
Analysis of
Catenary Shaped Timber Structures

Kristoffer Persson

Division of Structural Engineering
Faculty of Engineering, LTH
Lund University, 2017



Avdelningen för Konstruktionsteknik
Lunds Tekniska Högskola
221 00 LUND

Department of Structural Engineering
Faculty of Engineering LTH
Box 118
S-221 00 LUND
Sweden

Analysis of catenary timber structures
Analys av hängkonstruktioner i trä

Master’s thesis by
Kristoffer Persson
2017

supervised by

Roberto Crocetti
Professor at Division of Structural Engineering
Lund University

Christoffer Norberg
Professor at Department of Energy Sciences
Lund University

Rapport TVBK-5262
ISSN 0349-4969
ISRN: LUTVDG/TVBK-17/5262+(pp129)



Acknowledgements

This master thesis work was carried out at the Faculty of Engineering LTH for the Division
of Structural Engineering.

The original idea for this project was developed by professor Roberto Crocetti to demonstrate
the potential in tensile timber structures. This thesis is also a continuation of Samuel Hofver-
bergs master thesis Long-span tensile timber roof structures that clearly shows the material
efficiency of this stress ribbon concept. To further investigate the concept it was decided to
study the effect of wind as this was seen as a potential problem area for the design.

Firstly I would like to thank Roberto Crocetti at the division of Structural Engineering, who
was my supervisor during this master thesis. He have come with many ideas that have taken
the project forward.

I would also like to thank Christoffer Norberg at the Division of Energy Sciences who with his
expertise in aerodynamics was a great help in developing the method used in the laboration.

Finally I would like to thank David Gustavsson and Martin Ingvarsson who also have inves-
tigated the concept of a timber stress ribbon structure but from a different viewpoint. This
provided possibilities for some collaboration and comparison that have further improved the
this thesis work.





Abstract

In the design of a building there are many parameters that effect the material efficiency. The
choice of structural solution and material are two of the parameters that will be investigated
further in this rapport. Suspension structures is one type of structural solution that has high
material efficiency, here the bending stiff properties of timber could also be utilized in order
to increase the stiffness of the structure. The use of suspension principle on roof structures
is however not frequently used as it can give rise to unfavourable load cases which of course
causes increased uncertainties. Some reference building has in spite of this been identified
and increased understanding about how suspension structures in timber could function and
what possible weaknesses this type of structure can have.

With some ideas of how a suspension structure in timber could be designed, different load
cases were studied, especially those that were expected to be important for design. Here
the uneven snow load, wind uplift and dynamic instability from wind can be highlighted
as potential problem areas. In order to get a better understanding of the snow drift on a
suspension roof, a scale experiment was performed that showed that most of the snow drift
is produced with wind oncoming perpendicular to the roofs parabolic shape and in proximity
to the separation zones. The test also showed that a double-sided roof slope resulted in a
less unfavourable snow load and that approximating the snow load with an butterfly roofs
can give an approximation on the unsafe side.

When the loads on the structure were determined, three different factors that affected the
load carrying cross section was evaluated. Firstly the support stiffness was studied, here
a lower support stiffness meant bigger displacements and bending moments, while its im-
pact on the normal force were negligible. Secondly the member shape was investigated, the
conclusion from this test was that a small catenary shape corresponded to an increase in
normal force but at the same time resulted in less deflection, bending moment and increased
eigenfrequency. Here the result was calculated with both computer aided FE analysis and
analytical expressions. A comparison between the result of FE- and analytical calculations,
showed a good agreement for calculations of normal force, while the displacement and bend-
ing moment showed larger differences between the different calculation methods. Thirdly the
effect of slenderness for the cross-section was examined. In this test a slender cross-section
means a high bending stiffness which resulted in that a bigger part of the load was resisted
through bending.



Finally a preliminary design on the catenary "timber-cable" was performed, where the in-
formation from the investigations could be applied. Biggest difference compared with the
reference building was a reduction of catenary shape, which decreased the deformations and
made it possible to utilize both the normal force- and bending moment capacity efficiently.
The designed building take advantage of a green roof in order to counteract the large suction
forces that can occur for this roof shape. In this way, the green roof result in a more slender
load carrying cross-section in combination with having several other benefits. With a span
of 70 m the final cross-section was designed with a glulam beam with the dimensions of 250
x 300 mm, with a center to center distance of 800 mm. In the load carrying structure two
layers of plywood was also used which mostly contribute to the stability of the building. To
be able to compare the the material efficiency of the timbercables, the height of the load
carrying elements instead would have used a a truss design. With a truss design the hight of
the load carrying element would require several meters which clearly shows the advantage of
timber cable concept.



Sammanfattning

När en byggnad projekteras så är det många parametrar som påverkar materialets effektivitet.
Valet av konstruktionslösning och material är två av parametrarna som kommer undersökas
vidare i denna rapport. Hängkonstruktioner är en typ av konstruktionslösning som har hög
material effektivitet, här kan förutom träets högra draghållfasthet även träets böjstyvhet
utnyttjas för att öka styvheten i konstruktionen. Användandet av hängtak är däremot inte
lika vanligt eftersom det kan leda till ofördelaktiga laster och är dessutom inte en historiskt
testad lösning, vilket ger upphov till större osäkerheter. Några referensbyggnader har dock
kunnat identifierades vilket gav förståelse över hur en hängtakskonstruktion i trä kan fungera
och vilka svagheter denna typ av konstruktion kan ha.

Med ideer om hur en hängkonstruktion i trä kan utformas så utredds det vilka sorters laster
som kan förväntas vara dimensionerande, där ojämn snölast, vindupplyft och dynamisk in-
stabilitet från vind kan lyftas fram som potentiella problemområden. För att få en bättre
förståelse över snödriften på ett hängtak, genomfördes ett skalförsök som visade att de största
rörelserna erhålls när vinden inkommer vinkelrätt mot takets parabelform och i närheten av
avskiljningszoner. Försöket visade också att en dubbelsidig taklutning resulterade i en min-
dre ofördelaktig snödrift och att snödrift enligt motfallstak kan ge en approximation på den
osäkra sidan.

När lasterna på byggnaden var bestämda, undersöktes tre olika faktorer som påverkade det
lastbärande tvärsnittet. Först så utredds vilken påverkan styvheten i upplagen hade för kraft-
fördelningen. Test med varierade styvhet i upplagen visade att en lägre styvhet gav större
förskjutningar och böjmoment, medan påverkan på normalkraften var försumbar. I andra
undersökningen testades formens betydelse, slutsatserna från detta försök är att en liten
hängform motsvarade en ökad normalkraft men samtidigt minskad förskjutning, böjmoment
och ökad egenfrekvens. Här beräknades resultatet både med datorbaserad FE modelering och
med hjälp av analytiska uttryck. Denna jämförelse mellan FE- och analytiska beräkningar
visade god överensstämmels vid beräkning av normalkraften medan förskjutningarna och böj-
momenten visade större skillnader. I tredje utredningen undersöktes påverkan av tvärsnittets
slankhet. I detta testet betydde ett slankt tvärsnitt en hög böjstyvhet vilket resulterade i
större böjmoment vilket resulterade i att en större del av lasten hölls emot med böjning.



Sist gjordes en preliminär dimensionering av den hängande "trä-kablen", där information
ifrån utredningarna kunde tillämpas. Största förändringen som gjordes i jämförelse med
referensbyggnaden var en minskning av hängformen, vilket minskade deformationerna och
möjliggjorde så att både normalkrafts- och böjmomentskapaciteten kunde utnyttjas mer
effektivt. Den designade byggnaden använder sig också av grönt tak vilket tillför tyngd
till taket och kan därför effektivt motverka den stora lyftkraften som kan uppstå på denna
takform. Det gröna taket gav utöver fördelen att ge ett slankare lastbärande tvärsnitt även
en fördröjning av vattenavrinning. Med ett span på 70 m resulterade dimensioneringen av
det bärande limträbalken på 250 x 300 mm, med ett cc avstånd på 800 mm. Utöver limträ
balkar användes även två lager plywood vilket främst bidrog till byggnadens stabilitet. För
att kunna jämföra material effektiviteten av att använda träkablar kan den höjden på det
last bärande elementen istället skulle designats som fackverk. Med en fackver design hade de
bärande elementen krävt en höjd på flera meter vilket tydligen visar fördelen med träkabel
konceptet.
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Chapter 1

Introduction

1.1 Background

Cable structures like suspension bridges, cable roofs and stress ribbon bridges have typically
been built in steel and concrete.The reason behind this is that there is a strong tradition for
this reliable materials and for there specific properties. Concrete has for ex. the advantage
of being weather resistant but at the same time being sensitive to tensile forces. Steel can
however resist large tensile forces which a cable design try to utilize. Steel cables can actually
only carry in tension which mean that if a load changes, the cable system changes it shape in
order to yet again resist the load in pure tension. For a uniformly distributed load, a parabolic
shaped structure will result pure tension which lead to a high utilization of the material. An
efficient utilization of the material is increasingly important for structures with growing
spans as self-weight (uniformly distributed load) contributes to a greater proportion of the
total load. This explains why the world’s longest spanning structures are suspension bridges
that use this principle with parabolic shaped cables. The problems with these structures
instead lie in that they are optimized for evenly distributed loads and have the drawback that
asymmetric loads generally produce large deformations on this type of structure. Bending
stiffness in the cable can be one solution in order to limit these deflections.

Timber as a material has interesting properties from a structural point of view and also has
inherent bending stiffness. When the ratio between material strength and weight for example
is compared in the fiber direction it can be concluded that timber has a greater ratio than
both steel and concrete. The drawback with timber lies in its low strength perpendicular to
the fiber direction and in the design of tensile connections. This increases the importance
for smart structural solutions that can make use of timbers optimal characteristics that the
following building concept is aimed for. It is also worth noting that timber is the only com-
mercially available renewable building material that has a drastically reduced environmental
impact compared to the traditional materials, steel and concrete. In consideration to this,
timber form an alternative that reduces the buildings carbon dioxide emissions, which will
become even more important in the future in order to achieve sustainable building.

1



1.2 Aim Introduction

1.2 Aim

This master thesis aims at improving the structural understanding of the catenary timber
concept. To achieve this, different parameters that affect the force distribution in the stress
ribbon element will be studied and a preliminary design of a stress ribbon element with a
span of 70 m will be presented in order to apply the understanding. The preliminary design
can also show the possibility of the stress ribbon concept.

1.3 Limitations

The analysis will primary investigate the statical equilibrium of the stress ribbon element
even if there will be some discussion on the dynamic stability as well. To simplify the problem
and try to get a general understandings of this type of structure, only a 2D case of the stress
ribbon elements and its support conditions have been considered.

1.4 Statement of problems

In order to get a better understanding of the stress ribbon element, the following research
questions were stated:

• What loads can be expected for this type of structure and in what respect do they
impact the deign?

• What types of wind induced instabilities are possible and how does this compare to
similar structures?

• How do support stiffness, the sag of the structure and slenderness of cross-section affect
the force distribution?

• How large must the load carrying cross-section be in order to have a span of 70 m ?

2



Chapter 2

Theory: Internal forces

This chapter will discuss the internal forces that would develop in a catenary timber struc-
ture. As this continues from Samuel Hofverbergs master thesis Long-span tensile timber roof
structures the concept of the structure is shown in fig. 2.1.

Figure 2.1: Initial structural idea for the catenary roof structure by Samuel Hofverberg
Source: Hofverberg, 2016

With a structural solution shown in fig. 2.1, there are several factors that impact the internal
force distribution. Therefore the following factors will be discussed:

• Material efficiency in the structural solution, to demonstrate some of the benefits with
this design.

• How structural- and bending stiffness affect the design. This also explain some of the
drawbacks with catenary structres and some possible solutions for these drawbacks.

• Timber as a material and a reference building using timber cables.

3



2.1 Material efficiency of arches and cables Theory: Internal forces

2.1 Material efficiency of arches and cables

From fig. 2.2 a) it can be seen that the maximum stresses only occur at mid-span section
and only in the top and bottom fibres. It is evident that a beam has a significant amount
of dead mass and that the element could be further optimized. From the beam a suspension
cable or arch can be derived where the horizontal force is taken up at foundations as seen in
fig. 2.2 b) and c).

Figure 2.2: Principle force distribution in a beam and the derived arch and cable shape. Note that figure
a) shows theoretical compressive- and tensile lines but that all load will eventually be transported to the
supports

The arch and the cables efficiency originate from their shape, as a uniformly distributed load
on this type of structure would only result in axial forces. Cables have here the advantage
to be able to change their shape according to the load which means that similar to a perfect
arch it will only be stressed in normal force, but in this case tension. This produces even
normal stress over the cross-section which causes equal utilization of all the fibres.

These cable and arch shapes are very efficient for an evenly distributed load, as an example
a concrete arch could in theory span several kilometres and a suspension cable could be
designed for even longer spans. But in practical cases there will always be some sort of
uneven loading as well as demand on economic sag that will restrict the structures shape so
that the maximum span becomes well below the above mentioned theoretical limit. With the
above mentioned benefits of cable structures it should come to no surprise that the current

4



Theory: Internal forces 2.2 Stiffness for cable supported structures

worlds longest spanning structure is a suspension bridge called Akashi Kaikyo, which have a
main span of 1991 m (Chen and Lui, 2005).

2.2 Stiffness for cable supported structures

To define stiffness, lets look at the simple case with a rod with a linear material properties.
For this rod the stiffness k can be described with the following equation:

k = AE

L
(2.1)

where

A Area [m2]

E Young’s modulus [N/m2]

L Rod length [m]

From eq. (2.1), the stiffness k can be seen as a measurement of the rods resistance to defor-
mation and is also the definition that is referred in this chapter.

From the sections above it is evident that the cable can be structural efficient but the change
of shape that gives the cable its efficiently can also cause problems with deflection, which
occurs when the load is asymmetric. To solve this problem there are three different stiffening
method as shown in fig. 2.3 (Strasky, 2005).

5



2.2 Stiffness for cable supported structures Theory: Internal forces

Figure 2.3: Different stiffening principle for cable structures

In both alternative 1) and 2) (fig. 2.3), two different methods of pre-stressing are applied
to the main cable which increases the horizontal force and results in a higher stiffness. The
third alternative 3) instead uses bending stiffness to increase the structural stiffness in the
cable.

The third concept of integrating a degree of bending stiffness in a cable is called stress ribbon
and with the use of timber as cable material the cable will naturally inherit some bending
stiffness. This is in contrast to using steel cables when concrete is used in order to give the
cable its bending stiffness (Strasky, 2005). In this way the timber cable could use the positive
properties from the cable behaviour with it’s efficient loading, while at the sane time making
use of the bending stiffness.

The shape of the stress ribbon follows a catenary curve similar to a cable subjected to an
evenly distributed load. Using this principle the stress ribbon elements can be formed after
its self-weight and therefore, first develop bending moment after the SR element deform away
from the catenary curve. With this assumption the horizontal force for a simply supported
stress ribbon element subjected only to it’s self-weight can be approximated with the familiar
equation eq. (2.2) (Marti, 2013).
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H = qL2

8f (2.2)

where

H Horizontal force [N]

q Evenly distributed load [N/m]

L Span length [m]

f Sag at midspan [m]

Parameters from eq. (2.2) are also seen in fig. 2.4

Figure 2.4: Cable subjected to uniformly distributed load

2.3 Parameters impacting the structural frequency

2.3.1 Frequencies induced by wind

The stiffness as mentioned above has also an impact on the buildings natural frequency.
In general terms the stiffness and the natural frequency can be seen as connected, as an
increase of stiffness generally leads to a higher natural frequency (Mercier et al., 2012). For
structural design against wind it is generally good to have a high natural frequency as the
main frequency induced by wind on structures is between 0.005-10 Hz as seen in figure
fig. 2.5 (Holmes, 2015). But as shown in fig. 2.5 the opposite can be the case for earthquake
loads. From the figure it can also be seen that wind instability is generally relevant for
tall buildings or long span bridges. This can be explained with that these type of building
have lower eigenfrequencies and therefore are more susceptible to resonance caused by wind,
compared with low rise buildings.
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Figure 2.5: Dynamic excitation frequencies of structures by wind and earthquake.
Inspired by: Holmes, 2015

2.3.2 Natural frequency for a simple spring

To get a feeling of the influence of stiffness on the structures natural frequency, let’s consider
a building vibrating similar to a single spring (often a good approximation, Mercier et al.,
2012). If the spring is fixed at one end and has a mass attached at the other end, the response
amplitude will oscillate at specific load frequencies. This spring is a a single degree oscillator
and can therefore be described by eq. (2.3) (if damping is neglected) (Chopra et al., 1995).

fn = (2π)−1

√
k

m
(2.3)

where

fn natural frequency [Hz]

k Spring stiffness [N/m]

m Weight of attached mass [kg]
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From eq. (2.3) it is clear that a stiffer spring results in a higher natural frequency. This
relation is also true for structures such as buildings and bridges (Holmes, 2015), and shows
how alternative 3 in fig. 2.3 increases the natural frequency of the cable.

2.3.3 Natural frequency for a cable

As a comparison to the spring system a similar expression can be derived for a perfectly
flexible cable with the mass m uniformly distributed along the horizontal projection, shown
in eq. (2.4) (Ghiocel and Lungu, 1972).

