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Abstract

The type of pattern recognition methods used for controlling mod-
ern prosthetics, referred to here as single-label classification methods,
restricts users to a small amount of movements. One prominent reason
for this is that the accuracy of these classification methods decreases as
the number of allowed movements is increased. In this work a possible
solution to this problem is presented by looking into the use of multi-
label classification for classifying electromyographic signals. This was
accomplished by going through the process of recording, processing,
and classifying electromyographic data. In order to compare the per-
formance of multi-label methods to that of single-label methods four
classification methods from each category were selected. Both cate-
gories were then tested on their ability to classify finger flexion move-
ments. The most commonly tested set of movements were the thumb,
index, long, and ring finger movements in addition to all the possi-
ble combinations of these four fingers. The two categories were also
tested on their ability to learn finger combination movements when
only individual finger movements were used as training data. The
results show that the tested single- and multi-label methods obtain
similar classification accuracy when the training data consists of both
individual finger movements and finger combination movements. The
results also show that none of the tested single-label methods and only
one of the tested multi-label methods, multi-label rbf neural networks,
manages to learn finger combination movements when trained on only
individual finger movements.
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1 Introduction

The loss of a limb is an intensely traumatic experience that almost always
leads to a noticeable decrease in a persons perceived quality of life [5]. A
part of this decrease comes from the forced life style change that limb loss
imposes upon a person. In order to help these people prosthetic devices were
invented to compensate for the missing limb. Over the years the quality
of these devices have changed remarkably from the primitive peg-leg and
metal arm to the more complicated myoelectric-controlled prosthesis that
exist today which is illustrated in figure 1. Yet even with today’s technology
a significant amount of people chose to forego the more advanced prosthetic
devices in favor of static or body powered prostheses or even no prostheses
at all [7]. There are a wide variety of reasons for this choice ranging from
cumbersome weight to lack of feedback to poor control etc.
In this work the problem of interest lies within the control of prosthetic de-
vices and more specifically in the control of myoelectric hand prostheses.
A myoelectric-controlled hand prosthesis works by measuring the electrical
activity of the nerves in the residual limb. There are different ways that a
hand prosthesis can be connected to a users body. The most common way is
that the residual arm is placed into a socket in the prosthesis which is then
fastened around the arm. This socket is filled with electrodes which allows
for measurement of the nerve activity. Another much rarer way is through
a procedure known as osseointegration in which the prosthesis is connected
directly to the bone which can allow the electrodes to be directly connected
to the users muscle tissue.

Controlling a hand prosthesis is done through a series of steps. The user
first decides what sort of movement should be made which for myoelectric
prostheses is done by contracting muscles in the residual arm. The electrodes
in the prosthesis detect the nerve activity due to the muscle contraction and
then runs the detected signal through a pattern recognition algorithm. The
output from this algorithm then decides what type of movement the pros-
thesis performs. The movement that is performed is all or nothing so a user
can neither stop the movement midway nor can another movement be made
until the current one is completed.
One of the most evident problems with the current pattern recognition meth-
ods used for controlling hand prostheses is that increasing the amount of
possible hand and finger movements has a direct impact on the classification
accuracy [10]. This means that restrictions have to be placed on how many
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Figure 1: (Left) Old iron arm prosthesis believed to be dated from 1560-1600 [19].
(Right) Michelangelo prosthetic hand developed by Ottobock [21]

degrees of freedom that are allowed which has negative impact on user satis-
faction. Another problem that occurs when increasing the degrees of freedom
is that the training time required increases greatly since each movement has
to be trained individually.
A potential solution to these problems could be to change the perspective.
Instead of looking at each movement as an individual class separate from all
others it can instead be seen as combination of different classes. This can
be done by considering each finger as its own class which are referred to as
labels so that a closed hand for example could correspond to all labels being
active while an open hand would have zero labels active. These types of clas-
sification methods that see each class as a set of labels are called multi-label
classification methods. A point of interest with multi-label classification is
the possibility that training might only be needed on individual labels with-
out any need for training on the label combinations.
Previously multi-label classification methods have been used with success
in areas like text categorization [15] and image classification [3] but it still
remains untested for time signals like electromyographic signals.
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1.1 Aim

The aims of this thesis are as follows:

• To test the possibility of applying multi-label classification methods for
the purpose of classifying electromyographic signals.

• To compare the performance of multi-label methods with that of single-
label methods when it comes to classifying electromyographic signals.

• To test the ability of multi-label classification methods to extrapolate
from the training on individual labels in order to classify label combi-
nations.

1.2 Disposition

This report contains 6 chapters. Chapter 1 outlines why the study has been
done and what the goal of it was. Chapter 2 discusses the theory that the
study is built upon. Chapter 3 explains the methods used in this work both
in what was done and how it was done. Chapter 4 contains the results of
the study. Explanations and theories for the results are written in chapter
5. Finally in chapter 6 the conclusion is stated and some avenues for further
work are explored.
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2 Theory

In this section the theory needed to understand the processes required for
multi-label classification is explained. The steps needed in order to perform
a classification are illustrated in figure 2. Section 2.1 will discuss why feature
extraction is required for functional classification and will also explain the
different features used in this work. Section 2.2 and 2.3 will discuss the dif-
ferent types of classifiers used in this work. Finally in section 2.4 some ways
of measuring error in multi-label classification are explained. The recording
and data processing steps are discussed in section 3.

Figure 2: Block diagram of the steps involved in attempting to classify EMG signals

2.1 Features

Electromyograhpic (EMG) signals contain a lot of noise from different sources
[4] which means that trying to classify raw EMG data often results in a poor
classification accuracy. In order to handle this problem a method called fea-
ture extraction can be used on the EMG signals to extract useful information
hidden within the data. Feature extraction works by letting a window slide
over the signal and then calculating the desired feature on the windowed
segment. These feature then form an N dimensional space where N is the
number of features used times the number of channels of EMG data. The
idea is then that by using different features the separation between classes in
this N dimensional space is increased which should make classification easier.
Thus by letting the extracted features be the input into the classifier instead
of the raw EMG data the classification accuracy can be improved [4]. The
features used for EMG signals can be divided into four categories: time do-
main, frequency domain, time-frequency domain and spatial domain [17]. In
this work only two of the four feature domains were used, time domain and
frequency domain.
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2.1.1 Time Domain Features

Time domain features tend to be the easiest to calculate compared to other
feature categories due to being calculated from the raw EMG signal without a
need for any transformation. In addition time domain features also maintain
high classification accuracy in comparison to other feature categories [23].
The time domain features used in this work are as follows:

Mean Absolute Value

This feature simply calculates the mean absolute value (MAV) of the win-
dowed signal. MAV is one of the more popular time domain features and is
often used for the detection of muscle contraction levels [22]. The MAV can
be calculated by:

MAV =
1

N

N∑
n=1

|xn| (1)

Where N is the total number of samples in the window and xn represents the
nth sample in the window.

