
Introduction and Proof of the Goodstein

Sequence and Hydra Game

Hermine Tigerschiöld
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This thesis will introduce and prove the theorem of the Hydra Game as well
as the theorem surrounding the Goodstein sequence. The two problems which
are clearly intertwined will be introduced and solved with the assumption that
the reader has no previous knowledge of them and little to no knowledge of
ordinal numbers. All results have previusly been reached and presented, most
notably by Kirby and Paris (Kirby et al, 1982). The aim of the paper is not
to break ground but educate. The end of the paper will mention how these
theorems show limitations of Peano Arithmetic but will not attempt to prove
the statement.
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1 Introduction

1.1 The Hydra Game

The Hydra Game tells the slightly modified story of when Hercules fought the
horryfing multi headed monster - the Hydra. The Hydra has incredible regen-
erative powers. Every time Hercules severs one of its heads, several new heads
grow from the Hydra’s body. To describe the Hydra in a simple graph of seg-
ments and nodes we use drawings such as Figures 1 through 5. In Figure 1, the
node named A is the root of the Hydra, nodes which are not leaves such as B
are part of the Hydra’s body, and the leaves including stems such as C are the
heads of the Hydra.

Figure 1: Example of a Hydra.

Now that we have established how to draw the Hydra, it will be easier to
describe its regenerating powers:

• Hercules for the nth time severs a head.

• Traverse one node down from where the head was severed.

• The entire part of the Hydra from this node up is multiplied n times, and
grows from the relevant node.

The game itself has the following basis: a hydra is decided upon, it can have
any number of heads as well as any shape. Then the game itself proceeds, a
head is severed followed by regeneration of the Hydra. If in a finite number of
blows the Hydra’s root is reached the game is won by Hercules, if not the game
is won by the Hydra. An example of how the game could proceed follows. The
original hydra for the example is portrayed in Figure 2, all heads are numbered.
Hercules decides to sever head 1. The regenerative powers will then cause the
Hydra to look as in Figure 3. Head 1 is gone and there are three new heads:
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7, 8 and 9. Hercules decides that he will next strike head 6. The results can
be seen in Figure 4. In two attacks the Hydra’s number of heads has increased
from 6 to 12.

It is evident that the amount of heads has increased. Does this mean that
it is impossible to cut off all heads and eventually win against the Hydra? In
this case a strategy consisting of first cutting off the heads furthest away from
the body and then working inwards would result in a total sum of 222 nodes
and heads at step 15. Another 15 hits and the total sum would have increased
to 671. This does not look very promising; as we doubled the hits from 15 to
30 the amount of nodes did not decrease but instead increased three times over.
Before discussing this example further we will explore if it is possible to win the
game against a smaller hydra.

If Figure 5 we have a complete game against a smaller hydra. The game is
won in 5 hits. This suggests that there are at least some games that can be
won.

Let us return to the previous example. At step 100 there will be approxi-
mately 5000 nodes. Even more terrifying, there will be approximately 2 · 106

nodes at step 170. Still the Hydra shows no sign of decreasing in size. Although
numbers in some cases speak for themselves this is not one of those cases. It is
noteworthy that despite the Hydra’s increase in number of nodes, the maximum
distance between a head and the root is the same as it was in the original hy-
dra. This might seem trivial but will show to be of vital importance. It suggests
that if all heads positioned 3 nodes away from the root were hit then the Hydra
despite becoming very wide in the process would be permanently reduced to
being a hydra with heads maximum 2 nodes away from the root. If this method
would be applied again the Hydra eventually would be reduced to a hydra of
height 1, at which point the Hydra no longer has the ability to regenerate.

It so happens that this course of events is not only possible but will always
take place and that all hydras therefore can be beaten, although it might take
an extensive amount of time. In the example above, the Hydra can be beat after
approximately 102·10

6

steps. This is a very large number. Another very large
number is the amount of stars in the sky, and an even larger number is the total
amount of stars in the universe. This number, the combination of all stars in all
galaxies is approximated to being roughly 1022 (ESA, n.d.). This compared to

our number 102·10
6

, which can also be written 102000000. The exponent of the
number of hits to win is 9000 times larger than the exponent of the number of
stars in the universe. We conclude that although the game in our example can
be won it will take an incredibly large number of hits. This suggests that it is
possible to win games that seem hopeless and sure enough this is true. With
this our first theorem is presented.

Theorem 1.1. Every strategy against the Hydra is a winning strategy.

No matter which head Hercules decides to sever and no matter which order he
chooses to do it in, he cannot lose. Eventually he will reach the root, at which
point the game is won. This is the first of two theorems that will be proven.
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Figure 2: The hydra in the example, n = 1

Figure 3: The hydra in the example, n = 2

Figure 4: The hydra in the example, n = 3
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Figure 5: The smaller Hydra, complete game.

To prove this theorem it is helpful to start by studying the so called Goodstein
sequence.

1.2 The Goodstein Sequence

The Goodstein sequence is similar to the Hydra in that it seems to be growing
at an alarming rate only to eventually end up at zero. The steps to formulate
a Goodstein sequence are described below in the list. An example is explained
in parallel.

• An integer m larger than zero is chosen. Example: 111.

• There is also a second integer; n larger than 1. Example: n = 2 in the
beginning.