ωn = nπ

l

√
H

m
(2.4)

From eq. (2.4) it is clear that a higher horizontal force also results in a higher fundamental
frequency, which is the same principle for stiffening the cable seen in fig. 2.3. If the only force
that produces tension H in the cable is assumed to be a dead load, this results in: m = q

g

and H = ql2/8f and eq. (2.4) becomes:

ωn = nπ

√
g

8f (2.5)

where g is the dead load [N/m] and the other parameters are explained in eq. (2.2) and
eq. (2.3).

From eq. (2.4) it can also be seen that the first stiffening method with increased mass in
fig. 2.3 leads to a higher natural frequency. Here a potential problem with the lightness
of timber material is evident as the low self-weight leads to a low natural frequency. One
alternative to improve this aspect would be to install a green roof that would also have
positive effect on stormwater runoff (Soulis et al., 2017).

2.3.4 Natural frequency for reference buildings

To compare the theory of springs and cables to real suspension structures, three reference
examples are presented, Nagano Olympic arena, Vranov Lake bridge and Willamette River
bridge.

For the Nagano Olympic arena seen in fig. 2.6, a very light roof was used and as the span
was 80 m, it was felt necessary to ensure stability for both static and dynamic wind loads.
(Suzuki et al., 1997). The load carrying section consist, of a composite member of two curved
glulam beams sandwiching a steel plate according to fig. 2.7, with a sag of 5 m.
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Figure 2.6: Nagano Olypic arena, showing the visitors experience of a catenary shaped roof
Image source: Maclourin, (2017)

Figure 2.7: Load carrying cross-section for Nagano Olympic arena
Inspired by: Suzuki et al., 1997

The first mode shape of the roof was asymmetric with a frequency of 0.32 Hz (0.65 Hz with
structure own dead load) while second mode shape was symmetric with a natural frequency
of 0.68 Hz (0.98 with dead load). With the difference in mode shape it was possible to
identify that it was primarily the lower asymmetric mode that was excited from the 100-yr-
return-period wind velocity. This model was then controlled with both FE simulations and
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Theory: Internal forces 2.4 Impact of sag/length of a cable

wind tunnel testing and the conclusions were that the roof was stable for both the static-
and the dynamic wind loads.

It can also be interesting to compare these eigenfrequencies against pedestrian bridges often
designed quite slender, even if the biggest problems for these pedestrian bridges usually are
the response from pedestrians (Mercier et al., 2012). For the suspension bridges, Vranov
Lake bridge and Willamette River bridge the first and second mode shapes followed the same
pattern as Nagano Olympic arena. The first two eigenfrequencies for Vranov Lake bridge were
measured to 0.298 and 0.431 Hz while the corresponding frequencies for Willamette River
bridge were 0.541 and 0.613 Hz respectively. Similar to Nagano Olympic arena both these
bridges were analysed in dynamic- and wind tunnel tests that could ensure their structural
stability (Strasky, 2005).

2.4 Impact of sag/length of a cable

The ratio between sag and span for stress ribbon footbridges has a great influence on its
structural performance, including horizontal reactions, pre-stressing force, vibration charac-
teristics and serviceability of pedestrians (Han et al., 2016). At low sag-to-span the horizontal
forces are increased according to eq. (2.2), this in turn requires more extensive abutments
which can make the structure less economical (Kalafatic et al., 2006).

When the sag-to-span increases, the dynamic response for a stress ribbon footbridge tends
to get better as the antisymmetric mode becomes the lowest mode and the natural frequency
increases and avoids the range of 1.5 Hz to 2.3 Hz which is the design criteria for pedestrian
bridges (Han et al., 2016). The high sag to span ratio also decreases the horizontal force
making the design possible to be both economically and structurally efficient.

The drawback with increase of sag/span ratio for pedestrian bridges lies in the serviceability
for the pedestrians as a high sag/span ratio results in a steeper inclination. As the roof
structure doesn’t have this restriction more sag can be accepted even if too much sag could
result in low horizontal force H. The low H could be problematic as it would give the
structure a low natural frequency (according to the cable analogy in eq. (2.4)), as well as
bad utilization of the inside space. To determine a suitable sag for the catenary timber roof,
different already existing stress-ribbon structures were therefore investigated as shown in
table 2.2.
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Table 2.1: Investigation of sag to span ratio for different stress ribbon structures

Reference structure Load carrying material sag f [m] span L [m] sag/span

Grandview Heights Aquatic Center(1) "timber cables" 6.096 50 0.122
Stuttgart Exhibition Hall(2) steel cables 6.35 56.5 0.112
Nagano Olympic Arena(3) steel and timber composite 5 80 0.0625
Brno-Bystrc Bridge(4) steel cables and concrete 1.2 63 0.019

Sources for information: 1) Gonchar, (2014), 2) Ludescher et al., (2007)
3) Ban et al., (1998), 4) Strasky, (2005)

2.5 Impact of bending stiffness

With bending stiffness its the resistant to bending that is referred, similar to the deninition of
stiffness in section 2.2. This resistance can be measured with the second moment of intertia
(I) which is also a property that differentiates the stress ribbon system versus a pure cable
type response. How bending stiffness effects the force distribution in a stress ribbon (SR)
structure has been studied by (Strasky, 2005) and can be visualised according to fig. 2.9.

In Straskys study a SR cable with varying bending stiffness was loaded with an asymmetric-
and temperature load respectively. In fig. 2.8a, a live load of q = 20 kN/m was placed on
left half of the span, while in fig. 2.8b a temperature load of ∆T = −20°C (equivalent to
dead load), was placed uniformly over the span. In both the load cases the stress ribbons
self-weight was also added as this load will always be present. The starting cross-section for
the SR cable was a concrete band with a width of 5 m a depth of 0.25 m and a modulus
of elasticity of Ec = 36 GPa. These conditions result in a second modulus of inertia of:
Ic = 1

12bh
3 = 1

125.00 · 0.253 = 0.00651 m4. The cross section area was then kept constant
while the bending stiffness was increased according to:

Ic(1) = 6.51 · 10−3 m4 Ic(6) = 1m4

Ic(2) = 1 · 10−2 m4 Ic(7) = 5m4

Ic(3) = 5 · 10−2 m4 Ic(8) = 1 · 101 m4

Ic(4) = 1 · 10−1 m4 Ic(9) = 5 · 101 m4

Ic(5) = 5 · 10−1 m4 Ic(10) = 1 · 102 m4
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(a) Live load q=20kN/m on right part of the span
(b) Uniformly distributed temperature load of
∆T=-20C°

Figure 2.8: Load cases in the study of bending stiffness influence

——————————————————————————————

Figure 2.9: Plots displaying the influence of bending stiffness on deformation- and moment distribution.
Left plotts show the SR structure loaded asymmetrical according to fig. 2.8a, while right plots show the SR
structure loaded symmetrical accoding to fig. 2.8b
Inspired from: Strasky, 2005
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From fig. 2.9 it can be seen that the deformation (w) and bending moment (M) depend on
the stiffness of the concrete slab. A interesting observation is that with low bending stiffness
(Ic(1) − Ic(3)), the deformation and moment is nearly the same as for a pure cable. In this
range the cable resists the load in tension with negligible bending. It can also be seen that
the positive effect of increased bending stiffness is a decreased deflection while this at the
same time results in a higher bending moment. Therefore it is important to find the balance
between having a high enough I to have a reasonable deflection in the SLS state while at the
same time having a low enough I in order to not obtain large bending moments.

2.6 Impact of the order of theory

Using analytical calculation simultaneous as FE calculation can be good way to achieve a
realistic FE model (Crocetti, 2016a). As the FE calculations easily can use higher order of
theory compared with hand calculations, it can be interesting to understand the differences
between the different theories (Runesson et al., 1992).

2.6.1 First order theory

In first order theory it is assumed that the structural element and the material are linear
elastic and that the deformations are small. The original geometry can be used to form the
equilibrium equations. It is also assumed that the deflection and section forces are directly
proportional causing the superposition principle to be valid, where the effect of different types
of loads can be calculated separately and summarised to form a result.

2.6.2 Second order theory

For some structures considerable deflections can arise in which it is not longer sufficient
to calculate from the structures original geometry. A typical example of this are frames
or suspended roofs, see fig. 2.10, which are exposed to large vertical forces in combination
with horizontal forces. This load case causes horizontal deflections which in turn lead to
eccentricity for the vertical forces. If the deflections for the structure are still small but are
considered in the formulation of the equilibrium equations, the calculations are of second
order. The relation between load and deflections are in this theory no longer linear even if a
linear elastic material is assumed. The superposition principle is no longer true.
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Figure 2.10: Initial horizontal deflection from horizontal forces that is taken in consideration when calcu-
lating according to second order theory

2.6.3 Third order theory

If the deformation can not be considered small and the real geometry is used to form the
equilibrium equations, then the calculations are considered to be of third order. This causes
the relationship between load and displacements to be non-linear and with the same reason
as for the second order theory the superposition principle is therefore not valid in this theory
either.

2.7 Material efficiency of timber

In this context the material efficiency is referred to the ratio between the capacity divided by
the mass of the load bearing element. This was studied by Crocetti, 2016c, this investigation
uses a cross-section with area A and length L. This element was then studied for compression,
tension and bending with the purpose of maximizing its structural efficiency and was later
compared between different material, as seen in table 2.2.

Table 2.2: A comparison of some structural materials’ abilities to resist tension, buckling and bending. The
higher the the given ratio, the more efficient the material can be considered (Crocetti, 2016c).

Material Strength f Density Young’s Tension/compression Bending Deflection and buckling
[MPa] ρ modul E effciency ratio(1) efficiency ratio efficiency ratio

[kg/m3] [GPa] f/ρ f (2),(3)/ρ
√
E/ρ

Softwood 20 - 30 350 - 450 11 - 13 44 - 85 16-28 7 - 10
Carbon steel 235 - 355 7800 210 30 - 45 5 - 7 2
Concrete 30 - 50 2500 30 1 - 2(2) - 2
CRFP (carbon fibers) 500 - 1400 1600 70 - 300 300 - 900(3) 39 - 78 5 - 11

(1) In case of compression, the values are usable only for members restrained against buckling
(2) Applies only for members in compression
(3) Applies only for members in tension
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From table 2.2 it is possible to see that the material efficiency ratio is higher for timeber
and CRFP, compared to both steel and concrete. This shows the benifits of having a low
material density coupled a high capacity which enable that more of the material can be used
to carry load instead of carrying its own self-weight.

2.8 Properties of timber and glulam

2.8.1 Manufacturing of Glulam

The raw material for glulam is strength graded timber bords, typically spruce. The timber
is then glued together under strict conditions, with high pressure and controlled moisture
levels which result in a reduced risk for cracking and twisting (Johansson and Lidelöw, 2015,
chap 2). This manufacturing gives good flexibility on both shape and element size as the size
is determined by varying the number and width of glued timber boards while the shape can
be altered during the hardening of glue.

2.8.2 Capacity of glulam and sawn timber

As the raw material for glulam is timber the material strength compared with regular sawn
timber is the same for small knot-free samples. But as glulam beams are built up by smaller
elements of sawn timber the probability for a big weakness in a specific section decreases.
This in turn results in a less variable material strength and as the lower 5% percentile is used
in design, this means that the capacity in glulam is higher than in the sawn timber (ibid.,
chap 2).

2.8.3 Influence of grain direction

An important property of wood is the grain direction, which has a big impact on the woods
mechanical characteristics. To get a rough understanding of wood, the fibres can be thought
of as a bundle of tubes. With this analogy it is easy to understand that the axial strength is
greater than in the perpendicular direction. The difference is especially distinct in tension,
where the material strength for tension parallel to the grain direction is of the order ft ≈ 100
MPa compared with a strength of ft,90 ≈ 0.5 MPa for tension perpendicular to the grain
direction (ibid., chap 2). For compression the corresponding strength is fc ≈ 80 MPa and
fc,90 ≈ 3− 5 MPa respectively.
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2.8.4 Brittle failure and possible connections

Timber as a material can be seen as having a brittle failure which means that only small
elongation of the material will develop before failure. Here a more ductile failure is preferred
as large deformation before failure, enable safe evacuation. A material can of course be more
or less brittle, for timber a tensile failure exhibits a very brittle failure while compression
failure is still brittle but has a more plastic behaviour. Timber having a brittle failure is of
course not a desirable trait of wood which is in combination with practicalities, the reason
why wood connections are typically designed with ductile steel parts (ibid., chap 4). An
alternative to this is a finger joint that can be manufactured with higher capacity then the
rest of the cross-section and therefore enables minimum use of steel which also has both
economic and environmental benefits.

2.9 Reference timber building

Similar to the natural frequency it could be useful to look at reference buildings to benefit
from already made studies. Since Grandview Heights Aquatic Centre shares many similarities
with the proposed stress ribbon concept in both structural solution and material use, a little
deeper analysis for this building was made.

Grandview Heights Aquatic Centre is an indoor swimming hall in the south west part of
Canada, more precisely in the city of Surrey. The roof has a primary load carrying structure
of timber catenary glulam beams and has a maximum span of 55 m with a 300 mm deep
structure, see fig. 2.11 (CCE, 2016). This makes it the longest spanning timber catenary roof
built to date and its slenderness can be compared to a 3000 mm high steel truss that would
otherwise have been required. The shape of the building is also utilized well as the diving
tower is placed at maximum roof height while the roof height over the swimming pools is
lower. This at the same time as reducing the buildings internal volume and ensuring long
term energy cost savings.

The original idea for this building was to use steel cables with wooden cladding for aesthetic
reasons. From this engineers realized that "timber cables" could be used to carry the load
instead. The load bearing structure consists of two 5" x 10.5" (127 x 267 mm) glulam beams
with a center to center distance of 30 inch (762 mm) (Gonchar, 2014). These beams act like
cables under a double layer of plywood as shown in fig. 2.13. In order to limit the length, the
glulam beams were split into two or three parts (depending on span length) with a connection
as shown in fig. 2.12. This resulted in a longest glulam beam of 22 m which made it was
possible to transport the glulam beams to the building site, enabling manufacturing under
controlled conditions in a factory.
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Figure 2.11: Overview of the structural details in Grandview Heights Aquatic Centre

Figure 2.12: Connection details for Grandview Heights Aquatic Centre
Inspired by: Schuler, 2017
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Figure 2.13: Cross-section of the load carrying section in Grandview Heights Aquatic Centre

According to (CCE, 2016), in this project there were three key technical difficulties that have
the following solutions:

1) Unbalanced snow loading. Early analysis of unbalanced snow loading for cable span-
ning 105 m showed a vertical deflection in the order of 1000 mm. To solve this an
intermediate support was added as well as central structure with a shear wall in one
end and steel brace at the other end. With this changes engineers effectively reduced
the maximum deflection to acceptable 250 mm.

2) Wind uplift forces. One of the drawbacks of using timber is its low self-weight to
counteract wind uplifting forces. The usual solution for this problem is adding a thin
concrete layer on the roof but as this was thought of as being counterproductive to the
buildings environmental impression, as well as costly, this idea was not used. Another
standard solution is to install stabilizing cables inside the building, but this would at
the same time ruin the aesthetic impression. Instead the timber members were designed
to act as an upside down compression arch against the upwards acting wind suction.
Here the two layers of plywood also plays a part in stabilization by preventing buckling.

3) Dynamic excitation. With a very slender load carrying structure there will be risk
for dynamic excitation from wind as discussed in section 3.1. The engineers felt that
the roofs warped geometry in combination with high damping from glued roof insu-
lation, would be sufficient to prevent resonance oscillation. This hypotheses was later
confirmed with field test using accelerometers, metronome and dynamic load from a
"jumping party".
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With a cost of 55 million $ and an area of 8825 m2 Grandview heights aquatic centre serves
as a good example were "thinking outside the box" results in a more sustainable design with
minimal material use, without substantially increasing building costs (CCE, 2016). This also
lead to an increased public interest with the anticipated number of visitors surpassed as well
as receiving two Canadian engineering awards with the motivation of being cost-effective,
structurally-efficient and aesthetically-pleasing.
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Chapter 3

Theory: External loads

With a brief understanding of factors that affect the internal force distribution, the next step
was to study the possible external loads on this type of structure. Some of the loads that
will be discussed is the following:

• Wind flow over the building to understand where the largest loads will occur.

• What dynamic behaviour could be expected.

• Static wind and snow loads that are likely for this type of roof, in order to determine
the design loads.

3.1 Structural design for wind

Wind loads for a normal building are usually analysed in a static manner. However for very
slender structures dynamic instability can also be a potential problem. Dynamic instability
for wind is normally investigated for structures such as bridges, high-rise buildings, chimneys
and masts, these structures are all described in Eurocode (CEN, 2005). All these structures
are exposed for two-sided flow which is a more unfavourable load case for wind instability.
This can be explained with that the attack angle and strength of the oncoming wind can
alternate and vary which therefore causes oscillating effects more easily compared with a one
sided wind flow (Simiu, 2011). Even if the studied structure is only exposed to one sided
wind load, it is at the same time both lightweight and slender which can be problematic for
wind instability and therefore require further investigation.

Dynamic excitation from wind can develop from the winds turbulent nature which result
in fluctuating loads on the structure. As resonant vibration is one of the main causes for
structural failure (ibid.), it is an important part to control in the design phase. Another cause
for structural damage is fatigue which is relevant if the critical wind velocity responsible for
resonance is frequently occurring (CEN, 2005).
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A well-known rule of thumb states that the lowest natural frequency should be below 1 Hz for
the resonant response to be of significance (Holmes, 2015). However, the dynamic response is
also dependent on the structural- and aerodynamic damping. High-voltage transmission lines
for example usually have fundamental frequencies well below 1 Hz, but as the aerodynamic
damping for these lines is high, the resonance response is mostly damped out.

