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Abstract

The ATLAS@Home project is a volunteer computing project, part of the larger LHC@Home
project, aimed at using the computational power of personal computers from volunteers
around the globe, who are interested in helping with the particle physics research taking
place at the ATLAS experiment at LHC. Up this point it runs only ATLAS detector
simulation tasks. This thesis explores the possibility of having the full generation of
large Monte Carlo samples performed on this platform after laying the theoretical physics
groundwork and introducing the concepts and elements used by this platform. Such a
task has not been attempted so far but with the computational resources increasingly
limited for such tasks, due to the large amounts of data the LHC produces nowadays,
the need for additional non-dedicated resources, such as those offered by ATLAS@Home,
is increasing. The study explores that possibility using reference Monte Carlo samples
and tests whether their generation can be reliably reproduced on the virtual machine
used by the project and other environments such as the Grid and a local cluster. It also
tests whether the generation and derivation of the simulation data in an, appropriate and
readable by commonly used analysis software, file format can occur in a single Grid task
submission (as ATLAS@Home should operate as a Grid site as well from where the tasks
are picked up and where the output files return upon generation), without storing and
transferring heavy, intermediate generation files during this process. The study succeeds
in meeting those conditions for the samples tested and proceeds to the succesful submis-
sion of a number of such tasks to a test project, running parallel to ATLAS@Home for
such new kinds of submissions, with plans, in the near future, to have such tasks running
on the main application.
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Chapter 1

Introduction

The field of particle physics has been in the forefront of the expansion of scientific knowl-
edge for years, mainly thanks to the contributions of the Large Hadron Collider (LHC) at
CERN. Vast amounts of data are produced within it, from collisions that aim to simulate
the conditions that were present during the early stages of the universe. The first run of
the LHC provided significant amounts of data and led, most prominently, to the discovery
of the Higgs boson, validating theoretical hypotheses on how elementary particles acquire
mass. The second run has seen the LHC producing data at even higher rates to probe
into even higher energies and investigate possible new phenomena outside the bounds of
the Standard Model. During this run the LHC accelerator performs at energy scales of
the order of 13 TeV center-of-mass energy per collision with the data rates constantly
increasing (the total data flow from the 4 major experiments during Run 2 was expected
to be about 25 GB/s and for ATLAS in particular a production rate of data was reported
at the range of 800 MB/s - 1 GB/s). All this produced raw data cannot be probed as
it is. It needs to be processed, tracks need to be reconstructed, actual physical objects
that were produced have to be retrieved from a chaotic number of daughter particles and
particle jets. This processing needs computational power, a lot of computational power.

In order to validate a theory or reject it, the comparison of actual data produced by
collisions in the LHC with a large amount of simulated events, known as Monte Carlo
(MC) samples, also needs to be done. Especially for research groups that look into possibly
detecting particles that would validate theories beyond the Standard Model, such as
candidate Dark Matter particles, the need for large amounts of Monte Carlo simulations,
much larger than the actual data produced, is great. That is because larger background
simulations provide a better accuracy of the interpretation of actual data when they are
fitted to that data. When one wants to probe into particles that are assumed to interact
very weakly with normal matter, this kind of accuracy is essential.

Unfortunately the computational facilities available to LHC are struggling increas-
ingly to cope with processing both the large amounts of data produced and the even
larger amounts of Monte Carlo simulations needed to probe into this data for possible
new discoveries. Thus the need to explore alternative computational resources becomes
greater.

This is what this project inspects. Focused on research performed at the ATLAS ex-
periment at CERN, the goal is to inspect whether the volunteer computing platform AT-
LAS@Home, that brings together the processing power of personal computers contributed
by volunteers around the globe, can provide a suitable alternative of non-dedicated re-
sources to process large amounts of Monte Carlo simulations. Such simulations are needed
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especially by researchers who try to confirm the existence of Dark Matter candidate par-
ticles, such as Weakly Interacting Massive Particles (WIMPs) or Axions. In order to
achieve this, different Monte Carlo samples must be created using various ATLAS specific
event generators, such as PYTHIA. Thereupon, the created Monte Carlo samples will be
submitted as work units to the ATLAS@Home framework, where their generation will be
attempted. The LHC Computing Grid will also be used to process the reference samples.
A successful generation on the Grid will imply that the same process can be replicated
on the ATLAS@Home platform.

If the project comes to fruition and the ATLAS@Home framework proves capable
of processing the created Monte Carlo samples,the availability of computer resources for
Monte Carlo production at ATLAS will significantly increase. A significant avenue will be
provided to ATLAS researchers to produce much needed background simulations, lead-
ing to more accurate interpretation of ATLAS results and the possible expansion of the
knowledge in the field through new discoveries, possibly beyond the Standard Model.

Chapter 2 will lay the theoretical foundations of modern particle physics in the form of
the Standard Model, as well as theories beyond that in the form of Dark Matter physics.
It will be followed by a general description of the Large Hadron Collider at CERN with
a focus on the ATLAS experiment and the ATLAS detector. It will also briefly present
the concept of Monte Carlo generation and a brief description of jets in the context of
particle physics.

In Chapter 3, the concept of virtualization will be first presented in order to then pro-
ceed to talk about voulunteer computing in general, the essential BOINC application for
volunteer computing, and finally the LHC@Home project and ATLAS@Home application
in particular.

Chapter 4 is dedicated to the description of the MC generation scripts provided to
work with for this project and in particular the generation of reference samples on two
different processing facilities, a local one, Iridium and the LHC computing Grid as well.

In Chapter 5, the setup of the virtual machine used by ATLAS@Home will be presented
alongside the concept of contextualization that is relevant to this work.

Chapter 6 will present the processing of the MC generation scripts used previously
on this, specially contextualized for ATLAS@Home, virtual machine, and a comparison
with the reference samples previously produced will be made. It will also discuss the
submission of tasks to the ATLAS@Home project.

Finally, in Chapter 7 a summary of the work that has been done and the progress
on the researched matter will be given, while the potential future outlook of such event
generations on ATLAS@Home will also be presented.
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Chapter 2

The Standard Model, the LHC and the
ATLAS experiment

2.1 The Standard Model of High Energy Physics - and
beyond

The Standard Model (SM) of particle physics ([1] - [4]) is, essentially, the widely accepted,
and so far experimentally confirmed, theoretical framework that describes the fundamental
interactions of the elementary particles it presumes all matter to consist of.

It encompasses the electroweak theory, proposed by Glashow, Salam and Weinberg
[1] that describes the electromagnetic and weak interactions between quarks and leptons
(together called fermions) [5] as well as the theory of Quantum Chromodynamics (QCD),
used to describe the strong interactions between quarks. These theories combined explain
the nature of 3 of the 4 forces of nature (electromagnetic, weak and strong), excluding
the elusive gravitational force, whose mechanisms of propagation are still a mystery (one
that recent discoveries by the LIGO collaboration [6] shed some light into).

In the Standard Model framework, the aforementioned interactions occur through
fields to which fermions couple with a strength that is described by a quantity known as
the charge of the particle with respect to a certain field. A particle can carry a charge
under several fields and interact accordingly with several forces. Essentially, it can be
said that the Standard Model is a theory of interacting fields [7], where each one of the
fundamental forces corresponds to its own field.

2.1.1 Gauge bosons and interactions

But how is the force of a field on a fermion communicated and how do two fermions
interact with respect to that field ? The interaction occurs through the exchange of the
"carrier" particle of the field. Those carriers are characteristic particles for each type
of field and force and are known as gauge bosons, or field quanta. In every interaction
that occurs, according to the Standard Model, such a field quantum is exchanged. For
example, the field quantum of electromagnetic interactions is the, massless and neutral in
terms of electric charge, photon, and it is exchanged between electrically charged fermions.
The charge of the electromagnetic force is the, well known from everyday life, electric
charge, and comes with two polarizations, positive (+) and negative (-). The quanta
responsible for the propagation of the weak force are the electrically charged W± bosons
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and the neutral Z boson. The charge related with the weak interaction is called the
weak isospin. Finally, the field quanta of the strong force are called gluons and they are
massless, same as the photons. The charge of the strong force is called colour (there are
three colour charges appropriately named red, green and blue - for each colour charge
there is anti colour charge as well called anti-red,anti-green and anti-blue respectively).
A fundamental difference between photons and gluons is that the second actually carries
color charge during the strong interactions of the quarks inside the nucleons, while the
photon is electrically neutral. A quark emitting a gluon can change its colour and for the
colour charge to be preserved in the system the gluon must carry a colour (of the initial
colour of the quark)-anticolour(of the final colour of the quark) charge itself (e.g. red
anti-blue or, if no colour change has occurred, a blue anti-blue, for instance). This means
that gluons can interact with each other as well as they are colour charged.

One other property of those gauge bosons that should be discussed is their range and
thus the range of the forces and fields they correspond to. From Heisenberg’s uncertainty
principle, expressed in terms of energy and time intervals ∆E∆t = h̄, it is known that if
a system is observed for a time ∆t there is no way that we can know the energy of the
system better than within an uncertainty ∆E. So a photon can have an energy ∆E for
a time interval that is given by the uncertainty principle as ∆t ≈ h̄

∆E
. Since a photon’s

wavelength can be arbitrarily large or small, its energy can take arbitrarily small or large
values respectively and thus it may approach zero leading to ∆t → ∞, meaning that,
essentially, the fact that the photon is a massless particle means it has an infinite range.
Likewise, the massive bosons of the weak interaction can be at an intermediate state of
energy ∆E for a time ∆t = h̄

Mc2
, where M is the particle mass, and thus because these

bosons have finite masses they have a finite range as well. Given the masses of the W and
Z bosons (MW ≈ 80GeV/c2 and MZ ≈ 90GeV/c2) the range of the weak force is found to
be rather short, of the order of 10−3 fm.

The range of the strong force is a more complicated matter. While the gluons are
massless and one would expect their range to be infinite, the strong force has a short
range and its main effect is to keep the atomic nuclei together. This occurs because, unlike
the electromagnetic field, the strong gluon fields are confining, meaning that the QCD
framework confines all free colour charges at long distances so that every observed state
is colourless, thus has zero overall colour charge. Essentially the confinement principle
states that the strength of the gauge coupling grows stronger as the distance between the
interacting particles grows bigger, a phenomenon completely opposite to what is observed
for other forces and fields, effectively prohibiting free coloured states from occurring and
explaining why free quarks cannot be observed in nature - each quark carries a different
colour. This occurs, for example, within a proton and thus overall a proton is colourless
(a combination of red, green and blue gives a colourless state overall). Inside a hadron
(in general hadrons are the composite particles consisting of quarks held together by the
strong force) the quarks engage in a constant exchange of gluons.

In order to remove one quark from a hadron due to the confinement principle an
extremely high amount of energy must be provided. After a certain point the creation of
a quark-antiquark pair is favored. This essentially limits the range of the strong force to
that "breaking point" making it very short-ranged overall. Table 2.1 provides the relative
strength and range of all 4 fundamental forces.

There is another intrinsic quantity, apart from the charges, that particles carry and
that is essential to separate fermions (interacting particles) from bosons (force quanta),
called the spin. This intrinsic quantum number takes half integer values (e.g. 1/2) for
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Force relative strength range (m)
Strong 1 10−15

Electromagnetic 1
137

∞
Weak 10−6 10−18

Gravity 10−39 ∞

Table 2.1: The fundamental nature forces, their relative strengths and their range (in m).
[8]

fermions and integer values (including zero) for bosons. The spin of a particle, along with
the charges it carries, that indicate how strongly it couples with a field, are the quantities
that fully characterize a particle and aide the process of particle identification.

2.1.2 Leptons and Quarks - the matter particles

The fermions (the particles that are the constituents of matter) are divided into two main
categories (as it has already been mentioned) - leptons and quarks. All fermions are
spin 1/2 Dirac fermions and obey the Fermi-Dirac statistics (in comparison to the gauge
bosons that obey the Bose-Einstein statistics).

Leptons are a category of particles consisting of 3 charged particles (e−,µ−,τ−) and 3
neutral ones (νe,νµ and ντ ), known as neutrinos. The 3 charged particles, with the most
fundamental one being the electron (e−) and the other two being the muon (µ−) and the
tau (τ−), carry unit electric charge, which is the electric charge the electron carries. The
only differences between the 3 charged leptons are their masses (with the electron being
the lightest and the tau being the heaviest), their lifetimes (only the electron is a stable
particle out of the charged leptons with the muon and the tau having short lifetimes) and
another characteristic quantum number called the lepton quantum number - each of the
three particles has a different lepton quantum number that characterizes it, that must be
conserved under electromagnetic interactions (leptons have a +1 lepton quantum number
and their anti-particles have -1). Each lepton has an antiparticle (predicted by the Dirac
equation) that has a positive electric charge (for charged leptons) and a magnetic moment
whose direction differs relative to the spin of the lepton (e.g. e+ is the antiparticle of the
electron called the positron while ν̄e is the antiparticle of the electron neutrino). Charged
leptons participate in electromagnetic and weak interactions. Each of the 3 charged
leptons forms a flavour doublet with a neutrino that carries the same lepton quantum
number: (

e
νe

) (
µ
νµ

) (
τ
ντ

)
(2.1)

The neutrinos were considered to be massless but they actually have a very small mass,
something that has been established through the observation of the neutrino oscillation
phenomenon during which a neutrino changes its flavour. Neutrinos carry no electric or
colour charge and thus they can only interact with matter through the weak interaction.
This makes them very unlikely to interact at all and they can travel even through whole
celestial bodies undisturbed.

Quarks are the constituent particles of larger particle compounds known as hadrons.
Due to confinement there are two possible hadronic configurations:
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• Baryons : They consist of 3 quarks of different colours (so that they are colorless
overall and can exist as free particles). The most common baryons, that are the
building materials of the atomic nuclei, are the proton p (with a uud quark content)
and the neutron n (with a udd quark content). Baryons are also fermions with
proton being the only stable one.

• Mesons : They consist of a quark and an antiquark that carries the anti-colour
of the quark (and thus they are also colorless particles). The lightest, and most
common in interactions, mesons are the pions (π+ with a ud̄ configuration, π− with
a dū configuration and the π0 with a uū or dd̄ configuration). Mesons are bosons
(e.g. the pions have zero spin - an integer value - and they mediate the interactions
between two nucleons). All known mesons are unstable.

Confinement principles are also the reason free quarks cannot be observed in nature as
they carry colour charge, meaning they interact through the strong force within hadrons
- being the only fermions to undergo such interactions. They also carry electric charge
but at non-integer values, while they can also participate in weak interactions as carriers
of weak isospin.

A total of 6 quarks have been discovered (up,down,charm,strange, bottom and top)
and, like the leptons, they are separated in three doublets representing three generations
as follows : (

u
d

) (
c
s

) (
t
b

)
(2.2)

in increasing mass order from left to right. The positively charged quarks u,c and t
carry a charge of +2e/3 while the negatively charged ones carry a charge of -1e/3. It
can easily be deduced that the total charge of the proton, for example, is indeed +e
and, similarly, for the neutron that it is zero. Each quark also carries a flavour quantum
number (e.g. strangeness for the s quark) that is generally not conserved under weak
interactions. The top quark (the most recently discovered) displays a mass considerably
bigger than that of the rest of the known quarks (172.44 GeV/c2), a discrepancy that is
still investigated.

2.1.3 The Brout-Englert-Higgs (BEH) mechanism and the Higgs
boson

It is essential for a contemporary presentation of the Standard Model to include a descrip-
tion of the BEH mechanism ([9] - [13]) and the most prominent discovery so far of the
ATLAS - and CMS - experiments at LHC, the scalar Higgs boson. The Higgs mechanism
is essentially invoked to break the electroweak symmetry giving mass to massive elemen-
tary particles, and it implies the existence of a neutral scalar particle, the Higgs boson
[14]. In practice, breaking the electroweak symmetry implies a splitting of the massless
gauge bosons of the underlying symmetry into the massless photon of the electromagnetic
interaction and the massive W and Z gauge bosons of the weak interaction, thus split-
ting the, up to this point unified, electroweak theory to the electromagnetic and weak
interaction.

Absent the field related to this mechanism, the Higgs Field, it is assumed that all
particles would be massless. It is the universal interaction of the massive particles with
this field that provides them with their observed masses, with heavier particles having
a greater coupling strength to the Higgs field and thus acquiring larger mass. It can be
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Figure 2.1: The components of the Standard Model as established to this day.[15]

deduced that massless particles, such a photons and gluons, do not interact with the Higgs
field at all while neutrinos interact very little given their very small masses.

The Higgs boson, a scalar particle, is the mediator of this field, and its existence was
confirmed in 2012 by the ATLAS and CMS collaborations [16, 17].The discovery was
based primarily on mass peaks observed in the γγ and H → ZZ → 4` decay channels
of the boson that offer the best resolution. The latest estimate for its mass, with data
combined from both experiments (see [18]) is mH = 125.09± 0.21(stat)± 0.11(syst)GeV .

2.1.4 Dark Matter

When the term "Dark Matter" is considered, exotic and mysterious forms of matter come
to mind, matter beyond what human senses can observe. Dark Matter refers to a, still
hypothesized, form of matter that does not interact with electromagnetic forces and thus
does not emit light. Consequentially, it does not interact with what is considered "normal"
luminous matter, making it practically undetectable by conventional means humans can
develop. The existence of such a non-interacting form of matter can be inferred by a
number of observations made :

• The discrepancy in the mass of galaxies and galaxies’ clusters between their mass
as inferred by gravitational effects and their observed mass as calculated by their
emitted light distribution. The observed luminous mass would not be enough to
hold a galaxy cluster system or a lone galaxy bound together.

• The rotational curve of a galaxy fails to follow Newton’s laws beyond the luminous
disk, where the rotational speed should fall as Vc = r−1/2, however, it is observed to
remain constant at a radius of 50 kpc (the luminous disk radius extends to a distance
of 10 kpc with our Solar System at about 8.5 kpc from the galaxy center), so the
existence of an extended Dark Matter halo beyond the luminous disk is suspected.

• Observed anisotropies in the cosmic background radiation.

LHC and in particular the ATLAS experiment are actively searching for Dark Matter
candidate particles [19], such as the Weakly Interacting Massive Particles (WIMPs) -
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hypothetical particles thought to be the Dark Matter constituents that may arise in
sypersymmetric extensions of the Standard Model and may couple to the known matter
through a kind of weak interaction, either generic, known or a new kind. The ATLAS
collaboration probes into event topologies that have a single jet characterized by a large
transverse energy and also large missing transverse momentum - these jets are known as
monojets and, for example, searches for an excess to such monojet events beyond SM
expectations (where a monojet can be the product of a Z boson-jet production where
the boson decays into two neutrinos that escape detection) can potentially lead to the
discovery of such Dark Matter candidate particles. That is because the WIMPs fail to
interact with the materials of the detector and thus the fact that they escape the detector
undetected leads to missing transverse momentum pmissT and thus missing energy Emiss

T .

