
Specification and Visualization of
Interconnection Networks of
Mobile GPUs

Björn Wictorin

MASTER’S THESIS | LUND UNIVERSITY 2017

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2017-32

Specification and Visualization of
Interconnection Networks of Mobile GPUs

Björn Wictorin
lak12bwi@student.lu.se

December 21, 2017

Master’s thesis work carried out at Arm Sweden AB.

Supervisors: Fuad Tabba, fuad.tabba@arm.com
Jörn Janneck, jwj@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:lak12bwi@student.lu.se
mailto:fuad.tabba@arm.com
mailto:jwj@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

The number of components that can be fit into a single chip is increasing over
time, because of improvedmanufacturing technology. An efficient way to con-
nect the components is through a packet switched network, a Network on Chip.
Such a network can be designed in many different ways. An effective way to
explore the large design space is by simulation. In this project, we have devel-
oped a network description language to define the network of a mobile GPU.
As part of this process, we have surveyed how NoCs are specified in several
simulators. We have implemented support for the language in a GPU simula-
tor. We have also implemented a script that outputs a visual representation of
networks defined in the language.

The purpose of the project has been to develop tools to make Network on
Chip modeling faster, easier, and less error prone. The result was evaluated
qualitatively and quantitatively.

Keywords: NoC, GPU, modeling, simulation, visualization

2

Acknowledgements

I would like to thank Fuad Tabba, my supervisor at Arm, for all the help and knowledge
he has provided me with throughout the project.

I would also like to thank the GPU modeling team at Arm, for being welcoming and
supportive during the project.

Finally, I would like to thank Jörn Janneck, my supervisor at Lund University, for his
support and comments on my thesis.

3

4

Contents

1 Introduction 9
1.1 Goals . 10
1.2 Contribution to the Knowledge within the Field 10
1.3 Graphics Processing Units (GPUs) . 10

1.3.1 The Graphics Rendering Pipeline 10
1.3.2 GPU Hardware . 11

1.4 Networks on Chips (NoCs) . 12
1.4.1 Motivation . 12
1.4.2 Development . 13
1.4.3 Protocol Stack . 13
1.4.4 Topology and Routing . 13

2 NoC Simulator Survey 17
2.1 Information Sources . 17
2.2 Netjson . 18
2.3 NoC Simulators . 18

2.3.1 Atlas . 19
2.3.2 BookSim . 19
2.3.3 Darsim . 20
2.3.4 Noxim . 21
2.3.5 VisualNoC . 21
2.3.6 Ns-2 . 22
2.3.7 Garnet and gem5 . 23

2.4 Conclusion . 23

3 Approach 25
3.1 Background Survey . 25

3.1.1 GPU and NoC Theory . 25
3.1.2 Network Description in NoC Simulators 25
3.1.3 Markup Languages . 26

5

CONTENTS

3.2 Definition of Criteria . 26
3.3 Network Description Language . 27
3.4 Software Implementation . 28

3.4.1 Visualization Script . 28
3.4.2 Extension of the Arm GPU Model 29

3.5 Verification . 32

4 Evaluation 35
4.1 Fulfilled Criteria . 35
4.2 Lines of Code . 35
4.3 Flexibility of Description Files . 36
4.4 Time to Define Network . 36
4.5 Comparison with Source Code . 37
4.6 Implementation of New Topologies . 40
4.7 Discussion with our Supervisor . 41
4.8 Visualization . 41

5 Discussion 45
5.1 Custom Topologies and Abstraction . 45
5.2 Support for Existing Topologies . 46
5.3 Lines of Code . 46
5.4 Flexibility of Description Files . 47
5.5 Comparison with Source Code . 47
5.6 Visualization . 48
5.7 Design Decisions . 49
5.8 New Topologies . 49

5.8.1 Mesh and Hash Tag . 50
5.8.2 Line and Narrow . 50

6 Conclusions 51
6.1 Future Work . 51

6.1.1 Flexible Switches . 52
6.1.2 Routing Algorithms . 52
6.1.3 More Configuration Parameters 52
6.1.4 RTL Generation . 52
6.1.5 List Comprehension . 52

Bibliography 53

Appendix A Network Description Language Manual 59
A.1 Introduction to JSON . 59
A.2 Outermost Object . 59
A.3 Switches . 61
A.4 Bypassable Switches . 61
A.5 Input Priorities . 61
A.6 Dead End Switches . 61
A.7 Crossbars . 62

6

CONTENTS

A.8 Shader Cores . 62
A.9 MMUs, L2 Cache Units, Tilers, and Job Managers 63
A.10 Links . 63
A.11 Shader Core Stacks . 64
A.12 Limitations . 65

A.12.1 Switches and Crossbars . 65
A.12.2 Shader Core Stacks . 65

Appendix B Example Topologies 67
B.1 Topology 1 . 67
B.2 Topology 2 . 68

Appendix C Markup Language Tests 73

7

CONTENTS

8

Chapter 1
Introduction

The System on Chip (SoC) field is developing at a high pace. Processors and memory
elements keep getting faster, and the speed of an SoC is increasingly limited by the inter-
connection network connecting its components [1]. Traditionally, components have been
connected through a bus [2]. This has allowed a simple design, but the speed of a bus is
limited. This is due to its electrical features, and also that only one message can be re-
layed by a bus at any given time [1]. One solution is to replace the bus with a network of
connections. Such a network connecting the components within an SoC is referred to as a
Network on Chip (NoC), or an On-Chip Network (OCN) [3]. An introduction to NoCs is
presented in Section 1.4.

Graphics Processing Units (GPUs) are hardware devices developed to accelerate com-
puter graphics. They consist of many components, such as processing cores [3]. The com-
ponents are connected to each other via an NoC. The processing cores of a GPU work in
parallel. Due to their parallel structure, GPUs are increasingly used for general computing
[3]. Arm develops a family of GPUs for mobile devices called Mali [4]. An introduction
to GPUs is presented in Section 1.3.

In accordance with Moore’s law, the number of transistors that can be fit into a single
chip is increasing exponentially [5]. This allows for more complex SoCs, containing more
components. As the complexity of the SoCs grows, so does the difficulty of designing
them. All the possible design choices make up a large design space, in which efficient
design space exploration is crucial. Formally proving the correctness of a design is infea-
sible in the general case. Producing a design and then testing whether it works as intended
would be extremely expensive. Therefore, simulation is a valuable tool during the design
space exploration [6].

For simulation to be possible, a model of the hardware has to be built. The model can
either be completely custom developed for the specific hardware, or developed in some
available simulation framework. An example of such a framework is gem5 [7]. Arm
develops a model of their Mali GPU, which we have used in our project. We will refer to
this model as the Arm GPU model.

9

1. Introduction

1.1 Goals
The goal of this project is to develop tools that simplify and speed up the process of defining
NoCs. The developed tools target the NoC in the Arm GPU model, and include a network
description language with support for topology visualization. Defining and editing the
topology of the NoC should be possible without knowledge of the underlying model code.
We also want to make it easier to detect errors at an early stage, using the visualization
tool.

1.2 Contribution to the Knowledge within
the Field

To reach the project goals, we have created a human and machine readable network de-
scription language, designed particularly for configuration of NoCs. Furthermore, we have
extended the Arm GPU model with support for this language. The extension serves as a
proof of concept of how the language can be used to define the NoC in a simulator. We
have also implemented a tool for visualization of the defined network.

The project presents an overview of a selection of NoC simulators in general, and how
they handle visualization and configuration of network topologies in particular.

1.3 Graphics Processing Units (GPUs)
AGPU is a piece of computer hardware designed primarily to accelerate computations that
generate visual content [8]. GPUs evolved from VGA (Video Graphics Array) controllers,
which were the units that handled the drawing to the screen in older PCs. Since 1999,
when the first consumer GPU was released and the term was coined by Nvidia [9], it has
developed from being a device with fixed functionality to being highly programmable [8].

1.3.1 The Graphics Rendering Pipeline
To understand the reasons behind the design of GPUs, it is useful to be familiar with
the graphics rendering pipeline. We will only provide an overview of the pipeline. Our
overview is based on the description of the rendering pipeline in a book byAkenine-Möller
et al. [9]. The interested reader is recommended to read further [9, 8].

The graphics rendering pipeline consists of a number of steps, which transform a 3D
description of a scene to a 2D representation. The steps in the graphics rendering pipeline
is pictured in Figure 1.1 below. The input to the pipeline is a 3D scene. The scene is
described mainly by points in space called vertices. The pipeline performs a series of
mathematical operations, of which many are matrix multiplications, to produce the desired
output.

The first part of the graphics rendering pipeline is the application step. Its task is to
render the primitives (points, lines, and triangles) describing the scene. The application
step is performed by software running on the CPU rather than the GPU.

10

1.3 Graphics Processing Units (GPUs)

Application Geometry Rasterizer Screen

Figure 1.1: This figure shows the three major steps of the graphics
rendering pipeline. For clarity, a screen has been added to the
figure, even though it is not part of the pipeline.

The second step of the pipeline is the geometry step. It takes the primitives, which
are produced by the application step, as input. The computations in this step can be done
in parallel, and this step is performed by the GPU. The primitives are not necessarily de-
scribed in the same coordinate system, and one task for the geometry step is to transform
all primitives into one uniform coordinate system. Once the primitives are in that coordi-
nate system, several transformations follow. The result is a space in which all objects are
placed correctly relative to the viewing position.

After this, the appearance of objects is computed. This is called vertex shading, and
examples of appearances that are computed in this step are the lighting and shadowing
properties of a scene. After vertex shading follows projection, clipping, and screen map-
ping. Projection transforms the scene into a volume called a frustum, which corresponds
to what the camera can see. Clipping decides which of the primitives that will fit inside the
frustum. The screen mapping finally transforms the 3D primitives to screen coordinates.
The screen coordinates contain x and y coordinates, as well as depth information called
z-values.

The third step of the pipeline is called the rasterizer step. Its task is to make pixel values
out of the vertices it receives as input from the geometry step. It does this by calculating
which triangles will make up the surfaces connecting the vertices, and then traversing the
triangles to compute which pixels will cover it. After this comes the pixel shading, during
which all pixels are traversed and per-pixel computations are performed. This includes
texturing, in which 2D images (textures) are applied on surfaces. Finally, the information
from the triangle traversal and pixel shading is merged to calculate the color value for each
pixel. If several objects are covered by the same pixel, which one is visible is resolved by
consulting the z-values. Once the pixel values are computed, they are copied to the frame
buffer, a memory space whose content will be displayed on screen.

1.3.2 GPU Hardware
The hardware partitioning of a GPU does not correspond directly to the steps of the graph-
ics rendering pipeline. Traditionally, GPUs have three programmable computational units.
They are called vertex shaders, geometry shaders, and pixel shaders. The vertex shader
performs the vertex shading step of the pipeline, the geometry shader performs transforma-
tions of objects that can consist of several vertices, and the pixel shader performs the pixel
shading step. The other steps in the pipeline are performed by fixed function hardware [9].

In modern GPUs, the vertex, geometry, and pixel shader have been replaced by unified
processing units. We will, like Arm, refer to those unified units as shader cores [10]. A
shader core is a computational unit that can be programmed to execute the functionality
of the vertex, geometry, and pixel shader. Using unified shader cores provides several

11

1. Introduction

benefits. First, only one hardware unit has to be developed, instead of three. Second, it
gives flexibility. The number of cores can be varied depending on the desired trade-off
between price and performance. Third, load balancing is simplified by having several
identical units [8].

The calculations for the different pixels are independent to a large extent. Hence, the
rendering computations can be executed in parallel. A large number of threads execute
on the GPU simultaneously, several for each shader core. By adding more cores, more
threads can be executed in parallel, resulting in higher performance. The large number
of threads per shader core is used to hide memory access latencies. While one thread is
waiting for its memory request to be ready, other threads get executed. This makes a lower
cache hit rate acceptable in GPUs than in CPUs. In a GPU, an acceptable cache hit rate
is 90%. The corresponding number for a CPU is 99.9%. Because of this, additional chip
die area is usually used for more cores and registers in GPUs, whereas it is used for more
cache memory in CPUs [8].

The number of components in a GPU is significantly higher than in a CPU. For in-
stance, Intel’s latest CPU in their Core i7 series contains 6 cores [11], whereas Nvidia’s
high end GPU Geforce GTX 1080 contains 3584 cores [12]. The high core count makes
the design of the interconnection network very important in GPUs.

1.4 Networks on Chips (NoCs)
ANetwork on Chip (NoC) is a network that connects the components within a chip. Com-
ponents to be connected can be, for instance, processor cores, memory units, DSP cores,
or custom hardware blocks [13]. There are several aspects that make NoCs different from
other types of interconnection networks. First, the physical size of the network is smaller,
because its wires are usually less than a centimeter long [3]. Second, there is a strong
demand to keep the energy consumption low [2]. Third, the network can be fully defined
at design time, in contrast to, for example, local area networks (LANs), which support
ad-hoc changes [2]. The NoC is a fundamental part of a digital system, together with logic
and memory units [1].

1.4.1 Motivation
One reason for developing efficient NoCs is the increasing bandwidth demand between the
components of Systems on Chips (SoCs) [13]. According to Moore’s law, the number of
transistors that can fit on a silicon substrate grows exponentially [5]. This enables more
components to be added, and with more components the connections between them be-
come increasingly important. When the number of transistors grows very large, it becomes
difficult to sync the clocks between all parts of the chip. This can be remedied by creating
a system that has several clock domains, asynchronous to each other. Within each clock
domain, the components are synchronous. This kind of system is called Globally Asyn-
chronous Locally Synchronous (GALS). Enabling such systems is one important driving
force behind NoC development [2].

