
Airfoil Optimization through Differential
Evolution

Eddie Nilsson

October 22, 2017

1

Preface

This work has been conducted at the Division of Fluid Mechanics at Lund
University during the first half of 2017. The work has been on behalf of Win-
foor AB with the purpose of developing an general optimization method for
airfoils, which later can be used by Winfoor in their work. The thesis serves
as my final examination of my master studies in Mechanical Engineering at
Lund University.

Foremost, I would like to express my gratitude to my supervisor Dr. Ali Al
Sam for his continuous support, deep knowledge and encouragement on my
work. His guidance has helped me a lot and it would have been impossible
to fulfil this work without him.

I would also like to thank Ph. D student Johan Lorentzon for the invaluable
knowledge in mathematics and numerics that he has contributed with to this
research, and for the big interest he has shown in my work. Also thanks
to Researcher Robert-Zoltán Szász for helping me with computer related
problems.

Lund, July 21st 2017.

Eddie Nilsson

2

Abstract

This thesis presents the development of a numerical optimization algorithm
for airfoils, and how it can be used in design of wind turbine blades. It was
found that the developed algorithm successfully improves the goal parame-
ters under given conditions and constraints. This research was conducted on
behalf of Winfoor AB who has developed a conceptually new blade design, in
which every single blade is made up of three individual blades, kept together
by rods in a truss like manner. Their wish was to develop a new airfoil for
their turbine, with higher performance and a more docile stall, and yet re-
maining a high airfoil thickness in order to not alter structural stability. The
task was conducted by describing the airfoils with B-splines and writing an
optimization algorithm in MATLAB in which the flow characteristics of the
airfoils were determined by the external software XFOIL. This thesis shows
how to characterize numerical optimization problems, what differential evo-
lution is and how it can be implemented in a MATLAB-code, how airfoils can
be described with B-splines, the usage of XFOIL and how penalty functions
can be imposed for constrained optimization problems, to mention some of
the wisdoms this work has brought. This research is important as numerical
optimization of airfoils is not yet the standard method for airfoil design, and
thus it can possibly contribute with valuable insights and results to further
development of airfoil optimization.

3

Contents

1 Introduction 6

2 Wind Power in general 7

2.1 Historical Background . 7

2.2 Functioning and important physical quantities 8

2.3 Blade Design . 10

2.3.1 Rotor Diameter . 10

2.3.2 Blade shape/geometry 11

2.4 Elementary Aerodynamics and Airfoil Nomenclature 12

2.5 Power control . 15

2.5.1 Pitch control . 15

2.5.2 Stall regulation . 17

3 Aerfoil Design 18

3.1 Designing stall regulated airfoils 19

4 Optimization approach 20

4.1 B-Splines . 22

4.2 Motivation for using DE . 24

4.2.1 Evolution Strategies (ESs) and Genetic Algorithms (GAs) 27

4.2.2 Nelder and Mead . 27

4.2.3 CRS - Controlled Random Search 27

4.2.4 Differential Evolution and constraint handling 28

4.3 Parameter selection . 31

4.4 Thickness constraint . 31

4

4.5 Flow Solver - XFOIL . 33

4.6 Execution and implementation 34

4.7 Smooth stall and how to quantify it 36

5 Results and Discussion 37

5.1 Convergence and constraints 37

5.2 Optimizing for alpha = 6 . 39

5.3 Optimizing for two angle of attacks 42

5.4 Optimizing for three angle of attacks 47

5.5 Optimizing towards a specific value for several angle of attacks 49

6 Conclusion and future work 51

7 Appendix - MATLAB Code 55

5

1 Introduction

There are two distinctively different main purposes of this thesis. The first
one has been to get acquainted with wind power technology in general and
learn about contemporary design methods. The second objective has been
to develop a general airfoil optimization scheme which can be employed by
Winfoor AB in their future work.

Wind Power is seen as a renewable energy source and enormous investments
are being done worldwide to increase its usage amongst other energy sources.
Today, almost the entire market is dominated by horizontal axis wind tur-
bines with three blades. The blades accounts for nearly 30 % of the total
cost of a plant (Winfoor 2017) and the reasons for this are many. The man-
ufacturing is labour expensive and as the blades has to be transported in its
full length, it becomes a constraint on how large the blades can be made.
Winfoor AB has developed a conceptually different blade which is made up
by trusses and three separate blades instead of one. By this change in de-
sign Winfoor AB predicts a decrease in weight by nearly 80 %. Also, as the
blades are made up by trusses, they will be able to be manufactured in mod-
ules which in turn opens up the possibility for longer blades. To maximize
the power output, the wind turbine blade shape varies with the radius, each
cross-section is an airfoil.

Airfoil design/optimization has traditionally been conducted for air plane
wings and gas turbines mainly. However, the requirements on airfoils for
air plane wings are different than airfoils for wind turbines which is evident
from the different shapes. For a wind turbine, attributes such as smooth
stall, insensitivity to debris and low maintenance. Many airfoils in use today
have been designed and developed through experience on how design changes
affect the flow. But along with the invention of the computer and its remark-
able development, optimization through algorithms which requires millions
of iterations has been possible.

6

2 Wind Power in general

The wind turbines we see today are categorized into two groups: horizontal-
axis and vertical-axis type turbines, where horizontal and vertical refers to the
placement of the rotating shaft. The horizontal-axis type is by far the most
common one (Office of Energy Efficiency and Renewable Energy 2017). A
horizontal-axis type turbine is briefly made up of a tower, a rotor, a number
of blades and a nacelle (house) which covers the generator, gearbox and
controller system (Mialojamiento 2017). See figure below for visualization
and more details.

Figure 1: The components of a modern horizontal-axis type wind turbine
(modification of Germanborillo 2011).

2.1 Historical Background

The windmill has a long history, stretching more than 3000 years back in time.
During most of its time it has been used to grind grains in flour making, and
it was first in late 19th century the first windmill for generating electricity
was raised. One of the very first windmills, or wind turbine as they are
called when we are talking about generating electricity, was able to generate

7

a power of 12 kW. However, the development of wind generated electricity
was weak during the 20th century. It was common in charging the batteries
for remotely placed dwells and research stations but as the electricity grid
was enlarged the interest for wind energy decayed.

It was first when the oil crisis shook the world in 1973 the interest for wind
energy arose dramatically. By that time the engineers and scientist were
very uncertain on how the mills should be constructed for highest cost-
effectiveness. Nowadays nearly every horizontal plant has three blades, but
back then one could see plants with three, two and even one single blade.

The motivation for developing wind power has changed throughout its his-
tory. In 1973 the oil crisis and fear of limited fossil fuel drove the develop-
ment, whereas during the 1990’s the total low CO2-emissions over a plants
life cycle was the driving force. From 2006 again the oil price was a driving
force, and now also several policies and economical benefits were employed
to encourage the investments in wind power. “In 2007 the European Union
declared a policy that 20 % of all energy should be from renewable sources
by 2020” (Burton, Jenkins, Sharpe & Bossanyi 2011, p. 3).

2.2 Functioning and important physical quantities

The very basic description of how any wind turbine is functioning is the
following: The moving air approaches the plant and as the air passes through
the rotor it is brought into motion. The rotation of the rotor generates
a torque on the rotor shaft which in turn is subjected to a gear box and
an electrical generator in which the kinetic energy from the wind finally is
transformed into electricity.

As the rotor is brought into movement, it must imply that a part of the
winds kinetic energy is being lost and thus the wind which has passed the
rotor now must have a lower velocity. If we assume that the air which passes
through the rotor remains separate from the unaffected, surrounding air, we
can create a boundary surface which enclosures a tube-like volume whose
cross-sectional area depends on the axial distance from the rotor (Burton et
al. 2011). The figure below illustrates this in 2D.

8

Figure 2: The confined stream tube of a wind turbine (Burton, Jenkins,
Sharpe and Bossanyi. 2011. Reprinted by permission)

Assume that no air flows across the boundary surface it must then imply that
the mass flow rate of the air must be the same for all stream wise positions
along the stream-tube. And since the air is assumed to be incompressible
while passing, the cross-sectional area of the enclosed volume must increase
after passing the rotor. When the air passes the rotor there is a sudden drop
in static pressure which prevails downstream for a while. Far downstream
the pressure has to rise to the atmospheric pressure again in order to achieve
equilibrium. As the pressure rises it does this on the cost of kinetic energy.
So in summary, the wind slows down both at the rotor and far downstream.

As there is a pressure drop across the actuator disc there will be a force
on the rotor in the direction of the flow. This force is called thrust and is
determined as

T = (P+
D − P

−
D)AD = 2ρADU∞a(1− a) (1)

Where (P+
D − P

−
D) is the pressure difference over the actuator disc, AD the

the cross-sectional area of the actuator disc, ρ the density of the air, U∞ the
free stream velocity and a the axial flow induction factor which is defined as
a ≡ U∞−UD

U∞

The thrust can be made non-dimensional so that in can be used in general

9

cases. It is called coefficient of thrust, CT and is given as

CT =
T

1
2

(ρU2
∞AD)

(2)

It is essential to compute the power extraction from the air. The force on
the actuator disc times the velocity equals the work done by the air on the
actuator disc which also equals the power extraction from the turbine, i.e.

Power = TUD = 2ρADU
3
∞a(1− a)2 (3)

Where UD is the velocity of the flow at the actuator disc. By making the
power non-dimensional we obtain the power coefficient, CP as

CP =
Power

1
2
ρU3
∞AD

(4)

The denominator here represents the energy available in the air in the absence
of the actuator disc.

The tip speed ratio, λ is defined as

λ =
RΩ

U∞
(5)

where R is the blade length, Ω is the angular velocity and U∞ is the free-
stream velocity. This quantity will play an important role, as shown in
subsequent chapters.

For a wind turbine engineer there are three main quantities of importance.
They are power, torque and thrust. ”The power determines the amount of
energy captured by the rotor, the torque developed determines the size of
the gear box...” (Burton 2011, p. 98). The thrust on the rotor is impor-
tant in dimensioning the tower. Usually these quantities are expressed in
non-dimensional form in so called performance curves where they are plot-
ted against the tip speed ratio, λ. By making the curves non-dimensional,
the actual performance can be determined regardless of how the turbine is
operated (Burton et al. 2011).

