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Abstract

The momentum and energy injection from supernovae is one of the main feedback modes,
and is therefore key to the understanding of galaxy evolution and star formation. However,
due to low resolution, large scale galaxy simulations often have issues with accurately
modelling supernovae, and therefore rely on sub-grid models. This is especially true for
the injected momentum, where capturing the momentum generating adiabatic phase of
SNe, although important, is impossible to self-consistently model in large scale simulations.
Previous studies have shown that the final momentum injected only has a weak dependence
on the surrounding density, and that the detailed structure of the interstellar medium
(ISM) is at large irrelevant when considering the momentum. However these studies lacked
accurate modelling of the turbulence in the ISM, and instead resorted to static models,
where the velocities of the gas were ignored.

In this work, we start by retrieving a known semi-analytic solution of the early and
important adiabatic Sedov-Taylor stage, responsible for most of the momentum genera-
tion. This solution is then compared to a series of full hydrodynamical simulations using
an adaptive mesh refinement code, called RAMSES, with varying mean density of the sur-
rounding ISM. With the inclusion of atomic cooling, the evolutionary stages of supernovae
remnants are recovered, with the final momentum p found depending on the surrounding
hydrogen density n as p ∝ n−0.15, in agreement with previous studies.

We then adopt a model of turbulence by Padoan & Nordlund (1999), which was cali-
brated to produce power spectra, density and velocity distributions based on the conditions
in giant molecular clouds (GMCs). With this model of the surrounding ISM, the geometry
of the SNe shocks changes drastically, preferring channels of less dense gas, leaving higher
density filaments mostly intact. However the evolution of momentum and energy of the
system still follows the same trend as in the homogeneous case, reaching a similar peak
momentum. The momentum was found to decrease with time, which is not predicted in
the homogeneous case, but the decay appears to be on longer time scales. This reaffirms
the previous results, stating that the detailed structure of the ISM only has a negligible
effect on the momentum and energy of the early stages of SNe. Nevertheless, the SNe does
show a tendency of generating outflows of low density gas rather than affecting the high
density regions, which could have further impacts on SFR and galaxy evolution as a whole.





Populärvetenskaplig beskrivning

Supernovor är n̊agra de kraftfullaste händelserna vi ser bland stjärnor. När stjärnor, mycket
mer massiva än v̊ar egen, bränner upp sitt bränsle tynar de inte bara bort, utan exploderar
i vad vi kallar en Typ II supernova. P̊a motsatta sidan kan lättare stjärnor i sina sista
tillst̊and som vita dvärgar f̊anga upp för mycket massa och explodera som Typ I supernovor.
B̊ada dessa fallen har en stor betydelse för utvecklingen av galaxer. Utan dem hade inga
grundämnen tyngre än järn existerat i de mängderna vi ser, d̊a majoriteten av dessa endast
kan skapas i den extremt varma explosionen. Supernovor är ocks̊a viktiga i att skjuta ut
gas fr̊an galaxer genom att skapa massiva vindar. Utan dessa vindar skulle stjärnor födas
för snabbt och förbruka gaserna i galaxer. Detta skulle innebära att galaxer inte hade haft
tillräckligt med gas för att fortsätta föda stjärnor än idag.

I och med supernovors p̊averkan p̊a universumet vi ser, är det intressant för astrofysiker
att först̊a hur dessa explosiva händelser utvecklas. Men supernovor, som med mycket
inom astronomi, utvecklas under väldigt l̊ang tid. Därav kan observationer endast ge en
ögonblicks bild, vilket begränsar v̊ar tillg̊ang till fysiken bakom dem. Därav använder
astrofysiker ofta sig av datormodeller för att fylla i bilden, med högupplösta simuleringar
som kan återskapa en detaljrik bild av supernovor, liksom andra aspekter av astronomi.

Men när större skalor inom astrofysiken simuleras, s̊a som galaxer, s̊a kan inte dagens
datorer komma upp i en tillräcklig upplösning för att simulera supernovor utan att simu-
leringen tar för l̊ang tid. Därför används oftast vad som kallas ”sub-grid modells”, för att
inkludera supernovor även om upplösningen inte kommer ner i dem skalorna. För att skapa
dessa modeller har tidigare studier simulerat supernovor p̊a mindre skalor för att se hur
de utvecklas i olika medier. Dessa simuleringar har tagit hänsyn till den omgivande gasen
runt stjärnor, och sett att bland annat energin och rörelsemängden p̊averkas av mängden
av denna gas. Men dessa simuleringar har hittills inte inkluderat gasens rörelser, utan
använt sig av en stillbild p̊a hur den borde se ut. I verkligheten rör sig den interstellära
gasen slumpmässigt, i vad som kallas turbulens, och den gör s̊a supersoniskt, det vill säga
snabbare än ljudets hastighet. Denna turbulens innebär inte bara att gaserna rör sig, utan
även att det bildas tjockare och tunnare skikt-liknande strukturer, som man kan se i t.ex.
rök. Eftersom hur gasens rörelser p̊averkan p̊a supernovor inte har undersökts än, s̊a vet
vi ännu inte hur markanta de är.

Projektet som har gjorts till denna rapport har försökt simulera supernovor i ett mer
realistisk, rörligt medium än vad som har gjorts tidigare. Med dessa simuleringar visar vi
att trots att supernovorna f̊ar annorlunda former, s̊a p̊averkas inte den slutgiltiga energin
eller rörelsemängden markant. Vi visar även att eftersom explosionen föredrar att färdas
genom tunnare gas, s̊a kan enskilda supernovor trycka bort den tunnare gasen, medan de
lämnar kvar den tjockare regionerna. Detta kan p̊averka hur mycket gas som en enskild
supernova skjuter ut, och därmed hur effektiva de är p̊a att reglera stjärnformation.
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Chapter 1

Introduction

Supernovae (SNe) are a key factor in the evolution of the Universe. These explosions,
resulting from the core-collapse of massive stars (type II) or the sudden eruption of white
dwarfs exceeding the Chandrasekhar mass limit (type Ia), are not only the main source of
iron and heavier elements, but also drives the supersonic turbulence in the ISM and galactic
outflows of gas with the momentum injection. Therefore, understanding these events is key
for accurate modelling and understanding of galaxies and larger structures, as for example
the injected momentum is an important factor in star formation (McKee & Ostriker 2007;
Mac Low & Klessen 2004), with the resulting turbulence causing over-densities necessary,
while the outflows of gas regulates the star formation rate.

The typical length scale of supernovae remnants are of the order of parsecs, and this
is the scale where the momentum and energy is deposited. However most galactic and
cosmological simulations do not reach high enough resolutions to properly model the feed-
back from SNe, and therefore rely on sub-grid models for the momentum injection (Agertz
et al. 2013; Stinson et al. 2006). This takes the energy and momentum injection as crucial
free parameters, requiring extensive knowledge of the evolution of supernovae to accurately
model galaxy formation and evolution.