Variance

The variance (VAR) of a EMG signal gives a measure of the signals power.
The variance can be expressed as:

V AR =
1

N − 1

N∑
n=1

x2
n (2)

Zero Crossings

This feature gives the number of times that the signal, x, crosses zero within
the window. This feature is very sensitive to noise so a threshold is often
needed. Zero Crossings (ZC) is related to the frequency of the EMG-signal.
The ZC value increases by one step if the following is true:

( {xn > 0 and xn+1 < 0} or {xn < 0 and xn+1 > 0} )

and |xn − xn+1| ≥ ε
(3)

Where ε is the chosen threshold value.
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Slope Sign Change

This feature gives the amount of times that the slope of the signal x changes
sign within the window, it is related to the frequency of the signal. Slope
sign change (SSC) is quite similar to ZC and as with ZC it is sensitive to
noise so a threshold is often necessary. The SSC value is incremented by one
if the following is true:

({xn > xn−1 and xn > xn+1} or {xn < xn−1 and xn < xn+1})
and (|xn − xn+1| ≥ ε or |xn − xn−1| ≥ ε)

(4)

Where ε is the threshold.

Waveform Length

The waveform length (WL) feature gives a measure of the amplitude, fre-
quency, and time of the signal. The WL is calculated as the summed up
length of the signal within the window:

WL =
N∑

n=1

|xn+1 − xn| (5)

Willison Amplitude

The Willison amplitude (wAmp) gives the amount of times that the ampli-
tude of the signal has changed more than a set threshold between two time
instances. The wAmp is related to the firing of motor unit action potentials
and thus gives a measure of the muscle contraction level [22].

wAmp =
N∑

n=1

f(|xn − xn+1|),

f(x) =

{
1 if x > threshold

0 otherwise

(6)

Log detector

The log detector (logDet) feature gives an indication of muscle contraction
force [16]. This feature can be calculated using:

logDet = e
1
N

∑N
n=1 log |xn| (7)
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2.1.2 Frequency Domain Features

When it comes to EMG signals frequency domain features are commonly
used for measuring muscle fatigue or changes in motor unit recruitment and
firing patterns [11]. They take a longer time to calculate compared to time
domain features since the EMG signal has to be transformed in to frequency
domain before the features can be calculated. The frequency domain features
used in this work are:

Mean Frequency

This feature gives the mean frequency (FMN) of the power spectral density
of the EMG signal. The FMN is calculated by:

FMN =

∑N
n=1 fnPn∑N
n=1 Pn

(8)

Where fn is the frequency of the spectrum, Pn is the EMG power spectrum
and N gives the size of the frequency bin.

Median Frequency

The median frequency (FMD) feature gives the frequency at which the spec-
trum is divided into two equally large parts. The FMD frequency is given
by:

FMD =
1

2

N∑
n=1

Pn (9)

Peak Frequency

The peak frequency (PKF) feature gives the frequency at the point where
maximum power occurs. PKF can be expressed as:

PKF = maxPn, where n = 1, ..., N (10)

2.2 Single-label Classification

Classification is the process of assigning class labels to an observation based
on a model created by a set of training data. The most common type of
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classification is single-label classification which occurs when each observa-
tion is restricted to having only one class label. single-label classification
sees use in an incredibly varied amount of fields with some examples being
speech recognition [6], geostatistics [18] and credit scoring [12] . There are
many different methods for implementing single-label classification each with
its own advantages and drawbacks, the methods relevant for this work are
described below.

2.2.1 K-Nearest Neighbour

The k-nearest neighbour (KNN) algorithm is one of the more simplistic clas-
sification methods. KNN works on the idea that observations with the same
class label are grouped together. This means that if a new observation lies
close to a majority of instances with a specific label then the observation will
be assigned the same class label as the majority. Calculating the distance
between the observations can be done in different ways with some examples
being Euclidean distance, Chebychev distance and Hamming distance. The
advantages of KNN lies in how easy it is to implement and having average
accuracy despite its simplicity [13]. In comparison a notable disadvantage of
the KNN method is that the entire training set is saved and then used as a
sort of look-up table. This means that if the training set is large the KNN
method will take a longer time to compute. An example of how the KNN
algorithm works can be seen in figure. 3.

Figure 3: Example of k-nearest neighbour with k = 4. The blue squares outnumber
the red triangles within the neighbourhood so the unknown observation is given the
blue square class label.
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2.2.2 Naive Bayes

Naive Bayes (NB) is a type of probabilistic classification method. The
method gets its name from its use of the Bayes theorem. The naive part
comes from the assumption that the predictor variables are independent from
each other. The method works by assuming that the observations are samples
from probability distributions with each class having its own distribution. By
calculating these probability distributions it would be possible to determine
the probability that a new observations happens at a specific point given
that it belongs to a specific class. The Bayes theorem can then be used to
instead calculate the probability that a new observation belongs to a specific
class given that it occurs at a given point. The classification is then done by
calculating the probability of a new observation belonging to each class and
then selecting the class with the highest probability.

2.2.3 Support Vector Machine

A Support Vector Machine (SVM) is a classification method that functions
by finding the hyper plane that linearly separates all data points as much
as possible. This is done by trying to maximize the margin which is the the
distance from the boundary between the classes and the observations closest
to it under the constraint that all observations are on the correct side of the
boundary. Regrettably most data is not linearly separable especially not if
any type of noise is involved. One way to handle this problem is to allow
observations to be on the wrong side of the boundary and then add a penalty
for each observation on the wrong side. This directs the method towards
maximizing the margin while trying to keep misplaced observations to a
minimum. But even if this is done there is still no guarantee that the data can
be linearly separated instead it might only be possible by using a nonlinear
boundary. The problem with nonlinear boundaries is that they are far more
difficult to calculate. A way to solve this issue is by making use of the kernel
trick [2]. In short the kernel trick works by mapping the data to different
and possibly higher dimensional space where a hyper plane that separates
the classes can be more easily found. The linear boundary that is found in
the mapped space is then transformed into a nonlinear boundary when the
data is mapped back into the original space. For the case where more then 2
classes are involved the SVM method combines multiple binary classifiers in
order create boundaries that separate all the classes. An illustration of the
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SVM method can be seen in figure 4.

Figure 4: Maximum-margin hyper plane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.

2.2.4 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a commonly used classification method.
LDA works by creating a boundary between the classes so that a new obser-
vation can be classified by simply looking at where it occurs in relation to the
boundaries. In order to create these boundaries the observations are treated
as samples from multivariate normal distribution functions with each class
having its own distribution function. The boundaries can then be found by
looking at the set of points where the probability that an observation be-
longs to two classes is equal. This can be accomplished by making use of
the vector of the mean values and the covariance matrix of each distribution.
By making the assumption that the covariance matrices of the distributions
are equal the calculations become simpler and the boundaries between the
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classes become linear. If the assumption of equal covariance matrices is not
made the boundaries become quadratic and the method instead turns into
quadratic discriminant analysis.