Many SoCs are built using intellectual property designed by different companies. This
makes standardized network interfaces important. Because the components get increas-

12

1.4 Networks on Chips (NoCs)

ingly complex and costly to develop, it is important that components can be used in several
products and product versions. This is made more convenient by NoCs [13]. For instance,
the high end version of a GPU may contain a larger number of identical shader cores than
a low end version. The same shader core design could be used in both products [8]. NoCs
also simplify the verification process, because they divide SoCs into separate units [13].

1.4.2 Development
Improved manufacturing technology makes smaller transistors possible. This, in turn,
gives better transistor performance (enabling higher clock frequencies) [3]. An example
of a transistor size used in modern smart phones, e.g. iPhone X, is 10nm [14]. Faster
transistors increase the speed of processors and memory systems, which are built by tran-
sistors. The communication systems of SoCs do not, however, benefit in the same way.
Signal propagation speed in wires is still the same, which has led to computation speed
being limited by wire delay rather than gate delay [1]. Connecting the components of an
SoC in a way that minimizes the signal propagation time between them therefore becomes
increasingly important. For instance, this can be done by making the length of the wires
between the components shorter. It is, however, not possible for all components of an
SoC to be physically close to each other. An NoC can offer alternative ways to speed up
communication, such as allowing multiple signals to traverse the network simultaneously.

Buses and dedicated point-to-point connections, which were the standard interconnec-
tions in SoCs until the late 90’s, have in most cases been replaced by more sophisticated
NoCs [3].

1.4.3 Protocol Stack
To provide abstraction and interoperability between different components, the NoC con-
cept proposed by Benini and Micheli [2] is based on a network protocol stack. The stack
resembles the TCP/IP stack used throughout the Internet, because their layer partitioning
is similar [15]. The layers of the NoC protocol stack are visualized in Figure 1.2 below.
The bottom layer in the stack is the physical layer, which consists of the physical wires.
On top of the physical layer comes the data link layer, which provides error correction for
losses in the physical layer. This can be implemented using error correction codes. Above
the data link layer comes the network layer. The responsibility of the network layer is to
route the network packets from the source to the correct destination. On top of the net-
work layer comes the transport layer. It splits data into packets at the sending end, and
reassembles the data at the receiving end. On top of the previous layers, which are all
implemented in hardware, lies two software layers. First a system software layer, followed
by an application software layer.

1.4.4 Topology and Routing
The topology of a network describes the pattern in which its nodes are connected. The
choice of topology is important, because it is the aspect of the NoC that has the biggest
impact on the implementation cost [3]. Topology is this project’s primary focus.

13

1. Introduction

Application SW

System SW

Transport

Network

Data Link

Physical

Figure 1.2: The figure shows the layers of the NoC protocol stack
[2]. The four lowest layers are implemented in hardware, and the
two uppermost in software.

Three common topologies used in NoCs are ring, mesh, and crossbar. They can easily
be laid out on a planar silicon substrate, and they work with simple routing algorithms
[3]. Routing algorithms decide which way a packet should take through the network to
travel from source to destination. Below is a short description of the ring, mesh, torus,
and crossbar topologies.

In a ring topology, each node is connected to two neighboring nodes. Together, all
nodes and connections constitute a physical ring. To send data between two nodes that are
not directly connected, data is relayed through the nodes between them. Themost common
routing algorithm sends the packet along the shortest path between source and destination
nodes [3]. Figure 1.3 below contains an example of a ring topology.

Figure 1.3: An example of a ring topology.

In a mesh topology, sometimes also referred to as a grid topology, all nodes are con-
nected in a two-dimensional array. Figure 1.4 presents an example of a mesh topology. A
routing algorithm commonly used in mesh networks is dimension-order routing, because
it makes both implementation and deadlock avoidance simple [1]. First, it moves a packet
in the x dimension of the array until the x coordinate of the packet and destination match.
It then moves the packet in the y direction until the destination is reached. For each pair
of source and destination node in a mesh topology, dimension-order routing always routes
packets between them along the same route. This makes dimension-order routing in mesh
topologies a deterministic routing algorithm [3].

A torus topology is similar to a mesh topology, with the addition of wrapping links
that connect edge nodes on opposite sides. Because of the additional links, all nodes are
connected to four other nodes. Figure 1.5 below contains an example of a torus topology.

In a crossbar topology, all peripheral nodes are connected to a centralized main switch
called a crossbar. Hence, all data passes through the crossbar. Inside the crossbar, direct
links between input and output ports are set up as needed. Figure 1.6 shows an example
of a crossbar topology. Figure 1.7 shows an image of a crossbar.

14

1.4 Networks on Chips (NoCs)

Figure 1.4: An example of a mesh topology.

Figure 1.5: An example of a torus topology.

Crossbar

Figure 1.6: An example of a crossbar topology.

Figure 1.7: Conceptual image of a crossbar. The crossbar con-
sists of 8 input lines and 8 output lines. The dots represent the
logical switches connecting inputs to outputs. Reproduced from
Hennessy et al. [3].

The choice of topology depends on the NoC requirements and budget. Each topology
provides a different trade-off between speed, cost, and complexity.

15

1. Introduction

16

Chapter 2

NoC Simulator Survey

We have surveyed the field of simulation and visualization tools for NoCs, to understand
the state of the art of visualizing and specifying NoCs, and to gain inspiration on how
we would do it. In Section 2.1, we will go through the papers we based our survey on. In
Section 2.2, we discuss a network format called Netjson, which was a source of inspiration
for our network language. In Section 2.3, we present an overview of the NoC simulators we
have surveyed. Particular attention will be paid to how the simulators handle specification
and visualization of networks. In Section 2.4, we present the conclusions we came to based
on the survey.

2.1 Information Sources
Three early works describing NoCs are papers by Benini and Micheli [2], Kumar et al.
[13], and Dally and Towles [16].

A survey of available simulators is presented by Achballah and Saoud [17]. A paper
by Ali et al. discusses using Ns-2, a general network simulator, for NoC simulation [18].
Using Ns-2 for NoC simulation is also discussed in a paper by Sun et al. [19]. The simu-
lator Darsim is discussed in a paper by Lis et al. [20]. The simulator Noxim is discussed
in a paper by Catania et al. [21]. That paper also contains an overview of popular NoC
simulation tools. This overview is of particular interest because it was written recently, in
2016.

The simulator VisualNoC is described in a paper by Wang et al. [22]. It is an NoC
simulator that allows configuration through a graphical user interface. One part of this
project is to create a visualization tool for NoCs, which makes VisualNoC particularly
relevant as related work.

17

2. NoC Simulator Survey

2.2 Netjson
Netjson is a project that has been a source of inspiration and ideas for the design of our
network description language [23]. The project develops a JSON based format called Netj-
son, for definition of computer networks. JSON is a general markup language, readable
by both humans and machines [24]. Netjson’s primary goal is to provide a format that can
be used to exchange network data between different applications. Netjson is designed to
represent networks on layer 2 and 3 of the OSI stack [25]. One reason behind our choice to
base our network description language on JSON, was that we knew Netjson successfully
used JSON for a similar purpose.

Netjson allows much more detailed definition of network parameters than we need
in our project. Still, we used ideas from its topology definition part. When a topology
is defined in Netjson, nodes are first created as individual JSON objects. Each node is
identified by an id attribute. The links connecting the nodes are defined in a separate array
called links. For each such link, the ids of the source and target nodes are defined. We have
used those concepts in our network description language. An example of a link defined in
Netjson is showed in Listing 2.1.

Listing 2.1: Netjson code defining a link between two nodes. Re-
produced from Netjson’s homepage [26].

1 " links ": [
2 {
3 " source ": "172.16.40.24" ,
4 " target ": "172.16.40.60" ,
5 " cost ": 1.000 ,
6 " cost_text ": "1020 bit /s",
7 " properties ": {
8 "lq ": 1.000 ,
9 " nlq ": 0.497
10 }
11 }
12]

We considered using Netjson as it is, instead of designing our own language. This
would have made it possible to use existing visualization tools. netjsongraph.js is a visu-
alization tool for Netjson which is presented on the Netjson homepage [27, 28]. Using a
standard would also have been beneficial if data was to be exchanged with third party soft-
ware, even though no such exchange is present today. Netjson is, however, unnecessarily
complex for our needs. It is also a limitation that it is not designed for NoCs. This made
us decide to borrow some ideas from Netjson, rather than using Netjson as it is.

2.3 NoC Simulators
Possible design options for an NoC make up a very large design space, in which efficient
design space exploration is crucial. In this process, simulation is a valuable tool. Important
evaluation criteria for designers are power consumption, latency, throughput, and reliabil-
ity [17]. There are several available NoC simulators, and below is a description of some
of them. We have chosen to include the non-commercial simulators mentioned by Catania

18

2.3 NoC Simulators

et al. in their simulator overview (Atlas, BookSim, Darsim, and Noxim) [21]. In addition
to them, we include VisualNoC, Ns-2, and Garnet. VisualNoC is included because of its
visualization capabilities and its GUI for topology configuration. Ns-2 is included because
it is a general computer network simulator that can be used for NoC simulations. Garnet
is included because it is an NoC simulator that is part of the extensively used gem5 full
system simulator. There are several NoC simulators that we do not cover in our survey,
but we think the simulators we have chosen to include will give an overview of the field.

2.3.1 Atlas
Atlas is not only an NoC simulator, it is also an NoC generator. It allows the user to
define the desired network parameters using a GUI, and outputs a description of the NoC
in VHDL. The network can then be simulated using the simulator ModelSim, which is a
part of Atlas. Atlas supports power simulations. The supported topologies are mesh and
torus. Atlas is implemented in Java, and its source code is open [29, 30].

We consider only being able to chose from a predefined set of topologies to be too
limited for our project. We did consider implementing a GUI in our project, but after
discussions with Arm engineers we concluded that it would take too much time and effort.

2.3.2 BookSim
BookSim is an NoC simulator developed as accompanying material for Dally and Towles’s
book on the topic [1, 31]. It is implemented in C++, and the source code is available online
[32]. Topologies can be chosen from a predefined set, and it is also possible to implement
arbitrary custom topologies. Either way, all configuration is done in a text file, which is
parsed by the simulator when it starts.

The definition format for custom topologies is quite minimalistic, and lets the user
define which routers connect to which routers and nodes. For each connection, a latency
can be defined. The two types of components are routers and nodes. Listing 2.2 shows a
custom network definition in Booksim.

Listing 2.2: Custom network definition in Booksim. Reproduced
from the Booksim source code repository [33].

1 router 0 node 0 node 1 node 2 router 1
2 router 1 node 3 node 4 node 5
3 router 2 node 6 node 7 node 8 router 1 router 0

By offering custom topology definition, and configuration through a parsed text file,
Booksim implements two of the main features we are adding to the Arm GPU model.
Booksim was therefore a source of inspiration. We did, however, consider the format for
defining the custom networks to be too minimalistic, partly because it supports only two
types of components. Therefore, we chose not to use the network specification format of
Booksim.

19

2. NoC Simulator Survey

2.3.3 Darsim
Darsim is an NoC simulator that is designed to benefit from running on multicore systems
[20]. When running on a processor with four cores, it runs 3.5 times faster than on a
single core. With eight cores, it is almost five times faster than with one. Darsim can
simulate any network topology. Darsim is configured using configuration files, which are
preprocessed by a separate program into an intermediate format, which then is provided
as input to Darsim. To simplify the creation of the configuration files, Darsim is delivered
with scripts that generate standard configuration files. Darsim is also referred to as Hornet.
The open source code and a manual describing how to use Darsim is available online [34].
Listing 2.3 presents an excerpt from a Darsim configuration file.

Listing 2.3: Excerpt from a Darsim configuration file. Repro-
duced from the Darsim/Hornet manual [34].

1 [geometry]
2 height = 8
3 width = 8
4
5 [routing]
6 node = weighted
7 queue = set
8 one queue per flow = false
9 one flow per queue = false
10
11 [node]
12 queue size = 8
13
14 [bandwidth]
15 cpu = 16/1
16 net = 16
17 north = 1/1
18 east = 1/1
19 south = 1/1
20 west = 1/1
21
22 [queues]
23 cpu = 0 1
24 net = 8 9
25 north = 16 18
26 east = 28 30
27 south = 20 22
28 west = 24 26
29
30 [core]
31 default = injector
32
33 [flows]
34 # flow 00 -> 01 using xy routing
35 0 x000100@ - >0 x00 = 0 ,1
36 0 x000100@0x00 - >0 x00 = 0 x01@1 :24 ,26
37 0 x000100@0x00 - >0 x01 = 0 x01@1 :8 ,9
38 # flow 00 -> 02 using xy routing
39 0 x000200@ - >0 x00 = 0 ,1
40 0 x000200@0x00 - >0 x00 = 0 x01@1 :24 ,26

20

2.3 NoC Simulators

41 0 x000200@0x00 - >0 x01 = 0 x02@1 :24 ,26
42 0 x000200@0x01 - >0 x02 = 0 x02@1 :8 ,9
43 # flow 00 -> 03 using xy routing
44

2.3.4 Noxim
Noxim is an NoC simulator that supports arbitrary network topologies [21]. It is developed
in SystemC, and configured using files written in themarkup language YAML. Noxim sup-
ports simulation of wireless NoCs. Listing 2.4 presents YAML code defining the network
showed in Figure 2.1. Its source code is open and available online [35]. Large changes
were made to Noxim in 2015. The paper describing Noxim does not mention visualization
capabilities.