(a) ST (b) PDS (c) MCS

Figure 1.1: An illustration of the pressure P (red) and density ρ (blue) profiles with the
radius r from the centre on the x-axis of the Sedov-Taylor (ST), Pressure driven snowplough
(PDS) and momentum conserving snowplough stages (MCS).
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CHAPTER 1. INTRODUCTION

A simple picture of the evolution of a supernova in a homogeneous medium, specifically
its shockwave and resulting remnant can be separated into four stages (see Kim & Ostriker
2015; Shu 1991, chap. 17). The first is the stage of free expansion, where the supernova
generates a shockwave that moves at a constant velocity until it has swept up enough
interstellar mass that the shock is no longer dominated by the ejecta from the supernova.
At this point the shock transitions into the second stage. This so called Sedov-Taylor (ST)
stage, roughly follows the analytic solution developed independently by the scientists giving
its name, see the illustration in figure 1.1a. Here the shock bubble is driven via thermal
expansion, with only energy losses via adiabatic cooling being non-negligible. This is
because the interior of the bubble has typical temperatures of T > 106 K, where radiative
cooling is largely inefficient. However as the work done by the adiabatic expansion causes
a decrease of thermal energy density and therefore temperature. At some point the bubble
reaches the lower temperatures (T ∼ 106 K) where collisional processes suddenly becomes
more efficient (Shu 1991). At this time (tST ∼ 10 kyr), the SN remnant transitions into
the third phase, the significant radiation loss from collisional cooling causes a cool dense
shell to form just behind the shock front. This shell is pushed forward by the still hot, high
pressure in the hot interior of the bubble, see figure 1.1b. After some time (∼ 4 − 5tST ),
the cooling causes the inside pressure to drop to the point that it is comparable to the
outside pressure (figure 1.1c). In the resulting fourth and final stage the shock is only
pushed forward by the momentum it has accumulated during its evolution. The last two
stages are referred to as the pressure driven and momentum conserving snowplow phases
(PDS and MCS), named by their main source of propulsion. This general picture holds for
all types of SNe, as differences in energy and chemical composition generally only affect
the time scale and extent of each phase, especially past the stage of free expansion where
the shock is dominated by mass from the surrounding ISM.

As indicated earlier, the multi-stage nature of a supernova blast results in inaccurate
results for inadequate resolutions, as often seen in large scale models. The most glaring of
these is the overcooling problem (Stinson et al. 2006; Creasey et al. 2011). Here the the
lack of time and spatial resolution does not allow for the Sedov-Taylor and the pressure
driven snowplow stages to be captured accurately. The result of this is that these stages
are cooled too fast resulting in lower momentum, as this is mostly gained during the ST
and PDS stages. For this reason, several simulations have been done to study SN shocks in
great detail (Martizzi et al. 2015; Kim & Ostriker 2015; Thornton et al. 1998; Haid et al.
2016) in order to parametrise how the energy and momentum injection from SNe depend
on environmental factors, and provide accurate sub-grid models.

It has been shown that the simple model of SNe gets a more complicated when the
diversity of the ISM is accounted for. Different densities of the surrounding medium affect
the cooling as ∼ n2, and with different elements (such as oxygen and carbon) the cooling
can be even more efficient. A higher surrounding density and/or metalicity then causes
the shocked bubble to cool faster, causing the transitions between the ST, PDS and MDS
to happen earlier, and decreasing the total energy and momentum injected into the ISM
(Thornton et al. 1998).

The evolution of SNe gets complicated further by the fact that the ISM in not ho-
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CHAPTER 1. INTRODUCTION

mogeneous. In fact it is better described by several thermodynamical phases (McKee &
Ostriker 1977); a hot ionized phase (T ∼ 106 K, n ∼ 10−2 cm−3), a warm phase (T ∼ 104,
n ∼ 10−1 − 100 cm−3) and cold molecular clouds or GMC’s (T ∼ 102, nH ∼ 101 − 102

cm−3). These phases are partly caused (and therefore subject to) turbulence due to su-
pernovae and gravitational instabilities (with other processes, such as UV- background
radiation causing heating). Within the GMC’s the turbulence causes velocity dispersions
proportional to the size of the cloud (Larson 1981), such that for a cloud on the scale of
10-100 pc we expect a dispersion of ∼ 5 km/s.

As the ISM cannot be considered homogeneous, a SN shock will encounter different
densities, pressure and temperatures in different directions. This could have implications
on the supernova, as the Sedov-Taylor phase is dependent on the pre-shock (i.e outside)
values of pressure, density and velocity, and as the extent of the pressure driven snowplow
phase is limited by the outside pressure. This results in a non-spherically symmetric prop-
agation, with the shock moving slower in denser volumes. In spite of these dependencies,
the resulting momentum and energy have been shown to only change moderately if at all
in hydrodynamical models compared to their equivalent homogeneous models (Martizzi
et al. 2015; Kim & Ostriker 2015). However, in both of these studies the kinematics of the
supersonic turbulence in the ISM was partly ignored. In Kim & Ostriker (2015), the differ-
ent phases of the turbulence where generated using thermal instabilities, whereas Martizzi
et al. (2015) adopted a static model, assuming a static log normal density distribution,
matching a Kolmogorov power spectrum E(k)dk ∝ k−5/3dk, where k is the wavenumber.
The static ISM was justified by assuming that the velocities of the turbulence was negli-
gible compared to the velocity of the supernova shockwave in its earlier stages where, as
previously mentioned, most of the evolution of the momentum occurs.

The assumption that the early stages of supernovae are not affected by turbulence
has been tested by Haid et al. (2016), where a one dimensional analysis has found that
the inclusion of supersonic turbulence increased the total injected momentum from SNe by
16% to ∼ 100%, depending on the Mach number of the turbulence. The higher momentum
injection may have been caused by the lower amounts of swept up mass which were found
for higher Mach numbers, as the extent of the supernovae shockwaves depend the cooling,
which is less efficient for low densities, resulting in higher momentum injection. However
no such conclusions were made by Haid et al. (2016).

On the point of turbulence, one usually differentiates two types of turbulence: solenoidal
(divergence-free) turbulence, where the turbulence tends to form small scale vortices, and
compressive (or curl-free) turbulence. In supersonic turbulence, both of these can be
prevalent (Mac Low & Klessen 2004), however produced power spectra differ depending
on which is dominating the driving. In solenoidal dominated turbulence, one expects a
spectrum as the one used in Martizzi et al. (2015), E(k)dk ∝ k−5/3dk, while compressive
turbulence generates a power spectrum as E(k)dk ∝ k−2dk (Federrath 2013; Mac Low &
Klessen 2004; Burgers 1948). The turbulence of the interstellar medium is inevitably going
to be a combination of both solenoidal and compressive driving. However compressive
dominated supersonic turbulence has a fractal dimension closer to those observed in GMC
(Roman-Duval et al. 2010; Federrath 2013), which reflects a structure closer to sheets of
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CHAPTER 1. INTRODUCTION

high density, with more volume of low density. These high density sheets surrounded by
low density regions could have an impact on the evolution of SNe, as the shock bubble
expands along the path of least resistance. The model of turbulence used by Martizzi
et al. (2015), which produces a higher, more space filling fractal dimension, may not fully
capture this type of expansion.

Another point is that Martizzi et al. (2015) ignored the kinematic aspect of the super-
sonic turbulence. While this could be reasonable as the velocities of the turbulence are
much lower than that of a supernova, the full impact of self consistent supersonic turbu-
lence has not been tested. Studies are required in order to assure that the final momentum
injected in the ISM is the same regardless of the stochastic nature of the turbulence.
This is exaggerated by the several instabilities that can occur at the interface of two dif-
ferent mediums, i.e the supernovae shock front and the outside medium. These include
Rayleigh-Taylor instabilities (Sharp 1984), where the boundary between the shock and
ISM is distorted, and nonlinear thin shell- instabilities, which can occur in the boundary
between the differing densities of the shock and the ISM.