2.2 The LHC and the ATLAS experiment

The Large Hadron Collider (LHC) is the centerpiece of research currently at the accel-
erator complex of the European Organization for Nuclear Research, commonly known as
CERN, located on the border between France and Switzerland. With a circumference of
27 km the ring-shaped accelerator is the largest particle accelerator ever built. It has con-
tributed (and continues to contribute) to the expansion of the frontiers of particle physics
with the unprecedented high energies and luminosities it operates at. Inside the acceler-
ator’s beam pipes (kept at ultrahigh vacuum) two high energy particle beams collide at
dedicated collision points (guided, bent and focused by strong magnetic fields generated
by various multipole superconducting magnets, such as dipole and quadrupole magnets),
around which the detectors of the various experiments are built (the 4 major ones being
ATLAS, ALICE, CMS and LHCb) that study those collisions and the particles produced
from them.

ATLAS (which will be presented in more detail in Chapter 2.2.1) and CMS function as
more general purpose experiments, probing into a wide range of physics - their independent
operation allows for reliable confirmation of important results and discoveries, such as the
independent confirmation of the discovery of the Higgs boson. ALICE and LHCb focus
on more specific phenomena such as heavy ion collisions and b-physics.

A major consideration in experiments, such as those that aim to observe rare phe-
nomena and expand the current knowledge in the physics field, is the rate of collisions,
the rate at which events are observed, and thus, ultimately, the total number of events
recorded. A higher number of recorded events makes it more likely for rare phenomena
to be observed and a discovery to be made. This is where the concept of luminosity (and
more specifically instantaneous luminosity) L is introduced. It indicates the number of
potential collisions per second, while integrated luminosity indicates the cumulative num-
ber of collisions over a time period ∆t. A higher value of integrated luminosity makes
more likely the discovery of new phenomena. The actual probability of an interaction to
occur is generally expressed in particle physics experiments by the cross section σ of the
reaction.

A major quantity of interest for all LHC experiments is the transverse momentum
pT of the, produced from the collision of LHC beams, outgoing particles. Since it is
not possible to know the initial momentum of the colliding bunches and given that the
movement along the beam axis of the initial particles allows the consideration of the
initial total transverse momentum as 0, any pT final particles have is due the collision
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Figure 2.2: The layout of the ATLAS Detector with all its major sub-elements indi-
cated.[22]

itself. Momentum preservation imposes limitations on the transverse momenta of the final
particles as the total pT must be zero. These conditions make pT a very useful quality
to use in order to probe the physics of the collision and its aftermath and calculate other
quantities such as the invariant masses of particles and particle jets.

For the majority of its time of operation the particle beams colliding are beams of
proton bunches. While the collision of proton beams dominates most of the operation
time of LHC, lead ion beams also collide within the LHC with the properties of such
collisions (such as the creation of the Quark Gluon Plasma) studied primarily by the
ALICE experiment. During its first period of operation, known as Run 1, from 2009 to
2013 the center-of-mass energy for the proton beams started at 7 TeV to reach eventually
the 8 TeV. After a shutdown period, during which the LHC was upgraded, the ongoing run,
known as Run 2, started in 2015. During this run, the center-of-mass energy for proton-
proton collisions has considerably increased, reaching the 13 TeV, with beam intensity
also increasing. At the end of the 2017 run, the accelerator achieved record luminosities
with the two major experiments, ATLAS and CMS, reporting a total integrated luminosity
of 50 fb−1 of data, corresponding to about 5 · 1021 events, about 60 collisions per bunch
crossing and a record value of instantaneous luminosity of L = 2.06 · 1034 cm−2s−1.

2.2.1 The ATLAS experiment

The ATLAS detector [20] is a multipurpose particle physics apparatus. It has a length of
46 m, a height of 25 m and a forward-backward symmetric (with respect to the interaction
point) cylindrical geometry. It is located 100 m underground, built around one of the beam
collision points inside the LHC.

The ATLAS experiment aims to explore mass scales of the order of TeV. The high
luminosity and increased cross-sections at the LHC allow for additional tests that probe
into QCD, electroweak interactions and flavour physics with enhanced precision. ATLAS
focuses on the investigation of electroweak symmetry breaking, which is inextricably linked
to the discovery of the Higgs boson, as well as the search for physics beyond the Standard
Model, such as WIMPs and other Dark Matter candidate particles.

The goal of a particle physics experiment that hopes to probe into new phenomena
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and make discoveries is to track every particle produced by a collision. To that extent
the ATLAS detector itself is a many-layered instrument designed to track as many of
the outgoing particles produced, for example, from a proton-proton collision, as possible
through their interaction with the different sub-detectors it consist of.

The major components of the detector are [20, 21]:

• The Inner Detector: It is the part of the detector closest to the interaction point
where the collision takes place. At this area the track density is still extremely high
and thus this detector is very compact and has a high sensitivity in order to provide
excellent spatial resolution of the signals for purposes of momentum calculation and
vertex reconstruction. The reconstruction of the primary vertex with high precision
is the central task of the inner detector.

• The Calorimeters: They are constructed to measure the energy losses of particles
passing through them and their main task is to contain and measure the whole
energy of a traversing particle, essentially stopping them and "absorbing" them.
Today, calorimeters can practically stop all known particles except from the very
energetic muons and the rarely interacting neutrinos.
The system of calorimeters at ATLAS consists of two main components: the Tile
Calorimeter (TileCal) and the Liquid Argon (LAr) Calorimeter. All calorimeters
used at ATLAS are sampling calorimeters, meaning that they consist of a series of
interleaved passive layers, made of an absorbing material with high atomic number
Z that causes considerable energy loss, and active layers consisting usually of solid
lead-glass or liquid noble gases (such as Argon) that detect this energy loss through
ionization (for noble gases) or scintillation (for the solid materials). According to
the kind of particles they identify the calorimeters are divided into electromagnetic
(LAr electromagnetic calorimeter) and hadronic (Tile Calorimeter, Hadronic End-
Cap (HEC) and Forward Calorimeter (FCal). Their functioning principle is based
on the measurement of the energy of leptons and photons or hadrons respectively
that is deposited in the form of showers.

• The Muon Spectrometer: They comprise the outermost layer of the ATLAS
detector and are used to measure the momenta of muons that are so energetic
that pass through the inner detector and the calorimeters without depositing their
energy. A group of 3 toroid magnets, described in the next section, provide the
force that bends the tracks in order for the particle momenta to be calculated from
the curvature.Identification with the spectrometer is easier as particles other than
muons are not expected to make it to those detectors.

• The Magnet System: It consists of a central solenoid magnet that is thin and
superconducting that surrounds the inner detector as well as three large, super-
conducting toroids - a barrel toroid and two end-cap toroids perpendicular to the
collision axis. The field-induced curvature of the transversing particle tracks is used
to determine the transverse momentum of the charged particles. The toroids are
used to determine the momenta of very energetic muons detected at high pseudo-
rapidities η the solenoid may miss. Pseudorapidity is a spatial coordinate used in
particle physics mainly to describe the angle of the track of a particle relative to the
beam axis and it is defined as η = −ln[tan( θ

2
)], where θ describes the (polar) angle

formed between the 3-momentum vector of the particle and the positive direction
of the beam axis.
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Figure 2.3: Cross-sectional wedge view of the ATLAS detector depicting the different
layers of sub-detectors radially distributed around the interaction point and the interaction
of different particles with different layers.[8]

Figure 2.2 depicts the layout of the detector along with its sub-detectors and other
elements contained within it. Figure 2.3 shows a cross-sectional view of the sub-detector
layout along with the identification principle through particle interactions with the dif-
ferent layers.

After the particles have been detected and their transverse momenta defined, a three-
level trigger system is used to select those events with distinguishing characteristics that
make them interesting for further physics analyses and subsequent off-line analysis, with
only data for which all subsystems described above were operational used. Then the
ATLAS computing system calibrates, reconstructs and distributes the data to all the
members of the ATLAS collaboration around the world, to which they have access through
the Worldwide LHC computing Grid.

Currently the final data format used in results’ analysis is what is called the Derived
Analysis Object Data, or DAOD, and it includes solely physics objects, such as jets and
electrons, that are of interest in a particular analysis. Such objects can still have con-
siderable size - even though the data size has been significantly reduced, since the raw
detector data was delivered. That occurred through their transformation to event level
data, where only some track parameters are stored instead of every coordinate of every
hit. The energy deposits in the calorimeter are then combined to form the aforementioned
physical objects. Thus it is recommended for the analysis to be done on distributed com-
puting facilities rather than local computer units by sending the analysis code to where
the data is stored instead of the reverse.
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2.3 The concept of jets in particle physics

Now that both the Standard Model of particle physics and the ATLAS experiment have
been described it is essential for part of the work done during this project to briefly
explain the concept of jets in particle physics experiments. A jet is a collimated spray
(or spread) of particles that have partonic origins (they are created during the process of
hadronization of quarks and gluons), whose emergence after a particle collision can help
the identification of hadronic final states in experiments such as those performed at the
LHC, including ATLAS. The experimental analysis of the energy and angular distributions
of jets can provide valuable insight to the properties of the basic constituents of matter
and the strong force that mediates their interactions. Consequently, their observation was
crucial in the establishment and validation of Quantum Chromodynamics (QCD) as the
theory that described strong interactions within the bounds of the Standard Model. Such
hadronic jets constitute the main contributors to processes that generate high transverse
momentum (pT ) particles and have been observed since the early experimentation phases
at CERN, before the LHC was even created, at the days of experiments such as the UA2
[23].

Figure 2.4 gives a visual representation of the development of a jet after a partonic col-
lision. Directly after the collision (during which it is quarks and gluons inside the colliding
protons that actually interact through hard scattering), high energy quarks and gluons
move as quasi-free particles at short distances, developing a cascade of bremsstrahlung ra-
diation that includes a collection of narrowly collimated gluons as well as quark-antiquark
pairs (parton-level jets). These lead to a gradual decrease of the energy of those partons
and, at the same time, an increase in their number. At a certain point during this pro-
cess the parton energy level decreases to the point where these quasi-free partons cannot
escape confinement anymore and are forced to hadronize into mostly mesons, equally
well collimated (hadron-level jets), that reach the detector calorimeter and deposit large
amounts of energy, a "shower" of energy, to a certain direction within the calorimeter.
These are what the detector observes and constitute what is called calorimeter-level jets.
What the detector receives is the signature of a quark or a gluon that has mapped itself,
from a small distance, to a jet of hadrons at large distances. The configurations of the
initial high-energy partons are reflected in the properties of the final-state jets that are
observed, thus making jet identification and analysis extremely important.

The identification of jets constitutes one of the most crucial steps in the process of
particle identification in ATLAS, and other experiments. Nowadays, such identification
proceeds through the use of algorithms that are required to reproduce the calculable results
QCD provides. These algorithms need to be well-defined and be able to relate calorimeter-
level, hadron-level and parton-level jets to achieve proper reconstruction and identification
of the high energy partons that are the origins of a particular jet. The dominant algorithms
used presently are part of a family called the sequential recombination algorithms [24].
Those algorithms fulfill two very important QCD-based requirements: They are infra-red
and collinear safe (IRC safe). Infra-red safety ensures that a soft emission (of a gluon,
for example) does not influence the conclusion of the algorithm (does not change the jet),
while collinear safety requires that a small-angle splitting in the jet cone cannot change the
algorithm conclusion either. One such algorithm (anti-kt) is used in the samples studied
during this project and some more information on it will be provided in Chapter 4.2.1.
Another family of algorithms, known as cone-type algorithms, do not offer IRC safety
and, while they tended to be favoured at hadron colliders due to some computational
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Figure 2.4: The creation and development of a hadronic jet.[25]

performance benefits, today, recombination algorithms are dominating the field both in
theoretical simulations and experimental jet identifications in data [26]. For experimental
purposes a jet is only the collection of objects that occur as the outcome of a jet finding
algorithm - nothing else is identified as a jet.

2.4 Monte Carlo generators and samples

Monte Carlo simulations consist a central concept in this project. Thus the significance
of the contribution of Monte Carlo generators to particle physics, as well as their actual
function, is also introduced.

Monte Carlo simulations have long been used in particle physics to test the validity of
theoretical models and predictions by accurately interpreting data produced by collision
experiments, such as the proton-proton collisions (pp collisions) taking place at the LHC.
A Monte Carlo generator (also known as an event generator), in the context used in par-
ticle physics, is essentially a computer program used to create a simulation of the studied
process (in the case of the ATLAS experiment mostly p-p collisions) based on the theo-
retical predictions of a tested model (in the case of ATLAS and LHC this is the Standard
Model of particle physics). The randomly generated events simulate those produced in
particle accelerators, where particle collisions at high energy occur, but also events that
occurred during the early stages of the creation of the universe. Monte Carlo simulations
are, in general, based on the concept of random sampling of the possible outputs of a,
probabilistic in nature, process, dependent on many variable factors. A distribution of
those values should converge to a statistical sample that accurately describes the expected
results of the studied process. Then this distribution can be used to be compared with
actual data, gathered by detectors such as those of the ATLAS experiment. Such a com-
parison can lead to either a confirmation of the model, the need for its modification or
its rejection. The ATLAS experiment relies heavily on such simulated collisions to make
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its SM-based predictions. Commonly used Monte Carlo event generators at ATLAS in-
clude PYTHIA [27], Herwig [28] and Sherpa [29]. Those generators do not take under
consideration any detector effects, which are always present in real data and are related
to effects such as energy loss at the detector material. This is corrected with the use of
the GEANT4 [30] detector simulator that simulates the passage of the various produced
particles through the detector material in detail based on the geometry of a detector.

During this project, the PYTHIA generator will be mainly used, in particular the
latest version of that generator, PYTHIA8. It is a reliable tool for generating high-
energy collisions of a wide range of models that include processes involving few interacting
bodies to complex multi-hadronic final states. This tool provides a library that contains
hard processes and models for both initial and final-state parton showers, parton-parton
interactions, particle decays, beam remnants, beam jets and even string fragmentation
models. The current version of PYTHIA is based on the C++ programming language.

PYTHIA, as well as other event generators, run within a C++ control framework
called Athena [31], in which data processing and analysis is performed. The function of
this framework is based on the idea of the execution of algorithms that produce or take
as input data objects. These objects may be particle clusters or isolated particles, such
as muons or electrons.
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Chapter 3

The ATLAS@home Project

3.1 The Virtual Machine Concept

The Monte Carlo generation, that consists the goal of this project, is done using a software
called BOINC [32] that distributes tasks to the various machines and spawns a virtual
machine on each of them to process those tasks.

A Virtual Machine (VM) is what could be called a "software computer", a software
emulation of a hardware machine [33]. Like a physical computer, it can run an operating
system and applications within it and it contains a number of virtual devices that provide
a functionality similar to that of a physical computer. A virtual computer, usually called a
"guest", is run inside a physical computer, usually called the "host". The virtual machine
consists of a collection of configuration and specification files that setup the environment
for the operating system and its applications to run using the physical resources provided
by the host machine.

A virtualization software is a kind of software that creates the virtual machine envi-
ronment. To achieve that it gains access to a number of hardware components and certain
features of the host machine. Such a software performs what is known as full virtualiza-
tion, a kind of virtualization that allows a completely unmodified operating system, along
with all its installed software, to run on the virtual environment especially created for
that purpose. Almost all the guest code, belonging to the virtualization software, is run
on the host machine with the guest operating system "thinking" it runs on a real machine,
it "sees" all the software virtualized hardware as if it was real hardware.

It should be noted that this virtualization process differs significantly from an emula-
tion process, showcasing considerable benefits. During an emulation process the machine
instructions and configuration of the guest system are "translated" (emulated) and the
guest code does not run on the host directly. An emulation software (such as BOCHS
[34]) allows a type of software written for a certain type of hardware to be run on another
hardware type (for example a program written for a 64-bit machine to run on a 32-bit
machine) but the performance in terms of speed is poor. A virtualization software can
run code that was written targeting similar hardware (for example a 32 bit Windows
machine can run a 32-bit Linux environment) but the benefit in this case is a perfor-
mance comparable to the performance the software would have if it was run on its native
hardware.

In this project the virtualization software used is Oracle VirtualBox, a "general-
purpose full virtualizer for x86 hardware, targeted at server, desktop and embedded use."
[35]
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Figure 3.1: Screenshot of the BOINC application environment while running an ATLAS
task for the LHC@Home project showcasing the progress that has been made, the time
elapsed and the estimate remaining time for the processing of the task to finish.

3.2 The BOINC Volunteer Computing Platform

BOINC is the open-source software developed at UC Berkeley the ATLAS@Home [36]
project utilizes to communicate its tasks to the users. It is the software used by the
majority of volunteer computing projects around the globe. Such projects take advantage
of the spare computing cycles of personal computers when they are not used in order
to perform a computational task someone else needs (usually a researcher or a research
team). The stimulus for people to participate in volunteer computing projects that are
commonly related to scientific work is the sense such a contribution can offer to people
outside the scientific community that they are contributing to the expansion of scientific
knowledge and thus to the greater good.

SETI@Home [37], a project developed at UC Berkeley that aimed to discover evidence
of extra-terrestrial life by checking radio signals provided by telescopes, is considered the
first major example of a large scale volunteer computing project and the reason why
BOINC was initially developed. The participants in the project run a free program that
downloads and analyzes such radio telescope data by using the computational power pro-
vided by their personal computers. To this day the number of major scientific projects in
need of such computational power that have turned to volunteer computing using BOINC
has increased and as of January 2018 it includes 37 active projects [38] (including a diverse
range of subjects from mathematics to linguistics and medicine and from astronomy to
molecular biology) with the number of volunteers also increasing.

But how exactly does this software function ? The basic idea is the establishment
of a reciprocal relation between a server and the user’s computer. The serves functions
as a host to numerous tasks or work units related to specific projects that the user can
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download on demand to process on their computer. Due to the fact that every personal
computer has different operational characteristics and computational capabilities, the
BOINC software makes use of virtualization in order to realize the suitable environment
for the available tasks on the server to be executed. This means that the relevant software
must run through a virtual machine. Thus when the user chooses to contribute to a
certain process, a virtual machine is spawned, via an appropriate virtualization software
like VirtualBox, on the user’s computer. A piece of software called vboxwrapper that runs
on the BOINC client side controls the creation of the virtual machines. The work unit
is then downloaded and processed on that virtual machine. Once the processing of the
unit has been successfully performed, the result returns to the server where it is stored
after it is validated. A successful validation awards the user with a certain amount of
credits. Those credits have no real value, monetary or otherwise, but serve as a measure
of the processing that has been done on a certain computer for a certain project and it is
supposed to work as some sort of motivation for the volunteer.

The field of particle physics could not remain of course uninterested in such a concept.
The use of BOINC by CERN started all the way back in 2004 with the establishment
of the LHC@Home [39] project. 10 years later the ATLAS experiment created its own
volunteer computing project called ATLAS@Home, now an application that is part of the
LHC@Home project that functions as an umbrella project for all LHC-related volunteer
computing projects such as ATLAS@Home, CMS@Home, SixTrack and others.

