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Abstract

Search and rescue operations can greatly benefit from the use of cooperative swarms
of autonomous UAVs in order to investigate areas and collect information about the
position of a missing person.

In this thesis, UAV swarm algorithms are investigated where collisions are
prevented both between agent pairs and between agents and static obstacles. The
swarm consists of low-cost collaborative fixed-wing aircraft with communication
constraints. A decentralized swarm behavior is first developed when the system is
assumed to provide accurate positions of all aircraft. Further, the agents estimate
their position by the use of RSSI measurements. All agents are equipped with com-
munication devices and broadcast radio signals and measure the received signal
strength in order to estimate the distance to other swarm members. These estimates
are further used to develop a multilateration algorithm, where each agent estimates
its own position by using distance estimates from a minimum of three nearby agents.
By adding a dynamic model of the aircraft kinematics, a more accurate estimation
is provided which takes account for false position estimates.

The autonomous swarm is simulated in a 2-D environment in MATLAB. The
agents make decisions in real-time, where their movements are controlled by poten-
tial fields and pheromone levels. Repulsive potentials are used to prevent collision
and attractive potentials are applied to form a cluster of UAVs, such that all mem-
bers stay within communication range. The swarm is also attracted to unexplored
areas of the environment.

When the true UAV positions are provided, the developed potential field algo-
rithm did show promising results in terms of controlling the swarm. No collisions
occurred between agent pairs or agents and obstacles. The agents did not go out of
bounds and the swarm was robust as it was able to handle the loss of individual
members.

For the approach of RSSI based position estimates, further development of the
swarm behavior was needed. The receiver sensitivity of the communication devices
limits both the maximum distance between agents and their difference in roll an-
gle. When individual failures occurred, or when an obstacle obstructed the path of
the swarm, there was not always enough RSSI measurements available to perform
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the multilateration algorithm. In combination with the dynamic model of the air-
craft kinematics, the resulting algorithm produced position estimates with a mean
error of approximately 9 meters. No significant difference was found regarding the
efficiency of scanning the area when the positions were estimated by RSSI values
compared to when the positions were known. However, victims may go undetected
when using estimated positions if the position error results in UAVs believing they
have visited certain areas they have not yet scanned.
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1
Introduction

Search and rescue (SAR) operations are often tedious and may run under extreme
conditions. Unmanned aerial vehicles (UAVs) can provide critical support as they
are agile, fast, and able to perform operations that are hard, or even impossible, to
execute by human operators. A UAV is an aircraft designed to operate without a
human pilot on board and can be autonomous, semi-autonomous, or controlled re-
motely by an operator. When searching for a missing person, sensors generally have
a higher success rate at low altitudes, and using manned aircraft at these altitudes
may introduce too high risks. The ability to design small-sized unmanned aircraft
makes them suitable to be used where small turning radius is required, such as
in narrow, obstructed areas. During natural catastrophes and nuclear breakdowns,
UAVs may be considered for SAR applications, especially if the area is toxic to
humans and therefore dangerous for manned search operations. In a typical SAR
scenario, UAVs are deployed in an area of interest and perform necessary sensory
operations to collect evidence of the presence of victims. The information is there-
after reported to a remote ground station or to a rescue team.

This Master’s thesis investigates swarm control algorithms for unmanned aerial
vehicles (UAVs) and exhibits the compatibility of aerial SAR operations.

UAVs used in military applications are generally equipped with powerful cam-
eras, precise global positioning systems, and long-range wireless communication
devices. However, there are limitations in the use of small UAVs for civilian pur-
poses. These aircraft obtain restrictions and limitations regarding the weight of the
payload, the power, the wireless communication range, etc. However, several re-
search studies recommend the use of applications based on swarm techniques and
cooperation between aircraft, particularly for surveillance [Jaimes et al., 2008] and
search missions [Varela et al., 2011].

In most outdoor environments, the Global Navigation Satellite System (GNSS)
provides localization by using GPS signals. These systems require signal connec-
tions to satellites in order to operate and in obstructed areas the signals may be re-
flected and absorbed by different objects. This results in a positioning error, i.e. the
position accuracy worsens near buildings and obstacles, such as bridges, mountains,
and trees, due to satellite signal blockage or reflections and absorption. This thesis
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1.1 Background

considers the use of wireless personal area network (WPAN) measurements to ob-
tain position estimates of the swarm members. More specifically, to limit the costs
of the devices involved in the positioning operations, an approach based on received
radio signal strength (RSS) measurements is considered. The UAVs are assumed to
be equipped with communication devices, which allow them to communicate with
each other in order to improve their cooperation abilities.

This chapter discusses the use of UAVs, UAV configurations, and swarm intel-
ligence; followed by previous work within these fields. The goal of the thesis is
presented as well as the delimitation and challenge of the project. Further, the plat-
form and hardware used are described briefly and the chapter is finalized by the
outline of the report.

1.1 Background

This section presents background theory regarding UAVs, UAV configurations,
swarm intelligence, and control architectures. UAV configurations refer to differ-
ent categories of UAVs in terms of size, payload, range, and whether they consist of
fixed or rotary wings. Control architecture refers to different architectures of swarm
behavior, i.e. centralized and decentralized control.

Unmanned Aerial Vehicles
Modern UAVs are capable of performing autonomous flight missions without any
interaction with a human pilot, as they are equipped with data processor units, sen-
sors, automatic control, and communication systems. Unmanned aircraft systems
(UAS) are playing increasingly prominent roles in both defense programs and civil-
ian applications around the world. Technology advancements have enabled the de-
velopment of both large unmanned aircraft and smaller, increasingly capable un-
manned aircraft. The terminology unmanned aircraft system refers not only to the
aircraft, but also to all of the supporting equipment used in the system; including
sensors, microcontrollers, software, ground station computers, user interfaces, and
communication hardware. In recent years, thanks to the low-cost of deploying and
maintaining a UAV system, and the possibility to operate them in areas inaccessible
or dangerous for human pilots, UAVs have attracted much research attention both
in the military field and in civilian applications. A vast majority of UAS research is
within military applications. However, the use of UAS in civilian applications, such
as for search and rescue operations, has increased lately.

UAVs have already demonstrated their benefit in search and rescue operations.
Hazardous environments can be avoided by human responders by deploying un-
manned aircraft in these areas. In 2005, in the aftermath of Hurricane Katrina, two
UAVs surveyed the damaged area in the search for trapped survivors [NSF, 2005].
UAVs were also deployed in Lushan, China, in 2013 when the city experienced an
earthquake of magnitude 7.0. This work is presented in [Qi et al., 2015], where
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Chapter 1. Introduction

rotary-wing UAVs were implemented for rapid search and post-seismic evaluation.
Over the past decade, China has been using UAVs to navigate in disaster areas to
find survivors.

The potential and growing desire of using UAVs for search and rescue applica-
tions is supported by an increasing number of work in the areas of image recogni-
tion for victim detection, path planning, and task allocation [Silvagni et al., 2016],
[Kurdi et al., 2016], [Baker et al., 2016], [Bejiga et al., 2017].

UAV Configurations
UAVs can be classified into several categories depending on their characteristics,
such as range, flight altitude, endurance, and payload. The smallest UAVs are the
nano (NAV) with a wingspan of less than 15 cm and an endurance of approximately
one hour. The largest UAVs are the ones classified in the category of high altitude-
long endurance (HALE), which have an endurance of 10-48 hours and a payload
of 4,500-15,000 kg [Blyenburgh, 2010-2011]. The miniature UAVs considered to
be used in this thesis are typically designed to operate on the order of 10-12 h with
payloads of approximately 4-7 kg [Beard and McLain, 2012].

The conventional UAV platforms are generally classified into two main cate-
gories: fixed-wing (FW) and rotary-wing (RW) aircraft. The major differences be-
tween the two categories are associated with the performance capabilities and struc-
tural complexity. Fixed-wing UAVs have the advantage of efficient aerodynamics
and require less structural complexity. FW aircraft only have to counteract the re-
sistance that is partially induced by the lifting force of the wings, which is 10-25%
of the lifting capacity at low speed, depending on the architecture of the aircraft.
Rotary-wing UAVs must generate the entire lifting capacity with their engine. The
efficient aerodynamics of FW aircraft enables better performance in terms of en-
durance, range, and speed for a given amount of fuel compared to RW aircraft.
When e.g. medical equipment should be delivered to catastrophe environments,
fixed-wing UAVs are to prefer as they are able to carry a heavier payload for a
given amount of fuel.

However, platforms based on a fixed-wing configuration require horizontal take-
off and landing, while rotary-wing UAVs are capable of vertical take-off and land-
ing. Rotary-wing aircraft also provide a higher level of maneuverability as they are
able to hover and rotate at a fixed position. Fixed-wing aircraft have a minimum
turning radius and a minimum forward speed, and cannot back or stand still during
normal maneuvers.

Due to the ability of longer endurance and greater payload, this project focuses
on the development of swarm behavior among fixed-wing aircraft. Take-off and
landing are outside the scope of this thesis.
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Swarm Intelligence
Teams of small, relatively inexpensive UAVs, each equipped with sensing, commu-
nication, computation, and control capabilities, can provide distributed sensing. The
overarching requirement for large swarm systems is that the implementation of the
design is scalable to any number of vehicles and is robust to the failure of a single
vehicle.

Using multiple UAVs enables the designer to create agents which are gener-
ally cheaper and less complex compared to a single agent. Examples of swarms
intelligence in nature include flocks of birds, schools of fish, herds of animals and
colonies of ants or bacteria. The evolution of such behavior is due to its inherent
advantages, such as increasing the chance of finding food and avoiding predators.
By implementing this type of control, the system will achieve desirable behavior by
applying relatively simple laws.

Swarm intelligence based techniques can be used in a number of applications.
One example is in the U.S. military where swarm techniques are investigated for
controlling unmanned vehicles used for defense and for border surveillance. The
European Space Agency is developing an orbital swarm for self-assembly and in-
terferometry, and NASA is investigating the use of swarm technology for plane-
tary mapping. Swarm intelligence may also be used in other applications than for
unmanned vehicles, where one example is the possibility of controlling nanobots
within a body for the purpose of killing cancer tumors, which is discussed in [Lewis
and Bekey, 1992].

By using a swarm of UAVs instead of a single aircraft, the time to fully cover
a specific area decreases significantly. The algorithm developed in this thesis is
scalable, flexible, and robust to individual failures.

Control Architectures
The control architecture for UAV swarms can be either centralized or decentral-
ized. Centralized control is a method in which each agent is guided along its own
path, provided by a central control unit. The central control unit can be either a
ground station or one of the members of the swarm, often referred to as the leader.
Centralized control requires higher bandwidth and problems regarding robustness
may occur if the central unit crashes or is exposed to communication problems.
As the number of UAVs increase, controlling the system in a centralized way be-
comes unrealistic. Decentralized control methods have been developed to overcome
this problem and in this thesis, control, communication, sensing, and computational
tasks are handled on a decentralized basis. In a decentralized control architecture,
the individual members of the swarm are their own control unit and react to each
others’ movements. Decentralized control approaches require a high level of au-
tonomy of the system and the communication between each individual UAV. An
individual UAV failure in a decentralized control system will generally not affect
the group performance. The benefits of decentralized approaches allow the UAVs to
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adapt to dynamic environments as the overall behavior of the system is constructed
on local collaborations between the agents.

1.2 Previous Work

In recent years, there has been a proliferation of research efforts to study many
aspects of cooperatively controlling autonomous multi-agent systems. This thesis
tends to fall into a broad range of categories, including UAV aerodynamics, decen-
tralized swarm control design, WPAN networks, radio signal propagation, sensor
fusion, and RSSI based position estimation.

Most of the existing work related to swarm intelligence is derived from the
social behavior of animals or insects. For swarms of aircraft, most research make
use of GPS signals for providing position information. However, there are numerous
studies where positions are estimated by measuring the signal strength from access
points (APs) with known stationary positions. In this thesis, no APs are positioned
on the ground. Instead, the UAVs estimate their position by measuring the signal
strength from other UAVs, i.e. all transmitter positions are unknown and dynamic.

In [Yanmas et al., 2011], Wi-Fi signals are used to communicate with an access
point on the ground. In [Luo et al., 2013], UAVs communicate through RF signals
and RSS values are measured from APs with known positions. The UAVs all have
predefined trajectories which are modified if a collision is predicted. All UAVs have
different priorities and the UAV with the lowest priority will modify its trajectory
to prevent the collision.

Path planning is a common approach for swarms of unmanned aircraft and may
be optimal if the search area is known a priori. However, in this thesis, the envi-
ronment is unknown and no predefined trajectories are applied. Instead, the UAVs
are controlled by potential fields computed in real time. Potential fields used to
achieve swarm behavior has previously been presented in a numerous of research
papers [Hexmoor et al., 2005], [Bandala et al., 2014], [Ge and Cui, 2000]. The lat-
ter presents a new potential field method for motion planning of mobile robots in a
dynamic environment.

A vast majority of swarm research use UAV networks consisting of homo-
geneous quad-rotors. Quad-rotors are generally smaller in size and keep shorter
distances to each other than fixed-wing aircraft. Most simulations of fixed-wing
swarms maintain a constant speed and it is commonly assumed only a single obsta-
cle is detected by a UAV at each time instant. In this thesis, the speed of the UAVs
is not constant and multiple obstacles may be detected at a certain time instant.

In most previous research, the UAVs steer towards the center of the swarm.
Note that the center of the swarm is unknown when the UAVs are unable to directly
communicate with all members of the swarm, due to communication constraints.
In the simulations of this thesis, the members interact with neighboring UAVs only.
The agents broadcast their position, but the receiver sensitivity limits the distance at
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which the signals can be detected.
In [Gaudiano et al., 2003], a UAV swarm is used to track targets and different

coverage strategies are analyzed. The swarm consists of a maximum of 10 UAVs
with known positions. The environment is subdivided into a grid map and the UAVs
turn automatically as they approach the border of the area of interest. No obstacles
are present, and there is no risk of colliding with targets as they are positioned on
the ground.

A simulation of a UAV swarm is presented in [Yokoyama et al., 2014], where a
malicious UAV provides false positions to deceive other members of the swarm.
By obtaining access to the network, the UAV successfully attacks other agents.
The swarm consists of 5 quadcopters, and a multilateration verifier technique is
conducted from RSSI measurements. For the RSSI simulation, the effect of an-
tenna characteristics, antenna orientation, and signal propagation disturbances are
not taken into account. Instead, the study focuses on security within wireless net-
works.

Details on previous work on certain topics are further described in the corre-
sponding sections.

1.3 Goal and Approach

The goal of this thesis is to develop, implement, and evaluate algorithms for out-
door positioning and swarm behavior. The swarm should be able to handle indi-
vidual failures and obtain different high-level tasks. In order to achieve desirable
swarm behavior, the swarm is controlled by the use of repulsive and attractive po-
tentials. In the development of this approach, the UAV positions are first assumed
to be accurately provided, and thereafter, the positions are estimated from received
signal strength measurements. First, the position estimation is performed using in-
formation from RSSI combined by a weighted nonlinear least square filter (WNLS).
Further, the goal is to improve the performance by adding information from the dy-
namic motion model and a Kalman filter in order to receive a more accurate model
of the UAVs’ movements. The results from the two simulations are compared and
the possibility to achieve satisfactory behavior with RSSI based position estimation
is further analyzed.

1.4 Delimitation and Assumptions

The UAVs are simulated to fly at a constant altitude, which narrows down the po-
sitioning problem to a 2-D environment. All members of the swarm are located at
the same altitude at all times. The developed positioning approach requires at least
three transmitter positions to be provided, either known or estimated. The initial po-
sitions of the UAVs need to be known without using GPS signals. These positions
may be computed through a minimum of three access points on the ground with
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known positions. Another way of solving this is to let the UAVs operate in a local
coordinate frame and ignore their global position. A third way to account for this is
to assume the UAVs know their initial position as long as both their starting position
on the ground and their take-off flight path are known.