• The integer m is described in base n. Example: 111 = 26 + 25 + 23 + 22 +
21 + 20

• The exponents are then described in base n, and also the exponents of the
exponents etc. Example: 111 = 22

2+2 + 22
2+1 + 22+1 + 22 + 2 + 1

• The next number in the sequence, Gn(m), is created by exchanging every

number n by n+ 1 and then subtracting 1. Example: G2(111) = 33
3+3 +

33
3+1 + 33+1 + 33 + 3 + 1− 1

The last step of the instruction is then repeated creating a sequence, the Good-
stein sequence, m0,m1,m2, ....for the number m. A continuation of the example
started would result in

m = m0 = 1110 = 22
2+2 + 22

2+1 + 22+1 + 22 + 2 + 1 = 111
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G2(m0) = 1111 = 33
3+3 + 33

3+1 + 33+1 + 33 + 3 ∼ 2.29 · 1014

G3(m1) = 1112 = 44
4+4 + 44

4+1 + 44+1 + 44 + 3 ∼ 3.49 · 10158

G4(m2) = 1113 = 55
5+5 + 55

5+1 + 55+1 + 55 + 2 ∼ 5.98 · 102187

It is evident that the sequence grows incredibly quickly, at least for the first few
steps. In 4 steps we have arrived at a number that just like the number in the
Hydra introduction is many times larger than 1022, the total amount of stars
in the universe. We note that 1022 is not nearly large enough to describe these
numbers, but its difficult to produce a comprehensive larger number. The age
of the universe, approximately 14 ·109 years (Redd, 2017), counted in seconds is
4.4 · 1017 seconds old. This is smaller than 1022 but might be easier to grasp. It
is the number we would reach if we started counting the integers at Big Bang,
one integer every second, until present day. If this was done the size of the
number reached would still not be close to the size of G4(m2). That means that
if the sequence stops growing after the fourth step and every new number in the
sequence is simply the previous number subtracted by one and this iteration was
performed from the beginning of time until now the number reached in present
time by the sequence would barely be smaller than the original number.

But the sequence does not seem to stop growing. Let us assume that the
growth pattern continues and the sequence keeps growing, the exponential in-
creasing by roughly a factor of 10 to 15 per step. This increase makes the next
numbers of this sequence too large to understand. But before any rash conclu-
sions are drawn from this information it helps to as in the case of the Hydra take
a step back and not simply look at the numbers. In the case of the Goodstein
sequence it helps to look at the way the sequence is constructed. The first term
m is defined using 6 terms. In the next number G2(m) the term furthest to the
left has been exterminated and the result is a total of five terms. The sequence
is still growing uncontrollably as every term increases in size but the amount of
terms the sequence builds of is still limited to five. It is evident that the term
furthest to the right is being reduced and in another two steps at G6(m4) it will
be eliminated. After that the subtraction will inevitably break down the fourth
term. At this point the fourth term will be very large but nonetheless it will
happen. This is one way of picturing the eventual decrease of the sequence. The
sequence is growing as the terms grow but those terms are not indestructible.
They are vulnerable to the slow but steady subtraction of one. This ensures
that the following theorem is true.

Theorem 1.2. For any numbers m and n > 1 the Goodstein sequence for m
starting at n hits zero.

The proof of Theorem 1.2 will enable the proof of Theorem 1.1, the two
problems are quite similar.
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2 Definitions and Background

The proofs in the next section rely on several mathematical concepts and ideas
that will now be presented. One of the most basic mathematical tools that will
be used is the notion of a set. The word “set” is used frequently in everyday life
with a definition similar to the mathematical definition. A set is a collection of
elements, but is in itself viewed as a single object. If an element t is a member
of the set A then the notation t ∈ A is used, if t is not an element in A then
the notation t /∈ A is used (Enderton, 1977, 1). This most basic definition of
a set does not have any underlying conditions that the elements are ordered or
that they could be compared to one another. An example of a set where some
elements can be compared to each other is a Partially Ordered set.

Definition 2.1. Partially Ordered Set Let L be a set where the elements can be
compared. A relation is used to compare two elements, its notation commonly
being ≤. Let a and b be elements of the set L. Depending on the qualities of a
and b the statement a ≤ b might be either true or false. A Partially Ordered Set
is the combination of a set, L, with an partial ordering, ≤. A partial ordering
is a relation for which the following conditions are fulfilled.

1. Reflexivity For all a ∈ L, a ≤ a.

2. Anti-symmetry If a ≤ b and b ≤ a then a = b.

3. Transistivity If a ≤ b and b ≤ c then a ≤ c.

Where a, b, c ∈ L. The partial ordered set is then written (L,≤) (Kaplansky,
1977, 9) (Devlin, 1993, 11).

A partially ordered set in layman terms is therefore a set consisting solely of
elements that can be compared to one another and where the relation used to do
so fulfills the criteria above. It is important to note that for a patrially ordered
set there is no criteria guaranteeing that given a, b ∈ L either a ≤ b or b ≤ a
is true. A basic example of a partially ordered set is (Z,≤). The relation “less
than or equal to” fulfills all three points above for all integers. An example of
the opposite could be (N, R), where the relation R is defined by

{aRb | ∃c 6= 1, c ∈ Z such that a/c, b/c ∈ N, a, b ∈ N}.

In this case (N, R) would not qualify to be a partially ordered set as the
ordering does not fulfill the second criteria in the definition and is therefore not
a partial ordering. This is evident for the elements 2 and 4, where 2R4 and 4R2
are both true despite 2 6= 4.