2.2.5 Neural Networks

This section serves only as an introduction into Neural Networks (NN) for
single-label classification so that it can later be expanded into multi-label
classification in section 2.3.4. NN are a set of different classification methods
that were inspired from the interaction between neurons inside the brain.
Similar to a real brain NN consist of a number of connected neurons. These
neurons are structured into three different layers, the input layer, the hidden
layer, and the output layer as can be seen in figure 5. Each neuron has an
activation function that determines whether or not it will pass on information
to the subsequent layer. There are many different activation function that
can be used but in this work only the radial basis functions such as the
Gaussian function are of interest. The input to each neuron is calculated
by multiplying the output of all the connected neurons from the previous
layer with appropriate weights then summing them plus a bias term together
and then putting it through the neurons activation function. The output of
a neuron then depends on its input, its activation function and its output
function which is often chosen to be the identity function. For single-label
classification the inputs in the input layer correspond to the predictors so if 5
predictors are used the input layer will contain 5 neurons. In the output layer
each output is connected to a class and the values from each output gives
the probability that an observation belongs to that class. The classification
is then completed by selecting the class with the highest output.

2.3 Multi-label Classification

There are many cases were an observation can have several different class
labels that fit equally well. An image for example could contain both a
mountain, a lake and a forest. If a single-label method was used to clas-
sify this image only one of these labels could be attached to the observation
and information would be lost. To solve these kinds of problems multi-label
classification methods can be used instead. In multi-label classification an
observation can belong to several different classes. This means that each ob-
servation has a corresponding label set that says which labels the observation

14



Figure 5: Illustration of a neural network with 3 inputs, 1 output and a hidden
layer of width 1 and height 4.

has been fitted with.
There are two main areas of multi-label classification namely problem trans-
formation and algorithm adaption [26]. In problem transformation the goal
is to fit the data to the method. One example of how this can be done is by
looking at each possibly label combination as its own class the data is then
transformed from multi-label to single-label. The data can then be classified
by using an already known single-label classification method. In algorithm
adaption on the other hand the goal is to fit the method to the data. This
has lead to the creation of methods that can handle multi-label data many
of which are based on single-label methods. In this work only methods that
belong to the algorithm adaption group are of interest. The methods that
are used in this work can found below.
Multi-label classification has become more popular as the complexity of mod-
ern applications increases [26]. These days multi-label classification methods
have been used with success among such varied fields as text categorization
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[15], image classification [3] and protein function classification [20].

2.3.1 Multi-label K-Nearest Neighbour

Multi-label k-nearest neighbour (MLKNN) created by Min-Ling Zhang and
Zhi-Hua Zhou [30] is a modification to the classic KNN method meant to
allow for a lazy learning approach to multi-label data. The explanation of
the MLKNN method is paraphrased from [30] in the following text.
Before starting the explanation of how the MLKNN method works some
notation first needs to be presented. The observation to be classified is given
as x and its corresponding label set is given as Y ⊆ L where L is the set of
all labels. A category vector for x is then defined ~yx which gives whether or
not a label is part of the observations label set:

~yx(l) =

{
1 if l ∈ Y
0 otherwise

, l ∈ L (11)

This means that the purpose of the MLKNN method is to calculate the
category vector since that in turn gives the label set of the observation.
Another variable N(x) can then be defined which gives the set of KNNs of
x that were identified in the training set. By looking at the label set of each
of these neighbours a membership counting vector can be defined:

~Cx(l) =
∑

a∈N(x)

~ya(l), l ∈ L (12)

Where ~Cx(l) measures the number of neighbours of x that contain l in their
label sets. Next H l

1 is defined as the event in which the observation x has
label l in its label set while H l

0 is defined as the event where it does not.
Finally El

j (j ∈ 0, 1, ..., K) is defined as the event in which the sum of the
occurrences of label l in the neighbours of observation x is equal to j. Now
that the notations have been introduced the explanation of MLKNN can
begin. The MLKNN method starts by identifying the KNNs in the training
set for the input observation x. Once this is done the category vector can
then be calculated with the help of the membership counting vector and the
maximum a posteriori (MAP) principle:

~yx(l) = arg max
b∈{0,1}

P (H l
b|El

~Cx(l)
), l ∈ L (13)
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This equation can then be rewritten by making use of the Bayes theorem:

~yx(l) = arg max
b∈{0,1}

P (El
~Cx(l)
|H l

b)P (H l
b)

P (El
~Cx(l)

)

= arg max
b∈{0,1}

P (El
~Cx(l)
|H l

b)P (H l
b), l ∈ L

(14)

This means that the category vector and thus the label set of the observa-
tion can be calculated by only knowing the prior and posterior probabilities.
These probabilities can in turn be estimated from the training set by counting
the frequency of appearance of the different labels.

2.3.2 Multi-label Naive Bayes

Multi-label naive Bayes (MLNB) created by Min-Ling Zhang, José M. Peña,
and Victor Robles [29] is a modification to the naive Bayes single-label clas-
sification method. Like the single-label version MLNB keeps the assumption
of class conditional independence. The explanation of the MLNB method is
paraphrased from [29] in the following text.
The same notation as that in the previous section is used here with the ad-
dition that the observation x is written out as x = (x1, ..., xd) where d is the
total amount of predictors in the observation. The category vector can then
be calculated with the same MAP principle that was used in section 2.3.1:

~yx(l) = arg max
b∈{0,1}

P (H l
b|x), l ∈ L (15)

By making use of the Bayes theorem this equation can be rewritten into:

~yx(l) = arg max
b∈{0,1}

P (x|H l
b)P (H l

b)

P (x)
= arg max

b∈{0,1}
P (H l

b)
d∏

i=1

P (xi|H l
b), l ∈ L

(16)
The H l

b probability can be calculated from the frequency of the labels in the
training data while the P (ti|H l

b) term can be calculated from the following
Gaussian probability density function:

P (xi|H l
b) =

1√
2πσlb2

i

exp
(
− (xi − µlb

i )2

2σlb2
i

)
, 1 ≤ i ≤ d (17)
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But in order to solve this equation µ and σ first have to be calculated. This
can be done by first defining the set V = {xnk|~yx(l) == b}, 1 ≤ n ≤ M and
then using this to calculate both µ and σ:

µlb
i =

1

|V |
∑
v∈V

v (18)

σlb
i =

√
1

|V | − 1

∑
v∈V

(v − µlb
i )2 (19)

Once this has been done the probabilities can be solved for and then used in
order to determine the category vector.

