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Abstract

This paper can be seen as a light introduction to the study of Hawkes pro-
cesses and their applicability in the realms of finance. In particular, this paper
is concerned on the topic of modeling market activity and elaborates on how
Hawkes processes are superior to non-homogeneous Poisson processes in this re-
gard. After some rudimentary theory on point processes it goes more in depth
into the above mentioned processes and their likelihood estimators. The rest of
the paper is dedicated to the actual modeling procedure, its necessary prepa-
rations and results, delving into the possible real-world interpretations of what
the modeling tells us.
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Introduction

Identifying patterns in data is in itself very fundamental, and it is an integral
part of the scientific machinery that has enabled the technological advancements
of modern society. And at the heart of our modern society—at the very core—
there is money. If society is a living organism, then our monetary system is its
cardiovascular system and nervous system in one. It is the intricate plumbing
which feeds our society and sustains it, through every malaise and every hiccup.
It binds all things; like a force of nature it interacts between entities of all forms.
It permeates everything: from the smallest household to the largest corporation
and mightiest government. Money is—effectively—the means to all ends.

And where there is money, there is a market. And where there are stocks,
there is the Stock Market; whose physical embodiment is the Stock Exchange.
Tasked with pumping money and credit around the system, it plays a vital role
in our society. It is not so strange then, that people would want to be able to
foresee price movement in stocks by identifying patterns in trading-data—the
incentives are clearly there. Having said that, let’s be clear about what this
thesis is not. It is not an attempt to foresee price-movements in stocks; or any
kind of arbitrage-seeking tool for real-time analysis.

What it is though, is an attempt to see if activity in stock-market transactions
can be modeled well using Hawkes processes and if we can get even better models
by making the exogenous input time-dependent. Furthermore, we’ll investigate
if there are any weekly trading-patterns in our data-set as we look for weekday-
discrepancies in the parameters.

Starting with some basic definitions for point processes, we then move on to
focus on the two types of specific point processes that will be used in this thesis:
namely, Poisson- and Hawkes processes. After that, we look at the data-set
obtained for this thesis and briefly discuss its limitations. Then, plots galore
follows as we take a look at the results from our models. Lastly, some con-
templation occurs with respect to the obtained results: potential improvements
and reasonable ways forward are discussed. With that said—let’s dive into the
theory!
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Theory

2.1 Point processes

A Point process is basically just a bunch of mathematical points randomly lo-
cated on an underlying mathematical space. It is a very useful tool for modeling
and analyzing spatial data—which in our case is time-events on the positive real
line.

Without getting too formal, we’ll start off by defining a slightly more general
form of a point process than the specific cases we’ll use in the actual modeling.
So, the point processes used in this paper are built on Definition 1–5 as follows. [5]

Definition 1. Let
(
Ω,F ,P

)
be some probability space and {ti}i∈N+ be a se-

quence of non-negative random variables such that ∀i ∈ N+, ti < ti+1.
Then, {ti}i∈N+ is called a simple point process.

Definition 2. Let {ti}i∈N+ be a point process. The right-continuous process

N (t) =
∑
i∈N+

1ti≤t

is called the counting process associated with {ti}i∈N+ .

Definition 3. The process {δti}i∈N+ where

∀i ∈ N+, δti = ti − ti−1

is called the duration process associated with {ti}i∈N+ .
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Definition 4. Let N be a point process adapted to a filtration Ft where t ∈ R+.
The left-continuous intensity process is defined as

λ
(
t|Ft

)
= lim

h↓0
E
(
N (t+ h)−N (t)

h

∣∣∣∣Ft

)
which is equivalent to

λ
(
t|Ft

)
= lim

h↓0

1

h
P
(
N (t+ h)−N (t) > 0

∣∣∣Ft

)
.

More specifically, we will only be looking at a slightly less general form of Defi-
nition 4 in this thesis:

lim
h↓0

1

h
P
(
N (t+ h)−N (t) = 1

∣∣Ft

)
= λ(t|Ft)

lim
h↓0

1

h
P
(
N (t+ h)−N (t) ≥ 2

∣∣Ft

)
= 0

 (2.1)

That is, two (or more) events cannot happen at the same time.

Definition 5. The function Λ is defined as:

Λ(ti−1, ti) =

∫ ti

ti−1

λ(s|Fs) ds , ∀i ∈ N+

and is called the integrated intensity function (also known as the compensator
of the point process).

To round things off, the following theorem will be very useful to us a bit further
down the road:

Time-rescaling Theorem. Let 0 < t1 < · · · < tn < T be a realization from a
point process with conditional intensity function λ(t|Ft) satisfying
0 < λ(t|Ft) ∀t ∈ (0, T ]. Define the transformation

Λ(tk) =

∫ tk

0

λ(s|Fs) ds

for k = 1, 2, . . . , n and assume P
(
Λ(t) < ∞

)
= 1 ∀t ∈ (0, T ]. Then the Λ(tk)’s

are a Poisson process with unit rate (i.e. λ = 1). [1]

In this paper, the filtration will always be assumed to be the natural filtration
of the process; i.e., Ft = FNt . Furthermore, for notational simplicity, this
filtration will always be implied; i.e., λ(t) = λ(t|Ft).