Noxim provides another example of a network simulator in which the network can
be configured using a markup language. The network description file is read when the
simulation starts, which lets the user redefine the NoC without editing the source code or
recompiling. Our extension of the Arm GPU model is, in this particular aspect, similar to
Noxim.

Listing 2.4: Definition of the network shown in Figure 2.1 in
YAML for Noxim. Reproduced from Catania et al. [36].

1 mesh_dim_x : 4
2 mesh_dim_y : 4
3
4 Hubs :
5 0:
6 rxChannels : [0 ,2]
7 txChannels : [0 ,2]
8 attachedNodes : [0 ,1 ,4 ,5]
9 1:

10 rxChannels : [0 ,1]
11 txChannels : [0 ,1]
12 attachedNodes : [2 ,3 ,6 ,7]
13 2:
14 rxChannels : [2 ,3]
15 txChannels : [2 ,3]
16 attachedNodes : [8 ,9 ,12 ,13]
17 3:
18 rxChannels : [1 ,3]
19 txChannels : [1 ,3]
20 attachedNodes : [10 ,11 ,14 ,15]

2.3.5 VisualNoC
VisualNoC is an NoC simulator which focuses on network visualization [22]. The user can
define the network topology using either an XML configuration file, or a GUI. 2D mesh
and 2D torus topologies are supported, as well as irregular topologies. VisualNoC pro-
vides visualization of the topology, together with visualization of the packets as they flow

21

2. NoC Simulator Survey

Figure 2.1: Network topology defined by the YAML code in List-
ing 2.4. Reproduced from Catania et al. [36].

through the network. This simulator is interesting because it supports both visualization
and irregular topologies. Figure 2.2 presents a screenshot from the VisualNoC GUI.

VisualNoC served as an example of an available network simulator that lets the user
define the topology in a markup language.

Figure 2.2: Screenshot from the VisualNoC GUI. Reproduced
from Wang et al. [22].

2.3.6 Ns-2
Ns-2 is developed for simulations of networks of computers rather than NoCs. It uses the
TCP/IP protocol stack in its simulations. It has, however, often been used to simulate NoCs
[17]. Several works describe using Ns-2 for NoC simulation [18, 19, 37]. By configuring
the network parameters to be similar to those in NoCs, Ali et al. conclude that it is feasible

22

2.4 Conclusion

to simulate NoCs on a behavioral level using Ns-2 [18]. However, there is no support for
simulation of power consumption. Sun et al. state that the NoC simulations in Ns-2 would
be more accurate if NoC specific routing algorithms and protocols were implemented [19].

Ns-2 is an open source project [18]. The back-end of Ns-2 is implemented in C++.
The programming language OTcl is used to configure simulation parameters such as the
network topology [19]. The simulation can be visualized using the tool Network AniMator
(NAM) [18].

We chose not to use the Ns-2 approach for our network description, because it requires
hard coding topologies in OTcl. Moving away from hard coded topologies is one of the
purposes of this project.

2.3.7 Garnet and gem5
gem5 is a full system computer architecture simulator [7]. It is developed by a community
of both academic and industrial partners, including Arm. The gem5 simulator is available
under a BSD license, which makes it usable for many different parties. All configuration
is done in Python, and the simulation is implemented in C++. gem5 is flexible, and offers
several modes for CPU and memory system simulation.

There are two available memory system simulators in gem5, called Simple and Garnet
[38, 39]. In both, the topology is set up using Python programming, and can be config-
ured to model arbitrary topologies. Garnet is the more detailed and accurate model of the
two. In addition to latency and bandwidth configuration, which both support, Garnet also
simulates the routers in detail. A paper by Binkert et al. states specifically that Garnet is
suitable for NoC simulation [7]. Garnet can be used in full system simulations, but can
also be used for network only simulations. The power consumption simulator Orion is
included as part of Garnet, which adds energy estimations to the simulations [40].

We chose not to use the Python approach of gem5, because in it the topologies are hard
coded. Hard coding the topologies was already possible in the Arm GPU model before
this project, and we are trying to move away from that solution.

2.4 Conclusion
This survey found three ways to define networks in NoC simulators. The network can ei-
ther be hard coded, defined using a GUI, or defined in a text file using a markup language.
One purpose of this project was to move away from hard coded topologies, to speed up ex-
plorations. This meant that the two remaining options were using either a GUI, or markup
language description files. Markup language files is an approach used by several of the
surveyed simulators (BookSim, Noxim, and VisualNoC). Therefore, we knew it was a fea-
sible approach. We also expected implementing support for parsing of configuration files
to be easier than building a GUI. This made us decide to implement a markup language
based solution for this project.

There is no standard approach to topology visualization among the surveyed simula-
tors. We considered the solutions in VisualNoC and Ns-2, which animates the flow of
packets through the network, to be too advanced and complicated for our use case. We

23

2. NoC Simulator Survey

wanted a simplistic solution that only visualizes the topology, but did not find any such
solution in our survey.

24

Chapter 3
Approach

In this section, we go through the different tasks the project was divided into. They include
a background survey, criteria definition, a design phase, software implementation, and
verification.

3.1 Background Survey
As the first part of the project, we did a background survey. The purpose of the survey was
to acquire the background knowledge needed for the project. The background survey was
divided into three parts, which we describe below.

3.1.1 GPU and NoC Theory
In the first part of the background survey, we read about GPUs and NoCs. When reading
about GPUs, we found the books by Akenine-Möller et al. [9], and Patterson and Hen-
nesy [8], particularly useful. When reading about NoCs, we found that a book by Dally
and Towles [1], and a paper by Benini and Micheli [2], gave good insights into the field.
We wrote Section 1.3 and 1.4, to provide the reader with overviews of GPUs and NoCs.
In those sections, more references to works about GPUs and NoCs can be found. A ba-
sic understanding of GPUs is useful to understand the motives behind the design of the
GPU interconnection network, and important to be able to place this project in its context.
Knowledge about NoCs, and in particular what characterizes them, was important for us
to have during the design of the network format.

3.1.2 Network Description in NoC Simulators
In the second part of the background survey, we studied how others have solved problems
similar to ours. To find out how other NoC simulators allow their users to define NoC

25

3. Approach

parameters such as topology, we read several research papers. Two papers, one by Achbal-
lah and Saoud [17], and one by Catania et al. [21], were particularly useful, because they
presented overviews of available simulators. The results from this part of the survey are
presented in Chapter 2 above.

In this part of the project, we also looked at how the interconnection network is cur-
rently configured and implemented in the Arm GPU model. Several topologies are cur-
rently hard coded in the model source code. By passing a command line flag to the model,
one of those topologies can be chosen.

3.1.3 Markup Languages
In the third part of the background survey, we surveyed differentmarkup languages. We did
this to see if any of them were suitable for the NoC specification in our project. We looked
at the following five markup languages: XML [41], JSON [24], YAML [42], DOT [43],
and GML [44]. The first three (XML, JSON, and YAML), are general markup languages.
They are all both human and machine readable. Because they are general, they are flexible,
and adding concepts such as bundles of components is straightforward. They do, however,
not directly support visualization. The last two, DOT and GML, are graph description
languages. The advantage of those is that they can be visualized using existing software.
Their disadvantage is that they are less flexible.

To evaluate how well suited the different markup languages were for NoC definition,
we implemented the same grid based NoC containing 24 switches in each language. We
considered how flexible and extensible each option was, as well as whether they could be
directly visualized or not. Appendix C shows the implementations.

3.2 Definition of Criteria
At an early stage in the project, we defined a set of distinct criteria the network description
language and the implementation should meet. This was done through discussions with
both our supervisors, to align the criteria with the demands from the Arm GPUmodel and
the university. The criteria were important to have when we made the major design deci-
sions, and can be seen as the software requirements of the project. Furthermore, they were
used during the evaluation phase to decide whether our implementation was successful.
The defined criteria were that our solution should do the following:

• Support visualization

• Make possible network configuration without any knowledge of the internal imple-
mentation of the Arm GPU model

• Support implementation of all topologies possible to implement in the Arm GPU
model

• Support four-port switches

• Support crossbars

26

3.3 Network Description Language

• Support delays defined per link

• Support prioritizing of input signals to a switch

The features mentioned in the last four criteria (four-port switches, crossbars, delays
per link, and input signal prioritizing), are all present in the Arm GPU model, and hence
necessary to support in order to support all topologies of the model. Four-port switches
are commonly used in two-dimensional topologies.

3.3 Network Description Language
Appendix A presents a manual describing our network description language. Appendix
B presents two examples of topology descriptions. Below follows a brief overview of the
network description language.

The network description language we designed is based on the general markup lan-
guage JSON. The components of the network are categorized in arrays, one for each cat-
egory. In each such array, each component of that category, for instance each switch or
each shader core, is defined as a JSON object. The information stored for each component
varies depending on the type of component. For most of the types, the only mandatory
information is an id string. The id strings are used to identify the components when con-
necting them. They must therefore be unique. Listing 3.1 shows an example of a switch
array, in which two switches are defined.

Listing 3.1: Definition of two switches.
1 " switches ": [
2 {" id ": " s04 " ,"x": 0 ,"y": 4} ,
3 {" id ": " s14 " ,"x": 1 ,"y": 4}
4]

In a separate array, each connection is specified as a JSON object. For every connec-
tion, it is mandatory to define a source node and a target node. Source port, target port, and
delay can be defined per connection as optional attributes. Listing 3.2 shows an example
of a connection array, in which a connection between the two switches in Listing 3.1 is
defined.

Listing 3.2: Definition of a connection.
1 " links ": [
2 {" source_node ": " s04 " ," target_node ": " s14 " ,"

source_port ": "e" ," target_port ": "w"}
3]

In addition to the possibility to add each component individually, it is possible to define
so called shader core stacks. A shader core stack is a linear array of switches, with one
shader core connected to each of them. Figure 3.1 shows an example of a shader core
stack. Shader core stacks appear frequently in the hard coded topologies in the Arm GPU
model, and therefore we wanted to provide a convenient and compact way to define them.
Shader core stacks are defined in an optional array in the root JSON object. In this array,
each stack is represented by a JSON object. The object contains information about id,
via which switch the stack connects to the rest of the network, and in which direction the

27

3. Approach

stack points. Listing 3.3 shows an example of a shader core stack definition. The length
of each stack is not defined here. Instead, it is calculated based on the number of shader
cores used in the simulation run. If shader core stacks are defined, it is not possible to add
shader cores to the network individually.

Listing 3.3: Definition of a shader core stack.
1 " core_stacks ": [
2 {" id ": " stack0 ", " base ": " s04 ", " direction ": "s"}
3]

For more details about the network description language, refer to the manual in Ap-
pendix A.

Figure 3.1: A shader core stack of length four, pointing south. The
boxes represent switches and the ellipses represent shader cores.

3.4 Software Implementation
This section goes through the software we have implemented. The software consists of
two parts: A visualization script and an extension of the Arm GPU model.

3.4.1 Visualization Script
The visualization script is implemented in Python. It parses a network description file writ-
ten in our network description language. This is done using the standard JSON parsing
library in Python. Based on the parsed information, the script builds an internal representa-
tion of the network using classes representing switches, crossbars, and other components.
The script analyses the network, and removes switches that are only connected to one other

28

3.4 Software Implementation

switch and nothing else. Such switches are referred to as dead ends, because no informa-
tion passes through them. The script also detects switches that can be bypassed. A switch
can be bypassed if it is connected to two other switches on opposite sides, and nothing
else. The switch must also be explicitly marked as possible to bypass in the configuration
file.

Once the script is done with the pruning of dead end switches and detection of switches
to bypass, it traverses the network and creates a representation of it in the graph description
language DOT. The DOT representation is written to a file, which can then be used by the
programDot [45] to generate an image of the network. Figure 3.2 presents a graph describ-
ing the visualization workflow. In Appendix B, visualizations of two network topologies
can be seen, together with the network description files defining them.

Figure 3.2: The workflow for generation of topology images. The
shaded boxes represent programs, and the white boxes represent
files.

3.4.2 Extension of the Arm GPU Model
In its current state, the available topologies of the GPU interconnection network are hard
coded in the model. There are several topologies available, and which one to use is chosen
when simulation starts.

In the model, the setup of the network is done in a class called GPUNetwork. This
class creates instances of all the objects representing the components of the network, and
connects them according to the chosen topology.

In this project, we have implemented additional functionality. This functionality parses
a configuration file written in our network description format, and sets up the network
accordingly. This has been added as an option in the GPUNetwork class. This means that
the user can choose whether to use one of the existing hard coded topologies, or to build
the network according to his specification in a network configuration file.

To add this functionality, we implemented several classes to handle the JSON parsing,
the network setup, and the network analysis. The names of those classes, and the relation-
ship between them, can be seen in Figure 3.3. We also added code in the GPUNetwork
class.

When the execution flow of the model reaches the GPUNetwork class, and the user
has chosen to parse a network configuration file, the system creates data structures to store
an intermediate representation of the network. Before it proceeds, it calls a function in
GPUNetworkParser. Pointers to the aforementioned data structures are passed as func-
tion parameters to GPUNetworkParser, which takes care of populating the data structures
according to the information in the description file. Once the execution flow returns to

29

3. Approach

Figure 3.3: Relationship between the original GPU model, and
the classes we have added to it. The shaded classes were added by
us. The striped class was edited by us, but already existed before
this project.