If two supersonic shocks collide, in this case the supernova and the turbulent ISM, a
number of events could happen. The most basic impact could be that the collision causes an
increase in temperature, as kinetic energy is converted to thermal, and subsequently cools,
lowering the injected momentum. Another could be that the shock front gets punctured,
resulting in a decrease of pressure within the bubble as it reaches equilibrium with the
ISM, which would drastically change the evolution of the SNe. These two possibilities
might have an negligible effect, but should occur in realistic turbulent flows, and the effect
of these on supernovae has not been studied in detail.

The effects of the plethora of possible events that may affect supernovae might not be
significant. If, for example, they only occur or are impactful at the momentum driven
snowplow stage, not much is changed in the energy and momentum output, as reasoned
by (Martizzi et al. 2015). Conversely, if it’s found that a turbulent medium has effects on
supernovae in their early times, as in the Sedov-Taylor or pressure driven snowplow stages,
changes in kinetic energy or momentum may be significant enough to alter supernovae’s
impact on the ISM. In this work we investigate whether the impact of the kinematic aspect
of turbulence is in fact negligible as stated by Martizzi et al. (2015); Kim & Ostriker (2015),
or if it has to be accounted for in future simulations involving supernovae.
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Chapter 2

Methods

To model the shocks generated by SNe, three methods were used.

1. Semi-analytical solution: Here the known semi-analytical solution for the energy
conserving Sedov-Taylor (ST) stage is recovered by solving a set coupled ODE’s,
described fully in section 2.1. The results from this are then used to benchmark the
full hydro dynamical numerical simulations.

2. Numerical simulations in homogeneous media: This step used hydrodynamical
simulations to model the resulting explosion of supernovae in homogeneous media of
varying density. Using the results from the semi-analytical solution as benchmarks,
the resolution required to adequately model the shock-wave is considered and the
resulting energy and momentum found is then compared with the results found in
Kim & Ostriker (2015). This method is detailed in section 2.2.2.

3. Numerical simulations in turbulent media: Finally, with recovered known so-
lutions to the evolution of SNe remnants, the novel simulations of supernovae in
turbulent media are produced, as outlined in section 2.2.3.

2.1 Semi-analytical solution to the ST-stage

The analytic solution was based on a known model summarised below (for details see Shu
1991). The governing hydrodynamical Euler equations, i.e mass, momentum and energy
conservation for a spherical symmetric explosion from a point source can be written as

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρu) = 0, (2.1)

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂P

∂r
, (2.2)

∂

∂t

[
ρ

(
ε+

1

2
u2
)]

+
1

r2
∂

∂r

[
r2ρu

(
ε+

P

ρ
+

1

2
u2
)]

= 0, (2.3)
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2.1. SEMI-ANALYTICAL SOLUTION TO THE ST-STAGECHAPTER 2. METHODS

where ρ, P , u, ε are the density, pressure, velocity and specific internal energy at position r
at time t. These equations are only valid for a spherically symmetric shockwave and assume
no energy loss outside of adiabatic expansion, which is the condition for the ST-stage in a
spherically symmetric homogeneous medium.

A solution to these coupled ODEs can be derived using self-similar arguments. When
doing this, one can define a dimensionless variable ξ as

ξ(r, t) = r
( ρ1
Et2

)1/5
, (2.4)

where E the energy deposited in the point and ρ1 is the density of the pre-shock gas. The
position and value of the velocity of the shock are then given by

rsh = ξ0

(
Et2

ρ1

)1/5

(2.5)

Ush =
2

5
ξ0

(
E

ρ1t3

)1/5

, (2.6)

where ξ0 = ξ(rsh), which needs to be calibrated for the correct solution. With ξ, and
assuming an adiabatic equation of state, eqs.(2.1)-(2.3) can be written as

−ξdα

dξ
+

2

(γ + 1)

[
3αv + ξ

d

dξ
(αv)

]
= 0, (2.7)

−v − 2

5
ξ

dv

dξ
+

4

5(γ + 1)

(
v2 + vξ

dv

dξ

)
= −2

5

(
γ − 1

γ + 1

)
1

α

(
2p+ ξ

dp

dξ

)
, (2.8)

−2(p+ αv2)− 2

5
ξ

d

dξ
(p+ αv2)

+
4

5(γ + 1)

[
5v(γp+ αv2) + ξ

d

dξ
[v(γp+ αv2)]

]
= 0, (2.9)

with the normalised variables

α(ξ) = ρ(r, t)/ρsh = 1 for ξ = ξ0, (2.10)

v(ξ) =
rsh
r
u(r, t)/ush = 1 for ξ = ξ0, (2.11)

p(ξ) =
(rsh
r

)2
P (r, t)/Psh = 1 for ξ = ξ0, (2.12)

and the requirement

32π

25(γ2 − 1)

∫ ξ0

0

[p(ξ) + α(ξ)v2(ξ)]ξ4dξ = 1, (2.13)

for conservation of total energy, where γ is the adiabatic exponent. For a more detailed
description, see Shu (1991).

9



2.2. NUMERICAL SIMULATIONS CHAPTER 2. METHODS

In this thesis, the coupled ODE’s (2.7)-(2.9) were solved such that dv/dξ was expressed
independently of dα/dξ and dp/dξ

dv

dξ
=

5

4

(
γ+1
γ−1

αv −
[(

4v
5(γ+1)

− 1
)
− 4γv

5(γ2−1)
+ 2/5+γ

γ−1

]
αv2 − 6

5
( 2γv
γ+1
− 1)p

)
1

γ+1

(
γp+ 2αv2 − γ

γ−1
2αv2

)
−
(

1− γ+1
γ−1

)
αv − γ+1

2(γ−1)
α

. (2.14)

This was then solved by a fourth order Runge-Kutta (RK4), stepping backwards from
ξ = ξ0, for a given ξ0. In each step dv/dξ was calculated and then used to find dα/dξ and
dp/dξ, which could be expressed as

dα

dξ
= −

6
(γ+1)ξ

αv − 2
γ+1

αdv
dξ

2
γ+1

v − 1
(2.15)

dp

dξ
= −2

5

(
2

γ + 1
v − 1

)
dv

dξ
−
(

4

5(γ + 1)
v − 1

)
v

ξ
− 4(γ − 1)

5(γ + 1)

p

αξ
(2.16)

The program solved the ODE’s for different ξ0’s (increased by increment steps) and then
calculated the discrete version of (2.13) for the given ξ0 until it is equal to 1 within a
tolerance of 0.0001. No advanced scheme was used to find ξ0 as eq. (2.13) is monotonically
increasing, and the value is known to be around ξ0 ≈ 1.15 (Shu 1991). With the correct ξ0
the RK4 scheme was used again and the solution is converted into the physical normalised
variables (i.e ρ/ρsh etc.), and later used to validate the full hydrodynamical numerical
simulations. The results from this section are shown in section 3.1.

2.2 Numerical Simulations

2.2.1 RAMSES

For the hydrodynamical simulations, the program RAMSES (Teyssier, R. 2002) was used.
RAMSES uses the Godunov finite volume method (Godunov 1959) for solving the more
general case of the Euler equations shown in equations (2.1)-(2.3) on a Cartesian grid, with
optional modules to solve physics as magnetic and gravitational forces, cooling of gas, etc.
RAMSES also utilizes an adaptive mesh refinement to speed up computational time by only
refining to a high degree regions of interest. At every time-step the spatial grid is updated
and cells are marked for refinement if certain requirements are met. The requirement used
in this project looks at the interface between a cell and its neighbour and interpolates
a gradient of some variable ∇y. If the normalised value of this is greater than a limit
set by the user, the cell and its neighbours are marked for refinement and subsequently
divided into 8 child cells. This is done from a minimum level, which is applied to the entire
volume, to a maximum level for the regions of most interest. At each level l the resolution
is dx = L/2l, where L is the side length of the simulation box.