With all that out of the way, let’s take a closer look at the actual processes we
will compare throughout this paper.
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2.1.1 Poisson processes

Hopefully, the reader will be somewhat familiar with Poisson point processes
already; so we will just cover the basics here without getting too deep into proofs
and technicalities. For a more comprehensive look at the subject, reading the
referenced material is highly recommended.

There are several equivalent ways to define a Poisson process. Here is the one
we will use: [2]

Definition 6. A Poisson process {P(t)}t≥0 is a non-negative, integer-valued
stochastic process such that P(0) = 0 and

(a) the process has independent increments,

(b) P(P(t+ h)− P(t) = 1) = λ(t) + O(h) as h→ 0 , λ(t) > 0

(c) P(P(t+ h)− P(t) ≥ 2) = O(h) as h→ 0.

In fact, Definition 6 is the definition of a non-homogeneous Poisson process—
which is the only Poisson model we will use in this thesis. We ignore the regular
(homogeneous) Poisson process on the basis of common sense. This will be
apparent later when we take a closer look at the data-set. We will also motivate
the shape of the intensity-function λ(t) after looking at the data-set.

It is also worth to point out the following:

Definition 7. If intervals X of a point process satisfy

P(X > s+ t|X > t) = P(X > s)

then the processes is memoryless. Poisson processes are memoryless. [10]

The characteristic of memorylessness comes from the fact that the duration
process of a Poisson process is exponentially distributed. [2] [10]

Maximum likelihood function

The maximum likelihood function of a non-homogeneous Poisson process,

LP = L
(
ϑ
∣∣ {Pt}t∈[0,T ]

)
,

is given by [10]

LP =

n∏
i=1

λ(ti|ϑ) e−
∫ T
0
λ(t|ϑ) dt
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which means that the log-likelihood is given by

lnLP =

n∑
i=1

ln
(
λ(ti|ϑ)

)
−
∫ T

0

λ(t|ϑ) dt (2.2)

2.1.2 Hawkes processes

Hawkes processes belong to a class of point processes called self-exciting. In-
tuitively, one could say that a process is self-exciting when past events make
future events more possible. To put it a bit more formally:

Definition 8. A point process N is called self-exciting if

C
(
N (s, t),N (t, u)

)
> 0 for s < t < u

where C(· , ·) denotes the covariance function and N (s, t) = N (t)−N (s).

The thing we are interested in however is the intensity of the self-exciting pro-
cess. To see that, look no further than Definition 9.

Definition 9. The intensity of a general self-exciting process N is defined as:

λ(t) = µ(t) +

∫ t

−∞
η(t− s) dNs

= µ(t) +
∑
ti<t

η(t− ti)

where µ : R 7→ R+ is a deterministic base intensity and η : R+ 7→ R+ is the
self-exciting kernel which expresses the positive influence of past events ti on the
current value of the intensity process.

It should be quite obvious from Definitions 8 & 9 that self-exciting processes do
not have independent increments and they are not memoryless like the Poisson
process is (since the whole history of past events affects future events). This
is very good if we anticipate some kind of clustering-behaviour in the data-set
that we want to catch in our models (which we do).

To be more specific—as the title of this section hints at, we will use a certain
type of self-exciting process, called a Hawkes process (see Definition 10).
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Definition 10. As suggested by Hawkes [3], a Hawkes process uses the exponen-
tial kernel η(t) =

∑$
=1 αe

−βt1R+ , which makes the intensity of the model:

λ(t) = µ(t) +

∫ t

0

$∑
=1

αe
−β(t−s) dNs

= µ(t) +
∑
ti<t

$∑
=1

αe
−β(t−ti) (2.3)

For this thesis, we will only use $ = 1; so (2.3) reduces to

λ(t) = µ(t) +
∑
t<ti

α e−β(t−ti) (2.4)

where α, β > 0 and t ≥ 0.

If we are to get a more intuitive understanding of (2.4), we can look at µ(t)
as the exogenous part of the intensity—a sort of base intensity representing
behavioural patterns outside the model itself—and the sum in the end as the
endogenous (self-exciting) part. The choice of whether to keep the exogenous
part constant or time-dependent will depend on how the data-set looks (more
on that later).

Stationarity

Let’s have a quick reminder of what stationarity implies:

Definition 11. For a point process N , if

E(λ(t)) = κ (const.)

and

C(Ns,Nt) <∞

and

C(Ns,Nt) = C(Ns−t, 0) ≡ C(Nτ ) , τ = s− t,

then the process is called weakly stationary (or covariance stationary). Every
strictly stationary process with finite variance is also weakly stationary. [4]
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Let’s not dabble in the definition of strict stationarity; assuming weak station-
arity will be quite sufficient for our purposes.