GPUNetwork, it iterates over the data structures and sets up the actual network by creating
the simulation objects.

Once this is done, the simulation continues in the exact same way it would if a hard
coded topology was used. Because the extension only affects the setup phase of the simu-
lations, which consumes only a small fraction of the total simulation time, the addition of
the extension has a very small impact on the total simulation time. For one of the networks,
we measured the time increment to be less than one percent when using a simple graphics
benchmark. Figure 3.4 shows the stages the network description information goes through
when a parsed network is created.

The GPUNetworkParser class populates the data structures created in GPUNetwork
with an intermediate representation of the network. The first step in this process is to in-
voke a function in the JSONParser class, which parses the JSON file and returns a pointer
to the root of the JSON tree structure. During the JSON parsing, the JSONParser class
calls JSONTokenizer, which preprocesses the JSON data. JSONParser then uses the pre-
processed data to build a tree structure consisting of TreeNode nodes.

Once the JSON parsing is done, GPU Network Parser iterates over the tree, parsing
the content of each JSON array into the data structures created in GPU Network. Some
meta information, such as the maximum and minimum number of supported shader cores
and L2 cache units, is also parsed. If shader core stacks are present in the topology, their
length is calculated. The calculation is based on the information about the shader core
stack configuration, and the number of shader cores the current simulation will use.

After all other network information has been parsed, the creation of the shader core

30

3.4 Software Implementation

Figure 3.4: The stages the network description information goes
through when a network is created. The white boxes represent the
different stages of the network information, and the gray represent
the parts of the GPU model that process the network data.

stacks take place. When GPU Network Parser iterates over the JSON array specifying
the stacks, it adds switches, shader cores, and connections to the intermediate network
representation. This means that the GPU Network class is not aware of the shader core
stack concept; from its perspective a stack is just a set of switches and shader cores.

Once all information from the configuration file has been extracted from the JSON
file, GPUNetworkParser performs some optimizations. Just like the visualization script, it
removes all switches that are only connected to one other switch. No data passes through
them, so they are considered to be dead ends. Even though removing them does not impact
the results of the simulation, the removal speeds it up. The speed up occurs because the
removal simplifies the simulation. This step is repeated until no dead end switches are
detected, because removing a dead end switch might turn the switch next to it into a dead
end.

After the pruning of unused switches, GPUNetwork Parser detects all switches marked
as candidates for bypassing in the configuration file, that are also connected to nothing but
two other switches on opposite sides. Such switches are marked as definitely possible

31

3. Approach

to bypass. This marking is used by GPU Network when the actual simulation objects
representing the switches are created. Switches marked to be bypassed never get created,
and the switches on its sides get connected directly to each other instead.

The extension also allows the user to choose to use fewer shader cores and/or L2 cache
units than defined in the description file. If the user chooses to use n cores, only the first
n cores in the description file will be included. This, together with the removal of dead
end switches, and the shader core stack concept, makes the description files flexible. The
same description file can be used for several numbers of shader cores and/or cache units,
reducing the number of description files to be written and maintained. We got this idea
from the hard coded topologies in the model, for which similar flexibility was already
present.

3.5 Verification
Throughout the project, we worked actively with verification of the implemented software.
For the Python visualization script, the verification consisted of us testing to visualize
different topologies, and then manually inspecting the produced visualizations.

For the extension of the GPUmodel, we have performed three types of verification dur-
ing the implementation. Those three types of verification are unit tests, log file comparison
tests, and clock cycle count comparison tests.

In each of the unit tests, two networks are built. One is built using a hard coded topol-
ogy, and one using our extension of the GPU model. Every data structure in each network
is then compared to its counterpart in the other network, and the test passes if no differ-
ences are detected. No simulation is actually run, which makes the unit tests relatively
fast. To verify that we did not introduce any memory leaks in our code, we ran the unit
tests under Valgrind [46].

The log file comparison tests are similar to the unit tests in that they also build two net-
works each. One is built using a hard coded topology, and one using our model extension.
What sets the log comparison tests apart from the unit tests, is that full simulations are run.
One simulation is carried out for each of the two networks, and the resulting simulation
log files are then compared. The log files contain performance data for every component
in the GPU. This means that even very subtle mismatches in the configurations would be
detected by the comparison. The tests are successful if there are no differences between
the log files. The log file comparison tests are implemented as Bash scripts. Those tests
involve running two full simulations, and therefore take significantly more time to run than
the unit tests. To make those tests as fast as possible, the graphics benchmarks used in the
simulations are simple.

The clock cycle count comparison tests are similar to the log file comparison tests,
because they also compare the results of full simulations. Instead of comparing the entire
log files, only the number of used clock cycles is compared. Those tests do, however, use
more varied and complex graphics benchmarks.

For both the log file and the clock cycle count comparison tests, it is likely that even
small differences in the configurations result in a changed clock cycle count. The high
clock cycle count in the clock cycle count comparison tests makes it more likely that even
a small mismatch would result in a changed clock cycle count. Therefore, we considered

32

3.5 Verification

it enough to only compare the clock cycle count when more complex benchmarks were
used.

Our extensions to the model, as well as the visualization script, were run through the
tests of Arm’s continuous integration system. Those tests detected errors and bad coding
practices introduced in our code, which we corrected. Hence, those tests helped improve
the code quality.

It was useful to have this combination of verification tests, with varying speed and
level of detail. Thanks to the speed of the unit tests, we could run them often during
development. Thanks to the level of detail in the other tests, we could make sure the
generated topologies were identical.

33

3. Approach

34

Chapter 4
Evaluation

To determine whether we had reached the project goals, we evaluated our work quanti-
tatively as well as qualitatively. For the quantitative evaluation, we used a set of metrics
such as fulfilled criteria, lines of code used to define the NoCs, and the flexibility of the
description files. For the qualitative evaluation, we compared the complexity of defining
the networks in the hard coded way and in our network description language. We also
discussed our solution with our supervisor at Arm, who is an experienced modeling en-
gineer. The purpose of the evaluation was to investigate whether the project reached the
stated goal of making the definition of the NoC easier, faster, and less error prone. Below
follows a walk through of the methods used for the evaluation, together with the acquired
results.

4.1 Fulfilled Criteria
As part of the quantitative evaluation, we checked how many of the criteria defined in
Section 3.2 that were reached in our implementation. All criteria were reached by our
implementation.

4.2 Lines of Code
The number of lines of code needed to define the interconnection network was used as a
quantitative measurement. For each hard coded topology in the model source code, we
implemented an identical topology in our network specification language. By using the
unit tests and log file comparison tests, we could assert that the networks were indeed iden-
tical. The number of lines of code/description language used to specify the two networks
was then compared.

35

4. Evaluation

In Table 4.1, the results of the line count comparison is presented. On average, the
number of lines needed to define the previously hard coded topologies decreased by 48%.
Topology 10 stands out, because it requires more than three times as much code when
defined in a description file. The reason behind this is discussed in Section 5.3.

Table 4.1: Number of lines of code used to define the ten hard
coded topologies of the model.

Topology Hard coded Description file Ratio
Topology 1 41 47 1.15
Topology 2 124 55 0.44
Topology 3 124 56 0.45
Topology 4 124 55 0.44
Topology 5 124 55 0.44
Topology 6 124 55 0.44
Topology 7 124 56 0.45
Topology 8 210 80 0.38
Topology 9 210 80 0.38
Topology 10 31 108 3.48
Average 123.6 64.7 0.52

4.3 Flexibility of Description Files
In the Arm GPU model, it is possible to select how many shader cores and L2 cache units
to add to the topology. The hard coded topologies include logic that defines which com-
ponents should be included when the defined number is lower than the maximum number
supported by the topology. For the description language based topologies, the desired
number of components are added, starting from the top of the respective component array.

We wanted to see how much flexibility our solution allows in terms of support for
different numbers of shader cores and L2 cache units in a single file. To measure this, we
checked for each hard coded topology how many description files were needed to cover
all supported numbers of shader cores and caches. Ideally, it should be enough with one
description file per topology.

Table 4.2 below displays the number of description files needed to represent all sup-
ported numbers of shader cores and L2 cache units for each hard coded topology. The
topology that stands out is Topology 9, and the reasons behind this are discussed in Sec-
tion 5.4.

4.4 Time to Define Network
The time it takes to define networks using our network specification language was used as
a quantitative measurement. Through discussions with our supervisor at Arm, we got an
estimate of how much time was spent implementing the different hard coded topologies.

36

4.5 Comparison with Source Code

Table 4.2: Number of configuration files needed to represent all
supported shader core and L2 cache numbers for each topology.

Number of needed configuration files
Topology 1 3
Topology 2 1
Topology 3 1
Topology 4 1
Topology 5 1
Topology 6 1
Topology 7 1
Topology 8 1
Topology 9 7
Topology 10 1

According to him, writing the code for a new topology previously took several hours,
excluding the test and debug time [47].

We implemented four topologies in our network description language, that were pre-
viously not present in the Arm GPU model. We did this to get practical experience of
what it is like using the language, as well as an impression of how much time it takes to
implement new topologies using it. Writing each description file was largely a matter of
copying and pasting configuration elements between files. For the first two topologies, we
did not write down the exact time it took us. We do, however, estimate that it took us less
than an hour per file. For the last two topologies we did write down the time it took us; 18
and 16 minutes respectively.

Implementing a new topology does, however, include a large amount of testing. Testing
is primarily done by running test simulations, and comparing the resulting metrics with
metrics from previous simulation runs. This process has not been changed in this project,
and still takes the same amount of time as it did before. Running those simulations takes
several hours, even on a powerful computer cluster.

4.5 Comparison with Source Code
To evaluate how much our network description language simplifies the network configu-
ration, we compared structures implemented in source code and the description language
qualitatively.

To give an idea of how the network definition has changed from the hard coded to the
description language solution, we present pseudo code together with description language
describing the same structures. The pseudo code is similar to the source code in the model.
For legal reasons we cannot present the actual source code in the report.

In the first example, shown in Listing 4.1 and 4.2, we show how a linear array of
switches is set up, and how an MMU gets connected to it.

Listing 4.1: Setup of switches and MMU (in pseudo code)
1 // List to store switches in

37

4. Evaluation

2 switch_list
3
4 // Calculate number of switches
5 num_switches = max (num_cores , num_l2_caches + 2)
6
7 // Create and connect switches
8 for (i = 0; i < num_switches ; i ++)
9 switch_p = new Switch (switch_id (i, 0))
10 if (i > 0)
11 switch_p . connect (switch_list . last () , WEST)
12 switch_list . add (switch_p)
13
14 // Connect MMU
15 mmu_switch = switch_list . first ()
16 mmu_switch . connect (MMU , WEST)

Listing 4.2: Setup of switches and MMU (in description lan-
guage)

1 " switches ": [
2 {" id ": " s00 " ," label ": " switch00 " ,"x": 0 ,"y": 0} ,
3 {" id ": " s10 " ," label ": " switch10 " ,"x": 1 ,"y": 0} ,
4 {" id ": " s20 " ," label ": " switch20 " ,"x": 2 ,"y": 0} ,
5 {" id ": " s30 " ," label ": " switch30 " ,"x": 3 ,"y": 0}
6],
7 " mmu ": [
8 {" id ": " mmu " ," label ": " mmu "}
9],
10 " links ": [
11 {" source_node ": " s00 " ," target_node ": " s10 " ," source_port

": "e" ," target_port ": "w"} ,
12 {" source_node ": " s10 " ," target_node ": " s20 " ," source_port

": "e" ," target_port ": "w"} ,
13 {" source_node ": " s20 " ," target_node ": " s30 " ," source_port

": "e" ," target_port ": "w"} ,
14 {" source_node ": " s00 " ," target_node ": " mmu " ," source_port

": "w"}
15]

In the second example, shown in Listing 4.3 and 4.4, we show how L2 cache units
are connected to certain switches. Please note that the pseudo code and the description
language code only describe the same structure if there are two switches to which L2 cache
units are connected. In cases like this, the transition to description language code improves
the readability of the network definition, at the cost of reduced flexibility.

Listing 4.3: Connection of L2 caches to switches (in pseudo code)
1 // Calculate where to place first L2 cache .
2 l2_column_offset = (num_l2_caches > num_columns) ? 0 : 1
3
4 // Calculate number of L2 caches per middle switch .
5 num_l2_per_switch = (num_l2_caches <= num_columns / 2) ? 1

: 2
6 num_connected_l2s = 0
7
8 // Connect L2 caches to switches .

38

4.5 Comparison with Source Code

9 for (j = 0; j < num_l2_per_switch ; j ++)
10 for (i = l2_column_offset ;
11 i <= num_l2_caches / num_l2_per_switch &&

num_connected_l2s < num_l2_caches ; i ++)
12 l2_id = num_connected_l2s ++
13 direction = NORTH + j
14 switch_list [i]. connect (l2_list [l2_id], direction)
15 if (num_connected_l2s == num_l2_caches)
16 break

Listing 4.4: Connection of L2 caches to switches (in description
language)

1 " l2_caches ": [
2 {" id ": " l2_0 " ," label ": " l2_0 "} ,
3 {" id ": " l2_1 " ," label ": " l2_1 "} ,
4 {" id ": " l2_2 " ," label ": " l2_2 "} ,
5 {" id ": " l2_3 " ," label ": " l2_3 "}
6],
7 " links ": [
8 {" source_node ": " s14 " ," target_node ": " l2_0 " ,"

source_port ": "n"} ,
9 {" source_node ": " s14 " ," target_node ": " l2_2 " ,"

source_port ": "e"} ,
10 {" source_node ": " s24 " ," target_node ": " l2_1 " ,"

source_port ": "n"} ,
11 {" source_node ": " s24 " ," target_node ": " l2_3 " ,"

source_port ": "e"}
12]

In the third example, shown in Listing 4.5 and 4.6, we show how shader core stacks
are created.

