
Lunds Tekniska Högskola

Master’s Thesis

Head-Up Display Perspective
Correction Using Homography

Transformations

Author:
Alexander Wormbs

Supervisor:
Prof. Karl Åström

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the field of

Computer Engineering

December 12, 2017

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com

ii

Abstract
The purpose of this project is to research the potential of applying mathematical meth-
ods in order to aid the development of robust Head-Up Display systems for automotive
vehicles. If the vehicle detects an object and the Head-Up Display should overlay some
information over that object, then the information has to be displayed at some position
which depends on where the driver is looking from. This has to be done keeping in
mind the real-time application of driving a car. The solution proposed in this thesis is
to calculate a set of homography matrices corresponding to a set of points that repre-
sent a specific position of the driver’s head. Then, by tracking the head of the driver
the matching homography is continuously applied to the graphical interface so that it
matches the outside world.

Figure 1: An example Head-Up Display on a windshield. This image
is constructed.

iii

Contents

Abstract ii

1 Introduction 1

2 Methodology 4
2.1 Finding a method . 4
2.2 Homographies . 4
2.3 Finding matching points . 5
2.4 System Description . 6
2.5 Constructing the scene . 6
2.6 Color Segmentation . 6
2.7 Edge Detection . 9
2.8 Finding contours and contour approximation 10
2.9 Optical Flow . 10
2.10 Interpolating homographies . 12
2.11 Meanshift and Camshift . 13

3 Results 14
3.1 Object Tracking . 14
3.2 Point tracking and contours . 14
3.3 Homography Transformation . 14

4 Conclusion 17

Bibliography 18

1

Introduction

Head-Up Display technology has been around for several decades, first introduced as a
way for military pilots to see crucial information without having to look down on the
instrument panel while flying. It was introduced in a commercial car for the first time by
General Motors in 1988, and displayed basic information such as speed and tachometer,
[5]. The development has not gotten much further than that, surprisingly, and you still
rarely see a Head-Up Display being used in modern cars at all except for the occasional
speedometer in the corner of the windshield.

There is substantial potential with the technology available today to create a system
that does much more than that. For example, the Head-Up Display can be used as a
GPS navigator and project an arrow on the road that tells the driver where to go. It
could also alert the driver of certain things in front of the car, and then highlight them.
The applications are many, but in order to develop such a solution the underlying system
needs to be robust enough.

There are a number of reasons why we have not seen this in the market yet. To fully
utilize the power of a Head-Up Display, it needs to be able to cover most of the windshield
area which requires large pieces of hardware that does not fit into the typical car model.
An example of a proposed solution to the problem is Gps-Based Head Up Display System
For Driving Under Low Visibility Conditions[7] where they use a combiner glass in front
of the driver in order to show information. This allows for superimposed graphics on the
road but is restricted to a small area and also requires big hardware in the car. Other
projects has been done with the goal to show a HUD display on the whole windshield,
for example Visual Navigation System On Windshield Head-Up Display [1] where they
used a full projector and mirror to display information. They also distorted the original
image in order to cancel out the distortion caused by the curved windshield, however
they did not account for the head position of the driver which means they assume the
driver’s position to be fixed.

The goal of this thesis is to present a solution to the perspective correctness problem,
i.e a system that corrects the projected image depending on from where the driver is
looking. The approach taken here is to analyze the problem, discuss what methods could
be utilized and then propose a system that would fit well into the environment of a car
and can be used for large scale manufacturing.

For the testing of the system, a prototype Head-Up Display is used. It works by project-
ing a screen onto a piece of glass using a lens to parallelize the light rays. The information
shown is then projected about 5 meters away from the glass. A camera is put in front
of the Head-Up Display which represents the camera that would be in front of the car,
and another camera is used to represent the driver’s view. A third camera is also present
that has an IR filter so that it could detect IR light, used for head tracking. All of the
hardware is connected to a computer that runs the program.

2 Chapter 1. Introduction

Chapter 1. Introduction 3

4

Methodology

2.1 Finding a method

2.2 Homographies
If we want to display graphics that has to match the scene correctly from the driver’s
perspective, that is initially drawn in another perspective, then we can use a homogra-
phy to describe the perspective difference. In order to correctly display the information
on the windshield, a homography has to be applied that would transform the image to
match the perspective of the driver. Generally, a homography is calculated from match-
ing points in two images taken in the same scene but from different perspectives. This
is also the case in this application, since the two perspectives are the driver’s viewpoint
and the view from the camera in front of the car. The camera recognizes objects in the
scene (road, cars, pedestrians, etc...) and draws graphics around that object. Then, it
transforms the graphics to the perspective of the driver and displays it on the windshield.

