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Abstract  

The purpose of this paper is to provide a foundation for modelling train delays as 

multivariate time series. A pertinent issue with this kind of analysis is that the 

individual time series do not follow the Gaussian normal distribution. Since the 

normal distribution constitutes an assumption of classical time series methods, 

these cannot be applied blindly to the data. The solution explored by the paper is to 

identify the distributions of the time series and subsequently transforming the data 

into normal distributions.  

To this end, a dataset from the Swedish Transport Administration was used 

containing delays for every train that either departed from the region Skåne as a 

first departure, or arrived in Skåne as a final destination. The dataset spans from 

January 1
st,

 2014 to December 31
st,

 2016. Time series were constructed for every 

station with a significant amount of data points by computing the mean daily delays 

for these stations. Using software for distribution fitting it was found that the 

asymmetric Laplace distribution best described the distribution of the train delays. 

The data was successfully transformed into a normal distribution using the 

empirical cumulative distribution function of the asymmetric Laplace distribution. 

Comparing the cross-correlation functions before and after the transformations 

showed mild increases in the time dependence between stations.   
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1. Introduction 

One way or another, each and every one of us has had to suffer from the 

consequences of delayed trains, whether it be missing a flight or being late for a 

meeting. With trains being such an important part of our infrastructure, especially 

in Skåne, it is vital to understand the way in which train delays come about, and the 

way in which they spread and affect one another. This thesis will focus on the 

latter, aiming to better understand the time dependence of delayed trains throughout 

Skåne, spanning from January 1
st
 2014 to December 31

st
 2016. 

Interdependence, in particular over time, is best modeled using time series analysis 

of multivariate nature. Multivariate time series analysis allows us to study the 

autoregressive or moving average dependence of a time series not only upon itself, 

but also its dependence upon different, related series. Hence, we can combine train 

delay data from different stations in order to better understand the way in which 

they covariate. This paper will deal with complex multivariate time series data and 

as such, there is no convention telling us how to approach our problem. It is 

possible to try and model our data as is, but because train delays are unusually 

distributed, there are no guarantees such a model would be very fruitful. An 

alternative approach is transforming the data so that it becomes better suited for 

time series analysis, and try to model it after transformation. Hence, the scope of 

this thesis is initial analysis of the effects that transformations of data could have on 

time series and multivariate data. 

As stated above, one purpose of this thesis is to study the effect of transformations, 

and the way in which they affect time dependence and the applicability of 

conventional time series analysis on train delays in the Swedish region of Skåne. 

That is, our focus will be preparing the data rather than modelling it, seeing as the 

distribution of delays is such an unusual one. This will be achieved by studying the 

distribution of our train delay data, attempting to make it Gaussian through 

transformation, and analyzing the way in which the transformations affect the time 

series data. 

1.2 Statement of Task 

 Performing initial analysis of train delay distributions. 

 Determining how transformations of data affect time series and multi-

variate data. 

 Preparing the data for multivariate time series analysis 

The primary purpose of this thesis is to analyze the distributions of train delay data, 

as well as examining what effect transformations will have. Hence, section 3 will 

focus on data analysis. In section 4, the theoretical tools and justification of the 

methods used in section 3 are both provided and explained in further detail. 

Furthermore, section 4 is concluded through giving an overview of what methods 

can be used to continue the analysis using time series modelling. The outline of the 

paper may appear counter-intuitive, but a reversal of the structure would implicate 

that the aim of the paper is to produce a time series model, while the purpose is to 

create data that satisfies the Gaussianity assumption of such a model. Furthermore, 

the principles of the transformations are largely self-explanatory, even if the 

technical details are not.   
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2. Data 
Our dataset consists of train delay data, and was provided to us by the Swedish 

Transport Administration (Trafikverket, STA). It contains data of planned and 

executed operations carried out by two of the major passenger railway operators 

within Skåne (Öresundstågen and Pågatågen) during the time interval spanning 

from January 1
st
 2014 to December 31

st
 2016. The STA records departure times of 

every train operating within Sweden each day of the year, hence it was able to 

supply data regarding every train that either departed Skåne (i.e. its first departure 

within Sweden took place at a railway station i Skåne) or arrived in Skåne (i.e. its 

last arrival at a Swedish station happened in Skåne). For each departure from an 

original station, and for every arrival at a final destination, our dataset shows 

records of planned departure time, actual departure time, planned arrival time, 

actual arrival time, which operator was in charge of the train, and the difference in 

time between the planned and executed operation (if a specific train either departed 

or arrived on time this, of course, means the deviation is equal to 0). 

We decide to look only at data concerning arrival times at the final destinations of 

each train, since we personally find arriving late more of an issue than departing 

late, as the latter does not necessarily bring with it a negative impact on our 

everyday lives. For the analysis to be carried out, we filter the data so that only final 

destinations remain. After that, our dataset is split into several data frames, as to 

group arrivals by the station at which they occurred (see appendix 1). Furthermore, 

time series are constructed through calculating the daily mean delay of arrival at 

every station, enabling us to start analyzing distributions and time dependence. All 

calculations mentioned above are made using the statistical software R, as well as 

Rstudio, which is an extension of it. 

Doing this, we encounter an issue concerning the length of each time series, seeing 

as several stations are only given as final destinations under certain conditions (for 

example during weekend nights, or periods of railway repairs). Because of this, the 

time series for some stations contain scattered data of only a few days that are hard 

to analyze and thus they are rendered to be of no use to the investigation, hence 

they are dropped from the scope of this thesis. Furthermore, there are some errors in 

the delays at Malmö C. At this station, there are several delays recorded as less than 

-30, meaning that the train arrived 30 minutes earlier than it was supposed to. This 

means that there is some sort of error in the time-table or in the recorded time of 

arrival, or potentially a train not carrying any passengers. We therefore remove all 

observations with delays smaller than -5 for this station. For a complete list of the 

set of stations, as well as the subset of stations actually analyzed, see appendix 1. 