3.3 The LHC@home platform and the ATLAS@home
project

The ATLAS@Home project is using the BOINC software to distribute ATLAS-related
computing tasks, capitalizing essentially on the high public interest in the LHC physics
research. The general LHC@Home umbrella project gives the capability to the user to
choose according to his preference which application they want to run (for example a
user interested solely in ATLAS research can choose to process only tasks from the AT-
LAS@Home application within the LHC@Home project). The project has two main
purposes, aimed at benefiting both the performed research, by providing extra compu-
tational resources, as well as the general public (with the project having a constantly
expanding base over the last 2 years of its operation) by involving them in a direct way
to the ATLAS research. With a constantly expanding volunteer base, ATLAS@Home
now produces about 5-7 % of the total number of ATLAS simulation events with a cost
negligible compared to what that would be to run an equivalent Grid site.

In the case of the ATLAS@Home project, each virtual machine BOINC spawns uses
10 GB of space within the drive of the user’s computer and utilizes the CERNVM File
System (commonly known as CVMFS) [41] to distribute the relevant ATLAS software
needed to process a work unit of the task the user has chosen. The jobs themselves are
taken from PanDA [42], the ATLAS job management system, and they are then submitted
to the BOINC server through the Advanced Resource Connector Compute Element (ARC
CE) [43], a Grid front-end on top of a conventional computing resource such as a Linux
cluster or a standalone workstation, handling mainly Grid user authentication issues and
Grid file managing and user access to Grid files.

An overview of the architecture of ATLAS@Home is shown in Figure 3.2.
Over the last 2 years ATLAS@Home has undergone a number of improvements and

22



Figure 3.2: A graphical overview of how the ATLAS@Home application works, from
taking the job from PanDA and eventually delivering it to the volunteer’s PC. [40]

changes with the purpose of improving the performance yield, as well as to make the plat-
form more attractive for the volunteers. The major three changes towards this direction
were:

• The implementation of a multi-core version of the application, to make sure full
usage of the CPU cores a volunteer offers is achieved, while gradually ending support
for the single-core application.

• The implementation of a graphical interface , used to provide understandable
information about the generated tasks as well as a general background about the
physics studied at the ATLAS experiment.

• An undergoing effort to integrate the ATLAS 3D event display, VP1 [44] to the
application, in order to provide even more information to the volunteers in the form
of detailed visualizations of the processed data. Those visualizations are produced
within the virtual machine (and are thus task-specific) and displayed through the
aforementioned graphic interface.

The above improvements and changes are described in [36].
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Chapter 4

Monte Carlo samples generation

4.1 Nature of the studied Monte Carlo samples

In order to achieve the goal of the project, there is a need to have some reference samples
of generation tasks. For this particular project, a script that generates some generic QCD
Monte Carlo samples has been provided.

The script that consisted the main body of this work, for the most part, is wholly
available at Appendix A.1. We will provide a step-by-step description of what this script
actually achieves.

First of all the basic directories where the generated files will be stored are created
along with certain simulation parameters such as the center of mass energy of the collision,
the total number of events and the total number of jobs that need to be produced - for the
total number of jobs, it is chosen to have it provided on the command line upon execution
of the Python script, but a standard number of jobs can also be set. An offset value that
will aid in the seed generation of the Monte Carlo production (as it will be seen later)
is also provided. It is optimal for such a script to provide a random offset value upon
execution and thus why the random Python package and its functions are used here to
generate such a number:

offset = random.randint(100000000,999999999)

For the production of the reference samples a constant offset value will be used to
provide the same MC generation seed in order to enable comparisons across different
processing environments. Next, a bash executable submission file is created that will
execute all the generated job scripts.

A fundamental file that needs to be generated in order to progress further is what is
known as the Job Options. To explain what the Job Options are first it needs to be made
clear that the jobs that need to be generated and run are essentially Athena jobs, the
event loop framework that comes with all ATLAS software releases. It manages almost
all ATLAS production workflows including event generation, simulation, reconstruction
and derivation production. In order to use Athena a python configuration file must be
created that specifies exactly what the user wants to happen during this event loop. This
file is what is called the Job Options and its main purpose in this script is to define jet
QCD processes running with PYTHIA and set some minimum bias selection parameters.

After the Job Options have been generated, it’s time to generate the job scripts that
will be used for Monte Carlo validation.

24



A for loop is used to generate the number of bash executable job scripts requested
(dependent on the numberOfJobs variable) and assign them a name. Then the job scripts
are being written, starting with a basic tracking of the running shell. A temporary
directory is created (tmpDir=‘mktemp -d‘), in which the event generation will take place
and the output files will be created, before transferring any output files that are wanted
to actual directories.

After a check is ran to ensure the directory in which job options were stored exists, the
Job Options file is copied from the directory where it was originally placed in the tempo-
rary directory. The relevant ATLAS software and Athena release needs to be installed:

#module load enableATLAS
#setupATLAS
#asetup 19.2.4.16,AtlasProduction
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
source $AtlasSetup/scripts/asetup.sh 19.2.4.16,AtlasProduction
cd ${tmpDir}

The first three lines are to be used when ATLAS software source code already exists on
the machine the script is running (for example Iridium, a local cluster presented in more
detail in Chapter 4.2.1, has an ATLAS software module the first line of code activates).
If not, the source must be loaded and executed with the 4th line of code and then the
appropriate Athena framework release must be setup (asetup) for the project that is
supposed to be loaded for. A project is a subset of the code of the Athena framework that is
specialized in running certain tasks - for example AtlasProduction is an ATLAS-specific
project used for event generation - projects will be discussed in more detail in Chapter
4.2.2.1. The code ensures the working directory is the temporary directory previously
created and then the event generation using the PYTHIA generator is performed through
the Generate_tf.py command below:

Generate_tf.py --ecmEnergy="""+centerOfMass+"""
--runNumber="""+str(channelNumber)+"""
--firstEvent=0 --maxEvents="""+numberOfEvents+"""
--randomSeed="""+str(jobNumber+offset)+"""
--jobConfig="""+outputJOFileName+""" --outputEVNTFile=event.root

The above command generates a proton-proton collision using the PYTHIA event
generator for a center of mass energy of 13 TeV, defining a number of the run value, and
then defining the range of events starting from event zero and going up to a max number
of events (in the scripts running for this project this remains standard at 10000 event
per simulation). Then, the important value of the seed the generation will use is defined.
Each seed number will generate a different simulated collision and distribution of particles
in every event, thus different measurable quantities such as pT and jet distributions.

It is important in Monte Carlo simulation to generate many different jobs with different
seeds and thus different distributions. This is what is done here as the seed value is starting
from the offset value for the first generated job and incremented by 1 for each subsequent
Monte Carlo generation script created, thus assigning a different seed to each job. The
Job Options provide the necessary job configuration, tailoring the generation based on
the information provided in that file, and finally the name of the output file is specified.
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Event generation jobs in ATLAS produce an output file format called an EVNT file. This
file contains the truth record in HepMC format ("an object-oriented event record written
in C++ for High Energy Physics Monte Carlo Generators"[45]) and wraps it in a form
that is readable by Athena. The problem with this file format is that it cannot be read
as it is by the ROOT[46] analysis framework that is going to be used. Many analysis
objects, that are needed for this analysis as well, such as jets, can be constructed from
other particles in the truth record but they are not immediately available from the HepMC
format record. This is why there has been software developed to actually convert those
EVNT files to forms readable from ATLAS-related software, as well as the more generally
applicable ROOT framework (which will be used in this project as well for the upcoming
analysis) - the readable forms are what is called truth xAOD formats, a term that includes
a variety of formats such as the DAOD files previously introduced in Chapter 2.2.1, that
include all the (analysis-ready) information needed.

That is the next step taken: running a command to generate a truth DAOD from the
event file the event generation created. In order to do that a new Athena project must
be set up:

source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
#asetup 20.1.8.3,AtlasDerivation
source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation

As it can be seen, the project loaded now is AtlasDerivation, an ATLAS-specific
code subset used for DAOD derivation. Then the relevant command (Reco_tf.py) is
executed:

Reco_tf.py --inputEVNTFile=event.root --outputDAODFile=output.root
--reductionConf TRUTH3 --loglevel FATAL

What this command does is take the EVNT file just generated in the temporary work-
ing directory all the processes take place and produce a DAOD file called output.root
using a TRUTH3 truth format (explained below) to do so.

The concept of truth describes what actually has transpired during a collision and after
it when we discuss simulations. A truth record is the record of particles that really existed
in the generated events. In ATLAS truth takes several forms. There is the generation
truth, that is a representation of the particle interactions in Monte Carlo, essentially a
snapshot of the event as it was produced by the generator - the "physical" event. Then
there is the detector simulation truth - the detector simulation appends new particles to
the generation truth due to the simulated interactions with the material that produce
these new particles. The generation truth serves as the only source that the detector
simulation uses as input. In order to properly represent truth certain concepts related to
particle interactions have to be made clear. Every particle interaction that occurs has to
be described by:

• A list of the incoming particles.

• The interaction vertex

• A list of the outgoing particles.
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All particles, incoming and out going, have kinematic properties and flavours (types),
while each vertex has temporal and spatial properties describing when and where an in-
teraction happened. This simple image is reproduced many times during an event, with
the outgoing particles for one vertex (their production vertex ) being the incoming parti-
cles for another vertex (their ingoing vertex ) and the event actually containing numerous
such vertices and particles connected in long interaction chains. Most of the times the
users are interested only in the particles, not the interactions - nevertheless a basic truth
requirement is that the vertices must correspond to actual physical processes. It is essen-
tial during this process for the initial information - the generation truth - to be preserved
through the reconstruction of particle tracks back to the original vertices and matched
to reconstructed objects - the truth event must be connected throughout the simulation
software chain.

There are multiple truth formats to configure the reconstruction that produces the
truth DAOD file here from the EVNT file generated by the original event generation
command. The one used is called TRUTH3, which is the main format for truth analysis
that is used in any occasion the user is not sure what exactly may be needed. The basic
idea behind TRUTH3 is that any truth information that may be needed by parsing the
truth record is saved for the user. The main truth record is actually removed from this
format and the various particles contained in the record are copied into their own classes.
This reduces considerably the size of the final derivation output and helps to standardize
some of the truth information as well. For more information on truth formats one can
consult the relevant ATLAS software tutorials on TruthDAOD production [47].

After the DAOD file is created, a specific directory to store it is created, if it does not
exist already, and the truth DAOD file is copied in there and renamed appropriately and
uniquely in accordance to the offset and job number used, along with the log file of the
derivation process, while everything less in the temporary directory is deleted with the
rm* command.

cp DAOD_TRUTH3.output.root """+outputDir+"""/OutputNtuples/SplitQCD/"""
+outputJOFileName+"""_"""+str(jobNumber)+"""_"""+str(offset)+""".root
cp output.log """+outputDir+"""/OutputNtuples/SplitQCD/"""+
outputJOFileName+"""_"""+str(jobNumber)+"""_"""+str(offset)+""".log
ls
rm *

Finally the job files are made executable and a line that executes them is added to
the submission file created at the beginning, that helps to submit all the created jobs
with the execution of that file only (depending on where the file is executed a different
command is used to run the bash executable job scripts, something that will be analyzed
in the coming chapters).

4.2 Reference Samples Production and Analysis

Two kinds of reference samples have been produced during this project. One was produced
on a local cluster of the Lund University called Iridium. A second set of reference samples
was produced by submitting the scripts to the Worldwide LHC computing Grid (called
the Grid from now on) using the PanDA workflow framework of ATLAS. In both cases
the test scripts were processed and produced 2 jobs with the same generation seed and

27



the same number of events in both cases (later the very same process will be done on the
VM itself for the exact same jobs for comparison).

A decision on what kind of quantities should be used as samples had to be made. It
was ultimately decided that two characteristic quantities widely used in particle physics
research - the jet transverse momentum pT and the invariable dijet mass mjj - would be
used.

4.2.1 Iridium samples

The Iridium Cluster [48] is a computing facility aimed to help the researchers in the fields
of particle, nuclear and theoretical Physics located at Lund University. A different user
group is defined for different divisions and research interests. It consists of 10 nodes,
that can be directly accessed, with each node consisting of 16 cores and 64 GB of RAM.
Iridium offers a personal storage service to each user where files can be stored that can be
picked up directly by any node of the cluster. Finally, a batch processing interface allows
many jobs to run in parallel on different nodes and cores, a feature the submission of the
samples here will take some advantage of.

The first step towards generating the reference samples is the execution of the Python
master script in order to produce the Job Options and the bash executable job scripts. As
it was previously mentioned, a non-random offset value is chosen in order to produce jobs
with known generation seeds and the number of created job scripts is set to 2. Although
one sample would be enough for the purpose it is needed, we opt to produce a second
sample for additional statistics. The two job scripts will from now on be conveniently
named "Job 0" and "Job 1" and this convention will be kept throughout the comparison
process for all environments on which the reference samples will be produced.

After the generation of the job scripts, the additional file submitAllSubmissions8.sh
will be executed on Iridium but using the batch interface of Iridium by substituting the
bash command, used to execute a bash script, with sbatch. This way the bash executable
job scripts will be submitted to one or more of the nodes on Iridium and processed in
parallel thus making the generation on Iridium quite time efficient compared to a simple
bash execution in a single shell.

After processing has finished, the DAOD files needed are ready to be studied. In order
to extract the quantities that will be studied and do the appropriate comparisons, the
ROOT data analysis framework will be used. This framework provides all the needed
functionalities to handle big data processing, statistical, analysis, visualization of results
(mainly and in the current project in the form of histograms) as well as storage. It is a
software mainly written in C++.

Once ROOT is launched on Iridium and a DAOD file is loaded in it, its contents
can be viewed by opening a TBrowser. The DAOD contains its information in a TTree
structure, an object that can store large volumes of same type data in an efficient way,
reducing needed storage space and ensuring faster access to that data. A TTree can hold
various kinds of data, from simple numerical values to objects and arrays. An object
of that class consists of a number of subdirectories called branches and those branches
include leafs that are filled with data. Usually a single branch includes variables that
are related to each other and are expected to be used together - these variables are
the leafs. Such an organization of branches optimizes the data for upcoming use and
creates a more efficient TTree structure. In that DAOD file we are interested to the
CollectionTree TTree object that contains the generated physics simulation data and in
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particular, for the simple reference study that will be done, the branch of CollectionTree,
AntiKt4truthjetsAux, within which the 4 major TTree leaves include the jet transverse
momenta pT , the pseudorapidity η, the azimuthial angle φ and the jet mass m distributions
(according to the coordinate system used at the ATLAS detector). The truth term was
defined in Section 4.1, while AntiKt is a jet-finding algorithm used in particle collisions
(and simulations of such collisions) that behaves like an idealized cone algorithm whose
most notable property is the resilience of the jet boundaries it provides with respect to soft
radiation present in the jet cone that may disturb its shape. The issue of jet reconstruction
algorithms is extensive, as they consist one of the main tools used to analyze data from
collisions, and this project report is not going to explain them analytically - all that is
needed to know for our work is that the used algorithm provides reliable jet identification
for the PYTHIA simulations studied. For more information on this particular algorithm
one can refer to [49]. Once the DAOD is loaded with ROOT we can draw any of the
histograms, for example the pT of the jets, through the command line by calling the draw
method of the branch that includes the wanted histogram and specifying the path to it
as follows:

CollectionTree->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt")

4.2.1.1 pT comparison

The first quantity we want to study is the jet transverse momenta pT . It was considered
practical to actually develop the ROOT-based comparison scripts that are needed using
the two DAOD files produced from the two jobs that were just processed on Iridium and
compare those first. If performed correctly this comparison would confirm that the 2
jobs were generated using different seeds and the produced code can then be used for the
cross-platform comparisons that are needed with the proper input files on each occasion.
An example of the pT comparison code is provided as a whole in Appendix A.2.

It can be noticed that two scripts are available, one for comparison of unweighted pT
and one for weighted pT . The second one will be analyzed in Appendix B. The scripts
provided as examples at Appendix A are the ones used later for Grid-generated and virtual
machine-generated DAOD files, but their structure is identical.

For the comparison of unweighted pT spectra, we first define a TFile stream that
accesses the DAOD of Job 0 and also define an 1-dimensional float histogram that will
store the wanted pT distribution:

TFile *firidium0=TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet
_Powerlaw.py_1_800000000.root");
TH1F *hiridium0=new TH1F("hiridium0","TruthJets_pt_unweighted_sample_iridium_job_0;
p_{T} [MeV];
N_{entries}",100,0,4000000);

Then a TTree object needs to be defined that will store the CollectionTree TTree object
in the DAOD, which contains the information that is needed. From that new TTree
the Draw method is called to draw the transverse momentum distribution, as previously
described, and, additionally, store it in the created histogram. The Canvas on which this
was drawn is then saved as a .eps image (a graphics file format chosen due to the graph
quality and resolution it provides) shown in Figure 4.1:

TTree *MyTreeiridium0 = 0;
firidium0->GetObject("CollectionTree",MyTreeiridium0);
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MyTreeiridium->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hiridium0");
C1->SaveAs("unweighted_iridium_pt_job_0.eps");

After that, a new TFile stream is defined that creates a .root file in which the newly
created histogram is stored and the file streams are then terminated:

TFile *foutiridium0 = new TFile("comparison_pt_iridium.root","RECREATE");
TH1F *houtgrid1 = (TH1F*)fgrid1->Get("hiridium0");
firidium0->GetList()->Write();
firidium0->Close();
foutiridium0->Close();

This process is repeated for the same quantity for Job 1 and the histogram seen in Figure
4.2 is plotted and stored in the .root file previously created.

Now that both histograms have been stored to a common .root file, a TFile stream
accesses this file and 2 new histograms, in which the previously created pT distributions are
stored, are created. A third histogram that will store the comparison plot is created. Then
the Divide() function of the TH1 histogram class is used to store in the last histogram
the bin-by-bin division of the 2 previously created pT distributions that will provide a
visual representation of the needed comparison:

TFile *fcompiridium = TFile::Open("comparison_pt_iridium.root","UPDATE");
TH1F *hcompiridium0 = (TH1F*)fcompiridium->Get("hgrid1");
TH1F *hcompiridium1 = (TH1F*)fcompGVM1->Get("hVM1");
TH1F *hcompGVM1 = new TH1F("hcompGVM1","Grid_VM_comparison_unweighted_pt_job_1;
p_{T} [MeV];N_{Grid}/N_{VM}",100,0,4000000);
hcompGVM1->Divide(hcompgridGVM1,hcompVMGVM1);

An important step in the process of this comparison is the error assessment in the
comparison graph. To this extent, we opt for a typical error propagation analysis as no
actual errors are provided to the pT distribution (this is just a Monte Carlo simulation
after all and not real data). In this analysis, the bin error in the transverse momentum
distributions of the two studied jobs is taken as the square root of the bin content. Then,
since what we essentially have is a bin-by-bin division of the two histograms stored in a
3rd one (hcomp = h0

h1
) and through common error propagation theory, it is deduced that:
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(4.1)

where h0 and h1 represent the equivalent bin contents in each histogram for Job 0 and
Job 1 respectively.