If stationarity is assumed for a general self-exciting process and we keep the
exogenous parameter µ constant, using Definition 9, we get:

κ = E
(
λ(t)

)
= E

(
µ+

∫ t

−∞
η(t− s) dNs

)
= µ+ E

(∫ t

−∞
η(t− s)λ(s) ds

)
= µ+

∫ t

−∞
η(t− s)κ ds

= µ+ κ

∫ ∞
0

η(r) dr

m

κ =
µ

1−
∫∞

0
η(r) dr

(2.5)

where κ is a constant.

For a general 1D-Hawkes process (with constant µ) we have the following sta-
tionarity condition: [5]

$∑
=1

α
β

< 1. (2.6)

Combining (2.5) and (2.6), with $ = 1, gives us the average intensity of our
simple 1D-Hawkes process:

E
(
λ(t)

)
=

µ

1− α/β
,

α

β
< 1. (2.7)

Maximum likelihood function

Since we are only interested in the simple ($ = 1) one-dimensional case, I will
omit the calculations for the general 1D-Hawkes process and go straight for
the simple version for the sake of brevity and clarity. The calculations for the
general case is very straight forward anyway. So, before we get into the log-
likelihood function, we need to do some calculations of the integrated intensity
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function Λ:

Λ(ti−1, ti) =

∫ ti

ti−1

λ(s) ds

=

∫ ti

ti−1

µ(s) ds+

∫ ti

ti−1

∑
tk<s

α e−β(s−tk) ds

=

∫ ti

ti−1

µ(s) ds+

∫ ti

ti−1

∑
tk≤ti−1

α e−β(s−tk) ds

=

∫ ti

ti−1

µ(s) ds+
∑

tk≤ti−1

α

β

(
e−β(ti−1−tk) − e−β(ti−tk)

)
(2.8)

If we take a closer look at the summation-terms in (2.8), there is a recursion
there that can be used to simplify the expression (and, more importantly, the
computations):

f(i− 1) =
∑

tk≤ti−1

e−β(ti−1−tk)

= 1 + e−β(ti−1−ti−2)
∑

tk≤ti−2

e−β(ti−2−tk)

= 1 + e−β(ti−1−ti−2)f(i− 2). (2.9)

Using the expression from (2.9) in (2.8) gives us the final expression for the
integrated intensity:

Λ(ti−1, ti) =

∫ ti

ti−1

µ(s) ds+
α

β

(
1− e−β(ti−ti−1)

)
f(i− 1) , ∀i ∈ N+ (2.10)

where f(0) = 0. [5]

The log-likelihood of a simple (general) point process N with intensity λ is given
by [9]:

lnL
(
ϑ
∣∣ {Nt}t∈[0,T ]

)
=

∫ T

0

(
1− λ(s)

)
ds+

∫ T

0

lnλ(s) dNs. (2.11)

By applying (2.11) to our simple 1D-Hawkes process, H, we get [8]:

lnL
(
ϑ
∣∣ {Ht}t∈[0,T ]

)
= T − Λ(0, T ) +

n∑
i=1

lnλ(ti)

= T − Λ(0, T ) +

n∑
i=1

ln

(
µ(ti) +

i−1∑
k=1

α e−β(ti−tk)

)
(2.12)

where n is the number of events.
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Once again, if we look at the last term of (2.12) we’ll find a recursive pattern
that will greatly simplify computations [7]:

Υ(i) =

i−1∑
k=1

e−β(ti−tk)

= e−β(ti−ti−1)
i−1∑
k=1

e−β(ti−1−tk)

= e−β(ti−ti−1)

(
1 +

i−2∑
k=1

e−β(ti−1−tk)

)

= e−β(ti−ti−1)
(
1 + Υ(i− 1)

)
. (2.13)

So, inserting (2.13) and (2.9) into (2.12) gives us our final (recursively com-
putable) expression of the log-likelihood function:

lnLH = T −
∫ T

0

µ(s) ds −
n∑
i=1

(
α

β

(
1−e−β(tn−ti)

)
+ln

(
µ(ti)+αΥ(i)

))
(2.14)

with Υ(1) = 0 and of course LH = L
(
ϑ
∣∣ {Ht}t∈[0,T ]

)
.

If the exogenous input parameter µ is constant then the log-likelihood of the
process, denoted as H, simplifies to

lnLH = T (1− µ)−
n∑
i=1

(
α

β

(
1− e−β(tn−ti)

)
+ ln

(
µ+ αΥ(i)

))
(2.15)

It is worth noting that this estimator has the following properties:

Definition 12. For a stationary 1D-Hawkes process with constant µ and $ = 1,
the maximum likelihood estimator ϑ̂(µ̂, α̂, β̂) is consistent, asymptotically normal
and asymptotically efficient. [6]

where the properties of consistency, asymptotic normality and -efficiency are
defined as follows (Definition 13–15):

Definition 13. If it is true that

lim
T→∞

P
(∣∣ϑ̂− ϑ∣∣ > ε

)
= 0, ∀ε > 0

then ϑ̂ is consistent. [5]
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Definition 14. If

√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)

)
, I−1(ϑ) =

(
E
(

1

λ

∂λ

∂ϑi

∂λ

∂ϑ

))
i,

then, ϑ is asymptotically normal. [5]

Where I−1 is the inverse Fisher-information matrix.