For the reasons stated above, RAMSES is widely used in the computational astrophysics
community, and has had several astrophysical routines added, such as models for star
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Figure 2.1: Illustrative figure of the adaptive grid used in RAMSES. As can be seen, in this
case regions of high density are well refined, while low density regions left fairly un-refined.
Taken from http:://yt-project.org

formation, stellar feedback, radiative pressure and background radiation (Agertz et al.
2013). For the purposes of this thesis, the gravity and hydrodynamical solvers were used,
as well as the gas cooling module, which takes the density, metalicity and temperature for
each cell, and calculates the energy loss from radiative cooling based on a pre-calculated
table.

2.2.2 Homogeneous Medium

For SNe in homogeneous medium, a parameter space was explored and compared to the
results found in Kim & Ostriker (2015). The medium was initialised in a box of side length
L = 100 pc, with hydrogen number densities n = 100, 10 and 1 cm−3, fixed temperature
T0 = 104 K and metalicity Z = Z�. As described earlier, n = 100, 10 would correspond
to the typical densities of GMCs at, while n = 1 are more in line with the surrounding
hot ionized gas. The temperature chosen is consistent with Martizzi et al. (2015); Kim &
Ostriker (2015) and while not realistic for GMCs, it would cool fast in the dense media.
From this, the density and pressure where calculated as ρ = nmH/X, P = γρkbT/(mHµ),
where X,µ are the hydrogen fraction and mean molecular weight respectively, and mH the
mass of a hydrogen atom. For all densities the resolution was varied to see how well the
supernova was modelled, comparing to the semi-analytical solution derived earlier and the
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results from Kim & Ostriker (2015). The condition for higher resolution was set such that
neighbouring cells with ∇P > 0.1 (normalised) were refined.

The supernova was initialised by depositing thermal energy E = 1051 erg into a volume
dx3, where dx is the smallest resolved length. This is the canonical value for the energy of
supernovae, given from the ejection of 1M� with velocity of 104 km/s (Shu 1991). This came
with an added density ρSN = ρ evenly distributed in the small box. In this box, a scalar was
added, which advects passively, not affecting the other variables. The corresponding scalar
field acts like a “tag”, and allows for the tracking of the distribution of ejecta material, as
well as locating which cells have been injected with energy and momentum. This tag could
also used to force refinement in certain simulations, to keep maximal resolution within
the supernova bubble. No kinetic energy was initialised, but this is not necessary as the
supernova should quickly settle into the attractive ST solution. The initialisation into a
Cartesian box could pose problems due to the lack of spherical symmetry (which is more
realistic), but this was assumed to have an negligible effect on the resulting remnant due
to the small initialisation volume.

The cooling was self-consistent, i.e applied for all conditions, both within the supernova
and in the outside medium. The cooling in the outside medium was not done in Martizzi
et al. (2015); Kim & Ostriker (2015), which is less realistic but offers pressure equilibrium
which is a more controlled setting.

The supernova was tracked with outputs taken with frequency ∆t = 0.25 kyr, giving the
variables P , ρ, u, Z and the tag at each cell at the given time. These were then analysed
and manipulated using the python module YT (Turk et al. 2011) to get the temperature
T , total thermal, kinetic and total energies ET , EK , E and the total radial momentum pr.
The energies and momentum were defined as the sum over the respective variable in all
cells, with

pr,i = miui · r̂i, (2.17)

EK,i =

{
p2r,i
2mi

, if vari > 0

0, else
(2.18)

ET,i =

{
3miP

2
i

2ρi
, if vari > 0

0, else
(2.19)

for cell i, where mi is the mass and vari the value of the tag within the cell. The condition
that the tag had to be present was used, such that no thermal energy from the medium
was accounted for, but still get most of the kinetic energy within a consistent volume.

Values of interest were E and pr, and the time and radial extent in the transition
between the ST-stage and pressure driven snowplow stage tST . The values for the transition
had to be confirmed as it is before here that most of the momentum is gained. These were
found via comparisons with the analytic solutions found in section 2.1, via scaling the
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Run dxmin (pc) n (cm−3) Total time of simulations (kyr)
H-n100l610 0.1 100 79.54
H-n100l610nogravnotag 0.1 100 98
H-n100l69 0.2 100 245.87
H-n100l69nograv 0.2 100 245.97
H-n10l610nogravnotag 0.1 10 149.66
H-n10l69 0.2 10 72.93
H-n10l69nogravnotag 0.2 10 97.87
H-n1l610nogravnotag 0.1 1 239.84 (terminated)
H-n1l69nogravnotag 0.2 1 171 (terminated)

Table 2.1: The simulations done of SNe in homogeneous mediums. The parameters varied
where the number density of hydrogen n and highest level of refinement (10 or 9) quantified
by the resulting dxmin. runs which was made with self gravity turned off, or did not enforce
refinement with the tag are marked nograv and/or notag. All parameters not mentioned
were fixed to values Z = Z�, T0 = 104 K and side length of simulation box L = 100 pc.
The n = 1 cm−3 runs were terminated before the final measurements (10 tST ) due to time
and storage constraints.

solutions using eqs. (2.5), (2.6) and the relations

ρsh =

(
γ + 1

γ − 1

)
ρ1 (2.20)

ush =
2

(γ + 1)
Ush (2.21)

Psh =
2

(γ + 1)
ρ1U

2
sh, (2.22)

(see Shu 1991). The equations (2.20)-(2.22) come from the strong shock limit of the
Rankine-Hugoniot shock jump conditions (Rankine 1870; Hugoniot 1859), which is the
set of equations describing mass, momentum and energy conservation of the pre- to post-
shock jump. With the analytic solutions scaled, the time of transition tST was estimated
as the mid point between when the pressure deviates from the analytic solution and when
the pressure had reaches the typical PDS shape. The final energy and momentum were
also extracted, defined as the values at the time t = 10tST . This definition of the final
time is consistent with Kim & Ostriker (2015), and is a good approximation of the final
momentum, as at t = 4− 5tST most of the momentum has already been gained.

The parameters varied over the simulations are shown in table 2.1. n was varied for
comparison with multiple data points in (Kim & Ostriker 2015), while the resolution,
inclusion of gravity and forced refinement with the tag being varied to optimise the runs.
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2.2.3 Turbulent Medium

Turbulence patch

(a) Density probability distribution function
f(ln(ρ/ρ0)), with the density normalised by the
average (or initial) density ρ0.

(b) Power spectrum in blue, k−2 shown as the
dotted line, where k is the wavenumber.

(c) The projected density

Figure 2.2: Density PDF, power spectrum of turbulence and the projected density of
turbulence with Mach number 15.

The patch to RAMSES which produced the turbulence (Padoan & Nordlund 1999) did so
by computing two forces, which are applied with random scaling over a limited sphere in
Fourier space. It then oscillates between the two forces for one turnover cycle (roughly equal
to crossing time for the turbulent gas), after which it replaces one of the forces and repeats
the process. The amplitude of the force is given by the ratio of the amplitude of the velocity
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and turnover time, both of which are set by the user. For the simulations done here, the
amplitude of the velocity was set by a Mach number, chosen such that the amplitude would
roughly follow the dispersion typical for the size of the cloud; σ (km/s) = 1.1L0.38 (pc) ∼
6 km/s for our box (Larson 1981). After running for some cycles of turnover time, this
process produces density PDFs similar to those found in Federrath (2013), as shown in
figure 2.2. The projected density produces a sheet-like space filling structure, with a power
spectrum that roughly follows E(k)dk ∼ k−2dk. However this was only achieved without
gravity, as when this was included, the simulation diverged to higher RMS velocities,
shallower slopes in the power spectrum and non lognormal density distribution. However
as we are concerned about the effects from the type of medium produced without gravity,
which reflects the environment in GMC’s (Roman-Duval et al. 2010; Federrath 2013), this
was deemed acceptable.