A homography is a matrix that can transform points from one perspective to another.
It can be calculated using

si

x
′
i

y′i
1

 = H

xiyi
1

 , i = 1, 2, . . . , N

where H is the 3x3 transformation matrix, and si is a scaling factor. The known vari-
ables are x′i, y′i, xi and yi. These correspond to the matching points in the two images.
The H matrix has 9 elements since it is a 3 × 3 matrix, but has 8 degrees of freedom
since the scale is arbitrary. There are 3N equations (three for each point pair), but each
pair of points introduces a new variable si. Therefore, we have

3N ≥ 8 +N =⇒ N ≥ 4 ,

which shows that 4 pair of matching points are needed to solve the equation. Define
H as

H =

h
T
1

hT2

hT3


where hTi are the rows of H. Then, the equation can be written as

XT
i h1 − sixi = 0 XT

i h2 − siyi = 0 XT
i h3 − si = 0

2.3. Finding matching points 5

where Xi = (xi, yi, 1). It can be written in matrix form as

XT
i 0 0 −xi

0 XT
i 0 −yi

0 0 XT
i −1



h1

h2

h3

si

 =

0

0

0

.

Now, with four pair of points the complete system



XT
1 0 0 −x1 0 0 0

0 XT
1 0 −y1 0 0 0

0 0 XT
1 −1 0 0 0

XT
2 0 0 0 −x2 0 0

0 XT
2 0 0 −y2 0 0

0 0 XT
2 0 −1 0 0

XT
3 0 0 0 0 −x3 0

0 XT
3 0 0 0 −y3 0

0 0 XT
3 0 0 −1 0

XT
4 0 0 0 0 0 −x4

0 XT
4 0 0 0 0 −y4

0 0 XT
4 0 0 0 −1





h1

h2

h3

s1

s2

s3

s4


=



0

0

0

0

0

0

0

0

0

0

0

0


is acquired. If it is written as

Ax = 0,

then it can be solved using Singular Value Decomposition

A = USV T =
∑9
i=1 σiuiv

T
i .

The singular values, σ, will be sorted in descending order. In this case the homogra-
phy will be exactly determined by four points, which means that σ9 will be zero. The
homography then fits the points exactly.

The "right singular vector" is used which is a column in V that corresponds to the
singular value σ9. This includes all the coefficients for the homography matrix.

2.3 Finding matching points
The next step is to find the corresponding points in both views. In this project, several
methods are considered, for example algorithms such as Scale Invariant Feature Trans-
form[6]. SIFT is a well known and established method to find interesting points in a
scene, or so called features. Then, other algorithms can be applied that match these
features between different perspectives looking at the same scene, such as Brute-Force
Matcher. However, using SIFT for this application could be problematic. SIFT generally
cannot run in real-time, even with some implementations where it is optimized to run
on the GPU[9]. There are some alternatives to SIFT that can run faster but with less
accuracy[2], however, in this application, accuracy is of great importance. The images
will also probably be very cluttered and complicated, so to rely on a feature matching

6 Chapter 2. Methodology

algorithm in real-time is not the best approach.

An important observation can be made here. The homographies do not depend on
the actual scene, but only on the pairs of matching points. Therefore, we can calculate
the homographies before we have to apply them, so they do not have to be calculated
in real-time. The approach is then to pre-calculate all the homographies in a controlled
environment, store all the data and fetch it later when it had to be applied. Since the
computations can be done ’offline’, simple but reliable techniques can be applied for find-
ing matching points between the images. A new homography has to be calculated for
each possible position of the driver’s head, since when the driver changes his/her position,
the perspective (and therefore the homography) will change. When the matching points
has been acquired, the homographies that match different positions of the driver can be
calculated, and all this information can be saved in a table that matches a set of coor-
dinates to a homography. Later when driving the car, all that is needed is to track the
head of the driver, read the coordinates for every frame and then apply a corresponding
homography to the graphics that will be displayed on the windshield.