To estimate what types of wind instabilities that can occur the following section is devoted
to fundamentals in bluff body aerodynamics and possible resonance phenomena in aero-
elasticity that can be of interest when designing a flexible structure against wind (Holmes,
2015; Simiu, 2011).

3.2 Bluff Body Aerodynamics

A bluff body can be defined as a body that, as a result of its shape, has separated flow over
a substantial part of its surface (Chen and Lui, 2005). As a building normally have sharp
edges compared to a air plain wing, it’s this type of theory that is relevant for the intended
building. To introduce the fundamentals in fluid mechanics, Bernoulli equation, Reynolds
number, boundary layers, flow separation, reattachment, negative pressures and drag are
briefly discussed below.

3.2.1 Bernoulli Equation

The linear flow in an inviscid (frictionless) fluid can be described by the static pressure p,
density ρ and the velocity V , with Bernoullis equation as:

p+ 1
2ρV

2 = constant (pressure variation due to elevation is neglected) (3.1)

In eq. (3.1) the first and second term denotes static and dynamic pressure respectively (Simiu,
2011). To understand how this relates to wind pressures on buildings let’s take the following
example. Two points are considered, point 1 is located far upstream while point 2 is on the
windward face of the building (stagnation zone), where the wind velocity V2 ≈ 0. This can
be expressed with Bernoulli as:

p1 + 1
2ρV

2
1 = p2 (3.2)

From eq. (3.2) it is easy to understand that the pressure at the second point at the windward
side is exposed to a larger statical pressure compared with the first point which results in
a wind load on the structure. According to Holmes, 2015 the Bernoulli equation is not
accurate in the separated flow and wake regions, see fig. 3.1, but can still give a reasonably
good prediction for surface pressure coefficients outside the shear layer and wake regions
(ibid.).
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3.2.2 Pressure coefficient

From the Bernoulli equation (eq. (3.1)) the pressure terms can be used to define a non-
dimensional quantity called the pressure coefficient Cp (Simiu, 2011). With V denoting
reference wind speed (undisturbed oncoming windspeed), p current pressure, pref reference
pressure (ambient static pressure) and 1/2ρV 2 the dynamic pressure, the pressure coefficient
can be descried by:

Cp = p− pref
1/2ρV 2 (3.3)

The equation in eq. (3.3) is often used in wind tunnel test, in order to map the pressure
distribution. As the pressure coefficient is dimensionless it can therefore be used to predict
the pressure distribution also on a similar shaped roof. This is for example implemented in
Eurocode where the external pressure coefficient Cpe can be multiplied with characteristic
wind pressure qp at height ze to estimate the external wind load we according to Eurocode
(CEN, 2005):

we = qe(ze) · cpe (3.4)

3.2.3 Reynolds Number

Another dimensionless quantity that has a wide application in aerodynamics is the Reynolds
number, which can be seen as a measure of the ratio between internal and viscous forces
acting in a flow field. Reynolds number can example be used to predict the flow pattern
within fluid dynamics.

With a cross-section and wind velocity denoted LxL and V respectively, the internal force
can be written as ρV 2L2, while the viscous (friction) forces can be written as νV/L. Now
using the ratio of ν = µ/ρ (the fluids kinematic viscosity), the Reynolds number can be
written as internal force divided with the friction force according to:

Re = V L

ν
(3.5)

This equation is often used in wind tunnel test to ensure similarity in flow pattern around
the full-scale and the small scale model respectively. This is called the Reynolds number
similarity and is often used when testing aerodynamic shapes such as air plane model. For
bluff body such as buildings that have big scale difference the Reynolds number similarity is
unavoidably violated. This similarity violation has been studied by several researchers who
have shown that the Reynolds number can be relaxed for structural modelling under certain
conditions, where distinct zones for flow separation (sharp edges) is one of these conditions
(Simiu, 2011).
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3.2.4 Flow separation and reattachment

Another important phenomenon determining the wind flow and therefore the load on the
structure are flow separation and possible flow reattachment. Both these flow phenomena
originate from friction that is present at the boundary surface. Here the friction causes
decreased flow velocity which also explains why wind speed generally increases with height.
Another part of this phenomenon is the speed up effect that occurs when the wind passes a
high object. This can be compared with the flow in pipes with different diameters, where a
decrease of diameter results in an increase of flow velocity (in order to transport the same
volume). The opposite occur with a increase of flow area and can in combination with friction
at boundary surface further decelerate the flow and cause flow reversal and flow separation.
This is typically associated with formation of a turbulent shear layer as shown in fig. 3.1,
which gives a rough visualisation of the flow around a building with sharp edges.

Figure 3.1: Principle of wind flow abound a bluff body with sharp edges
Inspired by: Simiu, 2011

Depending on the flow and the boundary geometry the separated flow can experience reat-
tachment as seen in fig. 3.1. Reattachment normally results in increased pressure on the roof
while velocity differences and local vortices in the separation zone and in the wake can create
large suctions.
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Theory: External loads 3.3 Wind induced vibrations

3.3 Wind induced vibrations

With some understanding of the flow patterns around the building, wind effects that cause
vibration will therefore be discussed. Dynamic effect is usually divided in vortex-induced-
vibration, self-excited vibration and buffeting. These types of vibrations usually occur at
different wind velocities and have different response characteristics, seen in fig. 3.2.

Figure 3.2: Relationship between wind velocity and amplitude for three types of aeroelastic responses
Inspired by: Chen and Lui, 2005, p. 13-16

3.3.1 Vortex-excited vibration

A result of the flow around a building, discussed in section 3.2.4, can be periodic shedding
of vortices at some district frequencies, visualized in fig. 3.3.

Figure 3.3: Alternate shedding of vortices
Inspired by: Ivoryresearch.com, 2017

This in turn gives rise to a fluctuating lift force which can lead to large vibration amplitudes
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seen in fig. 3.2, which could ultimately lead to structural failure. Determining the critical
frequency for this type of resonance is often complex in large structures, but for cylindrical
shapes such as cables, the equation of Strouhals number can be used to predict resonance
frequencies (Simiu, 2011):

ns = St
V

D
(3.6)

where

ns Frequency of vortex-shedding [Hz]

St Strouhal number (dependent on cross section shape and Reynolds number)

V Constant flow velocity [m/s]

D Characteristic dimension for cross section [m]

If the vortex-shedding frequency ns in eq. (3.6) coincides with the buildings natural frequency
n1, resonant amplification can occur (ibid.). Experiments show that amplifications can de-
velop also for other wind speeds in an interval of nsD/S −∆V < V < nsD/S + ∆V . This is
an aero-elastic effect and in this interval the vortex-shedding frequency aligns itself with the
body’s frequency and it’s called lock-in effect. The interval can be graphically interpreted as
the width of the curve for vortex-excited vibration shown in fig. 3.2. In Eurocode this is con-
sidered by calculating a critical wind speed that works as a threshold value which describes at
what wind speed resonance starts to become relevant (CEN, 2005). Calculation of a critical
wind velocity is also used for other resonance phenomena which unlike vortex-shedding lead
to larger resulting amplitude with an increasing wind velocity.

3.3.2 Self-excited vibration

Galloping and Flutter are self-excited vibrations, this type of vibration increases the vibration
amplitude by adding force from the motion of the body. This means that once this type of
vibration occurs, the amplitude grows without increment of load (Chen and Lui, 2005).
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Galloping

Galloping has a deflection parallel or perpendicular to the wind direction, similar to a heaving
mode, see fig. 3.4 for an illustration. The amplitude of galloping oscillations is large and in
the order of 1-10 times the cross section dimension of the body (Simiu, 2011). Galloping
is usually relevant for structures with low natural frequency and low damping. Shapes that
are more prone to galloping, ex. rectangular or other non cylindrical cross-sections. A layer
of ice on a bridge cable is a typical example where a change of form can lead to galloping
oscillation. Galloping usually occurs for structural elements with lower frequencies, or at
much higher wind velocity compared with vortex-shedding as seen in fig. 3.2.

Figure 3.4: Example of galloping vibration on a slender structure (heaving modes)

Flutter

Flutter is a form of coupling effect between two modes of vibration e.g.. heaving modes as
well as torsional modes (Chen and Lui, 2005), see fig. 3.5 for an illustration.
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Figure 3.5: Example of torsional vibration (twisting mode), which in combination with heaving vibration
seen in fig. 3.4 can describe flutter oscillation

In order to achieve flutter, the vibration frequency between the heaving and twisting mode
has to be in similar range. If a bridge deck for example twists, the angle of attack changes.
This in turn changes the lift force for the bridge deck, causing it to start flap up or down.
This motion also changes the airflow over the bridge deck, which can generate more force
and inturn cause further twisting. This describes the growth of flutter and with low damping
the amplitude of these type of vibration leads to oscillation that ultimately causes structural
failure.

Flutter therefore normally develop in flexible bodies, such as slender bridge decks, as these
structures can have low and dense natural frequencies causing them to be prone to flutter
(Simiu, 2011). According to Strasky, (2005) a ratio of 2.5 between torsional and bending
frequency is sufficient to design a structure against flutter. Similar to galloping, flutter usually
occur at high wind velocities (see fig. 3.2) and does not typically occur for buildings (Simiu,
2011). The most famous example of flutter leading to structural collapse is Tacoma Narrows
Bridge, which had a main span of 853 m and collapsed at a wind speed of about 19 m/s (Xu,
2013), see fig. 3.6.
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Figure 3.6: Flutter vibration on the bridge deck of Tacoma bridge moments before failure
Image source: Wikipedia, 2009

3.3.3 Buffeting

Buffeting vibration is caused by random loading due to turbulent wind. The velocity fluc-
tuation in turbulent wind gives this type of vibration random properties and the amplitude
from buffeting are therefore normally not critical for failure, but can instead be problematic
in serviceability limit state (Hermansson and Holma, 2015).
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3.4 External loads on the structure

To be able to determine the load on a parabolic shaped roof two different wind tunnel test
were used. The first test that was analysed was the scale model of Nagano Olympic Arena
(for design purposes), building shape can be seen in fig. 3.7. The second test was studied
was the research on hyperparabolic roof shapes (Rizzo et al., 2009a).

Figure 3.7: Outer shape of Nagano Olympic Arena

In both wind tunnel evaluation of Nagano olympic arena and in the research of hyperbolic
roofs, showed that large suction forces can develop over the whole roof. Large suction can be
problematic as it could develop compression forces in the stress ribbon elements which can
cause instability problems such as buckling.

As the research performed by Rizzo et al., (2009b), was aimed to serve as guideline for design
and therefore follows similar rules of calculations as Eurocode in order to give results on the
safe side, aswell as the reasearch not being as specific as the scale test of Nagano Olympic
Arena. It was decided to base the design load on Rizzo et al., (ibid.) research.

3.4.1 Flow pattern around a saddle shaped roof

The roof shape shown in fig. 3.7 can be referred to as saddle shaped, following a convex
curve about one axis and a concave curve about the other. To understand the wind loading
on the saddle shaped roof it was important to understand the flow pattern. This has been
investigated by Rizzo et al., (ibid.) showing that there were two different behaviours in flow,
dependent on the attack angle of the oncoming wind as shown in Figure 3.8. In the studies a
scale model of 1:100 with a roof slope of 1/10 Lmax was used with 155-230 pressure taps that
could monitor the pressure distribution over the entire roof (Rizzo et al., 2012a). The pressure
was then mapped with mean pressure coefficient shown in fig. 3.10c, here the mapping was
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scaled in to non-dimensional x/D and y/B coordinates (for depth and width respectively) to
be comparable with Eurocode.

Figure 3.8: Flow pattern over saddle roof
Inspired from: Rizzo et al., (2009a)

From the left flow pattern in fig. 3.8 (oncoming wind 90°), it can be concluded that a spike
in suction occurs at the beginning of the roof where flow separation is the most distinct.
This means that air just behind the separation zone has a higher velocity because of the
speed up effect discussed in section 3.2.4. This higher wind velocity leads to a decreased
static pressure according to Bernoulli eq and explains the low pressure (suction) behind the
separation zones. After the separation zone the aerodynamic shape causes the wind to follow
the curvature resulting in a more moderate suction force which also is reflected in the Cpe
values in fig. 3.9c.

3.4.2 Mapping of pressure coefficients

With the wind flow around the building known, the pressure coefficient Cp was mapped
for both the saddle- (measurement of Rizzo et al., (2009a)) and butterfly roof (Eurocode).
Similar to the wind flow the mapping of Cp was divided in an oncoming wind direction of
0°and 90°.

For oncoming wind flow from 90°, compare with left figure of fig. 3.8. The pressure distru-
bution of both the saddel and butterfly are similar, with a peak of negative pressure just
behind face with oncoming wind (inital separation zone, see section 3.2.4).
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(a) Wind loading on saddle roof θ = 90° (b) Wind loading on butterfly roof θ = 90°

(c) Mean pressure coefficient Cp,mean for saddle roof
Inspired from: Rizzo et al., (2012a)

(d) Pressure coefficient Cpe,10 for butterfly roof in
Eurocode Inspired from: CEN, (2005)

Figure 3.9: Comparison of Cp between saddle roof and butterfly roof (wind θ = 90°)

For flow pattern for the right figure in 3.8 (oncoming wind 0°), it can be seen that the wind
never reattaches to the bowl shaped roof. This results in larger suction across the entire
roof, with the highest suction in the initial separation zone and then gradually decreasing
according to fig. 3.10.
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(a) Wind loading on saddle roof θ = 0° (b) Wind loading on butterfly roof θ = 0°

(c) Mean pressure coefficient Cp,mean for saddle roof
Inspired by: Rizzo et al., (2012a)

(d) Pressure coefficient Cpe,10 for butterfly roof
Inspired by: CEN, (2005)

Figure 3.10: Comparison of Cp between sadel- and butterfly roof (wind θ = 0°)

In fig. 3.9 and fig. 3.10 the saddle roof shape is compared with the Cpe,10 value for a butterfly
roof according to Eurocode (CEN, 2005). From this comparison it can be seen that maximum
suction in the initial separation is higher in the corner zones for the butterfly roof Cpe,10 =
−2.4 compared to Cpe = −1.5 for the saddle roof. This higher value can be explained by the
butterfly roof is using sharper edges and also having smaller zone sizes compared with the
saddle roof. With the smaller zone division the peaks at the sharp edgest have a bigger effect
on the mean value and therefore result in a higher mean value for the specific zone.From the
pressure coefficient in both fig. 3.10 and fig. 3.9, it can also be seen that both the saddle and
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butterfly roof have no distinct reattachment point as there is negative wind pressure over the
roof independent on wind direction.

It could be noted that the wind tunnel test for Nagano Olympic arena confirm a similar
pressure distribution as that shown in figs. 3.9 and 3.10. From this wind tunnel test it was
also concluded that the long side of Nagano Olypmic arena was more streamlined compared
with the scale models of Rizzo, resulting in lower pressure coefficients (Ban et al., 1998).

3.4.3 Snowdrift

Another effect from wind is the redistribution of snow. This occurs when the wind speed
at surface layer is greater than the threshold velocity u∗ which is about 0.35 m/s for snow
particles (Zhou et al., 2016). Redistribution of snow will in turn impact the flow past the
building, causing the problem to be time dependent but similar to other variable loads it is
only the worst load case that is of interest in design.

The closest approximation for the snow load on this type of roof type was similar to the
wind load, the buttery roof shown in fig. 3.11. To further get a feeling of how good this
approximation was, scale tests on the two roof alternatives were performed according to
section 4.1 and are analysed in section 4.3.1.

Figure 3.11: Snow load for butterfly roof with snow drift (symmetric if α1=α2)
Inspired by: CEN, (2003)
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Chapter 4

Laboration

4.1 Background

4.1.1 Wind tunnel testing

Scale tests are often used to get a better understanding of structures. For example, a spe-
cial design of a building can present potential problems that are not often faced in typical
construction, where testing therefore can be used to investigate the structural response. Com-
pared to other laboratory experiments, wind tunnel testing is highly sensitive for example
to changes in geometry and surface material. One consequence of this is that even in com-
mercial wind tunnels, results can vary by up to 40 % between different laboratories (Simiu,
2011). According to Holmes, (2015) Simiu, (2011) and Rizzo et al., (2012a), testing on scale
models still remain the best reliable means of obtaining aerodynamic data usable for design
of engineering structures. This could be exemplified by Rizzo et al., (2012b) where a CFD
simulation took 240 hours and was later compared to a wind tunnel test that lasted 8 hours
and it could be concluded that the wind tunnel resulted in the more precise data. The biggest
drawback with scale test is that they can be expensive especially

4.1.2 Scale relaxation on bluff bodies

Wind-tunnel testing of a bluff body (see section 3.2), such as the model in fig. 4.3, are
generally less sensitive to scale relaxation (the ratio between model- and full scale geometry),
compared with streamlined shapes. This effect occur as the generated suctions are primary
produced in the turbulence caused by flow separation (Stathopoulos and Surry, 1983). This
is in contrast to the streamlined shapes which are more dependent on the composition of
the oncoming wind. Another factor that simplify scale relaxation was that the model seen
in fig. 4.3 was built rigid. This eliminate shape change due to wind loading. An aero-elastic
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model on the other hand could have been used but this would have required that the scale
model mimics the structures actual response, which of course means a much more complex
model.