To code the above error analysis, first we store to an integer the total number of bins
the histograms have (it was defined to be the same) using the GetSize() function of the
TH1 class and then two arrays are defined to store the bin contents for the two histograms
compared. A third array is defined to store the produced errors in, with a nominal size
equal to the number of bins:
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Int_t *nbinsiridium = hcompiridium0->GetSize();
double *BinContentiridium0 = new double[nbinsiridium];
double *BinContentiridium1 = new double[nbinsiridium];
double *DivisionErrorsiridium = new double[nbinsiridium];

Through a for loop the first two arrays are filled with the bin content of the respective
histograms for jobs 0 and 1. Then the DivisionErrorsiridium array is filled with the
values produced by equation 4.1 but, before that, a conditional if expression is used to
make sure that the bin content for Job 1 is non-zero, as that bin content finds itself in
the denominator of the error propagation formula and possible zero values (and there are
such empty bins) would cause infinities to appear and the code to break down. Thus such
a check is necessary. After an optional print out of the error values to ensure that they
appear legitimate, the calculated errors are incorporated in the histogram through the use
of the SetBinError() function. The whole loop that achieves everything aforementioned
is coded as follows:

for(int i = 0;i<nbinsiridium;i++)
{

BinContentiridium0[i] = hcompiridium0->GetBinContent(i);
BinContentiridium1[i] = hcompiridium1->GetBinContent(i);
DivisionErrorsiridium[i] = 0;
if(BinContentiridium1[i])
{

DivisionErrorsiridium[i] = sqrt(BinContentiridium0[i]*
BinContentiridium1[i]*
(BinContentiridium0[i]+BinContentiridium1[i]))/
(BinContentiridium1[i]*BinContentiridium1[i]);
cout << i << " " << DivisionErrorsiridium[i] << endl;

}
hcompiridium->SetBinError(i,DivisionErrorsiridium[i]);

}

After that the comparison graph is drawn with the error bars displayed and the canvas
on which it was created is saved a .eps image. This comparison graph can be seen in
Figure 4.3. As it can be seen, it largely confirms that the two pT are not the same
and were thus generated using a different seed. The spectra themselves are statistically
identical - meaning that the distributions are the same from a statistical point of view
(the same generator is used). If the seed was the exact same, the same events would be
generated and the distributions of the same quantity would be identical by construction,
not because of statistical convergence as the amount of events increases (for an infinite
amount of events generated in each sample, a different seed distribution comparison would
converge to 1).

For the weighted pT analysis see Appendix B.1.
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Figure 4.1: Unweighted pT distribution for Job
0.
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Figure 4.2: Unweighted pT distribution for Job
1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

3
10×

 [MeV]
T

p

0

0.5

1

1.5

2

2.5jo
b

 1
/N

jo
b

 0
N

Job_comparison_pt_iridium
hcompiridium

Entries  101

Mean   1.016e+06

Std Dev    5.734e+05

Job_comparison_pt_iridium

Figure 4.3: Comparison of the unweighted pT spectra for the two jobs when processed on
Iridium. It shows that the distributions are statistically identical but they were indeed
generated using different seeds.

4.2.1.2 mjj comparison

The next quantity to be studied is the invariant mass distribution of jet pairs (dijets) mjj,
which represents the mass of a two-parton system for partons emerging from the collision
shower that later hadronize. In QCD processes, the production of high-pT dijet events is
very common - such events can reach some of the highest mass scales that can be accessed
with proton-proton collisions at LHC. The invariant dijet mass we seek to calculate refers
to the total invariant mass when the two most energetic jets (meaning the jets with the
highest pT ) in an event (real or simulated), the leading jet and the sub-leading jet, are
combined [50].

In order to calculate the invariant mass there are two ROOT classes that are essential:
the TLorentzVector class and the TSelector class.

The TLorentzVector class is the basic class used to describe four-vectors and, in
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particle physics research, such a vector can include either space and time information
(x,y,z,t) or momentum and energy (or mass equivalently) information (px, py, pz, E) or
(px, py, pz,M). In this case, it is needed to describe momentum and energy, as the analysis
will be based on the principle that the square of the total four momentum of a particle
or a jet or a pair of jets is equal to the square of its invariant mass (P 2 = M2) and
thus for a TLorentzVector object that contains momentum and energy information, the
magnitude of that object has the meaning of invariant mass. The TLorentzVector class
already offers the class functions M() and M2() to calculate the magnitude and squared
magnitude of a given four-vector.

The values of the components of a TLorentzVector object can be expressed in other
coordinate systems, such as the detector-specific coordinate system used in ATLAS, so
that the 4-vector can be expressed in terms of transverse momentum, azimuthial an-
gle, pseudorapidity (which is another formulation of the polar angle) and jet mass/energy
(pT , η, φ,m). The TLorentzVector class provides for that purpose a SetPtEtaPhiM(pT , η, φ,m)
function to set those coordinates and the magnitude of this 4-vector corresponds again to
the invariant mass. This is the function that will be used in this invariant mass calcula-
tion, as the data that are available for the jets studied is provided in those detector-specific
coordinates.

The TSelector class is a ROOT class specialized in the analysis of event and event-
like data. A number of class member functions are derived and implemented from the
TSelector class with some specific analysis algorithms, which are called by ROOT se-
quentially when the analysis is running, processing the wanted data. An analysis of a
TTree can especially benefit from the use of a TSelector. ROOT already provides the
TTree: MakeSelector function to generate a skeleton class from a given TTree or a
specific branch of this tree. In this analysis this is exactly what is done:

void massiridium0()
{//creating a selector to calculate dijet mass for Job 0 processed on Iridium

TFile *giridium0 =
TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py
_0_800000000.root");
TTree *Riridium0 = nullptr;
giridium0->GetObject("CollectionTree",Riridium0);
Riridium0->MakeSelector("MySelectorIridium0","AntiKt4TruthJetsAux.");

}

Executing a script containing the above code block (provided as a whole for another
comparison in Appendix A.3.2) creates two files : A class header MySelectorIridium0.h
and the class body code MySelectorIridium0.C. The header file includes a TTreeReader
object definition to parse through the events one by one and a number of TTreeReaderArray
objects, which are data accessors that can iterate through collections and are each assigned
one of the leafs in the branch used to generate the selector class, containing the wanted in-
formation. It also includes a number of constructors and destructors and various function
definitions. The body of the class includes upon generation the definitions of 5 member
functions whose functionality is well described in the generated file itself. It is briefly
mentioned here that the major ones are the Begin() function that is called once when
the selector starts to run, the Process() function that iterates over all events and includes
the body of the work that needs to be done and the Terminate() function that is called
once after Process() has iterated over all available events.
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The basic idea for the calculation that is needed is to iterate over every event, store
the 4 wanted coordinates (pT , η, φ,m) in a 4-vector (where every coordinate will be the
sum of the corresponding quantities for the leading and the sub-leading jet) and then
calculate the magnitude of this 4-vector (corresponding to the invariant dijet mass for
this event) before filling them in in a histogram. For the current analysis those files are
enriched with some additional object definitions. In the header file the following items
are added:

Int_t fNumberOfEventsiridium0;
Int_t dijetmassiridium0;
TLorentzVector evntiridium0;

(the Iridium tag is added to specify the environment they are processed on - for the
same process on a different environment e.g. the Grid, the variables and functions are
tagged accordingly. Same with the 0 indicator that indicates which Job is processed - in
this case Job 0). The number of events will only be used for observation purposes during
the generation to ensure the process run smoothly through all the events. The rest of the
header file is left untouched apart from an initialization of the number of events variable
to zero.

In the body of the class, a TH1F class histogram invmassiridium0 is defined, before
the Begin() function, that will store the dijet invariant mass spectrum for Job 0 and then
in the Process() function body the following block of code is inserted:

fReaderiridium0.SetLocalEntry(entry);
++fNumberOfEventsiridium0;
if(AntiKt4TruthJetsAux_pt.GetSize())
{
if(AntiKt4TruthJetsAux_pt[0] != 0)
{

if(AntiKt4TruthJetsAux_pt[1] != 0)
{

evntiridium0.SetPtEtaPhiM(
AntiKt4TruthJetsAux_pt[0]+AntiKt4TruthJetsAux_pt[1],
AntiKt4TruthJetsAux_eta[0]+AntiKt4TruthJetsAux_eta[1],
AntiKt4TruthJetsAux_phi[0]+AntiKt4TruthJetsAux_phi[1],
AntiKt4TruthJetsAux_m[0]+AntiKt4TruthJetsAux_m[1]);
dijetmassiridium0 = evntiridium0.M();

invmassiridium0->Fill(dijetmassiridium0);
}

}
}
return kTRUE;

}

First, the TTreeReader gets the data from the entry number entry in the studied
tree. The Process() loops through all the tree entries. Then the number of entries
number is incremented by 1. Its final value when the loop is completed must be the total
number of events (for the jobs processed this is 10000). Then a number of conditions
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must be set because such is the nature of Monte Carlo samples that not every event
will include jets or it may include only one jet. So a three-step check condition is set
checking if there are jets at all (with the help of the GetSize() function - if it returns
zero there are no jets in the event and the if condition fails), if there is a leading jet and
then if there is a sub-leading jet (the first element registered as array element zero (e.g.
AntiKt4TruthJetsAux_pt[0]) in the relevant pT array always corresponds to the leading
jet while the second element registered as 1 in the same array corresponds to the sub-
leading jet - the two most energetic jets in the event). If all conditions are satisfied the
Lorentz vector’s coordinates are set to the sums of the corresponding quantities for the
leading and sub-leading jets in the event currently processed. The invariable dijet mass is
then calculated with the M() function and the value is stored in the dijetmassiridium0
variable which is then used to fill the histogram previously created. The code loops over
until all events in the tree have been processed.

Finally, in the Terminate() function, we ask for the total number of events to be
printed to confirm all the events have been processed and then the created histogram,
with the dijet invariant mass spectrum created, is drawn and saved in a .eps image
shown in Figure 4.4. In order to apply the selector to the chosen tree the selector is not
called directly but it has to be passed to the tree which then runs it as follows:

CollectionTree->Process("MySelectorIridium0.C");

A complete version of the TSelector class files code (again for a Grid-VM job comparison
done later but fully applicable to this process with a change to the input DAOD files and
the variable names) is provided in Appendix A.3.1.

The exact same process has to be repeated for Job 1 and the generated invariant dijet
mass distribution is shown in Figure 4.5.

Finally, a comparison script has to be generated that follows the structure of the file
shown in Appendix A.3.3. It’s structure is largely similar to that of the pT comparison
code, with the only difference being the processing of the selectors using the defined trees
that store the CollectionTree from the DAOD files, which generate the histograms that
are then saved in a newly created .root file. The newly created file is then opened in
the last step of the process, the contained histograms are divided and the previously
described error analysis, with some standard error propagation, is applied bin-by-bin.
The end result is the graph shown in Figure 4.6 which is saved as a .eps image and
showcases the bin-by-bin ratio of the dijet invariant mass spectra for the data included in
the DAOD files of Job 0 and Job 1. Indeed, it is again confirmed that these distributions
are not identical and thus they are derived from different generation seeds.

The code developed in this section both for pT comparison and mjj comparison proves
to be efficient and accurate and will be used for the cross platform reference sample
comparison it is needed for in Chapter 6.
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Figure 4.4: Invariant mjj distribution for Job
0.

0 100 200 300 400 500 600 700 800

3
10×

 [MeV]
jj

m

0

200

400

600

800

1000

e
n

tr
ie

s
N

mjj_iridium_job_1
invmassiridium1

Entries  9954

Mean   7.137e+04

Std Dev    5.709e+04

mjj_iridium_job_1

Figure 4.5: Invariant mjj distribution for Job
1.
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Figure 4.6: Comparison of the dijet mass mjj for the two jobs when processed on Iridium.
It shows that the statistical distribution is the same but the spectra compared were
generated using different seeds.

4.2.2 Grid samples

In order to be able to run jobs on the Grid, some method is needed to send the relevant
software and files, that include the data we want to run, over to the Grid. The main tool
used to submit jobs to the Grid is called PanDA. For the PanDA client to be enabled on a
machine, that machine must already have installed on it the ATLAS software environment.
The PanDA-client package includes a number of tools, such as pathena (to submit Athena
jobs), prun (to submit more general jobs), pbook (a bookkeeping tool for all PanDA
analysis jobs) and psequencer (used to implement an analysis chain). A monitoring site
for Grid jobs submitted through PanDA exists, called bigPanDA [51].

The tool used to download and list job outputs, part of the Grid, is called Rucio, an-
other tool provided by the ATLAS software package. It is a distributed data management
system that provides a convenient way to manage files on the Grid. The basic unit that
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it handles is called a DID (Data Identifier), which can be any storage format on the Grid,
like a file, a dataset that includes a number of files, or a container that includes a number
of datasets. Those DIDs are stored to certain Grid sites, but they are all registered in a
certain central location. The datasets are organized using a concept called scopes, which
are equivalent to the namespaces in C++, for example. Every user, that has a valid Grid
certificate and can generate a user proxy in order to setup the Rucio client in first place,
has their own scope. For example, to list all the DIDs a user has within their scope, they
have to use the command rucio list-dids "user.${USER}:*". This will list the DIDs
included in the scope of the user who setup Rucio. In this project all the output files
are stored in the author’s scope user.dsidirop and downloaded using Rucio for further
examining (rucio download "user.dsidirop:dataset/container/file name").

Before we proceed, the reasons that make it a necessity to have MC generation vali-
dated on the Grid should be explained. Three basic reasons motivate that choice:

1. As it must have been understood from the description of its structure in Chapter
3.3, ATLAS@Home must operate like a regular Grid site that sees jobs submitted
to it (it even uses the same job management system - PanDA), processed on a
remote processing unit and the result is then returned to the BOINC server. Thus, a
successful submission and generation on the Grid would function as a good indicator
of the success this process may have when done on the ATLAS@Home application
and server.

2. Additionally any problems that may occur either with the script submission and
processing or a server malfunction can be easier to debug on a normal Grid site,
which is much more easily monitored rather than ATLAS@Home.

3. Finally, such a submission, if successful, can be used for further result validation by
offering another source of reference samples, produced in a different way other than
on a local cluster - it offers more feedback with respect to the reproducibility of the
results in a reliable way.

The processing of the sample scripts through the Grid proved to be a much more
complicated matter than initially thought. The complications that arose were related to
the demand that both processes should occur in one submission/one task and, if possible,
without having to store the EVNT file, whose size, for the amount of events processed
in one job, was close to 500 MB, on the Grid storage or locally. These restrictions were
related to the way the submission of a similar job should function on ATLAS@Home. The
platform should accept a single defined task and the user should be able to choose this
task and download one work unit of it, that would have as final output just the DAOD file,
starting from the running of a PYTHIA generation, using the given Job Options, to the
DAOD generation, which is the wanted outcome for the researcher submitting the task.
Also, the production and storage of big EVNT files on their local units could discourage
volunteers from participating. The effort that is done aims to minimize the amount of
data the jobs on ATLAS@Home have to transfer for input and output. If both processes
can be done in a single job, it means that only the, much smaller, DAOD files need to be
transferred, avoiding the uploading of EVNT files as large as 500 MB per job.

Several attempts were made to solve this issue, with some of them failing to give a
proper generation of the needed output, and some others succeeding in producing the
wanted files but failing to comply to one or both the aforementioned conditions that
would make them suitable to run on the ATLAS@Home application. A brief description
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of 3 of them is provided, for some further insight, before the final solution that solved the
issue is presented.

4.2.2.1 "Piped" generation using the same pathena command

The first attempt was based on the basic idea of running multiple transformations in
a single pathena job submission. Pathena is a client-tool used to submit user-defined
Athena jobs to distributed analysis systems - as both the generation of the EVNT file and
the derivation of the DAOD are Athena jobs, the pathena tool is used. The generation
of the EVNT file is performed by running the PYTHIA generator, with that file then
directly "piped" as input to a transformation job to produce the wanted DAOD file. An
example of the coding behind such an attempt is shown fully in Appendix A.7. The
PanDA submission is as follows:

pathena --trf "Generate_tf.py --ecmEnergy=13000 --runNumber=304874
--firstEvent=0 --maxEvents=10000 --randomSeed=996496117
--jobConfig=MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py
--outputEVNTFile=event.root | grep cross-section | tee output.log;
Reco_tf.py --inputEVNTFile=event.root
--outputDAODFile=%OUT.output.root --reductionConf TRUTH3 --loglevel FATAL"
--outDS=user.dsidirop.Pythia8EvtGen.EVNTxAOD10.test.v10

This submission, no matter how is it formulated, leads to a failed task that does not
produce the wanted DAOD files in the output (where the output dataset name is clearly
defined - this is part of a PanDA submission setup). In order to understand why that
happened we had to look back to the job scripts previously processed on Iridium. It is no-
ticed that before the event generation and the reco (track reconstruction - transformation
to DAOD) processes are run, special projects of the Athena framework have to be setup.
Such projects cannot coexist in a shell. If one project is setup currently and we attempt
to setup a second one, it will override and overwrite the first. Also, different projects
use different releases of the Athena framework in order to be fully functional. In general,
while the Athena repository contains all the code that can be built in an ATLAS software
release, each such release consists only of a consistent subset of that code. Each such
code subset is what is called a project. When a specific Athena project is built, the build
result encodes the project name and, consequently and independent of release number,
the AtlasProduction and AtlasDerivation projects (which are Athena-based ATLAS
analysis-specific projects). These projects are setup through the job scripts previously
studied for event generation and DAOD derivation respectively and are each built from
different code. Given that before such a PanDA submission, as the one provided above,
only a single project can be defined, without the option to change it in the middle of the
submission, one of the processes cannot be performed because it will not have access to
the needed software tools. Unfortunately, this "piped" submission command is not yet
featured in any validated release of the ATLAS software - and PanDA specifically.

4.2.2.2 psequencer submission

The psequencer is a tool, part of the PanDA-client package. It is an advanced tool
that constructs a sequence of different tasks to be submitted. A sequence is composed of
multiple steps, with each step executing one or more commands. The sequence is written
in a plain .txt file consisting of a series of steps and then an execution sequence (that
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defines how steps are processed), where each step and the sequence are tagged with a
triple number sign # before their name. The steps can have any name (except Sequence,
which is reserved for sequences) but that is the name that must be used in the sequence
to access it and execute it. The sequence is coded in regular Python language syntax.
Its main function, which is to execute the steps, is done using the execute() function,
and the result is retrieved using the result() function at the end of the sequence. The
sequence file that was created for this occasion can be seen in Appendix A.6. The first step
sets up an Athena release with the AtlasProduction project build, and then executes the
event generation as previously seen in the job scripts used. Similarly, the second step sets
up another Athena release with the AtlasDerivation project build, and then executes
the DAOD derivation. The sequence executes Step 1, retrieves the result and then checks
its status. If it succeeds, it should proceed to print a confirmation message of successful
generation and then set a variable to which the output EVNT file of Step 1 is used as
input to the execution of Step 2.