2.4 System Description
The system is divided into two parts, the "offline phase" and the "online phase". During
the offline phase, all the calculations are done and then, while driving, the necessary
pre-computed homographies are fetched depending on the position of the driver. The
first phase uses two cameras, the "driver camera" and the "front camera", which denotes
the camera representing the driver view and the camera in front of the car respectively.
During the offline phase, the driver camera is put on a robotic arm that moves in a 2D
plane to make an approximation of the view angle for the driver at a certain position.
The camera moves around, and at every point in time the coordinates are read and a
homography is computed. The driver camera coordinates and homographies are matched
together in a hashmap, so every coordinate pair returns a homography. The homogra-
phies are calculated by continuously tracking points in each camera that matches at every
frame.

2.5 Constructing the scene
As previously mentioned, the homographies do not directly depend on the scene, they
just depend on the matching points. Therefore, we need to construct a simple scene
where four points can be recognized by the cameras. To track the matching points in
the two views given by the cameras, a reliable way to find the points was required. The
approach was to simply provide the cameras with a simple scene involving a red rectangle.
The aim is to segment the rectangle from the image and find the corner points, which
would give four points to track.

2.6 Color Segmentation
First, color segmentation is performed to create a binary mask from the original image.

Color segmentation is done by setting static upper and lower thresholds that make up the
interval of colors that will be segmented. By using HSV color space, as opposed to RGB,
it is easy to specify an interval that corresponds to some color with varying lightness and
intensity. The color segmentation Idst is obtained as

2.6. Color Segmentation 7

Figure 2.1: Offline phase.

8 Chapter 2. Methodology

Figure 2.2: Driving phase.

2.7. Edge Detection 9

Idst(xi, yi) =

{
255 if Bl(k) ≤ Isrc(xi, yi)(k) ≤ Bu(k),

0 otherwise,

where Isrc and Idst are the source and destination images, with the destination im-
age being a binary image. Here Bl and Bu are the upper and lower bounds respectively,
defined as B = (r, g, b) where r, g, and b are color values.

Figure 2.3: Before and after color segmentation.

2.7 Edge Detection
Color segmentation is a bit limited because a specific color has to be used. This is not
of great importance in this application, but another algorithm was implemented in order
to test the more general case. Here follows a documentation of the method used to find
any rectangular shape in an image.

In order to find the rectangle in the scene, an edge detection algorithm can be applied
to localize the edges in the image. Canny Edge Detection is used for this application.

In order to reduce noise, the image is first blurred using Gaussian filtering. The im-
age will be smoothed out and small sharp spikes caused by noise will be undetected by
the algorithm. The image is convolved with the Gaussian filter

Gij = 1
2πσ2 exp

(
− ((i−3)2+(j−3)2

2σ2

)
; 1 ≤ i, j ≤ 5 .

The formula is convoluted with the image, making each pixel a weighted average of
it’s neighbors.

Next, the Sobel Edge Detector is applied to localize the edges. This is done by con-
volution between the image and the Sobel operator in x and y directions according to

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I and Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ I ,

where Gx and Gy are the resulting images that contained the derivatives in the x and y
directions respectively. The resulting images are then combined using

G =
√
G2
x +G2

y

and the direction of the edge is computed by

10 Chapter 2. Methodology

Θ = atan2(Gy, Gx).

The edges are then located, and Non-maximum suppression is applied to thin the edges.
Using the directions of the edges that are acquired after the Sobel operator, the intensity
at the current pixel is compared with the intensities of its neighbors in the positive and
negative gradient directions. If the pixel has the largest intensity compared to the other
pixels on the edge, it is preserved.

In order to remove weak edges likely caused by noise, double thresholding can be used. A
high and low threshold value is specified, and if an edge pixel’s gradient value is above the
high threshold, it is marked as a strong edge, whereas one between the threshold values
are considered weak edges, and the ones below the low threshold value are discarded.
The resulting edge image will then include all the strong edges, along with all the weak
edges that were connected to the strong edges. The weak edges that are not connected
to a strong edge are not shown in the final image.

2.8 Finding contours and contour approximation
After color segmentation has been done, the contours of the object are localized. This is
done in order to use an algorithm for approximating the contours with a set of straight
lines. In order to properly enclose the rectangular object, an algorithm[8] can be used to
approximate a figure found in the image with 4 straight lines. If such a figure is found,
then it is probably the rectangle.