Listing 4.5: Creation of shader core stacks (in pseudo code)
1 // List to store pointers to the switches of the previous

row .
2 previous_row_switches
3
4 // Fill list with the switches of the top row .
5 for (i = 0; i < num_columns ; i ++)
6 previous_row_switches . add (switch_list [i])
7
8 // Create and connect shader cores and switches one row at

a time .
9 for (j = 0; j < num_rows ; j ++)

10 for (i = 0; i < num_columns ; i ++)
11 if (j * num_columns + i >= num_cores)
12 break
13 core_delay = 4
14 if (j == 0)
15 down_delay = 3
16
17 // Create and connect switch .
18 switch_list . add (new Switch (switch_id (i, top_row - j

- 1)))

39

4. Evaluation

19 previous_row_switches [i]. connect (switch_list . last ()
, SOUTH , down_delay)

20 previous_row [i] = switch_list . last ()
21
22 // Create and connect shader cores .
23 core_id = shader_cores_list . size ()
24 switch_list . last (). connect (new Core (core_id), WEST ,

core_delay)

Listing 4.6: Creation of shader core stacks (in description lan-
guage)

1 " core_stacks ": [
2 {" id ": " stack0 ", " base ": " s04 ", " direction ": "s"} ,
3 {" id ": " stack1 ", " base ": " s14 ", " direction ": "s"} ,
4 {" id ": " stack2 ", " base ": " s24 ", " direction ": "s"} ,
5 {" id ": " stack3 ", " base ": " s34 ", " direction ": "s"}
6],
7 " core_stack_config ": {
8 " switch_delay ": 0,
9 " core_delay ": 4,
10 " root_delay ": 3,
11 " balanced_stacks ": " true ",
12 " max_length ": 4
13 }

4.6 Implementation of New Topologies
As mentioned in Section 4.4, we implemented four topologies, which were not previously
available in the Arm GPU model, using our network description language. The purpose
of this was to test how convenient and time consuming it is to use the language. We call
the implemented topologies mesh, hash tag, narrow, and line.

Even though performance was not the primary focus when implementing the topolo-
gies, we still wanted to evaluate how well they performed. Therefore, we ran simulations
with them. Our supervisor at Arm helped us choose four metrics from the generated sim-
ulation logs that would give an idea of how well the topologies performed [47]. Those
metrics were the total number of clock cycles, the L2 cache message stall time, the L1
cache read latency, and the L1 cache write latency. The metrics were measured in clock
cycles. The total clock cycle count gives an idea of the overall performance. The three
other metrics relate closely to the memory system, which is highly affected by the network
topology. Visualizations of the topologies are presented in Section 4.8.

Table 4.3 shows the results of the simulations, and has been included for completeness.
For each topology, ten simulations using different graphics benchmarks were run. For
mesh and hash tag, the results are mean values based on all ten simulation runs. For the
line topology, three out of ten simulations timed out due to network congestion. Therefore,
the values for the line topology are mean values of the seven simulations that completed.
For the narrow topology, one simulation timed out. The values for the narrow topology
are therefore the means from nine simulations. In all simulations, 16 shader cores and four

40

4.7 Discussion with our Supervisor

L2 cache units were used. The results are normalized, relative to the default topology used
for 16 cores.

Table 4.3: Simulation results for the implemented topologies.
GPU active refers to the total clock cycle count. All results in the
table are normalized against the default topology. For the topolo-
gies marked with stars, only the average from the successful sim-
ulation runs are shown.

Topology Default Mesh Hash tag Line* Narrow*
GPU active 1 0.96 0.95 0.98 1.01
L2 message stall 1 0.56 0.88 2.96 1.15
L1 read latency 1 0.90 0.90 0.99 1.00
L1 write latency 1 0.77 0.77 0.90 0.97

4.7 Discussion with our Supervisor
To qualitatively evaluate the implemented solution, we discussed both the new and the
previous solution with our supervisor at Arm, an engineer working with the simulation of
the GPU interconnection network. The comments from the discussion are presented in the
evaluation and discussion sections they are related to.

4.8 Visualization
The quality of the network visualizations was evaluated qualitatively. The result is based
on our personal opinions. During the project we implemented and visualized several
topologies, and based on those visualizations we fine tuned the visualization script to pro-
duce clear visualizations. We discuss the visualizations in Section 5.6.

In this section, we present four visualized topologies. One more visualization can be
seen in Appendix B. The visualizations are included to give the reader an idea of what the
produced visualizations look like. Figure 4.1 shows a mesh topology. Figure 4.2 shows
a topology we have chosen to call a hash tag topology. We chose that name because the
layout of the switches resembles a hash tag. Figure 4.3 shows the line topology. Figure
4.4 shows the narrow topology.

Please note that the topologies in the Arm GPU model do not necessarily correspond
to the actual topologies in the Arm GPU hardware.

41

4. Evaluation

Mesh topology in JSON

sc9sc8

sc5sc4 sc7sc6

sc1

s10

sc0

s00

sc3

s30

sc2

s20

sc11sc10

sc13sc12 sc15sc14 l2_3l2_2

l2_1l2_0

tiler

s22

mmu

s11jm

s12

s01 s31s21

s02 s32

s33s23s13s03

Figure 4.1: Visualization of a mesh network topology, produced
by the visualization script in combination with Dot.

Hash tag topology in JSON

sc9 sc8

sc5 sc4 sc7 sc6

sc1

s10

sc0 sc3

s20

sc2

sc11 sc10

sc13 sc12 sc15 sc14

l2_3l2_2

l2_1

s21

l2_0

s11 tiler

s12

mmu

s22jm

s01

s02

s31

s32

s23s13

Figure 4.2: Visualization of a network topology we call the hash
tag topology, produced by the visualization script in combination
with Dot.

42

4.8 Visualization

Line topology in JSON

sc9

sc8

s40

sc5

sc4

s10

sc7sc6

sc1

sc0

s00

sc3sc2 sc11sc10

sc13

sc12

s50

sc15sc14l2_3

s30

l2_2

l2_1

s20

l2_0

tilermmu jm

Figure 4.3: Visualization of a network topology we call the line
topology, produced by the visualization script in combination with
Dot.

Narrow topology in JSON

sc08

sc06

sc07

sc05

sc02

s02sc03

s03

sc00

s00sc01

s01

sc18

sc11

s11

sc10

s10

sc13

s13

sc12

s12

sc15

sc17

sc16

l2_3l2_2l2_1l2_0 tilermmu

jm

mrml

s05 s15

s06 s16

s17s07

s18s08

Figure 4.4: Visualization of a network topology we call the nar-
row topology, produced by the visualization script in combination
with Dot.

43

4. Evaluation

44

Chapter 5
Discussion

In this section, we discuss the impact of the results.

5.1 Custom Topologies and Abstraction
Our implementation supports any custom topologies possible to implement in the Arm
GPU model. This is important, because it allows users to explore the design space freely.
A limit on possible topologies would have forced users to sometimes edit the source code.
It would then not have been enough only to know about the network description language.
This would have partly defeated the purpose of providing a level of abstraction, which lets
users define and explore topologies without knowledge about the underlying source code.

There are, however, limitations to which topologies can actually be implemented. Only
four-port switches are supported, and each such switch can only connect to maximally four
other switches. The switches must also be connected in such a way that their coordinates
match. For instance, the switch connected on the north side of a switchwith the coordinates
(x=1, y=1)must have the coordinates (x=1, y=2). A network can only contain one crossbar.
If a network contains a crossbar, it cannot contain any switches. These limitations are
consequences of the design of the Arm GPUmodel, in which they are present. It is beyond
the scope of this project to change this. If those restrictions were lifted from the model, it
would only require small changes to make our extension support the new possibilities.

The user can not choose which routing algorithm to use during the simulation. The
routing algorithm is currently hard coded inside the Arm GPU model. We do, however,
think it would be a useful improvement of the network description language if it could be
used to define, or at least choose from a list of, routing algorithms.

We believe the added abstraction of the network setup will lower the threshold for new
users. Defining a network topology now requires no knowledge of neither C++, nor of the
model internals. Looking at example topologies, such as those in Appendix B, is probably
enough for a new user to get started. This will be faster than reading and understanding

45

5. Discussion

the source code. For more details, users can turn to the manual presented in Appendix A.
In addition to lowering the threshold for new users, we believe the abstraction will

speed up exploration of new ideas by the experienced engineers. Making changes to a
topology, such as changing which switch a specific component is connected to, requires
very small changes in the description file. The new tests can then be run directly, without
recompilation. The location of the edited network description file is passed as a command
line argument when the simulation is started.

We consider reaching the four last criteria defined in Section 3.2 to be part of making
definition of all topologies supported by the model possible.

5.2 Support for Existing Topologies
Implementing support for all hard coded topologies was a requirement to make a future
migration to our solution possible. Had there been topologies the model extension could
not support, only a partial migration would have been possible. Furthermore, it would not
have been enough only to know the network description language.

One can argue that supporting all previously implemented topologies follows by im-
plication from supporting all topologies that are possible to implement in the Arm GPU
model. We did, however, not settle on making it possible to define all previously hard
coded topologies. We went further, by adding features that made defining those topolo-
gies compact and efficient. A feature that recurs frequently in the hard coded topologies is
shader core stacks. By adding the stack concept to our network description language, we
significantly reduced the lines of code needed to define the networks.

5.3 Lines of Code
The number of lines of code does not, in itself, say much about the quality of the imple-
mentation. The 48% average reduction does, however, indicate that defining a network
topology now requires less code.

Many of the hard coded topologies are defined in the same blocks of code. This is
because the differences between some of them are subtle. Topology 2 to 7 in Table 4.1
are defined in the same block. The same applies to topology 8 and 9. Inside those blocks,
there are logic statements that decide which parameters to use. In Table 4.1, this logic
is included in the line count for each hard coded topology. Had these logic statements
been removed, the line count for the hard coded topologies would have been smaller. This
would, in turn, have reduced the difference.

Topology 10 stands out in Table 4.1, because it takes 3.48 times more code to define
it when using our network description language. This is partly because Topology 10 con-
tains 32 shader cores, organized in a very simple structure. In the hard coded version, the
addition of the shader cores is implemented using a loop. In our network description lan-
guage, it is instead implemented as a list of 32 switches. The same applies to the eight L2
cache units in the topology. The network definition in our network description language
is simpler, but longer. One way to enable shorter definitions of simple networks could be
to add some sort of list comprehension to the description language. We discuss this idea

46

5.4 Flexibility of Description Files

further in Section 6.1.5.

5.4 Flexibility of Description Files
Each hard coded topology supports several different numbers of shader cores and L2 cache
units. Ideally, we also wanted to support all different numbers of cores and L2 cache units
for each topology in a single configuration file. This would be beneficial, because it keeps
the number of configuration files small. Hence, fewer files needs maintenance and testing.
When something is changed in a topology, it only needs to be changed in one place.

As can be seen in Table 4.2, it is enough with one configuration file for most of the
topologies. What all those topologies have in common, is that additional shader cores are
added in a simple, regular, and easy to describe order. In topology 2-8, shader core stacks
are used, to which additional cores are added to in a consistent order.

The topology that stands out in Table 4.2 is topology 9. Topology 9 is, like most other,
built by shader core stacks. There are mainly two aspects that set this topology apart from
the other. First, shader core stacks can not be used for some core counts. This is because of
an optimization which replaces core stacks with only one shader core, with shader cores
directly connected to the rest of the topology. Because our description language lacks
support for this optimization, the stacks needs to be replaced by manually defined cores
and switches in the files intended for those core counts. Second, the order in which the
stacks get longer when shader cores are added is not consistent.

Those results show that our network description language can support several different
core counts for the same topology, as long as the order in which additional cores are added
is consistent. Adding cores in an unstructured order is possible, but requires separate files
for different core numbers.

Bypassable switches and removal of dead end switches are two features that were added
to increase the flexibility of the description files. Those features did not, however, impact
the numbers in Table 4.2. Despite this, we believe the addition of those features adds
flexibility, though not for those particular topologies.

According to our supervisor at Arm, making non-trivial modifications to existing topolo-
gies was as cumbersome as writing new topologies from scratch when they were hard
coded. Furthermore, reusing code from one topology in another was hard [47]. With our
network description language, we believe making changes is straight forward. Extracts
from description files is often possible to reuse in other description files.

5.5 Comparison with Source Code
Based on the comparisons with source code, we believe the introduction of our language
has made network definition more accessible. The comparisons showed in Listing 4.1 to
4.6 should give the reader an impression of how the configuration has changed.

In Listing 4.1, we can see that each switch has to be created (line 9) before being
connected (line 11). This corresponds to the declaration of the switches (line 2-5) and the
links connecting them (line 11-14) in Listing 4.2. Both steps, creating and connecting the
switches, are present in both ways to define networks. We believe the way it is done in the

47

5. Discussion

description language is better, though, because it provides a clear separation between, and
location for, the creation and the connection.