2.3.3 Rank Support Vector Machines

Rank Support Vector Machines (Rank-SVM), created by André Elisseeff and
Jason Weston, is a ranking based SVM method that allows for SVM methods
to be extended into the realm of multi-label classification problems. The
explanation for the Rank-SVM method is paraphrased from [9] and [8] in the
following text.
The same notation that has been used in the previous sections is also used
in this one but with the added definition of the training data. The training
data is expressed as D = {(xi, Yi)|1 ≤ i ≤ m} where m is the total amount
of training instances.
The goal of the Rank-SVM method is to find a function f that minimizes
the generalization error:

R(f) = E(x,Y )[c(f,x, Y ] (20)

Where c is a loss function with a structure dependant on how f is computed.
This is done by first creating a ranking function that ranks the labels for
each input. A threshold can then be defined where labels that are ranked
higher than this are placed in the label set while those that are ranked lower
are not. The rank of a label is defined as

rl(x) = 〈wl,x〉+ bl, l ∈ L (21)

Where wl is a weight vector and bl is a bias. Thus a label l is part of the
label set Y if rl(x) > t(x) where t(x) is the previously mentioned threshold.
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Since the labels are to be sorted through a ranking system the concept of
ranking loss becomes important. The ranking loss gives the average fraction
of pairs that are incorrectly ordered.

RL =
1

|Y ||Ȳ |
|(i, j) ∈ Y ∗ Ȳ such that ri(x) ≤ rj(x)| (22)

Where Ȳ is the complementary set of Y .
As with single-label SVM method in Rank-SVM one of the goals is to max-
imize the margin discussed in 2.2.3. The margin of (x, Y ) can be expressed
as:

min
l∈Y,k∈Ȳ

〈wl − wk,x〉+ bl − bk
||wl − wk||

, Y ∈ L, Ȳ 6∈ L (23)

Which gives the signed euclidean distance of x to the decision boundary. The
wl parameters can be normalized such that 〈wl − wk,x〉 + bl − bk ≥ 1 with
equality for some x ∈ D and l, k ∈ Y ∗ Ȳ . With some additional calculations
that are detailed in [9] a way to maximize the margin on the training set can
be obtained:

min
wj , j=1,...,|L|

|L|∑
l=1

||wl||2 (24)

Subject to the constraint:

〈wl − wk,xi〉+ bl − bk ≥ 1, (l, k) ∈ Y ∗ Ȳ (25)

In order to get the best possible performance the ranking loss should be
minimized while the the margin should be maximized. The ranking loss can
be minimized by adding the constraint 〈wl−wk,xi〉+bl−bk ≥ 1−ξilk, (l, k) ∈
Y ∗ Ȳ which leads to the ranking loss on the training set to become:

1

m

m∑
i=1

1

|Yi||Ȳi|

∑
(l,k)∈Y ∗Ȳ

θ(−1 + ξilk) (26)

Where θ is the Heaviside function which is approximated as just ξilk. In order
then to both maximize the margin and minimize the ranking loss equations
24 and 26 can be combined to form an optimization problem:

min
wj , j=1,...,|L|

|L|∑
l=1

||wl||2 + C
m∑
i=1

1

|Yi||Ȳi|

∑
(l,k)∈Y ∗Ȳ

ξilk (27)

19



Subject to the constraints:

〈wl − wk,xi〉+ bl − bk ≥ 1, (l, k) ∈ Y ∗ Ȳ
ξilk ≥ 0

(28)

Once this optimization problem has been solved the labels can be properly
ranked. After the labels have been ranked the threshold value can be calcu-
lated with:

t(xi) =arg min
t
|{l ∈ Y such that fl(xi) ≤ t|

+ |{l ∈ Ȳ such that fl(xi) ≥ t|
(29)

Where (f1(xi), ..., f|L|(xi)) are given by the ranking system.

2.3.4 Multi-label Radial Basis Function Neural Networks

Multi-Label Radial Basis Function (ML-RBF) neural networks is a type of
classification method created by Min-Ling Zhang [28] which has been derived
from the original RBF neural network method. The explanation of the ML-
RBF method is paraphrased from [28] in the text below. The notation used
in previous sections is reused for this section.
When creating a ML-RBF neural network the training data is first divided

into different sets Ul = {xi|(xi, Yi) ∈ D, l ∈ Yi}, one for each label. A k-
means clustering is then done on each of these sets in order to from kl =
α ∗ |Ul| groups for each set where α is chosen to be a suitable fraction. A k-
means clustering works by partitioning the data into k different groups where
each observation belongs to the group with the closest mean. The mean of
each group is calculated from the group’s centroid which is the point that
minimizes the variance within the group. This means that kl centroids are
created for each label. These centroids are then assigned as the center vectors
cl
j for the neurons as can be seen in figure 6, which means that there will be

a total of K =
∑L

l=1 kl neurons in the hidden layer plus the additional bias
term. Each of these neurons including the bias has a weight to every output
node. These weights can be structured into a weight matrix W = [wjl]

l=1,...,L
j=0,...K

where the j = 0 refers to the weights from the bias neuron. This weight
matrix can be found by minimizing the sum of squares error:

E =
1

2

m∑
i=1

L∑
l=1

(
yl(xi)− til

)2
(30)
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Figure 6: Illustration of the structure of the ML-RBF neural network [28]

Where til is the known correct output which in contrast to previous sections
take the values 1 if l ∈ Yi and -1 if l 6∈ Yi compared to the 0 used previously to
indicate that a label was not in the label set. yl(xi) on the other hand is the
predicted output which can also be written as yl(xi) =

∑L
j=0wjlφ

l
j with φl

j

being the activation function of the corresponding neuron as seen in figure 6.
For the sake of convenience and to make the notation on later equations easier
the indexing of the basis functions and the center vectors are changed. The
indexing of the basis functions {φ0, φ

1
1, ..., φ

1
k1
, ..., φL

1 , ..., φ
L
kL
} is put together

into φj, (0 ≤ j ≤ K) while the center vectors {c1
1, ..., c

1
k1
, ..., cL1 , ..., c

L
kL
} is put

together into cj, (0 ≤ j ≤ K). Before this can be used to calculate the weight
matrix the activation functions first have to be defined. In this method the
activation functions were chosen to be a Gaussian type function:

φj(xi) = exp
(
− dist(xi, cj)

2

2σ2
j

)
(31)
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Where dist(xi, cj) measure the euclidean distance between the training data
and the centroid. The σ term is a smoothing factor and is equal for all
activation functions in this method. The smoothing factor can be calculated
using the following equation:

σ = µ
(∑K−1

p=1

∑K
q=p+1 dist(cp, cq)

K(K − 1)/2

)
(32)

With µ being being a suitable chosen scaling factor. Once all of this has been
completed the weight matrix can be calculated by differentiating equation
30 with respect to wjl and then setting the derivative to zero. The resulting
equation then becomes:

(ΦTΦ)W = ΦTT (33)

With Φ = [φij]m∗(K+1) where φij = φj(xi), W = [wjl](K+1)∗L and T = [til]m∗L
where til = til. Once the weight matrix has been calculated the training
for the ML-RBF neural network is complete. Predicting the label set of an
observation z can then be done with the following equation:

Z = {l|yl(z) =
K∑
j=0

wjlφj(z) > 0, l ∈ L} (34)

Where Z is the predicted label set.