Since our data is not normally distributed, the estimators of multivariate time series 

coefficients are not necessarily reliable if computed based on the normal 

distribution paradigm. On the other hand, if we use the non-normal models the 

computation of the estimators may be difficult and theoretically challenging. For 

these reasons, transformation methods are often considered, i.e. transforming the 

data so that the assumption of normality cannot be rejected, and perform the 

analysis on the transformed data. In order to identify proper transformations, the 

density function and its corresponding distribution function can be utilized and 

fitted to the data. In our thesis, we will fit the gamma distribution and the 

asymmetric Laplace distribution to the data. To fit the gamma distribution, we use 

the method of moments, and after that we transform the data using the empirical 
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cumulative distribution function and its inverse. In other words, we run the data 

through the pgamma(…) function in R, which constitutes the empirical distribution 

function of the gamma distribution. This gives us uniformly distributed data which 

is run through the inverse distribution function of the standardized normal 

distribution, using the qnorm(…) function in R. Similarly, we transform the data 

through the asymmetric Laplace distribution, using the “ald” package in R.  

 

There is a problem with a raw application of this method in the case of the gamma 

distribution, that is defined for positive numbers, since some stations will have a 

train delay less than or equal to zero, meaning that the cumulative distribution 

function (c.d.f) will map to zero. If 𝐹𝑋(𝑥) is a cumulative distribution function, then 

lim𝑎→0 𝐹𝑋
−1(𝑎) = −∞,  and limits are impossible to handle when plotting 

histograms. The solution is to shift the data by a constant 𝜃 defined as: 

 

𝜃 = min(𝑌𝑡,𝑚) (1 +
1

𝑛
) 

  

Where n is the total number of observations, i.e. the length of each time series 𝑌𝑡,𝑚. 

This way all values will be greater than zero and qnorm(…) will not map to 

infinity.  

The shifted time series of four stations are shown in Figure 2.1. The stations are 

Helsingborg central station, Kalmar central station, Lund central station, and 

Halmstad central station. In the main body of this thesis, the analysis of these four 

stations will be presented more closely, since they are representative of the time 

series we have dealt with while working on this paper. All in all, there are 17 

stations with enough observations to make a meaningful analysis. Most of them, 

however, will be presented in appendices, due to the sheer amount of them. 

 

Figure 2.1: Time series showing the average daily delays for four railway stations in southern Sweden all 

stretching over the tree year span from 2014 to 2017 
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As can be seen in Figure 2.1, the 𝜃-shift means all values in our time series are 

positive. Hence, it is possible to fit a gamma distribution to them. 

3. Fitting Stochastic Models 

3.1 Transforming the Data 
This section is dedicated to transforming the data using the theory and methods 

described in section 4. The classical methods of time series analysis assume that the 

observations are normally distributed. Figure 3.1.1 shows histograms of the density 

of the train delays for a sample of our stations, the observations are skewed to the 

left and do not exhibit the symmetrical properties of a normally distributed random 

variable. Therefore, the inverse method given in section 4.1 is used to transform the 

data in order to acquire normally distributed observations. 

The distribution of mean daily train delays, adjusted by the constant 𝜃, for every 

station is shown in Figure 3.1.1. From these histograms, it is reasonable to suppose 

that the observations follow a gamma distribution. Table 3.1.1 shows the method of 

moments estimators of gamma parameters for each station, as well as the 

magnitude of 𝜃  for each station. The blue curves on the histograms are the 

simulated gamma distributions with the parameters estimated in Table 3.1.1.  

Table 3.1.1: Estimates of gamma distribution parameters for delays at each station 

Station 𝛼 = Shape 𝛽 = Rate 𝜃 = Shift 

Kalmar C 1.69 0.30 -1.75 

Halmstad C 2.95 0.52 -4.00 

Helsingborg C 4.53 1.49 -1.56 

Hyllie 2.58 1.05 -2.05 

Karlskrona C 4.85 0.58 -7.00 

Kristianstad C 5.41 1.74 -2.11 

Lund C 2.74 0.70 -1.10 

Markaryd 2.51 1.18 -2.00 

Pepparholm 3.56 1.32 -2.00 

Simrishamn 3.53 2.04 -1.00 

Ystad 2.99 0.79 -2.00 

Malmö 0.81 0.15 -3.00 

Ängelholm 1.48 0.65 -2.86 

Bromölla 3.24 0.97 -3.00 

Hässleholm 6.79 1.95 -1.73 

Höör 1.75 0.44 -2.00 

Göteborg 1.92 0.46 -3.44 

 

The inverse-method described in section 4.1 is used to transform the gamma 

distributed observations into normal distributions. We use the inverse c.d.f. of the 

standardized normal distribution, meaning that our transformed observations should 

follow a 𝑁(0,1)  distribution assuming that the delays are indeed gamma 

distributed. The quantile plots of the transformed observations are shown in Figure 

3.1.2. These plots describe how well the empirical distributions of the transformed 

observations follow the theoretical normal distribution. The observations are 

represented by dots, and the theoretical distribution is represented by the line. If the 

empirical distribution follows the normal distribution perfectly, all the dots are on 

the line. 
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Evidently, there is a tendency of deviation from Gaussianity in the transformed 

data, indicated by the heavy tails and skewness in the quantile plots and in Figure 

3.1.3 below. Theoretically, if the fitting of gamma parameters was right, the 

transformed data should follow the normal distribution. However, there are two 

plausible explanations as to why it does not; one being the method used to estimate 

parameters, and the other that transformation through the gamma distribution is not 

a suitable approach. When it comes to estimation, the method of moments has been 

used to fit gamma parameters to the delay data. An alternative is using maximum 

likelihood estimators instead, as they may estimate the parameters more precisely. 

Figure 3.1.1: Histograms of shifted data, with theoretical gamma p.d.f. 