As can be seen in Listing 4.3 and 4.5, setting up networks the hard coded way often
included using nested for loops, together with logical statements. Though not necessarily
very complex, we find this approach to be more difficult than the corresponding solutions
presented in Listing 4.4 and 4.6. We also expect our solution to be less error prone, espe-
cially when used together with the visualization script.

The simplification of the setup of shader core stacks is one of the features we think will
be most useful. Out of the ten hard coded topologies, eight use shader core stacks. This
makes this feature likely to be frequently used in the future. As can be seen by comparing
Listing 4.5 with Listing 4.6, creating shader core stacks is compact in our description
language.

We believe the new way to define networks is easier to learn, because the content of
the configuration is simpler than before. In many cases, it should be possible to start
from an existing description file and edit it. Defining a network no longer requires any
programming language constructs, such as loops or conditional statements. This makes
it possible for users without programming knowledge to define networks, even though we
find it unlikely that anyone without programming experience would use the model.

5.6 Visualization

Before this project, there was no support for topology visualization in the ArmGPUmodel.
We think the addition of visualization capabilities is useful in several ways, which we
describe below.

We believe the quality of the visualizations is high enough for them to be useful. Ac-
cording to our supervisor at Arm, it has happened that well after a topology was modeled,
it was discovered that components were not connected in the place the Arm engineers
thought [47]. We think this kind of mistakes will be possible to detect at an early stage
using the visualization tool.

We also think the visualizations are good enough to simplify discussions about the
network topology. From a discussions with our supervisor at Arm, we learned that con-
firming with the hardware engineers that the design of a hard coded topology is correct,
previously required a modeling engineer to manually draw a diagram, or explain by walk-
ing through the code together with the hardware engineer [47]. In the future, we think
the visualizations will provide a useful overview of the network, which can be used for
topology confirmation.

The visualizations would, according to us, be clearer if the switch-to-switch connec-
tions were drawn as straight lines. This could make it clearer which those connections
are, which in turn would give a better overview of the topology. We tried to achieve this
by assigning large weights in DOT to the connections between the switches, but did not
manage to produce the desired results.

48

5.7 Design Decisions

5.7 Design Decisions
One topic we discussed early on was whether to create a program that generated source
code that could be pasted into the model, or include amarkup language parser. We chose to
include a parser, to allow network definition at runtime rather than compile time. Parsing
also allows modifications of the NoC without access to the source code of the model.

We had to decide which markup language to use for the network description. As part in
this decision process, we implemented the same topology in the five markup languages we
considered using. Those implemented topologies can be seen in Appendix C. For several
reasons, we chose JSON. First, it is a general markup language. Hence, it can be used to
represent arbitrary data structures. This, for instance, made the addition of shader core
stacks straight forward. Second, of the three general markup languages we considered, we
found JSON to be the most concise and clear. This is, however, our subjective opinion. We
found it easy to read, yet structured in a clear way. We believed the clear structure would
simplify the parser implementation. Third, JSON is a widely known and used format. Our
intention was that people already familiar with JSON should be able to learn our language
quickly. We could not find a JSON parser with a license allowing usage in the Arm GPU
model, so we implemented our own.

As we mentioned in 2.2, Netjson is a network description format based on JSON.
Because we knewNetjson successfully used JSON for network description, we knew using
JSON would be feasible. That also influenced our decision to use JSON.

We also had to decide which visualization software to use. We chose the software Dot,
whose DOT format we considered using for the network description in Section 3.1.3. Dot
creates an image of a graph given an input file in DOT format. It takes care of much of the
graph layout itself, but still gives the user the option to decide which nodes should appear
on the same level in the image. The user can also define in which direction the links should
leave and enter the nodes. Our conclusion was that Dot provides us with the functionality
we need, with a simple configuration system.

We chose JSON for the network description, but DOT for the visualization. The reason
behind our choice to use JSON, instead of for instance DOT, for the network definition was
that we wanted to be able to add custom concepts such as shader core stacks. By using a
general markup language such as JSONwe got a large amount of freedom on how to design
the language specifically for NoC specification. We also thought JSON would be easier to
learn and use. This meant that a program that produces a DOT version of a JSON network
description had to be implemented. We chose to implement this in Python, because it
contains an easy to use library for JSON parsing, and is well suited for text manipulation.
The generation of DOT files is not time critical, so the overhead of using an interpreted
language such as Python is not a problem.

The Arm GPU model is implemented in C++. Therefore, we used C++ for our exten-
sion of the Arm GPU model too.

5.8 New Topologies
In this section, we discuss the performance of the four implemented topologies. As men-
tioned, performance was not the primary goal when designing those topologies. We do,

49

5. Discussion

however, still find it interesting to evaluate and discuss their performance.

5.8.1 Mesh and Hash Tag
The results for the mesh topology, which are shown in Table 4.3, show a GPU clock cycle
count reduction of four percent. The memory speed related metrics show reductions of
between 10% and 44%. For the hash tag topology, the GPU clock cycle count reduction
is five percent. The memory speed improvements are between 10% and 23%.

Though the improvements of the selected metrics seem promising for mesh and hash
tag, more analysis would be required before any conclusions could be drawn about whether
they are actually better than the default topology. The simulations do not, for instance, take
area or power consumption into consideration. Those metrics are decisive when designing
SoCs, and would have to be investigated if Arm wanted to proceed with either topology.
Furthermore, the simulations were run on a limited set of graphics benchmarks. This con-
tent is probably not representative for all use cases. To learn more about the performance
of the topologies, it would be interesting to carry out simulations using a larger set of
graphical content.

5.8.2 Line and Narrow
One simulation run using the narrow topology, and three simulation runs using the line
topology, resulted in time out due to network congestion. Network congestion results in
unacceptable performance in the GPU NoC. Therefore, those topologies can be discarded.

Even when not considering the starved simulation runs, the line and narrow topologies
do not seem to provide good performance. The total clock cycle count and the L1 read
latency are both almost unaltered compared to the default topology. The metric standing
out is the L2 cache message stall, which is 196% higher for the line topology than for the
default topology. For the narrow topology, it is 15% higher. We believe the long message
stalls are consequences of the reduced number of ways the data can take when traversing
those networks.

The L1 write latency is lower than for the default topology, ten percent lower for line
and three percent lower for narrow. This does not, however, weigh up for the other results
for the narrow and line topologies.

50

Chapter 6
Conclusions

We have implemented a network description format which simplifies the definition of
NoCs. By building our description language upon JSON, we made the syntax of our lan-
guage easy to learn and accessible for many users. Using Dot provides a solution for
visualizing the network topologies. When many connections are defined, the generated
image can give a cluttered impression. The quality of the visualizations does, however, let
the user inspect the defined network to see that the correct components are connected to
each other. This should make the exploration of new topologies less error prone.

We also conclude that the introduction of an abstraction level makes it easier and faster
to define new networks. This is partly because the definition becomes more compact, but
also because subtle changes can be done with very small changes in the description files.
The possibility to change the topology without recompiling the model further speeds up
the process.

In addition to making the network definition easier and faster, our network description
language makes NoC exploration more accessible and easier to learn. All the user needs
to know is the network description language. Knowledge of the underlying source code is
not required.

Because the project was carried out within the GPU modeling team at Arm, the result-
ing description language is designed to suit topologies possible to implement in their GPU
model. Some of the restrictions of the language would not have been introduced had it not
been for model compatibility. We still think it was valuable to implement the language
targeting a specific simulator, because it made us aware of what aspects are important to
model and define in an NoC.

6.1 Future Work
In this section, we will point out possible improvements for our network description lan-
guage.

51

6. Conclusions

6.1.1 Flexible Switches
In its current state, the network description language only supports two types of switches;
four-port switches and crossbars. The four-port switches can be connected to up to four
other four-port switches. A possible improvement would be to add more connections to
the four-port switches, such as connections in the north-east, south-east, south-west, or
north-west direction. Each topology can, for now, only contain one crossbar. Allowing
several crossbars to build a network together would be an improvement. This would allow
modeling more general networks. It would require changes in the GPU model, such as
implementations of more complex routing algorithms, though.

6.1.2 Routing Algorithms
The description language currently only lets the user define the topology of the network,
but there are other aspects which also defines an NoC. One such is the choice of routing
algorithm. It would be interesting to add selection and/or definition of routing algorithms
to the language. As a first step, one could enable the selection of routing algorithms from
a predefined set. Going further, one could enable specification of routing algorithms.

6.1.3 More Configuration Parameters
One change which might make the description language more useful during simulations
could be allowing more simulation configuration parameters to be defined in it. For in-
stance, one could add the definition of the sizes of the L2 cache units. This is not neces-
sarily an improvement over the existing solution, but investigating it could be interesting.

6.1.4 RTL Generation
Currently, support for the language is only implemented in the ArmGPU simulator. Future
work could be to implement software that generates a hardware description in RTL of the
specified network. The output could be in VHDL or Verilog. Inspiration for this could
be acquired by studying the Atlas project mentioned in Section 2.3, which support RTL
generation as well as simulation.

6.1.5 List Comprehension
As can be seen by looking at the example topologies shown in Appendix B, the description
files often include sets of almost identical lines. For instance, each switch is defined on
an individual line, unless shader core stacks are used. The variation between the switches
often follow a simple pattern, such as stepwise increment of a coordinate. It might be
possible to make the network definition more compact by introducing concepts similar to
list comprehension. This could, for instance, make it possible to define on a single line
that you want five switches with a fixed x coordinate and y coordinates spanning from zero
to four. One risk with this approach is that network definition becomes more complex and
more like programming. Investigating this option could still be interesting, though.

52

Bibliography

[1] W. J. Dally and B. Towles. Principles and practices of interconnection networks.
Morgan Kaufmann Publishers, Amsterdam ; San Francisco, 2004.

[2] L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. Computer,
35(1):70–78, January 2002.

[3] J. L. Hennessy, D. A. Patterson, and K. Asanović. Computer architecture: a quan-
titative approach. Morgan Kaufmann/Elsevier, Waltham, MA, 5th ed edition, 2012.
OCLC: ocn755102367.

[4] Arm Limited. Mali gpu - arm, 2017. https://www.arm.com/products/graphics-and-
multimedia/mali-gpu, Accessed: 2017-09-11.

[5] Moore’s law. Columbia Electronic Encyclopedia, 6th Edition, page 1, 2017.

[6] M. Vachharajani, N. Vachharajani, and D. I. August. The Liberty Structural Specifi-
cation Language: A High-level Modeling Language for Component Reuse. In Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, pages 195–206, New York, NY, USA, 2004. ACM.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[8] D. A. Patterson and J. L. Hennessy. Computer organization and design: the hard-
ware/software interface. Morgan Kaufmann Publishers, an imprint of Elsevier, Cam-
bridge, Massachusetts, risc-v edition edition, 2018. OCLC: ocn993666159.

[9] T. Möller, E. Haines, and N. Hoffman. Real-time rendering. A.K. Peters, Wellesley,
Mass, 3rd ed edition, 2008. OCLC: ocn213765720.

[10] P. Harris. The mali gpu: An abstract machine, part 3 - the midgard shader
core. https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-
machine-part-3—the-midgard-shader-core, Accessed: 2017-11-29.

53

BIBLIOGRAPHY

[11] Intel Corporation. 8th generation intel® core™ i7 processors.
https://ark.intel.com/products/series/122593/8th-Generation-Intel-Core-i7-
Processors, Accessed: 2017-10-23.

[12] Nvidia. https://www.nvidia.se/graphics-cards/geforce/pascal/compare-specs/, Ac-
cessed: 2017-10-23.

[13] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani. A network on chip architecture and design methodology. In Pro-
ceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for
VLSI Systems Design. ISVLSI 2002, pages 105–112, 2002.

[14] I. Cutress. Apple 2017: The iphone x (ten) announced.
https://www.anandtech.com/show/11835/apple-2017-the-iphone-x-ten, Accessed:
2017-11-08.

[15] Internet Engineering Task Force. Requirements for internet hosts – communication
layers. https://tools.ietf.org/html/rfc1122, Accessed: 2017-10-16.

[16] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232), pages 684–689, 2001.

[17] A. B. Achballah and S. B. Saoud. A Survey of Network-On-Chip Tools. International
Journal of Advanced Computer Science and Applications, 4(9), 2013.

[18] M. Ali, M. Welzl, A. Adnan, and F. Nadeem. Using the NS-2 Network Simulator for
Evaluating Network on Chips (NoC). In 2006 International Conference on Emerging
Technologies, pages 506–512, November 2006.

[19] Y. Sun, S. Kumar, and A. Jantsch. Simulation and evaluation for a network on chip
architecture using ns-2. In Proceedings of the IEEE NorChip conference, 2002.

[20] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas. Darsim: A Parallel
Cycle-Level NoC Simulator. MIT web domain, 2010.

[21] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Cycle-Accurate
Network on Chip Simulation with Noxim. ACM Trans. Model. Comput. Simul.,
27(1):4:1–4:25, August 2016.

[22] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, and G. Li. Visu-
alNoC: A Visualization and Evaluation Environment for Simulation and Mapping.
In Proceedings of the Third ACM International Workshop on Many-core Embedded
Systems, MES ’16, pages 18–25, New York, NY, USA, 2016. ACM.

[23] F. Capoano and L. Kaplan. Netjson: data interchange format for networks, 2015.
http://netjson.org/rfc.html, Accessed: 2017-09-11.