The example (Z,≤) above is also an example of a Totally Ordered set. The
totally ordered set is very similar to the partially ordered set but with one more
criterion known as the comparability criterion. The criterion must be fulfilled
by the partial ordering of the set (Weisstein, n.d.).

• For every a, b ∈ L either a ≤ b or b ≤ a.
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This essentially means that every two elements from the set can be compared
to one another. An example of a set that does not fulfill this additional criteria
but it a partially ordered set is (N,4) where the relation 4 is defined by;

{a 4 b | b/a ∈ N, a, b ∈ N}.

This relation between a and b does not fulfill the added criteria for a totally
ordered set as not all fractions are natural numbers. Let a = 3 and b = 7
then a 4 b is 7/3 which the relation is not defined for as 7 is not divisible by
3. The other possible comparison is b 4 a which is 3/7, still undefined as 3 is
not divisible by 7. From this we can draw the conclusion that neither a 4 b
nor b 4 a can be used to compare a and b which means that the comparability
criterion is not fulfilled. Despite the set not being a totally ordered set it fulfills
all criteria for a partially ordered set. Using the definition for a partially ordered
set it is now possible to define a Well Ordered set.

Definition 2.2. Well Ordered Set is a partially ordered set where every subset
has a least element (Abian, 1965, 142).

The difference between the definition a well ordered set and a partially ordered
set might seem negligible but will show to be of vital importance. The least
element is defined as the element that if compared, using the partial ordering,
to every other element in the set/subset it is smaller than all other elements,
with the exception of the element itself. An example of a partially ordered set
that is not a well ordered set is (Z,≤). The set is defined as

{...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}.

This set has no least element, neither has several of its subsets, for example the
negative integers form a subset, {...,−4,−3,−2,−1} ∈ N, which lacks a least ele-
ment. This as opposed to for example the natural numbers, N = {0, 1, 2, 3, 4, ...}
which have a clear least element 0, which also is true for all of its subsets making
(N,≤) a well ordered set.

2.1 Ordinal Numbers

Now that we have defined well ordered sets it is almost time to define ordinal
numbers. In order to understand the definition we need to define a notation
first.

Definition 2.3. Initial Segment Let (P,≤) be a partially ordered set. For every
element a of P , the set of all elements x of P such that x < a is denoted by
I(a) and is called the initial segment of P determined by a.

The length of the definition does in this case not correspond to the difficulty
of the concept. An initial segment is simply the subset that consists of all
elements smaller than the specified element. For example if we have a partially
ordered set;

(P,≤) = {2, 3, 4, 5, 6}.
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Then we could define the initial segment I(4) as;

I(4) = {2, 3}.

Now to the definition of ordinal numbers.

Definition 2.4. Ordinal number A set is called an Ordinal number if w can be
well ordered so that for every element v of w the initial segment I(v) of w is
equal to v, ie;

I(v) = v for every v ∈ w.

(Abian, 1965, 317)

This definition may seem unintuitive, its main benefit is that it communi-
cates the importance of the construction of the ordinal number. This definition
will be further explained using an example, but first we will study how natural
numbers are most commonly represented as sets. The first number that will be
described is the number zero. This quite intuitively is the empty set, ie 0 = ∅.
Note that

I(0) = ∅ = 0.

The next natural number is the number 1. To represent it we count from 0,
which also happens to be the only digit. The number 1 is therefore the set of
the elements in zero, ie 1 = {0} = {∅}. Also

I(1) = {0} = {∅} = 1.

The process is repeated. The number 2 is the set of the elements of 0 and 1.

I(2) = {0, 1} = {∅, {∅}} = 2.

Next is the number 3, again it is the set of the sets of 0, 1 and 2.

I(3) = {0, 1, 2} = {∅, {∅}, {∅, {∅}}} = 3.

This process is then repeated to get all natural numbers. This is how the ordinal
numbers are built recursively. It is also possible to extend over limits and start
counting infinities. The most common example of this will be mentioned further
down.

Now we will show how the definition is used in practice. According to the
definition it should be possible to choose an element of the set, 5 = {0, 1, 2, 3, 4},
for example 3, to create an initial segment. The set I(3) becomes;

I(3) = {n ∈ {0, 1, 2, 3, 4} | n < 3} = {0, 1, 2} = 3.

This is clearly the set representation of 3 (Abian, 1965, 317). The ordinal
number of a set A, will from now on have the notation o(A).

Alternatively we can define an ordinal number as follows. If we have two
well ordered sets they will have the same ordinal number if and only if the
sets are order isomorphic. Order isomorphism means that there must exist a
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function from one set to the other where the function has the properties that it is
bijective and preserves order (Kaplansky, 1977, 55). A bijective mapping might
be familiar to the reader; it means that there is a function that maps between
two sets such that the mapping is both injective and surjective; or in layman
terms that all elements are mapped in pairs one-to-one and that all elements
are mapped to and from. The definition of an order preserving function is

Definition 2.5. Order preserving Let there be two partially ordered sets (A,≤)
and (B,≤). A function, or mapping, f from A to B is order preserving if for
every two elements a, b ∈ A if;

a ≤ b implies f(a) ≤ f(b).