The UAVs are assumed to be equipped with various sensors, such as gyroscopes,
accelerometers, and compasses. Surveillance sensors are used to detect potential
victims on the ground and each UAV is assumed to be equipped with a single,
downward pointing camera. The camera is assumed to always point straight down,
i.e. either both the pitch and roll angles of the aircraft are always zero, or the camera
is jointly connected in its center of mass and always points towards gravity. In order
to detect targets, either an operator investigates the images in real time, or computer
vision algorithms, such as feature tracking, are used to recognize pixels in the im-
ages. The grid map of the covered regions is shared between agents and updated in
real time with no time delays. Available sensors shall also include distance sensors,
e.g. laser/radar/lidar/ladar, used to detect obstacles. Another valid simplification is
assuming a flat Earth model.

No weather conditions are taken into account for these simulations, e.g. distur-
bances like wind, rain, or clouds that can obscure the view of the surveillance sensor
are all neglected.

The Kalman filter is optimal in the sense that it minimizes the mean square
error of the estimated parameters when Gaussian noise is assumed. In order to use
a KF, the noise is estimated as Gaussian for simplicity. Only the mean and standard
deviation of the noise are provided, so if the noise is non-Gaussian, the KF may not
attain accurate estimates.

1.5 Challenges

In search and rescue operations, it is of great importance to properly analyze the
quality and trustworthiness of the reported information. The probability of false
negative should remain low, i.e. victims should not go undetected when a UAV
is surveying an area. At the same time, to avoid sending a ground rescue team to a
place of no interest, a victim should not be falsely detected when it is not present, i.e.
the probability of false positive should also remain low. The challenge is to establish
accurate models of the quality of the sensory data obtained from the UAVs.

When multiple UAVs are deployed, the sensory data they collect can be shared
to generate a complete picture of the environment, which can in turn guide the
search process. This task is challenging as it needs to account for limitations in
terms of processing, memory storage, energy consumption, network availability,
etc. How frequently the connections between UAVs should be established as well
as how frequently the UAVs report to a ground station are both important aspects
that need to be determined.

When designing the potential field algorithm, many factors are taken into ac-
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count. The UAVs should maintain a certain distance to their closest neighbor such
that the entire area between them is covered and at the same time, no collisions
occur and the distance does not exceed maximum communication range. Another
important requirement is that the individual flight paths should not be oscillating.
The parameters of the potential functions are tuned to achieve desirable results.

Furthermore, for the RSSI measurements, sufficiently good models of the path
loss are needed. This, in turn, requires information about the power with which the
communication modules transmit and how dense the environment is. Signal distur-
bances may distort the signal significantly. If there is an obstacle obstructing the
signal path, the RSSI will decrease and the position estimate will be affected. The
model of the position estimation has to take account for this. Antenna characteristics
and the effect of antenna localization need to be studied thoroughly.

For real search and rescue operations with small UAVs, weather conditions need
to be taken into account. However, as mentioned in the previous section, this aspect
is outside the scope of the thesis.

1.6 Platform

In this project, two Genuino UNO microcontrollers are used in combination with
two XBee S1 PRO communication modules and two XBee shields. These devices
are used to send and receive data packages between two nodes. One communica-
tion module measures the received signal strength from incoming packages and
estimates the distance to the other. A servo motor is attached to the transmitter in
order to see how the signal strength is affected by the angle of transmission.

Genuino UNO
An Arduino/Genuino UNO is a microcontroller board which can communicate with
servo motors and a multitude of different sensors via analog input pins and digital
input/output pins. The microcontroller can be connected to a computer with a USB
cable or powered by either a battery or an AC/DC adapter. Programs are written in
the Arduino Integrated Development Environment (IDE) and thereafter uploaded to
the microcontroller.

Since 2005, when the Arduino project was initiated, all their products are dis-
tributed as open-source hardware and software. In May 2015, Arduino LLC cre-
ated the worldwide trademark Genuino, used as the brand name outside the United
States.

XBee
XBee modules are embedded solutions providing wireless end-point connectivity to
devices. The IEEE 802.15.4 networking protocol is used for fast point-to-multipoint
or peer-to-peer networking. XBee is a Zigbee based protocol, where ZigBee is a
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wireless 2.4 GHz standard built on IEEE 802.15.4. ZigBee is a mesh network and
each node in a ZigBee system can act as either a wireless data endpoint or a repeater.

These modules are designed for high-throughput applications requiring low la-
tency and predictable communication timing. In order to configure the XBees and
set their baud rate, they are individually connected to a PC with an XBee explorer
before mounted on the Genuino via an XBee shield.

Application Programming Interface (API) mode is a frame-based method for
sending and receiving data to and from a radio’s serial UART. The API mode al-
lows the programmer the ability to view RSSI and source addresses on a packet-by-
packet basis and receive packet delivery confirmation on every transmitted packet.
By having the XBees configured in API mode it is possible to communicate through
a Genuino. The communication modules used in this thesis are the XBee S1 PRO
which has a receiver sensitivity of -110 dBm. The measurement data collection has
been performed using the software programs Arduino IDE and MATLAB.

1.7 Outline

This section briefly presents the structure of the thesis.
Chapter 2 gives a brief background on navigation techniques and common on-

board sensors for UAVs. In Chapter 3, general swarm behavior is introduced, both
natural and artificial. Chapter 4 presents artificial potential fields applied to swarm
intelligence. An introduction to WPAN and wireless sensor networks is provided in
Chapter 5. Radio propagation patterns, antenna characteristics, and radio signal dis-
turbances are described in Chapter 6. Chapter 7 further explains how RSSI signals
may be used for positioning applications and introduces the theory behind sensor
fusion. In Chapter 8, aerodynamics and 2-D kinematics of fixed-wing UAVs are
discussed. Chapter 9 presents different non-linear filtering techniques, introducing
some filters applied in this thesis. Chapter 10 is dedicated to the parameter eval-
uations of the RSSI-distance models discussed in Chapter 7. In this chapter, the
experimental setup for the RSSI measurements is presented. Chapter 11 provides
detailed information on the MATLAB simulations, for both UAVs with known and
estimated positions. Chapter 12 thoroughly evaluates the results of the thesis, in-
cluding the evaluation of the RSSI-distance model and several simulation results.
Lastly, in Chapter 13, the conclusions of the thesis is discussed and possible future
work on the subject is presented.
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2
Background on Navigation

In this chapter, a brief introduction to navigation techniques is given. Firstly, the
concept of GPS is explained and secondly, rotation matrices and different coordinate
systems are presented. Further, typical onboard sensors for UAVs are presented,
including accelerometers, gyroscopes, pressure sensors, and magnetometers.

2.1 GPS

The GPS system was launched in the United States in 1973, consisting of 24 satel-
lites orbiting the Earth at an altitude of approximately 20200 km. The system was
developed by the U.S. Department of Defense and became fully operational in 1993
[Mai, 2012]. In order to estimate a position on the Earth’s surface, it requires to be
seen by at least four satellites at all times. Each satellite broadcasts radio signals
with their own position, a pseudo-random code known to the receiver and the time
of transmission (TOT). The GPS signal travels at the speed of light and the receiver
measures the time of arrival (TOA) of at least four satellite signals. From the TOAs
and TOTs, the receiver forms time of flight (TOF) values which gives an estimate
of the distance to the satellites. By applying these TOFs to a multilateration algo-
rithm, the receiver estimates its latitude, longitude, altitude, and clock-time offset.
A simple GPS system is illustrated in Figure 2.1.

The GPS system provides a position accuracy of approximately five meters for
points in unobstructed line-of-sight (LOS) [Trimble, 2017]. If the satellites are not
in LOS from the GPS receiver, problems with positioning accuracy might occur.
Putting more satellites in orbit increases the probability of having enough satellites
visible at the entire surface of the Earth. In urban environments or indoors, the signal
path may either be obstructed by buildings in the receiver’s surroundings, or by the
building the receiver is located in, respectively. These obstructions may result in
signal reflection, diffraction, and scattering. Since the distance is estimated from
the time it takes for the signal to travel from the satellite to the receiver, these signal
disturbances lead to an increase in the distance estimate. An obstruction may even
make the signal too weak for the receiver to detect [Grimes, 2008].
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Figure 2.1 Illustration of a GPS system.

There is a multitude of alternative techniques for positioning estimation appli-
cations. These techniques include using magnetic fields, cameras, signal strength
communication, inertial sensors, etc. [Mautz, 2012].

2.2 Coordinate Systems

When studying unmanned aircraft systems, it is important to understand how dif-
ferent bodies are oriented relative to each other. To understand how the aircraft is
oriented with respect to the Earth is essential for these studies. Other important as-
pects are knowledge of how a camera or sensor is oriented relative to the aircraft and
how an antenna is oriented relative to a signal source on the ground or to another
aircraft. It is necessary to use different coordinate systems for the following reasons
[Atkins et al., 2016]:

• The motion of an aircraft is most easily described in a body-fixed reference
frame, while Newton’s equations of motion are derived relative to a fixed,
inertial reference frame.

• Onboard sensors, such as accelerometers and gyroscopes, measure informa-
tion with respect to the body-fixed frame. If the aircraft is equipped with a
GPS, it measures position, ground speed Vg, and coarse angle χ , with respect
to the inertial frame.

• A majority of mission requirements, such as map information, flight trajecto-
ries, and loiter points, are specified in the inertial frame.

A well-defined coordinate system is of great importance for position applications.
One coordinate frame can be transformed into another through two basic operations:
rotation and translation. Throughout this thesis, a flat, non-rotating earth is a valid
assumption.
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Rotation Matrices
Let a coordinate be denoted as x in the inertial frame and as xb in the body frame
of reference. The body frame has a different angular orientation, but for now, it is
assumed their origins are coincident. There are multiple ways of describing angu-
lar orientation, including Euler angles and Euler parameters (quaternions). These
representations are further described in Chapter 8. This section demonstrates an ex-
ample of how to represent a coordinate in inertial space, referenced to a rotated body
frame. The transformation takes the form of a 3x3 matrix, which is derived through
successive rotations of the three Euler angles. Figure 2.2 illustrates the transforma-
tion of a coordinate frame to an arbitrary orientation.

Figure 2.2 Transformation of a coordinate frame by rotations of the three Euler
angles.

Before the first rotation takes place, the point’s coordinates in the inertial frame
equals the body-referenced coordinates, x = x0

b. First, the z axis of the body-fixed
frame is rotated through the yaw angle ψ .

x1
b =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

x0
b = R(ψ)x0

b (2.1)

The x and y axes are modified according to rules of basic trigonometry, while the ro-
tation about the z axis does not change the point’s z coordinate. The second rotation
is applied about the new y axis through the pitch angle θ .

x2
b =

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

x1
b = R(θ)x1

b (2.2)
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The final rotation is about the new x axis through the roll angle φ .

x3
b =

 1 0 0
0 cosφ sinφ

0 −sinφ cosφ

x2
b = R(φ)x2

b (2.3)

Further on, the notation x3
b is replaced by xb. The three rotations can be cascaded

through matrix multiplication, see (2.4), where c is short for cosine and s for sine.
Note that the rotation matrices are noncommutative, i.e. the order of the rotations
matters.

xb = R(φ)R(θ)R(ψ)x

=

 cθcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcψ + cφsθcψ cφcθ

x

= R(ψ,θ ,φ)x

(2.4)

Rotation matrices are orthonormal, i.e. x = RT xb. Note that throughout this section,
the origins were assumed to coincide. If the body frame has a different origin than
the inertial frame, the offset is added to the equation as x= x0+RT xb. The most im-
portant coordinate systems for UAVs are described below and illustrated in Figure
2.3.

Inertial Frame
The inertial coordinate system is an Earth-fixed coordinate system with its origin at
a defined home location. For inertial coordinate systems, Newton’s laws of motion
hold true. As mentioned previously, the Earth is assumed to be non-rotating with
a flat xy-plane and therefore, the Earth frame is approximated as inertial. The co-
ordinate system is sometimes referred to as the NED reference frame, where x is
positive in the direction of north, y is positive in the direction of east and z is positive
towards the center of the Earth.

Vehicle Frame
The vehicle frame is aligned with the inertial frame but has a different origin. When
studying unmanned aircraft, the origin is at the center of gravity of the UAV. All
three coordinate frames presented below have their origin at the aircraft’s center of
gravity.

Body Frame
The x axis of the body frame is out the nose of the aircraft, positive in the direction
of flight. The y axis is positive out the right wing and the z axis is perpendicular to
the x axis, positive below the aircraft. In this thesis, the aircraft are assumed to be
symmetric from right-to-left and the z axis is therefore in the plane of symmetry.
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Wind Frame
Aerodynamic forces and moments acting on an aircraft are usually expressed in the
wind frame. The wind frame has its x axis positive along the velocity vector of the
aircraft relative to the air, i.e. the z axis is rotated by the sideslip angle β from the
stability frame. The sideslip angle is the angle between the velocity vector and the
projection of the aircraft’s longitudinal axis on the xy-plane in the wind frame.

Stability Frame
The stability frame is rotated by the angle of attack α among the y axis, such that
the velocity vector is in the xy-plane. The angle of attack is the angle between the
xy-plane in the wind frame and the aircraft’s longitudinal axis.

Figure 2.3 Different coordinate systems referred to in this thesis. β is the sideslip
angle and α is the angle of attack. ψ,θ , and φ are the yaw, pitch, and roll angles.
χ,µ , and γ are the heading, bank, and flight path angles and analogous to ψ,θ , and φ

respectively. The inertial frame and the vehicle frame are differentiated by a parallel
dislocation.
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2.3 Sensors

The objective of this section is to describe the onboard sensors a UAV is typically
equipped with and further quantify what they measure. Sensors used for guidance,
navigation, and control are in focus, whilst payload sensors, e.g. cameras, are not
described in detail. By combining the measurements from multiple sensors the au-
topilot can keep an aircraft stable very effectively. Most flight controllers have 6
degrees of freedom (DOF), which means they have a 3-axis accelerometer and a
3-axis gyroscope.

Accelerometer
An accelerometer is an electromechanical device which is used to measure both
static and dynamic acceleration forces along one or multiple axes. The force of
gravity is an example of a static force, while movement or vibration in mobile de-
vices are examples of dynamic forces. Conceptually, an accelerometer behaves like
a damped mass on a spring. A proof mass is displaced when the accelerometer is
exposed to acceleration and the spring accelerates the mass at the same rate as the
casing. The acceleration is found by measuring the displacement of the mass, i.e.
the displacement by the spring in the suspension. A simple force balance analysis
of the proof mass yields the following relationship

mẍ+ kx+ ky(t) (2.5)

where x is the inertial position of the proof mass and y(t) is the inertial position of
the housing. The deflection of the suspension can be expressed as δ = y(t)− x and
Equation (2.5) is rewritten as

ẍ =
k
m

δ (2.6)

which shows that the acceleration of the proof mass is proportional to the deflection
of the suspension. At frequencies below the resonant frequency, the acceleration of
the proof mass is the same as the acceleration of the housing. For further details
see [Beard and McLain, 2012]. Accelerometers are commonly mounted near the
aircraft’s center of mass with the sensitive axis of one accelerometer aligned with
each of the body axes. The vectors am reported by the accelerometer represent the
total acceleration of the casing subtracted by the gravity.

am = ab−Rb
v

 0
0
g

 (2.7)

In (2.7), g represents the acceleration of gravity and ab is the total acceleration of the
casing seen in the body frame. Rb

v is the rotation matrix from the vehicle frame to the
body frame. This model assumes that there is no cross-axis alignment, scale factor,
or bias errors in the measurements. The accelerometer measurements are dependent
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on its placement on the aircraft. If there is an offset between the sensor’s position
and the center of gravity of the aircraft, the measurement needs to be transformed.
The transformation make use of the distance to the new point and the aircraft’s
angular velocity and angular acceleration.