Simulations

To detonate a supernovae, similar to what was done for the homogeneous medium, the
star particle module in RAMSES was changed to generate a tracer particle at the start of
the simulation. This particle was set free in the box while the turbulence was driven for
approximately two turnover times. After this point the feedback module in RAMSES was
called, which had been changed to insert a second passive scalar, which forced refinement
to the maximum level. When the maximum resolution had been reached locally, thermal
energy of 1051 erg was injected into one of these cells along with some mass, which then
initiated the supernova, and the second scalar was removed such that refinement was not
forced unnecessarily. At this point, the force driving the turbulence was switched off,
such that it would not impact the evolution. While some effects that the forcing module
intends to simulate, like gravitational instabilities, would still be affecting the supernova,
the implementation of these are not realistic within the bubble, and were therefore turned
off. All runs were made with an initial homogeneous number density of n0 = 100 cm−3,
as supernovae in GMC’s were of interest. Within this, the Mach number was varied,
taking values of M = 10 and M = 15 which are the Mach numbers in a typical GMC
(Roman-Duval et al. 2010).

To investigate the evolution of energy and momentum of the supernova, both the asym-
metry and momentum of the now turbulent medium had to be taken into account. As the
medium could cause the bubble to gain an asymmetric morphology, the adiabatic expansion
cannot be assumed to be only radial. Therefore instead of measuring the radial momen-
tum pr, here we instead looked at the magnitude of the momentum in each cell p = |p|,
and summing over all cells to get the total momentum. A second complication comes
when separating the original momentum of the ISM, from the momentum injected by the
SN. First it was attempted to do so using the previously mentioned tags, only looking at
cells having the tag larger than a certain value. But this proved difficult when only small
amounts of the tag was found in the shell of the SN-shock, and this value also changed over
time. Another option considered was to do two runs: one with a supernova and one with
only decaying turbulence, subtracting the total energy and momentum of the box of the
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second from the first. This poses a problem as time steps are variable, meaning that there
might not be a comparable time, so instead a fit was made to the decaying turbulence.
This was simplified by that both the kinetic energy and momentum decayed linearly over
the time scales considered (kyr). This was not always the case with the thermal energy,
but this constitutes very little of the total energy, so the decay of this could be taken as
linear without affecting the results.
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Chapter 3

Results

3.1 Semi-analytic solution to the ST-stage

The pressure, density and velocity radial profiles for the semi-analytic solution are shown
in figure 3.1 and are in general agreeance with what is stated in Kim & Ostriker (2015) and
Shu (1991), only differing slightly in the value of ξ0, which was found here as ξ0 = 1.1515
instead of the 1.1517 in Kim & Ostriker (2015).

Figure 3.1: The normalized density, velocity and pressure profiles found using the semi-
analytic solution.
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3.2 Homogeneous Medium

As seen in figure 3.2, the ST, PDS and MDS were all retrieved. This was true for all
simulations except for the n = 1 cm−3 simulations, which were terminated in the transition
between PDS and MCS due to time and storage restrictions. The pressure and density
(see figure 3.2) were captured in the ST stage and then in the PDS stage, as expected from
the cooling, the density was concentrated into a shell with little pressure, while the highest
pressure was found inside this shell. The pressure continued to drop, ultimately leaving
the cold shell being driven by the conservation of momentum: the MCS stage.

The ST-stages (see figure 3.2 a,b) were realised very close to the semi-analytical solution,
with the expected radius of the shock front laying almost exactly at where eq. 2.5 predicts.
However it can be noted that the slopes between the shock-front and outside medium are
not steep enough to be considered as discontinuities, which is expected in shocks. Some
discrepancies might be due to the fact that the the semi-analytical solution assumes a strong
shock (i.e. Mach number tending to infinity). Without the strong shock assumption,
eq.(2.20)-(2.22) are no longer completely valid, which might explain the lower pressure
inside the front. However, it might also be due to numerical artefacts from the initialisation.
As the shock was initialised as a cube, some artefacts occur from that the initial velocity
lies purely on the Cartesian axes, resulting in a cube shaped bubble in the early stages as
can be seen in figure 3.3. These artefacts are removed by diffusion in later times resulting
in profiles more similar to the semi-analytic solutions as seen in figure 3.3b. However,
some of the initial velocity artefacts appears to be conserved throughout the evolution,
causing artefacts behind the shock as seen in figure 3.4b. Similar artefacts in density do
also appear in the late stages of the supernova’s evolution, as seen in figure 3.3c, an effect
credited again to the mapping to a Cartesian grid by Kim & Ostriker (2015).
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(a) Density profile at ST stage. Both from RAM-
SES and the semi-analytic.

(b) Pressure profile at ST stage. Also with both
profiles.

(c) Density profile at PDS stage. (d) Pressure profile at PDS stage.

(e) Density profile at MDS stage. (f) Pressure profile at MDS stage.

Figure 3.2: Averaged profile plots of ρ and P at the ST, PDS and MDS stage from H-
n10l69notagnograv run.
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(a) t = 0.98 kyr

(b) t = 4.16 kyr

(c) t = 97.87 kyr

Figure 3.3: Projection plots and averages profile plots of the density for different times in
the ST stage. Run H-n10l69notagnograv.
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(a) Projection plot of temperature at t = 12 kyr. (b) Velocity profile at t = 4.42 kyr.

Figure 3.4: Figures showing the artefacts found in temperature and velocity.

Other artefacts found were those of the temperature, which was also subject to the
Cartesian artefacts, where at later times the temperature is higher at the diagonals, as
seen in figure 3.4a. This artefact in temperature is most likely caused by the velocity, as
the temperature is calculated from the total energy, subtracting the kinetic contribution
(i.e. v2). So an artefact in velocity will translate into temperature, as the temperature
is a derived quantity. This might however effect the evolution as a whole as the cooling
function is temperature dependent, so these artefacts are kept in mind when analysing the
evolution of the energy and momentum.

The typical energy and momentum evolutions of the supernovae are shown in figure
3.5, which is consistent with the current understanding of the evolution of SNe bubbles
(Martizzi et al. 2015; Kim & Ostriker 2015; Shu 1991). Most of the momentum is gained
during the ST-stage, where the most of the energy is conserved. The transition from
the ST stages coincides with a decrease in thermal energy. At the end of the PDS stage
the momentum and temperature clearly converges, while the kinetic energy continues to
decline. The time of the transition between the ST-stage and PDS stages are shown in
table 3.1, along with the radius of the shock bubble rST , total energy EST and momentum
pST at the transition for all simulations. There appears to be only small little differences
between runs with and without gravity and forced refinement with the tag. However, while
tST , rST and pST is consistent across all runs for the same density, the energy differs from
resolutions of ∆x = 0.1 pc to 0.2 pc, which might be due to the artefacts in the velocity.