Certain variables accessed in the sequence section (result.Failed, result.Out for
example) are special attributes that should be available to a step that runs a pathena
job, as both steps in this process are running such jobs.

The sequence is executed using the command psequencer sequencesubmission.txt.
Unfortunately, the execution of the sequencer failed to generate the wanted output, leading
to an error saying it does not recognize the special pathena attributes mentioned above
that the psequencer documentation clearly states are available directly for steps with
pathena tasks. An inquiry with the Distributed Analysis Software Team at ATLAS
resulted in acknowledging that psequencer is an obsolete feature of PanDA and certain
features of it (such as the pathena special attributes) are not compatible with later Athena
releases used for the analysis here. Thus a very promising effort had to be dropped and
move on.

4.2.2.3 2-task submission

The third effort was based on the idea of creating a single script that would first submit
an event generation PanDA task, then introduce a buffer with a loop that checks if the
EVNT file has been created on Grid and, when it is finally generated, use it as input to
submit the DAOD derivation Grid task. It was thought that such a coding scheme could
overcome the issue of a needed single submission for ATLAS@Home. In order to achieve
that the initial master Python script, that was described in Section 4.1, is modified to add
a section that creates a bash script that translates into code this process. This modified
script is provided as a whole in Appendix A.5. A brief explanation of the modifications
made will follow.

First of all, a new submission file pandafile=open(’submitAllSubmissions_panda.sh’)
is created and it’s turned into a bash executable (pandafile.write("#!/bin/bash\n")).
A for loop, similar to the one used for the creation of the job scripts in the initial Python
script, is initiated that generates the number of job scripts the user has asked for when
executing the script, and names them using a format similar to the one the initial Python
script used as well. It then opens the file to write in:

for jobNumber in xrange(0, numberOfJobs) :
pandascriptName =

"MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+
name+"_"+str(jobNumber)+"_"+str(offset)+"_gridsubmission.sh"
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pandascript = open(pandascriptName,"w")

The PanDA submission script is made bash executable and then two strings are defined
that ensure the generation of a different name for the output datasets for the event
generation and the DAOD derivation (identical output dataset names "confuse" PanDA
and can lead to failed or overwritten tasks and outputs on the Grid) - a random number
generated every time the bash script is executed, attached to a predefined string, ensures
this difference in output dataset names:

pandascript.write("""#!/bin/bash

str1="user.dsidirop.Pythia8EvtGen.EVNT.v"
str2="user.dsidirop.Pythia8EvtGen.xAOD.v"
SubNum=$RANDOM
outDSEVNT=$str1$SubNum
outDSxAOD=$str2$SubNum

After the Job Options are copied in the current directory, where the scripts are created,
the ATLAS software is setup, followed by the setup of the appropriate Athena release to
run the AtlasProduction project. This is followed by a pathena submission of the event
generation job.

After the submission is done a while loop is introduced. First, the Rucio tool is setup
to be able to use its file listing features. Two empty string objects are defined that will
be used to store the names of possibly generated files in the dataset of the previously
generated submission, and then the following while loop is introduced:

while [ -z "$EVNTfile" -a $SECONDS -le 7200 ];
do
rucio list-files "user.dsidirop:"$outDSEVNT"_EXT0/" >> tempFile$SubNum.txt
RUCIOline="$(grep .root tempFile$SubNum.txt)"
EVNTfile="$(echo $RUCIOline| cut -d’|’ -f 2)"
echo "Stil in the loop"
sleep 5m

rm tempFile$SubNum.txt
done

This bash-coded loop checks with Rucio if the EVNT file has been generated on the
Grid and uses the EVNTfile variable to store the name of that file. If the EVNTfile
variable is not empty and thus contains a string, which means that an EVNT file has
been generated, the loop breaks and the script moves on to use this EVNT file for the
DAOD derivation task. If Rucio did not list an EVNT file, because it has not been
generated yet, the string is empty and the loop continues until the file is generated. A
5 minute sleep interval is introduced between iterations so that there doesn’t have to be
a constant check as it is a processing power-consuming and memory-consuming process.
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An additional condition of exiting the loop after 2 hours have passed is introduced, so
that, in case the EVNT generation task does not proceed smoothly and fails, the while
loop will not be endless. A 2 hour period was considered a rational time interval, given
previous experience with event generation tasks on the Grid and how much processing
time they usually need. After a successful break from the loop and the creation of the
DAOD file, the job script is made executable and a running command is added to the
previously generated submission file:

#making it executable
commands.getoutput("chmod 755 "+pandascriptName)

#running it
pandafile.write("bash " + pandascriptName + "\n")

Running this script indeed generates a successful result. It has the disadvantage of
binding a shell that has to run the while loop until the EVNT file is generated and
then submit the DAOD derivation job, but, in the end, on the Grid, there are indeed
two successful tasks, one that generated the EVNT file and the other that generated the
wanted DAOD that can be now downloaded. Unfortunately, this solution of a single script
submission was not satisfactory. The dissatisfaction had to do with the fact that a major
condition, the need to not store the quite heavy EVNT file, was not essentially fulfilled. If
the same job was submitted to the ATLAS@Home BOINC server that distributes the jobs
to the volunteers’ personal computers, at the end of the job the outputs of both tasks,
event generation and DAOD derivation, would still have to be uploaded to the Grid, and
having to move multiple 500 MB EVNT files around (depending on the number of jobs
submitted) would not be acceptable to most volunteers. Thus this effort was also dropped.

4.2.2.4 prun job script submission

The final (and successful) effort was based on the use of another tool available from the
PanDA client, prun. The prun tool is used to submit more general jobs to PanDA, jobs
that can run ROOT scripts, including C++-based ROOT scripts, Python scripts and
bash executables. It is meant to support non-Athena types of analysis (for example,
ROOT-based analysis, where Athena runtime is not always available), although it can
work on both Athena and non-Athena runtime environments. A prun submitted job can
include multiple sub-jobs that run in parallel on different work units, a feature we will
take advantage of in this project. In this project, its use is based on the idea that the bash
executable job scripts the initial python script generates, seem to satisfy the necessary
conditions, and so all that needs to be done is to execute those bash executable scripts
on the Grid. The master Python script used to generate the bash executables, that will
then be submitted with prun to the Grid, is given in Appendix A.4 in full. The first
difference that can be seen is a change in the base directory baseDir and the output
directory outputDir:

baseDir = "./MCProduction"
outputDir = "./MCProduction/results"

That is because prun can "see" and gather only files within the working directory
(workDir), which, by default, for scripts submitted to the Grid through prun is noted
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with ./, before sending them to worker nodes. Apart from the numberofJobs variable,
a second variable is setup, so its value can be set by the user upon execution, called
numberofsubJobs. This variable will be used to set the total number of sub-jobs (and
thus the total number of events) of the script the user wants. The Job Options generation
is left unaltered. An execution file that will store the prun submission command is created:

execFile = open(’submitAllSubmissionsprun.sh’,’w’)

It is then turned into a bash executable:

execFile.write("#!/bin/bash\n")

and sets up the ATLAS environment by defining the appropriate variables in order to
install the PanDA client:

execFile.write("export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/
ATLASLocalRootBase\n")
execFile.write("source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh\n")
execFile.write("lsetup panda\n")

Then the job scripts are generated through the same for loop used in the initial master
script, with the total number of generated scripts being equal to the number of jobs the
user defines. In the script, the creation of the temporary library is removed and the Job
Options are transferred to the working directory in order for prun to gather them.

The ATLAS software environment is then setup, before the appropriate release to
run the AtlasProduction project is also setup, followed by the event generation com-
mand, with one difference: The random seed is no longer generated by the Python
script that generates the bash executable job script like before, where it was defined
as --randomSeed=str(offset+jobNumber) but the random number generation is trans-
ferred to the bash executable script using the shuf function of bash as follows:

--randomSeed="$(shuf -i 100000000-999999999 -n 1)"

This is done because, if the previous configuration was kept, all sub-jobs generated with
prun would have the exact same seed and would generate the exact same events in repeat,
something very counterproductive for the purposes the simulations are needed. The sub-
jobs need to generate events based on a different seed per sub-job and thus the random
number generation needs to be transferred to the bash executable itself, which is the
file the prun tool executes. The random seed could also be generated from the prun
submission command, as it provides such a feature, but this option is not pursued here,
since a working solution was found in the script itself. After the event generation is
complete, the appropriate Athena release for AtlasDerivation to be setup is installed
and the DAOD derivation task is executed, with a command identical to that of the initial
script. The execution file is then updated to include the prun command that needs to be
run:

execFile.write("prun --outDS user.dsidirop.evgen.testv"+str(version)+"
--noBuild
--nJobs="+str(numberofsubJobs)+"
--outputs DAOD_TRUTH3."+outputJOFileName+"_"+str(jobNumber)+"_"
+str(offset)+".root
--exec \"bash "+jobscriptName+"\" \n" )
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An executable example of the above format in a produced script would be like this:

prun --outDS user.dsidirop.evgen.testv68464 --noBuild --nJobs=2
--outputs DAOD_TRUTH3.MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_
Powerlaw.py_0_342162485.root
--exec "bash MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw_
0_342162485.sh"

This command defines the name of the output dataset, in which the output files, whose
name is defined in --outputs, are stored upon generation. We opt to skip the buildGen
phase, through the --noBuild command, as the submitted task executes a script consist-
ing mostly of standard Athena processes (the event generation and the DAOD derivation)
so nothing really has to be compiled through a build step - the build step is required when
more general, personal coding schemes have to be submitted with prun. By omitting the
building step, the process is accelerated as well, as the building step has to be processed
as a different task than the actual running job. 2 sub-jobs are defined, which means that
when the bash executable is executed with the --exec "bash filename" command, it
will essentially be executed 2 times and, given the coding we opted for to decide the seed
of the event generation, every time the bash executable script is executed, a different
random seed will be generated for each job.

A prun command such as the above was executed, and the Grid submission initiated
from it proved successful, solving all the present problems as the whole process ran inside
a single job, with no need to store the EVNT files on the Grid. The first part of the job
created the EVNT file, then, when that was generated, the second part simply read it
from the same directory. That way, only the final output (12 MB DAOD) needs to be
uploaded to the Grid, as it was specified in the --output option. This is ideal for an
ATLAS@Home task submission.

Using the 2 DAOD files generated from this successful submission, a comparison of the
unweighted jet pT and the invariant mjj was done (using the coding scheme explained in
Section 4.2.1), to ensure that indeed the 2 sub-jobs generated DAOD files using different
random seeds. The comparison graphs for unweighted transverse momentum and dijet
mass spectra are shown in Figures 4.7 and 4.8. It can be seen that, while there is some
early convergence in the pT comparison and some convergence at higher values for the
mjj comparison, in general the distributions are different. If the seed was the same, there
should be absolute agreement, as it will be seen in the next chapter’s analysis.
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Figure 4.7: Comparison of the unweighted transverse momentum spectra from DAOD
files generated from sub-jobs created on the Grid with a prun command submission. It
confirms that the statistical distribution is the same but the spectra were generated using
different seeds.
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Figure 4.8: Comparison of the invariant dijet mass spectra from DAOD files generated
from sub-jobs created on the Grid with a prun command submission. It confirms that the
statistical distribution is the same but the spectra were generated using different seeds.
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Chapter 5

ATLAS@Home virtual machine setup

In this chapter, the specifics of the virtual machine environment created on the user’s
machine, when a project on BOINC is chosen, will be explained in more detail. After
that, a reference sample comparison is made and a task submission to an ATLAS@Home
test server and application is attempted in Chapter 6.

The virtual machine environment has been produced using Oracle VirtualBox for
the purposes of this project, in order to attempt to run the test scripts on it. Should
the generation occur successfully, and produce the wanted DAOD files, then we have
acquired a strong indication that similar processes should be able to run successfully on
a volunteer’s machine that picks a work unit through BOINC, since the VM environment
BOINC sets up in the background will be the same.

It must be made clear that to achieve this goal the virtual machine environment has
been accessed directly, not through the application but by downloading the relevant virtual
machine image - a CernVM [52] release - and set it up in the same way it is setup for
ATLAS@Home, taking advantage of a process called contextualization, with the scripts
transferred to that specially setup VM environment from the Iridium cluster.

But what is a CernVM ? It is nothing more that a virtual machine, intended on
running on any hardware and host operating system (Linux, Windows etc), in order to
provide a consistent and effortless installation of the needed experimental software. The
currently used version, CernVM 3.6, contains a Scientific Linux 6 operating system, and
consists of an image of approximately 20 MB, that contains the bare essentials: the Linux
kernel and a CVMFS client, which downloads and caches on demand the rest of the
operating system and any needed software for a particular analysis. Such an approach
creates a highly configurable virtual software appliance, to be used in common by all major
LHC experiments, allowing the customization of this virtual environment with the wanted
software releases in an efficient way.

5.1 Contextualization

According to the official CernVM page [53] a context is "a small (up to 16kB), usually
human-readable snippet that is used to apply a role to a virtual machine." It is what allows
a single virtual machine image to be highly versatile, by allowing it to back a variety of
virtual machine instances, as long as those instances can adapt to the various infrastruc-
tures and use cases that depend on the context. Through the contextualization process,
instance-specific settings, in the form of a context made available from an infrastructure,
can be injected and applied dynamically into the virtual machine during the deployment
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Figure 5.1: A screenshot of the CernVM environment used, paired with the ATLAS@Home
context (the VM IP address has been partially erased as a precaution).

phase (the boot process of the VM) and the virtual machine interprets that context. Such
settings included in a context may correspond to certain services, user creation, network
configurations (to make sure each created instance is assigned a unique-IP address) or
parameter configuration.

During the contextualization process, the data needs to be separated into meta-data,
which is available through the infrastructure that provides the VM instance and are non-
modifiable by the user (e.g. instance IP issued by cloud infrastructure and the VM’s
assigned network parameters), and user-data, which is provided by the user of the virtual
machine upon the creation of that machine. Both types of data can be accessed through
an HTTP server using a private, unique IP address.

This contextualization mechanism is what is used in the case of CernVM images as
a method to decrease the size of those distributed images. It applies the settings of
the chosen context on a generic CernVM image on first boot. The site that provides
all the relevant CernVM resources also provides an easy way for the users to actually
create the context they want to apply to their virtual machine image themselves [54].
The user can specify the various customization options like the name of the context,who
it will be visible to, add users to the created system, set up services that will load on
boot, add environmental variables and other CernVM specific configuration options. More
importantly, they can configure the CVMFS, the tool that delivers the software needed,
to specify the software groups whose software the user wants to use in this VM instance
(e.g. atlas, grid, cms etc).

Apart from creating their own context, users can choose from a collection of pre-
made contexts, usually from research groups using CernVM environments, through a
marketplace [55]. One of them is the ATLAS@Home project that offers a public context
in the marketplace, ready to use for ATLAS@Home virtual machine images. This is the
context that will be used in this project as well.

First of all, the latest versions of the VirtualBox virtualization software is downloaded
(at the time of the download that would be version 5.1.22) and then the CernVM ISO
image file (version 3.6.5 at the time it was downloaded) for VirtualBox is downloaded from
the CernVM on line web page and manually imported into VirtualBox. During the process
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of configuration of the ISO image file in VirtualBox, a virtual machine template, to which
the image will be attached, must be created using the relevant tools the virtualization
software provides. By opting to create a new virtual machine in VirtualBox, various
configuration options for this machine can be decided, such as the RAMmemory allocation
for the VM, along with the hard drive partition and the amount of actual hard drive
space that will be dedicated to the CernVM image. In this particular instance, 2048 MB
of memory are allocated to the virtual machine, while a VDI (VirtualDisk Image) virtual
hard drive is created with a size of 20 GB that will be dynamically allocated (meaning
that the virtual hard drive file will grow as it is used and filled up, and will not be created
on a fixed size equal to the 20 GB chosen). The created virtual machine will appear in the
VirtualBox interface. Finally, the ISO image file should be stored in the newly created
virtual machine through the relevant "Storage" tab at the virtual machine’s settings.

The basic CernVM template is now theoretically ready to be launched, but, as it was
mentioned before, this image file contains the bare essentials of an operating system -
it needs to be paired to a context, the ATLAS@Home public context available at the
marketplace. Pairing a context to a CernVM requires minimal effort as the process has
been simplified to the point where the introduction of a simple PIN code is enough to
contextualize a CernVM. When the wanted ATLAS@Home context is chosen from the
marketplace, a pair option appears. If chosen, it prompts the generation of a pin code
that the user is prompted to enter to the virtual machine - the log-in screen of the virtual
machine gives the relevant instructions that can be seen at Figure 5.1, which provides the
log-in environment of the CernVM used in this project: "In order to apply cernvm-online
context, user #<PIN> as username". All the user has to do is type the pin code they
were given on the Cern VM online webpage and the ATLAS@Home context is paired to
the CernVM image they have setup. What we were able to achieve is to create a virtual
machine environment identical to the one a BOINC user downloads to their computer
once they choose to process an ATLAS@Home simulation. The main difference is we
have full control over this environment. Scripts can be loaded in this environment and
processed. If they are processed successfully and produce DAOD files that are identical to
those produced on other environments (analyzed in Chapter 4), we have a good indication
that such Monte Carlo scripts, generating large numbers of events, can be processed on
ATLAS@Home. This is the next step that will be taken in the following chapter.
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Chapter 6

Results

6.1 Comparison with Reference Samples

In Chapter 4.2.2, one of the two basic conditions, in order to have a successful generation
of large Monte Carlo samples on ATLAS@Home, was met - the ability to perform the
generation on the Grid in a singular task, without storing the heavy EVNT files. Now
the second condition will be tested (using the coding scheme developed and explained in
Chapter 4.2.1) and that is the reproducibility of results on the ATLAS@Home properly
contextualized virtual machine. That will be tested through the comparison of character-
istic quantities and their distributions in DAOD files produced on the virtual machine,
through the execution of the scripts analyzed in Chapter 4, to the same quantities and
for the same generation seeds from DAOD files generated on the Iridium cluster and the
Grid with the methods thoroughly explained in Sections 4.2.1 and 4.2.2.