This meant that for geometrically similar models, the wind loading of the roof structure is
considered to not be sensitive to changes in scale. As a example of this a study of pressure
coefficient could be used as reference. In a study preformed by Stathopoulos and Surry,
(1983), the same rigid bluff body was built in different scales (1:100, 1:250 and 1:500) and
the pressure coefficients were measured and compared. The result was a error in the order
of 10 % between the pressure coefficients for the different scale models (ibid.).

4.2 Materials and methods

4.2.1 Roof shape

Among other things, using a cable like roof shape with a cross section according to figs. 4.1
and 4.2, gives problems with rain and snow accumulation towards the midpoint of the span.
This might also be a reason why this type of roof shape is still unusual. To permit surface
runoff it is therefore necessary for the roof to tilt in the out of plane direction, this gives rise
to two different roof shape suggestions (see figs. 4.1–4.3. From a structural point of view it
was therefore interesting to investigate these of this roof shapes was most beneficial against
snowdrift, which was one of the governing criteria in design. To determine the answer of this
question, scale tests were therefore performed.
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Figure 4.1: Dimensions for scale model with roof shape 1
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Figure 4.2: Dimensions for scale model with roof shape 2
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Figure 4.3: Completed scale model with different roof shape

4.2.2 Material

As the experiment could not use real snow in the simulation, another material with similar
properties had to be used. The material that was used was therefore fine grained silica
sand which according to Zhou et al., (2014), gives the most approximate results compared
with field observation as well as having good similarity conditions compared with real snow
particles (see appendix for further information). The material used for the scale test can be
divided in timber, sand and nails and screws used to put the model together.

The timber material used was a 18 mm thick wood board, a 12 mm thick plywood board
and a 3 mm thick oil coated masonite board. The masonite board was later given a more
rough surface, for reasons that will be discussed later in section 4.2.4. The different building
blocks were then put together with thin nails to minimise impact on surface area and sealed
with latex to prevent uneven internal wind flow. The snow was modelled with sand, having
a particle diameter of 0.2-0.7mm which was the closest found resembling the silica sand.

4.2.3 Instruments used in testing

In the experiment two similar fans with a diameter of 40 cm were used. The wind speed
was measured with both an anemometer and with a differential pressure gauge to ensure
accurate readings. The sand depth was measured with a digital caliper. The accuracy of
these instruments is further discussed in section 4.2.6.

4.2.4 Conditions for wind test

The fans were placed 12 cm above ground to achieve an increasing wind speed with height.
This is to better mimic the winds natural speed gradient that is present in natural wind
(Holmes, 2015; Simiu, 2011).

For wind on the buildings short side one fan was used (fig. 4.4) while wind on the buildings
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long side required two fans to have a sufficient flow distribution. The two fans were positioned
side by side according to fig. 4.5.

Before every wind test a layer of 20 mm sand was added to the roof surface, this layer
was then distributed and evened out with a guiding board with 2 cm distances according
to fig. 4.6. The sand layer depth was then controlled with a caliper in numerous points to
ensure a constant thickness of the sand layer. Sand was then added or removed depending
on the situation, followed by a new control until satisfactory sand depth was achieved.

Figure 4.4: Fan position for wind loading on the buildings short side
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Figure 4.5: Fan position for wind loading on the buildings long side

Figure 4.6: Guiding board with two 2 cm long strews that helped distribute the sand layer evenly over the
entire roof

Surface roughness

Before testing the masonite was sand papered to give the roof a rougher surface, as this was
assumed to reduce gliding of particles and therefore give a more unfavourable snow drift.
This of course needs to be tested further to determine how it impacts snow drift. Surface
roughness is one of the parameters affecting snow distribution according to Eurocode but
Eurocode does not explain how this generally affects snow drift (CEN, 2003). One thing to
note is that the modelled snow depth will also affect the friction force between particles, as
well as the current weather conditions of the snow.

Terrain roughness was not modelled in the test and therefore consists of smooth concrete
surface which was believed to correspond to a very open terrain with negligible vegetation.
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Test duration and fan characteristics

The duration of the experiment was determined by observation, which meant that the time
was measured between the start of the experiment and until no significant redistribution of
sand could be observed. This gave a duration of test length t=4 min for all the experiments.
One thing to note was that the time for steady state to develop was longer for the test with
the fan closer to the model and was therefore the deciding factor for the duration of the test.

The simulation consists of wind loading from two different distances between the fan and the
model. This meant that with an "open wind tunnel", the fan could run on a constant speed
but still produce different wind velocities. The two distances used in testing were 1.5 m and
2.5 m between the model and fan respectively. Here the closer distance simulates a higher
oncoming wind velocity.

To determine the flow distribution of the fan, a side test of wind speed at separate points
without the scale model were made. In this test the wind velocity was measured at distances
of 1.5 m, 2.0 m and 2.5 m from the fan, with three measurement points at each distance. The
three different points were -25 cm , 0 cm and +25 cm from the centre line of the oncoming
wind according to fig. 4.7. These points in fig. 4.7 represent an oncoming wind on the
models corners and midpoints. The evaluation of these points was also used to determine
the conditions for later analysis, here the oncoming wind velocity was set as the velocity at
the midpoint (0°), at the distances of 1.5 and 2.5 m respectively (see section 4.3).

From fig. 4.7 it can also be seen that the test with one fan has more measuring points
which also served as a calibration of the three different measurement techniques used in the
test. These three techniques consist of the digital anemometer, differential pressure gauge
with direct wind speed readings or from dynamic pressure readings. The measurement points
with two fans also showed similar behaviour to the test with one fan, even if the perpendicular
wind distribution was more even. This was understood when the measurement of fig. 4.7a
and fig. 4.7b was compared, at the distance of 1.5m and at the height of 40cm between the
fan and the model.

42



Laboration 4.2 Materials and methods

(a) Measuring points for wind velocity with one fan
(b) Measuring points for wind velocity with two
fans

Figure 4.7: Sketch of measuring points for wind speed

The differential pressure gauge used for wind speed evaluation could be calibrated for both a
direct reading of velocity in (m/s) and a dynamic pressure (Pa).The most accurate reading
of the wind velocities was considered to be from the dynamic pressure readings accoring
to Norberg, (2017), as this instrument is regularly used in aerodynamic experiments. To
translate the dynamic pressure to a wind velocity, the air density ρa was first calculated
according to the ideal gas law:

ρa = Ps
RT

(4.1)

where

Ps static atmospheric pressure

R Specific gas constant for dry air

T Air temperature

When air density was known the wind velocity for an incompressible flow was calculated
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from the dynamic pressure Pd as (eq. (3.1)):

V =
√

2Pd
ρa

(4.2)

With the wind velocity calculated according to eq. (4.2), the wind gradient could then be
plotted and compared with the fitted power law for wind-speed profile (Crawley and Dillon,
1993), seen in fig. 4.8

Vz = Vg

(
z

zg

) 1
α

(4.3)

where

Vz Wind speed at height z

Vg Gradient wind at gradient height zg
α Exponential coefficient

In this calibration test the best fitted curve between the measurements at different heights
and eq. (4.3), was achieved by having the calibration point at height z = 50 cm and choosing
α = 5, see fig. 4.8.
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Figure 4.8: Wind gradient for the fan used in the experiment (Dist. Fan-model 1.5m 0°, see fig. 4.7a)
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From fig. 4.8 it can be seen that eq. (4.3) fits the measurement quite well up to the height
z=50 cm. Up to this height an increase of height corresponds to an increase of wind velocity.
As the Equation (4.3) is used to model a realistic wind gradient and as the scale model was
exposed to the wind gradient between 0-25 cm, the wind loading from the fan was assumed
to be sufficient to be able to simulate snow drift.

Loading of the scale model

The models were exposed to wind load from three different angles according to figs. 4.9–
4.11. Here the reference of the attack angle of wind θ = 0° was set in the load carrying
direction of the real structure, shown in fig. 4.11. The second roof shape with double roof
slope is symmetrical across the midspan and was therefore only tested from the attack angle
of θ = 90 and 0 °.

(a) Wind loading for case 1. θ = 270° (b) Wind loading for case 2. θ = 90°

Figure 4.9: Attack angle of wind for load cases 1 and 2

Figure 4.10: Attack angle of wind for load case 3. θ = 90°
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(a) Wind loading for case 4. θ = 0° (b) Wind loading for case 5. θ = 0°

Figure 4.11: Attack angle of wind for load cases 4 and 5

4.2.5 Measurement of snow depth

After a constant wind loading for 4 minutes the fan/fans were stopped and sand depth could
then be measured at specific points. The points were divided in a grid with rows B-J and
columns from 2-10 according to fig. 4.12. The neglect ion of rows A and K respectively
columns 1 and 11 was due to the large sand erosion in these zones and could be assumed to
be zero.

Measurement was performed with a caliper and with the guidance of a wooden ruler seen in
fig. 4.13. This board were marked with vertical lines similar to the columns 2-10 and aligned
with the rows B-J according to fig. 4.12. In this way the measurement could be executed
systematically with the same conditions.
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Figure 4.12: Description of location for snow depth evaluation

Figure 4.13: Method for taking point measurement over the roof

With data of snow depth at these 81 points, a surface of the snow distribution over the
roof could be plotted with the program MATLAB. To get a finer mesh which simplifies
understandings the data was interpolated between measurement point with cubic spline.
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4.2.6 Sources of error

In the experiment several approximations have been made despite limited time and resources,
get a feeling of how problematic snow drift is for these two types of roof shapes. Uncertainties
are also believed to come from human errors, for example in the readings of the snow depth
and difficulties in getting a perfectly uniformly thick sand layer over the whole roof. Especially
getting the uniform sand depth was time consuming as control measurements were made
ocular and sand depth is therefore estimated to locally vary with up to ± 1 mm. Known
error sources of wind speed evaluation is ± 5 % error for the anemometer and approximately
± 1 % for the differential pressure gauge.

The fans used in testing were only designed to give a large wind flow and therefore had the
drawback of not producing a homogeneous wind flow for both the wind velocity and for the
turbulence intensity.

From the test with flow distribution of the fan it could be concluded that the wind load
was not symmetrical and that the left oncoming wind (as seen in fig. 4.7) was stronger, for
both the case with one or two fans. This correspond to that the resulting wind direction
had a different attack angle than the assumed 0°, 90° or 270°. The turbulence intensity in
the flow was also a cause of uncertainties even if it was not studied in this test, but could be
observed when measuring the wind velocity. The turbulence was from this wind measuring
tests believed to be greater at the outer edges of the flow, as wind velocity readings in this
zone tended to have a higher fluctuation.

4.2.7 Hypothesis

The zones with the most snow erosion are expected to be in the separation zone and in
reattachment points, according to section 3.2.4, as these are areas which locally can have
increased wind velocity. Just behind these zones the opposite situation for the wind speed is
valid and the largest snow accumulation is therefore anticipated in these areas.

Applying this reasoning to the scale model it would mean snow erosion is expected in the
outer boarders of the roof, depending on the wind direction. This means large erosion in
row A and K for wind on the buildings short side θ = 90° and θ = 270°, similarly the most
erosion for wind on the buildings long side (θ = 0°) was expected to occur in column 1 and
11. With a two sided sloping roof there is also risk for erosion in row F as this zone is a
reattachment point, discussed in section 3.4.1 (θ = 90°).
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4.3 Results and Discussion

In this section the result will be visualization as a surface with x- and y- axis describing
location while the z- axis describes the sand depth. Before the result is shown, the conditions
for the measurement is presented in a table and similarly the result was also summarised in
a table.

4.3.1 Determination of design loads

As mentioned in section 4.2.4 a sand layer of 20 mm perpendicular to the surface was dis-
tributed evenly over the roof. To easier understand the movement of snow, the measurements
from the experiment were normalized, so that the factor 1 corresponds to the original sand
depth and scaled up 20 times to make the differences more visible.

To be able to determine the section with the worst load case for the structure, the area under
the curves in figs. 4.14–4.18 was calculated for the alphabetical rows B-J (direction of the
load bearing elements). With this method the largest load could be determined as the section
with largest area under the curve.

As a structure with a cable like behaviour described in section 2.2, the asymmetric loading
was also of interest for design in SLS. This was determined similarly to the largest load with
calculation of the area under the curve for the rows B-J but here the loads of the two halves
of the span were compared, to find the section with biggest difference between the load on
the left and right side of the span. In the tests, a coordinate system with x-,y- and z-axis
were used. Here the y-axis corresponds to the scale models long side, x-axis the models short
side and the z-axis corresponds to the normalized sand depth. In all the tests the same colour
scale has been used in order to simplify comparison between the different tests. The tests
consist of 10 different measurements using the two different models seen in section 4.2.1. This
two models were then exposed to a different wind loads and from different angels which is
described in tab. 4.1.
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Table 4.1: Conditions for laboration measurements

Test Load Wind Attack Distance fan- Model
nr. case speed [m/s] angle [°] model [m] type∗

1 1 6.1 270 2.5 1
2 1 8.3 270 1.5 1
3 2 6.1 90 2.5 1
4 2 8.3 90 1.5 1
5 3 6.1 90 2.5 2
6 3 8.3 90 1.5 2
7 4 6.1 0 2.5 1
8 4 8.3 0 1.5 1
9 5 6.1 0 2.5 2
10 5 8.3 0 1.5 2

*) Model with (1) one-sided respectively (2) two-sided roof slope

The visualization of the result is presented for the five different load cases discussed in
section 4.2.4, meaning that the fig. 4.14a describes the result with a distance between fan
and model of 1.5 while the corresponding distance in fig. 4.14b is 2.5 m. This also applies to
the for rest of the result presentation in this section.

Visualization of load case 1

(a) Result of test 1 (b) Result of test 2

Figure 4.14: Normalized sand depth for load case 1 see tab section 4.3.1 for more details

In test 1 the largest accumulation of sand was in y=90 (fig. 4.12) which is close to the initial
separation zone. In fig. 4.14a it can also be seen that the accumulation is concentrated in the
mid part of the span. An observation during test 1 was that the principle particle transport
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was in the wind direction (along the y-axis). A small transport could also be observed along
the x-axis towards the higher edges (x=45 and x=5).

In test 2 a lot more sand was blown off the roof, compared with test 1. This can be seen in
fig. 4.14b, where almost all sand depth were lower than the starting value of 1. It can also
be seen that the sand depth at the edges (X=0 and X=50) were lower compared with test 1
, as the wind speed in this test was enough to blow the sand over the edge, while the sand
depth at midspan almost stayed unchanged (zmid ≈ 1). A interesting result from comparing
the two test was that the distribution of sand was more asymmetric for test 2, which can be
explained by the uneven loading discussed in section 4.2.6, which have a larger effect as the
wind speed increase.

Visualization of load case 2

(a) Result of test 3 (b) Result of test 4

Figure 4.15: Normalized sand depth for load case 2 see tab section 4.3.1 for more details

Similar to test 1, the snow accumulation occurs in the middle and the outer edges of the
wind exposed span, see fig. 4.15a. From this test the influence of roof slope can be seen as
the variation in sand depth is smaller in test 3 (fig. 4.15a) compared to test 1 (fig. 4.14a).
From comparing these two cases it can also be seen that there is no distinct accumulation in
the initial separation zone, instead a minor erosion occurred at y=10.

The same conclusion can be drawn in test 4. Namely that the roof shape leads to lower
variation in sand depth compared with test 2. From comparing test 4 (fig. 4.15b) and test 2
(fig. 4.14b) it can also be seen that no accumulation in initial separation zone but that the
overall distribution is similar between a loading from θ = 270 and θ = 90.

51



4.3 Results and Discussion Laboration

Visualization of load case 3

(a) Result of test 5 (b) Result of test 6

Figure 4.16: Normalized sand depth for load case 3 see tab section 4.3.1 for more details

For this test 5 and 6 in fig. 4.16 sand erosion can be seen in the midspan of the building
(section y=45 in fig. 4.16b). This can be partly explain with the speed up effect discussed
in section 3.2.4, which result in locally increased wind speeds. Another reason for large sand
erosion in this zone is the use of tape to seal the joint between the two masonite boards as
seen in fig. 4.3. This tape gave the section at y=45 a lower surface roughness compared to the
rest of the roof which also lead to larger erosion. Even with the large sand erosion at section
y=45, the sand drift follow a similar pattern to the model with one-sided roof slope which
meant that the result could still be used. For example similarities can be seen between test
6 and test 4 at Y=0-45, same observation can also be seen between 6 and test 2 at Y=45-90.

Visualization of load case 4

(a) Result of test 7 (b) Result of test 8

Figure 4.17: Normalized sand depth for load case 1 see tab section 4.3.1 for more details
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From test 7 in fig. 4.17a, it can be seen that most snow drift takes place at x=10 and towards
the outer edge of x=5. The impact of roof slope is also visible in fig. 4.17a as particle
transport was larger down hill. In test 8, the observed hill in fig. 4.17b at x=45, was moved
towards the midspan compared with test 7 (fig. 4.17a). It can also be suspected that some
of the sand in column x=0 has blown over the edge as peaks of sand depth in this zone were
lower in test 8 compared with those in test 7.