2.4 Evaluation Metrics

Evaluating the performance of multi-label methods is more complicated com-
pared to single-label methods. Unlike in single-label classification a predic-
tion can be partially correct when using multi-label classification since it
is possible for the method to get some labels correct while missing others.
There are many different evaluation metrics for multi-label classification and
those used in this work are listed below.

Hamming Loss

Hamming Loss gives the ratio of incorrect labels compared to the total
amount of labels. This includes both labels that are incorrectly added to
the label set and labels that have been incorrectly removed from the label
set. The Hamming loss can be calculated with the following equation:
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HammingLoss =
1

N

N∑
i=1

1

|L|
|Hi∆Yi| (35)

Where ∆ stands for the symmetric difference of two sets, Hi is the set
of predicted labels obtained from a multi-label classifier and Yi is the set of
correct labels.

One Error

In many multi-label methods each observation is given a ranked list of labels
were a higher rank correlates with a higher chance of the label belonging
to the the correct label set according to the method used. One Error shows
how often the highest ranked label does not belong the correct label set. One
Error can be calculated using the following equation:

OneError =
1

N

N∑
i=1

[[arg max
y∈Y

f(xi, y) 6∈ Yi]] (36)

Where arg max
y∈Yi

f(xi, y) gives the highest ranked label for the observation

xi, Y is the set of all labels, and Yi is the set of correct labels for observation
xi.

Subset Error

Subset error is equivalent to the error rate used in single-label classification.
Thus subset error measures the amount of times that the predicted label set
does not match up perfectly to the correct label set and then compares this
to the total amount of tested instances.

SubsetError =
1

N

N∑
i=1

[Hi 6= Yi] (37)

Where Hi is the set of predicted labels and Yi is the set of correct labels.
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3 Method

In this chapter the methods and process that were used to acquire the results
are explained. Section 3.1 covers which tools and equipment were used and
how a recording session was carried out. In section 3.2 the signal processing
is discussed, what types of filters that were used and which parameters that
were chosen for the feature extraction. Finally in section 3.3 it is explained
how the different classifiers were used and how they were configured. The
programming language of choice in this work was Matlab.

3.1 EMG Recording

Before any classification or signal processing could be done the EMG data
first had to be gathered. There are two different ways to gather EMG data.
The first way is done by placing electrodes on the subjects skin and then
recording the activity of the muscles beneath it, this method is called sur-
face EMG. Surface EMG has the advantage that it is easy to perform and
does not require any invasive procedures but in return there is an increase
in noise and a loss of signal clarity since the signal is measured through the
skin. The second way is done by inserting electrodes directly into the muscle
tissue, this method is called intramuscular EMG. The major advantage of
this method is the increase in signal quality compared to surface EMG but
this procedure is also far more invasive. In this work only surface EMG was
recorded and used.
Two different types of recording equipment were used: the Myo and the
Quattrocento. For both of these devices the same two arm positions were
used when obtaining data. In one of the positions the elbow was resting on
a table with the arm being in a raised position, this position is referred to
as the free position. For the other position the arm was placed in a stand,
see figure 8, so that a clearer distinction between the movement of individual
fingers could be obtained.
Initially different hand and wrist movements were considered for testing
multi-label classification but this was later changed in favor of finger flex-
ion movements. The most commonly tested movement orders in this work
were three and four finger movements. Five finger movements were also
tested but not to the same extent due to the greatly increased number of fin-
ger combinations which corresponded with a higher degree of errors during
recording sessions.
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The standard structure used for the training set movement orders in this work
was five repetitions of each individual finger movement followed by one rep-
etition of each finger combination movement. The standard movement order
for testing sets was one repetition for both individual finger movements and
finger combination movements. An illustration of the structure for training
and testing data can be seen in figure 7. Some testing was also done when the
training set only contained individual finger movements without any combi-
nations which was then tried on the standard testing set. The reason for this
was to determine if information gained from the individual movements could
be used when trying to classify finger combinations. The process of recording

Figure 7: Flowchart of movements for training and testing data.

a set of EMG data was done by first picking a movement order to follow and
then a position for the arm. The subject was then instructed to imitate a
sequence of images depicting each movement in the movement order. The
subject was instructed to keep putting force into the movement for the entire
movement phase. During rest phases the subject was instructed to relax their
arm and move as little as possible. When the stand was used the subject
was instead instructed to put force towards attempting the movement since
the stand prevents the fingers from actually moving. All of these movement
orders followed the same pattern of finger movement followed by a return
to rest state. Time spent in each movement and in rest state was initially
selected to be three seconds but was later changed to five seconds in order
to decrease error due to the transition period between movements.
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Figure 8: The arm stand

3.1.1 The Myo

The Myo, see figure 9, is a wearable gesture and motion control device devel-
oped by ThalmicLabs [14]. While the Myo does have its own classification
system and the ability to record IMU data in this work only the EMG record-
ing capabilities are used. The Myo can record EMG signals with a sampling
rate of 200 Hz from 8 channels [25].
Recording with the Myo was done by first placing it around the forearm of
the subject close to the elbow. The Myo was placed so that the electrodes
had direct contact with the skin without any conductive gel in between. The
subject was then instructed to perform some hand movements in order to
synchronize the Myo with the computer. Once synchronization had been
achieved and the Myo had been given some time to warm up the recording
session could be started. A Matlab program was then used to pull data from
the Myo while recording.
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Figure 9: The Myo created by Thalmic Labs.

3.1.2 The Quattrocento

The Quattrocento, see figure 10 is a bio electrical amplifier created by OT
Bioelettronica [1] which in this work was used in conjunction with two 8x8
high density surface EMG electrodes to record EMG data. Before any data
could be gathered the Quattrocento first had to be configured. The sampling
rate of the Quattrocento was chosen to be 2048 Hz while the channel setup
was selected to be monopolar with a differential configuration. Originally
a Matlab program was used to pull data from the Quattrocento so that it
could be quickly processed but this method suffered from a desynchronization
between the EMG data and the class data. In order to solve this problem the
OT BioLab program was used instead to gather the data with a computer
generated trigger signal added to the Quattrocento that indicated when the
recording started and when the movement class changed.
Once the configuration had been completed the electrodes were coated with
an adhesive and conductive gel. The electrodes were then placed on the
subjects arm with one electrode placed close to the elbow where it covered
the flexor digitorum superficialis and the flexor digitorum profundus while the
other electrode was placed on the wrist where it covered the flexor pollicis
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Figure 10: The Quattrocento by OT Bioelettronica

longus. After this was done a grounding bracelet was placed around the
subjects wrist and connected to the Quattrocento patient reference port.
Finally a NI USB-6009 card used for generating the trigger signals from the
computer to the Quattrocento was connected to the auxilliary input. Once
these steps had been completed the recording session could be started. An
example of the recording setup can be found in figure 13 while an example
output from a recording session using the Quattrocento can be seen in figure
11.