Gyroscope
Gyroscopes are essential for measuring or maintaining orientation. A typical air-
plane uses gyroscopes in everything from its autopilot to its compass. A three DOF
gyro measures the angular velocity with which it is turning around the pitch, roll,
and yaw axis. Mechanically gyros consist of a spinning wheel or a disc mounted on
a gimbal, which allows the wheel to rotate freely about each axis. Once a gyroscope
spins, its axes want to keep pointing in the same direction and according to the con-
servation of angular momentum, the orientation of the axis of rotation is unaffected
by tilting or rotation of the mounting.

Unlike a magnetic compass, a gyroscope only measures how the angles change
over time and does not seek north. When a gyroscope is mounted on an aircraft,
it will drift over time and needs to be recalibrated periodically, using a magnetic
compass as a reference.

A rotating disc is not a well-suited gyroscope for small UAVs. Instead, MEMS
gyroscopes are used in these applications. MEMS rate gyros typically consist of a
proof mass on a cantilever actuated at their resonant frequency to cause oscillation
in the vertical plane. The cantilever is actuated such that the velocity caused by the
oscillations has constant amplitude, see (2.8).

v = Aωn sin(ωnt) (2.8)

In (2.8), A is the amplitude of the oscillation and ωn is the natural frequency. If the
sensitive axis of the gyro is configured to be the longitudinal axis of the undeflected
cantilever, then the rotation about the axis will result in a Coriolis acceleration in
the horizontal plane described by (2.9).

aC = 2Ω×v (2.9)

Ω = (θ̇ , φ̇ , ψ̇) are the angular velocities of the body in an inertial reference frame,
and v is the velocity of the point in the reference frame of the body. The French
scientist C.G de Coriolis discovered in the early 19th century that a point translat-
ing on a rotating rigid body experiences an acceleration that is proportional to the
velocity of the point and the rate of rotation of the body [Beard and McLain, 2012].
The Coriolis acceleration of the proof mass results in a lateral deflection of the can-
tilever, which can be detected by a multitude of techniques. This can be compared
to the behavior of the proof mass and the cantilever of the accelerometer.
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Pressure sensor
Pressure is defined as the force per unit area acting on a surface and acts in the
direction normal to the surface of the body to which it is applied. For UAVs, pres-
sure measurements provide indications of both the altitude and the airspeed of the
aircraft. For these measurements, an absolute pressure sensor and a differential pres-
sure sensor are used, respectively. For further details, the interested reader is referred
to [Beard and McLain, 2012].

Magnetometer
The magnetic field of the Earth has been used for navigational applications for cen-
turies and is still useful when navigating a variety of vehicles, including unmanned
aircraft. The Earth’s magnetic field behaves similarly to a magnetic dipole with
magnetic field lines running normal to the surface of the Earth at the poles and par-
allel to the Earth’s surface near the equator. Compasses provide an indication of the
heading relative to the magnetic north ψm by measuring the direction of the mag-
netic field locally. The heading angle ψ is the sum of the magnetic declination angle
δ and the magnetic heading measurement.

ψ = δ +ψm (2.10)

The declination angle is the angle between true north and magnetic north. For any
given latitude and longitude, δ can be calculated using a multitude of different mod-
els. The magnetic heading can be determined from measurements of body-frame
components of the magnetic field strength projected onto the horizontal plane. For
further reading, see [Beard and McLain, 2012].

Magnetometers and digital compasses can be sensitive to electromagnetic inter-
ference. When the sensor is mounted on a UAV, it is essential to avoid interference
from electrical motors, servos, and power wiring. Metallic objects in general may
also disturb the magnetometer.
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3
Background on Swarm
Behavior

Swarm intelligence refers to the collective behavior of self-organized systems that
can consist of both natural and artificial agents. The terminology was first intro-
duced by Jing Wang and Gerardo Beni in 1989, in the context of robotic systems
[Beni and Wang, 1989]. In nature, when organisms travel in groups, they exhibit
certain behaviors. This phenomenon occurs at both microscopic and macroscopic
scales and examples of swarm intelligence in nature include colonies of ants, flocks
of birds, herds of animals, schools of fish, and growth of bacteria [Partridge, 1982].
This behavior can be simulated in computers programs combining sets of different
rules.

The first simulation of flocking behavior was created in 1987 in a computer pro-
gram called Boids, developed by Craig Reynolds [Reynolds, 1987]. This program
simulates simple agents (boids) allowing them to move individually according to
three basic rules.

• Separation - steer to avoid collisions with nearby flockmates.

• Alignment - steer towards the average heading of nearby flockmates.

• Cohesion - steer to move towards the average position of nearby flockmates.

Each boid has direct access to the whole area it is operating in, but to attain
flocking behavior, a boid should only interact with flockmates within a limited area
around itself. This neighborhood is characterized by a distance and an angle mea-
sured from the center of the boid and the boid’s heading angle, respectively. This
behavior can be compared to the general behavior of school’s of fish, where the focal
fish pays attention to all fish within a small zone of repulsion, a zone of alignment,
and a larger zone of attraction [Couzin et al., 2002]. The model can be extended
with more complex rules, such as obstacle avoidance and goal seeking.
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A swarm typically consists of simple agents interacting locally with one an-
other and their environment. Swarm members are naturally disorganized and per-
form very simple tasks in response to environmental information as well as local
information from other group members. Even without a centralized control struc-
ture, local interactions between agents lead to the emerge of intelligent global be-
haviors. The agents are unaware of what problem they are collectively working on,
but based on local communication with nearby members and the actions that they
exhibit, an individual evaluates an appropriate behavior that will contribute to the
swarm’s objective.

Some biological swarms fly in formations, i.e. follow a geometric configuration.
Flight formation can be used in order to conserve the energy and effort each individ-
ual exert. Flocks of birds use formation to easier catch pray and to avoid predators
[Deneubourg and Goss, 1989].

This chapter further explains robotic swarms and discusses different models of
swarm behavior.

3.1 Robotic Swarms

Agents in robotic swarms are programmed to perform simple tasks based on a set
of rules. In decentralized control systems, robots communicate directly without any
base station support. Different techniques can be used for decentralized communi-
cation, such as WiFi, Bluetooth, or ZigBee.

For swarms of unmanned aerial vehicles, agents generally evaluate different
potential paths against the following high-level objectives [Sauter et al., 2009]:

• Prefer to move in a straight line to conserve fuel.

• Prefer to move at optimal airspeed to conserve energy.

• Prefer to fly at a constant altitude to conserve energy.

• Stay away from neighboring agents to avoid collisions.

• Stay within communication range to other agents in order to maintain a fully
connected network.

• Stay away from no-go zones, such as obstacles or enemies.

Compared to most swarm behavior found in nature, robotic swarms can be sim-
ulated without blind angles, i.e. the agents are equipped with sensors with an all-
round coverage.
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UAV Control Strategies
There are several control strategies for UAV swarms, where the decision making
is based either on the information available in the immediate surroundings of each
UAV, or the information from the entire search area. Four different strategies of
decentralized control are listed below and evaluated in [Gaudiano et al., 2003].

• The baseline strategy is the simplest decentralized control method. The UAVs
fly in a straight line until they reach the boundary of the search area and
thereafter make a turn.

• The random strategy is a slightly altered version of the baseline strategy and
allows the UAVs to change its heading by a small random angle at each time
step.

• The repulsion strategy is based on potential forces, where each UAV can sense
other UAVs within a certain radius. To keep a fully connected network and to
prevent collisions, the UAVs maneuver based on the distance to other UAVs.

• In a pheromone strategy, the UAVs leave a marker along their flight paths
to indicate that a cell has been visited. Other swarm members can sense the
pheromone level in their local surroundings and adjust their flight path in
order to search for unvisited cells.

3.2 Models of Swarm Behavior

There are multiple ways of simulating swarms, where most of the techniques are
based on biological systems. This section presents some previous work on swarm
behavior.

Particle Swarm Optimization
Particle swarm optimization (PSO) is a population-based stochastic optimization
method developed by Kennedy, Shi, and Eberhart [Kennedy, 1995], [Shi and Eber-
hart, 1998]. PSO algorithms optimize a problem by iteratively trying to improve a
solution with regard to a given measure of quality. The optimal solution can be rep-
resented as a point or surface in an n-dimensional space. Particles move around in
the solution space according to simple mathematical formulas. Each particle keep
their previous best position in memory and their movement is based on this posi-
tion and the best known position of the swarm. After each time step, the particles
are evaluated according to some fitness criterion. Over time, particles accelerate to-
wards the particles within their communication range with better fitness values. The
large number of members that the particle swarm consists of makes this method
impressively resilient to the problem of local minima, which gives this approach a
major advantage over other global minimization strategies [Ruan, 2010].
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Pigeon-inspired Optimization
Pigeon-inspired optimization (PIO) is a swarm intelligence algorithm inspired by
the homing behavior of pigeons. In PIO simulations, the two following operators
are designed to imitate the homing characteristics of pigeons:

• Map and compass operator: pigeons use magnetoreception to create a map of
the Earth’s magnetic field. They adjust their direction of flight by referring to
the altitude of the sun as a compass.

• Landmark operator: when pigeons fly close to their destination, they rely on
nearby landmarks. If the pigeons recognize the landmarks, they fly straight
to the destination. If they are far from the destination and unfamiliar to the
landmarks, they follow the pigeons who are familiar with the landmarks.

This is a path planning algorithm which requires danger regions to be known, see
details in [Duan and Qiao, 2014].

Potential Fields
Potential fields used in swarming applications was first proposed by Khatib in 1985
[Khatib, 1985]. Swarm members treat the goal position as an attractive potential,
while threats, such as obstacles or enemies, are represented by repulsive potentials.
Unexplored areas of the terrain can also be treated as attractive potentials. Potential
fields could be combined with rapidly exploring random trees (RRT) which generate
a tree of trajectories by randomly selecting a point in the given space. Each branch
is tested for collision avoidance before adding it to the tree until a connectivity is
formed between the start and goal position [Beard and McLain, 2012]. A potential
field algorithm is developed in this thesis and further described in Chapter 4.

Ant Colony Optimization
The use of pheromones is a key concept in insect-inspired swarm control. Ants
deposit pheromones in order to inform their nestmates where food has been found.
When an ant leaves the nest it explores randomly until it finds a pheromone trail
or until it finds food. When an ant has found food it follows the pheromone trail
back to the nest and repeats the procedure. Ants also deposit small amounts of
repulsive pheromones when they have thoroughly explored an area without any
luck of finding food [Stickland et al., 1999].

Pheromones can be considered as guidelines to tell agents whether an area is
attractive or unattractive for future exploration. This algorithm allows swarm mem-
bers to use local pheromone levels to determine which direction they should go.
Each member of the swarm can change simple parameters relating to pheromones
to influence the movement of the swarm.

Digital pheromones are used in computer algorithms to control the movements
of individual agents and steer them toward areas that are attractive, and away from
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areas that are dangerous or unattractive. Areas that are already explored are com-
monly characterized by repulsive pheromones. For digital pheromone-based algo-
rithms, pheromone levels are shared between agents over communication networks.
The area of interest is discretized into a grid, where the cells contain all pheromone
flavors present. There are generally five different flavors, where each sensor main-
tains its own version of a pheromone map. Unsearched areas contain attractive
pheromone levels. When a sensor has detected a possible target but an additional
sensor is required to identify it, a sensor request pheromone is deposited. In [Sauter
et al., 2009], there is also a target tracking pheromone, a no-go pheromone, and a
path pheromone deposited along the planned path for each swarm member.

For this control to be effective, the commander needs a clear understanding of
the entire area of interest and what the swarm members should focus on. A funda-
mental challenge with pheromone-based algorithms is that they are computationally
expensive for large fields.

In this thesis, the search area is discretized into a grid, where unexplored cells
contain an attractive pheromone. If a cell is scanned and no victim is detected, the
cell is neutralized.

3.3 Waypoint Guidance

There are other ways of controlling swarms, where waypoint guidance is a common
technique when the search area is known. Waypoint guidance is a path planning
technique, where the Dubins path is one of the most common used algorithms for
2-D environments. A Dubins path is a minimum time trajectory between two points
consisting of straight lines and circular arcs of maximum curvature. In order to
get from one point to another in the same plane, the control parameter changes
maximum twice, see Figure 3.1 for examples.

In Figure 3.1, S represents a straight line, R a right turn, and L a left turn. Note
that this is a 2-D environment, i.e. the aircraft maintains a constant altitude.

Extensions of Dubins paths have been developed to satisfy curvature constraints
in 3-D environments. An algorithm for tracking a 3-D Dubins path was presented
in [Ambrosino et al., 2009].

Path planning algorithms are generally based on the knowledge of the environ-
ment. In this thesis, the presence of trees and other obstacles are unknown a priori,
and exceptions of the control algorithm have to be made in real time when obsta-
cles are detected. To keep the control loop simple and generic, no special cases are
allowed and path planning is not used in this study.
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Chapter 3. Background on Swarm Behavior

Figure 3.1 Example of Dubins paths connecting pairs of configurations in the
plane. (Reprinted with permission from [Atkins et al., 2016]. ©John Wiley and
Sons.)
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4
Artificial Potential Fields

Artificial potential fields are an example of a behavioral control architecture and
were first introduced in [Khatib, 1985]. The basic idea is to create a workspace
where each member of the swarm is attracted towards a goal state with a repulsive
potential ensuring collision avoidance [Ge and Cui, 2000]. Artificial potential func-
tions can be implemented to construct attractive-repulsive relations among swarm
members. The design procedure is based on potential functions which are chosen
such that the corresponding potential field is attractive for agent pairs with large
inter-agent distances and repulsive for short inter-agent distances, i.e. the attrac-
tive part dominates on large distances and the repulsive part dominates on short
distances. The attractive potential function results in aggregation and the repulsive
function results in collision avoidance between agents [Gazi et al., 2007]. In this
chapter, the potential functions implemented in the MATLAB simulations are fur-
ther explained.

4.1 Potential Fields in MATLAB Simulations

Potential functions for inter-agent interactions are essential for potential field based
swarm control. When implementing the desired swarm behavior of this thesis, ad-
ditional potential functions are required. The area of interest is decomposed into a
set of grid cells, where an attractive potential is centered in each unscanned cell in
order to steer the swarm towards unexplored areas. Multiple static obstacles with
repulsive potentials are randomly deployed in the search area. The general charac-
teristics of these four potential functions are illustrated in Figure 4.1. Note that the
values on the x axis are not numerically specified since these depend on the sen-
sors and communication modules used. The potentials are scaled down and obtain
values from 0 to 1, and each agent can sense multiple agents simultaneously.

In Figure 4.1, Urep and Uatr represent the inter-agent potentials when the UAVs
have equal heading angles. These potentials are both functions of the distance be-
tween agent pairs. Uobs and Ucell represent the repulsive potential from obstacles
and the attractive potential to unvisited cells when they are in line with the heading
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angle. These potentials are functions of distance from the agent to an obstacle and
from an agent to a cell, respectively.

The potentials are also affected by the difference in yaw, the angles to obstacles,
and the angles to cells. How these angles affect the different potentials is further
described in the upcoming subsection.

Figure 4.1 Attractive and repulsive potentials from agents, obstacles, and cells as
a function of distance. ρ is the minimum turning radius of the aircraft, the radius
of the surveillance camera is denoted as rcam, and rcom represents the maximum
communication range.

The inter-agent repulsive and attractive potentials in Figure 4.1 are opposed and
when the distance between an agent pair is within a certain distance interval the
agents will not be exposed to any potential forces. For an optimal solution, the
distance between agents should be twice the surveillance camera radius (rcam) for
the entire area between an agent pair to be covered. To eliminate the risk of missed
areas, the desired distance between agents is chosen such that there is a small camera
overlap, which results in a distance marginally smaller than 2rcam.

The red line in Figure 4.1 represents the attractive potential between agents,
which is zero when the UAVs are out of communication range. The blue curve
illustrates the repulsive potential between agents, which decreases with increased
distance and reaches zero as the distance approaches 2rcam.