[24] Ecma. The json data interchange format, 2013. http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf, Accessed: 2017-
09-11.

54

BIBLIOGRAPHY

[25] Microsoft. The osi model’s seven layers defined and functions explained.
https://support.microsoft.com/en-us/help/103884/the-osi-model-s-seven-layers-
defined-and-functions-explained, Accessed: 2017-11-15.

[26] Netjson. http://netjson.org/, Accessed: 2017-12-06.

[27] Netjson network topology visualizers. http://netjson.org/docs/implementations.html#network-
topology-visualizers, Accessed: 2017-12-19.

[28] https://github.com/netjson/netjsongraph.js, Accessed: 2017-12-19.

[29] J. Lang. Atlas. https://corfu.pucrs.br/redmine/projects/atlas/wiki, Accessed: 2017-
09-14.

[30] A. Mello, A. Amory, N. Calazans, and F. Moraes. Atlas a noc generation and evalu-
ation framework. 2011. Poster presented at the DATE11 conference in Grenoble.

[31] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and
J. Kim. A detailed and flexible cycle-accurate Network-on-Chip simulator. In 2013
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 86–96, April 2013.

[32] https://github.com/booksim/booksim2, Accessed: 2017-09-13.

[33] https://github.com/booksim/booksim2/blob/master/src/examples/anynet/anynet_file,
Accessed: 2017-12-06.

[34] Hornet. http://csg.csail.mit.edu/hornet/, Accessed: 2017-12-14.

[35] https://github.com/davidepatti/noxim, Accessed: 2017-09-14.

[36] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An open,
extensible and cycle-accurate network on chip simulator. In 2015 IEEE 26th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 162–163, July 2015.

[37] F. Fummi, G. Perbellini, P. Gallo, M. Poncino, S. Martini, and F. Ricciato. A timing-
accurate modeling and simulation environment for networked embedded systems.
In Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451),
pages 42–47, June 2003.

[38] N. Agarwal, T. Krishna, L. Peh, and N. Jha. Garnet: A detailed on-chip network
model inside a full-system simulator. In Performance Analysis of Systems and Soft-
ware, 2009. ISPASS 2009. IEEE International Symposium on, pages 33–42. IEEE,
2009.

[39] Simple. http://gem5.org/Simple, Accessed: 2017-09-15.

[40] H. Wang, X. Zhu, L. Peh, and S. Malik. Orion: a power-performance simulator
for interconnection networks. 35th Annual IEEE/ACM International Symposium
on Microarchitecture, 2002. (MICRO-35). Proceedings., Microarchitecture, 2002.

55

BIBLIOGRAPHY

(MICRO-35). Proceedings. 35th Annual IEEE/ACM International Symposium on,
Microarchitecture, page 294, 2002.

[41] W3C. Extensible markup language (xml) 1.0 (fifth edition).
https://www.w3.org/TR/xml/, Accessed: 2017-12-07.

[42] O. Ben-Kiki, C. Evans, and I. döt Net. Yaml ain’t markup language (yaml™) version
1.2. http://www.yaml.org/spec/1.2/spec.html, Accessed: 2017-10-05.

[43] The dot language. https://graphviz.gitlab.io/_pages/doc/info/lang.html, Accessed:
2017-12-07.

[44] M. Himsolt. Graphlet: design and implementation of a graph editor. Software:
Practice and Experience, 30(11):1303–1324, September 2000.

[45] http://www.graphviz.org/, Accessed: 2017-10-05.

[46] J. Seward and N. Nethercote. Using valgrind to detect undefined value errors with
bit-precision. In Proceedings of the USENIX’05 Annual Technical Conference, 2005.

[47] F. Tabba, Arm Sweden AB. Personal communication.

[48] Weighted round robin scheduling. http://www.brocade.com/content/html/en/configuration-
guide/nos-700-l2guide/GUID-B75BD370-B251-45A3-B3FD-
87F54E35DC6E.html, Accessed: 2017-12-19.

56

Appendices

57

Appendix A
Network Description Language Manual

A central part of the project was to design a network description language that could be
used to define an NoC. In this manual, we will go through this language.

This manual starts by an introduction to JSON, followed by sections explaining the
different data structures constituting the description file. For each data structure, a table
is supplied with the details of the structure. At the end of the manual, there is a section
which covers the limitations of the language. This part, among other things, explains which
combinations of attributes are not allowed.

All objects in each network are identified using their id string attribute. The ids of all
objects in the topology must therefore be unique.

A.1 Introduction to JSON
The network description language is based on the JSON markup language format. To
understand this manual, the reader needs to be familiar with the concepts of JSON arrays
and JSON objects.

A JSON array is a comma separated list of elements. A JSON array is enclosed by
square brackets, and its content is accessed by index. Here is an example of a JSON array:
["a", "b", "c"].

A JSON object is a collection of key-value pairs, in which the keys are used to access
the values. A JSON object is enclosed by curly brackets. Here is an example of a JSON
object: {"a": "banana", "b": "orange", "c": "apple"}.

A.2 Outermost Object
At the outermost layer, the content of each network description file is wrapped in a JSON
object. The content of the outermost JSON object is described in Table A.1. Some at-

59

A. Network Description Language Manual

tributes must be present in a valid topology, while other are optional. In Appendix B, two
example description files are presented. In the following sections, we will go through the
attributes of the description file in detail.

Table A.1: Content of the outermost object of a description file.

Key Content type Description Mandatory
label String A label describing the topol-

ogy.
No

max_cores Integer The maximum number of
cores supported by the topol-
ogy.

No

min_cores Integer The minimum number of
cores supported by the
topology.

No

max_l2_caches Integer The maximum number of L2
cache units supported by the
topology.

No

min_l2_caches Integer The minimum number of L2
cache units supported by the
topology.

No

switches Array of switch
objects

Defines the switches in the
topology.

Yes

crossbars Array of crossbar
objects

Defines the crossbars in the
topology.

Yes

shader_cores Array of core ob-
jects

Defines the cores in the topol-
ogy.

Yes

l2_caches Array of cache
objects

Defines the L2 cache units in
the topology.

Yes

mmu Array of memory
management unit
objects

Defines the memory manage-
ment units in the topology.

Yes

tiler Array of tiler unit
objects

Defines the tilers in the topol-
ogy.

Yes

job_manager Array of job man-
ager objects

Defines the job managers in
the topology.

Yes

links Array of link ob-
jects

Defines the links connecting
the components in the topol-
ogy.

Yes

core_stacks Array of core
stack objects

Defines the core stacks of the
topology.

No

core_stack_config Object with meta
information about
the core stacks

Defines attributes for the core
stacks.

No

60

A.3 Switches

A.3 Switches
The switches of a topology are defined in the switch array introduced in Table A.1. In
the array, each switch is represented as an object containing information about id, x co-
ordinate, and y coordinate. The coordinates are used to decide the layout of the net-
work. The origin of the coordinate system is in the lower left corner. The y coordinate
can, instead of being explicitly set using an integer, be defined as "core_switch_lower" or
"core_switch_upper". If it is defined as either of those, it will be assigned dynamically.
"core_switch_lower" will set the y coordinate to the length of the longest south facing core
stack. "core_switch_upper" will set it to the longest south pointing core stack plus one.
Core stacks are described in Section A.11. Table A.2 below describes the structure of a
switch object.

A.4 Bypassable Switches
Switches can be defined to be possible to bypass. If they are, that means that if the switch is
connected to only two other switches on opposite sides, and nothing else, it will be omitted
from the topology. The two switches on the opposite sides of the omitted switch then get
connected directly to each other.

A.5 Input Priorities
For each switch, it is possible to assign a higher priority to data that traverses the switch
via specific input and output ports. If no priorities are explicitly defined, the switch will
arbitrate between the ports using round robin. If priorities are defined, weighted round
robin is used instead. The bandwidth of the switch is then divided between the ports
proportional to their assigned weights, but the order in which the ports are serviced is
still predefined [48]. Each switch object can optionally contain an array called weights, in
which the switch’s priority weights are defined. Each weight is defined as a weight object.
The details of switch weight objects are defined in Table A.3. If the user, for instance,
want traffic in the north-south direction to be prioritized twice as high as traffic in any
other direction, the following entry should be added to the switch object: "weights":{"n-
s":2}.

A.6 Dead End Switches
If a switch is only connected to one other switch, and nothing else, it is considered to be
a dead end switch. No data passes through dead end switches, and the they are therefore
omitted during the generation of the network.

61

A. Network Description Language Manual

Table A.2: Content of a switch object.

Key Content type Description Mandatory
id String Identity of the switch, used to

reference it. Must be unique.
Yes

x Integer X coordinate. Yes
y Integer or

"core_switch_upper"
or "core_switch_lower"

Y coordinate. If it is an in-
teger the coordinate is set ex-
plicitly. If it is defined as one
of the custom strings, it is set
dynamically.

Yes

bypassable Boolean Indicates whether the switch
may be bypassed.

No, de-
faults to
false.

weights Array of weight objects Contains weights prioritizing
data at specific ports.

No

Table A.3: Content of a switch weight object.

Key Content
type

Description Mandatory

Source and target direc-
tion, separated by a -
. For instance, "n-s" or
"e-w".

Integer Weight assigned to the inter-
nal connection between the
specified ports.

Yes

A.7 Crossbars
The crossbars are defined in the crossbar array. Currently, the language only supports one
crossbar per network. If a crossbar is defined, the network must not contain any switches.
Each crossbar is represented as an object with the only attribute id. Table A.4 describes
the structure of a crossbar object.

Table A.4: Content of a crossbar object.

Key Content type Description Mandatory
id String Identity of the crossbar, used

to reference it. Must be
unique.

Yes

A.8 Shader Cores
The shader cores are defined in the shader core array. Each shader core is defined as an
object with the attributes id and core number. The core number is used to identify the
core internally in the GPU model. Providing numbers is optional, but must be provided

62

A.9 MMUs, L2 Cache Units, Tilers, and Job Managers

for either all or none of the cores. If no numbers are provided, the cores get assigned their
index number in the JSON array as their core number.

The order in which the cores are added matters. If the number of cores to be added, n,
is smaller than the number of specified cores, only the first n cores in the core array will
be added.

Table A.5 describes the structure of a shader core object.

Table A.5: Content of a shader core object.

Key Content type Description Mandatory
id String Identity of the shader core,

used to reference it. Must be
unique.

Yes

number Integer Core number, used to refer-
ence the core inside the GPU
model.

No

A.9 MMUs, L2 Cache Units, Tilers, and Job
Managers

The MMUs, L2 cache units, tilers, and job managers are defined in their respective arrays,
which are listed in Table A.1. The objects for all of those components contain only one
attribute, their id.

Table A.6 describes the content of MMU, L2 cache unit, tiler and job manager objects.

Table A.6: Content of MMU, L2 cache, tiler, and job manager
objects.

Key Content type Description Mandatory
id String Identity of the unit, used to

reference it. Must be unique.
Yes

A.10 Links
The links connecting the components in the topology are defined as objects in the link
array. Each such object contains information about source and target node, identified by
their ids. If any of the nodes is a switch, the port of the switch connection is defined.

For each link, it is also possible to define a delay. The delay is used during simulations
to model the time it takes for a signal to traverse the link.

Table A.7 describes the content of a link object.

63

A. Network Description Language Manual

Table A.7: Content of a link object.

Key Content type Description Mandatory
source_node String The id of the source compo-

nent.
Yes

target_node String The id of the target compo-
nent.

Yes

source_port String ("n", "e", "s",
or "w")

The port at which the link
connects to the source node, if
it is a switch.

Only
when
source
node is a
switch.

target_port String ("n", "e", "s",
or "w")

The port at which the link
connects to the target node, if
it is a switch.

Only
when
target
node is a
switch.

delay Integer The link delay. No, de-
faults to
zero.

A.11 Shader Core Stacks

Shader core stacks are linear arrays of switches, with one shader core connected to each
switch. If shader core stacks are present in a network, there must not be any shader cores
that are defined individually. The configuration of the shader core stacks is divided into
two parts.

The attributes that are configured per stack are defined in shader core objects inside
the core stack array. Each such object contains information about the direction the stack
faces, via which switch the stack is connected to the network, and stack id. In the current
implementation, the only supported directions are north and south. The content of each
shader core stack object is described in Table A.8.

The network description file can optionally contain a core stack configuration object,
in which parameters that apply to all shader core stacks are set. Those parameters include
switch delay, core delay, root delay, whether the length of the stacks should be kept as
balanced as possible, max length, and the direction in which switches connect to cores.
Switch delay defines the delays for the connections between the switches in the stack.
Core delay defines the delays for the connections between the switches and the shader
cores. Root delay defines the delay of the connection that connects the stack to the rest of
the network. The direction in which the cores connect to the switches can be chosen to be
north, east, south, west, or the same direction the stack itself is pointing. The content of
each core stack configuration object is described in Table A.9.

64

A.12 Limitations

Table A.8: Content of a core stack object.

Key Content type Description Mandatory
id String Identity of the shader core

stack, used to reference it.
Must be unique.

Yes

base String Id of the switch that the stack
is connected to.

Yes

direction String The direction in which the
stack points ("n" or "s").

Yes

Table A.9: Content of the core stack configuration object.

Key Content type Description Mandatory
switch_delay Integer Delay on links between

switches.
Yes

core_delay Integer Delay on links between
switches and shader cores.

Yes

root_delay Integer Delay on link between each
stack and the rest of the net-
work.