2.3 Blade Design

2.3.1 Rotor Diameter

The energy capture from a wind turbine can be shown to be proportional to
the square of the rotor diameter, whereas the rotor mass is proportional to

10

the cube of the diameter. This is referred to as the ’square-cube law’ and is
one commonly used theory. What is not considered here though is that the
wind speed increases with altitude (Burton 2011, p. 325). As the choice of
rotor diameter is mainly a cost-effectiveness issue, it is not further discussed
here. The reader is advised to Burton et al. 2011 for further reading on this
topic.

2.3.2 Blade shape/geometry

There are two principal operation modes of a wind turbine, fixed rotational
speed or variable rotational speed. Depending on which operation mode will
be used, different blade geometries are more suitable. By looking at a CP −λ
curve it is evident that there is only one value of λ which gives the highest
power coefficient, see figure 3. In a variable rotational speed turbine the tip
speed ratio λ can be kept constant by adjusting the rotational speed. (Burton
2011, p. 66). Blade design is split up into two sub-categories, aerodynamic
design and structural design. Unfortunately an optimal aerodynamic design
often has to be discarded due to structural issues, and hence the approach
becomes complex and interdisciplinary.In a horizontal-axis type wind turbine,
the number of blades may be as few as one single blade balanced by a weight,
but with three as the most common number of blades. It is of large interest
to know how the number of blades affect the power output from the turbine.
The figure below illustrates how the power coefficient, Cp varies with the
number of blades and tip speed ratio, λ.

11

Figure 3: The power coefficient for different numbers of blades is plotted
against the tip speed ratio (Burton et al. 2011. Reprinted by permission.)

Aerodynamic design encompasses selection of aerfoil and customization of
chord and twist distribution. The thickness to chord ratio of the airfoil is set
to a minimum permitted by structural design aspects. Minimizing this ratio
minimizes the drag ratio (Burton 2011, p. 384).

2.4 Elementary Aerodynamics and Airfoil Nomencla-
ture

To be able to fully comprehend the subsequent chapters, essential physical
quantities and airfoil nomenclature are here presented and briefly explained.
The airfoil nomenclature presented here is the one established by NACA and
is standard all over the world.

The foremost edge is called leading edge and the rear edge is called trailing
edge. The straight line connecting these two points is the chord line and the
length of the chord line measured from the leading edge to the trailing edge
is called the chord. The line along which the perpendicular distances to the
upper and lower surface are equal is called the mean camber line. The camber
is the maximum distance between the chord line and the mean camber line
measured perpendicular to the chord line. The thickness is the distance

12

between the upper and lower airfoil surfaces, measured perpendicular to the
chord line. The angle of attack is the angle between the chord line and the
vector which represents the relative motion of the blade and the surrounding
air. In the figure below, this nomenclature is displayed on an arbitrary airfoil.

Figure 4: Airfoil Nomenclature.

When an airfoil is submerged into a moving fluid (air) the interaction in
between these two results in forces and moments on the airfoil. In figure
5 the free stream velocity vector is denoted V∞ and the resulting force R.
The vertical component of R is called lift, L and the horizontal component
is called drag, D. The ratio of the lift and drag, L

D
is called the glide ratio

and has a large importance for wind turbines as later will be shown.

Figure 5: Forces and moments on an airfoil submerged into a moving fluid.

There exists several false explanations on how lift is generated over a wing,
and it is interesting and very worthwhile to prove these theories wrong, how-
ever it is out of the scope for this research and only the correct theory will be
very briefly explained. Lift is caused due to a reduced pressure on the upper
side of the wing and an increased pressure on the lower side of the wing.

13

These pressure changes occurs as the wing curves the oncoming flow which
is known as the Counda effect. The reader is advised to Tritton (1988) for
further reading on the topic. The resulting forces and pitching moment, M
is obtained by integrating the pressure differences around the entire wing.

Typically, an airfoils performance is analysed for a whole range of angle of
attacks, while simultaneously keeping the reynold- and Mach number con-
stant. The figure below shows how the lift coefficient varies with the angle
of attack for a typical airfoil. As the angle of attack increases, the curving
of the flow by the wing also increases. This continues until the wing is not
able to curve the flow any more, and it starts to detach from the upper side
of the wing and a loss in lift follows. This is referred to as stall

Figure 6: Cl vs. alpha

Another way of displaying the performance of an airfoil is to draw a so called
drag polar which is lift coefficient plotted against the drag coefficient for a
range of alphas. A typical drag polar is shown in the figure below. Starting
from negative angle of attacks the drag decreases without any increase in
lift until reaching the left lower corner of the curve. From here on the lift
increases much faster than the drag, this continues until the upper left corner
of the curve where the wing starts to stall. The lift stops to increase, and
the drag increases rapidly due to large separated areas on the upper side of
the wing.

14

Figure 7: Lift vs. drag

2.5 Power control

When producing electricity for the power distribution grid. it is important to
supply electricity with a constant frequency. This is not achieved automati-
cally in a wind turbine. As the wind is unsteady to its nature, the production
will also vary along with it if no controlling mechanism or system is being
incorporated. As the wind speed increases to dangerously high levels it is
also important that the system is able to arrest the motion completely to
prevent damages on the power plant. In this section the main power control
approaches are presented.

2.5.1 Pitch control

Pitch control is the most common power controlling mechanism used in large
wind turbines. The individual blades are mounted on shafts to which electri-
cal engines are connected. Thus it is possible to change the angle of attack
of the blades in order to obtain the desired rotational speed.

Pitch regulated turbines have many advantages when compared to stall-
regulated ones. When the wind becomes too strong, the blades can be pitched
90◦ as this minimizes the forces on the blades and hence they can be made
lighter (Burton et al. 2011, p. 105). When pitching for power regulation two
different approaches exists, pitching to stall and pitching to feather.

15

Pitching to Stall: As the rated power of the turbine is exceeded, the blades
are slightly pitched in clockwise direction to initiate stall which will cause
a drop in power. Pitching to stall is a popular power control method as it
only requires a small change in angle of attack to efficiently control the power
output. However it faces problems with fatigue and damping just as fixed
pitch turbines do (Burton et al. 2011).

Figure 8: Pitching to stall (Burton et al. 2011. Reprinted by permission.)

Pitching to feather: Here the blades are pitched in counter-clockwise direction
which reduces the lift and torque. The figure below shows the performance
curve of the same turbine as in the previous figure, but now controlled in
a pitching to feather manner. Compare the angle of attacks required to
change the power in the two figures and it is evident that pitching to feather
requires much larger changes in angle of attack than pitch to stall. This is
an obvious drawback of the method when compared to pitch to stall as it
will be hard to efficiently control the turbine in gusty winds. However, it has
the benefit of remaining an attached flow which provides good damping and
fatigue prevention. Also, blade loads are predicted with higher confidence in
attached flow as opposed to stalled blades (Burton et al. 2011).

16

Figure 9: Pitching to feather. Notice the large angle of attacks required to
change the power output (Burton et al. 2011. Reprinted by permission.)

2.5.2 Stall regulation

Stall regulation is one of the simplest methods for regulating the power out-
put. When the wind speed becomes too strong, the design of the blades
ensures that they stall and the power output decreases. Stall regulation is
simple in theory, but it also brings a lot of disadvantages with it. The power
versus wind speed graph is fixed, the post stall behaviour is very unsteady
and is hard to predict, large fatigue loads are likely to occur as the flow is
detached in stalled mode, to mention a few of the problems. Also, to design
a successful airfoil with tolerance to off-design situations is a difficult task to
undertake.

17

3 Aerfoil Design

Airfoils for wind turbines differs from airfoils for aircrafts in many ways.
For most aircrafts the stall occurs very suddenly and implies a large loss in
power output which is not recovered until the wind speed increases again.
For a wind turbine however, a more docile stall is favoured, which means
that the lift decreases gently with the increase in angle of attack. Wind
turbines must also be able to operate for long periods of time with very
limited maintenance and cleaning of the blades. It has been noticed that
dirt and/or salt accumulates on the leading edge of the blades which alters
the surface roughness to such an extent that it changes the aerodynamics of
the blades (Merz 2011).

Numerous methods for airfoil design are available today and the two main
methods are direct design and inverse design. Direct Design is the method
in which changes are made on the airfoil geometry and its effects on the
flow are being analysed. In the simplest way the designer makes changes
in the geometry based on experience on how these changes will affect the
performance of the airfoil. It requires a deep understanding of aerodynamics
and personally I doubt how successful it can be. A more elaborate refinement
is to couple direct design to a numerical optimizer together with a fast flow
solver, such as one of the aforementioned softwares by Eppler or Drela. This
method has the advantage of allowing several design parameters and allows
introduction of quantifiable constraints (Dahl and Fuglsang 1998).

Inverse Design is a method in which the desired pressure distribution over an
airfoil is set, and a corresponding geometry is generated (Dahl and Fuglsang
1998). Rikard Eppler and Mark Drela have independently programmed soft-
wares in which these theories are realized, and their softwares have been
widely used in wind turbine design. Inverse design methods have the down-
side of not being able to treat several design points, such as a range of angle of
attacks or different Reynolds numbers. They also have very limited abilities
of predicting off-design performance (Dahl and Fuglsang 1998).

There are many airfoils designed by these methods available on the market.
The NACA airfoils is a set of standard airfoils which are very popular. They
have a long history and are well studied in many applications. NREL is a
set of airfoils especially designed for horizontal wind turbines. They all have
a specified maximum lift coefficient which is maintained after surface rough-
ening caused by accumulated dirt, which makes them competitive (Jonkman
2014).

18

When designing an airfoil the first step is to specify the desired airfoil char-
acteristics. This typically involves range of lift, drag coefficients, stall char-
acteristics, Mach number, sensitivity to debris accumulation and more. Once
the desired characteristics for the airfoil have been specified the next step is
to choose whether an existing airfoilwhich meets the requirements as close
as possible should be chosen, or customizing is the alternative. As Direct
Design coupled with a numerical optimization algorithm is believed to be
superior, the entire remaining part of this thesis is focused on this.

3.1 Designing stall regulated airfoils

High aerodynamic efficiency of the blades is largely determined by the lift-
to-drag ratio and should be seen as the main parameter to maximize (Grasso
2017). In a stall-regulated turbine the post-stall characteristics are of great
importance. If the lift curve preceding stall is too flat it might be insufficient
in controlling the power. If it on the other hand is too sharp it might be
hard to restart the turbine again. High lift performance is usually connected
to sharp stall behaviour and thus it is natural to limit the maximum lift
coefficient Cl,max (Grasso 2017, p. 5).