Figure 2.4: Contours.

2.9 Optical Flow
After localizing corners of the object, we need to track them reliably when the driver
camera is moving. In order to reliably track the points, Lucas-Kanade Optical Flow is
used. The point that needs to be tracked was assumed to be within a small neighborhood
and approximately constant between two frames. We have the equation

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t),

2.9. Optical Flow 11

Figure 2.5: Contour approximation.

where I(x, y, t) denotes the intensity of the pixel with the coordinates (x, y) at time
t. ∆x, ∆y and ∆t describe the changes between the two frames. If we assume a small
movement of the pixel, we can write

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) + δI
δx∆x+ δI

δy∆y + δI
δt∆t+R.

Here, the change in intensity is approximated using Taylor expansion. From this, it
follows that

δI
δx∆x+ δI

δy∆y + δI
δt∆t = 0 =⇒ δI

δx
∆x
∆t + δI

δy
∆y
∆t + δI

δt = 0 =⇒ δI
δxVx + δI

δyVy + δI
δt = 0,

where Vx and Vy are the velocities with which the point has moved between the frames,
in x and y direction respectively. δI

δx ,
δI
δy and δI

δt are the changes in intensity with respect
to x,y and t. Define

Dx(pi) = δI
δx

as the change in intensity in the x-direction of pixel pi, then the system

Dx(p1)Vx +Dy(p1)Vy = −Dt(p1) ,
Dx(p2)Vx +Dy(p2)Vy = −Dt(p2) ,

...
Dx(pn)Vx +Dy(pn)Vy = −Dt(pn) ,

with p1, p2, . . . , pn being the pixels in the local neighborhood is acquired. This can
be written in matrix form as

Dx(p1) Dy(p1)
Dx(p2) Dy(p2)

...
...

Dx(pn) Dy(pn)


[
Vx
Vy

]
=


−Dt(p1)
−Dt(p2)

...
−Dt(pn)

 .

Here Vx and Vy are the unknown variables. It can be solved using Least Squares, by
solving the normal equations

12 Chapter 2. Methodology

[
Vx
Vy

]
=

[∑n
i Dx(pi)

2
∑n
i Dx(pi)Dy(pi)∑n

i Dy(pi)Dx(pi)
∑n
i Dy(pi)

2

]−1 [−∑n
i Dx(pi)Dt(pi)

−
∑n
i Dy(pi)Dt(pi)

]
.

In this application n = 9 is used, in other words a 3 × 3 neighborhood around the
pixel.

Figure 2.6: Optical flow performed on the corners of the rectangle.
Trails are drawn after the points when they move.

As the camera moves, each new position of the camera is recorded and the homography
for that position is calculated using the points that are being tracked.

2.10 Interpolating homographies
While doing the calibration procedure, it is important to be aware of how many recorded
coordinates that will be used. We have to choose some density of measured coordinates
for the driver camera, where a higher density means more stored data in memory. Even
with a high number of points, we risk having a non-smooth movement of the graphics,
and each coordinate that is measured, which can’t be found stored in memory, must be
dealt with.

We need some way to interpolate the homography matrices. Interpolating a matrix
that holds some geometric information is not a trivial task, since we might lose the geo-
metrical meaning of the data if we just interpolate the values normally. Ken Shoemake
et al [4] proposed a way to do this by first breaking down the matrix into meaningful
components and then interpolating them. However, in this project a simple weighting
function is applied, called Kernel Regression. This function is run when the camera is at
a coordinate not found in the table, and then a homography for that coordinate is gener-
ated through interpolation using a multivariate normal distribution as weight function:

M =
∑
Mif(vi,v)∑
f(vi,v)

where

f(x, y) = 1√
2πs

e−
∑ (x−y)2

2s2 ,

and M is the homography matrix, v is a vector with all the coordinates and vi the
new coordinate.

2.11. Meanshift and Camshift 13

2.11 Meanshift and Camshift
In order to highlight the object with some graphics that can then be shown on the HUD,
the Meanshift/Camshift method is used. The Meanshift algorithm locates the maxima
of a density function and can be used to track moving objects in an image. Given the
gaussian kernel

K(xi − x) = e−c‖xi−x|2

where x is an initial estimate, there is then the weighted mean

m(x) =
∑

xi∈N(x)K(xi−x)xi∑
xi∈N(x)K(xi−x)

where N(x) is the neighborhood of x, a set of points for which K(x) 6= 0.