The yellow curve in Figure 4.1 represents the repulsive potential from obsta-
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cles. In practice, the obstacles are detected by a sensor, such as ultrasonic, infrared,
vision, or laser. In this thesis, collisions are avoided by turning either left or right,
since the agents are limited to fly at a constant altitude and therefore can not chose
to fly above obstacles in order to prevent collisions, see Figure 4.2. The repulsive
potential from obstacles is greater for shorter distances and approaches zero when
the obstacle cannot be detected by a sensor. To prevent collisions, this potential
should reach its maximum when the UAV flies straight towards an obstacle and
the distance approaches the minimum turning radius ρ of the UAV. This approach
would generally work for moving obstacles with simple dynamics as well.

Figure 4.2 Only two possibilities are available for obstacle avoidance for fixed-
wing aircraft in 2-D. They can fly either on the left side or on the right side of the
obstacle. (Reprinted with permission from [Atkins et al., 2016]. ©John Wiley and
Sons.)

However, problems may occur if there is a collection of many obstacles in an
area, such as a forest with trees taller than the aircraft’s altitude. If the swarm splits
up around the group of obstacles, they will most likely loose each other and create
two subswarms. If the distance between the two groups is greater than the maximum
communication range, they will not know where the other agents are located. After
passing an obstacle, the UAVs may broadcast data packages to all agents within
their communication range in order to investigate if all agents are still connected. If
the number of UAVs connected has decreased after avoiding obstacles, the agents
can apply dead reckoning by using the heading angle and position they obtained
before they turned to avoid the collision. This type of control is undesirable, as it
creates special cases. The control system should be generic and stay simple with
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communication kept to a minimum. The same problem occurs when there is a sin-
gle, large obstacle present, e.g. a mountain or a tall building. In the simulations of
this thesis, only small static obstacles are used.

The purple line in Figure 4.1 is a linear function of the distance to an unvisited
cell and depends on how many cells we take into account when computing the
attractive potential. The attraction to cells cannot exceed the repulsive potential from
obstacles or the repulsive potential between UAVs since that will result in collisions.
If the attraction to cells is much greater than the attraction between agents, chances
are the UAVs will take individual paths and loose each other.

Heading Angle Dependencies
If two agents are flying away from each other, the attractive potential between them
is proportional to the difference in yaw, while the repulsive potential is inversely
proportional. The opposite holds true if the agents are moving toward each other.
This angle dependency is chosen because even if the distance between an agent-
pair is short, but the airplanes fly away from each other in opposed directions, the
repulsive potential should be small while the attractive potential should be large. A
simple example of this behavior is illustrated in Figure 4.3. If the agents fly with
equal heading angles, the repulsive and attractive potentials appear as in Figure 4.1.

Figure 4.3 Two different setups of an agent pair. The red dots illustrate the center
of the aircraft, the red lines illustrate their heading angles, and the blue circles illus-
trate the camera coverage. The distance between the UAVs are equal in both figures,
but to prevent collision, the repulsive potential is much greater in the right figure.
To ensure that the entire area between the UAVs are always covered, the attractive
potential is greater in the left figure.

The repulsive potential from obstacles is inversely proportional to the approach-
ing angle, i.e. the potential is greater for obstacles straight ahead than for obstacles
parallel to the aircraft, see Figure 4.4. This angle dependency is chosen because
when an aircraft is close to an obstacle but is moving away from it, there is no risk
of collision and the potential should therefore decrease. For a set distance, the risk
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of collision is always greater when the obstacle is straight ahead of the aircraft. A
sensor for obstacle detection is chosen such that obstacles can only be found within
a circular sector with a limited central angle, aligned with the heading angle of the
aircraft.

Figure 4.4 Two illustrations of a UAV and an obstacle. The red dot illustrates the
center of the aircraft, the red line illustrates the heading angle, and the blue circle
illustrates the camera coverage. The small red circle is a static obstacle. The distance
between the UAV and the obstacle is equal in both figures, but to prevent collision,
the repulsive potential from the obstacle is much greater in the left figure. There is
no risk of collision in the right figure.

The attractive potential from unscanned cells is also proportional to the angle
to the cell, with the UAV’s heading angle as a reference. Oscillations in the flight
path might occur if all unscanned cells at a certain distance have equal attractive
potential, while the implementation of greater potentials for cells straight ahead
reduces this risk.
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5
Introduction to WPAN

There is a growing desire to use UAVs as elements in ad-hoc communication net-
works. Recent developments of autonomous UAVs and wireless sensor networks
(WSNs) allow automated approaches to surveillance applications. A wireless back-
bone can be built where each UAV is equipped with a communication module. By
the use of a wireless network, the UAVs can communicate with each other and with
various entities on the ground with the aim of collaborating on a common task. To
enable communication between any two UAVs using multi-hop ad-hoc routing, the
UAVs need to maintain a fully connected network at all times [Huang and Zeng,
2007]. When designing multi-agent networks an understanding of basic radio prin-
ciples is required. This chapter is intended to give an introduction to WSN tech-
nologies and starts with a short introduction to different network protocols followed
by different positioning techniques.

5.1 Wireless Network Protocols

Decentralized communication can be based on a multitude of different techniques,
such as Wi-Fi, Bluetooth, and ZigBee. Wi-Fi provides higher data rate than Blue-
tooth and ZigBee, and can operate at either a 2.4 GHz or a 5 GHz frequency band.

Bluetooth operates at a 2.4 GHz frequency band and is intended to enable short-
range communications. Bluetooth transmits data via low-power radio waves and is
generally used for cable replacements to connect devices such as keyboards, mice,
printers, hands-free headsets, etc.

ZigBee operates at 2.4 GHz worldwide, and additionally at 900 MHz in North
America and at 868 MHz in Europe. ZigBee devices are low-rate WPAN specifi-
cations and use minimal power. It can be contrasted with other approaches, such
as WiFi, which offers more bandwidth and requires more power. Compared to
Bluetooth, ZigBee operates well across multiple rooms. ZigBee is used mainly for
battery-powered applications where low data rate, low cost, and long battery life
are main requirements [Laboid et al., 2007]. ZigBee provides the most power and
cost-efficient solution compared to Bluetooth and Wi-Fi and is therefore chosen to
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5.2 Sensor Networks

be used in this thesis. The standard protocol for ZigBee modules is further described
in the upcoming subsection.

The IEEE 802.15.4 Standard
The IEEE 802.15 is the Institute of Electrical and Electronics Engineers (IEEE)
working group that defines standards for wireless personal area networks (WPANs).
More specific, IEEE 802.15.4. is a low-rate WPAN that deals with low data rate,
but long battery life and low complexity. The standard defines both layer 1 and 2 in
the Open Systems Interconnection model (OSI model), i.e. physical and data link
layer. A common way to establish a communication network is to use the concept
of networking layers where each layer holds responsibility for certain functions.
This standard focuses on short-range low-cost communication between devices with
little to no underlying infrastructure. See the documentation for the IEEE standard
for a more in-depth description.

5.2 Sensor Networks

Localization in sensor networks is an application within sensor fusion theory us-
ing range and angle measurements. A wireless sensor network (WSN) assumes that
at least two nodes exchange information using a wireless link. Wireless commu-
nication is subject to bandwidth limitations and nontrivial synchronization issues.
There are three different types of observation models depending on the nodes’ syn-
chronization and communication capabilities. These observations are subject to the
signal waveform, the time of arrival, and the signal power. This section further de-
scribes how different types of observations are used in localization applications.

WPAN and Positioning
There are multiple methods used for localization applications, where a few different
techniques for WPAN RF modules are MAC-addresses, TOA, TDOA, RSS, and
RTT.

Time of Arrival
If a transmitter and a receiver are synchronized in time, the time difference be-

tween when a message is sent and when it is received may be used to compute the
distance between the devices. However, the time differences involved are usually
very short, requiring the time synchronization to be precise. Each receiver measures
the arrival time of a transmitted signal from an unknown position, using accurate
and synchronized clocks. If the transmitter is also synchronized, the signal propa-
gation time can be computed. The signals travel at the speed of light c, and from
the propagation time t, the distance d is easily computed by the equation for non-
accelerated motion.

d = c · t (5.1)
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With TOA measurements, each receiver measurement constrains the transmitter po-
sition to a circle. A minimum of three receivers is required for 2-D positioning and
a minimum of four receivers for 3-D positioning.

Time Difference of Arrival
If only the transmitters are synchronized and not the measuring device, the time

difference between signals arriving from different transmitters can be measured in
order to determine the position. This method can be used when the transmitter is
asynchronous, but it requires the same type of time synchronization as the TOA
method. Each pair of receivers computes a time difference and instead of constrain-
ing the transmitter to a circle, each pair of measurements constrains the transmit-
ter position to a hyperbola. Four receivers compute six such hyperbolic functions,
which intersect at one unique point [Gustafsson, 2012].

Round Trip Time
A way to eliminate the requirement of synchronized signals is to measure the time

it takes for a message to travel to the transmitter and back again. This time is called
the round trip time (RTT). As only one device performs the time measurement,
the need for synchronization is eliminated. However, the time from when a device
receives a message until it sends the response has to be known. Active radar, lidar,
and sonar sensors emit a pulse and use RTT in order to measure range.

Received Signal Strength Indication
Most 802.11 and 802.15.4 radio modules support received signal strength indica-

tion (RSSI), which enables the calculation of the received power of each received
packet. If the emitted power is known, the RSS value provides course range informa-
tion. Otherwise, two or more sensors can compare their RSS observations to elimi-
nate the unknown emitted power. Measuring the signal strength from a transmitter
gives a rough indication of the distance between the modules. Multiple transmitters
may then be used in order to estimate a position by multilateration.

To use RSSI for position estimation, the model needs to possess two properties.
First, it needs to predict the mean signal strength at a specific distance with satisfac-
tory precision. Secondly, the variance around the mean should be sufficiently small.
There are a few different approaches to achieve this goal. One is to try to character-
ize the environment where the positioning is taking place, using measurements of
the signal environment on numerous points. This is feasible only when the environ-
ment is either known or fairly uniform, as the resulting model is an approximation
for the entire environment.

Another approach is to create a signal strength map of the environment, by a
large set of measurements. This is called fingerprinting and overcomes the problem
of having a changing environment [Wen et al., 2016]. However, it is impractical if
used in large areas as well as when the UAVs need to be deployed quickly in an
unknown area.

A third way of finding a model for the environment is to try to estimate the
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model parameters while the positioning is ongoing. This requires that at some point
during the positioning, the position error is known to be small. Using this knowl-
edge, suitable model parameters can be calculated. Estimating the model has the
advantage of not being tied to a specific environment and whilst staying in the same
environment the model will continue to improve. On the other hand, it may not pro-
duce the best results, especially when moving between different environments or if
small position errors are rare or hard to distinguish.

RSSI typically does not allow to obtain positioning of high accuracy and noisy
measurements give a rather large uncertainty. The frequency band of 2.4 GHz makes
the measurements sensitive to interference from other devices, such as microwave
ovens, cordless phones, etc.

The main advantage of using this technique is that no specific ranging devices
are required other than RF communication modules. Using no extra hardware re-
stricts the costs of the UAVs, as well as keeps the payload to a minimum.

This thesis focuses on RSSI WPAN and the positioning technique for UAV’s is
further explained in Chapter 7.

33



6
Radio Signal Propagation

Radio signal properties fundamentally limit the performance of wireless communi-
cation networks. These properties vary greatly depending on the environment the
signal travels through, from a simple line-of-sight (LOS) to a severely obstructed
one. As a signal travels through a wireless channel, it is generally affected by several
propagation mechanisms, such as reflection, diffraction, absorption, and scattering.
These phenomena lead to both large and small scale propagation losses. Obstacles
such as buildings, trees, and mountains generally distort the signals on a large scale.
Reflections from surfaces and absorption, diffraction, and Doppler shift due to a
difference in speed between the receiver and the transmitter are small-scale affects
[Rappaport, 1996].

This thesis focuses on obtaining models for outdoor propagation of radio sig-
nals in the frequency range of 2.4 GHz for outdoor positioning applications. In this
chapter, a free space propagation model is presented and the concepts of antennae
and receiver sensitivity are discussed. Signal propagation is introduced as well as
different sources of disturbances and their influences.

6.1 Free Space Propagation Model

A transmitter equally radiating a power of Pt in all directions at a frequency of f Hz
will generate a finite amount of power at a distance of d m. The received power Pr
can be calculated by the use of Friis free space equation,

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(6.1)

where Pt is the transmitted power and Gr and Gt are the antenna gains of the receiv-
ing and transmitting antenna, respectively. L is the system loss factor and is related
to hardware losses only, such as line attenuation, antenna losses, and filter losses.
The antenna gain is related to the effective aperture of the antenna, Ae, which in turn
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6.2 Receiver Sensitivity

is dependent upon the physical size of the antenna, see the equation below.

G =
4πAe

λ 2 (6.2)

The fields of an antenna can be classified into two regions, the far field and the near
field. Friis equation holds true only when the distance between the transmitter and
receiver is beyond the far field distance, d f . This distance depends upon the largest
physical dimension, D, of the antenna as expressed in (6.3).

d f =
2D2

λ
(6.3)

To be defined in the far field region, the following must be obtained,

d f >> D

d f >> λ
(6.4)

where λ is the wavelength of the signal, which also can be expressed by the fre-
quency,

λ =
c
f

(6.5)

where c is the speed of light in vacuum in meters per second. The antennae used in
this thesis have a dimension of D < 0.04 m. The frequency of the radio signals is
2.4 GHz, which equals a wavelength of approximately 12.5 cm. Since the distance
between the receiver and the transmitter is significantly greater than the antenna
dimension and the wavelength of the signal, both (6.3) and (6.4) are fulfilled.

6.2 Receiver Sensitivity

The receiver sensitivity is the lowest power level at which the receiver can detect
an RF signal and demodulate data. Sensitivity is purely a receiver specification and
is unaffected by the transmitter characteristics. As the signal propagates away from
the transmitter, the power density of the signal decreases, making it more difficult
for a receiver to detect it. Improving the sensitivity of the receiver will allow it
to detect weaker signals, which may dramatically increase the transmission range.
Sensitivity plays an important role in the module decision-making process since
even slight differences in sensitivity can account for large variations in range.

6.3 Antennae

Different types of antennae propagate signals in different patterns. A wire or a whip
antenna has omnidirectional propagation, see Figure 1. The omnidirectional prop-
agation provides easier signal strength computations and therefore, wire antennae
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are used in this thesis. Any conductor of length λ/4 exposed in free space over a
ground plane with a proper feed can be an effective antenna. The wire antenna gives
the best performance and RF range because of its dimensions and 3-D exposure.

A PCB antenna is a trace drawn on a PCB and can have different shapes depend-
ing on the antenna type and space constraints. This antenna becomes a 2-D structure
in the same plane as the PCB. It is cheaper than the wire antenna but requires more
space on the PCB and has lower efficiency.

See the radiation pattern for different types of antennae in Figure 6.1.

Figure 6.1 The radiation patterns of wire, blade, and patch antennae. (Reprinted
with permission from [Atkins et al., 2016]. ©John Wiley and Sons.)

For wire antennae, the radio wave transmits power uniformly in all directions
in one plane, with the radiated power decreasing with the elevation angle above or
below the plane. In a spherical coordinate system, the two angles of elevation and
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azimuth are presented. The radiation is equal across the azimuthal angle, but varies
with respect to the elevation angle. The radiation reaches its minimum along the
axis of the antenna.

The wire antennae are the best antennae to use in terms of RF range, directivity,
and radiation pattern. It is the simplest and cheapest antenna type, with low gain
but good all-round coverage. A disadvantage of the wire antennae is that they tend
to bend at high-speed, distorting their polar pattern. The blade antenna is a more
aerodynamic form of an omnidirectional antenna.