Grasso (2017) are using a combination of constraints focused on maximum lift
coefficient (< 1.4) and moment coefficient (> -0.12) to achieve smooth stall.
Cl,max bounds the lift curves maximum point and the moment coefficient,
CM determines the angle of attack where there is 0 lift.

There are two main kinds of stall, trailing edge stall and leading edge stall.
For trailing edge stall the flow separation starts at the trailing edge and
travels forward along the upper side. In leading edge stall the separation
occurs at the leading edge and the flow is completely detached backwards.
This is a very dangerous situation in aircraft and leads to a sudden, large
drop in lift.

19

4 Optimization approach

Airfoil optimization can be done in two distinctively different ways. The
first method is when the designer change the airfoil shape manually together
with the knowledge on how these changes will affect the flow characteristics
around it. This can be done in a direct or inverse design manner which
is explained in previous chapters. The second method is to formulate the
problem as a mathematical optimization problem and let a computer do the
calculations. In this study the latter method has been employed.

In the optimization the parameters describing the shape of the airfoil will
be the design variables, and the cost function to be minimized could be the
inverse of the glide ratio, Cd

Cl
. Notice that in optimization the problem is

always stated as minimization problem, so if a function f(x) is to be max-
imized it can easily be converted to a minimization problem by considering
the inverse f(x)−1 instead.

As a first attempt, the inverse glide ratio was the objective function and
the parameters describing the airfoil shape was the design variables and the
optimization was subjected to upper and lower limits on the lift coefficient.
It is reasonable to set limits on either the drag D or the lift L as just the
fraction between these two doesn’t tell much about the performance of the
foil. This optimization can be stated as

min
Cd

Cl
(x) s.t

{
Clmin − Cl(x) ≤ 0

Cl(x)− Clmax ≤ 0
(6)

where x are the variables describing the shape of the airfoil.

The first problem one encounters is how the airfoil geometrically should be
described. It is desired to use as few design variables as possible to save
computational effort and keeping the problem simple and yet not limiting the
number of possible airfoils that can be generated. To clarify this, imagine
that a spline-function is used for describing the airfoil geometry. Perhaps
n control points is sufficient for describing a symmetrical foil, but not a
cambered or reflexed one. This means that we already in the formulation of
the problem are limiting our solutions symmetrical airfoils.

Let’s describe the airfoil in a coordinate system with the leading edge LE in
the origin and the trailing edge, TE at x

c
= δ = 1. See figure below.

20

Figure 10: Airfoil description in coordinate system

If the airfoils are described in this way, with LE in (0,0) and TE in (1,0) it
is then possible to set up a number of criteria which the airfoils must fulfil.
By an analysis the following criteria for describing arbitrary foils has been
produced:

1. criteria

• 1. the airfoil should be arbitrarily smooth

• 2. LE must have a normal [-1,0]

• 3. TE has to be an acute vertex

The next step is to decide how the airfoils should be specified/generated
complying to the above stated criteria. The flow solver reads a text file with
coordinates and connects them with straight line-segments, and due to this
the number of coordinate points is deciding how smooth the airfoil to be
analysed will be. Obviously infinitely many coordinate points will make up a
perfectly smooth airfoil, whereas just a handful number of points will result
in a very jagged airfoil.

21

An average airfoil coordinate file usually consists of around 100 indices (Jonkman
2014), and to let each degree of freedom be a design variables is not possible
for several reasons. Firstly the number of design variables will be too many,
the computational time will be way too long. Secondly it would imply that
several extra conditions on the movement of the variables would have to be
imposed to insure smooth airfoils without self-intersections. Instead smooth
lines must be described with as few parameters as possible. Polynomials
and Bézier curves is one possibility which often has been used before, how-
ever by using B-splines instead one removes the need for interior derivative
conditions on the curve (Söderlund 2015).

Blade surfaces requires several of its derivatives to be continuous. According
to (Söderlund 2015) the slope of the curvature of the blade has to be smooth,
which implies that the fourth derivative of the curve has to exist.

4.1 B-Splines

A spline is a function which is made up of piecewise polynomial functions
with variable smoothness at the points where the functions meet. These
points are called knots. A B-spline s(x) is defined by a non-decreasing knot
sequence u0, ..., uk of length k + 1. Also there are m + 1 so called control
points d0, ..., dm which also affects the appearance of the curve (Söderlund
2015).

The B-spline function is defined as

s(x) =
m∑
i=0

diN
−n
i (x) (7)

where (Nn
i)mi=0 are the basis functions of the B-splines which are in turn

defined as

N0
i (x) =

{
1 if ui ≤ x < ui+1

0 else
(8)

and

Nn
i (x) =

x− ui
ui+n − ui

Nn−1
i (x) +

ui+n+1 − x
ui+n+1 − ui+1

Nn−1
i+1 (x) (9)

(Söderlund 2015).

To fully understand how to use B-splines for describing an airfoil geometry
the reader is advised to read Andreas Söderlunds Bachelor Thesis Parameter

22

Selection and Derivative Conditions for B-Splines Applied to Gas Turbine
Blade Modelling.

The 2nd criteria, which states that LE must have a normal [-1,0] is being
fulfilled by placing three control points on the y-axis where one of them is
fixed in the origin and the two others being allowed to move vertically. The
third criteria, which states that TE has to be an acute vertex was fulfilled by
placing three control points in (1,0). The first criteria which says that the
airfoil has to be smooth is arbitrarily defined and is directly dependent on
the order of the B-splines. Third order B-splines were employed as this will
ensure a continuous second derivative on the airfoil surface.

It was found that 6 additional control points (3 on the upper side, and 3
on the lower side) was enough to replicate some known airfoils with pretty
good accuracy. To keep the problem simple these additional 6 control points
were only allowed to move vertically, so in total there are 12 control points
and 8 degrees of freedom (8 design variables) to determine the airfoils. See
the figure below for visualization of the control points and how an arbitrary
airfoil is defined.

Figure 11: How the airfoils are defined in a coordinate system. Note that con-
trol points 1,6,7 and 8 are fix whereas the rest are allowed to move vertically
as indicated by the arrows neighbouring the control points.

23

4.2 Motivation for using DE

There exists a large number of different optimization approaches and it is
not obvious which method one should choose. To start with it is a good idea
to analyse and try to characterize the problem in question. Price, Storn and
Lampinen (2005) have presented a list of different attributes for optimization
problems which can be used as a guideline:

• Parameter quantization: Is the parameter room continuous, dis-
crete, do they belong to a finite set?

• Parameter dependence: Can the objective function’s parameters be
optimized independently, i.e. is it a separable function?

• Dimensionality: how many variables define the objective function?

• Modality: does there exist one local minimum (uni-modal function)
or are there several (multi-modal function)?

• Time dependency: is the location of optimum stationary or non-
stationary?

• Noise: does evaluating the same vector give the same result every time
(no noise), does it fluctuate (noisy)?

• Constraints: is the objective function subjected to constraints?

• Differentiability: is the objective function differentiable at all points
of interest?

To investigate this, a simplified version of the full problem has been con-
structed. In this version the shape of the lower side of the airfoil is kept
constant, whereas the upper side is determined by only one control point
which is in turn is allowed to move between 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.4. By
simplifying the real problem which is multi variable, into a problem of two
variables we are able to visualize the parameter room and answer the above
questions. Below are 3D-graphs and iso-contours over the parameter room.

24

Figure 12: Parameter room

Figure 13: Close up on extrema in the parameter room

Firstly, we can see that the parameter room is discrete, there are configu-
rations for which there are no solutions. These configurations are given a
negative value and are thus identified as holes in the surface in figure 10.
The parameter room belongs to a finite set. An infinite set would results
in geometries that don’t meet the requirements for airfoils listed in previous
chapters. The objective function, Cl

Cd
(x) is unknown, only the function val-

ues are known and hence it is impossible to tell whether it is separable or

25

not. The dimensionality of the problem is user-defined, in this specific case
there are 8 control points which have 1 degree of freedom each, which gives
a dimensionality of 8. As seen in figure 11 there are several local minimum.
The location of optimum is stationary and no noise exists. The problem is
consisting of several constraints such as lift, thickness and other. The ob-
jective function is not differentiable at all points of interest which is evident
from the numerous undefined points.

The conclusion from this analysis is that we are dealing with a complex
optimization problem for which not all algorithms are applicable! Price,
Storn and Lampinen (2005) says that classical, derivative-based optimiza-
tion schemes can be effective as long as the objective function fulfils two
requirements:

• The objective function must be two-times differentiable

• The objective function must be uni-modal

As we have concluded before, the objective function is unknown and hence
also its derivatives are unknown. The objective function is also far from uni-
modal which means that both the above requirements are not met and any
derivative-based method are to be discarded.

The singular/undefined points in the parameter room is due to an error in
xfoil. For a real airfoil in a real flow, there are no such points for which the
flow is ”undefined”. And as we have discarded any derivative based method,
we are then guided towards direct search algorithms, including DE (Storn,
Price, Lampinen 2005). The simplest, and least sophisticated method from
this category is the brute force method also known as enumeration. Here
the parameter room is grided, all the grid points are visited and the best
value is stored. This method faces step-size problems, as a too large step-
size might skip the optimum point and a too small step-size will result in very
long computation time as it increases exponentially with the grid refinement
(Storn, Price, Lampinen 2005).

For the airfoil optimization problem a multi-point and derivative-Free method
is required. Under this category goes Evolution Strategies, Genetic Algo-
rithms, Nelder-Mead method and Controlled Random Search. Each of these
method are very briefly explained below, including listing of pros and cons.

26

4.2.1 Evolution Strategies (ESs) and Genetic Algorithms (GAs)

Both GAs and ESs attempt to evolve better solutions through recombina-
tion, mutation and survival of the fittest. They both mimic the Darwinian
evolution but are distinctively different. ESs encode parameters as floating-
points numbers and manipulates them with arithmetic operations. GAs on
the other hand encodes the parameters as bit strings and manipulate them
through logical operations.ESs despite being very competitive among global
optimizers, they still don’t manage the step-size problem (Price, Storn and
Lampinen 2005).