The algorithm sets x← m(x) for every iteration and repeats until m(x) converges.

In order to track an object in an image, a start window is placed on the object in
the image, which is the initial window for the algorithm. A confidence map in the new
image is created based on the color histogram of the object in the previous image. Then,
mean shift is applied to find the peak of a confidence map near the object’s old position.
The confidence map is a probability density function on the new image, assigning each
pixel of the new image a probability, which is the probability of the pixel color occurring
in the object in the previous image.

Camshift is an extension of Meanshift and uses a histogram back projection in order
to generate a probability density function. An initial histogram is computed from the
initial region of interest in the image. The histogram consists of the hue channel in HSV
color space, and is quantized into bins. The histogram bins are then scaled between the
minimum and maximum probability image intensities. The back-projection of the target
histogram with any consecutive frame generates a probability image where the value of
each pixel characterizes probability that the input pixel belongs to the histogram that
is used. Then, the mean shift algorithm is iterated to find the center of the probability
image. The window size is set to a function of the zero’th moment

M00 =
∑
x

∑
y I(x, y)[3].

(a) Camshift tracking the object.

14

Results

3.1 Object Tracking
The Camshift object tracking method seemed to work very well for this application. In
this project it did not matter what kind of object was being tracked, but rather that
something was being tracked reliably and without delay, and the algorithm proved to be
sufficient. The test could be conducted in a controlled environment, hence the object
chosen was a red rectangular piece of paper against a white wall background.

3.2 Point tracking and contours
The results of the homographies depends on the point tracking, which in turn depends
on the contour approximation. The contour approximation was very accurate with an
offset of maximum 4 pixels compared to human measurement. The results can also be
improved by changing to an environment with better lighting conditions. The point
tracking was also accurate but could be slightly improved by using IR LED light points
in a dark room for example, but this would not dramatically affect the end result.

3.3 Homography Transformation
In order to analyze the results of the applied homographies after kernel regression, four
tests were performed. The calibration was run and the camera coordinates were saved
together with the middle point of the tracked object in every frame. The middle point
of the tracking window obtained after applying the homography interpolation was also
fetched and the measured error was calculated as the difference in the two middle points.
The result was a set of coordinates each paired with an error. Each test was conducted
with different amounts of measured camera coordinates, in order to see how well the
interpolation worked with less data points.

Memory usage of the different samples in the program was also measured using the
python standard function getsizeof() in the sys module. They were represented as hash
maps pairing coordinate pairs with 3x3 matrices.

• Test 1: 100 kb

• Test 2: 24 kb

• Test 3: 6 kb

• Test 4: 1.6 kb

3.3. Homography Transformation 15

Figure 3.1: The measured positions of the camera during calibration
in four different tests.

(a) Test 1: 1840 points (b) Test 2: 743 points

(c) Test 3: 285 points (d) Test 4: 35 points

Figure 3.2: Block diagrams showing observed error rates in four dif-
ferent tests. Y-axis shows quantity and X-axis shows magnitude of

error.

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

16 Chapter 3. Results

Figure 3.3: Program running during calibration phase. Top left im-
age shows the point tracking and driver camera view, upper middle
image shows the front camera view, bottom left image shows the ap-
plied homography transform, middle lower image shows the IR LED

tracking, right image shows the 3D printer control interface.

17

Conclusion

There were some parts of the problem that this study did not fully address, and con-
sequentially might compromise the results after more complete testing. The proposed
system did not take the depth of the object into account, which means that the graphics
will not be placed correctly for all positions of the object. A homography describes the
perspective transform between two planes, and since the calculations were done for an
object at one specific position, the system relied on the fact that a tracked object would
reside in one plane. In other words, at a specific distance from the vehicle. If the object
moves a significant distance away or toward the vehicle, the graphics will no longer match
the object and be thrown off by a distance proportional to the change in depth. The
solution would be to just calibrate the same way but for different depths as well, which
would result in storing x times more data, where x is the amount of depth points you
want to measure.