Figure 3.1.2: Normal quantile plots showing normality of transformed data 
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As for fitting the wrong distribution, it is possible that the asymmetric Laplace 

distribution is more appropriate for the transformation of train delay data. For the 

remaining stations, see appendix 3. 

 

In order to gain a better fit, the asymmetric Laplace distribution is fitted to the four 

stations that have been presented so far. The asymmetric Laplace distribution might 

be more suited to our data, seeing as the gamma distribution does not manage to 

capture the rapid increase in density around the mode of the distributions at some 

stations (see Kalmar C and Halmstad C in Figure 3.1.1. in particular). The 

maximum likelihood method is used to fit asymmetric Laplace parameters to the 

delay data. In Figure 3.1.3, the estimated asymmetric Laplace probability density 

function (p.d.f) has been plotted over the histograms showing the densities of the 

data. 

Figure 3.1.3: Theoretical density of N(0,1) plotted with empirical densities of transformed delay data 

Figure 3.1.3: Fitted asymmetric Laplace p.d.f. plotted over density histograms 
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As is seen i Figure 3.1.3, the asymmetric Laplace p.d.f. manages to capture the 

rapid rise and decrease in density around the mode of the distributions better than 

its gamma equivalent. To carry on the Laplace analysis, the delays are transformed 

again, this time using the estimated Laplace distribution. Figure 3.1.4. shows the 

normal quantile plots of the delays after transformation using the asymmetric 

Laplace distribution. 

 

The Laplace transformation seems to handle the tails of our distributions better than 

the gamma transformation in general. Comparing Figure 3.1.4. to Figure 3.1.2, the 

deviation from Gaussianity seems to be more moderate at low and high quantiles 

when the Laplace distribution is used. In particular, this can be seen in the quantile 

plots for Halmstad C, where the tails are much better adapted to the normal 

distribution when Laplace is used. Figure 3.1.5, again, shows the theoretical and 

empirical densities plotted together. 

The results shown in Figure 3.1.5 support the fact that the asymmetric Laplace 

distribution is better suited to train delays than the gamma distribution. Hence, we 

seem to have found a transformation that makes it possible to fit multivariate time 

series models to our train delay data. Maximum likelihood estimates of asymmetric 

Laplace parameters are given in Table 3.1.2. 
 

 

 

 

 

 

Figure 3.1.4: Normal quantile plots showing normality of transformed data 
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Table 3.1.2: Estimates of asymmetric Laplace distribution parameters for delays at each station 

Station 𝜃 𝜎 𝜅 

Bromölla 3.00 0.67 0.44 

Göteborg C 2.48 0.62 0.25 

Halmstad C 4.00 0.80 0.29 

Helsingborg C 2.29 0.42 0.31 

Hyllie 1.34 0.24 0.17 

Hässleholm C 2.88 0.38 0.33 

Höör 2.93 0.75 0.35 

Karlskrona C 5.51 0.66 0.18 

Kalmar C 2.32 0.49 0.12 

Kristianstad C 2.30 0.34 0.27 

Lund C 2.10 0.43 0.18 

Malmö C 2.50 0.62 0.17 

Markaryd 1.37 0.18 0.18 

Pepparholm 1.69 1.69 1.69 

Simrishamn 1.11 0.21 0.24 

Ystad 2.22 0.41 0.20 

Ängelholm 1.00 0.38 0.16 

 

3.2 Time Series Modelling 

Table 3.2.1 shows the cross-correlation matrix for the stations Ystad, Lund, 

Kristianstad and Helsingborg for the original and transformed data up to three lags. 

We use the ccm(…) function in the R-package MTS compute the correlation 

matrices. In general, the effect of the gamma transformation on time dependence is 

relatively mild, although the cross-correlations grow stronger. Also, the cross-

correlations look to be significant only at lag 0 and at lag 1, which is reasonable 

since the mean delay of one day is not likely to be affected by the mean delay two 

or more days before. Consequently, the transformation seems to reveal stronger 

Figure 3.1.5: Theoretical p.d.f. of the N(0,1) distribution plotted with empirical densities of train 

delay data 
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correlations, and therefore time-dependence, between stations. For data transformed 

through the asymmetric Laplace distribution, se appendix 5. 

Univariate autocorrelation functions are given in Table 3.2.2, and graphically 

illustrated in appendix 2. Table 3.2.2. shows that, again, the transformations 

amplify the magnitude of time dependence at most lags. Also, the autocorrelations 

in appendix 2 indicate that there is a seasonal trend in the data, meaning that this 

will have to be considered before preforming any time series analysis. This, 

however, is thought to be outside the scope of our paper. Consequently, the 

transformation reveals stronger relations in the data through time and between 

stations. 

Table 3.2.1: Cross-correlation matrices of original and transformed data for station, Ystad, Lund, Kristianstad 

and Helsingborg at lags 0, 1, 2 and 3 

 Original Data Transformed Data (Gamma) 
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Table 3.2.2. Autocorrelations of the four given stations, all stretching 10 lags back in time 

 Original Transformed (Gamma) Transformed (Laplace) 
Lag Hels. Kalm. Lund Halm. Hels. Kalm. Lund Halm. Hels. Kalm. Lund Halm. 