Definition 15. If ϑ̂ reaches the Cramér–Rao bound of the variance it is said
to be asymptotically efficient. [5]

To wrap up the section on models, let’s look at a summary of all the models’
likelihood-functions:

Model summary:

P : lnL =

n∑
i=1

ln
(
λ(ti)

)
−
∫ T

0

λ(t) dt

H : lnL = T (1− µ)−
n∑
i=1

(
α

β

(
1− e−β(tn−ti)

)
+ ln

(
µ+ αΥ(i)

))

H : lnL = T −
∫ T

0
µ(s) ds −

n∑
i=1

(
α
β

(
1− e−β(tn−ti)

)
+ ln

(
µ(ti) + αΥ(i)

))

12



2.2 Model validation

To be able to make judgments on which model out of a selected set of models
is to be preferred (i.e. which one fits best to the data-set at hand) some kind of
evaluation must take place. This is called testing a model’s goodness of fit to the
data. The path chosen here is to utilize one quantitative- and one qualitative
approach to model validation; namely, the BIC and K-S test respectively.

2.2.1 Bayesian Information Criterion

There are many different ways in statistics to choose a preferred model by using
a criterion. In this paper, this is done by comparing their respective BIC-values
(Bayesian Information Criterion):

BIC = ln(n)k − 2 ln L̂,

where n is the number of data-points, k is the number of free parameters to be
estimated, and L̂ = L(ϑ̂), that is the maximized value of the likelihood function.

The first term is a penalizing term meant to alleviate the risk of choosing an
overfitted model over a more generally correct model while the other term is
basically the negative log-likelihood, whose value (relative to another models
log-likelihood on the same data-set) is an indication of how good the model is
in relation to the data at hand.

2.2.2 Kolmogorov-Smirnov test

On the subject of goodness-of-fit tests, there are two different techniques which
boils down to essentially the same plot: Q-Q (quantile-quantile) plots and K-
S (Kolmogorov-Smirnov) tests. Out of personal preference, the K-S test was
chosen.

The K-S test falls into the category of non-parametric tests and can be used
to compare a sample with a reference probability distribution. The way this is
done in our case is by first taking the durations of the compensator

τk = Λ(tk)− Λ(tk−1), k = 1, 2, . . . , n

where ∀τk
i.i.d.∼ Exp(1) according to the time-rescaling theorem; then, we make

the transformation
zk = 1− e−τk

which makes ∀zk
i.i.d.∼ U(0, 1). After that, we sort the transformations

zk 7→ z(i), z(1) < z(2) < · · · < z(n)

13



and plot them against the values of the c.d.f. of a standard uniform distribution
denoted as

υk =
k − 1

2

n
.

Thus, we have created the graph
(
υk, z(k)

)
which represents the K-S plot. If

the distribution of the sample is the same as the reference distribution, the dots
should be relatively close to the line x = y on [0, 1]× [0, 1]. For moderate to
large samples, the approximation for the 95 % confidence bounds are given by
υ ± 1.36/

√
n. [1]
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Data-set

In this section, we will be looking at the data-set at our disposal—and with the
acquired inference, we will then motivate the choice of time-dependent behaviour
for our intensities.

3.1 Processing the data

The set contains stock-market data for shares of Volvo B from 2003-01-02 to
2004-11-26 (a total of 477 trading days). All in all, there where 429 132 separate
events in the set initially; but, due to mathematical constraints in the modeling,
some events had to be scrubbed.

After removing trading activity outside of regular bourse-hours, canceled orders,
and OTC (Over The Counter) trades, it ended up with 422 804 events remaining.
The result of these actions can be seen in Figure 3.1.

Figure 3.1: This graph shows the price and volume of all the events in the
data-set that will be used for modeling. The price is the the amount paid per
share of Volvo B-stock at each instance of trading and the volume represents
the amount of shares trading hands at each purchase.
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Furthermore, some processing of the remaining data has to be done. Because of
(2.1), we can only have at most one event happening at every moment in time;
however, the resolution of the time-stamps is only [1 s].

This means that all events occurring during the same one-second tick-window
will be registered as having happened at the same time. Sure, we are talking
about the early 2000’s here—HFT (High-Frequency Trading) didn’t really exist
yet—but there are still a lot of events registered at the same time: making
modeling impossible.

To get around the problem of incomputable log-likelihood functions, we need to
scramble the time-stamps a little. This is achieved by adding a stochastic time
εi ∼ U(0, 1) to event ti for all i (where the unit of ti is [s]) and then sorting
each day individually with respect to time.