(Abian, 1965, 284)

This simply states that for two sets to be order isomorphic there must exist
a function that is not only bijective but that maps all elements from one set, A,
onto the other set, B, in a way that the elements of B are ordered in accordance
with its partial order. What is essential to this definition is that there must be
a single ordinal that represents each collection of sets that are order isomorphic.
This is true and is formulated in Theorem 2.1 further down.

For the purpose of using ordinal numbers it is necessary to define their arith-
metic, therefore addition, multiplication as well as exponents of ordinal numbers
will now be defined. Due to the well ordering of an ordinal number neither ad-
dition nor multiplication of ordinal numbers are commutative, meaning that
a + b 6= b + a. But before the arithmetics is defined, the smallest transfinite
ordinal, ω, will be presented. It is the ordinal number of the set of all natural
numbers with the usual ordering ≤;

ω = {0, 1, 2, 3, 4, ...}.

Transfinite ordinals are the ordinal numbers which have an infinite number of
elements, this as opposed to the finite ordinals, which all have a finite number
of elements (Conway, 2000, 271)(Abian, 1965, 317). There are a certain type
of transfinite ordinals that have no immediate predecessors; limit ordinals. The
smallest limit ordinal is ω which has just been defined above, the second is 2ω
which will soon be defined (Kaplansky, 1977, 57).

Definition 2.6. Addition Let the sets A and B have the ordinal numbers
o(A) = α and o(B) = β respectively. The sum of α and β is written as α + β
and is defined as the disjoint union A t B. The disjoint set is sorted so that
first all elements from A is sorted into the new set, ordered the same way they
were originally ordered in A. Followed by all the elements in B, ordered as they
were originally ordered in the set B (Hansson et al, 1973, 34).

The disjoint union is very similar to the traditional union but all elements
from the two sets A and B are regarded as being of different “types”. This
means that despite there being a number a in both sets the two a’s are seen as
different elements and will both be represented in the disjoint union.

Theorem 2.1 is important for the definition of addition.
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Theorem 2.1. For every well ordered set w there exists a unique ordinal number
similar to w (Abian, 1965, 324).

The word similar in this theorem means that there is one ordinal number a
well ordered set is order isomorphic to. This means that there is no ambiguity.
When a set is created through addition it will be represented through a single
ordinal number. Now let A be the set of the natural numbers, ordered using
the “less-than-or-equal-to” ordering. The ordinal number o(A) then becomes ω.
Let B be the set {0}. The ordinal number o(B) is then 1. Addition of the form
A+B then becomes

ω + 1 = o(A) + o(B) = o(A tB) = o({0, 1, 2, 3, 4, ...., 0}) = ω + 1.

The addition o(A) + o(B) prior to the operation having been performed can be
written as ω + 1, as o(A) = ω and o(B) = 1. Above the addition was then
calculated and the result is ω + 1, mainly because of the zero placed last in
the disjoint union. The zero communicates that there exists a specific element
larger than all other elements in the set; therefore a +1 is added onto the ω.
This as opposed to addition of the form B +A

1 + ω = o(B) + o(A) = o(B tA) = o({0, 0, 1, 2, 3, 4, ....}) = ω.

In B tA there is no largest element. This difference between A tB and B tA
create a large enough distinction to ensure that there could not be a bijective
and order preserving mapping between the two sets. As the criterion for the two
sets to have the same ordinal number is not fulfilled, the two sets cannot have
the same ordinal number. This confirms that the order of the addition is vital
- the addition defined, is not commutative. It is worth mentioning that when
finite numbers are added the addition becomes commutative, it simply becomes
equal to the numbers of elements involved, regardless of order. A short example
would be

o({0, 1, 2, 3}) + o({99, 98, 97}) = o({0, 1, 2, 3, 99, 98, 97}) = 7

o({99, 98, 97}) + o({0, 1, 2, 3}) = o({99, 98, 97, 0, 1, 2, 3}) = 7

Complications arise when infinities are added.
Multiplication of ordinal numbers is based of the same idea as addition.

Definition 2.7. Multiplication Let the sets A and B have the ordinal numbers
α and β respectively. The product of α and β is written as α · β and is defined
as the ordinal number of A × B with the order ≺, that allows 〈a, b〉 ≺ 〈c, d〉 if
and only if either a ≺ c, or a = c and b ≺ d (Hansson et al, 1973, 35).

Similarly to addition, multiplication of ordinal numbers results in a set that
is only isomorphic to a single ordinal number, again as a result of Theorem 2.1.
If the reader is not familiar with the notation A×B it is the cartesian product,
i.e. it is the set of all combinations of (a, b) where a ∈ A and b ∈ B (Kaplansky,
1977, 19). The result of multiplication is therefore described as all combinations
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of (a, b) ordered with regards first to the first element and then to the second.
This ordering is most commonly known as the lexicographical order as it is
frequently used to organize words based on letters. For example are the words
in dictionaries organized first by the first letter, then second letter, then third
etc. Multiplication of ordinal numbers is also not commutative, as seen in the
following example. Let o(A) = ω and o(B) = o({1, 2}) = 2 then o(A) × o(B)
becomes

o(A)× o(B) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), ...

.., (n, 1), (n, 2), (n+ 1, 1), (n+ 1, 2), ...}.

This is isomorphic with the ordinal number ω, which is evident upon further
inspection. All elements have defined predecessors and the amount of elements
are infinite. The only ordinal number that fulfills these criteria is ω, the first
limit ordinal.

