krizhevsky A, Sutskever I., Salakhutdinov R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research 15:1929-1958.

35

Appendix A. Numerical packages

In this thesis the open source numerical packages TensorFlow and Keras
have been used to complement the regular Python packages such as NumPy.

A.0.1. TensorFlow. TensorFlow is a machine learning package for manipu-
lation of tensors, i.e. multidimensional arrays. TensorFlow is developed by
Google Brain Team and the first version was released on November 9th, 2015.
TensorFlow has built in functions for artificial neural network training.

A.0.2. Keras. Keras is a high level machine learning library written in Python,
which can use Tensorflow as a backend in order to allow fast coding and ex-
perimentation.

	Populärvetenskaplig sammanfattning på svenska
	Author's preface
	Glossary
	List of abbreviations
	1. Introduction
	1.1. Purpose
	1.2. Thesis outline

	2. Feed forward network mapping
	2.1. One hidden layer network
	2.2. The activation function
	2.3. General derivation of backpropagation
	2.4. Network training with gradient descent
	2.5. Stochastic gradient descent
	2.6. Universal approximation theorem

	3. The Error Surface
	3.1. Features of the error surface in relation to the size of the network

	4. Training networks is hard
	4.1. Cross Validation
	4.2. Over fitting
	4.3. Methods to combat over fitting

	5. The ReLU network model
	5.1. ReLU activation function

	6. Theoretical Results
	6.1. ReLU nets are splines
	6.2. Upper bound of knots in one layer network

	7. Spline interpolation
	8. Numerical Experiments
	8.1. Instructions of how the approximation, using neural networks, was performed.

	9. Discussion
	10. Concluding remarks
	11. References
	Appendix A. Numerical packages