Antenna Location
A common problem with locating antennae on an aircraft is that in certain directions
the signal path may be obstructed by the airframe. Diffracted and reflected signals
can create complex interference patterns, and the radiation pattern of a mounted
antenna is often difficult to accurately predict. The interested reader is referred to
[Atkins et al., 2016] for a detailed description on this topic.

6.4 Signal Propagation Disturbances

Radio waves are affected by the phenomenon of reflection, refraction, diffraction,
absorption, polarization, and scattering. Their impact on the propagation model is
further described below.

Reflection
A variety of surfaces can reflect radio signals. When radio waves are reflected, there
is generally some loss of the signal, either through absorption or as a result of when
a part of the signal is passing through the medium. For long-distance communi-
cations, the sea is a common source of reflection. Similarly, buildings and other
metallic structures provide excellent reflectors for relatively short-range commu-
nications. In general, when a radio wave propagates from one medium to another
medium with a different set of electrical properties, the wave is partially transmit-
ted and partially reflected. The intensities of the transmitted and the reflected part
depend on the material properties, the wave polarization, the angle of incident, and
the frequency of the wave. For a surface to be considered as a possible source of
reflection, the requirement is that its dimensions are much larger than the signal’s
wavelength [Rappaport, 1996].

Diffraction
Diffraction occurs when the signal path is blocked by an object which causes the
waves to bend around the obstacle. This phenomenon is also known as shadowing
and is caused by secondary wavelets that propagate into a shadowed region. Since
only a fraction of the wave propagates into the shadowed region, the signal strength
decays rapidly when moving further into the region.
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Scattering
Scattering causes the reflected energy to spread out in many directions and occurs
when radio waves are reflected on objects with dimensions smaller than the signal’s
wavelengths. Even flat surfaces may possess some roughness and therefore obtain
scattering properties.

Multipath
Multipath propagation causes large and rapid fluctuations in a signal, as multiple
waves arrive at the receiver with a phase difference. This phenomenon results in
small-scale fading. Multipath waves also cause random frequency modulation due
to Doppler Shifts on different multipath signals. For a more in-depth description,
the interested reader is referred to [Rappaport, 1996].
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7
Positioning - RSSI Approach

Most of the existing UAV positioning systems rely on the use of GPS signals. In
open environments where GPS signals are available, this method generally pro-
vides satisfactory position estimates. In some areas, GPS signals are unavailable or
unreliable, for example in indoor environments or in obstructed areas, such as close
to high buildings and mountains. An obstructed path results in a longer distance
for the signal to travel before it reaches the receiver. This increase of distance may
be caused by several propagation effects, such as reflection, diffraction, or scatter-
ing. Since the distance is estimated by the time difference between when a signal
is transmitted and when it is received, an obstructed path leads to an increased dis-
tance estimate. Further, as the GPS signal is sent from space, it is already relatively
weak when it reaches the surface of the Earth and an obstruction may even make
the signal too weak to be detected by the receiver.

In this thesis, low-cost UAVs are used in order to scan areas for surveillance
applications. Since the cost of the devices involved in the positioning operations
is limited, an approach based on RSS measurements is considered. Each UAV is
assumed to be equipped with communication devices used to share information
with other members of the swarm to improve their cooperation abilities. RSS based
positioning does not require any additional hardware.

This chapter first introduces RSSI principles and different propagation models.
Note that the model parameters may need to be tuned differently for specific devices
as they possess different parameters. In order to use RSSI for positioning applica-
tions, sensor fusion is applied and further explained in Section 7.3.

7.1 RSSI

Received signal strength indicator (RSSI) is a measurement of the signal power of
a received radio signal. The power of a signal traveling between two nodes in com-
bination with a path-loss and shadowing model can be used for distance estimation.
In this thesis, the UAVs communicate with their neighbors by single-hop messages
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which are periodically propagated and broadcasted to all UAVs within their com-
munication range. This can be compared to the way birds fly in a flock, mostly
using the information from neighboring birds. This locality of the communication
is a simple way to keep the network scalable to changes of the swarm size.

The message may contain arbitrary content of up to 512 bytes in length. Thus,
with the aid of the RSSI values of the received messages, the UAV’s 2-D position
can be determined by a set of at least three distance estimates, provided that the
message includes the most recent position estimate of the transmitting UAV, its
transmission frequency, and a time-stamp. The process is repeated until the RSSI
values of all reachable transmitters have been measured.

RSSI measurements are unpredictable due to several error sources, such as time
delays and multipath signals arriving at the receiver. For the RSSI to be a mean-
ingful measurement of the received signal power it must somehow be related to the
physical properties of the signal. For model evaluations, an investigation of how the
RSSI changes with the distance is commonly used together with the RSSI value at a
known distance. There is no standard of how the RSSI should be related to the phys-
ical properties of the signal, and manufacturers are able to choose in what range the
RSSI value should be presented. RSSI is given in an arbitrary unit, usually in dBm.

7.2 Propagation Models

The majority of RSSI location algorithms make use of a signal propagation model
that maps RSSI values to distance estimates. The most widely model for RSSI based
position estimation for outdoor applications is the log-normal shadowing model
(LNSM) [Seybold, 2005].

Log-Normal Shadowing Model
The LNSM is shown in (7.1),

P(d) = P(d0)−10η log10

(
d
d0

)
+Xσ (7.1)

where P(d) is the received signal strength at distance d and P(d0) the signal strength
for a reference distance d0, commonly chosen at 1 meter for simplicity. η is the
signal attenuation coefficient and Xσ is assumed to be a Gaussian random variable
with zero mean and variance σ2. η depends on the specific environment and is
approximately 2 in free space and larger when obstacles are present. If d0 is chosen
to be 1 m, the corresponding distance can be computed from (7.2) as follows.

d = 10−(P(d)−P(d0)−Xσ )/10η (7.2)

Due to the non-linearity in (7.2), it is clear that the effect of noise changes de-
pending on the considered distance. The same value of Xσ leads to a much larger
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distance estimation error for small values of the measured signal strength, i.e. larger
distances.

Double Slope Model
A simple extension of the log-normal shadowing model is to combine different
values of η for various intervals of the RSSI. The most simple of these models is
the double slope model where two different path loss exponents are used together
with a single break value of the received power, P1. The model then becomes,

d = 10−(P(d)−P(d0)+Xσ1)
/10η1 if P(d)≥ P1 (7.3)

d = 10−(P(d)−P(d0)+Xσ2 )/10η2 if P(d)< P1 (7.4)

where Xσ1 and Xσ2 are random Gaussian distributed variables with zero mean and
standard deviation σ1 and σ2, respectively. Note that there might occur an undesir-
able jump in the estimated distance at P1 when the path loss exponent is suddenly
switched from one value to another.

αβ -Model
Another extension of the LNSM model is to introduce a parameter α multiplied by
the distance d, as well as a parameter β as an exponent of this d. This expression is
subtracted from the LNSM in (7.1).

P(d) = P(d0)−10η log10

(
d
d0

)
−αdβ +Xσ (7.5)

For this model, an initial η is chosen and α and β are tuned in order for the model
to achieve desirable results. In [Karlsson and Karlsson, 2014], an α-model is used
for indoor applications (i.e. β is set to 1). This model tends to underestimate the
signal strength at large distances d as α grows linearly with d while everything
else grow as the logarithm of d. Two simple ways to correct for this are that either
the model can be switched to a standard log-normal shadowing model when d is
large, or a maximum value of αd may be imposed. The α model works better for
shorter distances, such as for indoor applications. In this thesis, an attempt of adding
a parameter β to improve the model accuracy is taken into consideration for the
model evaluation.

7.3 Sensor Fusion

Sensor fusion deals with merging information from two or more sensors, where the
goal is to achieve as accurate information as possible. The sensory data from differ-
ent sensors is combined such that the resulting information is somewhat improved
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and more useful than when using the sources individually. For sensor fusion ap-
proaches, different filters can be applied, such as variations of the Kalman filter or
a particle filter. Different filtering methods are described further in Chapter 9.

In this project, sensor fusion is used to estimate the position of the individ-
ual UAVs. All UAVs are assumed to be equipped with wireless RF modules for
communication. The communication modules are sending data packages between
UAVs and the received signal strength is measured in order to estimate the dis-
tance between them. The modules work in broadcast sending mode while the RSS
is measured continuously. Swarm members process incoming data packages from
other UAVs within their communication range. All communication is assumed to
be synchronized and time delays are omitted.

Multilateration
An example of positioning is illustrated in Figure 7.1, where the blue triangles rep-
resent UAVs at known positions. Each UAV transmits its coordinates as well as
heading and bank angle to a receiver at an unknown position. The solid circles il-
lustrate the distance estimates computed from the received RSSI values. This is an
example of trilateration and by applying sensor fusion the position of the receiving
UAV can be estimated, illustrated as a red triangle in Figure 7.1.
Consider a UAV with unknown coordinates (px, py) and N nodes with known po-
sitions (xn,yn). From this, the coordinates of the UAV can be computed, given the
distances dn from the nodes to the UAV.

N

∑
n=1

(
dn−

√
(xn− px)2 +(yn− py)2

)
= 0 (7.6)

In most cases, due to the noise and errors in RSSI measurements causing distance
estimation errors, the right-hand side of (7.6) is non-zero, which leads to a non-
solvable system. If this is the case, multilateration can still be used to estimate the
position of the UAV, by minimizing an error function.

Consider three circles of radius d1,d2, and d3 as in Figure 7.2. The dotted lines
represent the distance estimation errors, which increase with increased distance.

The position can be estimated using a weighted non-linear least square filter
(WNLS), see Chapter 9 for details. The goal is to minimize the following error
function in order to estimate the unknown position.

VWNLS(p) = (y−h(p))T R−1(p)(y−h(p)) (7.7)

In (7.7), y is the computed distance from the RSSI measurements, h is the dis-
tance from each AP as a function of p, and R is a diagonal 2x2 covariance matrix
[Gustafsson, 2012].

When estimating the covariance matrix, all intersections are evaluated and if an
intersecting point from d1 and d2 is inside all of the remaining circles, the coordi-
nates of the point are saved in a vector. This is done for all intersection point of all
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7.3 Sensor Fusion

Figure 7.1 Position estimation of one unknown node using trilateration of signals
from three known access points.

circles. The covariance is estimated as an ellipse over all of the points in this vector,
see Figure 7.3. The ellipse is chosen such that it covers a certain percent of the area
of the position uncertainty. At the same time, the ellipse minimize its coverage of
unwanted areas.

The confidence bounds for the position is computed using a normal approxima-
tion to the distribution of the estimate.

X− µ̂

σ̂
(7.8)

The normal cumulative distribution function (cdf) is

p = F(x|µ,σ) =
1

σ
√

2π

∫ x

−∞

e
−(t−µ)2

2σ2 dt (7.9)

where p is the probability that a single observation from a normal distribution with
parameters µ and σ will fall in the interval (−∞ x].

All x and y values in the vector are subtracted by the position estimate, and this
new vector is denoted as X0. A confidence interval is chosen based on the desired
standard deviation. From this, the inverse of the 2 degree of freedom χ2 cdf is
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Chapter 7. Positioning - RSSI Approach

Figure 7.2 Position estimation of one unknown node using trilateration of signals
from three known access points with position uncertainties. For a zoomed in picture
of the circle intersections, see Figure 7.3.

computed and further multiplied by the covariance of X0. The resulting matrix is
the covariance ellipse used for the position estimate.

Depending on the intersecting points, the ellipse might not always provide a
satisfactory estimate of the covariance. The covariance does not attain the shape of
an ellipse and for this approach, there has to be a trade-off between the missed area
and the unwanted area covered.

Sequential Localization
The position estimation technique described in the previous section can be applied
sequentially to each agent in a swarm. One agent receives incoming packets from
nearby agents, who all broadcast their latest updated position. The error cost func-
tion in (7.7) is applied for each position estimation update. All UAVs are considered
to be at known stationary positions when the position estimate is computed. Time
delays for signal transmission and package handling are not taken into considera-
tion.
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7.3 Sensor Fusion

Figure 7.3 Position and covariance estimates using trilateration. The black solid
lines represent the estimated distances from known positions and the dotted lines
are the uncertainty of the estimates. The red triangles represent the position estimate
from multilateration using WNLS. The stars are positioned at the intersection points
which are located within all three circles from Figure 7.2. The grey area within these
intersection points is the covariance of the position estimate. The blue ellipse is an
estimation of the covariance R. The standard deviation increases from the upper left
corner to the bottom right.
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8
Aircraft Kinematics and
Dynamics

Modeling the kinematics will greatly improve the position estimates, since outliers
of the RSSI measurements, which result in false position estimates, will be filtered
out. In this chapter, a short introduction to aerodynamics is presented and kinematics
for a 2-D UAV is further explained. When the UAVs are in motion, the difference
in signal strength between two RSSI measurement updates is limited, depending
on the speed, acceleration, and heading angle of the aircraft. If the change in RSSI
exceeds this value, the signal path is most likely obstructed, or somehow disturbed,
and the RSSI should not be trusted.

8.1 Aerodynamics

Flight dynamics describe the orientation and control of an aircraft in three dimen-
sions. The critical parameters of the flight dynamics are the angles of rotation about
the aircraft’s center of mass, known as pitch, roll, and yaw, see Figure 8.1. These
angles are referred to as Euler angles and describe the orientation of a rigid body
with respect to a fixed coordinate system. The Euler angle representation has a sin-
gularity when the pitch angle is ±90 degrees. Physically, when the pitch angle is
90 degrees, the roll and yaw angles are indistinguishable. This singularity is not an
issue for the vast majority of flight conditions unless acrobatic flights or other ex-
treme maneuvers are performed. Quaternions provide an alternative way of present-
ing the attitude of an aircraft and does not have any singularity issues. A throughout
description of quaternions and rotation sequences is given in [Kuipers, 1999]. How-
ever, since the aircraft in the simulations of this thesis fly at a constant altitude and
the pitch angle is assumed to be zero, singularity issues will not arise with the Euler
angle representation.
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8.1 Aerodynamics

Figure 8.1 Definition of the variables used throughout this chapter. The angular
rates are given by p, q, and r, and the Euler angles are denoted as φ , θ , and ψ . V
represents the airspeed, the heading angle is χ , and the flight path angle is γ . The
inertial position in 2-D is (pn, pe) and the altitude of the aircraft is h. (Reprinted with
permission from [Atkins et al., 2016]. ©John Wiley and Sons.)

The Euler angles can be estimated by integrating the rate gyros, where ac-
celerometers may be used to correct for integration constants and biases and drift in
gyro. The derivatives of the three Euler angle states in terms of the angular positions
and the body rates are expressed in (8.1). φ̇

θ̇

ψ̇

=

 1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφsecθ cosφsecθ

 p
q
r

 (8.1)

A rudder is located on the vertical tail fin of the aircraft and is used to control
the yaw angle. The rudder is turned in the direction of which the aircraft should
turn. Ailerons are located on the outer rear edge of each wing and control the roll
angle. The two ailerons move up and down in opposite directions, decreasing lift on
one wing while increasing it on the other. Usually, the rudder is used along with the
ailerons to turn an airplane. The elevator controls the pitch angle and is positioned
on the horizontal tail surface. The elevator tilts up or down, decreasing or increasing
lift on the tail.

The turning radius R of an aircraft is given by

R =
Vg cosγ

χ̇
=

V 2
g cosγ

g tanφ cos(χ−ψ)
(8.2)

where γ is the flight path angle which is assumed to be zero in the simulations due
to a constant altitude. Vg is the ground speed, which is equal to the airspeed V in the
absence of wind. χ is the the coarse angle from North to the projection of V onto a
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Chapter 8. Aircraft Kinematics and Dynamics

horizontal plane. When no wind is present, the sideslip angle is neglected and the
coarse angle is equal to the yaw angle. In the absence of wind, (8.2) is simplified to
equal the expression in (8.3). The relationship between airspeed, wind speed, and
ground speed is illustrated in Figure 8.2.