1 0.392 0.092 0.389 0.153 0.433 0.163 0.435 0.234 0.462 0.193 0.431 0.273 
2 0.250 0.084 0.162 0.082 0.269 0.098 0.230 0.149 0.270 0.099 0.236 0.186 
3 0.231 0.095 0.076 0.132 0.251 0.122 0.129 0.170 0.252 0.119 0.146 0.214 
4 0.238 0.063 0.067 0.118 0.250 0.077 0.125 0.162 0.253 0.086 0.137 0.211 
5 0.220 0.019 0.115 0.104 0.243 0.020 0.197 0.174 0.243 0.019 0.221 0.211 
6 0.294 0.024 0.173 0.105 0.340 0.082 0.248 0.139 0.358 0.096 0.273 0.189 
7 0.419 0.144 0.209 0.104 0.479 0.210 0.263 0.161 0.519 0.236 0.282 0.218 
8 0.263 0.036 0.186 0.111 0.306 0.075 0.210 0.138 0.327 0.107 0.212 0.169 
9 0.158 0.066 0.086 0.017 0.174 0.076 0.135 0.061 0.167 0.067 0.153 0.095 

10 0.162 0.027 0.035 0.063 0.186 0.067 0.074 0.110 0.175 0.085 0.102 0.144 
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4. Theory and Methods 

4.1 Probability models 

In the following section, the relevant probability models are presented and the 

method of transforming random variables is discussed. Given that the classical 

methods of estimating the parameters of ARMA (𝑝, 𝑞)  and VARMA (𝑝, 𝑞) 
processes assume that the time series are samples of normally distributed random 

variables, this poses a significant problem. The problem can be circumvented using 

some elementary probability theory.  

Suppose that 𝑋~𝑁(𝜇, 𝜎) is a normally distributed random variable of the delay of a 

given train at a station. Then the probability density function (p.d.f.) of 𝑋 is given 

by: 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒
− 
(𝑥−𝜇)2

2𝜎2 ,         − ∞ < 𝑥 < ∞ 

For the normal distribution, 𝐸[𝑋] = 𝜇  and 𝑉𝑎𝑟[𝑋] = 𝜎2 . Furthermore, the 

probability density function of the normal distribution is symmetrical around 𝜇, this 

can be seen in Figure 4.1.1 (Hogg and Tanis). However, the normal distribution is 

not an accurate model of train delays for our random variable 𝑋. This was shown by 

the distribution of the data in section 3, but intuitively it is unlikely since technical 

problems or extreme weather produce very large delays which skew the distribution 

of train delays. 

 

Figure 4.1.1 Probability density function of the standardized normal distribution  

An alternative model for 𝑋 is the exponential distribution. Suppose that 𝑋~Exp(𝜃) 

with 𝐸(𝑋) =
1

𝜃
 and 𝑉𝑎𝑟(𝑋) =

1

𝜃2
, then the probability density function is given by: 

𝑓𝑋(𝑥) = {
𝜃𝑒−𝜃𝑥,              0 < 𝑥 < ∞
0,                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
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In this model the density of train delays declines exponentially as the magnitude of 

delays increases so that the probability of the train arriving in proximity to the time-

table is very high while the probability of large delays is very low. Perhaps it is 

charitable towards the Swedish railroad system to assume that 𝑋  follows an 

exponential distribution but since we transform 𝑋 to produce our time series 𝑌𝑡,𝑚 so 

that 𝑌𝑡,𝑚 follows a gamma distribution, it will not matter whether we assume 𝑋 to 

be an exponential or gamma distribution. Besides, a previous study on the 

distribution of train delays in Sweden suggests the exponential distribution is an 

accurate model of train delays (Bergström and Kruger). 

Suppose we introduce a new random variable which follows a gamma distribution 

with a parameter determining the shape of the p.d.f, 𝛽, and a parameter determining 

the rate, 𝛼. Call this random variable 𝑍~Γ(𝛼, 𝛽) with a p.d.f given by: 

𝑓𝑍(𝑧) = {

𝛽𝛼

Γ(𝛼)
𝑧𝛼−1𝑒−𝛽𝑧,         𝑧, 𝛼, 𝛽 > 0 

0,                                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

 

The density function of a Γ(1,2) is plotted in 4.1.2 (Hogg and Tanis). Our time 

series  𝑌𝑡,𝑚  is the daily average delay at the station 𝑚 . If the train delays are 

exponentially distributed we can define and interpret the sample of train delays of 

size 𝑛  as a sample from independent and identically distributed random 

variables  (𝑋1, … , 𝑋𝑛). Suppose that 𝑍  is an observation in  𝑌𝑡,𝑚 , then 𝑍 =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
, 

where 𝑛 is the number of train arrivals in a day at the station.  The distribution of 𝑍 

is derived using the moment-generating function of the exponential distribution 

defined as: 

Figure 4.1.2 Probability density function of gamma distribution with parameters 𝛼 = 2 and 𝛽 = 1 
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𝑀𝑋(𝑡) = 𝐸(𝑒𝑋𝑡) = ∫ 𝑒𝑋𝑡𝜃𝑒−𝜃𝑥
∞

0

=
𝜃

𝜃 − 𝑡
 

 

4.1.1 

 

 

𝑀𝑍(𝑡) = 𝐸(𝑒
𝑍𝑡) = 𝑀𝑋(𝑡) = 𝐸 (𝑒

∑ 𝑋𝑖
𝑛
𝑖=1
𝑛

𝑡) =∏𝑒
𝑡
𝑛
𝑋𝑖

𝑛

𝑖

= (𝑀𝑋 (
𝑡

𝑛
))

𝑛

= (
1

1 −
𝑡𝜃
𝑛

)

𝑛

 

 

4.1.2 

 

The moment-generating function of 𝑋~Γ(𝛼, 𝛽) in turn is given by: 

𝑀𝑥(𝑡) = (
β

𝛽 − 𝑡
)
𝛼

 

Since the moment-generating function is unique for every given probability density 

function, it follows from equation 4.1.2 that 𝑍~Γ(𝑛,
𝜃

𝑛
) (Hogg and Tanis). Note that 

if we assume that 𝑋~Γ(𝛼, 𝛽) we get the same result. An example of a gamma p.d.f. 

is showed in Figure 4.1.2. 

In many cases the assumption of independence is reasonable considering that our 

data is only for final stations on a route, meaning that the time between 

observations are long enough, so that a previous delay will not affect the timeliness 

of the next train. It is therefore reasonable to assume that the observations in 𝑌𝑡,𝑚 

approximately follow a gamma distribution. However, the fact that the gamma 

distribution did not fit some stations convincingly suggests that the data for some 

stations violate this assumption. 