4.2.2 Nelder and Mead

This method is developed to deal with the step-size problem. The algo-
rithm starts by forming a D + 1 dimensional polyhedron which vertices are
randomly distributed over the parameter room. Here D denotes the dimen-
sionality of the problem. As the algorithm progresses the step size is being
adjusted accordingly. An advantage of the Nelder and Mead method is that
the polyhedron can expand and shrink to adopt to the current objective func-
tion surface. Nelder and Mead method is restricted to D + 1 sample points
as opposed to DE which is a back drawback for complicated objective func-
tions that needs many evaluations over the parameter room (Storn, Price
and Lampinen 2005).

4.2.3 CRS - Controlled Random Search

Resembles Nelder and Mead method by employing a polyhedron, and DE
as the population size is variable. CRSs main drawback is that the current
worst point is being replaced as the algorithm runs which exerts high selective
pressure which in turn may result to premature convergence (Storn, Price and
Lampinen 2005).

Differential Evolution was chosen as it can handle large populations and for
not being sensitive to premature convergence, as opposed to its competitors
even though the step-size problem remains. However, it is important to
stress that Differential Evolution is not proven to be the best optimizer, but
its characteristics seem appropriate to this case.

27

4.2.4 Differential Evolution and constraint handling

Differential Evolution is genetic algorithm which has been proven success-
ful in minimizing real-valued problems, however being a meta heuristic, it
doesn’t guarantee that no optimal solution is ever found (Storn 1996). The
method has good convergence properties and is very simple to implement and
understand. DE doesn’t use the gradient of the problem being optimized, and
it can also treat noisy and discontinuous problems which makes it very com-
petitive. Differential evolution has been chosen as the optimization method
in this work.

DE in its very basics evaluate a set of solutions (agents) which subsequently
are being mutated in such a way that agents with favourable traits has larger
influence than those with unfavourable traits. The procedure resembles the
genetic selection that occurs in organisms over generations and thus the name
”genetic algorithm” is a suitable choice.

The classical, unconstrained DE algorithm ”DE/Rand/1/Bin” is in its sim-
plest way stated as:

1. create a random initial population xi i ∈ 1, ...NP
2. for j = 1 : max iteration
3. for k = 1 : NP
4. pick 3 agents a,b,c where a 6= b 6= c 6= xk
5. pick a random index R ∈ {1, ...n}
6. for l = 1 : n
7. rl ≡ U(0, 1)
8. if rl ≤ CR
9. yl = al + F ∗ (bl − cl)

10. else if l = R
11. yl = al + F ∗ (bl − cl)
12. else
13. yl = xl
14. end
15. end
16. iff(yk) ≤ f(xk)
17. xk = yk
18. end
19. end
20. end

28

Where NP is the number of agents, CR is the crossover probability and F is
the differential weight. More on these parameters is found under Parameter
selection (Mezura-Montes 2006)

The basic forms of evolutionary algorithms, such as the DE lacks the ability
to deal with constraints of the problem (Mezura-Montes, Velázquez-Reyes,
Coello Coello 2006). In this paper, the simplest optimization which is to
decrease the inverse of the glide ratio (D

L
) will result in non-realizable airfoils

if no constraints are set on the thickness of the airfoils. The most common
method to deal with this is to use penalty functions which decreases the fit-
ness for infeasible agents by adding an additional term onto the cost function.
Hopefully this will push the agents towards feasible solutions. The drawback
is that penalty functions has to be defined, which is not a trivial matter.The
reader is adviced to Mezura-Montes, Velázquez-Reyes, Coello Coello for more
details on how penalty functions can be chosen in a sophisticated manner.

Constrained differential evolution has been subjected to extensive research
and up to date it seems like there is big ambiguity on how the original
DE method should be modified in order to deal with constraints. For the
sake of simplicity, and not to get tricked by non-established methods, the
aforementioned method of penalty functions has been imposed to the cost
function to deal with this.

A general, constrained optimization problem can be stated:

min f(x) s.t

{
gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., n
(10)

Where gi(x) is a set of inequality constraints, and hj(x) is a set of equal-
ity constraints. The optimization problem can then be reformulated with
penalty functions as

min φ(x) = f(x) +
m∑
i=1

p(gi(x)) (11)

Where

p(gi(x)) =

{
0 if gi(x) ≤ 0

> 0 else
(12)

and for the equality constraints

p(hj(x)) =

{
> 0 if hi(x) 6= 0

0 else
(13)

29

In (31) and (32) the non-zero outcome of p is just as it is written, any value
larger than zero. However, more often it is an increasing, positive function
so that the larger the violation is, the larger the penalty is. Initially in
this research, the violation squared, max(0, gi(x))2 was used as p, though
with limited success. This penalty is commonly used and is referred to as
”Quadratic loss” (Roberts 2014). As this function turned out to penalize
infeasible solutions very hard, a different penalty function with the shape
shown in the figure below was constructed.

Figure 14: A possible penalty function

This function is a composition of two constant functions, a quadratic function
and another quadratic function which has been mirrored two times. The
same shape can also be obtained by replacing the quadratic functions with
a sinusoidal function, though at the expense of flexibility. The function is
continuous, differentiable and has a maximum plateau value which is reached
relatively early. It is unclear whether differentiability is important or not,
but as it is easy to construct a differentiable function and it certainly wont
make it worse, it was made like that. The general shape of the function is
always the same but the amplitude and the width of the sinusoidal part, is
adjusted depending on the behaviour of gi(x) and to clarify this an example
will be demonstrated. Suppose that we are optimizing the glide ratio and
we do not allow the lift coefficient to exceed 1.5. Furthermore we have a
population size NP = 80. After the first iteration we stop and evaluate the
lift coefficient for each agent xi. By doing so we get an understanding of how

30

large the constraint violations are in general. It is reasonable that the penalty
function is adjusted so that the average size of the violations coincide with the
mean value of the penalty function, and at the same be sufficiently narrow
to make sure that the largest violations occurs on the right-side plateau.
Regarding the amplitude of the penalty function, we found that it should be
around 10-100 times the average size of the cost function.

4.3 Parameter selection

The choice of the parameters F, CR and NP can have large impact on the
performance of the optimization. The inventors of the method, Storn and
Price have given some rules of thumb in the selection of parameters which
are given below:

”Most often the crossover probability CR ∈ [0, 1] must be considerably lower
than one (e.g. 0.3). If no convergence can be achieved, however, CR ∈ [0.8, 1]
often helps.”

”For many applications NP = 10 ∗D is a good choice. F is usually chosen
∈ [0.5, 1].” (Storn 1996, p. 521)

If the choices were good or not can be revealed by looking at the convergence
behaviour. It is a good sign if the variables of the best candidate from each
iteration change a lot in-between each iteration, especially in the beginning
of the run. It is not necessary bad if the convergence experiences plateaus
during the run. It however indicates that increasing the population size NP
might be a good idea. The objective function value shouldn’t drop too fast,
otherwise one might get stuck in a local minimum. (Storn 1996)

These recommendations were proven successful. Typically the choices were
F = 0.5, CR = 0.4 &NP = 10 ∗D = 80

4.4 Thickness constraint

High aerodynamic performance and structural stability are two conflicting
parameters. For high aerodynamic performance the airfoil should be as thin
as possible, whereas for structural stability it should be thick. As aerody-
namic performance is our primary goal in this research, it is necessary to
impose constraints on the thickness.

31

The generated airfoils are given as both B-spline curves as well as coordinate
files. As the coordinate files are the ones that serve as blueprints for manufac-
turing, the thickness is measured on them. The thickness at position x

c
= δ

is measured by finding the closest coordinate on the upper and lower surface
respectively and measure the distance in-between them. In the figure below
is an example where δ is 0.34c. The red vertical line’s length is the actual
thickness at δ = 0.34, whereas the blue line is the approximated thickness.

Figure 15: thickness approximation of airfoil

Typically a minimal allowed thickness has been given by Winfoor AB, the
position x

c
where the largest thickness on the original airfoil is found, is also

the position at which the thickness of the generated airfoils are measured. It
is also necessary to constrain the thickness in the TE as it tends to become
very thin otherwise. It is done in the same manner at a distance close to TE,
typically at x

c
= 0.97. If the distance where it is measured is too far away

from TE there is a risk that the TE might be too thin.

32

4.5 Flow Solver - XFOIL

The optimization algorithm has to be coupled to an external flow solver
which can return lift and drag for the generated airfoils. As several thousand
airfoils will be evaluated it is crucial to use a fast flow solver without loosing
accuracy. CFD is way too time consuming, but instead a potential flow
solver such as XFOIL or PROFIL are suitable since they are very fast and
reasonably accurate. In this research XFOIL has been chosen as it is more
accurate for detached/stalled flow than its competitors (Hepperle 2015).

Xfoil is a commercial software for design and analysis of subsonic, isolated
airfoils. Xfoil incorporates two-dimensional panel methods to solve the po-
tential flow around an object. There are two alternative design modes, ei-
ther full-inverse or mixed inverse. Full-inverse method has been described
as just inverse design in previous chapters, whereas mixed inverse is a new
concept. In mixed inverse one part of the airfoil surface has a prescribed
pressure distribution whereas the rest has a prescribed geometry. In analysis
mode a coordinate text file is inserted as input and the software returns air-
foil characteristics such as lift, drag, transition points, pressure distribution
and more. The user can easily analyse airfoils for different angle of attacks,
Reynolds numbers, Mach numbers and turbulence levels. The first version of
xfoil was made in 1986 by Mark Drela, professor at MIT (Drela & Youngren
2001). It is appropriate to investigate others experiences of XFOIL and how
it performs, as it can give guidance in analysing the accuracy of the obtained
results. Martin Hepperle (2015) has conducted a thorough study of several
potential flow solvers, and below are his main pros and cons on XFOIL.

1. Pros

• The boundary layer is taken into account while solving the flow
field. It thus manages to handle small to medium sized separated
regions.

2. Cons

• It is not able to generate the leading edge region as smooth as the
Eppler method is.

• Computation time is much longer than compared to PROFIL.

33

4.6 Execution and implementation

DE in its basics has been described together with how B-splines can be used
to describe airfoils. It is now timely to describe how everything is being put
together into a MATLAB code. The MATLAB code itself is due to its size
placed in the appendix. To get an overall view, the flowchart below is helpful.
The algorithm starts by making perturbed replicas of the initial airfoil which
subsequently are being evaluated in XFOIL. The airfoils are being modified
according to the DE algorithm and again evaluated in XFOIL. This process
is being repeated until a predefined stopping criterion is met.