Multiplication of the form o(B)× o(A) results in

o(B)× o(A) = {(1, 0), (1, 1), (1, 2), (1, 3), ...(2, 0), (2, 1), (2, 2), (2, 3), ...}.

This is isomorphic with ω + ω. This becomes evident as we note that all
the elements {(2, 0), (2, 1), (2, 2), (2, 3), . . . } are larger than all the elements
{(1, 0), (1, 1), (1, 2), (1, 3), . . . }. This can be thought of as one infinite set be-
ing the successor to another, or ω succeeding ω resulting in ω + ω.

We conclude that o(A)×o(B) = ω·2 = ω and that o(B)×o(A) = 2·ω = ω+ω
which confirms that multiplication is not commutative.

The exponent will be defined with the help of multiplication but also us-
ing what will be explained later as transfinite induction. This means that the
exponent is defined recursively.

Definition 2.8. Exponent Let α be an ordinal number. We define the exponent
with the aid of transfinite induction. The three criteria are listed below.

• α0 = α∅ = 1,

• If β is not a limit ordinal and therefore can be written as β = γ + 1 then
αβ = α · αγ ,

• If β is a limit ordinal then αβ =
⊔
γ<β

αγ .

(Devlin, 1993, 74)

The three criteria can be used recursively to calculate the exponent. Calcu-
lating an exponent is very similar to repeatedly multiplying an ordinal number
with itself. This means that the cartesian product as opposed to in multipli-
cation is extended, there will be more than two elements in every bracket. An
example could be α3 where α = {0, 1, 2}.

α3 = α · α · α = {(0, 0), (0, 1), ...(2, 2)} · α =

{(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), ....(2, 2, 1), (2, 2, 2)}
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This is an example of when the the exponent is not a limit ordinal. If the
exponent is a limit ordinal a very similar approach is used but the cartesian
product brackets become infinite, there is an infinite set of elements in each.

Another interesting thing to note is that the ordering used to orgnanize the
elements is the lexicographic order mentioned earlier.

Some of the traditional counting rules for exponents are true for ordinal
numbers such as;

1. αn+m = αn · αm

2. (αn)m = αn·m

But (α · β)n = αn · βn is most commonly not true.

2.2 Transfinite Induction

The concept of induction must be further developed for use on ordinal numbers.
The idea is virtually the same. Let P (α) be a statement about the ordinal α. If
it is shown that it is correct for P (0), as well as for all P (γ) assuming it is true
for P (β) where γ > β we can conclude that the statement P (α) is correct. So
far it is identical to traditional induction. But as introduced in the section on
ordinal numbers there is a certain type of ordinal called the limit ordinal. Limit
ordinals require that the statement is also proved from the transition between
λ1 to λ2 where λ2 is a limit ordinal and λ1 < λ2.

In order to understand this properly we will study the following example.
We shall prove the theorem;

Theorem 2.2. Every infinite ordinal can be expressed as a sum of a limit
ordinal and a finite ordinal. The sum is unique for every ordinal number.

In order to prove this we shall break the proof down into two parts. First
proving that the infinite ordinal can be written as a sum and then the uniqueness
of that expression. The first proof is found below written out in stages of
induction.

• Base/Limit ordinals: If α is a limit ordinal it can be written as α+ 0.

• Assumption: The ordinal number β can be written as β = γ + n where γ
is a limit ordinal and n is finite.

• Induction: In order to find the ordinal number α = β + 1 we combine our
expressions for α and β to get α = γ + n+ 1. This expression consists of
a limit ordinal γ and a finite ordinal n+ 1.

• Conclusion: Our assumption and induction-steps confirms the statement
to be true, under the circumstances that there is a base step that is correct,
which we have also shown. The first part of the theorem is thereby proved.

Now to the second statement; that the expression is unique. This will also be
broken down into steps of induction.
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• Base/Limit ordinals: α = γ + n is only a limit ordinal if n = 0. As α
can be rewritten as α = α + 0 this implies that α + 0 = γ + n which in
turn implies that n = 0 and γ = α. This confirms that limit ordinals are
uniquely expressed.

• Assumption: We assume that the ordinal β is expressed uniquely as β =
γ + n.

• Induction: We seek an expression for the ordinal number α = β+1. Using
our expression for β we can reformulate α into α = γ + n + 1. We now
assume that there is a second way to express α using a limit ordinal and
a finite ordinal: α = γ′ + k. We know that α is not a limit ordinal as it is
defined as the successor to the ordinal β. This means that k > 0 and also
that we can express the ordinal β as β = α− 1 = γ′+ (k− 1). As we have
an expression for β that we know to be unique of the form β = γ+n these
two forms can be compared. This gives that γ′ = γ and that n = k − 1.
This confirms that the only way to express α is γ + n+ 1.

• Conclusion: The assumption and induction-steps confirm that these ex-
pressions of ordinal sums are unique if there is a base step, which in this
case is the step confirming the statement to be true for all limit ordinals.

As we can see from the two proofs the base step doubles as confirmation that
the statement is true for all limit ordinals. This as opposed to when working
with traditional induction where the base step only needs to confirm that the
statement is correct for a single starting point, usually characterized by its
location n = 0.

2.3 Cantor Normal Form

It is possible to express ordinal α numbers as follows;

α = c1ω
β1 + c2ω

β2 + c3ω
β3 ...

Where ck are positive integers, βk are ordinal numbers, ω is the first transfinite
ordinal and k is a natural number. This definition of the Cantor Normal form
is not complete and as a result does not apply to all ordinals. But as we will
not use ordinals of a larger size than this normal form can express the definition
will suffice.