Noteworthy is also that lower variation in sand depth between the low- and high speed tests
for the wind on the buildings long-side, compared with test on the buildings short side. This
was believed to be connected with the flow pattern over the roof in this direction. According
to section 3.4.1, the flow is expected to be over the entire roof in this direction without any
reattachments, causing the snow to be shielded from the direct oncoming wind and therefore
resulting in less snow drift.

Visualization of load case 5

(a) Result of test 9 (b) Result of test 10

Figure 4.18: Normalized sand depth for load case 5 see tab section 4.3.1 for more details

Similar to test 7 and 8 the variation in sand depth is less compared with wind oncoming on
the buildings short side. From fig. 4.18a it is also apparent that most snow drift occurs in
proximity to y=50, but this is also the zone with largest uncertainties as discussed in test 5.
An unexpected result from wind loading on this roof shape is the difference in sand erosion
between tests 8-10, where in tests 9-10 there is not such a distinct sand drift at x=5.

Comparing test 10 with test 8 it is yet again similarities between the two different roof shapes
which are exposed to the same wind load. This can be seen in the build up of the hill at x=5
which is present in both test 10 (fig. 4.18b) and test 8 (fig. 4.17b).
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Table 4.2: Result of laboration measurements

Test Wind Attack Larges load Smalest load Most asy. load
nr. speed [m/s] angle [°] (norm.) [-] (norm.) [-] (norm.) [-]
1 6.1 270 1.07 (y=90) 0.9 (y=20) 0.12 (y=90)
2 8.3 270 0.85 (y=80) 0.47 (y=20) 0.16 (y=90)
3 6.1 90 1.01 (y=90) 0.89 (y=20) 0.05 (y=10)
4 8.3 90 0.89 (y=20) 0.75 (y=90) 0.16 (y=90)
5 6.1 90 1.06 (y=70) 0.80 (y=50) 0.10 (y=60)
6 8.3 90 0.98 (y=70) 0.41 (y=50) 0.14 (y=70)
7 6.1 0 0.99 (y=80) 0.88 (y=10) 0.07 (y=10)
8 8.3 0 0.99 (y=90) 0.90 (y=40) 0.09 (y=10)
9 6.1 0 0.98 (y=90) 0.87 (y=50) 0.04 (y=40)
10 8.3 0 1.00 (y=90) 0.93 (y=30) 0.03 (y=50)

See tab. 4.1 for more details about test conditions

4.3.2 Discussion of scale tests

In most of the tests similarities can be found in the sand drift between the tests exposed to
the same wind load. For example both test 1 and 3 showed drift from y=10 and y=40 out
towards column y=5 and y=45 respectively. Similarly test 2 and 4 could be compared, but
in these tests sand erosion occurs in all outer columns, leaving the sand depth in the mid
point of the span almost unchanged.

For wind loading on the buildings long side it can be concluded that the sand is more protected
from the oncoming wind and therefore making this direction less dependent on the direct
wind flow and instead more influenced by phenomenons like vortex shedding.

The designing load from test occurred for the roof with one sided slope (test 1 and 2), where
test 1 gave the largest total load, while test 2 resulted in the largest asymmetric load case.
To simply the modelling and comparison of the load with Eurocode, the measured load was
translated according to fig. 4.19. In this simplification the area under the curve was preserved,
as this can be interpreted as the size of the total load.

In the simplification of the asymmetric load seen in fig. 4.19c, the area under the curve was
kept the same as in fig. 4.19a. This is of course a big simplification of the measured load
but can be explained by that this load resulted in a load case on the safe side. In this
simplification the measured sand distribution was changed to a triangle load similar to the
extensive snow drift load case for multi-span roofs, seen in fig. 4.19f. As mentioned above,
the area of the triangle matches that of the measurements while the top of the triangle was
moved until the same asymmetry about the left and right part of the span was achieved.
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d
50 cm

(a) Section with design asymmetric (sand depth
from measurements)

d
50 cm

(b) Section with design load (sand depth from mea-
surements)

L/5
L

μ

0.9

(c) Simplified asymmetric load case from measure-
ments

L/2

μ

0.8
1.3

0.4

(d) Simplified design load case from measurements

L/2
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0.8
1.1
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(e) Load case for butterfly roof according to CEN,
2003, kap 5 s16

0.5L

2.0

μ

(f) Load case for exceptional snow drift on multi-
span roofs according to CEN, (2003, Bilaga B S26)

Figure 4.19: Comparison of result between measurements and Eurocode

4.3.3 Design load from test and comparison with Eurocode

Again using the area under the curve as a measurement of the load, the size of the simplified
measurement loads could be compared to the butterfly roof snow load according to Eurocode.
The largest total load from the test in fig. 4.19d had approximately the same area as Eurocode
snow load in fig. 4.19e. From figs. 4.19d and 4.19e it can also be seen that there is a difference
in symmetry. This difference can be explained with the uneven wind loading on the scale
model, as discussed in section 4.2.6. It can therefore be suspected that the load in fig. 4.19d
could have been symmetrical which in that case would result in a load of 110 % compared to
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Eurocode. The conclusion of this was that the load case for the butterfly roof matches well
with the measurement for the design load, but can be considered to be on the unsafe side as
safety factors were not implemented for the measured loads.

If exceptional snowdrift can be assumed, a snow distribution according to fig. 4.19f could
be assumed as a possible load case (CEN, 2003). Comparing this exceptional snow load it
can be conclude that its 105 % of the butterfly snow load. For the asymmetric load case
seen in fig. 4.19c there was not found a good comparison in Eurocode. Having this lack of
comparison, combined with the errors in the measurement (see Section 4.2.6), the result in
this load case can be considered more uncertain.
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Chapter 5

Analytical Model

As briefly mentioned in section 2.6, it is important to have some sort of reference when using
a FE simulation, as small errors in input data can result in drastically different results. The
risk for this problem is especially high in modern FE programs, as these will automatically
assume a lot of parameters. Then the reference serves as a quick way to know if the output
from FE is realistic (Crocetti, 2016a). As a reference to the FE calculation an analytical
model has therefore been developed. This analytical model uses derivations from Marti,
(2013) which could then be applied on a specific structure. All the analytical calculations
were implemented in MATLAB (see Appendix) which made it possible to plot and compare
to the FE calculations (see section 6.3.2).

5.1 Theory of cables (no bending stiffness)

Similar to the evaluation of the buildings natural frequency, parallels can be seen between
the behaviour in a cable and the stress ribbon member. This simplification can e.g. be used
to calculate the normal force in the stress ribbon member. With a cable approximation, the
value of the normal force will be on the safe side as an infinitely stiff beam will carry all load
in bending (no normal force) while a cable will carry all load though normal force. From
fig. 5.1 the following length for the cable segment can be expressed:

ds =
√
dx2 + dz2 = dx

√
1 + z′2 (5.1)

Horizontal equilibrium gives (H∗ = H + dH):

(→) H∗ − (H∗ + dH) = 0 ⇒ dH = 0 H∗ = constant (5.2)

Moment equilibrium at right side (·):

(x) H∗dw − V dx+ q dx2/2 + g dx2/2 = 0 (5.3)
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5.2 Theory of a cable with bending stiffness Analytical Model

As dx is small, the terms with dx2 ≈ 0. This results in that the vertical force V in eq. (5.3)
can be expressed as:

V = H∗
dz
dx = H∗z′ (5.4)

Now eq. (5.4) can be inserted into eq. (5.1) which yields:

N =
√
H∗2 + V 2 = H∗

√
1 + z′2 (5.5)

To determine the normal force the similarity between the moment in a beam and the shape
of the cable was utilized. This similarity occurs as the cable is assumed to inherit no bend-
ing stiffness (EI ≈ 0) and therefore shapes itself to only carry in tension as discussed in
section 2.1.

Figure 5.1: Small cable section with length ds

If the beam is assumed to be simply supported, the following equation can therefore describe
the cables position (Crocetti, 2016a):

z = M̄

H∗
(5.6)

5.2 Theory of a cable with bending stiffness

As mentioned in section 2.2 the stress ribbon system uses a degree of bending stiffness in
order to increase structural stiffness. The bending stiffness in combination with a catenary
shape causes the system to have both beam and cable like properties.

The following derivation follows the method presented in Marti, (2013) with conditions ac-
cording to fig. 5.2. Here the differential equation for a combined cable and beam type response
can be expressed as:

EIw′′′ − (H + ∆H)(z + w)′′ = g + q (5.7)
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Analytical Model 5.2 Theory of a cable with bending stiffness

where:

E Modulus of elasticity [Pa]

I Second moment of inertia [m4]

w Deflection [m]

H Horizontal tension from permanent load [N]

ΔH Horizontal tension from variable load q [N]

z Cable curve z(x) see Equation (5.6) [m]

g Permanent load g [N/m]

q Variable load q [N/m]

If the permanent load is assumed to be carried only in cable-type response (no resulting
bending moment) i.e. g = −Hz′′, then eq. (5.7) can be rewritten as:

EIw′′′′ − (H + ∆H)w′′ = q − g∆H
H

(5.8)

The general solution for eq. (5.8) is:

w = c1 + c2x+ c3 cosh(λx) + c4 sinh(λx) + wpart where
(
λ2 = H + ∆H

EI

)
(5.9)

To determinate ∆H the following equation needs to be designated:∫ l

0
w′z′dx = ∆Hl

EA
where l is the span length (5.10)

With boundary conditions w(0) = w(l) = 0 and assuming a parabolic cable curve with cable
sag f for a the permanent load g ( z′′ = −8f/l2) an integration by parts on the left side of
eq. (5.10) gives: ∫ l

0
w′z′dx = wz′

∣∣∣∣∣
l

0
−
∫ l

0
wz′′dx = 8f

l2

∫ l

0
w dx (5.11)

Using 5.10 and 5.11 ∆H can be determined as:

∆H = 8fEA
l3

∫ l

0
w dx (5.12)
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5.2 Theory of a cable with bending stiffness Analytical Model

Figure 5.2: Analysed model

5.2.1 Uniform loading on stress ribbon

For the specific case of a symmetric load over the whole span (seen in fig. 5.3), eq. (5.7) can
be further expanded.

Figure 5.3: Symmetric load case for the stress ribbon element
Inspired from: Marti, 2013, p. 364
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Analytical Model 5.2 Theory of a cable with bending stiffness

Deflection

Now using the theory for a cable with bending stiffness (section 5.2), the equations can be
further expanded for the symmetric load case.

First the equations for the deflections were established according to Marti, (2013) below:
Using eq. (5.8) for the load case shown in fig. 5.3, with the following boundary conditions
w′(0) = w′′′(0) = w(l/2) = w′′(l/2) = 0 gives the following deflection:

w =
q − g∆H

H

2(H + ∆H) ·
[
l2

4 −
2
λ2 + 2 cosh(λx)

λ2 cosh(λl/2) − x
2
]

(5.13)

The horizontal force from the variable load in eq. (5.13) can now be expressed with the help
of eq. (5.12) as:

∆H =
q − g∆H

H

2(H + ∆H) · 16fEA ·
[

1
12 −

1
(λl)2 + 2 tanh(λl/2)

(λl)3

]
(5.14)

Moment

Continuing using the theory for the bending stiff cable, the moment of the stress ribbon
member could be calculated according to Marti, (ibid.) as:

M = −EIw′′ (5.15)

To determine w′′ the second derivative was calculated for eq. (5.13) and gave the following
result (Hofverberg, 2016; Marti, 2013) :

M = −EI
q − g∆H

H

(H + ∆H) ·
[
sech λl2 cosh(λx)− 1

]
(5.16)

Normal force

Here the approximation with a cable with no bending stiffness was used instead (solution on
the safe side, as discussed in section 5.1).

According to eq. (5.6), the z-coordinate for a cable can easily be calculated by dividing the
moment in a beam with the horizontal force H. With a uniformly distributed load the
moment can be calculated with the help of beam tables, see fig. 5.4.
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5.2 Theory of a cable with bending stiffness Analytical Model

Figure 5.4: Beam table for evaluate the moment when exposed to a symmetrical load
Inspired from: AWC, 2007

The z-position can therefore be expressed as:

z(x) = M̄

H∗
= 1
H∗

qx

2 (L− x) (5.17)

Derivation of eq. (5.17) yields:
z′(x) = 1

H∗
q

2(L− 2x) (5.18)

The normal force can now be calculated according to eq. (5.5)

N = H∗

√
1 +

( 1
H∗

q

2(L− 2x)
)2

(5.19)

5.2.2 Antisymmetric load

Another special load case that is interesting is for an uneven loading as discussed in sec-
tion 2.9.

Deflection

A Similar derivation as for deflection in section 5.2.1, can be made for a asymmetric loading
case which can be seen in fig. 5.5. This result in the following expression:
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Analytical Model 5.2 Theory of a cable with bending stiffness

w1 = c1 + c2x+ c3 cosh(λx) + c4 sinh(λx)−
q − g∆H

H

2(H + ∆H)x
2 (−l/2 ≤ x ≤ 0)

w2 = c5 + c6x+ c7 cosh(λx) + c8 sinh(λx)−
g∆H
H

2(H + ∆H)x
2 (−l/2 ≤ x ≤ 0)

(5.20)

With the boundary conditions:
w1(−l/2) = w′′1(−l/2) = w2(l/2) = w′′2(0)

and continuity conditions:
w1(0) = w2(0) , w′1(0) = w′2(0) , w′′1(0) = w′′2(0) , w′′′1 (0) = w′′′2 (0)

This leads to the following values on constants c1−8 in eq. (5.20):

c1 =

(
q − g∆H

H

)
− l2

8 g
∆H
H

2(H + ∆H) c2 = c6 = −ql
8(H + ∆H)

c3 =
q(cosh(λl/2) + 1)− 2g∆H

H

2(H + ∆H)λ2 cosh(λl/2) c4 = c8 = q(cosh(λl/2)− 1)
2(H + ∆H)λ2 sinh(λl/2)

c5 =

(
q − 2g∆H

H

)
l2

8 + 2
λ2 g

∆H
H

2(H + ∆H) c7 =
−q(cosh(λl/2)− 1)− 2g∆H

H

2(H + ∆H)λ2 cosh(λl/2)

Using the same equation (eq. (5.12)) as for the symmetric case, the horizontal force from the
variable load can be expressed as:

∆H =
q − 2g∆H

H
fEA

(H + ∆H) ·
[

1
3 −

4
(λl)2 + 8 tanh(λl/2)

(λl)3

]
(5.21)
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5.2 Theory of a cable with bending stiffness Analytical Model

Figure 5.5: Asymmetric load case for the stress ribbon element
Inspired from: Marti, 2013, p. 366

Moment

Using the same solving method as in section 5.2.1, the unknown terms for M and N are w′′
and z′. Derivation of eq. (5.20) gives the following result:

w′1 = c2 + c3λ sinh(λx) + c4λ cosh(λx)−

(
q − g∆H

H

)
(H + ∆H)x

w′′1 = c3λ
2 cosh(λx) + c4λ

2 sinh(λx)−

(
q − g∆H

H

)
(H + ∆H)

(5.22)

With no variable load in the second span, corresponding expression for w2 is:

w′2 = c6 + c7λ sinh(λx) + c8λ cosh(λx)−

(
g∆H
H

)
(H + ∆H)x

w′′2 = c7λ
2 cosh(λx) + c8λ

2 sinh(λx)−

(
g∆H
H

)
(H + ∆H)

(5.23)

Inserting the boundary conditions w′′1(−l/2) = 0 and w′′1(0) = 0 , the constant in eq. (5.22)
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can now be determined:
c′′3λ

2 cosh(λ · (−l/2)) + c′′4λ
2sinh(λ · (−l/2)) =

q − g∆H
H

H + ∆H

c′′3λ
2 cosh(λ · 0) + c′′4λ

2 sinh(λ · 0) =
q − g∆H

H

H + ∆H

(5.24)

As cosh(0)=1 sinh(0)=0

c′′3 = 1
λ2

(
q − g∆H

H

H + ∆H

)
(5.25)

Inserting this c′′3 in eq. (5.24) yields:

c′′4 = 1
λ2 sinh(λ · (−l/2))

(
q − g∆

H

H + ∆ − c
′′
3λ

2 cosh(λ · (−l/2))
)

(5.26)

Same method for w′′2 (eq. (5.23)) result in constants according to:

c′′7 = 1
λ2

(
−g∆H

H

H + ∆H

)
(5.27)

Inserting this c′′3 in eq. (5.24) yields:

c′′8 = 1
λ2 sinh(λ · (−l/2))

(
q − g∆

H

H + ∆ − c
′′
7λ

2 cosh(λ · (−l/2))
)

(5.28)

With constants according eqs. (5.25)–(5.28) and deflection according to eqs. (5.22) and (5.23)
the moment for the asymmetric load case can be written as:

M1 = EIw′′1 ;−l/2 < x < 0 and M2 = EIw′′2 ; 0 < x < l/2 (5.29)

Normal force

Using the same method as for the symmetric case, the normal force was approximated with a
cable response. Similar to the symmetric load case the z-position of the corresponding cable
was determined with the help of beam tables, see fig. 5.6.
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Figure 5.6: Analysed model
Inspired from: AWC, 2007

From fig. 5.6 the z-position for the left zone with live load (z1,q) and right zone without load
(z2,q) are determined:

z1,q = M̄

H
= 1
H

(R1 −
qx2

2 ) where R1 = qa

2L(2L− a)

z2,q = M̄

H
= 1
H

(R2(L− x)) where R2 = qa2

2L

Recalling N = H
√

1 + z′2 and assuming the self weight is evenly distributed, the expression
for z′ from section 5.2.1 could be used. Superpositioning the normal force for the symmetric
load (g) and antisymmetric live load (q) shown in fig. 5.5, the total normal force for a pure
cable can be written as:

N1 = H
√

1 + z′2g + ∆H
√

1 + z′21,q

N1(x) = H

√
1 +

( 1
H

w

2 (l − 2x)
)2

+ ∆H
√

1 +
( 1
H

(R1 − wx)
)2 (5.30)

This expression is for the left part of the span and the the same could also be done for the
right side of the span. Here the first term corresponds to the normal force from self weight
while the second term estimates the normal force from the live load.
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5.2.3 Natural modes and frequency

As an estimation of instability is of interest, the structural frequency of a single stress ribbon
element was calculated. According to Strasky, (2005) an expression for the natural frequency
can be found for a single cable similar to the case shown in fig. 5.7 as:

f(1) = 1
2

√√√√ 1
µ

(
H

l2
+ EAf 2π2

2l4 + EIπ2

l4

)
(5.31)

f(n) = 1
2

√√√√ 1
µ

(
Hn2

l2
+ EIπ2n2

l4

)
(5.32)

where

µ mass of cable per unit length [kg/m]

H Horizontal force [N]

E Modulus of elasticity [Pa]

I Second moment of inertia [m4]

A Cross section area [m2]

l Span length [m]

n mode number

Figure 5.7: Mode shapes of calculated natural frequencys
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5.2 Theory of a cable with bending stiffness Analytical Model

All the terms in eqs. (5.31) and (5.32) describe how the natural frequency is affected by
different parameters. Therefore let’s explain the terms, starting with the first term:

H

µl2

This can be interpreted a pure cable like response and can be compared with the equation
for a cable in section 2.3

EAf 2π2

2l4
The second term in eqs. (5.31) and (5.32) takes into consideration the normal stiffness of the
cable as it has to elongate to vibrate at the first mode. This is another reason why the second
mode shape f(2) can have a lower frequency which was briefly discussed in section 2.4.