To put it more clearly:

Algorithm: Shake ’n’ Sort. Denote the set of our data as S. Then, S can
be partitioned into a family of disjoint indexed subsets S`∈[1,D] where D is the
number of days we have data on; i.e.,

S =

D⋃
`=1

S` and

D⋂
`=1

S` = ∅,

where S` = {t(`)i : i ∈ I`} and I` is the index-set for S`. The algorithm is then
as follows:

1. S` → S ′` : t
(`)
i 7→ t

(`)
i + ε

(`)
i ∀i, ` ∧ ε ∼ U(0, 1)

2. S` ← sort
t

(
S ′`
)
∀`

I realize that the notation in Algorithm 1 (i.e., ”Shake ’n’ Sort”) might be seen
as a little sloppy since, technically, S contains ”event-objects”—let’s denote
them E—in the form of tuples (whose size could differ depending how true one
would want to stay to the raw data-file).

If trade-types and other (for our purposes) non-essential information is ignored,
a more proper notation would be:

S =
{
Ei : E =

(
〈date〉, 〈time〉, 〈volume〉, 〈price〉

)
, i ∈ I

}
where I is the index-set for the entire set S, and

S` =
{
E(`)
i :

(
∀E(`)

i , E(`)
 , i 6= 

)[
〈date〉i = 〈date〉

]
: i,  ∈ I` ∧ ` ∈ [1, D]

}
.
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However, in this paper we are only interested in the date and time of an event;
and the date is implied in the partition. So, the time-value is really the only
thing we are interested in. Therefore, the notation was made to reflect that fact
and, of course, to keep it as simple as possible.

Anyway—with the data being clean and compatible with our modeling efforts,
it is a good time to take a closer look at possible behavioural patterns inherent
in the data.

3.2 Choosing the exogenous intensity function

How does one motivate the choice of shape for an exogenous time-dependent
intensity? The obvious choice is plotting a histogram of all events in S. This
can be seen in Figure 3.2.

Figure 3.2: The histogram shows the time-distribution of all events in S. Each
bin represents the number of events happening inside its 15 min time-frame.

It does not take a lot of imagination to see that the intensity seems to be
following some kind of convex second-order curve. To be on the safe side, let’s
look at each trading-day of the week separately to see if this is ubiquitous
behaviour or some cumulative effect.
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Figure 3.3: The histograms show the time-distribution of all events in S divided
into separate week-days. Each bin represents the number of events happening
inside its 30 min time-frame.

Looking at Figure 3.3, it looks like the pattern stays consistent no matter what
week-day it is. This should give us enough confidence to make an educated
guess as to how the modeled exogenous intensity should look like:

Conjecture 1. Let’s set the exogenous time-dependent intensities of our non-
homogeneous Poisson process and non-homogeneous Hawkes process, P and H
respectively, so that they follow a convex second-order polynomial whose mini-
mum is located in the upper positive half-plane of its graph; i.e.,

f : t 7→ ζt2 + ϕt+ ξ such that


ζ > 0

ϕ < 0 ,

ξ ≥ ϕ2

4ζ

t ∈ [0, T ],

where t = 0 and t = T represents the beginning and end of the trading-day
respectively.

Perhaps the reasoning in Conjecture 1 should be a bit more explicit:

f(t) = ζt2 + ϕt+ ξ

f ′(t) = 2ζt+ ϕ =⇒ f ′(t) = 0 ⇐⇒ t = − ϕ

2ζ
,

t, ζ > 0 =⇒ ϕ < 0

f
(
− ϕ

2ζ

)
≥ 0 ⇐⇒ ϕ2

4ζ
− ϕ2

2ζ
+ ξ ⇐⇒ ξ ≥ ϕ

4ζ
.

So—with that being said, now would be a good time to do some actual modeling.
This will be done in the following chapter.
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Results

4.1 Daily parameter estimates

So, there are several ways this can be presented. The approach taken here is to
first look at each day in S (i.e., S` ∀` ∈ [1, D]) as separate processes to get a
qualitative feeling for how the parameters of the different models fluctuate from
day to day. These results can be seen in Figure 4.4–4.6.

Figure 4.4: These are the results of fitting the data to non-homogeneous Poisson
processes, P, by using the maximum likelihood estimator LP . (See (2.2))
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Figure 4.5: These are the results of fitting the data to Hawkes processes, H, by
using the maximum likelihood estimator LH. (See (2.15))

Figure 4.6: These are the results of fitting the data to non-homogeneous Hawkes
processes, H, by using the maximum likelihood estimator LH. (See (2.14))
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Simply, what has been done in Figure 4.4–4.6 is finding the set of parameters
ϑ̂ that maximizes the likelihood function (or, what really has been done is
minimizing the negative log-likelihood function; but that equates to the same
thing); i.e.,

ϑ̂ = arg max
ϑ

L = arg max
ϑ

lnL = arg min
ϑ

− lnL

There is really no point in trying to get any meaning out of the values of the
parameters by just looking at them; the values themselves are not interesting.
It should be noted also that, due to numerical reasons, all event times had to
be re-scaled for the modeling. The chosen scaling was:

t : [0, 28800] 7→ [0, 16] =⇒ λ : [(1 s)−1] 7→ [(30 min)−1],

i.e., the unit of the intensities went from ‘per second’ to ‘per 30 min’. This
scaling is kept throughout the rest of the paper.

If you are interested in how the intensity for a Hawkes process looks like, take
a look at Figure 4.7.