Reassuringly, the fitted functions for tST , rST and pST matches those found by Kim &
Ostriker (2015), with them being found here for runs with ∆x = 0.1, pc without gravity
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or tag refinement as

tST = 34.9 kyr n−0.56 (3.1)

( = 40.00 kyr n−0.59)

rST = 19.99 pc n−0.42 (3.2)

( = 22.10 pc n−0.43)

pST = 1.79 · 105 M� km/s n−0.14 (3.3)

( = 2.00 · 105 M� km/s n−0.15),

where the equalities of in parenthesis are the relations found in Kim & Ostriker (2015),
which have generally larger constants than found here. This confirms the weak dependence
on the density of all variables, especially pST . The energy in the runs with n = 1 cm−3

seems to be lower than that in n = 10 cm−3, which should not be the case, but this is
likely due to the definition of tST used here being approximate. But as stated the fitted
variables agree well with those found in Kim & Ostriker (2015), so the numerical solutions
found here appears valid.

For the final values of the momentum pfin and energy Efin are listed in table 3.2, with
the fitted relation of pfin to n found as

pfin = 2.6 · 105 M� km/s n−0.15 (3.4)

( = 2.8 · 105 M� km/s n−0.17),

where again there is good agreeance with the relation in Kim & Ostriker (2015). In table
3.2, the ratio pfin/pST for the different results can be also be found. In general Kim &
Ostriker (2015) found the ratio pfin/pST ∼ 1.48 for all densities considered here, so the
n = 100 cm−3 appears lower, especially for the lower resolutions. This was not the case for
n = 10 cm−3, where all resolutions gave approximately the same results, and the ratio is
consistent with pfin/pST ∼ 1.46. This implies that n = 100 cm−3 is slightly under-resolved
even at ∆x = 0.1 pc, however it is still within 10% of what is found in Kim & Ostriker
(2015). It can be noted that the accumulated momentum both at tST and at tfin is an
order of magnitude larger than that in the phase of free expansion, ∼ 105 compared to
∼ 104 M� km/s (1 M� ejected at 104 km/s), showing the importance of the evolution in
the adiabatic stages.
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(a) Kinetic EK , thermal ET and total Energy E. (b) Total radial Momentum

Figure 3.5: The energy and momentum time evolution of run Run H-n100l610notagnograv.
Time is in log scale and normalized to tST .The transition times from ST to PDS (tST ) and
PDS to MCS (tPDS) are indicated in order by the dotted lines.

Table 3.1: The time, radius of the shock bubble, total energy and momentum at the
transition from the Sedov-Taylor stage to the pressure driven snowplow stage.

Run tST (kyr) rST (pc) EST (1050 erg) pST (105 M�km/s)
h-n100l610 2.7 2.93 7.17 0.970
h-n100l610nogravnotag 2.7 2.93 7.19 0.969
h-n100l69 2.72 2.9 6.52 0.960
h-n100l69nograv 2.72 2.92 6.52 0.960
h-n10l610notagnograv 8.82 7.43 8.37 1.26
h-n10l69 8.93 7.41 8.27 1.27
h-n10l69notagnograv 8.93 7.43 8.26 1.27
h-n1l610notagnograv 36.23 20.26 7.68 1.82
h-n1l69notagnograv 35.25 20.45 7.96 1.81
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Table 3.2: Total energy Efin, momentum pfin and the fraction pfin/pST at tfin = 10tST .

Run pfin (105 M�km/s) pfin/pST Efin (1049 erg)
h-n100l610 1.33 1.37 9.45
h-n100l610nogravnotag 1.33 1.37 9.40
h-n100l69 1.26 1.32 9.09
h-n100l69nograv 1.26 1.32 9.09
h-n10l610notagnograv 1.85 1.46 9.32
h-n10l69 1.83 1.44 9.92
h-n10l69notagnograv 1.85 1.45 9.92
h-n1l610notagnograv N/A N/A N/A
h-n1l69notagnograv N/A N/A N/A

To conclude the last two sections, we can say that our simulations agree well at the
ST-stage with the semi-analytic solutions, and with the results found in Kim & Ostriker
(2015). There are some artefacts born from mapping spherical symmetry onto a Cartesian
grid, mainly in the velocity and temperature at the critical ST and PDS stages, however
these does not appear to affect the results. For instance, the artefacts in temperature
were the most apparent in the runs were the tag forced refinement, as otherwise these
grids were averaged under the lower resolution, but these runs show no apparent difference
from the runs without forced refinement. So as conclusion on the homogeneous numerical
simulations, we can say that our supernovae behaves as expected for this idealized case.

3.3 Turbulent Medium

The simulations with turbulent medium gave very complex geometry to the produced shock
bubble. In all runs made, the shock bubble followed the path of least resistance, embracing
and/or pushing against the high density filaments, causing non-symmetric shapes. At later
times Rayleigh-Taylor instabilities could be seen where the shock travelled through density
gradients, especially where it was able to penetrate the high density filaments. In figure 3.6,
an example of this is shown. In this case the supernova was seeded such that all paths in
the slice plot travelled up the density gradient, limiting the growth as the supernova pushed
against the nearby filaments, penetrating in one region. In general the shock only managed
to destroy the filaments when they were close to the starting point of the supernova, and
otherwise it only managed to push into it, favouring low density escape channels.

The complexity also extended into the internal parts of the bubble, where reverse
shocks, internal bubbles and turbulence was seen in almost all cases. The reverse shocks
were mainly due to the shock colliding with the filaments, while the internal bubbles and
turbulence appears to also come from the bubble travelling down density gradients. These
types of effects should reheat the interior, which in turn would decrease the total energy
in the system via radiation. These internal structures appears to decay over the timespan
of the run, but as the shock bubble continues to push against the filaments, more appear.
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(a) Slice plot of the density (b) Slice plot of the temperature

Figure 3.6: Figures showing an SNe penetrating dense filament, creating Rayleigh-Taylor
instabilities (red circle in a), and also showing complex internal structure with varying
temperatures (red circle in b). Initial point of the SNe is indicated by the red dot.

All the effects discussed above could have an impact on the evolution of the shockwave.
When internal shocks are created, mass is redistributed into the internal bubble, which
could affect all evolutionary stages. In the next part of this section we’ll to estimate this.

As seen in figure 3.7, the evolution of the energy and momentum followed the same
type of evolution as in the homogeneous case. The energy remains approximately constant
at the early stages (although less so than the homogeneous case), while the momentum
increases. At some point the thermal energy starts to decrease rapidly, followed by the
kinetic energy, similar to the ST-PDS transition. The momentum does seem to decrease
at the end of the evolution, something which is not predicted, however at least for the
early times, it seems as if the general SNe evolution holds. Due to the asymmetry, defining
evolutionary stages is less obvious, as different regions of the supernova could vary widely in
density, leading to different transition times. Instead we chose to compare to homogeneous
cases of mean densities at the time of their transition tST,i, where the relation between the
expected homogeneous momentum pST,i was compared to the actual momentum pi. The
expected values were estimated using the found relations (3.1,3.3). Three different mean
densities were used:

• Initial density: Here the pre-blast density of the cell in which the supernova energy
was ejected was used to estimate the time ST-PDS transition tST using the found
relation (3.1). Indexing: tST,0, pST,0, p0.

• Local mean density: Using the initial density above, the radius of the ST-PDS tran-
sition was estimated using eq.(3.2). The mean density in this sphere was then used to
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find a new radius using the same method. This was iterated until the mean density
converged, which then was used to find tST . Indexing: tST,mean, pST,mean, pmean.

• Global mean density: This took the initial mean density of the simulation n = 100
cm−3 to estimate tST . Indexing tST,100, pST,100, p100.