Figure 16: cost function value of the best candidate from each iteration

34

For a more detailed description we continue on the DE pseudo-code presented
under Differential Evolution and constraint handling.

1. create NP copies xi i ∈ 1, ..., NP of the original airfoil
2. perturbate each agent: xi,j = xi,j + U(-per,per)*
3. delete non-active variables from (LE and TE) xi
4. for j = 1 : max iteration
5. for k = 1 : NP
6. pick 3 agents a,b,c where a 6= b 6= c 6= xk
7. pick a random index R ∈ {1, ...n}
8. for l = 1 : n
9. rl ≡ U(0, 1)

10. if rl ≤ CR
11. yl = al + F ∗ (bl − cl)
12. else if l = R
13. yl = al + F ∗ (bl − cl)
14. else
15. yl = xl
16. end
17. end
18. add non-active variables from (LE and TE) to xi and yi
19. generate coordinate txt-files from xi and yi
20. evaluate these coordinate files in XFOIL.
21. iff(yk) ≤ f(xk)
22. xk = yk
23. end
24. end
25. end

* xi,j here refers to vector i, element j ∈ 1, ..., D and per is the perturbation
size.

As earlier mentioned there exists singularities which has to be treated in
some way. The solution chosen is to employ the penalty function and penalize
singular points with the highest penalty value. This should lead the optimizer
away from such points, but more research should be done here to ensure good
results.

To clarify the optimization problem a full mathematical formulation will be
given. The objective is to increase the sum of the glide ratios for angle of
attacks 3,7 and 10 with a maximum lift coefficient Clmax, minimum allowed
thickness’s tmin1 and tmin2 at positions x

c
= p1 and x

c
= p2 respectively,

35

together with requirement on convergence:

min

(
Cl

Cd
(x)

∣∣∣∣
α=3

+
Cl

Cd
(x)

∣∣∣∣
α=7

+
Cl

Cd
(x)

∣∣∣∣
α=10

)−1

s.t


Cl(x)|α=i − Clmax ≤ 0 i ∈ 3, 7, 10

tmin1 − t(p1) ≤ 0

tmin2 − t(p2) ≤ 0

failed ≤ 0 ∗∗

failed is a logical which is zero if the airfoil has converged and one otherwise

4.7 Smooth stall and how to quantify it

There is no universal definition of what a smooth stall is and how to mea-
sure/quantify it. In this research smooth stall is defined as a small, negative
derivative dCl

dα
in the region aft the peak lift coefficient. As the input to the

DE-algorithm must be a measure of this derivative, and we want save com-
putational effort the post-stall behaviour has to be generalized. Questions
that arise are where should the derivative be measured? should an average
derivative over a certain range be measured? A simple solution is to measure
where the second derivative d2Cl

dα2 is zero, in this region the first derivative
should be fairly constant and hence give a good approximation of the overall
post-stall behaviour.

As the Cl and α values makes up a set of discrete numbers a numerical
second derivative has to computed, and also it is very unlikely that a zero set
exists. The numerical second derivative for a set of points x = x1, x2, x3 y =
y1, y2, y3 is expressed as

d2y

dx2
=

(y3−y2
x3−x2)− (y2−y1

x2−x1)
x3−x1

2

(14)

when central finite difference is used (Eberly 2016). In the same fashion the
first derivative approximated with finite differences is expressed as

y3 − y1
x3 − x1

(15)

Alternatively, only the first derivative approximation can be employed over a
larger range of values as the Cl vs. α curve might be jagged and have several
positions where d2Cl

dα2 is zero

36

5 Results and Discussion

In this section the results from optimizing two different airfoils are being
presented. NREL S826 is an airfoil developed for pitch regulated turbines.
It has high aerodynamic performance, but is just 14% thick. NREL S819 is
an airfoil developed for stall regulated turbines. It has lower aerodynamic
performance than NREL S826 but is on the other hand 21 % and it also has
a more docile stall.

5.1 Convergence and constraints

The figures in this section display how constraints are being fulfilled and how
the value of the cost function changes throughout a run of the optimization
code. The figures are obtained from a typical optimization with 200 itera-
tions, 80 agents, double constraints on thickness and one constraint on lift
which is so high that it is unlikely to ever be active.

Figure 17: Cost function value of the best candidate from each iteration

37

Figure 18: The minimum thickness are displayed by the horizontal red and
blue lines. The curves show the thickness of the best agent from each iteration
and show how well the constraints are fulfilled

Figure 19: lift coefficient for the best candidate from each iteration. As the
airfoil is evaluated from three different angles of attack, there are three lift
curves. The constraint of lift is set to Clmax ≤ 3 which is so high that it
never will be active.

As can be seen from the graphs, the cost function value (glide ratio) drops to a
more or less stable value after around 60-80 iterations, however it continues to

38

drop throughout the entire run. The thickness constraints, and lift constraint
(when being active) is fulfilled very well when starting from feasible sets.
When starting from infeasible sets, the results show that the algorithm is not
able to handle it, and it gets stuck in infeasible solutions. It is an obvious
weakness of the algorithm and effort should be made to get around it.

5.2 Optimizing for alpha = 6

NREL S819 was optimized with constraints on lift and thickness. The thick-
ness measured at two positions in the thickest part was constrained to not be
less than for the original airfoil and the lift not to exceed Clmax = 1.0. NP =
80, n = 390 and CR = 0.4. NREL S819 has a maximum thickness of 21 %,
Clmax = 1.3 occurring at α = 14◦ and a maximum glide ratio of 75 occurring
at α = 9◦. The optimization was performed for α = 6◦ as it is the design
point for the Winfoor blade. Reynolds number was chosen to 500 000 and
the Mach number to 0 by a thorough estimation of the real flow conditions.

Table 1: Comparison of optimized airfoil and original S819. xtr is transition
point on the upper airfoil surface

airfoil L
D

t1 t2 Cl xtr(
x
c
)

S819original 69.2 0.1446 0.1644 0.8600 0.37
S819optimized 99.9 0.1509 0.1643 0.9945 0.48

change +44.4% +4.4% ±0% +15.6%

39

Figure 20: glide ratio vs. iteration. The blue curve shows the performance of
the optimized airfoil and the red one shows the performance of the original
S819.

Figure 21: Original NREL S819 and the optimized version

40

Figure 22: Pressure distribution Cp over NREL S819 for α = 6◦

41

Figure 23: Pressure distribution Cp over optimized NREL S819 for α = 6◦

It is evident that the optimization works well, the inverse objective function
value has increased by 44 % for the same airfoil thickness and only increasing
the lift coefficient by 15 %. In the glide ratio vs. alpha figure one can see how
the glide ratio peaks at alpha 6 and subsequently drops dramatically. In most
cases this will not be an acceptable behaviour, and as an attempt to gener-
ate an airfoil with higher performance in a larger regime, the optimization
algorithm was extended to two AOA’s.

5.3 Optimizing for two angle of attacks

Starting from NREL S826 airfoil, optimization was done with the arithmetic

mean,
(

Cl
2Cd

∣∣
α=6

+ Cl
2Cd

∣∣
α=8

)−1
as the goal function. Lift was constrained to

Clmax ≤ 1.5, NP = 30, n = 100 and the maximum thickness of 14 % was
set to remain. It has a maximum lift coefficient of 1.5 and a maximum glide
ratio of 115.

42

Table 2: Comparison of original S826 and optimized airfoil. AA is the arith-
metic mean of the glide ratios for α 6 and 8. xtr is the transition point on
the upper surface.

airfoil AA(Cl
Cd

)|6&8
Cl
Cd
|α=6

Cl
Cd
|α=8 xtr(

x
c
)|α=6◦ xtr(

x
c
)|α=8◦

original 97.5 113.8 81.3 0.49 0.148
optimized 124.2 120.7 127.6 0.512 0.4132

change +27.4% +5.4% +57.0%

Figure 24: Glide ratio vs. alpha. Original S826 in red, optimized for alpha
6 in blue and in green optimized for the mean of alpha 6 and 8.

43

Figure 25: Original S826 in red and the optimized version in blue.

44

Figure 26: Pressure distribution Cp over NREL S826 for α = 6◦.

45

Figure 27: Pressure distribution Cp over optimized NREL S826 for α = 6◦.

Again the objective function value was improved significantly and the con-
straints were fulfilled. But by investigating how the two glide ratios has
improved separately, one can see that the rate of improvement is very un-
evenly distributed. For alpha 6◦the glide ratio has increased by merely 5%
whereas for alpha 8◦it has increased by nearly 60%! On top of this, the
glide ratio of the optimized airfoil is significantly smaller for alpha <4◦when
compared to the original airfoil. The figure above shows the glide ratio for
three different airfoils as it varies with the angle of attack. The red one is
for the original NREL S826, the blue one is when optimizing for one angle
of attack and the green one is when optimizing for the mean of two angle
of attacks. The figure hints that the optimizing algorithm improves nothing
but the prescribed goal function subject to the constraints, i.e. no care is
taken to loss of glide ratio in other ranges of alphas.

The goal is now to generate an airfoil with higher performance in the entire
regime from 0◦< alpha < 15 ◦and at the same time not letting the airfoil
grow thinner than a few percent. The algorithm was extended to 3 angle of
attacks.

46

5.4 Optimizing for three angle of attacks

The optimization approach was extended to incorporate three angle of at-
tacks (3,7 and 10). NP=80, n=200, minimum 18% thickness as the thickest
part and minimum 3% thickness in the TE. No constraint on lift. The op-
timization was performed starting from both S819 and a scaled version of
S826 with 19 % thickness.

Figure 28: Glide ratio vs. alpha. Original S826 in red and the optimized one
in blue.

47

Figure 29: Glide ratio vs. alpha. Optimized versions of S819 and S826

Figure 30: Original NREL S819 in red and optimized version in blue. Note
that starting from NREL S826 results in the same optimized airfoil as when
starting from NREL S819.

48

The results presented in figure 21 show that the performance has improved in
the entire regime, with exception of a small decrease in glide ratio for angle
of attacks around 6◦. The largest improvements have been made for high
angle of attacks, possibly to an unnecessary high degree. An improvement
to this could be to take a weighted average as the objective function, where
large angle of attacks are given a smaller weight factor and thus contributes
less.