R =
V 2

a

g tanφ
(8.3)

Figure 8.2 This figure shows the relationship between the airspeed V , the wind
speed Vw, and the ground speed Vg, as well as the relationship between yaw ψ , head-
ing χ , and wind direction χw. The crab angle is defined as the heading minus the
yaw. (Reprinted with permission from [Atkins et al., 2016]. ©John Wiley and Sons.)

For an aircraft in a coordinated turn (i.e., no skidding or slipping), the vertical
component of lift equals the weight of the aircraft, while the horizontal component
equals the centrifugal force. The coordinated turn condition in the absence of wind
is presented in (8.4).

ψ̇ =
g
V

tanφ (8.4)

The simulations are based on a 2-D model and for simplicity, the yaw angle is
controlled directly and not via the roll angle. The value of the roll angle can be
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8.1 Aerodynamics

computed through a second order differential equation, see details in [Beard and
McLain, 2012].

The term bank angle is used for a stable roll and is not an instantaneous roll
state. If an aircraft dwells in a roll angle in a stable way for some time, it is called
bank angle. A relationship between the minimum turning radius and the maximum
bank angle for different airspeeds is seen in Figure 8.3. As the aircraft turns with a
constant bank angle and the airspeed increases, the turning radius increases with the
square of the speed. In other words, the distance traveled during the turn increases
with the square of the speed.

Figure 8.3 Bank angle versus turning radius for a small unmanned vehicle. For a
fixed bank angle, an increase of airspeed leads to a greater turning radius.

The acceleration required in order to keep an aircraft circulating at a constant
altitude is expressed in (8.5).

a =
V 2

R
(8.5)

The load factor n depends on the airspeed, the bank angle, and the turning radius.
How these parameters are related can be seen in Figure 8.4 and is mathematically
expressed in (8.6).

n =

√
g2 +a2

g
=

a
gsinφ

=
V 2

Rgsinφ
(8.6)

As seen in (8.6) and in Figure 8.5, the load factor increases with an increased bank
angle. The steeper the bank, the greater the centrifugal force, hence the higher the

49



Chapter 8. Aircraft Kinematics and Dynamics

load factor. If the roll angle is zero, there is no centrifugal force, i.e. both φ and a
are zero and the load factor is 1 as expected from (8.6). The bank angle is chosen
to be limited in the simulations due to the receiver sensitivity of the communication
devices, see Chapter 10 for further explanation. A limited bank angle results in a
limited load factor. Figure 8.6 illustrates the airspeed as a function of turning radius
for different values of the load factor.

Figure 8.4 Forces acting on an aircraft during a level coordinated turn, where n is
the load factor and φ is the roll angle.

8.2 Kinematic Model

Since the simulated aircraft maintain a fixed altitude a 2-D model is applied. For
this approach, the yaw angle is the only angle of interest and the other Euler angles
are chosen not to be modeled. With that said, note that the roll angle is non-zero
when the aircraft makes a turn, i.e. when ψ̇ 6= 0, but for simplification, this angle is
chosen not to be a part of the dynamic model. In this section, the concept of dead
reckoning is presented, followed by an explanation of the 2-D dynamic model used
in the simulations.
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8.2 Kinematic Model

Figure 8.5 Load factor n as a function of the bank angle in degrees.

Figure 8.6 Airspeed V as a function of turning radius R for different load factor
values n.
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Chapter 8. Aircraft Kinematics and Dynamics

Dead Reckoning
One of the oldest methods of navigation is dead reckoning (DR) which relies on
the measurements of heading and longitudinal speed. This position estimation tech-
nique is suitable for larger vehicles, such as aircraft or ships. In order to measure
speed and heading, this approach generally uses accelerometers and gyroscopes.
The estimated position from the previous time step is used to compute the current
position. If the estimated heading is ψ and the estimated airspeed is V , the change
in Cartesian coordinates is the following,

ẋ =V cosψ

ẏ =V sinψ
(8.7)

Note that this simple model is not valid when the vehicle is exposed to sideslip.
Suppose that the change in heading is estimated from an angular rate gyroscope,

ψ̇ = r (8.8)

where r is the measured angular rate, earlier mentioned in Figure 8.1. Integration of
rate gyros is subject to drift and the error from dead reckoning grows over time. In
order to correct for this, sensor fusion with an accelerometer and a magnetometer
can be implemented. Dead reckoning generally works well for short distances and
can be applied when the information from position measurements is distorted. In
this thesis, dead reckoning is used to estimate the position when not enough RSSI
measurements are available and when the RSSI measurements are unreliable.

2-D UAV Dynamic Model
The pose of an aircraft is defined by [x y ψ]T , where x and y are the UAV’s Cartesian
coordinates and ψ ∈ (−π, π] is the heading angle with ψ = 0 lying on the x-axis.
The position and orientation of a UAV change via the on-board control loop, which
defines the UAV’s linear acceleration V̇ and angular velocity ψ̇ .

The discrete-time dynamic model of the UAVs is given in state space form in
(8.9).

xk =


x1,k
x2,k
x3,k
x4,k

=


xk
yk
Vk
ψk

 (8.9)

The state updates are described in Equation (8.10) and (8.11), where the subscript
des stands for desired which is used as a reference value.

xk+1
yk+1
Vk+1
ψk+1

=


xk
yk
Vk
ψk

+


Ts ·Vk · cosψk
Ts ·Vk · sinψk
Vk+1des −Vk
ψk+1des −ψk

+


0
0

wV,k
wψ,k

 (8.10)
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8.2 Kinematic Model

In (8.10), the speed update Vk+1 and the heading angle update ψk+1 hold true if
|Vk+1des−Vk| ≤ Ts ·V̇max and |ψk+1des−ψk| ≤ Ts · ψ̇max, respectively. If these criteria
are not met, the speed and heading angle states are updated according to (8.11). The
control variables are modelled with the zero-mean white noise wV,k and wψ,k. These
parameters represent model uncertainties and unmodeled dynamics.

The desired speed and yaw angle are computed from the attractive and repulsive
potential functions described in Chapter 4. The derivative of V and ψ are limited by
maximum acceleration and turning rate, respectively.(

Vk+1
ψk+1

)
=

(
Vk
ψk

)
+Ts

(
sign

(
Vk+1des −Vk) ·V̇max

sign(ψk+1des −ψk) · ψ̇max

)
+

(
wV,k
wψ,k

)
(8.11)

The first row of (8.11) holds true if |Vk+1des − vk| ≥ Ts · V̇max and the second row if
|ψk+1des −ψk| ≥ Ts · ψ̇max. The acceleration is limited in the simulations due to a
limitation in load factor and maximum bank angle from RSSI measurements, see
details in Chapter 10.
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9
Filters

Filtering plays an important role in signal processing applications and is widely used
in many fields within communication, electronics, image processing and computer
graphics. Filters are commonly used in order to remove unwanted frequencies or
certain features from a signal or to estimate unknown states. In this chapter, multiple
filtering techniques are further discussed.

9.1 Non-Linear Filtering Theory

A dynamic system can in general terms be characterized by a state space model,
where xk are the states and yk represents the observations at time k. The following
equation is the most common non-linear state space model,

xk+1 = f(xk,uk,wk)

yk = h(xk,uk)+ ek
(9.1)

where the process and measurement noise, w and e respectively, are random pro-
cesses with arbitrary probability density functions (pdf’s). The control input u is
a known input to the system and often omitted. For filtering applications related
to this thesis, x commonly include position, velocity, and acceleration. y are ob-
servations obtained by either onboard or external sensors. Multiple states may be
unknown, where partial information is obtained by observations. Non-linear filter-
ing problems make inference on the state from the observations.

There are multiple methods for solving filtering problems, where one of the
most common is the Kalman filter. If either one of h or f is non-linear, an extended
Kalman filter (EKF) needs to be applied. Kalman Filters assume that both the mea-
surement and process noise are zero-mean Gaussian. Kalman filters also require the
posterior distribution of the states to be zero-mean Gaussian.

The particle filter, also called sequential Monte Carlo method, is a simulation-
based approach for solving estimation problems. This method does not require
Gaussian noise, as long as the probability density functions of e and w are known,
but suffer from high computational complexity.
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9.1 Non-Linear Filtering Theory

Extended Kalman Filter
An extended Kalman filter is an optimal estimator which combines parameters of in-
terest from indirect, inaccurate, and uncertain observations. The EKF is a recursive
algorithm as new measurements can be processed as they are available. Equation
(9.2) to (9.9) show the time and state update for a discretized extended Kalman filter.
xk is the state at time k. wk is the process noise which is assumed to be drawn from
a zero mean multivariate normal distribution with covariance Qk. Non-modeled dy-
namics and parameter uncertainties are generally modeled as process noise. vk is the
measurement noise which is assumed to be zero mean Gaussian white noise with
covariance Rk.

x̂k+1|k = f(x̂k,0,0) (9.2)

Pk+1|k = ΦkPk|kΦ
T
k +ΓkQkΓ

T
k (9.3)

Φk =
∂ f(x̂k,0,0)

∂xk
(9.4)

Γk =
∂ f(x̂k,0, ŵk)

∂wk
(9.5)

Hk+1 =
∂hk+1(x̂k+1|k,0)

∂xk+1
(9.6)

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 +Rk+1)
−1 (9.7)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1−hk+1(x̂k+1|k,0)) (9.8)

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k (9.9)

x̂k+1|k is an estimate of xk+1 from observations up to sample k. H is the measurement
Jacobian and is evaluated at the current state estimate, which maps the true state
space into the observed space. K is the optimal gain, also known as the Kalman
filter gain and minimizes vPvT for any vector v. I is the identity matrix and the
covariance matrix of the measurement noise is denoted as R. Even if the measure-
ment noise is perfectly Gaussian, its impact on the state estimate is not, due to the
non-linearity in the measurement function, but the EKF does not account for this.
Q is the covariance matrix for the process noise, where the diagonal contains the
variance of each state variable, and off-diagonals contain the covariances between
the different state variables. Practical implementations of Kalman filters in general
are often difficult due to the fact that the noise matrices are seldom known a priori.
These matrices are estimated and generally assumed to be diagonal, i.e. the noise is
uncorrelated for the different states.
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Chapter 9. Filters

Weighted Non-Linear Least Square
Least square methods (LS) are common estimation techniques for over-determined
systems. LS is based on the minimization of the error between an observed value
and a modeled one. In this thesis, least square is used in the first position estimation
step when fusing the distance estimates from neighboring agents. When estimating
a variable, a cost function V is minimized.

p̂ = argminV (p) = argmin||y−h(p)|| (9.10)

For weighted non-linear least square, WNLS, the cost function V is

VWNLS(p) = (y−h(p))T R−1(p)(y−h(p)) (9.11)

which uses the same notation for h and y as the EKF. R is the covariance matrix of
the estimate.

Particle Filter
A particle filter (PF) provides an approximation to the posterior distribution
p(xk|y1:k) of the state xk conditioned on the set of measurements y1:k, see (9.1).
This approximation is based on a set of N samples, referred to as particles. The PF
uses a dynamic model and recursively processes data by updating the measurement,
re-sampling the step, and lastly updating time. The PF may obtain desirable results
when used in position applications and performs quite well in a three-dimensional
state-space consisting of horizontal position and coarse. However, the PF is not
practically useful if more dynamic states are added, such as accelerometers, unmea-
sured velocities, etc. [Karlsson and Karlsson, 2014]. The PF is also infeasible when
the model consists of motion in three dimensions or sensor biases and drifts. This
results in a too sparse representation of the posterior distribution as the required
number of particles grows.
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10
Distance Model Evaluation

In this chapter, the experimental setup for the RSSI measurements is presented. The
propagation models evaluated in Section 7.2 are further analyzed on static RSSI
measurements. In reality, the RSSI value is not only dependent on the distance and
angle but also influenced by the environment. The RSSI signal will contain noise
caused by multipath reflections when signals bounce against objects in the environ-
ment such as ground, trees, and buildings.

When communication modules are mounted on UAVs and one UAV turns away
from another, signal blockage and other propagation disturbances will occur. One
way to account this is to place two communication devices on each UAV, such that
one of them always is in line-of-sight with the communication devices on neighbor-
ing UAVs.

10.1 Experimental Setup

The measurements took place on a relatively flat field without trees and other ob-
stacles. Two wire antennas are attached vertically to the PCB, initially pointing up
towards the sky. The experimental setup is illustrated in Figure 10.1, where two
XBees are mounted on XBee shields connected to Genuino UNOs. XBee modules
have an RSSI pin that outputs a PWM signal, which represents the received signal
strength. To be able to measure the RSSI at multiple distances, one of the micro-
controllers is battery powered by a 9 V battery.

The second microcontroller is connected to a PC and programmed to transmit
data packages with a certain repitition rate, where the mounted transmitter retrans-
mits any data package it receives. The battery-powered XBee is constantly reading
the RSSI value of the receiving data packets and sends back a message containing
this value to the other XBee via the microcontroller. The XBee receiving this mes-
sage reads the RSSI and saves it in a vector in MATLAB, together with the measured
distance.
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Figure 10.1 Experimental setup for RSSI measurements.

The communication devices were placed on ladders in order to avoid interfer-
ence from the ground. Both the receiver and the transmitter were positioned at a
height of approximately 1.5 meters above the ground. By placing the modules high,
both the risk of interfering with the person taking measurements and the risk of
absorption and reflection from the ground decrease. Disturbances will generally re-
sult in a weaker signal which leads to an increase in the distance estimate. In the
first attempt of the experiment, the RSSI was measured when the modules were
placed approximately 0.5 meters from the ground. These measurements were unre-
liable since significant signal disturbances occurred as the RSSI fluctuated for fixed
positions.

It is also of interest to see how the RSSI values are affected by angle differ-
ences between the transmitter and the receiver. For this experiment, a servo motor
is connected to the PC-powered microcontroller. The angle of the shaft of the servo
motor is automatically controlled by the microcontroller, which is mounted on the
servo. The transmitter rotates along its longest side and for each position, the RSSI
is measured. 19 different angels, φ = [−90o : 10o : 90o], of the transmitter with re-
spect to the receiver are evaluated. This rotation is supposed to represent the roll of
the aircraft.

The RSSI is also measured when there is a horizontal rotation of the transmitter
in the inertial frame, which represents both differences in heading and the angle
between the UAVs when they are not traveling in parallel. This angle is donated as
ϑ and the result is further discussed in Chapter 12. This rotation is not performed
by a servo motor; instead, the module is displaced manually for steps of 30o.
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10.2 Transmitter Variations

The distances are measured manually and 50 groups of signal strength data
(d,RSSI,φ ,ϑ ) are collected in each position. Measurements were taken at increas-
ing distances until the receiver was not able to read the majority of the packets.
These packet losses occurred due to the receiver sensitivity, see Section 6.2.

To remove outliers of the RSSI signal, a Kalman filter is applied at each combi-
nation of d, RSSI, φ , and ϑ . In order to estimate the signal attenuation coefficient η ,
the mean of the state estimate from the Kalman Filter at each position is compared
to the theoretical RSSI value in (7.1). The sample variance of the RSSI is calculated
in each node to see how the noise Xσ affects the distance estimation error.

10.2 Transmitter Variations

In order to quantify the variability among different transmitter-receiver pairs, an
attempt of comparing the two communication modules was made. The transmitter
was used as a receiver and vice versa, while measurements were taken at several
distances (only for φ = 0 and ϑ = 0) in order to see if the radiation pattern and
signal strength were equal for both modules.
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11
Simulations

The simulations are implemented in a 2-D environment in MATLAB. The designated
area of interest is decomposed into a set of grid cells. All UAVs maintain a grid-
based belief map and initially, all cells have equal probability of containing a victim.
The cells are initialized with a value of 0.5, which represents the probability of the
presence of a victim. The attractive potential to the cell is first computed based on
distance and angle from the UAV and then multiplied by the cell value. When a cell
has been scanned and no victim is detected, the cell value is set to zero. The cells
are assumed to be uncorrelated and the belief map is only updated for the cells in
which the observation occurs.