The reasoning for the inclusion of the initial density is, as seen before, that the early
period of SNe remnants evolution is important and contributes most of the momentum.
Therefore, the initial density might be an indication of the early development. However, as
we expect the density to yield a gradient, the local mean could give a better approximation,
specifically the end of the Sedov-Taylor stage. The local mean is also a good indication
of how well galactic simulations could resolve the supernovae, as their resolution often
reaches down to 10-100 pc (Agertz et al. 2013), the lower end of which would be the
scale we expect the estimates to converge at. Lastly the global mean is used as a straight
comparison between the box with and without turbulence, and also covers the lower range
of resolutions in galactic simulations and the higher end of cosmological simulations.

(a) Energy (b) Momentum

Figure 3.7: The energy and momentum evolution of a Mach 10 driven turbulence simulation
in solid lines. Initial density at the supernova was found as n = 30.77 cm−3, with a local
mean of n = 45.64 cm−3. Compared to n = 100 (dashed), n = 10 (dash dotted) and n = 1
cm−3 (dotted).

The momentum at tST and the fraction p/pST , where pST is the expected momentum
from equation (3.3), are found in appendix B in table B.2. In general, both the local
and global mean densities predicted momenta ∼ 20 − 30 % higher than was found, with
n = 100 cm−3 almost consistently over predicting by above 30 %. This can have at least
two interpretations, the first being that our methods underestimates the time of the actual
equivalent homogeneous ST to PDS transition. This would overestimate momentum, as
while the lower densities have higher momentum at certain stages, they gain this over longer
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time periods. The second interpretation is that the shock and medium do not retain the
momentum gained, instead it is annihilated in collisions. The first is the probable reason
for the global mean, while the second applies to the local mean and initial density as can
be seen in figure 3.7b. Here the bubble first follows the evolution of the homogeneous
case with the initial density ∼ 30 cm−3 (slightly higher than the 10 cm−3 shown), but
soon starts deviating from it. As the homogeneous case starts to converge, the turbulent
reaches its maximum, after which it starts to decrease. This can be also be seen from the
energy in figure 3.7a, where energy, while more resembling the n = 10 cm−3 case, suffers
from energy losses earlier, and is lesser for most of the early evolution.

The last comparison with the homogeneous case made here is that of the peak momen-
tum pmax in the turbulent medium, with the final momentum found in section 3.2. As the
momentum starts to decline after some time, we make the comparisons with the maximum
momentum pmax found. Here the three density references, the initial, local mean and global
mean densities were again used. The ratio between pmax and the estimated final momenta
pfin,i are tabulated in table B.3 in appendix B. Surprisingly, the pmax found appears to
be comparable to the estimated pfin,mean, averaging around 1 for M = 15 and 1.16 for
M = 10, in spite of being decisively lower at previous times. The comparison with the
global mean density was consistently higher, as expected with the starker density differ-
ences. This is still within ∼ 30 % of the expected momentum in the homogeneous case,
so the difference is similar to what was found by Martizzi et al. (2015); Kim & Ostriker
(2015).

The reason for the more comparable pmax/pfin,mean might be because of the escape
channels. As the bubble gets stuck in the filament and expands into the low density
regions, it injects much of its momentum into low density regions. As the shock couples
to these lower densities it would gain higher momentum, as lower densities lengthen the
different evolutionary stages. However the momentum appears to decay, the reason for
which is yet to be determined, but might be due to the shock continuing to travel with
increasing density gradients, heating the material which then cools within the high density
shell. One can also imagine that the decay of energy and momentum which is contained
within the bubble could cause the decrease. This however should heat the bubble, which
is not apparent in the energy evolution, but this does not exclude the possibility of this
explanation as the increases may be small, yet numerous such that it appears continuous.
Finally the decrease might just be the annihilation of momenta as the bubble might travel
against the velocity of the medium. As there is no previous work with high resolution SNe
in turbulent media, this is new territory for future analysis.
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Chapter 4

Discussion

On the topic of the work done here, there are many things to improve upon. In real
GMCs one would expect active star formation, the resulting mass loss and radiation of
which might affect the density distribution. Also, as the star particle generated here was
stationary, and not affected by gravity, a realistic correlation between stars and gas has
not been considered. However, given that the problem is already complex, these aspects
are considered beyond the scope of this project.

As most comparisons made are within reasonable limits of the expected value of the
homogeneous case for both a local and global mean density, there is an argument to be
made that the momentum injection from SNe is largely independent of the surrounding
structure, only having a weak dependence on the density. This result is similar to what is
found in Martizzi et al. (2015); Kim & Ostriker (2015), however this is the first time it has
been confirmed in a controlled turbulent environment, with realistic velocity and density
distributions based on the observed ISM. This gives us confidence in the sub-grid models
shown in full in Martizzi et al. (2015); Kim & Ostriker (2015), and in part here.

However, while the maximum momenta found in both Mach regimes are slightly greater
than the homogeneous case of a global mean density, this soon changes as the momentum
decreases, something which is not captured at either scale. The time scale of this appears to
be long, and not fully simulated here. Previous studies, which did let their SNe expand for
longer did not show this at any stage of the evolution (Martizzi et al. 2015; Kim & Ostriker
2015), however as stated these did not include a full turbulence model, as used here. If it is
found that the decrease is happening on large enough time and spatial scales for large scale
simulations to capture, then the generality of the maximum (or final) momentum seen here
and in previous work is good news for the field of galaxy modelling where estimates of the
final injected momentum would still hold for unresolved yet complicated flows. However,
if the decrease is due to local, small scale effects it would not be accurately captured, and
could therefore be an issue.

It has previously been thought that supernovae alone cannot generate the galactic
winds and outflows required to properly regulate star formation (Agertz et al. 2013). But
with their results Kim & Ostriker (2015) argued that this was mainly due to numerical
restrictions and not an astrophysical effect. However with the decaying SNR momentum
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found here, this might be challenged again if the time or spatial scale of the decay is short.
But as neither the cause, the scales, nor full effect of the decay is known, and has not been
analysed fully, further analysis is left for future work.

The tendency of the bubble to follow the density gradients created shocks that extended
in some cases up to 50-60 pc. While this is not quantified in this report, it can have
implications on the outflows of gas from the galactic discs. The results imply outflows of
diffuse gas from GMCs, as the shock mostly couples to the low density regions, something
which is difficult to capture in large scale galaxy simulations, where the feedback is instead
coupled to more mass due to low resolution. The denser filaments, however, remain mostly
intact over the time scales considered, requiring multiple supernovae in order for the denser
gas to escape. These effects could have implications on galaxy evolution, where feedback
is important for the prediction of galaxy masses and sizes (Agertz & Kravtsov 2016). As
the dense filaments appears to survive the supernova, the findings here imply that the
quenching of star formation caused by single SNe is not very effective, as the filaments
would be the regions of star formation. In reality one would expect stellar clusters to drift
away slightly from the GMC (Renaud et al. 2013), and not being in the centre of the GMC
as in the realization here. One also expects radiation from stars to create a diffuse region,
which would surround any resulting SNe. However, these conditions would amplify the
effects seen here, as they can give rise to more low density regions and escape channels for
the SNe, which therefore may have an even lesser effect on the filaments.