First, we transfer the master Python script, described in Section 4.1, on the virtual
machine environment from Iridium. The only change that will be made concerns the
method of submission for the bash executables. This virtual machine lacks the features
Iridium had that allowed the parallel submission of multiple tasks on different nodes
of a cluster through the batch interface, using the sbatch command. Thus any sbatch
command is substituted by a simple bash execution command. This is featured already in
the master Python script in Appendix A.1, in the section where the execution commands
are written in the submitAllSubmissions_8.sh file:

submissionfile.write("sbatch "+jobscriptName+" \n") #Iridium
#submissionfile.write("bash "+jobscriptName+" \n") #generic

The only other thing that must be taken care of is to ensure that the same generation
seeds, as those used for the 2 reference samples in the Iridium analysis section, are used
here, so the offset value has to be set to the value used in Section 4.2.1. Every other
aspect of the script is left unchanged in order to ensure ideal reproducibility. Then the
ATLAS software environment has to be setup through the set of variable defining and
source commands:

export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh

The setup is successful. The Python script is run through a generic python file.py
submission and 2 job scripts are produced with the same event generation seeds as the
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samples on Iridium. The bash executables are executed as previously described and, after
a period of time (longer than the one that had to pass on Iridium as the scripts could not
be processed in parallel), the DAOD files are generated. Since Iridium offers a graphic
interface, that this virtual machine does not have, it is easier to transfer those DAOD
files and write the code needed to perform the needed comparisons on the Iridium cluster,
both for the Iridium-VM and the Grid-VM comparisons.

6.1.1 Iridium - Virtual Machine comparison

The DAOD files for Job 0 and Job 1 from Iridium and the VM are brought in a common
directory. Using the appropriate versions of the scripts in A.2 and A.3, with the appropri-
ate DAOD files as input, the comparison of unweighted jet transverse momentum spectra
and invariant dijet mass spectra between the DAOD files produced from Job 0 on Iridium
and the ATLAS@Home virtual machine (and then between those for Job 1 as well) is per-
formed. The results of comparisons of the distributions of those characteristic quantities
for the DAOD files produced from Job 0 can be seen in Figures 6.1 and 6.2 (the actual
spectra for both Jobs generated on both environments are provided in appendices C.1 and
C.2). Overall an ideal reproducibility is observed. Apart from some minor divergences
in both spectra, due to standard bin migration occurrences that are statistically insignif-
icant, the rations are largely equal to unity. This means the distributions are identical as
expected. For completion, the set of Iridium-VM comparison graphs for Job 1 is provided
in Figures 6.5 and 6.6, while the weighted jet pT comparison is provided in appendix B.2.
In order to further ensure the reproducibility, a comparison between the VM results and
those produced on the Grid is also made in the next section.

6.1.2 Grid - Virtual Machine Comparison

First there is a need to generate DAOD files on the Grid with the same generation seed
as those produced on the VM and Iridium. The prun submission method will be used as
this was the successful one that satisfied all needed Grid generation criteria analyzed in
Chapter 4.2.2. Thus the script provided in Appendix A.4 must be run but this time we
have to take a step back and remove the random seed generation from the bash script
- it will be replaced in each case by the standard values used to process the reference
samples in the other platforms (in this case these numbers are 800000000 and 800000001).
Performing two prun submissions of two bash executables with the above generation seeds
leads to two successful Grid tasks that produce the wanted DAOD files. The files are
downloaded using Rucio and, following the same comparison process as with the Iridium-
VM comparisons, the comparison graphs for unweighted jet pT spectra and invariant mjj

spectra are produced and shown in Figures 6.3 and 6.4 for Job 0 (the actual spectra
for both Jobs generated on both environments are provided in appendices C.2 and C.3).
Those comparison graphs do not even suffer from the minor bin migration issues that
were observed in the Iridium-VM comparisons of the previous section. An assumption
that can be made to explain this difference is that this occurs due to the fact that Iridium
has AMD processors while the Grid and the PC simulation (VM) both use Intel processors.
The reproducibility of results is ideal for both compared quantities. For completion, the
set of Grid-VM comparison graphs for Job 1 is provided in Figures 6.7 and 6.8, while a
comparison of the weighted pT spectra is provided in appendix B.3.
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Figure 6.1: Comparison of the jet transverse momentum pT distribution for the same
Job 0 (same seed) when processed on Iridium and the VM environment for unweighted
data. The comparison shows that the generation is independent of the environment in
which it was developed, being identical for the same seed, with the exception of minor
bin migration occurrences.
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Figure 6.2: Comparison of the invariant dijet mass mjj for the same Job 0 (same seed)
when processed on Iridium and the VM environment. The comparison shows that the
generation is independent of the environment in which it was developed, being identical
for the same seed, with the exception of minor bin migration occurrences.
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Figure 6.3: Comparison of the jet transverse momentum pT distribution for the same Job
0 (same seed) when processed on the Grid and the VM environment for unweighted data.
The comparison shows that the generation is independent of the environment in which it
was developed, being identical for the same seed.
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Figure 6.4: Comparison of the dijet mass mjj for the same Job 0 (same seed) when pro-
cessed on the Grid and the VM environment. The comparison shows that the generation
is independent of the environment in which it was developed, being identical for the same
seed.
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Figure 6.5: Comparison of the jet transverse
momentum pT distribution for the same Job
1 (same seed) when processed on Iridium and
the VM environment for unweighted data.
The comparison shows that the generation
is independent of the environment in which
it was developed, being identical for the same
seed, with the exception of minor bin migra-
tion occurrences.
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Figure 6.6: Comparison of the dijet massmjj

for the same Job 1 (same seed) when pro-
cessed on Iridium and the VM environment.
The comparison shows that the generation is
independent of the environment in which it
was developed, being identical for the same
seed, with the exception of minor bin migra-
tion occurrences.
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Figure 6.7: Comparison of the jet transverse
momentum pT distribution for the same Job
1 (same seed) when processed on the Grid
and the VM environment for unweighted
data. The comparison shows that the gen-
eration is independent of the environment in
which it was developed, being identical for
the same seed.
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Figure 6.8: Comparison of the invariant di-
jet mass mjj for the same Job 1 (same seed)
when processed on the Grid and the VM en-
vironment. The comparison shows that the
generation is independent of the environment
in which it was developed, being identical for
the same seed.
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6.2 Submission to the ATLAS@Home server

Both conditions that needed to be fulfilled to have a task run successfully on ATLAS@Home
(at least on a theoretical level) have been fulfilled. A singular Grid submission with no
EVNT file generation has been made and results have shown they can be reliably repro-
duced on the virtual machine the users’ personal computers will be downloading when
they click on a task in the BOINC manager, as the comparison with samples produced on
reliable sites (a local cluster and the Grid) has shown. At this point it must be reminded
that ATLAS@Home is just another Grid site, as seen by PanDA, and thus a submission
will be done using PanDA to send the tasks to a specific "site" (ANALY_BOINC), connected
to a test BOINC server. This server has the jobs submitted to it directed to an application
(ATLAS Event Generation v0.01 (vbox64)) especially setup to test those Monte Carlo
generation tasks. This application is part of a test project [56] that is separate from the
"real" ATLAS@Home project where new kinds of tasks and submissions are tested [57].
The test BOINC server has been connected to a number of desktop PC units where the
task are processed through the ATLAS Event Generation application. The prun tool pro-
vides the ability to choose a specific site for submission, as well as the memory allocation,
and so the prun submission command, in the prun Python master script A.4, is modified
as follows in order to submit to this test server:

execFile.write("prun --outDS user.dsidirop.evgen.testv"+str(version)+"
--noBuild --nJobs="+str(numberofsubJobs)+"
--outputs DAOD_TRUTH3."+outputJOFileName+"_"+str(jobNumber)+"_"
+str(offset)+".root
--exec \"bash "+jobscriptName+"\" --site ANALY_BOINC --memory 1024 \n" )

The maximum memory size a job can use on the Grid - and in this case in the virtual
machine it will be distributed to through the Grid, is set through the --memory option.
The value is set empirically - a task of the kind we want to submit requires about 450 MB
of memory (a quantity that can be checked on the task page on the bigPanDA monitoring
website) and, in order to leave some extra memory space for the operating system it
operates, the memory of the VM is set to 1 GB (counted in MB so 1024 MB = 1 GB).

We begin with the submission of one sub-job and it processes successfully on the desk-
top unit connected to the test BOINC server. Then the number of sub-jobs is increased to
5 and eventually to 100, generating in total 1 million simulated events (link for the 100 job
task on PanDA : https://bigpanda.cern.ch/task/12698576/ [cited 20171203]). All of
them process successfully and generate the wanted number of DAOD files with an average
size of about 13 MB each, which is acceptable for volunteer personal computing units that
may want to download and process such tasks even with a larger number of subtasks. In
the near future a description of the task will be provided, so that it can be brought to the
main ATLAS@Home project, past the test phase, where the description will be displayed,
and volunteers from around the world can choose to process large Monte Carlo generation
tasks by running this application.
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Chapter 7

Summary, conclusions and outlook

During this project the possibility of taking advantage of the volunteer computing con-
cept in order to make up for the computational power deficiencies the CERN Grid starts
to show, to process large Monte Carlo samples generations, has been investigated. In
particular, the project was focused on helping members of the ATLAS collaboration who
perform beyond the Standard Model research, specifically looking for Dark Matter candi-
date particles such as WIMPs, to acquire large amounts of Monte Carlo simulated events
that will provide the necessary robust background on which data can be fitted, in order to
look for evidence of the existence of such hypothesized particles that interact only through
the weak force with luminous, normal matter. The ATLAS@Home platform was consid-
ered an ideal candidate to provide the needed computational power to deliver the large
amounts of Monte Carlo simulated events needed in the search for exotic particles, with its
considerable computational power coming from personal computers that volunteers from
around the globe have contributed. Some reference scripts, that generate Monte Carlo
simulations, have been provided to test the possibility of launching such generations on
ATLAS@Home. The viability of such a task was tested on the basis of two conditions:

1. Reproducibility of the results of Monte Carlo generation across a number of envi-
ronments, like the Grid and a local cluster used for such task processing, but most
importantly on the virtual machine environment utilized by ATLAS@Home. In such
a VM environment, each task is processed when the user chooses to process it on
their personal computer through the BOINC software.

2. Creation of a singular Grid submission that performs both the event genera-
tion job and the derivation of the file format currently used for data analysis, that
includes only physics objects, the DAOD. At the same time it must be ensured that
the memory consuming EVNT files produced by the generation job do not need to
be transferred back to the application server.

Through trial and error, especially for the singular submission creation demand, both
these conditions were met, which led to the successful submission of Monte Carlo genera-
tion tasks to a test project, running parallel to ATLAS@Home that is used to probe into
the viability of such new kinds of tasks for the main platform. This is the first time
ever that MC generation has been performed at ATLAS@Home.

Since the submitted jobs succeeded in the test stage, the future is promising. Large,
demanding Monte Carlo generation tasks will soon be processed on ATLAS@Home. The
next steps in this process include the assignment of a description to these tasks that pro-
vides basic information on what they actually do, so volunteers can inform themselves and
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decide if they want to contribute to such tasks. Promoting the platform as a valid alter-
native for large Monte Carlo simulation production to more ATLAS affiliated researchers,
who may have difficulties ensuring sufficient Grid space to process their tasks, is the next
goal, once such applications are already up and running on the platform. This signifi-
cant increase in computing resources will hopefully entice growing parts of the ATLAS
community to participate. More Monte Carlo simulations will lead to a higher accuracy
of the ATLAS results and that has the possibility to expand our knowledge of physics
possibly beyond the Standard Model as it stands today and lead to possible discoveries
of new phenomena.

With such an innovative project, open to computing power contributions from everyone
around the globe, the possibilities seem endless.
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Appendix A

Code Appendix

A.1 Master Python Script
#!/bin/python
import commands
import random
import os
import sys

cwd = os.getcwd()
baseDir = cwd+"/MCProduction"
outputDir = cwd+"/MCProduction/results"
random.seed(None)
centerOfMass = "13000"
channelNumber = "304874"
#offset = 800000000
offset = random.randint(100000000,999999999)

#numberOfJobs =2
numberOfJobs = int(sys.argv[1])
numberOfEvents = "10000"

Names = [

"Powerlaw",

]

TunesImport = [

"Pythia8_A14_NNPDF23LO_EvtGen_Common.py",

]

ExtraLines = [

""" """,
]

if not os.path.exists(baseDir+"/jobOpt"):
os.makedirs(baseDir+"/jobOpt")

#print zip(VectorOf_M_ExQ, ChannelNumbers)

submissionfile = open(’submitAllSubmissions_8.sh’,’w’)
submissionfile.write("#!/bin/bash\n")
submissionfile.write("#SBATCH --job-name=’MCProdCaterina8’\n")

for name, (tuneImport, extraLines) in zip(Names, zip(TunesImport, ExtraLines)) :
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#let’s write the JO
outputJOFileName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"
+name+".py"
#outputJOFile = open("jobOpt/"+outputJOFileName,"w")
outputJOFile = open(baseDir+"/jobOpt/"+outputJOFileName,"w")

#Mass Scale parameter (Lambda, in GeV)

outputJOFile.write("""

# author: Caterina Doglioni

evgenConfig.description= "Dijet truth jets, with power law"
evgenConfig.keywords= ["QCD", "jets", "SM"]
evgenConfig.generators += ["Pythia8"]
evgenConfig.contact = ["Harinder Singh Bawa <bawa@cern.ch>"]

include("MC15JobOptions/"""+tuneImport+"""")

""")

outputJOFile.write("""

genSeq.Pythia8.Commands += ["HardQCD:all = on",
"PhaseSpace:pTHatMin = 20.0",
"PhaseSpace:bias2Selection = on",
"PhaseSpace:bias2SelectionPow = 5.0"

# """+extraLines+"""
]

evgenConfig.minevents = 1000
""")

#parallelisation starts now!

for jobNumber in xrange(0, numberOfJobs) :
#now that we have the JO, let’s write a script to run it
jobscriptName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+"_"+str(jobNumber)+
"_"+str(offset)+".sh"
jobscript = open(jobscriptName,"w")

jobscript.write("""#!/bin/bash
# Simple submission script for MC15 validation

# for tracking when and where you run
hostname
date

#to avoid NFS problems
#sleep $(perl -e ’$ran=int(rand(120)); print STDOUT "$ran\\n";’)

# to make and use a temporary directory
tmpDir=‘mktemp -d‘
cd ${tmpDir}
echo ’we are in ’${PWD}

# Setup ROOT and various libraries
#cp /atlas/users/doglioni/authentication.xml .
#export CORAL_AUTH_PATH=.:${CORAL_AUTH_PATH}
#export PYTHON_EGG_CACHE=/atlas/users/doglioni/.python-eggs

#copy everything we need into this temp directory
if [ ! -d """+baseDir+"""/jobOpt ]; then
mkdir -p """+baseDir+"""/jobOpt
fi

cp """+baseDir+"""/jobOpt/"""+outputJOFileName+""" .

#module load enableATLAS
#setupATLAS
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#asetup 19.2.4.16,AtlasProduction
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
source $AtlasSetup/scripts/asetup.sh 19.2.4.16,AtlasProduction
cd ${tmpDir}

#run the job transform
Generate_tf.py --ecmEnergy="""+centerOfMass+""" --runNumber="""+str(channelNumber)+""" --firstEvent=0
--maxEvents="""+numberOfEvents+"""--randomSeed="""+str(jobNumber+offset)+""" --jobConfig="""+outputJOFileName+"""
--outputEVNTFile=event.root | grep cross-section | tee output.log
#evgenJobOpts=MC15JobOpts-00-09-16_v1.tar.gz

#copy the output
#if [ ! -d """+baseDir+"""/OutputNtuples/SplitQCD_EVNT ]; then
#mkdir -p """+baseDir+"""/OutputNtuples/SplitQCD_EVNT
#fi

#cp event.root """+baseDir+"""/OutputNtuples/SplitQCD_EVNT/"""+outputJOFileName+"""_"""+str(jobNumber)+"""_"""+
str(offset)+"""EVNT.root

source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
#asetup 20.1.8.3,AtlasDerivation
source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation
cd ${tmpDir}

#run the ntuplemaker
Reco_tf.py --inputEVNTFile=event.root --outputDAODFile=output.root --reductionConf TRUTH3 --loglevel FATAL

#copy the output
if [ ! -d """+outputDir+"""/OutputNtuples/SplitQCD ]; then
mkdir -p """+outputDir+"""/OutputNtuples/SplitQCD
fi

cp DAOD_TRUTH3.output.root """+outputDir+"""/OutputNtuples/SplitQCD/"""+outputJOFileName+"""_"""+
str(jobNumber)+"""_"""+str(offset)+""".root
cp output.log """+outputDir+"""/OutputNtuples/SplitQCD/"""+outputJOFileName+
"""_"""+str(jobNumber)+"""_"""+str(offset)+""".log
ls
rm *
"""

)

#making it executable

commands.getoutput("chmod 755 "+jobscriptName)

#running it
submissionfile.write("sbatch "+jobscriptName+" \n") #Iridium
#submissionfile.write("bash "+jobscriptName+" \n") #generic

A.2 pT plot comparison code

A.2.1 Unweighted pT
#include <iostream>
#include <TFile.h>
#include <TH1.h>
#include <TCanvas.h>
#include <TTree.h>
#include <TStyle.h>

using namespace std;

void masterGVM1();

void masterGVM1()
{

TCanvas *C1 = new TCanvas("C1","C1",900,600);
//Drawing and storing histogram from Grid job
TFile *fgrid1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000grid.root");
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TH1F *hgrid1 = new TH1F("hgrid1","TruthJets_pt_unweighted_sample_grid_job_1;
p_{T}[MeV];N_{entries}",100,0,4000000);

TTree *MyTreegrid1 = 0;
fgrid1->GetObject("CollectionTree",MyTreegrid1);
MyTreegrid1->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hgrid1");
C1->SaveAs("unweighted_grid_pt_job_1.eps");
TFile *foutgrid1 = new TFile("comparison_GVM_pt_job_1.root","RECREATE");
TH1F *houtgrid1 = (TH1F*)fgrid1->Get("hgrid1");
fgrid1->GetList()->Write();
fgrid1->Close();
foutgrid1->Close();

//Drawing and storing histogram from virtual machine job
TFile *fVM1 =TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000vm.root");
TH1F *hVM1 = new TH1F("hVM1","TruthJets_pt_unweighted_sample_VM_job_1;

p_{T} [MeV];N_{entries}",100,0,4000000);
TTree *MyTreeVM1 = 0;
fVM1->GetObject("CollectionTree",MyTreeVM1);
MyTreeVM1->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hVM1");
C1->SaveAs("unweighted_VM_pt_job_1.eps");
TFile *foutVM1 = TFile::Open("comparison_GVM_pt_job_1.root","UPDATE");
TH1F *houtVM1 = (TH1F*)fVM1->Get("hVM1");
fVM1->GetList()->Write();
fVM1->Close();
foutVM1->Close();

TCanvas *CcompGVM1 = new TCanvas("CcompGVM1","CcompGVM1",900,600);