3 Proof

The following proof will cover the first as well as the second theorem presented
in the introduction. First Theorem 1.2 will be proved. The idea of the proof is
to create a similar sequence to the Goodstein sequence. If it can then be shown
that that sequence eventually reaches an end it will prove that the Goodstein
sequence does as well. For this statement to be true there are several criteria
that the second sequence has to fulfill.
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Firstly the second sequence has to be bijective to the Goodstein sequence.
This is a base criteria that will allow the second sequence to be thought of as
similar to the original sequence.

Secondly the second sequence has to have a least element. To ensure this the
second sequence will be constructed using ordinal numbers. Ordinal numbers
are well ordered sets which means that they by definition have a least elements.

Thirdly the sequence has to be strictly decreasing. As the sequence has a
least element due to the second criteria the sequence will with absolute certainty
reach a stop if it is also strictly decreasing.

If it is possible to construct such a sequence then the Goodstein sequence
is proved to be finite. This is loosely sketched in Figure 6 below. In the figure
there are two different sequences presented, {ai} and {bi} which have a bijection
between them. The second sequence {bi} terminates at zero which indicates that
sequence {ai} also terminates.

Figure 6: Series {ai} and {bi}.

In the case of the Goodstein sequence termination means that it has reached
zero as there is no other number that the Goodstein iteration cannot be per-
formed on.

The first step is to more formally define the Goodstein representation of
base n. This will then aid us as we attempt to create the sequence of ordinal
numbers. The ordinal number will simply be defined by exchanging the n in
the base representation of m by ω. We write the base n representation of m to
be

m = akn
k + ak−1n

k−1 + ...+ a1n+ a0 n,m ∈ N and n > 0

Where ai are the different coefficients of the different n-terms. This is clearly
simplified as the exponents are not expressed in base n, this is not done as our
general sum representing every term m recursively will describe the exponents.
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We will now define the function f , the general sum that is the base represen-
tation of m. It can either be used to produce a term m if x ∈ N or an ordinal
number if x = ω.

fm,n(x) =

k∑
i=0

aix
fi,n(x)

This base representation of m can be validated through induction using the base
example f0,n(x) = 0. It is possible to use f in order to create terms equivalent
of the Goodstein sequence or to produce ordinal numbers, this is demonstrated
below.

Gn(m) = fm,n(n+ 1)− 1 m > 0

on(m) = fm,n(ω)

We will also define Gn(0) = on(0) = 0. With this we have now defined the
second sequence of ordinal numbers discussed in the idea of the proof.

We will now define an operation 〈α〉(n) on ordinal numbers. It is this opera-
tion that will allow us to show that the sequence of ordinal numbers is bijective
to the Goodstein sequence and that it is strictly decreasing. The operation is
defined for n ∈ N and α < ε0 and is defined by transfinite induction on α;

〈0〉(n) = 0, 〈β + 1〉(n) = β

and also for δ > 0,

〈(β + 1)ωδ〉(n) = βωδ + nω〈δ〉(n) + 〈ω〈δ〉(n)〉(n)

This operation corresponds to a reduction in complexity, which is synonymous
with the operation decreasing the ordinal. The best way of understanding the
operation is likely through a thorough example that will be presented after the
smaller examples below. This first operation will demonstrate how an ordinal
is reduced to a natural number.

〈ω〉(n) = 0 · ω + nω0 + 〈ω0〉(n) = 0 + n+ 〈1〉(n) = n+ 0 = n

Above we demonstrated that a lone ω will be reduced into a finite number
n. This finite number depends on how many times the operation has been
performed. In the case above it has been performed n times. This leads us to
our next example which is very similar to the first.

〈2ω〉(n) = 〈(1 + 1)ω〉(n) = 1 · ω + nω0 + 〈ω0〉(n) =

= ω + n+ 〈1〉(n) = ω + n+ 0 = ω + n

This example strengthens our previous assumption that the operation has
the ability to reduce infinite ordinal numbers to finite numbers. In this case first
one of the ordinal numbers is reduced to a finite number while the other is left
unaffected. The last example will be derived from the second basic description
of the operation.

〈ω + k〉(n) = ω + k − 1
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The reduction above is a consequence of the second basic defining characteristic
of our operation, and also similar to a characteristic of the Goodstein sequence.
We know that if there is a finite number present, the operation’s function is
that it reduces that finite number by one.

To summarize it is clear that the operation is strictly reducing the input.
Now that certain examples have been presented along with the general idea we
will now attempt to reduce the ordinal ωω + 3ω2 + ω, starting at n = 1.

〈ωω + 3ω2 + ω〉(1) = ωω + 3ω2 + 〈ω〉(1) = ωω + 3ω2 + 1

〈ωω + 3ω2 + 1〉(2) = ωω + 3ω2 + 1− 1 = ωω + 3ω2

〈ωω + 3ω2〉(3) = ωω + 〈(2 + 1)ω2〉(3) =

= ωω + 2ω2 + 3ω〈2〉(3) + 〈ω〈2〉(3)〉(3) = ωω + 2ω2 + 3ω + 3

Another tree steps will reduce the sequence to 2ωω + ω2 + 3ω.