Each UAV can detect, within a circular region centered on itself, if the nearby
terrain cells have been covered by itself or by other UAVs.

A cluster of UAVs is randomly deployed somewhere in the search area. Mul-
tiple static targets are located within the area of interest. For stationary randomly
positioned targets, the mission could be defined equally as a target search mission
or as an area coverage mission. The following is a list of the functionality and as-
sumptions designed into the simulator:

• The environment is defined as a quadratic region of size 3.5x3.5 km. The area
is subdivided into a grid of cells in order to compute potentials and to deter-
mine coverage. Each cell is 20x20 meters, but this size is easily adjustable if
desired.

• Virtual obstacles are positioned at the border of the area of interest to prevent
agents getting out of bounds.

• Each UAV is able to fly at a varying speed within an adjustable interval, see
Chapter 8. The desired speed is computed through the potential functions
described in Chapter 4. Control dynamics of the speed is bounded by the
speed interval and the maximum acceleration and deceleration. The minimum
and maximum velocity is 20 m/s and 30 m/s, respectively. The maximum
acceleration and deceleration are both set to 10 m/s2.
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11.1 Discrete Dynamic Model

• The turning rate is limited by the bank angle and turning radius, see Chapter
8 for details.

• Each UAV is equipped with various sensors:

– One circular ground sensor with adjustable radius to detect possible tar-
gets. In the simulations, the UAVs operate at a constant altitude, where
the camera covers a circular area with a radius of 80 m.

– Wireless RF communication modules for distance measurements and
position estimation.

• Obstacles are static and randomly distributed throughout the region.

• All victims are considered to be static. The cameras can recognize victims
and the UAVs report to the base station if something is detected.

It is possible to modify the size of the area of interest, the number of UAVs and
victims, the camera and communication range, etc.

The simulation time of scanning an area of 3.5x3.5 km is approximately 20
minutes for a swarm size of 15 UAVs.

11.1 Discrete Dynamic Model

The equations below use the states from the dynamic model described in Section
8.2. In this section, the EKF presented in (9.3)-(9.10) is developed for this particular
simulation and the initial matrices are evaluated. The initial errors are assumed to be
uncorrelated, which results in a diagonal P matrix. The model is discretized with a
sampling time Ts of 0.2 seconds. The prediction steps are expressed in (11.1)-(11.2).

x̂k+1|k = f(x̂k,0,0) =


x̂k +TsV̂k cos ψ̂k
ŷk +TsV̂k sin ψ̂k

V̂k
ψ̂k

 (11.1)

Pk+1|k = ΦkPk|kΦ
T
k +ΓkQkΓ

T
k (11.2)

Φk =
∂ f(x̂k,0,0)

∂xk
=


1 0 Ts cos ψ̂k −TsV̂k sin ψ̂k
0 1 Ts sin ψ̂k TsV̂k cos ψ̂k
0 0 1 0
0 0 0 1

 (11.3)

Γk =
∂ f(x̂k,0, ŵk)

∂wk
=


0 0
0 0
1 0
0 1

 (11.4)
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Qk =

(
wv 0
0 wψ

)
(11.5)

Q is the covariance matrix of the process noise, i.e how often UAVs change direc-
tion and how erratically they move. These values depend on the current speed and
heading angle, as well as the maximum turning rate and maximum acceleration and
deceleration. The process noise decreases for higher sample rates. The measurement
update is given below.

Hk+1 =
∂hk+1(x̂k+1|k,0)

∂xk+1
=

(
1 0 0 0
0 1 0 0

)
(11.6)

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 +Rk+1)
−1 (11.7)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1−hk+1(x̂k+1|k,0)) (11.8)

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k (11.9)

In the experiments of the thesis, the measurement noise are assumed to be uncorre-
lated and the diagonal values of the R matrix are based on sensor noise variances.
The initial measurement noise matrix is set according to GPS accuracy and both
the x and y coordinates are assumed to be provided with an accuracy of 5 meters,
i.e. R0 = diag(52, 52). The Kalman filter is more aggressive and active at higher
frequencies if the diagonal elements in Q are large compared to the elements in R.

If the guess of the initial states is too far from the true values, the positioning
will never achieve accurate results. The position errors will follow through the entire
simulation since there is no way to re-calibrate the position without GPS signals or
access points with known positions.

11.2 Flow Chart

The flow chart in Figure 11.1 represents the decision-making for each UAV at each
time step. This is used in the first development of the swarm behavior when the true
positions are assumed to be known.

1. Check the distance from the UAV to unvisited cells and calculate the attractive
potential as a function of distance and angle separation between the yaw angle
and the angle to the cell. The potential is greater for shorter distances and
smaller angle differences.

2. Measure the distance from the UAV to obstacles and boundaries and calculate
the repulsive potential as a function of distance and angle separation between
the yaw angle and the obstacle. The potential is greater for shorter distances
and smaller angle differences.
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3. Compute the distance from the UAV to all the other UAVs within communi-
cation range. Calculate the repulsive and attractive potentials as functions of
distance and difference in yaw angle between agents. Urep is inversely pro-
portional to yaw differences while Uatr is proportional. For robustness, both
potentials also depend on the number of UAVs within their communication
range.

4. Compute the desired speed as a sum of all potentials. The potential functions
are all vectors originating from neighboring UAVs, obstacles, and unvisited
cells. The desired speed is used as a reference and is bounded by the minimum
and maximum speed and acceleration limit, see Chapter 8 for details.

5. Compute the desired yaw angle from the potentials the UAV is exposed to.
The desired yaw angle is evaluated from the sum of all potentials. Verify that
the desired yaw subtracted by the current yaw does not exceed the maximum
turning rate multiplied by Ts.

6. Update position, speed, and yaw angle by applying Equation (8.10) from Sec-
tion 8.2.

Figure 11.1 Flow chart of MATLAB simulations for UAVs with known position.

The computational time of calculating the potential functions and the desired
speed and yaw angle must not exceed the sampling time Ts. This problem did not
arise in the simulations.

For the swarm with estimated positions, the same steps are performed. How-
ever, before the potential functions are evaluated, the position of the UAV is esti-
mated, see Figure 11.2. First, the position is estimated by minimizing the WNLS
cost function of the distance measurements from nearby agents. Thereafter, an ex-
tended Kalman filter is applied, to account for aircraft dynamics. When the position
estimate is combined with the dynamic motion model, false positions will generally
be eliminated. The WNLS in the multilateration approach described in Section 7.3
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may provide incorrect results due to numerical errors, or present two solutions. The
latter occurs when only two UAVs are within communication range. If the signal
path is obstructed, e.g. by a bird, the RSSI will contain less power due to reflections
and/or absorption. If the estimated position is far from the previous position and
does not follow the motion model, the most recent RSSI value is disregarded and
dead reckoning is applied, see (11.10). These occurrences are added to the simula-
tions randomly.

xk+1 = xk +TsVk cosψk

yk+1 = yk +TsVk sinψk
(11.10)

Figure 11.2 Flow chart of MATLAB simulations for UAVs with estimated position.

For the simulation with estimated UAV positions, the first two steps of the num-
bered list on page 62 are not affected. However, for the third step, the distance is
estimated according to (12.2) and Table 12.1. Since there are no RSSI measure-
ments available in the simulations, noise and biases are added to the true distance,
according to the evaluated model. Thereafter, the potentials are calculated from this
distance estimate. In step 4 and 5, the desired speed and yaw angle will differ from
the previous simulation, since these are computed from the potential fields, which
are position dependent.

The swarm members only communicate with the neighbors in LOS, and if there
is an obstacle between an agent-pair, the code is written such that the UAVs on each
side of the obstacle cannot detect each other. Obstructions of the signal path will
result in an attenuation of the signal power. Even though a fraction of the signal
might pass through the obstacle, the power will most likely not be strong enough
for the receiver to detect.
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12
Results

The results from the measurements and simulations are presented in this chapter.
First, the static data of the RSSI measurements at different distances and angles are
presented, and from this, a distance model is evaluated. Further, the swarm behavior
is presented when the UAV positions are known. Lastly, the result from the distance
estimate model combined with the developed swarm algorithm is presented.

12.1 Distance Estimate Model

The transmitter power at 1 m is measured to be -54 dBm. Figure 12.1 shows the
RSSI values at four different distances and the effect of a Kalman filter on raw
RSSI data. The measurements are taken by static devices (i.e. no movement of the
receiver or transmitter) and when both φ and ϑ are zero. Note that the RSSI is
represented as an integer and due to the poor accuracy, the signal strength often
fluctuates between two values.

When comparing the modules, both devices transmitted a power of -54 dBm at
one meter and no major differences between them were detected. However, a model
evaluation for each sensor before deployment should be considered.

Antenna Characteristics
Two wire antennas were used in the experiments and according to the theory, their
radiation pattern should be omnidirectional. When studying the signal propagation
in a plane perpendicular to the direction of the antenna, the pattern should obtain
the shape of a circle. Figure 12.2 shows the vertical and horizontal RSSI at 100
m, and as expected, the radiation pattern shows properties of an omnidirectional
antenna. At this particular distance, the receiver could not handle data packages for
−80o > φ > 60o, due to the limited receiver sensitivity.
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(a) RSSI at 50 m (b) RSSI at 100 m

(c) RSSI at 150 m (d) RSSI at 200 m

Figure 12.1 RSSI measurement values at static distances with a transmitting angle
of zero with respect to the receiver. The black dots represent each sample of the RSSI
measurements, and the thick blue line is the filtered RSSI estimate. The communi-
cation modules measure the signal strength as an integer number, which explains the
RSSI fluctuation.

(a) Horizontal plane pattern (b) Polar plot of the vertical plane pattern

Figure 12.2 Radiation pattern of the wire antennas used for taking measurements,
at a distance of 100 m66



12.1 Distance Estimate Model

The experiments show that the antenna orientation has a great impact on the
RSSI values. If there is a height difference or nonzero bank angle between the trans-
mitter and the receiver, the antenna orientation becomes a major factor that greatly
affects the signal propagation model. Differences in height of the communication
devices produce very unpredictable RSSI values and an attempt to infer distance
information directly from the RSSI values is impossible.

Quadruple Slope Model
From the log-normal shadowing model in (7.1), η changes depending on the re-
ceived signal strength, see Figure 12.3. Different techniques can be applied in order
to achieve a suitable model for the RSSI-distance relationship. For the RSSI mea-
surements in Figure 12.3, a double slope model will not achieve satisfactory results
since the signal attenuation coefficient seems to obtain four different values. Instead,
a quadruple slope model is applied for the following combinations of η and RSSI
values for distances from 1 to 230 meters.

η =


2.00 if −54 > RSSI ≥−82
2.18 if −82 > RSSI ≥−99
2.28 if −99 > RSSI ≥−106
2.32 if −106 > RSSI

(12.1)

For this particular model, three distance gaps for RSSI values of -82, -99, and -106
dBm will occur. The gap at -82 dBm does not yield a problem since the UAVs do
not operate at this distance from each other. However, the other two gaps will result
in significant model errors. Another RSSI based approach is the αβ -model, which
eliminates this problem.

αβ -Model
The αβ -model is expressed in (10.2), where the parameters have been tuned for
a minimum sum of residuals in the distance interval 100-200 m since those are
the general distances kept between agents. This model yields bias offsets for short
distances around 5-25 m, but this error is neglected due to the fact that the agents
never fly this close to each other.

P(d) = P(d0)−10 ·2.15log10

(
d
d0

)
− d1.3

250
+Xσ (12.2)
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Figure 12.3 RSSI as a function of distance. The solid lines represent the theoretical
relationship from (7.1), with varied η . The black dots represent the experimental
RSSI values (mean of KF estimates) at measured distances. The transmitting angle
is zero with respect to the receiver.

Figure 12.4 RSSI as a function of distance. The thin solid lines represent the the-
oretical relationship from (7.1), with varied η . The green thick line represents the
αβ -model where η = 2.15, α = 1/250 and β = 1.3. The black dots represent the
experimental RSSI values at measured distances. The transmitting angle is zero with
respect to the receiver.
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12.1 Distance Estimate Model

RSSI d̂
-95 72.2
-96 79.2
-97 86.8
-98 94.9
-99 103.6
-100 112.9
-101 122.8
-102 133.3
-103 144.4
-104 156.1
-105 168.4
-106 181.2
-107 194.6
-108 208.5
-109 223.0
-110 237.8

Table 12.1 RSSI values and their corresponding distance estimates. The RSSI is in
dBm and the distance is in meters. The transmitting angle is zero with respect to the
receiver.

If the αβ -model is applied, the noise is estimated through the measurements. In
order to estimate the pdf of the noise, several measurements are taken. White noise
is assumed and the pdf is evaluated from the model as X ∼N (0,0.61).

The RSSI values and their corresponding distance estimates when φ and ϑ are
zero can be seen in Table 12.1.

As seen in the table, the distance error increases with a decreased signal strength.
Since the RSSI value is represented as an integer, the positioning does not yield very
accurate results. Compare these values to Figure 12.2 where for a distance of 100 m,
the RSSI fluctuates between -98 and -99 dBm. According to the model, these values
represent distances of 94.9 and 103.6 m. If outliers occur as a result of disturbances,
the RSSI value could reach -97 or -100 dBm, which represent distances of 86.7
and 112.9 m, respectively. This would correspond to distance errors of around 13
meters.

However, since the UAVs generally keep a distance of 120 m to the neighboring
agents, a position error of 10-15 m will generally not result in collisions between
agents. Position errors can however cause the agents to believe they have scanned
areas they have not yet visited.

Transmitter Rotation
The bank angle is represented by an automatic rotation of the transmitter from -90o

to 90o in increments of 10o. For each distance and bank angle, the transmitter is
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manually rotated about the horizontal plane of an inertial coordinate frame parallel
to the Earth. As mentioned in Chapter 10, not only does the RSSI depend on the dis-
tance and the difference in roll and yaw, but also on the position relative to another
aircraft, see Figure 12.5.

Figure 12.5 Illustration of heading angle difference ∆ψ and angle between agents
ϕ as reference for the RSSI-distance model.

The receiver sensitivity of the communication modules is -110 dBm, and a ma-
jority of the signals when the absolute value of ϑ was less than 30o and the absolute
value of the bank angle exceeded 40o were not received for distances above 100
meters. When the RSSI values were close to -110 dB, multiple package losses oc-
curred, which makes the signal power unreliable. In other words, if the difference
in bank between an agent pair exceeds a certain value for large distances, no RSSI
value can be detected. One way to account for this is to limit the bank angle by a
maximum value. Another way is to neglect the RSSI values in the position estima-
tion algorithm when the difference in bank between the receiver and the transmitter
exceeds a certain value. For these cases, dead reckoning can be applied.

50 measurements were taken at each combination of position and orientation. In
Figure 12.6, the mean values for distances of 100, 150, and 200 meters are plotted.
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12.1 Distance Estimate Model

(a) RSSI at 100 m (b) RSSI at 100 m, mirrored in y axis

(c) RSSI at 150 m (d) RSSI at 150 m, mirrored in y axis

(e) RSSI at 200 m (f) RSSI at 200 m, mirrored in y axis

Figure 12.6 RSSI values at static distances and varying angles. The mirrored plots
in the right column represent the results if each agent is assumed to be equipped with
two communication devices. The same polynomial fit is used for all distances, see
(12.3).
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The shape of the RSSI as a function of bank angle corresponds to the omnidi-
rectional pattern expected for wire antennas. In order to find an accurate model for
this relationship, a polynomial fit is applied to the measurement data. The compu-
tational complexity grows with the order of the polynomial, but to eliminate large
errors, a fifth order polynomial for RSSI versus bank is chosen. For lower orders of
polynomials, the modeled RSSI values around a zero degree bank are significantly
lower than the measured RSSI. Figure 12.7 illustrates the 3-D polynomial fit at a
distance of 100 m. By comparing the data from all distances, a model between the
estimated distance as a function of heading, bank, and RSSI is evaluated.

