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Introduction: Magnetic Resonance Imaging

• Imaging modality.

• Probes magnetic properties of tissue.

• Probes properties of water.

• Most MR methods study macrostructure.

• dMRI aims at probing microstructure.
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[1] Koziel (2016), bhcamouflage.us; [2] Neuroskeptic (2014), blogs.discovermagazine.com
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Introduction: Clinical application of dMRI

CT T1W DWI Tractography

Stroke Diagnostics Neurosurgery Planning

[1] In-house Lund data; [2] Schultz (2006), Wikimedia
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• Diffusion MRI studies diffusion of water.

• Diffusion is modulated by surrounding environment.

• Diffusion MRI contains indirectly information on the geometry of the environment.

• Different geometries can be linked to different functions/pathological conditions.

Introduction: Principles of dMRI
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[1] Koziel (2016), bhcamouflage.us 



Introduction: Axon structure ↔ function

• Convey information as electrical impulses.

• Projections of nerve cells.

• Part of brain white matter.

[1] Zatore et al. (2012), Nat. neuroscience



Introduction: Axons ↔ wiring of the brain

• Architecture is called axonal trajectory.
Axons:

their architecture:

axonal trajectory

[1] AliceD (2015), Stackexchange; [2] Mikula et al. (2012), Nat. Methods
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Introduction: Undulations are ubiquitous

20 µm

Optic Nerve Corpus Callosum Phrenic Nerve[1] [2] [3]

[1] Jeffery (1996), J. Comp. Neurol; [2] Mikula et al. (2012), Nat. Methods; [3] Lontis (2009), IEEE Trans. Biomed. Eng.



The Problem: How to model axons?

?

[1] Nilsson (2016), Proc. ISMRM 24 
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Methods: Physics at different diffusion times

Diffusion Time

[1]

[1] Novikov (2016), arXiv preprint



Encoding information into signal

• Pulsed Gradient Spin Echo Sequence

[1]

[1] Winston (2012), Quant Imaging Med Surg. 



S = e− ׬ D ω ∙ q ω 2 dω

׬ ∙ dω = ׬ dω

Signal = f(Diffusion Spectrum, Gradient Waveform)[1]

Diffusion Spectrum Encoding Spectrum

[1] Stepišnik (1993), Physica B: Condensed Matter



or

Aims

or

Model:

Method:In-vivo application:

Model:

[1] Schilling (2018), NeuroImage; [2] _DJ_ (2005), flickr.com
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Model of axonal trajectory ↔ thin undulating wire

y 𝑥 = a ∙ sin 𝛷 = a ∙ sin 2π ∙
𝑥

λ
+ r 𝑥

Optic Nerve Corpus Callosum Phrenic Nerve

20 µm



Diffusion in harmonic waves

Short Diffusion Times Long Diffusion Times

Planar RestrictionOrientation Dispersion
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𝐃∞ = µOD x ∙ D0

𝛚 = λσ
−2 ∙ D0

𝛚𝐩

D(ω|D∞, σ, p) = D∞ 1 − e
−
ωp

σ2

How to characterize diffusion spectrum?



Methods: Numerical Simulations

λ

a

Descriptors of axonal Trajectories:

1) Amplitude a, wavelength λ

2) Microscopic orientation dispersion µOD, dispersion-weighted wavelength λσ

𝐃∞

𝛚

𝛚𝐩



Results: Diffusion Spectra of Axonal Trajectories

Harmonic Axonal Trajectories Stochastic Axonal Trajectories
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Results: Predicted vs. Estimated parameters

Diffusivity at Short 

Times

Width of Diffusion 

Spectra

Power Behavior
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Stochastic



Results: Solving the inverse problem

Δ [ms]

δ [ms]

g [T/m]

dMRI Signal

Gradient Waveforms Parameter Space



Results: Estimating Axonal Trajectories

ω = 10 Hz

↔

D∞ = 0.1 µm2/ms

ω = 33 Hz

↔

D∞ = 0.4 µm2/ms
a = 2.3 µm

λ = 18 µm

a = 1.8 µm

λ = 32 µm

λσ = 13 µm, µOD = 0.06

amax = 2.5 µm

λ = undefined

λσ = 7.2 µm, µOD = 0.24

amax = 3 µm

λ = undefined
p = 2

p = 2



Are non-straight axonal trajectories necessary?

• Questions:

– Do undulations bias axon diameter estimation in models that 

assume straight cylinders? [1]

– Can the bias be explained?

• Signal and diffusion spectra from Monte Carlo.

• Restricted diffusion compartment model constrained to intra-

axonal part only [2].

• Gradient waveforms with short & long diffusion times [2].

• Explanation through diffusion spectra.

Intra-Axonal

CSF

Trapped Water

Extra-Axonal

ActiveAx

[1] Nilsson et al. (2012), NMR  Biomed; [2] Alexander et al. (2010), NeuroImage



Results: Undulations interpreted as cylinders
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Tissue Parameters ↔ Diffusion Spectrum

Cylinders Undulating wires 

Amplitude
Diameter



What & Where is Fitted?

Diffusion Spectra Encoding Spectra



• Axonal trajectory model is congruent with histology, unlike models that 

assume parallel straight cylinders.

Conclusions

ω = 10 Hz

↔

D∞ = 0.1 µm2/ms

ω = 33 Hz

↔

D∞ = 0.4 µm2/ms a = 2.3 µm

λ = 18 µm

a = 1.8 µm

λ = 32 µm

λσ = 13 µm, µOD = 0.06

amax = 2.5 µm

λ = undefined

λσ = 7.2 µm, µOD = 0.24

amax = 3 µm

λ = undefined

p = 2

p = 2



Conclusions

(ActiveAx; Alexander et al. 2010)

(NODDI; Zhang et al. 2012)

(Axonal Trajectory; Brabec et al. 2018)



Importance of Physics

• A simple 1D-toy model with far-reaching consequences.

• Scientific fields are no longer separate.
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