Figure 4.7: These plots show the intensity function λ(t|ϑ̂) of a Hawkes processH
where the left picture shows how the intensity varies over an entire day (chosen
at random) and every step to the right is a zoomed in picture of the box in the
previous plot.

To get a better view of how the intensity behaves when a lot of events are
happening in a very small window of time, see Figure 4.8
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Figure 4.8: A close-up look at the intensity λ(t|ϑ̂) of a Hawkes process H during
extreme clustering.

As fun as it is to look at intensity functions, the interesting part is comparing
the models. These comparisons, done by BIC, can be seen in Figure 4.9.

Figure 4.9: These figures are comparing the BIC-values for individual days for
P to H at the top and for H to H at the bottom.

To clarify any possible confusion that might arise from Figure 4.9,

BICP−H(`) = BICP(`)− BICH(`)

BICH−H(`) = BICH(`)− BICH(`)

}
∀` ∈ [1, D],

and the smallest BIC is always preferred; meaning that when BICP−H is posi-
tive, H is preferred over P, etc.
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For obvious reasons, the plot of BICP−H was considered superfluous and were
therefore omitted; but all tallies can be seen in Table 4.1.

P H H
P — 0 0
H 477 — 27
H 477 450 —

Table 4.1: This is the final tallies of the BIC-comparisons, were each row is
compared to each column.

Before we move on, it is easily noted that some relatively extreme spikes exist
in Figure 4.9. To address this, Figure 4.10 will be used as a source of discussion
in the following chapter.

Figure 4.10: This is the actual BIC-values for all individual days plotted in
the same plot along with some markers. See discussion in the next chapter for
further elaboration.
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4.2 Estimating one set of parameters

Seeing every new day as a new and completely fresh process is a nice way to get
an intuitive feeling for the volatility of the parameters between consecutive days.
However, we really want to view each new day as the same process repeating
over and over. For this purpose, the approach has to be slightly changed.

If we look at the likelihood under the assumption that all days are independent,
we want to find the parameters that maximizes the sum off all individual days’
likelihoods. This can (somewhat informally) be expressed as:

ϑ̆ = arg max
ϑ

LΣ =
∑

`∈[1,D]

L(ϑ | Nt ∈ S`),

where Nt ∈ S` is the counting process for day ` and will vary depending on
which model is used. The results of these calculations can be seen (compared
with the mean of its corresponding individual likelihoods) in Table 4.2.

ξ ϕ ζ

E
(
ϑ̂P
)

83.4517 -13.1638 0.9054

ϑ̆P 83.5449 -13.1818 0.9060

µ α β

E
(
ϑ̂H
)

29.0847 2645.8 5599.6

ϑ̆H 28.9788 2639.5 5484.4

ξ ϕ ζ α β

E
(
ϑ̂H
)

43.1671 -6.3732 0.4397 2678.3 5705.3

ϑ̆H 42.6151 -6.2627 0.4336 2663.9 5561.3

Table 4.2: These tables show the mean parameter values for all individual
days versus the parameters that maximizes the ‘sum-likelihood’ for all mod-
els: P, H, and H respectively.

Once again, the values themselves are not that interesting; it’s the BICs we
want to compare to see which model fits best to the data. To see that, look at
Table 4.3

BICP−H BICP−H BICH−H
1 203 773 1 224 259 20 486

Table 4.3: This table shows the differences between the BICs using the ‘sum-
likelihoods’ of the different models. As before, a positive value indicates that
the latter subscript is preferred over the first subscript.
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Once again, the notation in Table 4.3 was chosen with the aim of reducing as
much clutter as possible; hopefully, it is clear enough.

As good as the BIC is at comparing different models against each other, it
doesn’t really tell us if our preferred model is an actual good fit to the data; it
just tells us it is the best one out of the models we have chosen to investigate.
To address this apparent flaw, the K-S plots of the different models are shown
in Figure 4.11.

Figure 4.11: This plot shows the results of the K-S test on the different models
for the entire data-set S. Because of the amount of data, the 95 % confidence
bounds are too small to be visible on this scale.

To see how ϑ̆ matches up on single days (so we have visible confidence bounds),
a small selection is shown in Figure 4.12.
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Figure 4.12: These plots are a selection of the eighteen first daily K-S plots for
the different models with parameters ϑ̆. They are accompanied by the 95 %
confidence interval.
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4.3 Estimating parameters on a week-day basis

Finally, we will be looking at how the parameters ϑ̆ differ for different week-
days; i.e., we make another partition of S into sets Sw∈W where S` ⊆ Sw if and

only if ∀E(`)
i : 〈week-day〉i = w. As it is quite obvious from Table 4.3 that H is

the best model for our data, we will only be doing these calculations for that
model. The results can be seen in Table 4.4.