//comparing the 2 histograms stored in the new file
TFile *fcompGVM1 = TFile::Open("comparison_GVM_pt_job_1.root","UPDATE");
TH1F *hcompgridGVM1 = (TH1F*)fcompGVM1->Get("hgrid1");
TH1F *hcompVMGVM1 = (TH1F*)fcompGVM1->Get("hVM1");
TH1F *hcompGVM1 = new TH1F("hcompGVM1","Grid_VM_comparison_unweighted_pt_job_1;

p_{T} [MeV];N_{Grid}\N_{VM}",100,0,4000000);
hcompGVM1->Divide(hcompgridGVM1,hcompVMGVM1);

// Error progation for histogram division
Int_t nbinsGVM1 = hcompGVM1->GetSize();
double *BinContentgridGVM1 = new double[nbinsGVM1];
double *BinContentVMGVM1 = new double[nbinsGVM1];
double *DivisionErrorsGVM1 = new double[nbinsGVM1];
for(int i = 0;i<nbinsGVM1;i++)
{

BinContentgridGVM1[i] = hcompgridGVM1->GetBinContent(i);
BinContentVMGVM1[i] = hcompVMGVM1->GetBinContent(i);
DivisionErrorsGVM1[i] = 0;
if(BinContentVMGVM1[i])
{

DivisionErrorsGVM1[i] = sqrt(BinContentgridGVM1[i]* BinContentVMGVM1[i]*

(BinContentgridGVM1[i]+BinContentVMGVM1[i]))/(BinContentVMGVM1[i]*BinContentVMGVM1[i]);
cout << i << " " << DivisionErrorsGVM1[i] << endl;

}
hcompGVM1->SetBinError(i,DivisionErrorsGVM1[i]);

}
hcompGVM1->Draw("E");
fcompGVM1->Write();
CcompGVM1->SaveAs("comparison_GVM_pt_job_1.eps");
fcompGVM1->Close();

}

A.2.2 Weighted pT
#include <iostream>
#include <TFile.h>
#include <TH1.h>
#include <TCanvas.h>
#include <TTree.h>
#include <TStyle.h>

using namespace std;
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void weightsGVM1();

void weightsGVM1()
{

// Storing the weighted pT histogram created in the grid for Job 1 to a root file
TFile *fgrid1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000grid.root");
TTree *grid1 = 0;
fgrid1->GetObject("CollectionTree",grid1);
TH1F *hweightsgrid1 = new TH1F("hweightsgrid1","TruthJets_pt_weighted_sample_grid_job_1;
p_{T} [MeV];N_{entries}",100,0,4000000);
TCanvas *c1 = new TCanvas("c1","c1",900,600);
gPad->SetLogy();
grid1->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hweightsgrid1","McEventInfo.m_event_type.m_mc_event_weights");
c1->SaveAs("weighted_grid_pt_job_1.eps");
TFile *foutgrid1 = new TFile("comparison_WGVM_pt_job_1.root","RECREATE");
TH1F *houtgrid1 = (TH1F*)fgrid1->Get("hweightsgrid1");
fgrid1->GetList()->Write();
fgrid1->Close();
foutgrid1->Close();

// Storing the weighted pT histogram created on the VM for Job 1 to a root file
TFile *fVM1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000vm.root");
TTree *VM1 = 0;
fVM1->GetObject("CollectionTree",VM1);
TH1F *hweightsVM1 = new TH1F("hweightsVM1","TruthJets_pt_weighted_sample_VM_job_1;
p_{T} [MeV];N_{entries}",100,0,4000000);
gPad->SetLogy();
VM1->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hweightsVM1","McEventInfo.m_event_type.m_mc_event_weights");
c1->SaveAs("weighted_VM_pt_job_1.eps");
TFile *foutVM1 = TFile::Open("comparison_WGVM_pt_job_1.root","UPDATE");
TH1F *houtVM1 = (TH1F*)fVM1->Get("hweightsVM1");
fVM1->GetList()->Write();
fVM1->Close();
foutVM1->Close();

TCanvas *CcompWGVM1 = new TCanvas("CcompWGVM1","CcompWGVM1",900,600);

//comparing the 2 histograms stored in the new file
TFile *fcompWGVM1 = TFile::Open("comparison_WGVM_pt_job_1.root","UPDATE");
TH1F *hcompgridWGVM1 = (TH1F*)fcompWGVM1->Get("hweightsgrid1");
TH1F *hcompVMWGVM1 = (TH1F*)fcompWGVM1->Get("hweightsVM1");
TH1F *hcompWGVM1 = new TH1F("hcompWGVM1","Grid_VM_comparison_pt_weighted_job_1;
p_{T} [MeV];N_{Grid}/N_{VM}",100,0,4000000);
hcompWGVM1->Divide(hcompgridWGVM1,hcompVMWGVM1);
hcompWGVM1->Draw("E");
fcompWGVM1->Write();
CcompWGVM1->SaveAs("comparison_WGVM_pt_job_1.eps");
fcompWGVM1->Close();

}

A.3 mjj plot comparison code

A.3.1 TSelector code

A.3.1.1 MySelectorGrid1.h (header file)

//////////////////////////////////////////////////////////
// This class has been automatically generated on
// Wed Oct 25 03:33:02 2017 by ROOT version 6.10/04
// from TTree CollectionTree/CollectionTree
// found on file: MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000grid.root
//////////////////////////////////////////////////////////

#ifndef MySelectorGrid1_h
#define MySelectorGrid1_h

#include <TROOT.h>
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#include <TChain.h>
#include <TFile.h>
#include <TSelector.h>
#include <TTreeReader.h>
#include <TTreeReaderValue.h>
#include <TTreeReaderArray.h>
#include <TLorentzVector.h>

// Headers needed by this particular selector
#include <vector>

#include <set>

class MySelectorGrid1 : public TSelector {
public :

TTreeReader fReadergrid1; //!the tree reader
TTree *fChain = 0; //!pointer to the analyzed TTree or TChain

// Readers to access the data (delete the ones you do not need).
TTreeReaderArray<float> AntiKt4TruthJetsAux_pt = {fReadergrid1, "AntiKt4TruthJetsAux.pt"};
TTreeReaderArray<float> AntiKt4TruthJetsAux_eta = {fReadergrid1, "AntiKt4TruthJetsAux.eta"};
TTreeReaderArray<float> AntiKt4TruthJetsAux_phi = {fReadergrid1, "AntiKt4TruthJetsAux.phi"};
TTreeReaderArray<float> AntiKt4TruthJetsAux_m = {fReadergrid1, "AntiKt4TruthJetsAux.m"};
//TTreeReaderArray<vector<ElementLink<DataVector<xAOD::IParticle> > >> AntiKt4TruthJetsAux_constituentLinks =
{fReadergrid1, "AntiKt4TruthJetsAux.constituentLinks"};
//TTreeReaderArray<vector<float>> AntiKt4TruthJetsAux_constituentWeights =
{fReadergrid1, "AntiKt4TruthJetsAux.constituentWeights"};
Int_t fNumberOfEventsgrid1;
Int_t dijetmassgrid1;
TLorentzVector evntgrid1;

MySelectorGrid1(TTree * /*tree*/ =0):
//evntgrid1.SetPtEtaPhiE(0.,0.,0.,0.),
fNumberOfEventsgrid1(0){}
virtual ~MySelectorGrid1() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual void Init(TTree *tree);
virtual Bool_t Notify();
virtual Bool_t Process(Long64_t entry);
virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0)
{ return fChain ? fChain->GetTree()->GetEntry(entry, getall) : 0; }
virtual void SetOption(const char *option) { fOption = option; }
virtual void SetObject(TObject *obj) { fObject = obj; }
virtual void SetInputList(TList *input) { fInput = input; }
virtual TList *GetOutputList() const { return fOutput; }
virtual void SlaveTerminate();
virtual void Terminate();

ClassDef(MySelectorGrid1,0);

};

#endif

#ifdef MySelectorGrid1_cxx
void MySelectorGrid1::Init(TTree *tree)
{

// The Init() function is called when the selector needs to initialize
// a new tree or chain. Typically here the reader is initialized.
// It is normally not necessary to make changes to the generated
// code, but the routine can be extended by the user if needed.
// Init() will be called many times when running on PROOF
// (once per file to be processed).

fReadergrid1.SetTree(tree);
}

Bool_t MySelectorGrid1::Notify()
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{
// The Notify() function is called when a new file is opened. This
// can be either for a new TTree in a TChain or when when a new TTree
// is started when using PROOF. It is normally not necessary to make changes
// to the generated code, but the routine can be extended by the
// user if needed. The return value is currently not used.

return kTRUE;
}

#endif // #ifdef MySelectorGrid1_cxx

A.3.1.2 MySelectorGrid1.C
#define MySelectorGrid1_cxx
// The class definition in MySelectorGrid1.h has been generated automatically
// by the ROOT utility TTree::MakeSelector(). This class is derived
// from the ROOT class TSelector. For more information on the TSelector
// framework see $ROOTSYS/README/README.SELECTOR or the ROOT User Manual.

// The following methods are defined in this file:
// Begin(): called every time a loop on the tree starts,
// a convenient place to create your histograms.
// SlaveBegin(): called after Begin(), when on PROOF called only on the
// slave servers.
// Process(): called for each event, in this function you decide what
// to read and fill your histograms.
// SlaveTerminate: called at the end of the loop on the tree, when on PROOF
// called only on the slave servers.
// Terminate(): called at the end of the loop on the tree,
// a convenient place to draw/fit your histograms.
//
// To use this file, try the following session on your Tree T:
//
// root> T->Process("MySelectorGrid1.C")
// root> T->Process("MySelectorGrid1.C","some options")
// root> T->Process("MySelectorGrid1.C+")
//

#include "MySelectorGrid1.h"
#include <TH2.h>
#include <TH1.h>
#include <TStyle.h>

TH1F *invmassgrid1 = new TH1F("invmassgrid1","mjj_grid_job_1;m_{jj} [MeV];N_{entries}",100,0,800000);

void MySelectorGrid1::Begin(TTree * /*tree*/)
{

// The Begin() function is called at the start of the query.
// When running with PROOF Begin() is only called on the client.
// The tree argument is deprecated (on PROOF 0 is passed).

TString option = GetOption();
}

void MySelectorGrid1::SlaveBegin(TTree * /*tree*/)
{

// The SlaveBegin() function is called after the Begin() function.
// When running with PROOF SlaveBegin() is called on each slave server.
// The tree argument is deprecated (on PROOF 0 is passed).

TString option = GetOption();

}

Bool_t MySelectorGrid1::Process(Long64_t entry)
{

// The Process() function is called for each entry in the tree (or possibly
// keyed object in the case of PROOF) to be processed. The entry argument
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// specifies which entry in the currently loaded tree is to be processed.
// When processing keyed objects with PROOF, the object is already loaded
// and is available via the fObject pointer.
//
// This function should contain the \"body\" of the analysis. It can contain
// simple or elaborate selection criteria, run algorithms on the data
// of the event and typically fill histograms.
//
// The processing can be stopped by calling Abort().
//
// Use fStatus to set the return value of TTree::Process().
//
// The return value is currently not used.

fReadergrid1.SetLocalEntry(entry);
++fNumberOfEventsgrid1;
if(AntiKt4TruthJetsAux_pt.GetSize())
{

if(AntiKt4TruthJetsAux_pt[0] != 0)
{

if(AntiKt4TruthJetsAux_pt[1] != 0)
{

evntgrid1.SetPtEtaPhiM(AntiKt4TruthJetsAux_pt[0]+AntiKt4TruthJetsAux_pt[1],
AntiKt4TruthJetsAux_eta[0]+AntiKt4TruthJetsAux_eta[1],
AntiKt4TruthJetsAux_phi[0]+AntiKt4TruthJetsAux_phi[1],
AntiKt4TruthJetsAux_m[0]+AntiKt4TruthJetsAux_m[1]);
dijetmassgrid1 = evntgrid1.M();

invmassgrid1->Fill(dijetmassgrid1);
}

}
}
return kTRUE;

}

void MySelectorGrid1::SlaveTerminate()
{

// The SlaveTerminate() function is called after all entries or objects
// have been processed. When running with PROOF SlaveTerminate() is called
// on each slave server.

}

void MySelectorGrid1::Terminate()
{

// The Terminate() function is the last function to be called during
// a query. It always runs on the client, it can be used to present
// the results graphically or save the results to file.
printf("\nTotal Number of Events: %d\n",fNumberOfEventsgrid1);
//TFile *foutgrid1 = TFile::Open("dijet_mass_comparison_job_1_grid.root","RECREATE");
TCanvas *Cgrid1 = new TCanvas("C1grid1","C1grid1",900,600);
invmassgrid1->Draw();

Cgrid1->SaveAs("inv_mass_job_1_grid.eps");
//foutgrid1->Close();

}

A.3.2 TSelector for dijet mass calculation creation
#include <iostream>
#include <TFile.h>
#include <TH1.h>
#include <TCanvas.h>
#include <TTree.h>
#include <TStyle.h>
#include <TTreeReader.h>
#include <TLorentzVector.h>
using namespace std;
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void massgrid1();

void massgrid1()
{ //creating a selector to calculate dijet mass for Job 1 processed on the Grid

TFile *ggrid1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000grid.root");
TTree *Rgrid1 = nullptr;
//TLorentzVector *evntgrid1 = new TLorentzVector;
ggrid1->GetObject("CollectionTree",Rgrid1);
Rgrid1->MakeSelector("MySelectorGrid1","AntiKt4TruthJetsAux.");

}

A.3.3 Dijet mass mjj comparison script
#include <iostream>
#include <TFile.h>
#include <TH1.h>
#include <TCanvas.h>
#include <TTree.h>
#include <TStyle.h>
#include <TTreeReader.h>
#include <TLorentzVector.h>
using namespace std;

void dijet_compGVM_1();

void dijet_compGVM_1()
{

//getting the dijet mass histogram for the grid processed DAOD files
TFile *ggrid1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000grid.root");
TTree *Rgrid1 = 0;
ggrid1->GetObject("CollectionTree",Rgrid1);
Rgrid1->Process("MySelectorGrid1.C");
TFile *goutgrid1 = new TFile("dijet_mass_comp_GVM_job_1.root","RECREATE");
TH1F *houtgrid1 = (TH1F*)ggrid1->Get("invmassgrid1");
ggrid1->GetList()->Write();
ggrid1->Close();
goutgrid1->Close();

//getting the dijet mass histogram for the VM processed DAOD files
TFile *gVM1 = TFile::Open("MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py_1_800000000vm.root");
TTree *RVM1 = 0;
gVM1->GetObject("CollectionTree",RVM1);
RVM1->Process("MySelectorVM1.C");
TFile *goutVM1 = new TFile("dijet_mass_comp_GVM_job_1.root","UPDATE");
TH1F *houtVM1 = (TH1F*)gVM1->Get("invmassVM1");
gVM1->GetList()->Write();
gVM1->Close();
goutVM1->Close();

TCanvas *CcompmjjGVM1 = new TCanvas("CcompmjjGVM1","CcompmjjGVM1",900,600);

//comparing the 2 histograms stored in the new file
TFile *gcompmjjGVM1 = TFile::Open("dijet_mass_comp_GVM_job_1.root","UPDATE");
TH1F *hcompmjjgridGVM1 = (TH1F*)gcompmjjGVM1->Get("invmassgrid1");
TH1F *hcompmjjVMGVM1 = (TH1F*)gcompmjjGVM1->Get("invmassVM1");
TH1F *hcompmjjGVM1 = new TH1F("hcompmjjGVM1","Grid_VM_comparison_mjj_job_1;m_{jj} [MeV];N_{Grid}/N_{VM}",100,0,800000);
hcompmjjGVM1->Divide(hcompmjjgridGVM1,hcompmjjVMGVM1);

// Error propagation for histogram division
Int_t nbinsmjjGVM1 = hcompmjjGVM1->GetSize();
double *BinContentmjjgridGVM1 = new double[nbinsmjjGVM1];
double *BinContentmjjVMGVM1 = new double[nbinsmjjGVM1];
double *DivisionErrorsmjjGVM1 = new double[nbinsmjjGVM1];
for(int i = 0;i<nbinsmjjGVM1;i++)
{

BinContentmjjgridGVM1[i] = hcompmjjgridGVM1->GetBinContent(i);
BinContentmjjVMGVM1[i] = hcompmjjVMGVM1->GetBinContent(i);

DivisionErrorsmjjGVM1[i] = 0;
if(BinContentmjjVMGVM1[i])
{

DivisionErrorsmjjGVM1[i] = sqrt(BinContentmjjgridGVM1[i]* BinContentmjjVMGVM1[i]*
(BinContentmjjgridGVM1[i]+BinContentmjjVMGVM1[i]))/(BinContentmjjVMGVM1[i]*BinContentmjjVMGVM1[i]);
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cout << i << " " << DivisionErrorsmjjGVM1[i] << endl;
}
hcompmjjGVM1->SetBinError(i,DivisionErrorsmjjGVM1[i]);

}
hcompmjjGVM1->Draw("E");
gcompmjjGVM1->Write();
CcompmjjGVM1->SaveAs("comparison_mjj_GVM_job_1.eps");
gcompmjjGVM1->Close();

}

A.4 Grid submission using prun python Master Code
#!/bin/python
import commands
import random
import os
import sys

cwd = os.getcwd()
baseDir = "./MCProduction"
outputDir = "./MCProduction/results"
random.seed(None)
centerOfMass = "13000"
channelNumber = "304874"
#offset = 800000000
offset = random.randint(100000000,999999999)
version = random.randint(0,99999)

#numberOfJobs =2
numberOfJobs = int(sys.argv[1])
numberOfEvents = "10000"
numberofsubJobs = int(sys.argv[2])

Names = [

"Powerlaw",

]

TunesImport = [

"Pythia8_A14_NNPDF23LO_EvtGen_Common.py",

]

ExtraLines = [

""" """,
]

if not os.path.exists(baseDir+"/jobOpt"):
os.makedirs(baseDir+"/jobOpt")

#print zip(VectorOf_M_ExQ, ChannelNumbers)

submissionfile = open(’submitAllSubmissions_8.sh’,’w’)
submissionfile.write("#!/bin/bash\n")
submissionfile.write("#SBATCH --job-name=’MCProdCaterina8’\n")
execFile = open(’submitAllSubmissionsprun.sh’,’w’)
execFile.write("#!/bin/bash\n")
execFile.write("export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase\n")
execFile.write("source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh\n")
execFile.write("lsetup panda\n")

for name, (tuneImport, extraLines) in zip(Names, zip(TunesImport, ExtraLines)) :

#let’s write the JO
outputJOFileName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+".py"
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#outputJOFile = open("jobOpt/"+outputJOFileName,"w")
outputJOFile = open(baseDir+"/jobOpt/"+outputJOFileName,"w")

#Mass Scale parameter (Lambda, in GeV)

outputJOFile.write("""