〈ωω + 2ω2 + 3ω〉(6) = ωω + 2ω2 + 〈(2 + 1)ω〉(6) = ωω + 2ω2 + 2ω + 6

Another six steps will reduce the sequence to ωω + 2ω2 + 2ω. The last term 2ω
will be reduced in the same manner showed in the last step above. When this
is done what remains of the sequence is ωω + 2ω2. This can be compared to
when n = 2 and the sequence was ωω + ω23. It is apparent that one of the ω2

terms has been reduced. As the operation keeps being performed the sequence
will become ωω. We will assume that this happens when n = k. This following
reduction is quite extensive

〈ωω〉(k) =

〈(0 + 1)ωω〉(k) =

0 · ωω + kω〈ω〉(k) + 〈ω〈ω〉(k)〉(k) =

kωk + 〈(0 + 1)ωk〉(k) =

kωk + 0 · ωk + kω〈k〉(k) + 〈ω〈k〉(k)〉(k) =

kωk + kωk−1 + 〈(0 + 1)ωk−1〉(k) =

kωk + kωk−1 + 0 · ωk−1 + kω〈k−1〉(k) + 〈ω〈k−1〉(k)〉(k) =

kωk + kωk−1 + kωk−2 + 〈(0 + 1)ωk−2〉(k) =

kωk + kωk−1 + kωk−2 + 0 · ωk−2 + kω〈k−2〉(k) + 〈ω〈k−2〉(k)〉(k) =

kωk + kωk−1 + kωk−2 + kωk−3 + 〈(0 + 1)ωk−3〉(k) =

........

= kωk + kωk−1 + kωk−2 + kωk−3 + ...+ kω2 + kω + k

The result should be inspected, the most important observation is that the
highest complexity term ωkk is of lower complexity than ωω, the original term
which the operation was performed on. This is the function of the operation,
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it lowers the complexity of an ordinal number and performed enough times will
reduce it to zero.

The change of base that is custom when working with the traditional Good-
stein sequence is also represented in the operation. This can be shown by com-
paring the result above with rewriting a Goodstein sequence term into another
base. Let the our term be 77 − 1, in ordinal numbers this would correspond to
〈ωω〉(6). The operation would reduce the ordinal, using the result above, to;

6ω6 + 6ω5 + 6ω4 + 6ω3 + 6ω2 + 6ω + 6.

Rewriting 77 − 1 into base 7 becomes;

6 · 76 + 6 · 75 + 6 · 74 + 6 · 73 + 6 · 72 + 6 · 7 + 6.

The two expressions show clear similarities, the exponents in both cases are
reduced compared to the original numbers.

Having defined the operation we will now move on to a lemma. The point of
this lemma is to confirm that there is a bijection between the ordinal sequence
created by the operation and the Goodstein Sequence.

Lemma 3.1. (i) For m > 0, n > 1, if on+1(mk) = α then on+1(mk+1) =
〈α〉(n).

(ii) For n > 1, 〈on(m)〉(n) = on+1(Gn(m)).

Proof of Lemma 3.1

(i) First we express m in the base n+ 1 representation.

m = ap(n+1)f
p,n+1(n+1)+ap−1(n+1)f

p−1,n+1(n+1)+...+a0(n+1)f
0,n+1(n+1)

where 0 ≤ ai ≤ n. Now we will let j be as small as can be without aj 6= 0.
This represents the termination of terms trough subtraction. If j = 0 then
m likely is the first element of the Goodstein sequence. As j = 0 is a very
simple case we will further assume that j > 0. Our last assumption is that
the result holds for all m′ where 0 < m′ < m. We will now observe two
representations of what will show to be the same ordinal number. First
the ordinal representation of mk+1.

on+1(mk+1) =
( p∑
i=j+1

aiω
fi,n+1(ω)

)
+ (aj − 1)ωf

j,n+1(ω)+

on+1(n · (n+ 1)f
j,n+1(n+1)−1) + on+1

(
(n+ 1)f

j,n+1(n+1)−1 − 1
)

The sum above is the sum of the yet untouched terms making up the
ordinal number. The remainder of the terms is the result of a subtraction
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of one. Now the previously defined operation on the ordinal number α =
on+1(m).

〈α〉(n) =
( p∑
i=j+1

aiω
fi,n+1(ω)

)
+ (aj − 1)ωf

j,n+1(ω)+

nω〈f
i,n+1(ω)(n) + 〈ω〈f

i,n+1(ω)〉(n)〉(n)

Using induction it becomes simple to prove that these are equal, showing
that the operation has the same consequence as a step of the Goodstein
sequence.

(ii) We now let m =
∑p
i=j bin

fi,n(n) where 0 ≤ bi < n and bj 6= 0. In the
case where j = 0 we understand see that 〈on(m)〉(n) = on+1(Gn(m)) so
we will therefore assume that j > 0. This means that

〈on(m)〉(n) =
( p∑
i=j+1

biω
fi,n+1(ω)

)
+ (bj − 1)ωf

j,n+1(ω)+

nω〈f
i,n+1(ω)(n) + 〈ω〈f

i,n+1(ω)〉(n)〉(n)

and

on+1(Gn(m)) =
( p∑
i=j+1

biω
fi,n+1(ω)

)
+ on+1

(
(n+ 1)f

j,n+1(n+1)bj − 1
)

=

( p∑
i=j+1

biω
fi,n+1(ω)

)
+ (bj − 1)ωf

j,n+1(ω) + on+1

(
(n+ 1)f

j,n+1(n+1)−1n
)
+

on+1

(
(n+ 1)f

j,n+1(n+1)−1 − 1
)

From (i) we know that

on+1

(
(n+ 1)f

j,n+1(n+1)−1n
)

= nω〈f
i,n+1(ω)(n)

and also that

on+1

(
(n+ 1)f

j,n+1(n+1)−1 − 1
)

= 〈ω〈f
i,n+1(ω)〉(n)〉(n),

which finally proves the lemma.