3.2 Signal Processing

The first part of the signal processing done on the data was filtering. Both
the Myo and the Quattrocento have inbuilt filtering for 50/60 Hz power line
interference [24][1]. For the Myo the low frequency noise was handled by a
6th order high pass Butterworth filter with a cutoff frequency of 5 Hz. A low
pass filter with a cutoff frequency of 100 Hz was also tested to see if aliasing
could have a negative impact on the classification due to the Myo’s limited
sampling rate. The results showed that the addition of this low pass filter did
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Figure 11: Example of an EMG signal recorded by the Quattrocento

not affect the classification accuracy of any of the used evaluation methods.
In the end the decision was made to not include any low pass filter for Myo
data. The Quattrocento data on the other hand was filtered by both a low
pass and a high pass filter in addition to the inbuilt power line filtering. The
high pass filter used for the Quattrocento data was a 6th order Butterworth
filter with the cutoff frequency chosen to be 5 Hz. The low pass filter was
also a 6th order Butterworth filter with a cutoff frequency of 600 Hz. An
example of the frequency content of an EMG signal can be observed in figure
12.
After having filtered the signals feature extraction was performed in order
to obtain useful information from the signals which also had the benefit of
reducing the amount of data that was later put into the classifier. In the case
of the Myo a uniform window with a size of 200 data points (1000ms) and
an increment of 20 (100ms) for every step was used for feature extraction.
Since the Quattrocento data was sampled with a much higher sampling rate a
larger window was used. The window size for the Quattrocento data was 400
data points (approximately 200ms) with an increment of 40 (approximately
20ms) for each step, as with the Myo data a uniform window was used.
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Figure 12: Example of the frequency content of an EMG signal recorded by the
Quattrocento.

The extracted features have a great impact on the performance of a clas-
sifier. A good set of features can allow a bad classifier to achieve passable
classification accuracy while a bad set of features can make even the best
classifier perform poorly. In this work 10 features were chosen, see section
2.1. These features were chosen so that they covered different properties of
interest in the signal. The choice of how many features to use was based on if
any increase in classification performance was noted when a new feature was
added. A notable drawback of adding features though is that the amount
of predictors that are given as input to the classifier increases which in turn
leads to an increase in the training time.
An idea that came up during this process was that combinations of some of
the chosen features might achieve better results compared to the combina-
tion of all chosen features. If this was the case then it would not only lead to
better classification performance but also to a shorter training time. In order
to test this idea a feature optimization program was created. This program
simply tested all possible feature combinations from one to ten features and
then sorted the combinations from highest to lowest accuracy.
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3.3 Classification

The single-label methods used in this work were explained in section 2.2 and
were implemented by making use of the fitc*-type functions in Matlab. The
parameters for these methods were chosen to be the default parameters and
the number of neighbours for the KNN algorithm was chosen to be 30 after
some testing.
The multi-label methods used in this work were explained in section 2.3 and
were implemented by making use of code created by Min-Ling Zhang [27].
For the MLKNN method the number of neighbours used was chosen to be
30 as was done for the single-label KNN method. The other parameters
for the MLKNN method were chosen to be the default values presented in
[30]. For the ML-RBF method the default values were used as parameters
since changes to these values did not produce any noticeable increase in
classification accuracy. For the Rank-SVM method a linear kernel was used,
the cost for observations placed on the wrong side of the margin was chosen to
be 0.1, the maximum number of iterations was chosen to be 30 and the default
values provided in the code [27] were used for all other parameters. These
parameters were chosen after some testing was done but the results obtained
varied little even when radically different parameter values were used. For
the MLNB method some additional preprocessing of the data was performed
before any classification was done. This additional preprocessing took the
form a principal component analysis combined with a genetic algorithm as
suggested by [29]. The parameters used for the preprocessing steps and for
the MLNB classification method were the default values suggested in the
code by Zhang [27].
After the data had been classified some form of evaluation had to be done in
order to determine whether or not the results were good. The different types
of evaluation methods used in this work were explained in section 2.4. There
was one problem that became evident when doing these evaluation which
was that the classification of the rest states obfuscated how good the total
classification performance actually was. The reason for this was that around
half of all observations were rest states which were very easy to classify. This
meant that a classification could fail to classify any finger movement correctly
and still achieve around 50% accuracy as long as it could correctly classify
the rest states. Therefor in order to get a better view of how each method
performed the subset error was also calculated on the predicted results with
all rest states excluded.
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Figure 13: Example of an EMG recording session using the Quattrocento
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4 Results

4.1 Feature Optimization

In this section the results obtained from the feature optimization program
are presented. Due to the large amount of time required to do a feature opti-
mization only results using Myo data are included. Figure 14 illustrates the
frequency of appearance for each feature in the top 100 feature combinations
when using the MLKNN classifier. The top 100 feature combinations refer to
the 100 combinations of features that obtained the highest subset accuracy.
Wavelength for example appeared in around 70 different feature combina-
tions out of the 100 most accurate while frequency median only appeared in
around 20. In figure 15 it is shown how common the quantity of features
in each feature combination is for the top 100 combinations when using the
MLKNN classifier. As an example this means that out of the top 100 most
accurate feature combinations 22 feature combinations contained 5 features
while none contained 1, 9 or 10 features. Figures 16 and 17 show the same
results as figures 14 and 15 but when using the ML-RBF classifier instead.
The results shown in figures 14 - 17 were obtained from testing done on the
same data set. Results from running the feature optimization program on
other data sets can be found in the appendix.
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Figure 14: Top 100 feature quantities for MLKNN

Figure 15: Top 100 feature densities for MLKNN
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Figure 16: Top 100 feature quantities for ML-RBF

Figure 17: Top 100 feature densities for ML-RBF
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4.2 Single-label Results

In this section the results obtained from testing the different single-label clas-
sification methods are presented. The data sets used in this section follow
the standard movement order discussed in section 3.1. All 10 features were
used when obtaining the results in this section. Tables 2 - 4 present the
classification accuracy of each method depending on which arm position and
measuring device that was used. Figures 18 - 21 show examples of the results
obtained from each of the classification methods when using data obtained
from the Quattrocento and with the arm placed in the free position. In these
four figures the blue lines show the results that the classification methods
have predicted while the red lines show what the correct class is. The places
where the red and blue line do not coincide are thus samples were the classi-
fiers have made incorrect predictions. The class # refers to which movement
was made with 1 = Thumb (T), 2 = Index (I), 3 = Long (L), and 4 = Ring
(R). The other class numbers are explained in table 1