The system could undoubtedly run in a real-time environment since the program only
had to make frequent lookups in a hash table to find the right homography to apply for
every point, and the average time complexity for such a task is O(1). The only other
concern was how much memory the program might occupy since the computer running
in the car might have very limited resources. As was concluded in the results, the most
dense sample of points during calibration resulted in about 100 kilobytes of RAM usage.
Taking the depth into account, one could assume that the depth would be measured
up to 50 meters in front of the car, and the calibration would be done for every meter.
Then, the RAM usage would be about 5 megabytes, which is feasible for this application.
It would even take a lot less space since these calculations were done with much more
points than needed.

Looking at the results from the homography transformations, visually and by inter-
preting the data, the approach taken seemed to be promising. While performing the
tests to measure the errors, the graphics followed the object reliably in all tests except
for the last one with the least data points. The tests were not perfectly performed since
the points were not distributed in an optimal way. The optimal way, in terms of the least
points needed for optimal results, would be to have the points equally spaced. However,
it was still apparent with the tests conducted that not many points had to be used for
the tracking to be reliable. The most important thing to take from the results was the
max amount of error recorded during the test, which increased from about 8 pixels to 12
pixels from test 1 to test 4. This could be noticed quite clearly as the graphics started
to "jump" more instead of a smooth motion.

18

Bibliography

[1] Yoshinari Kameda Yuichi Ohta Akihiko Sato Itaru Kitahara. Visual Navigation
System On Windshield Head-Up Display. url: http://www.kameda- lab.org/
research/publication/2006/200610_ITSWC/200610_ITSWC_sato.pdf.

[2] Kurt Konolige Gary Bradski Ethan Rublee Vincent Rabaud. ORB: an efficient alter-
native to SIFT or SURF. url: http://www.willowgarage.com/sites/default/
files/orb_final.pdf.

[3] Jesse S. Jin John G. Allen Richard Y. D. Xu. Object Tracking Using CamShift Algo-
rithm and Multiple Quantized Feature Spaces. url: http://crpit.com/confpapers/
CRPITV36Allen.pdf.

[4] Tom Duff Ken Shoemake. Matrix Animation and Polar Decomposition. url: https:
//docs.google.com/viewer?url=http://www.cs.wisc.edu/graphics/Courses/
838-s2002/Papers/polar-decomp.pdf.

[5] Donald Knuth. How Head-up Displays Work. url: http://auto.howstuffworks.
com/car-driving-safety/safety-regulatory-devices/head-up-display2.
htm.

[6] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. url:
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf.

[7] Craig Shankwitz Max Donath and Heonmin Lim. A GPS-BASED HEAD UP DIS-
PLAY SYSTEM FOR DRIVING UNDER LOW VISIBILITY CONDITIONS. url:
http://conservancy.umn.edu/bitstream/handle/11299/888/1/200303.pdf.

[8] Satoshi Suzuki. Topological structural analysis of digitized binary images by bor-
der following. url: http://www.sciencedirect.com/science/article/pii/
0734189X85900167.

[9] ChangchangWu. SiftGPU: A GPU Implementation of Scale Invariant Feature Trans-
form (SIFT). url: http://cs.unc.edu/~ccwu/siftgpu/.

http://www.kameda-lab.org/research/publication/2006/200610_ITSWC/200610_ITSWC_sato.pdf
http://www.kameda-lab.org/research/publication/2006/200610_ITSWC/200610_ITSWC_sato.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://crpit.com/confpapers/CRPITV36Allen.pdf
http://crpit.com/confpapers/CRPITV36Allen.pdf
https://docs.google.com/viewer?url=http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
https://docs.google.com/viewer?url=http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
https://docs.google.com/viewer?url=http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/head-up-display2.htm
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/head-up-display2.htm
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/head-up-display2.htm
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://conservancy.umn.edu/bitstream/handle/11299/888/1/200303.pdf
http://www.sciencedirect.com/science/article/pii/0734189X85900167
http://www.sciencedirect.com/science/article/pii/0734189X85900167
http://cs.unc.edu/~ccwu/siftgpu/

	Abstract
	Introduction
	Methodology
	Finding a method
	Homographies
	Finding matching points
	System Description
	Constructing the scene
	Color Segmentation
	Edge Detection
	Finding contours and contour approximation
	Optical Flow
	Interpolating homographies
	Meanshift and Camshift

	Results
	Object Tracking
	Point tracking and contours
	Homography Transformation

	Conclusion
	Bibliography