EIπ2n2

l4

The third term describes the bending stiffness of the cable which according to Strasky, 2005,
in engineering calculations, is insignificant.
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5.2.4 Cross-section properties of stress ribbon element

As indicated by the equations above some properties as bending stiffness EI and axial stiffness
EA of the cross-section must be known. The effective bending stiffness EIeff with presumed
ridged connection between the composite cross section of plywood (1) and glulam (2) can be
calculated for a wood floor according to McCutcheon, (1977):

EIeff = EIu + (EA1)(EA2)
(EA1 + EA2) h

2 (5.33)

where EIu is the summation of the individual stiffness of the plywood and glulam beam and
h is the distance between the centroid of the plywood and glulam beam.

The effective axial stiffness EAeff can also be calculated by transforming the composite
cross section into equivalent glulam section as seen in fig. 5.8. This homogeneous glulam
section was obtained by scaling the width of the plywood with the stiffness ratio according
to eq. (5.34) (Crocetti, 2016b) (shown in fig. 5.8):

Figure 5.8: Analysed model
From: Crocetti, 2016b

Aply,eff = Aply
EGL/Eply

(5.34)

If the elongation is assumed to vary linearly over the cross-section the combined effective
combined axial stiffness EAeff can be determined as:

EAeff = Eglulam(Aply,eff + Aglulam) (5.35)
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Chapter 6

Finite element model

6.1 Modelling a stress ribbon with different element
types

As described in the previous chapter, the load carrying element has neither a pure cable
or pure beam response. It is therefore of interest to choose the modelling element in finite
element that was the most consistent with the bending stiff cable presented in section 5.2.1.
This leads to a short comparison between the element types, specific between the cable- and
beam element in the finite element program Rfem with the help of the reference example
presented in Marti, (2013, p. 365). The comparison could then determine which element
type has the best similarity between the theory and the finite element program.

The load case used in the comparison is the asymmetric load case seen in fig. 5.3.

The cross-section of the reference example consists of a 200 mm deep concrete roof with the
following parameters: g = 5kN/m, q = 2 kN/m, EA = 6 GN and EI = 20 MNm2 per metre
width of roof. The roof spans a distance of l = 100 m as a suspension roof with a sag of
f = 10 m.
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Table 6.1: Similarity between Rfem and reference example in Marti, (2013, p. 365) for an asymmetric load

umax [mm] umin [mm] Mmax [kNm] Mmin [kNm]
Rfem cable element (C) 409,1 (at x=26,4) -419,8 (at x=76,1) - -
Rfem beam element (B) 378,0 (at x=26,3) -380,3 (at x=76,4) 25,1 (at x=32,5) 25,1 (at x=70,3)
Analytical solution (T) 384,7 (at x=25) -378,9 (at x=75) 26,3 (at x=25) 26,2 (at x=75)

Diff. for cable (C-A) 24.4 40.9 26.3 26.2
% (Diff./T) 6.3 % 10.8 % - -
Diff. for beam (B-A) -6.7 1.4 -1.2 -1.1
% (Diff./T) -1.7% 0.4% -4.6% -4.2%

From Table 6.1 it can be seen that the beam element have a lower difference between the
analytical and the used element type in Rfem in all the compared categories (deflection, and
moment) and was therefore used for further calculations.

6.2 Method Parameter study

In this study the following parameters were evaluated: influence of support stiffness, sag and
the slenderness of the cross section. To describe the effects of this parameters, the resulting
normal force, displacements, moment and natural frequency were compared for different
beam cross-sections.

6.2.1 Load cases

In this parameter study two load cases were used in order to understand how the load
carrying element would be affected by a symmetric- and asymmetric loading respectively.
The approximate force distribution shown in fig. 6.1 and fig. 6.2 helps with the understanding
of behaviour of the stress ribbon. The notations in these figures also explains in what points
the result of this study was collected. For example the result of the parameter study, that is
presented later uses the maximum normal force, displacement and deflection which can be
located according to figs. 6.1 and 6.2.
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Figure 6.1: Force distribution in the stress ribbon member due to uniform loading. Max/Min values seen
here were later used in the parameter study (section 6.3).

Figure 6.2: Force distribution in the stress ribbon member due to asymmetric loading. Max/Min values
seen here were later used in the parameter study (section 6.3).
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6.2.2 Determining stiffness of spring support

To determine a suitable stiffness in supports two different column designs were studied as
seen in fig. 6.3 and fig. 6.4. The first design consists of two inclined columns with a cross-
section according to fig. 6.6, this gives stiffness from two factors. Firstly stiffness comes from
maximize the lever arm between supports and secondly by having a stocky cross section, this
therefore define the higher boundary for the support stiffness. The second column design in
fig. 6.4 instead uses high strength cables as backstays which results in a more slender design
and therefore defines the lower stiffness boundary. The stiffness for these two column design
was then translated to equivalent linear springs, with the reaction force R and displacement
u at column top according to fig. 6.5a.

Figure 6.3: Conditions for determining the higher boundary for spring stiffness at column top
(see fig. 6.6 for cross-section info)

Figure 6.4: Conditions for determining the lower boundary for spring stiffness at column top
(see fig. 6.6 for cross-section info)
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(a) Forces and disp. at column top (b) From forces and disp. to linear springs

Figure 6.5: Calculation of the equivalent spring support
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6.2.3 Cross-section used for determination of support stiffness

(a) Cross-section for main column
(column design 1)

(b) Cross-section for backstay
(column design 2)

(c) Cross-section for stress ribbon element (design 1
+ 2)

Figure 6.6: Cross-section used in parameter study

The reaction force was obtained by dividing the normal force in the cross-section 1 (fig. 6.6c)
at column top in a horizontal and vertical component, see fig. 6.5a. This then enabled
calculation of a spring with the equivalent stiffness, according to fig. 6.5b and eq. (6.1):
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k = F

∆u (6.1)

where

k Spring stiffness [kN/m]

F Force in spring [kN]

∆u Displacement in spring [m]

Using eq. (6.1) it could for example be concluded that the horizontal stiffness in the first
column design was 8 times stiffer compared with design two. With values of the low and
high boundary of the support stiffness more data points was then linearly interpolated and
were then used in the parameter study, see section 6.3.

The stiffness was implemented according to fig. 6.7 with a cross-section shown in fig. 6.6c.

Figure 6.7: Implementation of support stiffness

6.2.4 Determining influence of sag

When studying the influence of sag the supports were assumed pinned and the cross-section
used in analysis can be seen in fig. 6.6c (same as for determination of support stiffness). Then
the sag was varied in ten points between 2-11 m according to fig. 6.8.

Figure 6.8: Description of the diffrent sag height later used in section 6.3
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6.2.5 Determining cross-section for slenderness test

To describe the slenderness of the analysed cross-section the ratio of I/A was used, i.e. the
square of the radius of gyration R2

g = I/A. As this ratio contains two factors, this meant
that the study was divided in two parts, first the cross-section area A was kept constant and
in the second part the moment of inertia I was kept constant. In this way both the influence
of bending stiffness I and the difference of self weight though A could later be evaluated.

The start and end cross-section of the slenderness analysis is shown in fig. 6.9. The dimension
originates from that the start and end dimensions for a beam with a constant area. This
start dimension were set so that a cross-section with lower hight to width ratio (h/w) didn’t
seemed likely as this beam have a low bending stiffness (I) which was thought to give the
section more cable like responses to loading. Similar reasoning was behind the end cross-
sections but here the beam have a really high bending stiffness which instead was to believed
to give the section of a more beam type response to loading. The idea with this was to have
a reasonable h/w somewhere in this span, in order to determine the optimal h/w for the
design.

(a) Start cross-section (A const.) (b) Start cross-section (I const.)

(c) End cross-section (A
const.)

(d) End cross-section (I
const.)

Figure 6.9: Start and end cross-sections for the parameter study with of slenderness
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Cross-sections for beam with constant A

To obtain cross-sections between the extremes shown in figs. 6.9a and 6.9c the bending
stiffness I for the start and end dimension was calculated. Points in-between these I-values
were then interpolated similar to the calculation for support stiffness and were then translated
to cross-sections according to:

h =
√

12I
A

and w = A/h (6.2)

where:

h Cross-section height [m]

w Cross-section width [m]

h Cross-section Area [m2]

I Cross-section bending stiffness [m4]

Cross-sections for beam with constant I

With calculated beam cross-sections according to section 6.2.5 the slenderness ratio (I/A) was
known for the beam with constant area and using the bending stiffness in the middle of this
interval, the cross-sections for the beam with constant bending stiffness could be determined
as:

A = IconstI/
(
I

A

)
constA

and with Equation (6.2) (6.3)

With a low slenderness ratio I/A and using a constant I, this meant that the beams with low
height resulted in excessive width, seen in fig. 6.9b. This can also be understood by eq. (6.4),
as the relationship between the bending stiffness I and beam height h is cubic.

I = wh3

12 (6.4)
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6.3 Result and discussion of parameter study

Recalling from previous chapter, the following parameters were studied:

• Stiffness of support

• Sag of the stress ribbon element

• Slenderness of cross-section

To describe the impact of these parameters for a stress ribbon element with a span of 70m,
normal force, displacements, moment and natural frequency were studied and are discussed
below.

All the calculation in Rfem were made with third order theory, which is discussed in sec-
tion 6.4 and it was only in the slenderness study the self weight was considered. The plots
are also scaled to enable direct comparison between the symmetric- and asymmetric load
case. In these plots the blue line represents the results from the symmetric load (left y-axis)
while the red line displays the results for an asymmetric load (right y-axis).

6.3.1 Dependence of support stiffness

Recalling from section 6.2.2 the stiffness of the support was calculated from a stiff to a more
slender column design see fig. 6.3 and fig. 6.4, resultings in a model used for analysis shown
in fig. 6.4. The data from this analysis is shown in fig. 6.10.
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(a) Impact of support stiffness on normal force
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(b) Impact of support stiffness on disp.
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(c) Impact of support stiffness on moment

Figure 6.10: Parameter study of the support stiffness. Blue line = symmetric load, Red line = asymmetric
load

From fig. 6.10a it can be seen that normal force decreases with a lower support stiffness.
The effect is however small as using the normal force at the low stiffness result in a relative
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difference of ≈ 1-2 % between the lower and higher normal force (for both the symmstric and
assymetric case). It can also be seen that this effect was more noticeable for the symmetric
loading but can partly be explained with that the total load was double in the symmetric
load case.

The displacement shown in fig. 6.10b, instead displays more correlation with the support
stiffness, compared to the normal force. The dependence on support stiffens for displacement
was larger for the symmetric load case but at the same time, the load was double in the
symmetric case. To test the influence of this load difference, a special asymmetric load case
with the same load as the symmetric case was also preformed. This test showed a similar
dependence on the support stiffness compared too the asymmetric load case which meant that
a symmetric load really have larger dependency with support stiffness independent of load.
The result of this special load case followed the same behaviour as the other asymmetric load
case and was therefore not shown here. The remaining difference in displacement is therefore
believed to also depend on the deflection shape which can be seen in fig. 6.1 and fig. 6.2.

As a example of this the displacements at a low support stiffness can be compared with
a totally stiff support. Using the displacements at the low stiffness boundary as reference,
the relative difference between these displacements result in a 89 % difference (109.3 to 11,6
mm) for the symmetric case, compared with a 13 % difference (276,3 to 240,7 mm) for the
asymmetric load case. Although the system is more affected by the support stiffness for
the symmetric load case, the absolute values for the displacements was still larger for the
asymmetric load case.

Similar to the displacement the moment seen fig. 6.10c decreases with increased support
stiffness. Using the same method for calculating the relative difference the outcome is also
similar, 90 % difference (12,44 to 1,26 kNm) for the symmetric case and 4 % difference
(108,5 to 103,91 kNm) for the asymmetric load case. The correlation between the moment
and displacement can be seen as an indication of that the stress ribbon system resist the
displacements with a more beam like behaviour, when deflected from it’s original cable like
shape. In this way the local deflection is reduced and instead taken up as moment as discussed
in section 2.2.

It can therefore be concluded that a low support stiffness doesn’t influence the normal force
but has more impact on the displacements and moment. Another conclusion that could be
made from this test, was that the support stiffness affected the stress ribbon system more
when the system was exposed to a symmetric load compared with an asymmetric load, even if
the asymmetric loading lead to higher absolute values of displacement and bending moment.

6.3.2 Dependence of sag

In this test the support was assumed totally stiff and the sag f at the mid point of the span
was varied from 2-11 m. With these conditions both theoretical (chapter 5) and FE analysis
(chapter 6) could be used and the result is shown in fig. 6.11. The colours follow those in
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section 6.3.1 and the dashed lines show the analytical calculations according to chapter 5.
In order to separate the calculation of natural frequency, that don’t use the symmetric and
antisymmetric load cases, different plot colours were used, see fig. 6.11d.

(a) Impact of sag on normal force (b) Impact of sag on displacements

(c) Impact of sag on moment (d) Impact of sag on natural frequency. Black-
Rfem, Mageta- Strasky.

Figure 6.11: Parameter study of the sag. Blue line- symmetric load case, Red line- asymmetric load case.
Solid line- Rfem, Dashed line- analytical solution.

Similar to the theory described in eq. (2.2) (Section 2.2) the relationship between normal
force and sag is quadratic, as seen in fig. 6.11a. This means that it is beneficial for the
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normal force if the stress ribbon system has a large sag. It can also be interpreted as the
normal force follows a cable like response. Both the symmetric and the asymmetric load case
show this behaviour, hence the load type doesn’t affect the correlation between the normal
force and the sag. If the normal force calculated analytically respectively with Rfem were
compared, it is evident that the different methods have very good agreement for both load
cases.

The displacements also seem to follow the decreasing quadratic pattern as the normal force,
when loaded with a symmetric load, seen in fig. 6.11b. The opposite relationship was how-
ever true for the asymmetric loading. It is for the asymmetric load case where the largest
differences between analytical solution and Rfem can be observed. A part of this difference
can be caused by the fact that third order theory was used in Rfem calculations while the
analytical calculations were derived with first order theory.

The moment shown in fig. 6.11c again shows great similarity to the displacements. The
interesting from this test was that the behaviour for the asymmetric load were the same for
both the analytical solution and Rfem in contrast to what was the case for the displacements.

For the natural frequency shown in 6.11d, it is evident that increased sag means a lower
natural frequency for the stress ribbon. As no real test of the natural frequency has been
performed, both the displayed frequencies in 6.11d were considered quite uncertain.

The conclusion from this test was that the sag had influence on all the tested parameters
in the system. For the normal force and natural frequency an increased sag was beneficial
for normal force while the opposite was true for displacements, bending moment and natural
frequency. This means that a good balance in sag is required that allows enough sag to lower
the normal forces but at the same not to much sag which would lead to large deflections.

6.3.3 Dependence of slenderness ratio I/A

The last parameter that was studied was the slenderness of the cross-section. This was
described with the slenderness ratio I/A, which is described in section 6.2.5 and the result
from this analysis can be seen in fig. 6.12. As cross-section in the middle of the interval
( I
A

= 600m2) was used as reference, this point is the same regardless of varied parameter.
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(a) Impact of slenderness on the normal force (b) Impact of slenderness on the disp.

(c) Impact of slenderness on the moment (d) Impact of slenderness on the natural frequency

Figure 6.12: Impact of the cross-sections slenderness. The line explanation follow those in section 6.3.2

In fig. 6.12a, it can be seen that the largest variation in normal force was in the test when
bending stiffness I was kept constant. This is due to the difference in self weight as this test
starts with a large cross-section area that decreases with increased slenderness (explained in
section 6.2.5).