Figure 12.7 Polynomial fit of RSSI values versus ϑ and bank angle φ at a distance
of 100 m.

Equation (12.3) represents the 2-D polynomial illustrated in Figure 12.5 (b), (d),
and (f). In (12.4), the yaw angle dependency is also taken into account.

P(0,φ ,d) = P(0,0,d0)−10η log10

(
d
d0

)
−αdβ+

Xσ +aφ
4 +b|φ |3 + cφ

2 + e|φ |
(12.3)

P(ψ,φ ,d) = P(0,0,d0)−10η log10

(
d
d0

)
−αdβ +Xσ +a

(
φ

(
1− 2ϑ

π

))4

+

b

∣∣∣∣∣φ
(

1− 2ϑ

π

)∣∣∣∣∣
3

+ c

(
φ

(
1− 2ϑ

π

))2

+ e

∣∣∣∣∣φ
(

1− 2ϑ

π

)∣∣∣∣∣
(12.4)

ϑ is the absolute value of the difference in yaw angle, ψ , minus the angle between
the two aircraft with respect to the global x axis. See Figure 12.5 for an illustration.

ϑ = |∆ψ−ϕ| (12.5)

12.2 Simulations of UAVs with Known Positions

When a swarm of 15 UAVs is simulated by rules of potential fields, the result for
the first 600 time steps (Ts = 0.2 s) is shown in Figure 12.8 and 12.9. The starting
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position is in the bottom left corner and the initial positions and the heading angles
are equal in both simulations. In Figure 12.8, no obstacles are present, while two
static obstacles are in the path of the swarm in Figure 12.9 during this time span.
When the simulation starts, most of the distances between the UAVs are shorter than
optimal. When the UAVs are exposed to potential fields when initially finding their
optimal relative position, small oscillations occur. It takes longer for the UAVs to
settle and find their optimal relative position in the swarm when there are obstacles
present, a behavior that is expected.

Figure 12.8 Simulation of a swarm of 15 UAVs for the first 600 time steps (flight
time of 120 seconds), when no obstacles are present. The starting position is in the
bottom left corner and the red dots represent the UAVs position at each 100th time
step. Each UAV path is illustrated as a black line.
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Figure 12.9 Simulation of a swarm of 15 UAVs for the first 600 time steps (flight
time of 120 seconds), when obstacles are present. The starting position is in the
bottom left corner and the red dots represent the UAVs position at each 100th time
step. Each UAV path is illustrated as a black line. Static obstacles are represented as
red circles. No collisions occur between neither agent pairs nor agents and obstacles.

For an area of 3500x3500 m, it takes approximately 4500 time steps (15 min-
utes) for the UAVs to scan 90 % of the area. For faster coverage, the UAVs could
travel in a formation, such as a line or in a V shape like birds. However, since their
communication range is limited, disconnections in the swarm may occur if one UAV
loses connection or is subject to some technical failure. The system is more robust
to failures if the agents are traveling in a cluster. When traveling in a cluster, the
UAVs are able to handle the loss of members. Individual failures, such as hard-
ware or software failures that result in a broken airplane, will generally not lead to
communication losses within the swarm.

Four different initial setups were used in the simulations as it ran for 4750 time
steps. The percentage of scanned cells were evaluated for each setup, see Figure
12.10 and Table 12.2.

Setup 1 Setup 2 Setup 3 Setup 4
Covered Cells 96.6 % 96.2 % 92.5 % 91.6%

Table 12.2 Percentage of covered cells for four different initial setups. The flight
time was set to 950 seconds (4750 time steps).
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(a) Starting positions at appx.
(x,y,ψ) = (100,100,π/4)

(b) Starting positions at appx.
(x,y,ψ) = (200,2600,−π/4)

(c) Starting positions at appx.
(x,y,ψ) = (800,800,2π/3)

(d) Starting positions at appx.
(x,y,ψ) = (1800,1800,4π/9)

Figure 12.10 Path of the swarm for four different initial positions, represented as
a mean value of all UAV positions at all time steps. The red circles are stationary ob-
stacles and the black dots represent the remaining unscanned cells after a simulation
of 4750 time steps. The swarm covers above 90% of the area for all setups, and most
areas are not scanned multiple times.

The result in Figure 12.10 and Table 12.2 is affected by the placements of the
obstacles, but in general, the starting positions will not affect the behavior of the
swarm, as long as all of the members are placed within communication range to
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each other. For the developed algorithm, the UAVs generally keep a minimum dis-
tance of approximately 30 meters to the obstacles and all collisions are successfully
prevented. As described in Chapter 11, the UAVs generally cannot communicate if
there is an obstacle present between them. If an obstacle is too big or if a group
of obstacles obstruct the path of the swarm, the UAVs will most likely split up into
multiple subsystems, as explained in Chapter 4. This case was simulated, see results
in Figure 12.11, where the red circle represents an obstacle and the red dots are the
UAV positions every 100th time step. The UAVs’ initial positions are in the bottom
left corner (setup 1).

Figure 12.11 Simulation of a swarm with a large stationary obstacle present. The
initial positions are in the bottom left corner and the red dots represent the UAVs’
positions at each hundredth time step. Each UAV path is illustrated as a black line. A
large static obstacle is represented as a red circle. No collisions occur between agent
pairs or agents and obstacles. However, the swarm split up into two swarms when
preventing the obstacle collision.

The UAVs keep a distance of approximately 120 meters to their closest neighbor.
A plot of this for setup 1 is illustrated in Figure 12.12. As seen in the figure, the
closest distance to a neighboring UAV is approximately 50 meters and the longest
is around 170 meters. With this said, they never collide with each other or lose
communication since the distance does not exceed the communication range.

By studying the fluctuations and distance variations at certain time instants in
Figure 12.12, it can be shown that these distance variations generally occur when
the UAVs approach corners, borders, and obstacles.
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Figure 12.12 Distance to closest neighbor for all 15 UAVs for 1000 seconds.

12.3 Simulations of UAVs with Estimated Positions

To use estimated positions throughout the simulations, the initial positions of the
UAVs must be provided. This can be achieved by assuming multiple access points
with known positions on the ground. The APs broadcast their own position in order
for the UAVs to estimate their position by multilateration. In the simulations, the
UAVs are assumed to be provided their true initial position with an accuracy of ± 5
m. Random initial positions are chosen (no risk of collisions at the start) and random
uniform noise with standard deviation 5 is added.

Throughout the simulation, the position offset between the true position and the
estimated position was around 9 m in average. In Figure 12.13, the position estima-
tion error for all UAVs are included in a histogram, for a simulated flight time of
1000 seconds. For this particular simulation, a normal distribution is estimated from
the histogram values, with the mean value µ = 8.90407 m and a 95% confidence
interval of [8.89252, 8.91562] m. The standard deviation is σ = 1.61384 m with a
95% confidence interval of [1.60535, 1.62168] m. The position estimation was per-
formed for several initial setups, and the mean offset was approximately 8.9 meters
for most simulations.

Occasionally, the WNLS method provides false positions due to numerical er-
rors, but these are filtered out by the EKF. When there is an obstacle along the
path of the swarm, one UAV might only have two other members within its com-
munication range. When this occurs, dead reckoning is used to estimate the UAV’s
position.
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Figure 12.13 Position offset between the true and estimated position of all 15
UAVs. The red line represent a normal distribution with mean value µ ≈ 8.9 m and
standard deviation σ ≈ 1.6 m.

For this approach, no collisions occur between agent pairs, or agents and obsta-
cles. Neither do the UAVs go out of bounds. A plot of the distance to the closest
member is seen in Figure 12.14. At a few time instances, one UAV has the closest
neighbor at a distance of 200 m and the shortest at a distance around 23 m. This
result can be compared to the result in Figure 12.12. In the simulation of estimated
positions, more oscillations occur due to noise and uncertainties of the RSSI mea-
surements.

For the simulation with estimated positions, the number of scanned cells for
4750 time steps is approximately equal to the number in the simulations with known
positions. The swarm takes a different path when the positions are estimated, but
no significant difference was found regarding the efficiency of scanning the area.
However, due to the position error, the swarm covers certain cells twice in one
simulation while missing neighboring cells. If the UAVs believe they have visited
certain areas they have not yet scanned, victims may go undetected. Random noise
is added to the estimated positions, for the same four different setups as for the
simulation with known positions. The result varied from each repetition of the same
simulation, and a table corresponding to Table 12.2 is not created for these cases.
Approximately the same number of cells were covered for all four different setups.
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Figure 12.14 Distance to closest neighbor for all 15 UAVs for 1000 seconds, when
the positions are estimated.
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13
Conclusion

In this chapter, the contributions made throughout this thesis are presented. Further,
possible extensions and improvements are described in the future work section. This
chapter also covers the ethical aspects of the project.

13.1 Contribution

In previous research using RSSI for position estimation, the LNSM-model has been
extended to the α-model. A contribution of this thesis was to add another parameter,
β , which improved the model accuracy greatly.

The developed potential field algorithm did show promising results in terms of
controlling the swarm when positions of the UAVs were considered to be known.
The swarm behavior was studied throughout multiple initial setups, see Figure
12.10. The UAVs keep the formation of a cluster, and as seen in Figure 12.12, no
collisions occur between agents.

The RSSI approach can only be used when UAVs are provided their starting
position, since an error in their initial position can not be corrected for. However, the
errors of the position estimates do not contribute to any risks of collision between
neither agent pairs nor agents and obstacles. The former because a position error of
10 meters will not lead to collisions when the agents generally operate at a distance
of 120 m to their closest neighbor. The latter because the UAVs measure the relative
distance to obstacles by using sensors, such as radar. Their own global position and
the position of the obstacle is not relevant.

However, due to position estimate errors, the agents might believe they have
scanned certain areas they have not been to. If the UAVs are searching for victims,
there is a risk they will go undetected.

Note that in the simulations, a 2-D environment is assumed and both the roll
and the pitch angles are assumed to be zero. For real applications, this has to be
accounted for.
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13.2 Future Work

The primary focus on further developments should contain improvements of the sig-
nal quality and include disturbances. Disturbances may consist of different weather
conditions and interference from other RF signals. The static measurements taken
for the model evaluations can be improved by placing the communication devices
on a tall ladder.

In order to test the developed approach on real aircraft, the kinematic motion
model has to be extended to a 6 DoF model, used in a 3-D environment. To prevent
collisions in 3-D applications, the UAVs also have the option to change altitude
instead of just turning either left or right.

In the simulations, the UAVs were assumed to maintain a constant altitude and
as mentioned in Chapter 11, if communication modules are not positioned at the
same level, the radiation pattern will be affected. RSSI based position estimation is
not accurate enough for high-speed maneuvers. The signal strength is highly depen-
dent on the angle of transmission and large distance errors might occur if there is a
time-lag of the received signal while a UAV performs a high-speed turn. RSSI based
position estimation is not suitable for 3-D environments and an investigation of al-
ternatives to RSSI measurements should be considered for these applications. One
alternative is to use multilateration on WiFi signals from ground APs with known
positions. When the transmitters are attached to the body of an aircraft, the prop-
agation pattern is highly dependent on the bank angle, which makes the positions
difficult to estimate, or sometimes even impossible. However, the RSSI-distance
model evaluated in (12.4) does include non-zero bank angles. This may be used in
further research, where ϑ (12.5) can be estimated by using the previous position of
the UAVs involved, their acceleration, and yaw angles. When having no previous
knowledge of the UAV position, it is impossible to estimate its position when the
bank angle is non-zero.

The wire antenna may bend at high speed, which will result in a distorted radia-
tion pattern. The RSSI based position estimation approach requires better antennae
for real applications, e.g. a blade antenna.

Note that the simulation is a simplification of a real system. To use the potential
field algorithm in real applications, time delays from signal packages should not
be neglected. Each UAV may keep an individual map containing a time stamp of
their most recent update. This should be shared between agents and updated when
possible. In the simulations, the map is considered to be updated for all UAVs at the
same time.

If there is a chance of non-stationary victims, the values of the scanned cells
should increase over time. If an area has been searched once, the probability of
finding a victim should not remain zero. Instead, the cell value should increase
successively from 0 to 0.5 over time. Recently searched areas will result in smaller
potentials and therefore be of less interest. This could be compared to the procedure
of mowing a lawn, where the grass grows over time.
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If the environment of where the UAVs perform their search algorithm is known
beforehand, some areas might have a higher probability of containing a target. E.g.
if a person disappeared in a river, the cell value should be set higher near the river
and decline further from it. If no prior information is known, a uniform distribution
is assumed.

All UAVs are assumed to be identical, but in real applications, wear of differ-
ent components and small differences in sensor offsets may exist. As mentioned in
Chapter 10, a model evaluation for each communication device should be consid-
ered before deployment.

For further developments, an optimization of the code may be considered. This
has no relation to the performance of the algorithm, but improvements may reduce
the computational costs and complexity of the program.

13.3 Ethical Aspects

When studying technology research and development, the ethical aspects should
be considered. Many new technologies have come as a result of the military fund-
ing of science. Research and development of military products may be perceived as
problematic, but at the same time, it creates a base for further development of a con-
siderable amount of technology used for civilian applications. Military inventions
have been brought into civilian use throughout history, with minor modification if
any. Sensors and communication systems have been used to detect enemies and to
coordinate movements of armed forces and automatic weapons. The technology of
radar, laser guidance, and satellite guidance were all developed for military use. The
GPS system was initially developed for use by the United States military, but today
it plays an important role in our everyday lives.

Unmanned Vehicles
This particular Master’s project uses civilian aircraft. However, the swarm algorithm
developed in this thesis can be applied to military applications. UAVs scanning an
area to find victims may equally be used to find people, classifying them as targets.

Unmanned aerial vehicles have been criticized a lot during recent years. How-
ever, UAVs can perform a broad range of applications within civilian use, where
some of them are listed below.

• Detect and put out wildfires.

• Transport medicine and blood supplies to remote areas, or areas with washed
out roads or downed phone lines.

• Transport defibrillators and other medical equipment much faster than an am-
bulance.

• Monitor wildlife and keep track of endangered species.
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• Spot illegal hunting.

• Inspect oil rigs.

• Test air quality and the makeup of the ozone.

• Detect illegal waste dumping.

• Spy on farms in order to expose animal cruelty.

• Enter radiation-filled areas after nuclear accidents where human access would
be dangerous.

UAVs may shorten the response times and at the same time reduce the risk for
human rescue teams. Although UAVs may benefit search and rescue operations,
technical advancements are needed to strengthen them against different risks, such
as signal interference and threats. Threats include enemies, extreme weather condi-
tions, bacteria, and toxic materials.

13.4 Conclusion

This paper addressed localization in outdoor environments for small, low-cost un-
manned aerial vehicles. It has been shown that potential fields successfully can be
applied to swarm algorithms of UAVs. The potential field algorithm developed in
this thesis demonstrates that the UAV swarm completes the desired task, i.e. surveys
an area collaboratively. This method can handle the loss of units and is potentially
scalable to large, distributed networks of devices.

Existing localization techniques have been characterized and an RF-based local-
ization method has been researched further. This method uses RSSI measurements
in combination with a WNLS filter and multilateration techniques, by which each
UAV estimates its position in a 2-D environment. This approach uses a simple signal
propagation model but adapts to different environments in terms of size, shape, and
number of obstacles. RSSI based position estimation is useful for a considerable
amount of applications within civilian use with low accuracy requirements of the
position. General problems have been outlined in the future work section, including
adapting the localization method to noisy environments.

The result of the search algorithm for UAVs with known positions was compared
to the simulations of estimated positions. No collisions occur between agent-pairs or
agents and obstacles and the swarm stays within the search area for all simulations.
However, the swarm takes a different path when the positions are estimated, but no
significant difference was found regarding the efficiency of scanning the area. Due
to the positioning error, the swarm covers certain cells twice in one simulation while
missing neighboring cells. When this occur, victims may go undetected if the UAVs
believe they have visited certain areas they have not yet scanned.
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