In section 3.1 we found that the gamma distribution did not fit the data very well. 

This could be due to the method of moment estimators or the fact that the mean 

delays do not follow a gamma distribution. An alternative model that could be used 

is the asymmetric Laplace distribution. Assuming that 𝑋~𝐴Laplace(θ, κ, σ)  then 

the p.d.f. is given by: 

𝑓𝜃,𝜅,𝜎(𝑥) =
√2

𝜎

𝜅

1 + 𝜅2

{
 
 

 
 exp( 

−√2 𝜅

𝜎
|𝑥 − 𝜃|) , 𝑖𝑓 𝑥 ≥ 𝜃

exp (
−√2

𝜎
|𝑥 − 𝜃|) , 𝑖𝑓 𝑥 < 𝜃

 

Figure 4.1.3 shows the p.d.f of the asymmetric Laplace distribution for different 

parameter values. The Laplace distribution increases and decreases sharply before 

and after the mode value of  𝑋. Looking at the histograms in Figure 3.1.1, the mode 

of the gamma distribution is consistently lower than the mode of the data. This 

suggests that the asymmetric Laplace distribution may provide a better fit to the 

data (Kotz, Kozubowski and Podgorski). 
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To estimate the parameters of the gamma distribution we use the method of 

moments, which means we equate the sample moments of our data with the 

theoretical moments of the gamma distribution. The k
th

 moment is defined as 𝐸[𝑋𝑘] 
meaning that the first and second moments of the gamma distribution are given by: 

𝐸[𝑋] = ∫ 𝑥 ∙ 𝑓(𝑥)𝑑𝑥

∞

0

= ∫
𝛽𝛼

Γ(𝛼)
𝑥𝛼𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛼

𝛽
 

 

(4.1.3) 

 

 

𝐸[𝑋2] = ∫ 𝑥2 ∙ 𝑓(𝑥)𝑑𝑥

∞

0

= ∫
𝛽𝛼

Γ(𝛼)
𝑥𝛼+1𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛼(𝛼 − 1)

𝛽2
 

 

(4.1.4) 

 

Notice that the right-hand sides of equations (4.1.3) and (4.1.4) constitute a system 

of equations. Solving for 𝛼 and 𝛽 gives the method of moments estimators: 

𝛼 =
𝐸[𝑋]2

𝐸[𝑋2] − 𝐸[𝑋]2
 

 

(4.1.5) 

 

𝛽 =
𝐸[𝑋]

𝐸[𝑋2] − 𝐸[𝑋]2
 

 

(4.1.6) 

 

Where 𝛼 corresponds to the shape and 𝛽 to the rate of the distribution. We can now 

use the estimators for 𝐸[𝑋] and 𝐸[𝑋2] − 𝐸[𝑋]2 to estimate 𝛼 and 𝛽: 

 

Figure 4.1.3: Asymmetric Laplace distribution probability distribution function 
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𝛼̂𝑀𝑀 =
𝑋̅2

𝜎̂2
 

𝛽̂𝑀𝑀 =
𝑋̅

𝜎̂2
 

The method of moments estimators are both functions of 𝑋̅, meaning that very large 

values will have large effects on the estimators. This poses a potential problem for 

data that follows a gamma distribution since it is a characterized by a concentration 

of small values and a small amount of very large values. The method of moment 

estimator is consistent, but if an unusual amount of large values are generated, this 

will have a large effect on the estimators.  

Seeing as the moments estimators did not turn out a great fit, maximum likelihood 

estimators might be used to improve the accuracy. The estimators can be obtained 

by solving an optimization problem along the following relations for the gamma 

likelihood: 

𝐿(𝑥, 𝛼, 𝛽) =∏
𝛽𝛼

Γ(𝛼)
𝑥𝑖
𝛼−1𝑒−𝛽𝑥𝑖

𝑛

𝑖

 

 

 

(4.1.7) 

⇒ log 𝐿 (𝑥, 𝛼, 𝛽) = (𝑛𝛼) log(𝛽) − 𝑛log(Γ(𝛼)) + (𝛼 − 1)∑log 𝑥𝑖

𝑛

𝑖=1

− 𝛽∑𝑥𝑖

𝑛

𝑖=1

  

 

 

(4.1.8) 

⇒
𝜕𝐿

𝜕𝛼
= 𝑛 log 𝛽 − 𝑛

𝑑

𝑑𝛼
log(Γ(𝛼)) +∑log 𝑥𝑖

𝑛

𝑖=1

 

 

 

(4.1.9) 

⇒
𝜕𝐿

𝜕𝛽
= 𝑛

𝛼

𝛽
−∑𝑥𝑖

𝑛

𝑖=1

 
 

(4.1.10) 

 

(4.1.9) and (4.1.10) then constitute a system of equations that can be solved 

numerically for 𝛼  and 𝛽  (Choi and Wette). The maximum-likelihood estimators 

may produce better fits to the data. 

The parameters of the asymmetric Laplace distribution can be estimated by 

maximizing the likelihood function. The full derivation of the estimators is given 

by Kotz et al., 2002 (Kotz, Kozubowski and Podgorski). In practice, this method of 

estimation is included in the “ald” package in R.  

Knowing the distribution of 𝑌𝑡,𝑚   allows us to transform the data to a normal 

distribution. Suppose that the random variable 𝑍 follows a gamma distribution with 

p.d.f 𝑓𝑍(𝑧) and c.d.f 𝐹𝑍(𝑧), and the random variable 𝑋 follows a normal distribution 

with p.d.f. 𝑓𝑋(𝑥) and c.d.f. 𝐹𝑋(𝑥), and we define a uniform distribution between 

zero and one as 𝑈~[0,1] then, using some elementary probability theory, we get the 

following: 

𝑃(𝑍 ≤ 𝑧) = 𝑃(𝐹𝑍
−1(𝑈) ≤ 𝑧) = 𝑃(𝐹𝑍(𝐹𝑍

−1(𝑈)) ≤ 𝐹𝑍(𝑧)) = 𝑃(𝑈 ≤ 𝐹𝑍(𝑧)) 
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Showing that 𝐹𝑍(𝑧) follows a uniform distribution. Since any c.d.f. 𝐹𝑍(𝑧) will map 

to a set 𝐴 defined on the interval [0,1] we can transform 𝑓𝑍(𝑧) to the normal p.d.f. 