# author: Caterina Doglioni

evgenConfig.description= "Dijet truth jets, with power law"
evgenConfig.keywords= ["QCD", "jets", "SM"]
evgenConfig.generators += ["Pythia8"]
evgenConfig.contact = ["Harinder Singh Bawa <bawa@cern.ch>"]

include("MC15JobOptions/"""+tuneImport+"""")

""")

outputJOFile.write("""

genSeq.Pythia8.Commands += ["HardQCD:all = on",
"PhaseSpace:pTHatMin = 20.0",
"PhaseSpace:bias2Selection = on",
"PhaseSpace:bias2SelectionPow = 5.0"

# """+extraLines+"""
]

evgenConfig.minevents = 1000
""")

#parallelisation starts now!

for jobNumber in xrange(0, numberOfJobs) :
#now that we have the JO, let’s write a script to run it
jobscriptName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+"_"
+str(jobNumber)+"_"+str(offset)+".sh"
jobscript = open(jobscriptName,"w")

jobscript.write("""#!/bin/bash
# Simple submission script for MC15 validation

# for tracking when and where you run
hostname
date

# Setup ROOT and various libraries
#cp /atlas/users/doglioni/authentication.xml .
#export CORAL_AUTH_PATH=.:${CORAL_AUTH_PATH}
#export PYTHON_EGG_CACHE=/atlas/users/doglioni/.python-eggs

#copy everything we need into the working directory
if [ ! -d """+baseDir+"""/jobOpt ]; then
mkdir -p """+baseDir+"""/jobOpt
fi

cp """+baseDir+"""/jobOpt/"""+outputJOFileName+""" .

source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
source $AtlasSetup/scripts/asetup.sh 19.2.4.16,AtlasProduction

#run the job transform
Generate_tf.py --ecmEnergy="""+centerOfMass+""" --runNumber="""+str(channelNumber)+""" --firstEvent=0
--maxEvents="""+numberOfEvents+""" --randomSeed="$(shuf -i 100000000-999999999 -n 1)"
--jobConfig="""+outputJOFileName+""" --outputEVNTFile=event.root | grep cross-section | tee output.log
#evgenJobOpts=MC15JobOpts-00-09-16_v1.tar.gz

source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation
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#run the ntuplemaker
Reco_tf.py --inputEVNTFile=event.root --outputDAODFile="""+outputJOFileName+"""_"""+str(jobNumber)+"""_"""+
str(offset)+""".root --reductionConf TRUTH3 --loglevel FATAL

ls

"""
)

#making it executable

commands.getoutput("chmod 755 "+jobscriptName)

#running it
submissionfile.write("bash "+jobscriptName+" \n")
execFile.write("prun --outDS user.dsidirop.evgen.testv"+str(version+jobNumber)+" --noBuild
--nJobs="+str(numberofsubJobs)+"
--outputs DAOD_TRUTH3."+outputJOFileName+"_"+str(jobNumber)+"_"+str(offset)+".root
--exec \"bash "+jobscriptName+"\" \n" )

A.5 2-task submission python Master Code (dropped
effort)

#!/bin/python
import commands
import random
import os
import sys
import shutil

cwd = os.getcwd()
baseDir = cwd+"/MCProduction"
outputDir = cwd+"/MCProduction/results"
random.seed(None)
centerOfMass = "13000"
channelNumber = "304874"
#offset = 800000000
offset = random.randint(100000000,999999999)

numberOfJobs =2
#numberOfJobs = int(sys.argv[1])
numberOfEvents = "10000"

Names = [

"Powerlaw",

]

TunesImport = [

"Pythia8_A14_NNPDF23LO_EvtGen_Common.py",

]

ExtraLines = [

""" """,
]

if not os.path.exists(baseDir+"/jobOpt"):
os.makedirs(baseDir+"/jobOpt")

#print zip(VectorOf_M_ExQ, ChannelNumbers)
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submissionfile = open(’submitAllSubmissions_8.sh’,’w’)
submissionfile.write("#!/bin/bash\n")
submissionfile.write("#SBATCH --job-name=’MCProdCaterina8’\n")

pandafile = open(’submitAllSubmissions_panda.sh’,’w’)
pandafile.write("#!/bin/bash\n")

for name, (tuneImport, extraLines) in zip(Names, zip(TunesImport, ExtraLines)) :

#let’s write the JO
outputJOFileName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+".py"
#outputJOFile = open("jobOpt/"+outputJOFileName,"w")
outputJOFile = open(baseDir+"/jobOpt/"+outputJOFileName,"w")

#Mass Scale parameter (Lambda, in GeV)

outputJOFile.write("""

# author: Caterina Doglioni

evgenConfig.description= "Dijet truth jets, with power law"
evgenConfig.keywords= ["QCD", "jets", "SM"]
evgenConfig.generators += ["Pythia8"]
evgenConfig.contact = ["Harinder Singh Bawa <bawa@cern.ch>"]

include("MC15JobOptions/"""+tuneImport+"""")

""")

outputJOFile.write("""

genSeq.Pythia8.Commands += ["HardQCD:all = on",
"PhaseSpace:pTHatMin = 20.0",
"PhaseSpace:bias2Selection = on",
"PhaseSpace:bias2SelectionPow = 5.0"

"""+extraLines+"""
]

evgenConfig.minevents = 1000
""")

#parallelisation starts now!

for jobNumber in xrange(0, numberOfJobs) :
#now that we have the JO, let’s write a script to run it
jobscriptName = "MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+"_"+
str(jobNumber)+"_"+str(offset)+".sh"
jobscript = open(jobscriptName,"w")

jobscript.write("""#!/bin/bash
# Simple submission script for MC15 validation

# for tracking when and where you run
hostname
date

#to avoid NFS problems
#sleep $(perl -e ’$ran=int(rand(120)); print STDOUT "$ran\\n";’)

# to make and use a temporary directory
tmpDir=‘mktemp -d‘
cd ${tmpDir}
echo ’we are in ’${PWD}

# Setup ROOT and various libraries
#cp /atlas/users/doglioni/authentication.xml .
#export CORAL_AUTH_PATH=.:${CORAL_AUTH_PATH}
#export PYTHON_EGG_CACHE=/atlas/users/doglioni/.python-eggs

#copy everything we need into this temp directory
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if [ ! -d """+baseDir+"""/jobOpt ]; then
mkdir -p """+baseDir+"""/jobOpt
fi

cp """+baseDir+"""/jobOpt/"""+outputJOFileName+""" .

module load enableATLAS
setupATLAS
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
asetup 19.2.4.16,AtlasProduction
source $AtlasSetup/scripts/asetup.sh 19.2.4.16,AtlasProduction
cd ${tmpDir}

#run the job transform
Generate_tf.py --ecmEnergy="""+centerOfMass+""" --runNumber="""+str(channelNumber)+""" --firstEvent=0
--maxEvents="""+numberOfEvents+""" --randomSeed="""+str(jobNumber+offset)+"""
--jobConfig="""+outputJOFileName+""" --outputEVNTFile=event.root
| grep cross-section | tee output.log
#evgenJobOpts=MC15JobOpts-00-09-16_v1.tar.gz

#copy the output
#if [ ! -d """+baseDir+"""/OutputNtuples/SplitQCD_EVNT ]; then
#mkdir -p """+baseDir+"""/OutputNtuples/SplitQCD_EVNT
#fi

#cp event.root """+baseDir+"""/OutputNtuples/SplitQCD_EVNT/"""+outputJOFileName+"""_"""+str(jobNumber)+
"""_"""+str(offset)+"""EVNT.root

source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
asetup 20.1.8.3,AtlasDerivation
source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation
cd ${tmpDir}

#run the ntuplemaker
Reco_tf.py --inputEVNTFile=event.root --outputDAODFile=output.root --reductionConf TRUTH3 --loglevel FATAL

#copy the output
if [ ! -d """+outputDir+"""/OutputNtuples/SplitQCD ]; then
mkdir -p """+outputDir+"""/OutputNtuples/SplitQCD
fi

cp DAOD_TRUTH3.output.root """+outputDir+"""/OutputNtuples/SplitQCD/"""+outputJOFileName+"""_"""+
str(jobNumber)+"""_"""+str(offset)+""".root
cp output.log """+outputDir+"""/OutputNtuples/SplitQCD/"""+outputJOFileName+"""_"""+
str(jobNumber)+"""_"""+str(offset)+""".log
ls
rm *
"""

)

#making it executable

commands.getoutput("chmod 755 "+jobscriptName)

#running it
submissionfile.write("bash "+jobscriptName+" \n")

#creating script for PanDA submission

for jobNumber in xrange(0, numberOfJobs) :
pandascriptName =

"MC15."+str(channelNumber)+".Pythia8EvtGen_A14NNPDF23LO_jetjet_"+name+"_"+str(jobNumber)+"_"+
str(offset)+"_gridsubmission.sh"
pandascript = open(pandascriptName,"w")

pandascript.write("""#!/bin/bash

#source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
#asetup 20.1.8.3,AtlasDerivation,here
#source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation,here
#asetup 21.2.6.0,AthDerivation
#lsetup "asetup 19.2.4.16,AtlasDerivation,here" panda
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#lsetup "asetup 21.2.6.0,AthDerivation,here" panda

str1="user.dsidirop.Pythia8EvtGen.EVNT.v"
str2="user.dsidirop.Pythia8EvtGen.xAOD.v"
SubNum=$RANDOM
outDSEVNT=$str1$SubNum
outDSxAOD=$str2$SubNum

cp """+baseDir+"""/jobOpt/"""+outputJOFileName+""" .

export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh
lsetup "asetup 19.2.4.16,AtlasProduction,here" panda
pathena --trf "Generate_tf.py --ecmEnergy=13000 --runNumber=304874 --firstEvent=0 --maxEvents=10000 --randomSeed="""+
str(jobNumber+offset)+""" --jobConfig="""+outputJOFileName+""" --outputEVNTFile=%OUT.event.root
| grep cross-section | tee output.log" --outDS=$outDSEVNT

lsetup rucio

Rucioline=""
EVNTfile=""

sleep 1m

while [ -z "$EVNTfile" -a $SECONDS -le 7200 ];
do
rucio list-files "user.dsidirop:"$outDSEVNT"_EXT0/" >> tempFile$SubNum.txt
RUCIOline="$(grep .root tempFile$SubNum.txt)"
EVNTfile="$(echo $RUCIOline| cut -d’|’ -f 2)"
echo "Stil in the loop"
sleep 5m

rm tempFile$SubNum.txt
done

export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh
lsetup "asetup 21.2.6.0,AthDerivation,here" panda
pathena --trf "Reco_tf.py --inputEVNTFile=%IN --outputDAODFile=%OUT.output.root --reductionConf TRUTH3 --loglevel FATAL"
--inDS=$outDSEVNT"_EXT0/" --outDS=$outDSxAOD

rm """+outputJOFileName+"""
"""
)

#making it executable
commands.getoutput("chmod 755 "+pandascriptName)

#running it
pandafile.write("bash " + pandascriptName + "\n")

A.6 psequencer script (dropped effort)
### Step1
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
lsetup "asetup 19.2.4.16,AtlasProduction,here" panda
pathena --trf "Generate_tf.py --ecmEnergy=13000 --runNumber=304874 --firstEvent=0 --maxEvents=10000
--randomSeed=996496117 --jobConfig=MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py
--outputEVNTFile=%OUT.event.root | grep cross-section | tee output.log"
--outDS=user.dsidirop.Pythia8EvtGen.EVNTseq6.vseq6

### Step2
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
lsetup "asetup 21.2.6.0,AthDerivation,here" panda
pathena --trf "Reco_tf.py --inputEVNTFile=%IN --outputDAODFile=%OUT.output.root --reductionConf TRUTH3 --loglevel FATAL"
--inDS=$OUTDATASET --outDS=user.dsidirop.Pythia8EvtGen.xAODseq6.vseq6

### Sequence
Step1.execute()
result = Step1.result()
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if result.status == 0 and result.Failed == 0:
print "Succesful generation !"
var = {}
var[’OUTDATASET’] = result.Out
Step2.execute(env=var)

A.7 Generation and Transformation in one pathena sub-
mission (piped submission) (dropped effort)

#!/bin/bash

#module load enableATLAS
#setupATLAS
source $ATLAS_LOCAL_ROOT_BASE/user/atlasLocalSetup.sh
source $AtlasSetup/scripts/asetup.sh 20.1.8.3,AtlasDerivation,here
#asetup 20.1.8.3,AtlasDerivation,here
#asetup 21.2.6.0,AthDerivation
#lsetup "asetup 19.2.4.16,AtlasDerivation,here" panda
#lsetup "asetup 21.2.6.0,AthDerivation,here" panda

lsetup panda

pathena --trf "Generate_tf.py --ecmEnergy=13000 --runNumber=304874 --firstEvent=0 --maxEvents=10000
--randomSeed=996496117 --jobConfig=MC15.304874.Pythia8EvtGen_A14NNPDF23LO_jetjet_Powerlaw.py
--outputEVNTFile=event.root | grep cross-section | tee output.log;
Reco_tf.py --inputEVNTFile=event.root --outputDAODFile=%OUT.output.root --reductionConf TRUTH3 --loglevel FATAL"
--outDS=user.dsidirop.Pythia8EvtGen.EVNTxAOD10.test.v10
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Appendix B

Weighted pT analysis

The weighted pT spectra refer to transverse momentum distributions of the generated jets
in the events but only after an event by event weight (available also in the TTree) is applied
to all events generated (at least those that included jets). Those event by event weights
describe essentially the contribution of each event in the total cross section of the process
simulated (something that will not be studied here). In this appendix the weighted pT
analysis performed for the different comparisons mentioned in the main thesis text will
be presented.

B.1 Iridium job comparison

An overall similar procedure with the one followed for the unweighted jet pT is followed
for the weighted jet pT spectra. The coding of this comparison process is provided in
full in Appendix A.2.2 (again for a different comparison done later but equally applicable
here). The only differences that can be noticed pertain to the coding of the drawing of
the histograms:

Tiridium0->Draw("AntiKt4TruthJetsAux.AntiKt4TruthJetsAux.pt>>hweightsiridium0,
"McEventInfo.m_event_type.m_mc_event_weights");

where McEventInfo.m_event_type.m_mc_event_weights is another leaf in a branch of
the CollectionTree TTree that contains the needed event weights for each event. The
only other change is the fact that the y-axis was set to a logarithmic scale to ensure proper
visualization of the resulting histograms for Job 0 and Job 1, provided in Figures B.1 and
B.2 respectively, given that each bin content is now normalized, using the total number
of events as normalization factor.

The division of the histograms progresses the same as with the unweighted pT case.
The final comparison graph is saved as a .eps image and it is shown in Figure B.3. The
comparison of weighted pT spectra also confirms the fact that the two jobs were generated
using different seeds. Sections B.2 and B.3 consist applications of the same coding scheme
to compare Job 0 and Job 1 weighted pT distributions between Iridium and the virtual
machine and the Grid and the virtual machine.
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Figure B.1: Weighted pT distribution for Job 0.
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Figure B.2: Weighted pT distribution for Job 0.
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Figure B.3: Comparison of the weighted pT spectra for the two jobs when processed
on Iridium. The comparison shows that the statistical distribution is the same but the
spectra compared were generated using different seeds.
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B.2 Iridium - VM Comparison
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Figure B.4: Weighted pT distribution for Job
0 processed on Iridium.
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Figure B.5: Weighted pT distribution for Job
0 processed in the Virtual Machine.
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Figure B.6: Comparison of the jet transverse momentum pT distribution for the same Job
0 (same seed) when processed on Iridium and the VM environment for data to which an
event by event weight has been applied. The comparison shows that the generation is
independent of the environment in which it was developed, being identical for the same
seed.
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Figure B.7: Weighted pT distribution for Job
1 processed on Iridium.
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Figure B.8: Weighted pT distribution for Job
1 processed in the Virtual Machine.
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Figure B.9: Comparison of the jet transverse momentum pT distribution for the same Job
1 (same seed) when processed on Iridium and the VM environment for data to which an
event by event weight has been applied. The comparison shows that the generation is
independent of the environment in which it was developed, being identical for the same
seed, with the exception of minor bin migration occurrences.
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B.3 Grid - VM comparison
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Figure B.10: Weighted pT distribution for
Job 0 processed on the Grid.
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Figure B.11: Weighted pT distribution for
Job 0 processed in the Virtual Machine.
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Figure B.12: Comparison of the jet transverse momentum pT distribution for the same
Job 0 (same seed) when processed on the Grid and the VM environment for data to which
an event by event weight has been applied. The comparison shows that the generation is
independent of the environment in which it was developed, being identical for the same
seed.
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Figure B.13: Weighted pT distribution for
Job 1 processed on the Grid.
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Figure B.14: Weighted pT distribution for
Job 1 processed in the Virtual Machine.
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Figure B.15: Comparison of the jet transverse momentum pT distribution for the same
Job 1 (same seed) when processed on the Grid and the VM environment for data to which
an event by event weight has been applied. The comparison shows that the generation is
independent of the environment in which it was developed, being identical for the same
seed.
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Appendix C

General Plot Appendix

C.1 Unweighted pT and invariant mjj spectra for Job 0
and Job 1 from Iridium.
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Figure C.1: Unweighted pT distribution for Job
0 processed on Iridium.
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Figure C.2: Dijet mass mjj distribution for
Job 0 processed on Iridium.
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Figure C.3: Unweighted pT distribution for Job
1 processed on Iridium.
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Figure C.4: Dijet mass mjj distribution for
Job 1 processed on Iridium.
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C.2 Unweighted pT and invariant mjj spectra for Job 0
and Job 1 from the Virtual Machine
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Figure C.5: Unweighted pT distribution for Job
0 processed in the Virtual Machine.
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Figure C.6: Dijet mass mjj distribution for
Job 0 processed in the Virtual Machine.
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Figure C.7: Unweighted pT distribution for Job
1 processed in the Virtual Machine.

0 100 200 300 400 500 600 700 800

3
10×

 [MeV]
jj

m

0

200

400

600

800

1000

e
n
tr

ie
s

N

mjj_VM_job_1
invmassVM1

Entries  9954

Mean   7.137e+04

Std Dev    5.71e+04

mjj_VM_job_1

Figure C.8: Dijet mass mjj distribution for
Job 1 processed in the Virtual Machine.
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C.3 Unweighted pT and invariant mjj spectra for Job 0
and Job 1 from the Grid
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Figure C.9: Unweighted pT distribution for Job
0 processed on the Grid.

0 100 200 300 400 500 600 700 800

3
10×

 [MeV]
jj

m

0

200

400

600

800

1000

e
n
tr

ie
s

N

mjj_grid_job_0
invmassgrid0

Entries  9950

Mean   7.2e+04

Std Dev    5.838e+04

mjj_grid_job_0

Figure C.10: Dijet mass mjj distribution for
Job 0 processed on the Grid.
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Figure C.11: Unweighted pT distribution for
Job 1 processed on the Grid.
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Figure C.12: Dijet mass mjj distribution for
Job 1 processed on the Grid.
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