Both the decaying turbulence and the intact filaments invites for further simulations
of multiple SNe. In reality stars would form in clusters, and as the more massive stars
starts reach the end of their lifespan, a sequence of SNe occur and the resulting shockwaves
from these forms a superbubble (SB). The nature of SBs are important, as the momentum
injection per supernova, the outflow of gas and the heating of the ISM caused by these are
key ingredients for many galactic models Keller et al. (2014); McKee & Ostriker (1977).
In a continuation their work cited frequently here Kim & Ostriker (2015) found that the
interactions between the SNe reduced the momentum per supernovae, something that was
not supported by Gentry et al. (2017), however these used a simpler 1D model. The
decreasing momentum found here would support Kim & Ostriker (2015), but whether this
effect remains with successive SNe is still unknown. With many of our filaments still intact,
the inclusion of multiple SNe could be able to break these and allow for more outflows.
However with several massive stars, we would require higher gas densities and therefore
may require more dense filaments, so this is not a simple extrapolation and is an interest
for future work.
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Chapter 5

Conclusion

Feedback from massive stars plays a crucial role in galaxy formation, with the energy
and momentum injection being one the main processes regulating star formation, along
with driving turbulence and galactic outflows. Among the processes of stellar feedback,
supernovae are thought to be one of the dominant. However, the resolution required to
resolve the early adiabatic phases of SNe, which are responsible for most of the momentum
generation, often forces galactic and cosmological simulators to adopt sub-grid models,
or suffer from problems such as over-cooling in the early stages. Therefore small scale,
controlled simulations as done in previous works (Martizzi et al. 2015; Kim & Ostriker 2015;
Thornton et al. 1998; Haid et al. 2016) are needed to quantify the momentum injection from
SNe into the ISM at larger scales. However none of these have fully simulated the turbulent
nature of the ISM, and have instead taken static realisations of the general structure. In
this work we have chosen a model of driving active supersonic turbulence, to study how the
high velocities and resulting gas filaments affect the evolution and momentum injection of
SNe. This is the first controlled experiment of its kind of which we know, so our supernovae
were tested against the semi-analytic solution of the Sedov-Taylor stage and previous work.

Our results can be summarised as follows

• By solving the set of coupled ODEs of normalized variables, corresponding to the
spherically symmetric Euler equations, the density, pressure and velocity profiles of
an idealized point blast was recovered.

• In the case of homogeneous media, the semi analytic solution was recovered in full
hydrodynamical AMR simulations using RAMSES, confirming the modelling of the
Sedov-Taylor stage. The simulations had several numerical artefacts due to mapping
spherical symmetry onto a Cartesian grid, however this had a negligible effect on the
evolution of the blast wave.

• With the inclusion of atomic cooling, the stages of SNe evolution was recovered. The
time, radius and momentum at the transition from the Sedov-Taylor to the pressure
driven snowplow stage was found in good agreement with results from Kim & Ostriker
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(2015) as

tST = 34.9 kyr n−0.56

rST = 19.99 pc n−0.42

pST = 1.79 · 105 M� km/s n−0.14.

The momentum here is one order of magnitude larger than the momentum of the
initial ejecta and the phase of free expansion, which shows that understanding the
momentum generation throughout the different stages of SNe evolution is important.

• The final momentum injected into the ISM was found in the homogeneous case as

pfin = 2.6 · 105 M� km/s n−0.15,

also in excellent agreeance with Kim & Ostriker (2015). This confirmed that most of
the momentum is gained in the Sedov-Taylor adiabatic phase, and that the realization
of SNe blast waves here is valid.

• In the case of turbulent medium, the shock bubbles generally shows complex ge-
ometry as the shock prefers the path of least resistance. This preference appears
to indicate anisotropic outflows of diffuse gas from single SNe, with the momentum
coupling with larger scales (up to ∼ 50 pc), something which is not captured in large
scale simulations where the momentum couples to the higher homogeneous densities
of single cells. In addition to this, several features such as reflective shocks and tur-
bulence can be seen inside the bubble, especially where in regions were the bubble is
interacting with high density filaments.

• Reassuringly, the general evolution of momentum and energy is at large consistent
with the homogeneous case, only differing within ∼ 10− 30 % in the maximum mo-
mentum. This momentum does however decrease, something not seen in the homo-
geneous case were the final stage conserves momentum. The general characteristics
of this decrease is however not quantified here and is left for future studies.
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Appendix A

Solving the coupled ODE’s

Reorganizing the coupled odes of eqs. (2.1)-(2.3), such that they are structured in terms
of derivatives, we find (
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where γ± = γ± 1. From this we can see that the dα/dξ terms in eqs A.1 and A.3 shares a
common factor, so subtracting 2/5v2·A.1 from A.3 cancels these terms and after simplifying
we get (
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We now cancel the dp/dξ term in eq A.6 by subtracting
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APPENDIX A. SOLVING THE COUPLED ODE’S

which after some algebra gives
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Equation A.8 now has dv/dξ independent on the other derivatives, such that it can be
solved to get equation 2.14. Now equation (A.1) could be solved for dα/dξ and equation
(A.5) for dp/dξ to get equations (2.15) and (2.16) respectively.
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Appendix B

Simulations in turbulent medium.

Table B.1: The initial and local mean density of all simulations. Simulations are named
after the Mach number used, with an iterative digit separating them

run (Mach+run number) n0 (cm−3) nmean (cm−3)
M10-1 30.77 45.64
M10-2 4.58 82.62
M10-3 1.11 9.93
M10-4 5.57 19.18
M10-5 1.47 19.28
M10-6 103.02 757.07
M15-1 7.45 45.11
M15-2 0.25 10.49
M15-3 0.70 4.40
M15-4 3.92 104.2
M15-5 48.37 82.82
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Table B.2: The estimated tST s in kyr using the different methods, with the found momentum p at these estimates in 105

M�km/s, and the fraction p/pST at these times for all simulations.

run (Mach+run number) tST,0 p0 p0/pST,0 tST,mean pmean pmean/pST,mean p100 p100/pST,100
M10-1 5.05 1.07 0.96 4.04 0.96 0.91 0.76 0.79
M10-2 14.80 1.32 0.91 2.90 0.67 0.69 0.64 0.67
M10-3 32.88 1.69 0.96 9.56 0.91 0.70 0.40 0.42
M10-4 13.24 1.21 0.86 6.59 0.92 0.77 0.54 0.57
M10-5 28.07 1.55 0.91 6.57 0.80 0.67 0.49 0.51
M10-6 2.56 0.76 0.80 0.83 0.49 0.67 0.77 0.80
M15-1 11.24 1.21 0.89 4.07 0.80 0.75 0.63 0.66
M15-2 76.46 1.66 0.77 9.26 0.94 0.72 0.40 0.42
M15-3 42.70 1.70 0.91 15.12 1.19 0.81 0.38 0.40
M15-4 16.13 1.30 0.88 2.54 0.61 0.64 0.62 0.65
M15-5 3.91 0.99 0.94 2.89 0.86 0.88 0.81 0.85
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APPENDIX B. SIMULATIONS IN TURBULENT MEDIUM.

Table B.3: The fraction of the peak momentum for each run over the estimated final
momentum in the homogeneous case, using different methods.

run (Mach+run number) tmax pmax/pfin,0 pmax/pfin,mean pmax/pfin,100
M10-1 52.39 1.10 1.16 1.31
M10-2 38.82 0.74 1.13 1.16
M10-3 101.6 0.84 1.16 1.63
M10-4 53.46 0.84 1.01 1.29
M10-5 110.06 0.90 1.31 1.67
M10-6 50.41 1.20 1.61 1.19
M15-1 35.10 0.81 1.05 1.18
M15-2 54.70 0.54 0.94 1.30
M15-3 54.13 0.64 0.84 1.32
M15-4 21.59 0.63 1.02 1.02
M15-5 24.76 1.03 1.11 1.14
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