ϑ̆ ξ ϕ ζ α β

Mon 39.6825 -6.2597 0.4317 2694.6 5705.8
Tue 44.6943 -6.6212 0.4522 2630.0 5462.3
Wed 44.8655 -6.7265 0.4620 2710.4 5619.9
Thu 41.8077 -5.7824 0.4144 2678.8 5576.6
Fri 41.8895 -5.8884 0.4053 2611.4 5474.2
H 42.6151 -6.2627 0.4336 2663.9 5561.3

Table 4.4: This table shows each parameter value for ϑ̆w where w ∈ W and W
is the set of week-days. At the bottom, the parameter values that maximizes
LHΣ over the entire data-set S is included for comparison.

Actually, looking at Table 4.4, one starts to wonder if the approach of assigning
different parameters to different week-days is a significant improvement of our
previous modeling. This begs to be investigated.

To do this, a new model has to be defined—let’s call it
◦
H . Let the parameter-set

be
ϑ̊ = {∀ϑ̆w : w ∈ W}

where, of course, |ϑ̊| = 25.

Since we assume that all days are independent, then so are the set of all different

week-days; meaning that the log-likelihood lnL
◦
H is just the sum of the log-

likelihoods of the separate week-days. As the underlying data-set is the same for
both models, the BIC can be used for evaluation. The result of these calculations
is:

BIC
H−

◦
H

555.44

i.e.,
◦
H is indeed preferred over H.
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Lastly—to aid in the visualization of the information contained in Table 4.4,
Figure 4.13 was produced.

Figure 4.13: This plot shows how the estimated exogenous intensity µ̆(t) varies
over [0, T ] for each week-day.
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Conclusion

At last, it is time to conclude our findings and discuss the results. First and
foremost, it is very clear that the non-homogeneous Hawkes process H is vastly
superior to the alternatives provided in this paper—looking at Table 4.3 confirms
that. This shouldn’t really come as a surprise to anyone. From the start, P
was already virtually rejected as a viable model. If one thinks about what
it implies, it basically says that all events on the stock-market (within one
stock) are independent from one another; no herd- or reactionary behaviour
whatsoever! Just the mere suggestion that that is a reasonable assumption
is ludicrous. However, it does serve its purpose as a kind of benchmark—no
matter how easy it is to beat. As it is non-homogeneous though, it does take
into consideration that some external forces outside the model are somewhat
responsible for the observed intensity of events on the underlying space. We see
for example from Figure 3.2 that, generally, orders are arriving at a higher rate
near the opening- and closing hours of the day; while being at its lowest around
what most people consider reasonable lunch-hours. This is not a coincidence:
this is expected from simple common sense. Without any endogenic behaviour
at all present in the model however, it does fall flat like previously mentioned.
It honestly never stood a chance.

The interesting part of comparing the models lies in looking at how the different
Hawkes-models perform vis-à-vis each other. What we are really interested in
is knowing whether the time-dependence of its exogenous input is significant
enough to warrant two extra parameters in the model. As Table 4.3 loudly
proclaims, this is indeed the case. It should however be noticed that Table 4.1
indicates that the non-homogeneity of the base intensity could potentially be
seen as a tad superfluous on a few days in our data-set. But—the modeling
approach used in that example was really just to get a qualitative feel of the data,
and it is quite different from our preferred approach with the ‘sum-likelihood’.

With that in mind, the non-homogeneous model almost didn’t happen. The
reason for that is because, initially, I had the underlying one-dimensional space
for the models, [0, T ], scaled in seconds (i.e., T = 28800). For a domain of that
size, mapping to a codomain in the form of a second-order polynomial with a
relatively limited range (due to the fact that the intensity per second is very low
for our data) puts a lot off pressure on the second-order term of the polynomial
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to get very small. Computers does not like to handle floats that are too small.
Or at least, MATLAB’s program for finding the minimum of constrained non-
linear multivariable-functions was not able to find what it was designed to find.
This led to weeks of scouring the internet in hopeless despair, trying to find an
explanation for the optimization-debacle (at the time, the cause of the failure
was not obvious). At first (after I had confirmed it was not due to a typo in
the code, of course), I was completely convinced it was purely mathematical
and that I was missing something. However—in time, it started to dawn on me
that the size of ζ was indeed really small and that the nature of the problem
was probably more practical than theoretical. Re-scaling the domain confirmed
this. After that, things got more straight forward.

Going back to the Hawkes processes again: the premise of there being some
self-exciting element to the data is a much more reasonable one than that of
no dependency at all on recent events. People (and remember: this is the
early 2000’s we are talking about—algorithmic trading was not a thing yet)
are reactionary by nature. I can’t scientifically back that up; but I’m claiming
it anyway. When people see stock-prices go up: they want to buy. If people
see stock-prices fall: they want to sell (I am generalizing here, but bear with
me). These sort of herd-like tendencies tend to exaggerate price-movements in
stocks that would most likely not be as prominent had all participants acted
oblivious of the activity taking place on the exchange. This is the very essence
of self-exciting behaviour, and our intuition tells us that—for a model of this
kind to be any good—it has to capture this behaviour somehow. This is exactly
what the Hawkes process does, and if you throw in an exogenous part of the
model taking in common daily human- and/or societal patterns, a reasonably
realistic model should be a fait accompli! At least, that’s the reasoning behind
the choice of models; and as mentioned earlier, the exogenous part seems to be
significant enough to warrant the extra complexity without loosing generality.
In fact, even the choice of week-day seems to demand extra complexity—but
more on that later.