For the displacement plot shown in Figure 6.12b it was again primarily the asymmetric load
that caused the largest displacements. From this graph it was clear that the displacement
decreases rapidly with a linear increase of bending stiffness. The difference between the
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displacement for the most stocky and the most slender beam was 210 mm (242 to 32 mm)
for the asymmetric load and beam with constant area, while the corresponding difference for
the test with constant bending stiffness was -21 mm (41 to 62 mm) with the decrement of
material use by approximately 94 %.

Unlike the other two tests (influence of support stiffness and sag) the correlation that more
displacement leads to more moment in the stress ribbon was no longer valid. Instead fig. 6.12c
shows that more moment develops in a more slender beam but it should be noted that the
moment capacity increases faster than the moment. The difference between the most stocky
and the most slender beam was -32,5 kNm (85,6 to 118,1 kNm) for the asymmetric load and
test with constant area and the corresponding for the beam with constant bending stiffness
was -56,3 kNm ( 66,4 to 122,7 kNm).

From fig. 6.12d it can be seen that the natural frequency increases with increasing slenderness
of the cross-section. Both the test with constant area and constant bending stiffness overlap.
This is thought to occur due to two effects cancelling out each other; First is that the cross-
section with lager self weight has higher mass per unit length that lowers a cables natural
frequency, at the same time the weight creates higher prestress which increases the natural
frequency, in the end creating the independence of the cables self weight. This result is
believed to be a bit unrealistic as e.g. deformations at support for cross-sections with large
self weight would in reality give the SR system a lower stiffness.

To give an idea of how the slenderness affects the forces and moments in the SR member,
a reference beam of GL32h 300x300 was assumed. Then the material was redistributed to
give a high respectively low beam cross-section and the result of these calculations is shown
in table 6.2, where U denotes utilization ratio.

Table 6.2: Example of forces in specific cross sections (U-utilization ratio)

Symmetric load
Cross-section N [kN] U N % u [mm] M [kNm] U M % U Tot %
GL32h 300x300 193 15 19 0.5 0.5 15,5
GL32h 200x450 193 15 20 0.9 0.6 15,5
GL32h 450x200 193 15 18 0.3 0.5 15,4
Asymmetric load
Cross-section N U N % u M U M % U Tot %
GL32h 300x300 126 10 604 43.7 47 57
GL32h 200x450 126 10 435 68.9 50 60
GL32h 450x200 126 10 724 23.5 38 48
Calculations were made with same conditions as other parameter studies see sec-
tion 6.2 for more info

From table 6.2 it can be seen that the asymmetric load results in the most unfavourable
parameters and that the high beam had a higher utilisation ratio. At the same time it was

86



Finite element model 6.4 The influence of the order of theory

only the high beam that had low enough displacement. Evident in asymmetric load case
was also that it was primarily the moment with the given conditions that was governing the
degree of utilization. The conclusion was therefore that there must be a balance between
beam height so that the hight is high enough to limit deflection but at the same time not
too high as this would result in a large bending moment.

6.4 The influence of the order of theory

To investigate the influence of the order of theory, the same cross-section and load conditions
as in the parameter study with stiffness and sag were assumed. Normal force, displacements
and moment were then calculated with different order of theory in Rfem and are shown in
table 6.3.

In table 6.3 it can be seen that most of the differences occur in the asymmetric load case
where the displacements were lower in the higher order of theories. Interesting is that it
was between first and second order theory where most differences could be observed, here
the relative difference of 14 % could be seen for both the displacements and moment. This
could be compared with the difference of 18 % for the displacements and 9 % for the moment
between the analytical and third order FE calculation using the same conditions. From this
comparison it can therefore be suspected that difference in result between the analytical and
FE calculations in fig. 6.11 can partly is dependent on that the analytical solution uses first
order theory while FE calculation uses third order theory.

Table 6.3: Example of impact of the degree of theory

Symmetric load
Order of theory (OT) N [kN] u [mm] M [kNm]
First OT(T1) 150.61 11.6 1.28
Second OT (T2) 150.4 11.6 1.26
Third OT (T3) 150.41 11.6 1.26
Diff. T1-T2 0.21 0 0.02
Diff. T2-T3 -0.01 0 0
Asymmetric load
Order of theory (OT) N [kN] u [mm] M [kNm]
First OT(T1) 80.51 293.6 122.98
Second OT (T2) 80.6 252.8 105.38
Third OT (T3) 80.99 240.7 103.91
Diff. T1-T2 -0.09 -40.7 17.6
Diff. T2-T3 -0.39 11.7 1.47
Calculations were made with same conditions as other pa-
rameter studies, see section 6.3 for more info.
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6.5 Summary of info from parameter study that was
implemented in preliminary design

• Impotence of support stiffness for both displacement and moment. This meant that
the column design should be made as stiff as possible.

• Balance in sag, high enough to decrease normal force but at the same time not too high
as it increases bending moments.

• Use a cross section that is slender enough to not attract to much bending moment but
at the same time, stocky enough to prevent large displacements.

6.6 Description of preliminary design

In order to apply the information gathered from the parameter study about the structural
workings of the stress ribbon concept, a preliminary design of the timber cable was made.
The first change was to reduce the sag from L/10 to L/17.5 (sag of 4 m) which limited the
deflection so that the deciding limitations in both characteristic SLS and design ULS became
more similar.

All calculations were made in 2D to simplify calculations, and the material was chosen as GL
32 h. The load carrying SR members runs in the buildings width W according to fig. 6.13.

From fig. 6.13 it is also possible to explain the position of the design loads. For the snow load
the design load was in a section at hhigh (see section 4.1), similarly the design asymmetric
wind was in a section at hhigh, while the largest negative wind pressure was in a section at
Dm (middle of the buildings depth direction, see section 3.4.2). The span W and the depth
D of the building was set with the same proportion as the scale test with snow drift and with
a span of 70m the depth of the building was 140 m. The highest point of the building was
set to hhigh = 16 m which with a 5 % roof slope would result in hlow = 9 m.

88



Finite element model 6.6 Description of preliminary design

Figure 6.13: Sketch of the designed building

6.6.1 Characteristic loads

The self weight of the structure was approximately 0,72 kN/m2 and the added weight of the
green roof were set to 1,25 kN/m2 which corresponds to a sedum roof with a thickness of ≈
100 mm (Svenska Naturtak 2017).

For the characteristic wind load a roof height of 16 m, reference wind speed of 25 m/s and
terrain with low vegetation was assumed. This results in a characteristic wind pressure of
qp = 0.96 kN/m2.

The characteristic snow load was assumed to 2 kN/m2. This means that the building can be
build in quite windy environment and can take a snow load that is approximately south of
Stockholm.

After testing of different load cases, four load cases could be identified to be deciding for
design, see fig. 6.14. Here the self weight of the structure and weight of the green roof was
noted with Eg, while the snow- and wind load were noted with Sk and Cpe,10 respectively.
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(a) Load case 1: Asymmetric snow load (measure-
ment, see section 4.3.3)
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(c) Load case 3: Asymmetric wind load (measure-
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(d) Load case 4: Maximum wind suction (measure-
ment, see section 4.3.3)

Figure 6.14: Deciding load cases for design

Load case 1

The worst case for uneven snow loading was the asymmetric load case fig. 6.14a and was
calculated according to section 4.3.3. This load case primarily gave problems with deflections.

Load case 2

Biggest total load who determined by the exceptional snow drift from Eurocode see fig. 6.14b.
This load case resulted in the highest normal force and with spring support also gave con-
siderable deformations.
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Load case 3

The largest asymmetric load case for wind was determined according to and corresponds to
a section close to the roofs corners (wind θ = 0), see section 3.4.2. This load gave problems
with deflections as well as large bending moments.

Load case 4

The final design load case can be seen in fig. 6.14d and was quite similar to load case 3 also
originates from section 3.4.2 (wind θ = 0). This load case corresponds to a section in the
middle of the building and results in the least tension in the stress ribbon and the main
reason why the "green roof" was implemented, as this extra weight resulted in a timber cable
always loaded in tension.

When designing the cross-section the worst load case for both the normal force and moment in
ULS was determined. The result was that the symmetric load case for exceptional snowdrift
according to load case 2 presented the largest normal forces while the asymmetric wind in
load case 3 gave the largest bending moment. Using these two load cases it was possible to
find a cross-section where both the normal- and moment capacity were utilized efficiently. In
order to be on the safe side the capacity utilization limit was set to a maximum of 90 %, in
combination with neglecting the capacity in the plywood.

6.6.2 Calculations used in the preliminary design

The cross-section of the SR member consists of both plywood and glulam beams which both
contribute to an increased moment of inertia which was used to limit the deflections in the
characteristic SLS. There were, however, uncertainties about the force distribution in the
ULS and therefore only the capacity in the beam was considered as a conservative approach
(plywood neglected) which also explains the high limits for utilization mentioned above.
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Bending moment capacity in SR member

As only the beams capacity was utilized the SR members section modulus could be calculated
as:

Wy = wh2

6 (6.5)

Where:

w section width

h section height
Using Equation (6.5) with a cross-section of 250x300 mm results in Wy=3750 cm3

The material strength was calculated as:

fd = kmod · fk
γM

(6.6)

Where:

fk Characteristic material strength

kmod Modification factor which takes the influence of

moisture and load duration into consideration

γM Partial coefficient for the material

As GL 32 h was used, the characteristic bending strength parallel to grain fmk was 32 MPa
(EN 1194), kmod was set to 0,8 as snow can be considered a load with a medium duration
and γM was set to 1.25 (CEN, 2004).

With the parameters listed above the design bending strength was determined to fmd=20.48MPa.

The design bending moment capacity could then be calculated as:

MRd = fmdWykcrit (6.7)

Where:

W Is the section modulus

kcrit Reduction factor which considers the risk for lateral torsional buckling

As all load cases resulted in tension forces, the whole beams capacity could therefore be
utilized i.e. kcrit = 1.

This meant a moment capacity of MRd = 76.8 kNm for the cross-section.
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Normal force capacity in SR member

The calculation of the material strength follows those in eq. (6.6), but with the characteristic
tension capacity of ftk = 22.5 MPa (parallel to grain). This gave design tensile strength of
ftd =14.4 MPa.

The tensile normal force capacity could then be calculated as:

Nt,Rd = ftdA (6.8)

This gave a tensile capacity of Nt,Rd=1080 kN.

6.6.3 Bending and normal force

In all load cases there was both bending moment and normal force involved. To calculate
the material utilization for this case the following equation was used:

MEd

MRd

+ Nt,Ed

Nt,Rd

≤ 1

6.6.4 Load combinations and partial coefficients

ULS

For ULS calculations the load combination STR-B according to SS-EN 1990 and with only
one variable load considered at a time the equation can be written as:

γd1.2Gkj,sup + γd1.5Qk,1 (unfavourable permanent load) (6.9)

Or
γd1.0Gkj,inf + γd1.5Qk,1 (favourable permanent load) (6.10)

where:

γd Is the partial coefficient for safety class

Gkj,sup Unfavourable permanent load

Gkj,inf Favourable permanent load

Qk,1 Main variable load

A failure in the SR members was considered to result in a high risk for severe personal injuries
and the safety class was therefore set to γd = 1.0.
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SLS

For the deflections the characteristic SLS was used according to SS-EN 1990:

1.0Gk,j + 1.0Qk,1 (6.11)

Where:

Gk,j Permanent load

Qk,1 Main variable load

6.6.5 Safety factors in different loads

As the design loads used are from different sources they have different levels of safety margin.
Using loads from Eurocode is considered to be on the safe side while using loads from direct
measurement contains more uncertainty. This leads to that load case with asymmetric snow
load is considered more uncertain. As the wind loads presented have implemented safety
factors to measurement, they can also be considered to contain sufficient safety.

6.7 Preliminary design of stress ribbon element

From the preliminary design a cross-section of the load carrying stress ribbon according to
6.15 was determined.
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Finite element model 6.7 Preliminary design of stress ribbon element

Figure 6.15: Cross-section of the preliminary design

With the cross-section seen in fig. 6.15, a utilization of 90 % was calculated for the glulam
beam with the exceptional snow drift load (load case 2), while the corresponding utiliza-
tion for the asymmetric wind load (load case 4) was 86 %. The maximum displacement in
characteristic SLS for this cross-section was 323 mm for load case 2 while the minimum dis-
placement was -317 mm upwards for load case 3. These displacements occur far away from
the supports which avoids damage on the buildings secondary structure and is also consid-
ered to be sufficiently small to be perceived as safe. With these two arguments the calculated
deflection is therefore deemed as acceptable. As described in sections 2.3 and 6.6, the green
roof serves multiple purposes; to provide weight for stability, reducing deflection and bending
moment for wind uplift as well as delaying water run-off. The drawbacks with this design, it
add more load for the the symmetric load and requires a perfectly tight moisture barrier.

With a load carrying cross-section with a height of just 340 mm for a span of 70 m this shows
that the stress ribbon system could be designed very slender compared with truss or arc
alternative. It should although be kept in mind that some effects might have been overlooked
e.g. that every stress ribbon element would not be connected to a column, causing the real
stiffness to be lower than the one used in the analysis. As an decreased support stiffness
according to the parameter study leads to both increased displacements and moment it is a
important parameter to consider when designing this type of structure.

When the modes of the natural frequency of the stress ribbon element were compared with
the reference building A it can be be concluded that the shape of the two first modes were the
same. As discussed in section 2.3.4 it was primarily the asymmetrical mode shape with the
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lowest frequency that was exited from dynamic wind loads and here the reference building
has an eigenfrequency of 0,6544 Hz while the chosen cross-section had a frequency of ≈ 1.1
Hz. It can also be compared with the suspension bridges Vranov Lake bridge and Willamette
River bridge which also had a first asymmetric mode shape, with an eigenfrequencies of 0.298
Hz and 0.541 Hz respectively. If an increased natural frequency is desired the sag and the
slenderness can be increased according to the parameter study e.g. a cross-section with GL
32h 200x400 and with a sag of 3.5 m results in a natural frequency of ≈ 1.2 Hz even if this
section has a slightly higher normal force utilization.
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Chapter 7

Discussion and Conclusions

7.1 Discussion

In his theses the main focus have been to get a deeper understanding of using a SR design. In
order to achieve this the following steps were made; Literature study, laboratory experiments,
analytical calculation model, FEM model and finally a preliminary design.

From the literature studies theory the complexity of aerodynamic experiments was under-
stood. Ideas of wind tunnel test for aerodynamic scale experiments was therefore replaced
with a rigid building model. With scale models the redistribution of snow on a saddle shaped
roof could be studied and compared with the current design code. In this way the design
code worked as a control for laboratory tests and also served as a interesting comparison
between theory and reality. The laboratory test was also useful to determine the asymmetric
design load that was later used in the preliminary design of the SR building.

The analytical calculations and FE calculations were similarly to the design code and exper-
iments compared in order to achieve more reliable results. The analytical calculation was for
instance used too calibrate the FE model after a trusted reference example. Then the advan-
tage of FE being more general could be used by analysing the affect of different conditions
such as support stiffness, sag and slenderness for the SR structure. With this information a
good balance between different parameters could be implemented and a preliminary design
could finally be made to the potential slenderness in the load carrying system can be made
with the SR principle.
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7.2 Conclusion

The loads that were used in design of this structure have all been collected from different
sources (Eurocode, Rizzo’s research and own measurements) and contains different safety
margins. Both Eurocode and Rizzo’s research aims to be used in design these can be consid-
ered to be more conservative. While the result of the preformed laboratory measurements,
with no considerations to safety factors other then using a starting sand depth corresponding
to a Eurocode snow depth, can be considered to contain more uncertainties. This explains
why the conservative loads from Eurocode and Rizzo’s research was used for all the design
loads except for asymmetric snow load were the result from the laboratory measurements
was used instead as this type of load situation was not found elsewhere. From the loads the
snow load for exceptional snowdrift resulted in the worst symmetric load while the uneven
wind load gave the most asymmetric load case. For the symmetric load the normal force
was the most influential for capacity utilization while the asymmetric load was decisive for
development of deflection and bending moment.

For wind instability, vortex shedding is the only instability that is of concern. The risk althogh
considered to be low as the building used for preliminary design has a high eigenfrequency
and a low roof height compared with reference structures that is considered safe against
dynamic excitation.

Support stiffness had biggest impact on the displacements and the bending moment, espe-
cially for the symmetric load case. When the sag of the structure was varied it could be seen
that all studied internal forces (N,M,disp and natrual frequency) was affected . Lower sag
meant increasing normal forces and natural frequencies for the structure while the opposite
was true for displacements and bending moments. In both parameter studies of support
stiffness and sag, more bending stiffness corresponds to an increased bending moment. In
the test with increased slenderness the opposite relation between displacement and bending
moment was true, as a slender cross-section meant an increase of bending stiffness.

The structure was designed against static loads and optimized so the normal force- and
bending moment capacity is utilized effectively. The resulting cross-section for a 70 m span
was a 250 x 300 mm2 glulam beam cc 800 mm with a double layer of plywood. This was
possible by increasing the self weight of the roof with the use of a green roof which improved
conditions for wind uplift forces and also resulted in a higher natural frequency.
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Suggestions for further studies

In the scale experiment a lot of factors were assumed in order to get a feeling of the potential
snow drift on a catenary roof. Factors such as roof slope, surface roughness, surrounding
topography that all have an influence on the snow drift were assumed (CEN, 2003). Those
parameters would require their own study in order to determine their individual importance
and to determine susceptible values for a perfectly realistic scale model.