𝑓𝑋(𝑥) using 𝐹𝑋
−1(𝑥): 

𝐹𝑍(𝑧) → 𝐴 

𝐹𝑋
−1(𝑎) → 𝑥, 

where 𝑎 𝜖 𝐴. Consequently, if we plot 𝐹𝑋
−1(𝑎) for all elements in 𝐴, we get the 

normally distributed variable 𝑋. This method is inspired by the inverse method for 

random number generation, but since we use the empirical cumulative distribution 

function to compute the values in 𝐴, the generated values from 𝐹𝑋
−1(𝑎) are random 

only in so far as the empirical distribution function is generated from a random 

variable (Devroye). 

After successfully fitting a distribution and using it to transform the data into 

normality, the theory presented in section 4.2 can be used to build time series 

models with regards to the delay series. 

4.2 Time series analysis  
A time series is a series of values generated by a stochastic process over time, for 

example GDP, interest rates, and, of course, train delays. Time series analysis 

mainly focuses on trying to determine the characteristics of the stochastic process in 

question. Often, time series are believed to consist of completely random terms 

(white noise) called 𝑒𝑡, and autoregressive terms 𝑌𝑡−𝑘, where 𝑡 is a given point in 

time and 𝑘  determines the order of the lag of autoregression. These can be 

combined into different types of time series models, where the value at a point in 

time 𝑌𝑡, is explained by recursions on either random terms, or by autoregression. 

The simplest form of time series is one made up entirely of white noise terms, 

commonly known as moving average (MA) processes of order 𝑞 . An MA(𝑞) 
process is defined as follows: 

𝑌𝑡 = 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 −⋯− 𝜃𝑞𝑒𝑡−𝑞 

where 𝜃𝑖 are unknown coefficients determining the recursive power of each white 

noise term (Cryer and Chan). The MA(𝑞) process is often complemented by a time 

series model of autoregressive nature, meaning that the value at a certain time 𝑡 is 

calculated as the sum of weighted earlier terms. The autoregressive process, AR(𝑝), 
of order 𝑝 is defined as below: 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 

where 𝑒𝑡 is a white noise error term and 𝜙𝑖 are unknown coefficients measuring the 

strength of the recursion. Typically the two are combined, creating a mixed 

autoregressive moving average (ARMA) model. The ARMA (𝑝, 𝑞)  process is 

defined as 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 −⋯− 𝜃𝑞𝑒𝑡−𝑞 

where, again, 𝜙𝑖 and  𝜃𝑖 are unknown. 

A multivariate time series 𝒀𝒕 = (𝑌𝑡,1, 𝑌𝑡,2, … , 𝑌𝑡,𝑘) is a row vector of univariate time 

series 𝑌𝑡,𝑚  where 𝑡  denotes the point in time and 1 ≤ 𝑚 ≤ 𝑘  denotes the time 



 19 

series. In our data 𝑚  denotes the station that generated the time series. If our 

multivariate time series 𝒀𝒕 is a vector with dimension 1 × 𝐾, and we assume that 

every univariate time series 𝑌𝑡,𝑚  with length 𝑘  is dependent on 𝑌𝑡,𝑗  for 𝑗 ≠ 𝑚 , 

through an autoregressive process of order 𝑝 and a moving average process of order 

𝑞, then 𝒀𝒕  can be represented as a vector mixed autoregressive moving average 

process of orders 𝑝 and 𝑞, VARMA(𝑝, 𝑞), which is defined as follows: 

𝒀𝒕
′ =∑𝚽𝒊𝒀′𝒕−𝒊

𝑝

𝑖=1

+ ∑𝚯𝒊𝜺′𝒕−𝒊

𝑞

𝑖=1

+ 𝜺′𝒕 

Where 𝒀𝒕
′  is the transpose of our multivariate time series 𝒀𝒕 , 𝒀𝒕−𝒊 = (𝑌1,𝑡−𝑖,

𝑌2,𝑡−𝑖, … , 𝑌𝑘,𝑡−𝑖) is a row vector of the values of the time series 𝑌𝑗,𝑡−𝑖 at lag i. The 

matrices 𝚽𝒊 and 𝚯𝒊 are the AR and MA components respectively of order 𝑖. Finally 

𝜺𝒕 is a column vector of the white noise components. 

For the vector ARMA(1,1) process we have: 

 

𝒀𝒕
′ = 𝚽𝟏𝒀′𝒕−𝒊 + 𝚯𝟏𝜺′𝒕−𝒊 + 𝜺′𝒕 

 

(4.2.1) 

 

 

(

𝜙1,1 ⋯ 𝜙1,𝑘
⋮ ⋱ ⋮

𝜙𝑘,1 ⋯ 𝜙𝑘,𝑘

)(

𝑌1,𝑡−1
⋮

𝑌𝑘,𝑡−1

) + (

𝜃1,1 ⋯ 𝜃1,𝑘
⋮ ⋱ ⋮
𝜃𝑘,1 ⋯ 𝜃𝑘,𝑘

)(

𝜀1,𝑡−1
⋮

𝜀𝑘,𝑡−1
) + (

𝜀1,𝑡
⋮
𝜀𝑘,𝑡

) 

 

(4.2.2) 

 

 

 