No, de-
faults to
zero.

balanced_stacks Boolean Determines whether the
length of the stacks should be
kept as equal as possible.

Yes

max_length Integer Max length of a stack. Yes
core_direction String The direction in which the

shader cores are connected to
the switches ("n", "e", "s",
"w", or "stack_direction").

No, de-
faults to
w.

A.12 Limitations
In this section, we will present important limitations the user must be aware of when defin-
ing a network.

A.12.1 Switches and Crossbars
If a crossbar is defined in the network, the network must not contain any switches. A
network can not have more than one crossbar. This means that a network either contains
one crossbar, or an arbitrary number of switches.

A.12.2 Shader Core Stacks
If a network contains any shader core stacks, all shader cores must be defined by the stacks.
No shader cores can be added to the network separately in the "shader_cores" array.

65

A. Network Description Language Manual

66

Appendix B
Example Topologies

In this appendix, we present two example topologies. For each topology, we include the
definition of the topology in the JSON network description language, as well as the visu-
alization produced by the visualization script. Please note that the presented topologies
are not necessarily the topologies used in the actual Arm GPU hardware.

B.1 Topology 1
The topology defined in Listing B.1 illustrates the use of shader core stacks. In the de-
scription file, 16 shader cores and four L2 cache units are defined. When we ran the
visualization script, we chose to include only 14 cores and three caches. Hence, only 14
cores and three caches can be seen in Figure B.1. Because "balanced_stacks" is set to true,
the length of the stacks is kept as equal as possible.

Listing B.1: Specification of Topology 1
1 {
2 " label ": " Topology 1 in JSON ",
3 " min_cores ": 1,
4 " max_cores ": 16 ,
5 " switches ": [
6 {" id ": " left ", "x": 0 ,"y": " core_switch_lower "} ,
7 {" id ": " right " ,"x": 1 ,"y": " core_switch_lower "}
8],
9 " crossbars ": [

10],
11 " core_stacks ": [
12 {" id ": " stack0 ", " base ": " left ", " direction ": "n"} ,
13 {" id ": " stack1 ", " base ": " left ", " direction ": "s"} ,
14 {" id ": " stack2 ", " base ": " right ", " direction ": "n

"} ,
15 {" id ": " stack3 ", " base ": " right ", " direction ": "s"}

67

B. Example Topologies

16],
17 " core_stack_config ": {
18 " switch_delay ": 0,
19 " core_delay ": 0,
20 " root_delay ": 3,
21 " balanced_stacks ": " true ",
22 " max_length ": 4,
23 " core_direction ": " stack_direction "
24 },
25 " shader_cores ": [
26],
27 " l2_caches ": [
28 {" id ": " l2_0 "} ,
29 {" id ": " l2_1 "} ,
30 {" id ": " l2_2 "} ,
31 {" id ": " l2_3 "}
32],
33 " mmu ": [
34 {" id ": " mmu " ," label ": " mmu "}
35],
36 " tiler ": [
37 {" id ": " tiler " ," label ": " tiler "}
38],
39 " job_manager ": [
40 {" id ": "jm", " label :": " job manager "}
41],
42 " links ": [
43 {" source_node ": " left " ," target_node ": " right " ,"

source_port ": "e" ," target_port ": "w"} ,
44
45 {" source_node ": " left " ," target_node ": " mmu " ,"

source_port ": "n"} ,
46 {" source_node ": " right " ," target_node ": "jm " ,"

source_port ": "s"} ,
47 {" source_node ": " right " ," target_node ": " tiler " ,"

source_port ": "n"} ,
48
49 {" source_node ": " left " ," target_node ": " l2_0 " ,"

source_port ": "w"} ,
50 {" source_node ": " left " ," target_node ": " l2_1 " ,"

source_port ": "e"} ,
51 {" source_node ": " right " ," target_node ": " l2_2 " ,"

source_port ": "w"} ,
52 {" source_node ": " right " ," target_node ": " l2_3 " ,"

source_port ": "e"}
53]
54 }

B.2 Topology 2
The topology defined in Listing B.2 illustrates bypassing of bypassable switches, and re-
moval of dead end switches. In the configuration file, it can be seen that five switches are
defined. Because switch "s31" is only connected to one other switch and nothing else, it

68

B.2 Topology 2

Topology 1 in JSON

sc15

sc08

sc12

s12

sc07

sc13

s13

sc05

sc02

s02sc03

s03

sc00

s00sc01

s01

sc11

s11

sc17

sc06 sc16

l2_2l2_1l2_0 mmu

jm

right

tiler

left

s15s05

s06 s16

s17s07

s08

Figure B.1: Visualization of Topology 1, produced by the visual-
ization script in combination with Dot. When the script was run,
the shader core count was limited to 14 and the cache unit count
to three.

is a dead end switch. Hence, it is omitted from the generated topology in Figure B.2.
The switch "s20" is marked as bypassable. Because it is only connected to two other

switches on opposite sides, and nothing else, it is bypassed. In the visualization, this is
indicated by drawing the switch with a dashed border.

When the figure was generated, we chose to limit the number of shader cores to two
and the number of L2 cache units to one. This resulted in the shader core "sc2" and the
L2 cache unit "l2_1" being omitted from the network.

Listing B.2: Specification of Topology 2
1 {
2 " label ": " Topology 2" ,
3 " switches ": [
4 {" id ": " s00 " ,"x": 0 ,"y": 0} ,
5 {" id ": " s10 " ,"x": 1 ,"y": 0} ,

69

B. Example Topologies

6 {" id ": " s20 " ,"x": 2 ,"y": 0 ," bypassable ": " true "} ,
7 {" id ": " s30 " ,"x": 3 ,"y": 0} ,
8 {" id ": " s31 " ,"x": 3 ,"y": 1}
9],
10 " crossbars ": [
11],
12 " shader_cores ": [
13 {" id ": " sc0 "} ,
14 {" id ": " sc1 "} ,
15 {" id ": " sc2 "}
16],
17 " l2_caches ": [
18 {" id ": " l2_0 "} ,
19 {" id ": " l2_1 "}
20],
21 " mmu ": [
22 {" id ": " mmu "}
23],
24 " tiler ": [
25 {" id ": " tiler "}
26],
27 " job_manager ": [
28 {" id ": "jm "}
29],
30 " links ": [
31 {" source_node ": " s00 " ," target_node ": " s10 " ,"

source_port ": "e" ," target_port ": "w"} ,
32 {" source_node ": " s10 " ," target_node ": " s20 " ,"

source_port ": "e" ," target_port ": "w"} ,
33 {" source_node ": " s20 " ," target_node ": " s30 " ,"

source_port ": "e" ," target_port ": "w"} ,
34 {" source_node ": " s30 " ," target_node ": " s31 " ,"

source_port ": "n" ," target_port ": "s"} ,
35 {" source_node ": " s00 " ," target_node ": " mmu " ,"

source_port ": "w"} ,
36 {" source_node ": " s00 " ," target_node ": " sc0 " ,"

source_port ": "s"} ,
37 {" source_node ": " s10 " ," target_node ": " sc1 " ,"

source_port ": "s"} ,
38 {" source_node ": " s20 " ," target_node ": " sc2 " ,"

source_port ": "s"} ,
39 {" source_node ": " s10 " ," target_node ": " l2_0 " ,"

source_port ": "n"} ,
40 {" source_node ": " s20 " ," target_node ": " l2_1 " ,"

source_port ": "n"} ,
41 {" source_node ": " s30 " ," target_node ": " tiler " ,"

source_port ": "s"} ,
42 {" source_node ": " s30 " ," target_node ": "jm " ,"

source_port ": "e"}
43]
44 }

70

B.2 Topology 2

Topology 2

sc1

s10

sc0

s00

l2_0

tiler

s30

mmu jm

s20

Figure B.2: Visualization of Topology 2, produced by the visual-
ization script in combination with Dot.

71

B. Example Topologies

72

Appendix C
Markup Language Tests

In this online appendix, we will show the same topology defined using five different
markup languages. The languages are JSON, XML, YAML, DOT, and GML. Those topol-
ogy definitions were created and used to support our decision on which markup language
to use in our implementation. To avoid printing long markup language listings, we chose
to make the topology files available online at http://users.student.lth.se/lak12bwi/exjobb.

73

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2017-12-18

EXAMENSARBETE Specification and visualisation of the interconnection network of a mobile GPU
STUDENT Björn Wictorin
HANDLEDARE Jörn Janneck (LTH), Fuad Tabba (Arm)
EXAMINATOR Flavius Gruian (LTH)

Effektivare design av nätverk inom
mikrochip

POPULÄRVETENSKAPLIG SAMMANFATTNING Björn Wictorin

I takt med att antalet delsystem inom ett mikrochip blir allt fler, blir det nätverk som
kopplar dem samman allt viktigare. I detta projekt har vi skapat ett språk och ett
verktyg för att göra utforskandet av idéer på nya nätverksstrukturer enklare, snabbare
och effektivare.
Tekniken som används för att tillverka mikrochip
utvecklas mycket snabbt. Enligt en tumregel som
ofta används inom industrin, kallad Moores lag,
fördubblas antalet komponenter per chip vartan-
nat år. Eftersom designen av ett chip därmed blir
mer komplicerad, väljer man ofta att dela upp det i
flera delsystem. Dessa delsystem utvecklas var för
sig, ofta av olika företag, och kopplas sedan sam-
man via ett nätverk på chippet. Utformningen av
detta nätverk är mycket viktig, eftersom nätverket
har stor inverkan på chippets prestanda.
Inom hårdvaruindustrin är det vanligt att man

utvecklar mjukvarumodeller som simulerar den
hårdvara man designar. Simulering gör det en-
klare att utforska nya idéer, eftersom det möjlig-
gör snabbare och billigare prövning av nya eller
förändrade koncept. Baserat på resultaten från
simuleringarna kan man sedan gå vidare, och göra
en hårdvaruimplementation av de alternativ som
visade sig vara bäst. Dessutom kan den mjukvara
som ska levereras med hårdvaran, t.ex. drivruti-
ner och kompilatorer, börja testas på mjukvaru-
modellen innan hårdvaran är klar. Vi har utfört
vårt projekt på en modelleringsavdelning på före-
taget Arm.
Arm tillverkar världens mest sålda grafikpro-

cessor, kallad Mali. En grafikprocessor är en en-

het som genererar de bilder som visas på en da-
tors eller mobiltelefons skärm. En grafikprocessor
består av flera delsystem, och är därför beroende
av ett effektivt nätverk som sammankopplar dem.
I vårt projekt har vi utvecklat ett språk som kan
användas för att specificera ett sådant nätverk.
I vårt projekt har vi dessutom utvecklat ett

verktyg som består av två delar. Den första de-
len är ett tillägg till Arms mjukvarumodell av de-
ras grafikprocessor, som möjliggör specificering av
nätverkets struktur i vårt språk. Tidigare krävde
förändringar av nätverksstrukturen ändringar i
mjukvarumodellens källkod, men nu räcker det att
göra ändringar i en separat textfil. Detta går snab-
bare, och kräver ingen kunskap om hur modellen
är uppbyggd. Under projektet jämförde vi hur
många rader som behövde skrivas för att definiera
olika nätverk. I genomsnitt krävdes 48% färre
rader när vårt tillägg användes.
Den andra delen av verktyget är ett program

som översätter en nätverksspecifikation från vårt
språk till grafbeskrivningsspråket DOT. Den över-
satta filen kan sedan användas för att visualisera
nätverket med hjälp av tredjepartsprogramvara.
Syftet med visualiseringarna är att underlätta up-
ptäckter av eventuella misstag, där användaren
råkat specificera nätverket felaktigt.

	Introduction
	Goals
	Contribution to the Knowledge within the Field
	Graphics Processing Units (GPUs)
	The Graphics Rendering Pipeline
	GPU Hardware

	Networks on Chips (NoCs)
	Motivation
	Development
	Protocol Stack
	Topology and Routing

	NoC Simulator Survey
	Information Sources
	Netjson
	NoC Simulators
	Atlas
	BookSim
	Darsim
	Noxim
	VisualNoC
	Ns-2
	Garnet and gem5

	Conclusion

	Approach
	Background Survey
	GPU and NoC Theory
	Network Description in NoC Simulators
	Markup Languages

	Definition of Criteria
	Network Description Language
	Software Implementation
	Visualization Script
	Extension of the Arm GPU Model

	Verification

	Evaluation
	Fulfilled Criteria
	Lines of Code
	Flexibility of Description Files
	Time to Define Network
	Comparison with Source Code
	Implementation of New Topologies
	Discussion with our Supervisor
	Visualization

	Discussion
	Custom Topologies and Abstraction
	Support for Existing Topologies
	Lines of Code
	Flexibility of Description Files
	Comparison with Source Code
	Visualization
	Design Decisions
	New Topologies
	Mesh and Hash Tag
	Line and Narrow

	Conclusions
	Future Work
	Flexible Switches
	Routing Algorithms
	More Configuration Parameters
	RTL Generation
	List Comprehension

	Bibliography
	Appendix Network Description Language Manual
	Introduction to JSON
	Outermost Object
	Switches
	Bypassable Switches
	Input Priorities
	Dead End Switches
	Crossbars
	Shader Cores
	MMUs, L2 Cache Units, Tilers, and Job Managers
	Links
	Shader Core Stacks
	Limitations
	Switches and Crossbars
	Shader Core Stacks

	Appendix Example Topologies
	Topology 1
	Topology 2

	Appendix Markup Language Tests
	Tom sida
	Tom sida