Another noticeable detail is that when starting from two different airfoils
(S819 and a scaled S826), the results are nearly identical for the same goal and
constraints, see figure 22. This indicates that the algorithm is not sensitive
to start values and that the obtained result is likely to be the globally most
optimal solution under given conditions.

5.5 Optimizing towards a specific value for several an-
gle of attacks

In previous optimization the goal was to minimize the inverse of the glide
ratio or the arithmetic mean of several glide ratios. A slightly different ap-
proach is to aim for certain values in glide ratio, and by doing so the user
can control the shape of the glide ratio curves.

The goal now was to increase the glide ratio at alpha 3,7 and 10 by 3,10 and
10 percent respectively. For the original S819 the glide ratio at these alphas
were 45, 75 and 60 respectively, which results in the following cost function:

f(x) =
10∑
i=3

∣∣∣∣∣ClCd(x)

∣∣∣∣
α=i

− k · Cl
Cd

(x = S819)

∣∣∣∣
α=i

∣∣∣∣∣ i ∈ 3, 7, 10 (16)

When i is 3, k is 1.03 and when i is 7 or 10, k is 1.1. I.e. the goal is to
minimize the deviation from the desired goal values.

49

Figure 31: Glide ratio vs. alpha. Original S819 in red and optimized airfoils
in blue and green. The design points alpha 3,7 and 10 are marked as small
circles.

The method turned out to not be very successful, assigning favoured rates of
improvement for each angle of attack constrains the shape of the glide ratio
vs. alpha curve in way that it becomes jagged and very unstable. It appears
as if optimizing the weighted average is a far better idea.

50

6 Conclusion and future work

The most important observation from this thesis is that is possible to write
a computer code that improves the performance of an airfoil and at the same
time is able to impose restrictions on its shape and performance. The user
of the code doesn’t need any knowledge in how to shape an airfoil for desired
performance, which must be seen as a powerful result. The code is general
and doesn’t stop the user from applying it on airplane wings, gas turbines or
other fluid mechanical constructions where 2D-design is worthwhile.

However, there are several improvements which must be made to make the
results truly competitive. More research are required about B-splines pa-
rameters, i.e. how many control points are necessary and what degree of
the curves are required.. At this stage it is still unclear how many control
points are necessary and what degree of the curves are required. Also, is
it satisfactory to describe the leading edge with B-splines or should it be a
circular segment as Söderlund (2015) employs in his work.

It is a big disadvantage that the current code is not able to handle infeasible
starting points. Results show that when starting with an airfoil that has a
smaller thickness than allowed, the code ”gets lost in itself”, i.e. an airfoil
with satisfactory thickness is never reached. The problem has half-heartedly
been solved by scaling the initial airfoil to the desired thickness.

XFOIL is flow solver that is very fast, but how accurate is it. In this thesis
no comparisons with more accurate flow solving methods such as CFD has
been made. It would be impossible to use CFD for solving the flow in the
algorithm as it is very slow already, but maybe there are other flow solvers
with higher accuracy and that are reasonably fast.

In its current version the code is not a true multi-objective algorithm. When
optimizing the glide ratio for several angle of attacks, the mean of the in-
dividual values are taken as the objective function. It may work ok when
optimizing for the same physical quantity, but more questionable otherwise.

The attempts to guide the glide ratio vs. alpha curve to a desired shape didn’t
turn out to be very successful, the results were jagged and peculiar curves.
The thought of starting by drawing a desired curve and let the algorithm
reshape the airfoil so that it meet that curve is very tempting. For that to
be achievable I believe that there must exist a regime for where all obtained
curves are considered as fully optimized. The idea is very loosely formulated

51

but is worth a further investigation from my perspective.

Quantification of smooth stall and how it can be included in the objective
function need more research. Attempts were made were the only objective
was to obtain smooth stall, no consideration was taken to glide ratio, lift nor
thickness. The execution faced several problems, first and foremost it was
extremely tedious as several angle of attacks had to be solved for. It was also
unclear which range of angle of attacks should be evaluated, taking a large
range would imply longer computation time, making it too short the stall
region might be missed. A lot of work can still be done on this area.

52

References

Anderson, Jr, J.D. (1991). Fundamentals of Aerodynamics 2nd edition,
Columbus, OH: McGraw-Hill

Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2011). Wind Energy
Handbook 2nd edition, West Sussex: John Wiley & Sons.

Dahl, S.K., Fuglsang, P. (1998). Design of the Wind Turbine Airfoil Family
RISØ -A-XX.
Risø National Laboratory, Roskilde, Denmark.

Drela, M. & Youngren, H. (2001). XFOIL 6.9 User Primer.

Eberly, D. (2016) Derivative Approximations by Finite Differences
https://www.geometrictools.com/Documentation/FiniteDifferences.pdf
[2017-05-08]

Eppler, R. (1990) Airfoil Design and Data, Berlin: Springer-Verlag

Germanborillo 2015. 6239807969 aac30c2a6b o.
https://www.flickr.com/photos/germanborrillo/6239807969/in/photolist-
avoDw2-s5Xias-AMqgu-nMeVtq-9PsT5A-nR53XB-9PsRXE-9PsTkj-
meXwBh-9PsS6y-6SdRnX-aJxxEZ-cJWo63-nwMRRU-aJxsNv-6ShW3f-
hAoa6H-9X4VQG-qYP8gT-8HakTL-aJwFVZ-nMeUpb-VBBDa7-7hL9AT-
6ShWkL-bMo1zr-6SdRpg-aNGd8v-6ECLiy-aJwr5T-aNGvh8-aJxpJB-
aJwGuF-avs1j1-aJwJKH-aJwJcP-aJxEHg-aNG8zr-aJwDvk-aJxWuD-
aJxw4e-aNGzSp-aJwwcB-avoSAM-6ECLuy-cJWBQf-FB6GP5-aJwy9R-
aNGg3K-aJxecZ
[2017-10-14]

Grasso, F., Coiro, D., Bizzarini, N., Calise, G. (2017). Design of advanced
airfoil for stall-regulated wind turbines

Hepperle, M. (2015). Design and Analysis of Airfoils. http://www.mh-
aerotools.de/airfoils/methods.htm [2017-02-09]

Jonkman, B. (2014). NREL’s S809 Airfoil Graphics and Coordinates
https://wind.nrel.gov/airfoils/Shapes/S809 Shape.html
[2017-06-22]

Merz, K.O. (2011) Conceptual Design of a Stall-Regulated Rotor for Deep-
water Offshore Wind Turbine. Diss. Trondheim: Norwegian University of
Science and Technology.

53

Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, A.C. (2006) Mod-
ified Differential Evolution for Constrained Optimization. 2006 IEEE
Congress on Evolutionary Computation. Sheraton Vancouver Wall Centre
Hotel, Vancouver, BC, Canada. July 16-21, 2006

Mialojamiento (2017). Wind Turbines.
http://s529981524.mialojamiento.es/?q=content/wind-turbines
[2017-08-04]

Office of Energy Efficiency and Renewable Energy (2017). How Do Wind
Turbines Work
https://energy.gov/eere/wind/how-do-wind-turbines-work
[2017-08-04]

Price, K.V., Storn, R.M., Lampinen, J.A. (2005). Differential Evolution, A
Practial Approach to Global Optimization.
Berlin, Germany: Springer-Verlag.

Roberts, J.(2014).Penalty Functions
https://web.stanford.edu/group/sisl/k12/optimization/MO-unit5-
pdfs/5.6penaltyfunctions.pdf
[2017-07-04]

Somers, D.M. (1997) Design and Experimental results for the S809 Airfoil.
National Renewable Energy Laboratory: Colorado, U.S.

Storn, R. (1996) On the usage of differential evolution for function opti-
mization. Biennial Conference of the North American Fuzzy Information
Processing Society (NAFIPS). Siemens AG, ZFE T SN2, Otto-Hahn Ring
6, D-81739 Muenchen,Germany

Söderlund, A. (2015). Parameter selection and derivative conditions for B-
splines applied to gas turbing blade modeling. Bachelor’s thesis.
Lund: Lund University, Department of Numerical Analysis.

Tritton, D.J. (1988). Physical fluid dynamics.
Oxford: Clarendon.

Winfoor (2017). Company
http://winfoor.com/company/
[2017-08-24]

54

7 Appendix - MATLAB Code

The main code:

1 % MAIN CODE

2 % >>>>>>>>>>>>>>>> ADDITIONAL FILES REQUIRED <<<<<<<<<<<<<<<<<<<<< %

3 % rdm.m

4 % random.m

5 % costfunc3.m

6 % foilx.inp , foily.inp , xfoil_pwrt.dat

7 % >>>>>>>>>>>>>>>>>>>>>>>>>> END <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< %

8

9 % >>>>> CODE STRUCTURE <<<<<<<< %

10

11 % 1. USER INPUT PARAMETERS

12 % 2. GENERATION AND INITIALIZATION OF RANDOM AIRFOILS

13 % delete non -active variables from x

14 % inputs related to DE-computation

15 % 3. MUTATION

16 % 4. GENERATE AIRFOIL AND COMPARE L/D

17 % 5. GENERATE AIRFOIL OF THE BEST SOLUTION

18

19 % >>>>>>>>>>>>>> END <<<<<<<<<<<<<< %

20

21 clear all

22 clc

23 close all

24 format long

25

26 % >>>>> USER INPUT PARAMETERS <<<<<< %

27

28 CR = 0.4; % crossover probability e[0,1] << 1 (eg. 0.3), if no convergence

29 %set CR = 0.8

30 F = 0.5; % differential weight e[0,2] usually between [0.5, 1.0]

31 n = 200; %number of iterations

32 NP = 80; % population size , has to be >= 4 usually NP*dim is good

33 CLmin = 0.1;

34 CLmax = 1.6;

35 per = 0.02; % perturbation x = x +-per

36 thicknesspos1 = 0.34;

37 thicknesspos2 = 0.975;

38 minthickness1 = 0.20;

39 minthickness2 = 0.0032;

40

41 % >>>>>> GENERATION AND INITIALIZATION OF RANDOM AIRFOILS <<<<<<<<< %

42

43 degree = 3;

44 npoints = 13; %number of control points

45 dim = 8; %number of ACTIVE function variables

46 foils = [];