The first part of the lemma simply restates what is described in the text
above; the operation reduces the Goodstein Sequence ordinal’s complexity, e.g.
through subtraction. The second part of the lemma builds of the first part to
develop the idea that the Goodstein sequence is similar to the ordinal sequence.
More specifically it confirms that the following two numbers are equal;

• The resulting number created by the operation performed on on(m).
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• The ordinal number of the Goodstein sequence number Gn(m).

The lemma has thereby proved bijectivity between the two sequences. Thereby
the lemma confirms that the operation has the properties that we need;

• It decreases the ordinals complexity.

• There is bijectivity between the two sequences.

This indicates that for each Goodstein Sequence b0, b1, b2, ... there is a corre-
sponding sequence of ordinals on(b0), on+1(b1), on+2(b2), ... for which the oper-
ation can be used.

To simplify text we will use the notation 〈α〉(n1, n2, ..., nk) for
〈...〈〈α〉(n1)〉(n2)...〉(nk). With this notation a sequence of ordinal numbers in a
Goodstein sequence can be written as below

on(b0) = α, 〈α〉(n), 〈α〉(n, n+ 1), 〈α〉(n, n+ 1, n+ 2), ...

It is known from Lemma 3.1 that this must be a decreasing sequence due to
the characteristics of the operation. Therefore for any ordinal α and n ∈ N the
following is true;

〈α〉(n) < α

As ordinal numbers are well ordered sets a strictly decreasing ordinal number
sequence will eventually be reduced to the least element; zero. It has now been
shown that a sequence with a bijection to the Goodstein sequence reduces to
zero, which therefore ensures that the Goodstein sequence does as well. Theorem
2.2 is thereby proved.

Now that the base is set it is time to move on to Theorem 2.1. The two
problems are very similar, the idea for the first proof will be reused for the
second proof. To be able to reuse the idea there are two things that must be
done;

• The hydra needs to be reformulated into an ordinal number that symbol-
ises its complexity.

• An operation simulating the cutting of a head and the resulting regener-
ation needs to be defined.

The first step is quite simple. All nodes that correspond to a head is given the
number zero. Traverse from the head one step closer to the root; these nodes
become the ordinal ω raised to the power of the heads above it. This step is
then repeated; traversing closer to the root and having the new ω node be raised
to the power of the ordinal above. The final ordinal number of the hydra is then
the number at the root. An example of a hydra and its ordinal is shown in
Figure 5.

The next step is to formulate an operation that represents the act of severing
a head and the following regeneration. We will denote this operation [α](n) but
we will abstain from giving a strict definition. The operation has the property
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Figure 7: A hydra with its ordinal number presented at its root; ωω
3+1 + ωω+1

that it decreases the complexity of the ordinal similarly to the operation defined
earlier for the proof of Theorem 2.2. This implies that despite the increase of
the number of heads the ordinal will become “simpler”; of a lower level. An
example of a reduction of the hydra in Figure 7 is shown in Figure 8.

Figure 8: The hydra in Figure 7 after a blow. The ordinal is now ωω
3+1 + ω4

The ordinal changed from ωω
3+1+ωω+1 to ωω

3+1+ω4. More specifically the
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term ωω+1 changed into ω4. This is a clear example of change in complexity.
The ordinal ωω is of higher complexity than ωn. This can also be expressed as

[α](n) < α.

With the aid of the proof of Theorem 1.2 it is now apparent that the Hydra will
eventually be reduced to zero. Hercules will always win the battle, and thereby
Theorem 1.1 is proved.

4 Peano Arithmetic

4.1 Peano Arithemtic

There are a group of important properties on the natrual numbers that together
are called the Peano Axioms. These are (Devlin, 1993, 108);

(i) 0 is part of the natural numbers.

(ii) For every natrual number the sucessor number S(n) is also a natrual num-
ber. (Can also be expressed as n+).

(iii) The sucessor number to any natural number is not zero.

(iv) If the succesor numbers of n and m are equal, then m and n are equal.

(v) If all natural numbers are elements in a set, zero is part in that set, the
succesor number of n is always present in the set if n is; then the set can
be said to be the natural numbers.

These five axioms can define the natural numbers and based on this all theory
of rational, real and complex numbers can be created. It should be noted that
Set Theory has all the tools to define the axioms above and is therefore one of
the most basic mathematical disciplines.

The proofs in the section above are more important than for the obvious
reason that they prove the presented theorems. The model of Peano Arithmetic
is an insufficient basis for these proofs, in fact neither of Theorem 1.1 nor The-
orem 1.2 can be proved using the principles of Peano Arithmetic alone. It is
required to use a stronger system, such as second order arithmetic. One of the
characteristics of second order arithmetic is that it allows quantification. This
is the idea that allows successor numbers and as a result enables limit ordinals
and their successors. Note that in the Peano Arithmetic system the theorems
would not be disproved but there would be insufficient basis to produce a formal
proof.
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