{

𝑌1,𝑡 = 𝜙1,1𝑌1,𝑡−1 + 𝜙1,2𝑌2,𝑡−1+. . . +𝜙1,𝑘𝑌𝑘,𝑡−1 + 𝜃1,1𝜀1,𝑡−1+. . . +𝜃1,𝑘𝜀𝑘,𝑡−1…+ 𝜀1,𝑡
⋮

𝑌𝑘,𝑡 = 𝜙𝑘,1𝑌1,𝑡−1 + 𝜙𝑘,2𝑌2,𝑡−1+. . . +𝜙𝑘,𝑘𝑌𝑘,𝑡−1 + 𝜃𝑘,1𝜀1,𝑡−1+. . . +𝜃𝑘,𝑘𝜀𝑘,𝑡−1. . . +𝜀𝑘,𝑡

 

 

(4.2.3) 

 

From the system of equations in (4.2.3), we clearly see the codependence structure 

of the time series in 𝒀𝒕
′ . To understand the concept of stationarity it is useful define 

the row vector 𝝁 = (𝜇1, … , 𝜇 𝑘)  which is a vector of the expected values of our 

time-series in 𝒀𝒕. 

To estimate the order and magnitude of the coefficients of a VARMA(𝑝, 𝑞) process 

it is necessary to compute the covariance of our time-series with each other at 

different time-lags 𝑙. This is called the cross-covariance of  𝑌𝑡,𝑚 and 𝑌𝑡,𝑗 at lag 𝑙 and 

is given by: 

𝛾(𝑙)𝑚,𝑗 = 𝐸[(𝑌𝑡,𝑚 − 𝜇𝑚)(𝑌𝑡+𝑙,𝑗 − 𝜇𝑗)] 

The cross-covariance of all 𝑌𝑡,𝑚  and 𝑌𝑡,𝑗  for 1 ≤ 𝑚, 𝑗 ≤ 𝑘  at lag 𝑙  can be 

represented by the cross-covariance 𝐾 × 𝐾 matrix given by: 

𝚪(𝑙) = (
𝛾11(𝑙) ⋯ 𝛾1𝑘(𝑙)
⋮ ⋱ ⋮

𝛾𝑘1(𝑙) ⋯ 𝛾𝑘𝑘(1)
) 
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The diagonal of 𝚪(𝑙) represents the auto-covariances of the time-series 𝑌𝑡,𝑚 at lag 𝑙 

and the elements correspond to 𝛾(𝑙)𝑚,𝑗  (Reinsel). The cross-correlation function 

between 𝑚 and 𝑗 is given by: 

𝜌(𝑙)𝑚,𝑗 =
𝛾(𝑙)𝑚,𝑗

√[𝛾(0)𝑚,𝑚 ∙ 𝛾(0)𝑗,𝑗]

 

Which gives the cross-correlation matrix at lag 𝑙 denoted by (𝑙) : 

𝚸(𝑙) = (

𝜌(𝑙)1,1 ⋯ 𝜌(𝑙)1,𝑘
⋮ ⋱ ⋮

𝜌(𝑙)𝑘,1 ⋯ 𝜌(𝑙)𝑘,𝑘

) 

In order for statistical inference to be possible, simplifications and assumptions 

have to be made. When it comes to time series analysis, the vital assumption is that 

of stationarity. Stationarity comes in two forms; it can be both strict and weak. 

Throughout this thesis, whenever stationarity is mentioned, it will be in reference to 

the weaker (or second order) kind. A multivariate time series 𝒀𝒕 is stationary if 𝝁𝑡 
and 𝚪(𝑡 + 𝑙, 𝑡), 𝑙 = 0, ± 1, …, are both independent of  𝑡 (Brockwell and Davis). 

A common method of estimating the parameters of the VARMA (𝑝, 𝑞)  model, 

assuming that the order of 𝑝 and 𝑞 is known, is maximum-likelihood estimation. 

Assuming that we have a sample of size 𝑛  from a stochastic variable 𝑋  with a 

single parameter 𝜃 and probability density given by 𝑓𝑋(𝑥, 𝜃), then the maximum 

likelihood function for our random sample is given by 𝐿(𝑥, 𝜃) = ∏ 𝑓𝑋(𝑥𝑖)
𝑛
𝑖=1 . The 

maximum-likelihood estimator (MLE) of 𝜃 is then given by: 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∏𝑓𝑋(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

] 

To keep the exposition concise we consider only the MLE of the VAR(1) process 

which can easily be extended to the VARMA(𝑝, 𝑞) case. A VAR(1) is then given 

by 𝒀𝒕
′ = 𝚽𝟏𝒀′𝒕−𝟏 + 𝜺′𝒕. Assuming that our observations in the 1 × 𝐾 vector 𝑌𝑡,𝑚 

are normally distributed for all 𝑚 , the maximum likelihood function of our 

estimators in the 𝐾 × 𝐾 matrix 𝚽𝟏 is: 

𝐿(𝒀′𝒕, 𝚽) = [2π ∗ det (𝚺)]
−𝑘/2exp (−

1

2
∑[𝒀𝒕 −𝚽𝟏𝒀𝒕−𝟏]

𝑇𝚺−𝟏[𝒀𝒕 −𝚽𝟏𝒀𝒕−𝟏]

𝐾

𝑡=1

) 

 

Where 𝚺  is the variance of 𝜺𝒕  (Jakobsson). Maximizing this likelihood function 

with respect to the parameters is not a problem. If non-Gaussianity is assumed, the 

maximum-likelihood function becomes non-linear producing several stationary 

points. In the multivariate case this becomes very difficult to solve (Lehr and Lii). 