47 failedx = false;

48 failedy = false;

49 X = [];

50 Y = [];

51 x = []; % vector with agents [NP x dim]

52

53 for i=1:2: NP*2

54 foils(1,i) = 0;

55 foils(1,i+1) = 0;

56 foils(2,i) = 0;

55

57 foils(2,i+1) = 0.05 + rdm (-0.003 ,0.003);

58 foils(3,i) = 0.18;

59 foils(3,i+1) = 0.145 + rdm(-per ,per);

60 foils(4,i) = 0.45;

61 foils(4,i+1) = 0.17 + rdm(-per ,per);

62 foils(5,i) = 0.88;

63 foils(5,i+1) = 0.07 + rdm(-per ,per);

64 foils(6,i) = 1.0;

65 foils(6,i+1) = 0;

66 foils(7,i) = 1.0;

67 foils(7,i+1) = 0;

68 foils(8,i) = 1.0;

69 foils(8,i+1) = 0;

70 foils(9,i) = 0.83;

71 foils(9,i+1) = 0.045 + rdm(-per ,per);

72 foils(10,i) = 0.45;

73 foils(10,i+1) = -0.035 + rdm(-per ,per);

74 foils(11,i) = 0.3;

75 foils(11,i+1) = -0.08 + rdm(-per ,per);

76 foils(12,i) = 0;

77 foils(12,i+1) = -0.03 + rdm (-0.003 ,0.003);

78 foils(13,i) = 0;

79 foils(13,i+1) = 0;

80 end

81

82 counts =1;

83 for i=1:NP

84 count =1;

85 for j=1: npoints

86 x(i,count)= foils(j,counts);

87 count = count +1;

88 x(i,count) = foils(j,counts +1);

89 count=count +1;

90 end

91 counts=counts +2;

92 end

93

94 % delete non -active variables from x:

95 x(: ,1:3) = [];

96 x(:,2) = [];

97 x(:,3) = [];

98 x(:,4) = [];

99 x(: ,5:11) = [];

100 x(:,6) = [];

101 x(:,7) = [];

102 x(:,8) = [];

103 x(: ,9:10) = [];

104

105 % inputs related to DE-computation:

106 y = []; %potentially new position

107 iandr = [1:dim]’;

108 distvec =[];

109 bestfitindex = 1;

110 Px = [];

111 Py = [];

112 cfoils = [];

113 glidec = [];

114 liftvec = [];

115 thickvec = [];

116 bestfitvec = []; % [Cd/Cl,L]

117 costfuncomp = [];

118

56

119 % >>>>>>>>>>>>>>>>> END OF INITIALIZATION <<<<<<<<<<<<<<<<< %

120

121 fails = 0;

122 for k=1:n % TERMINATION CRITERION

123 bestfit=realmax;

124 bestcostfit=realmax;

125

126 for j=1:NP % FOR EACH AGENT

127 abc = random(NP,j); % a,b,c candidates

128 a=x(abc(1) ,:);

129 b=x(abc(2) ,:);

130 c=x(abc(3) ,:);

131 randint = randi ([1 dim],1,1); %random integer between 1 and number

132 %of function variables

133 % MUTATION

134 for i=1:dim

135 iandr(i,2) =0+(1 -0).*rand (1,1);

136 if iandr(i,2) < CR

137 y(i)=a(i)+F*(b(i)-c(i));

138 elseif i== randint

139 y(i)=a(i)+F*(b(i)-c(i));

140 else

141 y(i)=x(j,i);

142 end

143 end

144 % END OF MUTATION

145

146 % >>>>>>>> GENERATE AIRFOIL AND COMPARE L/D <<<<<<<<<<<<<<<<<< %

147

148 Px(1,:) = [[0,0] 0.18 0.45 0.88 [1,1,1] 0.83 0.45 0.3 [0 ,0]];

149 Px(2,:) = [0 x(j,1:4) [0,0,0] x(j,5:8) 0];

150 Py(1,:) = [[0,0] 0.18 0.45 0.88 [1,1,1] 0.83 0.45 0.3 [0 ,0]];

151 Py(2,:) = [0 y(1 ,1:4) [0,0,0] y(1 ,5:8) 0];

152

153 [u1 ,v1] = bspline_f(degree ,Px ,230);

154 [u2 ,v2] = bspline_f(degree ,Py ,230);

155 temp = [u1;v1;u2;v2];

156

157 % re-order coordinate file into counter -clockwise order

158 for l=1:4

159 B = flip(temp(l ,1:230/2));

160 C = flip(temp(l ,230/2+1: end));

161 cfoils(:,l) = [B C]’;

162 end

163 dlmwrite(’foilx.txt’,cfoils (: ,1:2),’delimiter ’, ’ ’, ’precision ’,

16);

164 dlmwrite(’foily.txt’,cfoils (: ,3:4),’delimiter ’, ’ ’, ’precision ’,

16);

165

166 % >>>>>>>>>>>>>>>>>>>>> ANALYSE X <<<<<<<<<<<<<<<<<<<<<<<<< %

167

168 % >>>>>>> ALPHA 3 <<<<<<<<

169

170 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foilx.inp > xfoil

.out’);

171

172 fid = fopen(’xfoil_pwrt.dat’);

173 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

174 fclose(fid);

175 relevantline = A{1}{ cellfun(@length ,A)};

176 B = str2num(relevantline);

177 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

57

178 CLx3 = B(2);

179 CDx3 = abs(B(3));

180 if CDx3 == 0

181 CDx3 = 0.00001;

182 end

183 failedx = false;

184 else % i.e if the foil doesn ’t converge it will be penalized

185 CLx3 = 1;

186 CDx3 = 1;

187 fails=fails +1;

188 failedx = true;

189 end

190

191 p = [thicknesspos1 thicknesspos2];

192 x1 = zeros (2);

193 y1 = zeros (2);

194 thicknessx = [1 ,1];

195 for i=1:2

196 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

197 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

198 [~,iu] = min(tmp1);

199 [~,il] = min(tmp2);

200 cu = cfoils(iu ,1:2);

201 cl = cfoils(size(tmp1 ,1)+il ,1:2);

202 x1(i,:) = [cl(1) cu(1)];

203 y1(i,:) = [cl(2) cu(2)];

204 thicknessx(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

205 end

206

207 dlmwrite(’xfoil_pwrt.dat’,’ ’); % NYTT

208

209 % >>>>>>>>>>> ALPHA 7 <<<<<<<<<<<<<

210

211 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foilx2.inp >

xfoil.out’);

212

213 fid = fopen(’xfoil_pwrt.dat’);

214 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

215 fclose(fid);

216 relevantline = A{1}{ cellfun(@length ,A)};

217 B = str2num(relevantline);

218 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

219 CLx7 = B(2);

220 CDx7 = abs(B(3));

221 if CDx7 == 0

222 CDx7 = 0.00001;

223 end

224 failedx = false;

225 else % i.e if the foil doesn ’t converge it will be penalized

226 CLx7 = 1;

227 CDx7 = 1;

228 fails=fails +1;

229 failedx = true;

230 end

231 % nytt 14/5

232 p = [thicknesspos1 thicknesspos2];

233 x1 = zeros (2);

234 y1 = zeros (2);

235 thicknessx = [1 ,1];

236 for i=1:2

237 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

238 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

58

239 [~,iu] = min(tmp1);

240 [~,il] = min(tmp2);

241 cu = cfoils(iu ,1:2);

242 cl = cfoils(size(tmp1 ,1)+il ,1:2);

243 x1(i,:) = [cl(1) cu(1)];

244 y1(i,:) = [cl(2) cu(2)];

245 thicknessx(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

246 end

247 dlmwrite(’xfoil_pwrt.dat’,’ ’); % NYTT

248

249 % >>>>>>>>>>> ALPHA 10 <<<<<<<<<<<<<

250

251 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foilx3.inp >

xfoil.out’);

252

253 fid = fopen(’xfoil_pwrt.dat’);

254 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

255 fclose(fid);

256 relevantline = A{1}{ cellfun(@length ,A)};

257 B = str2num(relevantline);

258 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

259 CLx10 = B(2);

260 CDx10 = abs(B(3));

261 if CDx10 == 0

262 CDx10 = 0.00001;

263 end

264 failedx = false;

265 else % i.e if the foil doesn ’t converge it will be penalized

266 CLx10 = 1;

267 CDx10 = 1;

268 fails=fails +1;

269 failedx = true;

270 end

271

272 p = [thicknesspos1 thicknesspos2];

273 x1 = zeros (2);

274 y1 = zeros (2);

275 thicknessx = [1 ,1];

276 for i=1:2

277 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

278 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

279 [~,iu] = min(tmp1);

280 [~,il] = min(tmp2);

281 cu = cfoils(iu ,1:2);

282 cl = cfoils(size(tmp1 ,1)+il ,1:2);

283 x1(i,:) = [cl(1) cu(1)];

284 y1(i,:) = [cl(2) cu(2)];

285 thicknessx(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

286 end

287 dlmwrite(’xfoil_pwrt.dat’,’ ’); % NYTT

288

289

290

291 % >>>>>>>>>>>>>>>>>> ANALYSE Y <<<<<<<<<<<<<<<<<<<< %

292

293 % >>>>>>>>>>> ALPHA 3 <<<<<<<<<<<<<

294

295 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foily.inp > xfoil

.out’);

296

297 fid = fopen(’xfoil_pwrt.dat’);

298 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

59

299 fclose(fid);

300 relevantline = A{1}{ cellfun(@length ,A)};

301 B = str2num(relevantline);

302 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

303 CLy3 = B(2);

304 CDy3 = abs(B(3));

305 if CDy3 == 0

306 CDy3 = 0.00001;

307 end

308 failedy = false;

309 else % i.e if the foil doesn ’t converge it will be penalized

310 CLy3 = 1;

311 CDy3 = 1;

312 fails=fails +1;

313 failedy = true;

314 end

315 p = [thicknesspos1 thicknesspos2];

316 x1 = zeros (2);

317 y1 = zeros (2);

318 thicknessy = [1 ,1];

319 for i=1:2

320 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

321 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

322 [~,iu] = min(tmp1);

323 [~,il] = min(tmp2);

324 cu = cfoils(iu ,3:4);

325 cl = cfoils(size(tmp1 ,1)+il ,3:4);