A lot of details such as design of connections, horizontal stabilization and time dependency
for force distribution has still not been studied. In combination with building cost these are
only a few of the parts that would be necessary to solve before the structure could be built.
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Chapter 8

Appendix

8.1 Determining modeling material for snow

8.1.1 Particle transport

As another material was used for simulation of snowdrift it is important to have a similarity in
partical transport between the materials. The transport of particles can be divided into three
different ways: creep, saltation and suspension (Elorza and Benito, 2005). The transport
method depends mainly on the grain size of the available particles and the transport is
illustrated in fig. 8.1.

Figure 8.1: Description of the different particle transport
Source: Wikipedia, (2017)
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For snow drift it is saltation that is the most influential in the partial transport (Zhou et
al., 2014). Saltation involves a bigger uplift of particles that travel downwind in a ballistic
trajectory. Smaller particles obtain a higher velocity and can therefore have a longer saltation
distance. When the particles hit the surface, the impact energy can lift or transport other
particles as mentioned before.

8.1.2 Similarity between different materials

To determine what material has the best similarity with snow, three different materials were
studied by ibid., and can be seen tables 8.1 and 8.2.

Table 8.1: Physical properties of snow and simulated particles (Zhou et al., 2014)

Snow Silica sand Polyfoam Sawn wood
ash

Diameter dp(mm) 0.15 0.2 0.4 0.5
Density ρp (kgm−3) 50 - 700 2784 1223 297
Threshhold velocity
at 1.0 m ut (ms−1) 3.25 - 7.81 7.16 4.77 3.25
Threshhold friction
velocity at 1.0 m u∗t (ms−1) 0.15 - 0.36 0.33 0.22 0.15
Angle of repose θ (°) 50 34 21 43
Setting velocity ωf (ms−1) 0.2 - 0.5 0.6 0.5 0.2
Where parameters follow:
g Acceleration of gravity [m/s2]
H Characteristic height [m]
ρ Air density [kg/m3]
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Table 8.2: Similarity parameters of snow and simulated particles (see table 8.3 for more
info)(Zhou et al., 2014)

Eq. no. Similarity Snow Silica sand Polyfoam Saw wood
parameter ash

Eq. (1) u3
∗t/2gν > 30 - 126.5 37.5 11.9

Eq. (4) ρu2
∗

ρpHg
0.37 - 5-16e-5 9.62e-5 8.88e-5 18.7e-5

Eq. (7) ρ

(ρp − ρ)
u2
∗

gdp
0.020 - 2.214 0.024 0.012 0.020

Eq. (10) u(H)
u∗t

8.4 - 20.2 25.2 24.1 25.2

Eq. (11) ρp/ρ ≥ 600 - 2272.7 998.4 242.5

Eq. (12) ρp
ρp − ρ

u2(H)
gH

1.04 - 1.06 58.8 23.8 12.2

Eq. (13) ωf
u(H) 0.07 - 0.17 0.07 0.09 0.05

Eq. (16) ρ

ρp

u(H)T
H

- 21.9 23.8 23.4

Where parameters follow table 8.1 and:
g Acceleration of gravity [m/s2]
H Characteristic height [m]
ρ Air density [kg/m3]

The Similarity equations describe:

Table 8.3: Description of equations in table 8.2

Eq. no. Description
Eq. (1) Reynolds number of aerodynamic roughness height
Eq. (4) Aerodynamic roughness height caused by salting particles
Eq. (7) Ejection process of particles (Densimetic Froude number)
Eq. (10) Relationship between wind velocity and the physical threshold property
Eq. (11) Density ratio between particle and air
Eq. (12) Particle trajectory (another form of densimetric Froude number)
Eq. (13) Equation for maintaining ratio of drag force to inertial force
Eq. (16) Dimensionless time coefficient in order to get the same accumulation

volume of particles

From tables 8.2 and 8.3 it can be seen that similarity Eq. (1), which maintains the fully rough
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8.2 MATLAB CODE Appendix

flow of the snow particles, was sufficient for silica sand and polyfoam but not for saw wood
ash. But as the simulating uses a model with distinct flow separation, no strict similarity in
Eq. (1) is required according to (Zhou et al., 2014).

Another similarity condition that can be relaxed is the densimetric Froude number Eq. (12),
this condition is actually not fulfilled by any of the three materials. But according to Zhou
et al., (ibid.) studies have shown that desimetric Froude number of 20 times the reference
particle, still displayed same snowdrifting patterns as field result, meaning that similarity
condition Eq. (12) can also be relaxed.

To summarize the similarity study of Zhou et al., (ibid.) and tables 8.1 and 8.3, the silica
sand achieved the closest result in both field observation as well as satisfying all similarity
parameters except for Eq. (12). This indicates that high-density silica sand can accurately
reflect the wind-induced redistribution of snow on a roof surface which is also in agreement
with Kind, (1986).

8.2 MATLAB CODE

The implantation of analytical equations in to MATLAB

8.2.1 Analytical calculations

1 format compact
2 close all
3 clear all
4 clc
5

6 global g EA EI f l q H x
7 %Globala varden
8 g=1e-6; %N/m
9 EA=1.66E+09; % N

10 EI=5.07E+07; %Nm^2
11 f=6;%5; %m
12 l=70;%50; %m
13 q=1.6e3; %kN/m
14 H=g*l^2/(8*f); %kN
15 n=1e3;
16 x=linspace(-l/2,l/2,n);
17 x2=linspace(0,l,n);
18

19 %Symmetric load ...
case----------------------------------------------------------------

20 fun_S=@(dH)((q-g*dH/H)/(2*(H+dH))*16*f*EA*[1/12-
21 1/(sqrt((H+dH)/EI)*l)^2+2*tanh(sqrt((H+dH)/EI)*l/2)
22 /(sqrt((H+dH)/EI)*l)^3]-dH);
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23

24 %Solvning Symmetric load case
25 dH_S=fzero(fun_S,250e3);
26 %Displacement
27 w_S=(q-g*dH_S/H)/(2*(H+dH_S))*[l^2/4-
28 2/(sqrt((H+dH_S)/EI))^2+2*cosh(sqrt((H+dH_S)/EI)*x)/((H+dH_S)/EI*
29 cosh(sqrt((H+dH_S)/EI)*l/2))-x.^2];
30 Lambda_S=sqrt((H+dH_S)/EI);
31 % Moment
32 M_S=-EI*(q-g*dH_S/H)/(H+dH_S)*[sech(Lambda_S*l/2)*cosh(Lambda_S*x)-1];
33 Max_nyS=max(M_S)
34 % Normal force
35 dH_Stest=q*l^2/(8*f);
36 %dz_dxS2=(q+g)/(2*(H+dH_S))*(l-2*x2);
37 dz_dxS2=q/(2*dH_Stest)*(l-2*x2);
38 N_S=(H+dH_S)*sqrt(1+dz_dxS2.^2);
39 %Calculate max point
40 %Displacement
41 figure(1)
42 indexmax_S = find(max(w_S) == w_S);
43 w_Smax = w_S(max(abs(indexmax_S)));
44 xmax_S = x(max(abs(indexmax_S)));
45 strmax_S = ['Max(a) = ',num2str(round(w_Smax*1e3,1))];
46

47 %Approximativ solution of the Symmetric load case
48 %Displacement
49 dH_S2=(q/g)*H;
50 w_S2max=3*dH_S2*l^2/(16*f*EA);
51 w_S2=(-w_S2max/(l/2)^2)*x.^2+w_S2max;
52

53 strmax_S2 = ['Max(b) = ',num2str(round(w_S2max*1e3,1))];
54 %Moment
55 R_S=(l/4)^2/(2*w_S2max);
56 M_S2max=EI/R_S;
57 M_S2(1:n,1)=M_S2max;
58

59 %Printing of result
60 disp(' ')
61 disp('Symmetric loading give:')
62 disp(['dH = ' num2str(round(dH_S/1e3,1)) ' kN'])
63 disp(['H tot = ' num2str(round((dH_S+H)/1e3)) ' kN'])
64 disp(['Lambda = ' num2str(round(Lambda_S,6)) ' m^-1'])
65 disp('Max displacement: ')
66 disp([strmax_S, ' mm'])
67 disp([strmax_S2, ' mm'])
68

69 %Displacement w
70 %axis ij %rever y-axis
71 %axis ji revers back
72 plot(x,w_S*1e3)
73 hold on
74 grid on
75 plot(x,w_S2*1e3)
76 title('Displacement w for Symmetric load case')
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77 xlabel('length l [m]')
78 ylabel('Displacement [mm]')
79 legend('Exact solution (a)','Approximate solution (b)')
80

81 text(xmax_S,w_Smax*1e3,strmax_S,'HorizontalAlignment','right');
82 text(xmax_S,w_S2max*1e3,strmax_S2,'HorizontalAlignment','right');
83

84 figure(2)
85 plot(x,M_S*1e-3)
86 hold on
87 grid on
88 plot(x,M_S2*1e-3)
89

90 title('Moment for symmetric load')
91 xlabel('length l [m]')
92 ylabel('Moment [kNm]')
93 legend('Exact solution (a)','Approximate solution (b)')
94

95 figure(3)
96 plot(x2-l/2,N_S*1e-3)
97 grid on
98 title('Normal force for symmetric load')
99 xlabel('length l [m]')

100 ylabel('Normalforce [kN]')
101 legend('Cable type response')
102

103 %Antisymmetric load case ...
------------------------------------------------------------

104 fun_AS=@(dH)((q-2*g*dH/H)*f*EA/(H+dH)*[1/3
105 4/(sqrt((H+dH)/EI)*l)^2+8*tanh(sqrt((H+dH)/EI)*l/2)
106 /(sqrt((H+dH)/EI)*l)^3]-dH);
107

108 %Solvning Antisymmetric load case
109 dH_AS=fzero(fun_AS,125e3);
110 Lambda_AS=sqrt((H+dH_AS)/EI);
111

112 c1=((q-g*dH_AS/H)*(l^2/8-2/Lambda_AS^2)-l^2/8*g*dH_AS/H)/(2*(H+dH_AS));
113 c2=-q*l/(8*(H+dH_AS)); c6=c2;
114 c3=(q*[cosh(Lambda_AS*l/2)+1]-2*g*dH_AS/H)/(2*
115 (H+dH_AS)*Lambda_AS^2*cosh(Lambda_AS*l/2));
116 c4=q*[cosh(Lambda_AS*l/2)-1]/(2*(H+dH_AS)*Lambda_AS^2*sinh(Lambda_AS*l/2));
117 c8=c4;
118 c5=((q-2*g*dH_AS/H)*l^2/8+2/Lambda_AS^2*g*dH_AS/H)/(2*(H+dH_AS));
119 c7=(-q*[cosh(Lambda_AS*l/2)-1]-2*g*dH_AS/H)/(2*
120 (H+dH_AS)*Lambda_AS^2*cosh(Lambda_AS*l/2));
121

122 c3m=(1/Lambda_AS^2)*((q-g*dH_AS/H)/(H+dH_AS));
123 c4m=(1/(Lambda_AS^2*sinh(Lambda_AS*(-l/2))))*((q-g*dH_AS/H)/(H+dH_AS)-
124 c3m*Lambda_AS^2*cosh(Lambda_AS*(-l/2)));
125

126 c7m=(1/Lambda_AS^2)*((-g*dH_AS/H)/(H+dH_AS));
127 c8m=(1/(Lambda_AS^2*sinh(Lambda_AS*(l/2))))*((-g*dH_AS/H)/(H+dH_AS)-
128 c7m*Lambda_AS^2*cosh(Lambda_AS*(l/2)));
129 %z_pl=(1/dH_AS)*(q/2)*(2*x(i)-3*l/4)+(1/H)*(g/2)*(2*x(i)-l);
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130

131 w_AS=zeros(1,n);
132 M_AS=zeros(1,n);
133 N_AS=zeros(1,n);
134

135 for i=1:n
136 if x(i)<=0
137 w_AS(i)=c1+c2*x(i)+c3*cosh(Lambda_AS*x(i))+
138 c4*sinh(Lambda_AS*x(i))-
139 (q-g*dH_AS/H)/(2*(H+dH_AS))*x(i)^2; % -l/2<x<=0
140 M_AS(i)=-EI*(c3m*Lambda_AS^2*cosh(Lambda_AS*x(i))+
141 c4m*Lambda_AS^2*sinh(Lambda_AS*x(i))-(q-g*dH_AS/H)/(H+dH_AS));
142 N_AS(i)=dH_AS*sqrt(1+((1/dH_AS)*(q/2)*(2*x2(i)-3*l/4))^2);%+
143 H*sqrt(1+((1/H)*(g/2)*(2*x2(i)-l))^2);
144 else
145 w_AS(i)=c5+c6*x(i)+c7*cosh(Lambda_AS*x(i))+c8*sinh(Lambda_AS*x(i))+
146 g*dH_AS/H/(2*(H+dH_AS))*x(i)^2; %0<x<l/2
147 M_AS(i)=-EI*(c7m*Lambda_AS^2*cosh(Lambda_AS*x(i))+c8m*Lambda_AS^2*
148 sinh(Lambda_AS*x(i))+(g*dH_AS/H)/(H+dH_AS));
149 N_AS(i)=dH_AS*sqrt(1+((1/dH_AS)*(q*l)/8)^2);%+
150 H*sqrt(1+((1/H)*(g/2)*(2*x2(i)-l))^2);
151 end
152 end
153 Max_nyAS=max(M_AS)
154 %Calculate max and min points
155 indexmin_AS = find(min(w_AS) == w_AS);
156 w_ASmin = w_AS(indexmin_AS);
157 xmin_AS = x(indexmin_AS);
158 strmin_ASw = ['Min(a) = ',num2str(round(w_ASmin*1e3,1))];
159

160 indexmax_AS = find(max(w_AS) == w_AS);
161 w_ASmax = w_AS(indexmax_AS);
162 xmax_AS = x(indexmax_AS);
163 strmax_ASw = ['Max(a) = ',num2str(round(w_ASmax*1e3,1))];
164

165 %Approximativ solution for Antisymmetric load case
166 dH_AS2=(q/g)*H/2;
167 w_AS2max=q*l^2/(64*(H+dH_AS2));
168 w_AS2=zeros(1,n);
169

170 %Moment
171 R_AS=(l/4)^2/(2*w_AS2max);
172 M_AS2max=EI/R_AS;
173 M_AS2=zeros(1,n);
174

175 strmin_AS2w = ['Min(b) = ',num2str(round(-w_AS2max*1e3,1))];
176 strmax_AS2w = ['Max(b) = ',num2str(round(w_AS2max*1e3,1))];
177 for i=1:n
178 if x(i)<0
179 w_AS2(i)=(-w_AS2max/(l/4)^2)*(x(i)+l/4)^2+w_AS2max;
180 M_AS2(i)=M_AS2max;
181 elseif x(i)>0
182 w_AS2(i)=(w_AS2max/(l/4)^2)*(x(i)-l/4)^2-w_AS2max;
183 M_AS2(i)=-M_AS2max;
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184 end
185 end
186

187 %Printing of result
188 disp('Antisymmetric loading give:')
189 disp(['dH = ' num2str(round(dH_AS/1e3,1)) ' kN'])
190 disp(['H tot = ' num2str(round((dH_AS+H)/1e3)) ' kN'])
191 disp(['Lambda = ' num2str(round(Lambda_AS,6)) ' m^-1'])
192 disp('Max displacement: ')
193 disp([strmax_ASw, ' mm'])
194 disp([strmax_AS2w, ' mm'])
195 disp('Min displacement: ')
196 disp([strmin_ASw, ' mm'])
197 disp([strmin_AS2w, ' mm'])
198 %Displacement w
199 figure(4)
200 axis ij %rever y-axis
201 %axis ji revers back
202 plot(x,w_AS*1e3)
203 hold on
204 grid on
205 plot(x,w_AS2*1e3)
206 title('Displacement w for Antisymmetric load case')
207 xlabel('length l [m]')
208 ylabel('Displacement [mm]')
209 legend('Exact solution (a)','Approximate solution (b)')
210 %Min and max points
211

212 text(xmin_AS,w_ASmin*1e3,strmin_ASw,'HorizontalAlignment','left');
213 text(xmax_AS,w_ASmax*1e3,strmax_ASw,'HorizontalAlignment','right');
214 text(xmin_AS,-w_AS2max*1e3,strmin_AS2w,'HorizontalAlignment','left');
215 text(xmax_AS,w_AS2max*1e3,strmax_AS2w,'HorizontalAlignment','right');
216

217 figure(5)
218 plot(x,M_AS*1e-3)
219 hold on
220 grid on
221 plot(x,M_AS2*1e-3)
222 title('Moment for antisymmetrical load')
223 xlabel('length l [m]')
224 ylabel('Moment [kNm]')
225 legend('Exact solution (a)','Approximate solution (b)')
226

227

228 figure(6)
229 plot(x2-l/2,N_AS*1e-3)
230 grid on
231 title('Normal force for antisymmetrical load')
232 xlabel('length l [m]')
233 ylabel('Normalforce [kN]')
234 legend('Cable type response')
235 %------------------------------------------------------------------------
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