This is why the data needs to be transformed to a normal distribution. 
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5. Conclusion 

This paper provides the groundwork for the possibility of modelling train delays as 

multivariate time series. The use of the gamma distribution to transform the train 

delay data proved mildly successful, meaning that the results show some signs of 

deviation from the normal distribution. The transformed data, however, are better 

suited to analysis using multivariate time series than the original data. The gamma 

transformation revealed an increase in the magnitude of univariate autocorrelations 

and multivariate cross correlations. Seeing as the gamma transformation did not 

turn out to be as fruitful as hoped, the asymmetrical Laplace distribution was used 

in order to make new transformations. This resulted in new time series that are 

distributionally very close to Gaussianity. Again, the transformed data show signs 

of a slight increase in time dependence, meaning that autocorrelations and cross 

correlations were mildly amplified. Hence, the thesis has successfully paved the 

way to how one could initiate multivariate time series analysis of train delays in 

Skåne, Sweden. 

The transformations seem to have a strengthening effect on time dependence in our 

time series. Autocorrelations and cross correlations seem to indicate a first order 

multivariate autoregressive model could be used to model delays. This is believed 

to be a reasonable conclusion, seeing as time dependence is believed to be unlikely 

to stretch further back in time than one day. Cross correlations at lags greater than 1 

are weak, and any significance is thought of as doubtful. Looking at the univariate 

time series, there are clear periodical effects. In order to fully prepare the data for 

multivariate time series analysis, these trends need to be taken into account. The 

diagonals of the cross-correlation matrices suggest that delays on the previous day 

might be used as a predictor of train delays today. For the purpose of prediction, it 

may be sufficient to analyze the univariate time-series. 

As the Laplace transformation yielded relatively Gaussian data, the time series 

theory given in section 4.1 of this paper could be used to study the way in which 

train delays can be modelled using moving average and autoregressive components, 

both individually in univariate models and together in multivariate models. Of 

course, the above mentioned periodicity needs to be addressed before any such 

model fitting is attempted. Multivariate time series analysis could be used to 

determine whether there is any sort of interdependence between the stations when it 

comes to train delays, and perhaps a model as such could be of use in order draw up 

measures aimed to limit the spreading of delays between heavily linked cities. 

Furthermore, it could be used as a guide to decide how to distribute resources 

aimed at prevention of delays, since the dependence might be stronger on some 

routes, while other routes provide a more natural clearing of delays. 

Finally, due to some irregularities in the Swedish Transport Administration’s data, 

it may be prudent to request data from the train operators themselves. 
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Appendix 1 

 

 

 

The above table summarizes all stations which were listed as final destination of at 

least one train during the time of the investigation, as well as the amount of trains 

that did indeed arrive at each station. Stations which have been used in our models 

are listed in bold characters. 

  

Table: Summary of data and indication of which stations were used in analysis 

Final Destination Frequency Final Destination Frequency 

Alvesta 979 Laholm Västra 71 

Arlöv 2 Landskrona Östra 18 

Båstad Norra 5 Lockarp 227 

Billberga 95 Lund C 21314 

Bjuv 3465 Mörrum 1 

Bräkne-Hoby 1 Malmö C 16378 

Bromölla 5972 Markaryd 10310 

Eslöv 77 Peberholm 71772 

Förslöv 7975 Perstorp 1162 

Göteborg C 23736 Rydsgård 2 

Grantofta 1 Sölvesborg 1 

Grevie 2 Simrishamn 19096 

Hässleholm 39696 Skurup 5 

Höör 11251 Stenhag 2 

Halmstad C 11927 Svågertorp 68 

Helsingborg C 105640 Teckomatorp 409 

Helsingborg godsbangård 51 Tomelilla 2 

Hyllie 46101 Trelleborg 14044 

Jordholmen 1 Triangeln 2 

Kävlinge 3872 Växjö 5212 

Kalmar C 12009 Varberg 78 

Karlshamn 4947 Ystad 21860 

Karlskrona C 16611 Åkarps Norra 3 

Klippan 4 Åstorp 5655 

Kristianstad C 41077 Älmhult 619 

Kungsbacka 1 Ängelholm 17784 

Kvidinge 1 Ödåkra 1 
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Appendix 2 

In appendix 2 we present autocorrelation functions for all stations that were part of 

the analysis, adding to the four that were presented in the main body of the paper. 

Autocorrelations of both original and transformed data are given. 

Figure 1: Autocorrelations of original data 
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Figure 2: Autocorrelations of data transformed through gamma distribution 
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Figure 3: Autocorrelations of data transformed using the asymmetric Laplace distribution 
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Appendix 3 

In appendix 3 density histograms of the shifted train delays will be given, with 

probability functions of the estimated gamma and asymmetric Laplace distributions 

plotted on top of them. 

 

Figure 1: Histograms and gamma p.d.f.s 
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Figure 2: Histograms and asymmetric Laplace p.d.f.s 
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Appendix 4 

Below, quantile plots showing whether the transformed data is normally distributed 

or not. Plots are given for data transformed using both gamma and asymmetric 

Laplace distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Quantile plots showing normality of delays transformed through gamma distribution 
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Figure 2: Quantile plots showing normality of delays transformed through the asymmetric Laplace 

distribution 
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Appendix 5 

In this appendix, cross correlations for the data transformed using the asymmetric 

Laplace distribution is shown. 

Table 3.2.1: Cross-correlation matrices of original and transformed data for station, Ystad, Lund, Kristianstad 

and Helsingborg at lags 0, 1, 2 and 3 

 Transformed Data (Asymmetric Laplace) 
 

 

𝛲(0) 

1 0.413 0.281 0.495

0.413 1 0.298 0.343

0.281 0.298 1 0.335

0.495 0.343 0.335 1
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𝛲(1) 

0.276 0.235 0.163 0.236

0.282 0.431 0.209 0.278

0.177 0.205 0.444 0.250

0.198 0.226 0.246 0.462
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𝛲(2) 

0.1842 0.112 0.140 0.0919

0.1630 0.236 0.166 0.1464

0.1464 0.193 0.337 0.2204

0.0846 0.106 0.227 0.2694
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𝛲(3) 

0.1341 0.0997 0.0824 0.101

0.0775 0.1456 0.1099 0.102

0.1091 0.1112 0.3016 0.212

0.0517 0.0789 0.1991 0.252
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