326 x1(i,:) = [cl(1) cu(1)];

327 y1(i,:) = [cl(2) cu(2)];

328 thicknessy(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

329 end

330

331 dlmwrite(’xfoil_pwrt.dat’,’ ’); % NYTT

332

333 % >>>>>>>>>>>>>> ALPHA 7 <<<<<<<<<<<<<<<<<

334

335 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foily2.inp >

xfoil.out’);

336

337 fid = fopen(’xfoil_pwrt.dat’);

338 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

339 fclose(fid);

340 relevantline = A{1}{ cellfun(@length ,A)};

341 B = str2num(relevantline);

342 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

343 CLy7 = B(2);

344 CDy7 = abs(B(3));

345 if CDy7 == 0

346 CDy7 = 0.00001;

347 end

348 failedx = false;

349 else % i.e if the foil doesn ’t converge it will be penalized

350 CLy7 = 1;

351 CDy7 = 1;

352 fails=fails +1;

353 failedx = true;

354 end

355

356 p = [thicknesspos1 thicknesspos2];

357 x1 = zeros (2);

358 y1 = zeros (2);

359 thicknessx = [1 ,1];

60

360 for i=1:2

361 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

362 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

363 [~,iu] = min(tmp1);

364 [~,il] = min(tmp2);

365 cu = cfoils(iu ,1:2);

366 cl = cfoils(size(tmp1 ,1)+il ,1:2);

367 x1(i,:) = [cl(1) cu(1)];

368 y1(i,:) = [cl(2) cu(2)];

369 thicknessx(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

370 end

371 dlmwrite(’xfoil_pwrt.dat’,’ ’); % NYTT

372

373 % >>>>>>>>>>>>>> ALPHA 10 <<<<<<<<<<<<<<<<<

374

375 [sldr1 sldr2] = system(’cd /home/eddien && xfoil < foily3.inp >

xfoil.out’);

376

377 fid = fopen(’xfoil_pwrt.dat’);

378 A = textscan(fid , ’%s’,’delimiter ’,’\n’);

379 fclose(fid);

380 relevantline = A{1}{ cellfun(@length ,A)};

381 B = str2num(relevantline);

382 if (cellfun(@length ,A) == 13) && (isempty(B)==0)

383 CLy10 = B(2);

384 CDy10 = abs(B(3));

385 if CDy10 == 0

386 CDy10 = 0.00001;

387 end

388 failedx = false;

389 else % i.e if the foil doesn ’t converge it will be penalized

390 CLy10 = 1;

391 CDy10 = 1;

392 fails=fails +1;

393 failedx = true;

394 end

395

396 p = [thicknesspos1 thicknesspos2];

397 x1 = zeros (2);

398 y1 = zeros (2);

399 thicknessx = [1 ,1];

400 for i=1:2

401 tmp1 = abs(cfoils (1: size(cfoils ,1)/2,1)-p(i));

402 tmp2 = abs(cfoils(size(cfoils ,1) /2+1:end ,1)-p(i));

403 [~,iu] = min(tmp1);

404 [~,il] = min(tmp2);

405 cu = cfoils(iu ,1:2);

406 cl = cfoils(size(tmp1 ,1)+il ,1:2);

407 x1(i,:) = [cl(1) cu(1)];

408 y1(i,:) = [cl(2) cu(2)];

409 thicknessx(i) = sqrt((x1(i,2)-x1(i,1))^2+(y1(i,2)-y1(i,1))^2);

410 end

411 dlmwrite(’xfoil_pwrt.dat’,’ ’);

412

413

414

415 glidey = costfunc6(CLy3 ,CDy3 ,CLy7 ,CDy7 ,CLy10 ,CDy10 ,CLmax ,CLmin ,Px ,Py

,2,failedx ,failedy ,thicknessx ,thicknessy ,minthickness1 ,

minthickness2);

416 glidex = costfunc6(CLx3 ,CDx3 ,CLx7 ,CDx7 ,CLx10 ,CDx10 ,CLmax ,CLmin ,Px ,Py

,1,failedx ,failedy ,thicknessx ,thicknessy ,minthickness1 ,

minthickness2);

61

417 glidec(j) = (abs(CLx3/CDx3) + abs(CLx7/CDx7) + abs(CLx10/CDx10))^-1;

418 costfuncomp(j) = glidex;

419 liftvec(j,1) = CLx3;

420 liftvec(j,2) = CLx7;

421 liftvec(j,3) = CLx10;

422 thickvec(j,:) = thicknessx;

423

424 if abs(glidey) < abs(glidex)

425 x(j,:)=y;

426 glidec(j) =(abs(CLy3/CDy3) + abs(CLy7/CDy7) + abs(CLy10/CDy10))

^-1;

427 costfuncomp(j) = glidey;

428 liftvec(j,1) = CLy3;

429 liftvec(j,2) = CLy7;

430 liftvec(j,3) = CLy10;

431 thickvec(j,:) = thicknessy;

432 end

433

434 end

435 % sort out the best candidate from each iteration and put in bestfitve

436 for l=1:NP

437 if abs(costfuncomp(l)) < abs(bestcostfit)

438 %if abs(glidec(l)) < abs(bestfit)

439 bestfitindex=l;

440 bestcostfit=costfuncomp(l);

441 bestfit=glidec(l);

442 lift3 = liftvec(l,1);

443 lift7 = liftvec(l,2);

444 lift10 = liftvec(l,3);

445 bestthickness = thickvec(l,:);

446 end

447 end

448

449 bestfitvec(k,1) = bestfit;

450 bestfitvec(k,2) = bestcostfit;

451 bestfitvec(k ,3:4) = bestthickness;

452 bestfitvec(k,5) = lift3;

453 bestfitvec(k,6) = lift7;

454 bestfitvec(k,7) = lift10;

455

456 end

457

458 % >>>>>>>>>>>>>>> GENERATE AIRFOIL OF THE BEST SOLUTION <<<<<<<<<<<<<<<<<<

459

460 Px(1,:) = [[0,0] 0.18 0.45 0.88 [1,1,1] 0.83 0.45 0.3 [0 ,0]];

461 Px(2,:) = [0 x(bestfitindex ,1:4) [0,0,0] x(bestfitindex ,5:8) 0];

462

463 [u1 ,v1] = bspline_f(degree ,Px ,230);

464 temp = [u1;v1];

465 for l=1:2

466 B = flip(temp(l ,1:230/2));

467 C = flip(temp(l ,230/2+1: end));

468 cfoils(:,l) = [B C]’;

469 end

470 glideratio = 1

471 S819_weighted_avarage = 5.489400000000003

472

473 figure

474 plot ([1:n],bestfitvec (:,1),’r--o’)

475 title(’Convergence ’)

476

477 figure

62

478 plot(cfoils (:,1),cfoils (:,2),’b--o’)

479 axis ([0 1 -0.3 0.3])

480

481 figure

482 plot ([1:n],bestfitvec (:,2),’r--o’)

483 title(’Convergence of costfun ’)

484

485 figure

486 plot ([1:n], bestfitvec (:,3),’b--*’ ,[1:n],bestfitvec (:,4),’r--*’ ,[1:n],

linspace(minthickness1 ,minthickness1 ,n),’b-’ ,[1:n],linspace(

minthickness2 ,minthickness2 ,n),’r-’)

487 title(’Thickness ’)

488

489 figure

490 plot ([1:n], bestfitvec (:,5),’b--*’ ,[1:n],bestfitvec (:,6),’r--*’ ,[1:n],

bestfitvec (:,7),’g--*’ ,[1:n],linspace(CLmax ,CLmax ,n))

491 title(’Lift’)

492

493 dlmwrite(’bestbiased.txt’,cfoils (: ,1:2));

Randomizer:

1 function abc = random(NP ,j)

2 % returns the rows of x in which a,b and c are found

3 R = randperm(NP);

4 indexa = R(1);

5 indexb = R(2);

6 indexc = R(3);

7

8

9 if indexa == j

10 indexa = R(4);

11 elseif indexb == j

12 indexb = R(4);

13 elseif indexc == j

14 indexc = R(4);

15 end

16

17 abc=[indexa ,indexb ,indexc];

18

19

20

21 end

Randomizer:

1 function y = rdm(l,u)

2 y = l+(u-l).*rand (1,1);

3 end

The cost function:

1 function z = costfunc6(CL3 ,CD3 ,CL7 ,CD7 ,CL10 ,CD10 ,CLmax ,CLmin ,Px,Py ,xory ,

failedx ,failedy ,thicknessx ,thicknessy ,minthickness1 ,minthickness2)

2

3

4 if failedx == true

5 z = 200; %10e200 fungerade bra med lift range

6 elseif failedy == true

63

7 z = 200; %10e200 fungerade bra med lift range

8 else

9

10 f = [];

11 A = [];

12 max = 0.018; %0.15 fungerar bra senast 0.09

13 c1 =0.005;

14 c2=2*c1;

15 C = max /(2*c1^2);

16

17 if xory == 1

18 P = Px;

19 rfoil = dlmread(’foilx.txt’);

20 thickness = thicknessx;

21 else

22 P = Py;

23 rfoil = dlmread(’foily.txt’);

24 thickness = thicknessy;

25 end

26

27 f(1) = CLmin -CL3; % Cl constraint

28 f(2) = CLmin -CL7;

29 f(3) = CLmin -CL10;

30 f(4) = CL3 -CLmax; % Cl constraint

31 f(5) = CL7 -CLmax;

32 f(6) = CL10 -CLmax;

33

34 f(7) = minthickness1 - thickness (1);

35 f(8) = minthickness2 - thickness (2);

36

37 for i=1: size(f,2)

38 if f(i) > 0 && f(i)<c1

39 A(i) = C*f(i).^2;

40 %violation = violation +1;

41 elseif f(i) >= c1 && f(i) <= c2

42 A(i) = -C*(2*c1 -f(i)).^2 + C*c1^2*2;

43 %violation = violation +1;

44 elseif f(i) > c2

45 A(i) = 2*C*c1^2;

46 %violation = violation +1;

47 else

48 A(i) = 0^2;

49 end

50 end

51

52 z = (abs(CL3/CD3) + abs(CL7/CD7) + abs(CL10/CD10))^-1 + sum(A); %

3,10 and 10 % increase !!!!!!

53

54 end

55

56

57 end

64