How about the assumptions then, regarding the modeling process? Is it reason-
able to assume that each day is independent from all others? Maybe. Probably
not. The K-S plots in Figure 4.11 indicates that there are still some information
left in the data that we have not unravelled yet in this paper. One can only
imagine what that might be.

As far as, somewhat alarmingly, a major proportion of the populace—and per-
haps stock-brokers in particular—are very short-term minded in nature; people
do like to ride long-term trends. No effort has been made in this paper to catch
such a phenomenon; even though we all know it’s there. To also assume the ab-
sence of medium-term trends and interday dependencies could also be frowned
upon. The important thing to realize is that taking all those things into con-
siderations adds a lot of complexity to the models; which might not always be
a bad thing, but as a rule of thumb: it often is. Anyway, it might be a possi-
ble avenue for further study to add more complex features to the models and
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see what sticks. Something (or perhaps some things) is (are) obviously missing
here.

With regard to Figure 4.10, I did want to touch upon the somewhat extreme
spikes in the BIC-values (and implicitly: the likelihood functions). Although
we are not really interested in this approach to modeling, I was personally a bit
intrigued by what the source of these occasions could be—at first, I suspected
it had something to do with extreme clustering behaviour—so I decided to go
to the bottom of it.

I started out by manually going through the counting-process graphs of every
single day in the data-set. I was on the look-out for ‘strange’ behaviour man-
ifesting in the plots; meaning some signs of abnormal clustering. My long and
arduous search resulted in the red crosses you can see in the figure. To my
disappointment, of the eleven days in which I assertively identified out-of-the-
ordinary clustering, only one or two coincided with actual extremes. Back to
the drawing board. Not long thereafter, I managed to deduce that the size of
the data-set under consideration when calculating both the likelihood and the
BIC have a profound effect on the magnitude of the acquired value. A quick
check confirmed that the ten days with the most events coincided with the ten
most extreme BICs. Perfect correlation. It might be a trivial observation, but
I decided (obviously) to include it.

Moving on to Table 4.2, it can be seen that the parameters ϑ̆ are pretty close
to the mean of

{
ϑ̂`
}

. This is not strange considering the fact that we have
assumed all days to be independent of each other and the linear nature of the
mean function. There is not much to add to that.

Turning our attention then towards the estimations on specific week-days as a
group we are back in behavioural science territory again. If we look at Fig-
ure 4.13, the first thing that strikes us is that Mondays are slow. You would
think that brokers are eager to get on top of things at the start of the week,
considering a lot of things could potentially have happened over the weekend
(when the market is closed). That should mean that µ(t) on Mondays is higher
than the other days in the opening hours. This does not seem to be the case. In
fact, Mondays have the lowest starting-intensity (and ending-intensity for that
matter) of all days of the week.

By just looking at the exogenous intensities, it seems like the most intense days
are Thursdays—with Wednesdays and Tuesdays not far behind though. By
following the same line of reasoning as one did when assuming that Mondays
would be the most intense day during opening hours, one would probably also
come to the conclusion that closing hours on Fridays should be the most hectic
closing hours of the week. This line of thought is also refuted by the data.

Since many prudent traders probably don’t want to hold too large positions
(or any at all) over the weekend, it would be natural to assume that they
get liquid (i.e., sell their assets) in the latter part of the trading-day to avoid
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potential macroeconomic (or other) disasters. However, the graph suggests that
the activity in the market tapers off after lunch-time relative to all other days;
meaning that a lot of people check out of the game early when they feel that
the weekend is just around the corner. It also seems like people go for lunch
a little earlier than usual on Thursdays; I have no idea why that would be the
case. All in all, the only thing that is clear from Figure 4.13 is that Mondays
are considerably more sluggish than the other days. I rest my case.

Whether one can discern lunch-break patterns or not out of the parameters,
it is clear that the week-day specific behaviour on the stock exchange is sig-
nificant enough to call for substantial extra complexity to the model. We’re
talking about a quintupled amount of parameters here! I was personally quite
surprised by the result myself. Perhaps there is something about lunch-times
on Thursdays that are much more significant than I thought. . .

That was about everything in this paper that I intend to comment on. As for
ideas of how one could possibly take this further, I already mentioned the more-
complex-models bit. It is also worth pointing out that what I have done here
is the absolute minimal, completely bare bones, most trivial thing one could
possibly do with Hawkes processes. The more interesting cases involve multidi-
mensional Hawkes processes where log-likelihoods and other related equations
can get very long and very involved very fast. One could also incorporate marked
point processes to give events different weights based on, say volume, and so
forth.

This kind of process is not merely suitable for financial modeling though: Hawkes
himself came up with it to study earthquakes, for example. Other interesting
fields—besides economics—could probably be epidemiology, neural networks,
seismology, queueing theory, population theory, etc.
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