Class 5 6 7 8 9 10 11 12 13 14 15
Movement TI TL TR IL IR LR TIL TIR TLR ILR TILR

Table 1: Class number and corresponding movement

Classification
method

Error
Error (excluding
rest states)

KNN 0.3147 0.4964
LDA 0.3481 0.5835
SVM 0.4106 0.6513
NB 0.3649 0.5654

Table 2: Results from single-label classification methods on 4 finger Myo data with
arm placed in stand.
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Classification
method

Error
Error (excluding
rest states)

KNN 0.2878 0.4875
LDA 0.1783 0.2835
SVM 0.9740 0.9498
NB 0.2732 0.4411

Table 3: Results from single-label classification methods on 4 finger Quattrocento
data with arm placed in stand.

Classification
method

Error
Error (excluding
rest states)

KNN 0.2535 0.3902
LDA 0.1562 0.2126
SVM 0.6685 0.8632
NB 0.3253 0.4678

Table 4: Results from single-label classification methods on 4 finger Quattrocento
data with arm in free position.
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Figure 18: Results from a KNN classification on Quattrocento data with with arm
in free position. 4 fingers were used in this data. The blue line shows the predicted
results while the red line shows the ground truth

Figure 19: Results from a NB classification on Quattrocento data with arm in free
position. 4 fingers were used in this data. The blue line shows the predicted results
while the red line shows the ground truth
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Figure 20: Results from a SVM classification on Quattrocento data with arm in
free position. 4 fingers were used in this data. The blue line shows the predicted
results while the red line shows the ground truth

Figure 21: Results from a LDA classification on Quattrocento data with arm in
free position. 4 fingers were used in this data. The blue line shows the predicted
results while the red line shows the ground truth
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4.3 Multi-label Results

In this section the results obtained from testing the different multi-label clas-
sification methods are presented. The data sets used in this section follow
the standard movement order mentioned in section 3.1. All 10 features were
used when obtaining the results in this section. Tables 5-7 give the classifica-
tion accuracy results from the tested multi-label methods depending on arm
position and recording device. Figure 22 shows the results from a MLKNN
classification when using data gathered by the Myo and with the arm placed
in the stand. Figure 23 gives the results from a ML-RBF classification on a
data set recorded by the Quattrocento with the arm held in the free position.
Plots of the other multi-label methods can be found in the appendix.

Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.1417 0.0502 0.3385 0.5127
ML-RBF 0.1310 0.1145 0.3288 0.5175
Rank-SVM 0.5120 0.1602 0.9288 0.8951
MLNB 0.1955 0.1004 0.4183 0.7250

Table 5: Results from multi-label classification methods on 4 finger Myo data with
arm placed in stand.
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Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.1009 0.0488 0.2796 0.4531
ML-RBF 0.0704 0.0447 0.1892 0.3027
Rank-SVM 0.5510 0.2546 0.9306 0.8695
MLNB 0.1772 0.0502 0.4551 0.7274

Table 6: Results from multi-label classification methods on 4 finger Quattrocento
data with arm placed in stand.

Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.1112 0.0456 0.2760 0.3907
ML-RBF 0.0777 0.0330 0.1807 0.2552
Rank-SVM 0.4310 0.2203 0.9402 0.8882
MLNB 0.1849 0.0773 0.4300 0.7331

Table 7: Results from multi-label classification methods on 4 finger Quattrocento
data with arm placed in free position
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4.4 Individual label training

In this section the results from using only individual labels as training data
and only label combinations as testing data are presented. The movement
order used for these tests differs from the previous sections. The training
set used in this section consisted of 5 repetitions of each individual finger
movement and no combination movements. The testing set contained one
repetition of each combination movement and no individual finger move-
ments. All 10 features were used when obtaining the results in this section.
Tables 9 - 10 give the classification accuracy results from the tested multi-
label methods depending on arm position and recording device. Table 11
is included as an example to show how single-label methods have problems
handling this type of classification. Figures 24 and 25 show some results for
how the ML-RBF method can handle this type of classification.

Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.2817 0.1183 0.5886 1.0000
ML-RBF 0.2930 0.2209 0.5974 0.9825
Rank-SVM 0.3864 0.2657 0.9868 0.9613
MLNB 0.2862 0.2104 0.5825 0.9968

Table 8: Results from using multi-label classification on 4 finger Myo data with
arm placed in stand using only individual finger movements as training data and
then testing on finger combination movements.
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Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.2254 0.0298 0.5644 0.9930
ML-RBF 0.1971 0.0298 0.4838 0.8593
Rank-SVM 0.5110 0.2881 0.9909 0.9688
MLNB 0.2904 0.2946 0.5794 0.9983

Table 9: Results from using multi-label classification on 4 finger Quattrocento data
with arm placed in stand using only individual finger movements as training data
and then testing on finger combination movements.

Classification
method

Hamming
Loss

One Error
Subset
Error

Subset Error
(excluding
rest states)

MLKNN 0.2550 0.0620 0.5941 0.9993
ML-RBF 0.2060 0.0383 0.4580 0.7959
Rank-SVM 0.4964 0.0937 0.9695 0.9329
MLNB 0.2872 0.1086 0.6357 0.9711

Table 10: Results from using multi-label classification on 4 finger Quattrocento
data with arm in free position using only individual finger movements as training
data and then testing on finger combination movements.

Classification
method

Error
Error (excluding
rest states)

KNN 0.5828 1.0000
LDA 0.5806 1.0000
SVM 0.5907 1.0000
NB 0.6178 1.0000

Table 11: Results from single-label classification methods on 4 finger Quattrocento
data with arm in free position using only individual finger movements as training
data and then testing on finger combination movements.
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5 Discussion

The aim of this work was to investigate the use of multi-label classification
methods for the purpose of classifying electromyographic signals. The results
from the multi-label methods can be seen in tables 5 - 7 while those from the
single-label methods can be found in tables 2 - 4. It can be seen from these
tables that multi-label methods do not have any inherently better classifica-
tion accuracy than single-label methods. Comparing the subset errors of the
multi-label methods for both Myo and Quattrocento data to the error rates
of the single-label methods shows that both types have similar performance
for their best methods. In the values presented the best single-label methods
are slightly better then the best multi-label methods but this tended to vary
depending on which data set was used. One thing of note was that the results
obtained when using the stand were not better than when the arm was in
the free position. This came as a surprise since it was initially assumed that
using the stand would make it easier for the subject to focus on the different
movements. On the other hand this indicates that multi-label methods like
single-label methods are not restricted to any specific arm position in order
to work. Another point of interest comes from comparing the Quattrocento
and Myo results as it shows that even with increased frequency range and
amount of data multi- and single-label methods still have similar error rates
for their best methods.

Looking at the results from the individual methods also show some things
of interest. As can be seen when looking at tables 2 - 7 the KNN and MLKNN
methods give very similar results regardless of what arm position was used
or which sampling rate was chosen. This contrasts with the NB and MLNB
methods since NB works relatively well for a single-labeling method while its
multi-label counterpart has a poor performance even with the additional pre-
processing that was used in this work. A similar relationship between solo-
and multi-label methods can be seen between SVM and Rank-SVM when
looking at the Myo data while for the Quattrocento data both methods per-
form equally poorly. These results show that some of the single-label methods
that work for classifying EMG signals can be converted to multi-label meth-
ods without a loss of accuracy. It can also be seen that not all methods
can make this transition so a method that works well for single-label classi-
fication might not even work at all when it comes to multi-label classification.
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In section 4.4 only individual labels were used as training data while the
testing set consisted only of label combinations. This was done to see if
multi-label methods can extrapolate from knowing only the labels by them-
selves to understanding combinations of labels. As can be seen from tables
8 - 10 most of the methods do not seem to have this ability but what is very
interesting is that ML-RBF actually manages to classify some of the label
combinations. It can be seen in figure 24 that ML-RBF succeeds in classify-
ing the index + long finger movement and the long + ring finger movement.
In figure 25 ML-RBF manages to classify the thumb + ring finger, the in-
dex + long finger, the long + ring finger, and it makes a close attempt for
the thumb + long finger, the long + ring finger, the thumb + index + long
finger, and the index + long + ring finger movement. While ML-RBF only
succeeded in classifying some of these movement combinations and mostly
during short intervals within these movements it is still far better than the
complete failure of the other methods.

As can be seen i figures 15 and 17 just adding features do not guarantee
an optimal classification performance. The results show that for the top 100
feature combinations for both ML-RBF and MLKNN the most represented
densities lie in the 3-6 features area. Testing on other data sets also showed
similar results. This result is in part due to the fact that only 10 features
were used which means that the amount of 5 feature combinations are much
greater then the amount of 9 feature combinations. Even then it is still worth
noting that for all the tested data sets the 10 feature combination was never
seen in the top 100. While these results show that a smaller amount of fea-
ture can give better classification compared to a larger amount of features
a problem quickly occurred when trying to implement this approach namely
which features to keep. It was initially believed that figures 14 and 16 could
be used to chose which features to discard by just choosing those that ap-
peared the least amount of times. The problem with this approach was that
the quantities of the features in the top 100 seemed to depend entirely on
the data set used. One feature that was dominant in one data set could be
almost nonexistent in another. Another problem with this approach was that
while some feature combinations with fewer features were better then the 10
feature combination some were far worse. In the end this lead to the decision
to keep using the 10 feature combination that was initially used.

Each of the two recording devices used in this work came with their own
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set off advantages and disadvantages. The major advantage of using the
Myo was the low amount of preparation needed to record EMG data which
allowed for many measurements at different time periods. While the Myo
was useful it suffers from some severe limitations. One of the most notable
is that the sampling rate of the Myo is locked to 200Hz which can have an
impact on the classification accuracy since EMG signals contain useful data
in the 200-500Hz region [11]. Another limitation is that the electrodes used
in the Myo have large surface ares which means that data from each channel
is averaged over many nerves which can lead to information being lost. The
Quattrocento does not suffer from these problems since it has good selection
of sampling rates and the ability to accommodate many different types of
electrodes. In return the setup for the Quattrocento is time consuming and
requires the use of conducting gel in order to achieve the best possible per-
formance.
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6 Conclusion

In this study the use of multi-label classification methods was tested for the
purpose classifying EMG signals. The results obtained showed that some
multi-label methods could indeed be used for this task. Unfortunately even
the best of the tested multi-label methods could only achieve a classification
accuracy comparable to that of single-label methods. Thus there does not
seem to be any inherent advantage to multi-label methods if only the classifi-
cation accuracy is considered. Of note though is that there are indications in
the data that some multi-label methods might be able to learn combinations
of finger movements while only using individual finger movements as training
data. Which is an ability that single-label methods do possess.

There are many things that could be done to expand on what has been
tested in this work. For example it would be a good idea to test these
methods on more subjects to see if similar results are achieved. Another
thing of interest could be to see if the extrapolation of training on individual
labels to determining label combinations can be improved if more training
data is used. More testing on other neural network methods could be done
to see if similar or better results could be achieved compared to that of ML-
RBF. Testing could also be done on other non neural network methods to
see if any other type of method could achieve a measure of extrapolation.

51



References

[1] OT Bioelecttronica. Quattrocento product details. Visited 2017-09-18.
url: http://www.otbioelettronica.it/index.php?option=com_
content&view=article&id=67&lang=en.

[2] B. E. Boser, I. M. Guyon, and V. N Vapnik. “A training algorithm
for optimal margin classifiers”. In: COLT92 5th Annual Workshop on
Computational Learning Theory (1992), pp. 144–152.

[3] Matthew R. Boutell et al. “Learning multi-label scene classification”.
In: Pattern Recognition 37 (9 2004), pp. 1757–1771.

[4] Rubana H. Chowdhury et al. “Surface Electromyography Signal Pro-
cessing and Classification Techniques”. In: Sensors 13 (2013), pp. 12431–
12466.

[5] Katharina Demet et al. “Health related quality of life and related fac-
tors in 539 persons with amputation of upper and lower limb”. In:
Disability and Rehabilitation 25.9 (2003), pp. 480–486.

[6] Li Deng and Xiao Li. “Machine Learning Paradigms for Speech Recog-
nition: An Overview”. In: IEEE Transactions on Audio, Speech, and
Language Processing 21.5 (2013), pp. 1060–1089.

[7] Biddiss E and Chau T. “Upper-limb prosthetics: critical factors in de-
vice abandonment”. In: Am J Phys Med Rehabil. 86 (2007), pp. 977–
987.
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Appendix

A1 Additional feature optimization results

In this section some additional feature optimization figures are presented to
further illustrate how volatile some feature can be. Figures 26-27 belong to
one data set while figures 28-29 belong to another.

Figure 26: Top 100 feature quantities for MLKNN, data set 1
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Figure 27: Top 100 feature densities for MLKNN, data set 1

Figure 28: Top 100 feature quantities for MLKNN, data set 2
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Figure 29: Top 100 feature densities for MLKNN, data set 2

A2 Additional multi-label results

In this section some additional figures of multi-label methods are presented.
Figure 30 shows an example of the output from a MLNB classifier while
figure 31 shows the output from a Rank-SVM classifier.
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