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Abstract

Euler diagrams are common and intuitive visualizations for data in-
volving sets and relationships thereof. Compared to Venn diagrams,
Euler diagrams do not require all set relationships to be present and
may therefore be area-proportional also with subset or disjoint rela-
tionships in the input. Most Euler diagrams use circles, but circles
do not always support accurate diagrams. A promising alternative
for Euler diagrams is ellipses, which enable accurate diagrams for
a wider range of set combinations. Ellipses, however, have not yet
been implemented for more than three sets or three-set diagrams
where there are disjoint or subset relationships. The aim of this the-
sis is to present a method and software for elliptical Euler diagrams
for any number of sets.

In this thesis, we provide and outline an R-based implementation
called eulerr. It �ts Euler diagrams using numerical optimization
and exact-area algorithms through two steps: �rst, an initial layout
is formed using the sets’ pairwise relationships; second, this layout
is �nalized taking all the sets’ intersections into account.

Finally, we compare eulerr with other software implementations of
Euler diagrams and show that the package is overall both more con-
sistent and accurate as well as faster for up to seven sets compared
to the other R-packages. eulerr perfectly reproduces samples of cir-
cular Euler diagrams as well as three-set diagrams with ellipses, but
performs suboptimally with elliptical diagrams of more than three
sets. eulerr also outperforms the other software tested in this thesis
in �tting Euler diagrams to set con�gurations that might lack exact
solutions provided that we use ellipses; eulerr’s circular diagrams,
meanwhile, �t better on all accounts save for the diagError metric
in the case of three-set diagrams.

Keywords: Euler diagrams, Venn diagrams, ellipses, R, computer
graphics, area-proportional, software
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1 Introduction

1.1 Background

Visual displays of data make for clear and compelling presentations,
utilizing multiple dimensions to convey information concisely.
Compared to tables and text, visualization possess the potential to
display even intricate relationships with e�ective use of ink.

Data visualizations, however, are only e�ective when they illustrate
relationships. Consider, for instance, a disc labelled Men1—it says
nothing by itself; yet if we juxtapose it with another, smaller, disc
labelled Children2, the graphic starts to become informative, now
displaying the relative sizes of two sets. If next we intersect the two
discs, producing an overlap3, we successfully visualize the relative
proportions of men and children, as well as their intersection. The
diagram we have constructed is an Euler diagram.

The Euler diagram, originally proposed by Leonard Euler in 1802 [1],
is a generalization of the obiquiteous Venn diagram: a staple of in-
troductory text books in statistics and research disciplines such as
biomedicine and geology. Venn and Euler diagrams both display set
relationships by mapping an area of the diagram to a relationship
in the data. They di�er, however, in that the Venn diagrams require
all intersections to be present—even if they are empty—which Euler
diagrams do not.

Euler diagrams may moreover be area-proportional, which is to say
that each separate surface of the diagram maps proportionally to
its data. (This is the case with the diagram to the right.) This is a
rational form for a Euler diagram—only its geometry is needed to
interpret it. And it lets us, for instance, to discard numbers without
losing critical information; the same cannot be said for a Venn
diagram.

Area-proportional Euler diagrams may be fashioned out of any
closed shape, and have been implemented for triangles [2], rect-
angles [2], ellipses [3], smooth curves [4], polygons [2], and cir-
cles [2, 5, 6]. The latter are most common, and for good reason,
since they are easiest to interpret [7]. Circles, unfortunately, do not
always support accurate diagrams. Consider the following three-set
con�guration:

A = B = C = 4,
A ∩ B = A ∩C = B ∩C = 1, and

A ∩ B ∩C = 0.

1



1 Introduction

2

2

2
1

1

1

0

A

B

C

2

22

11

1

A

BC

Figure 1.1. A set relationship
depicted erroneously with circles
and perfectly with ellipses.

AB C

Figure 1.2. An Euler diagram
with a subset relationship.
4 This greedy algorithm places
the sets sequentially in order of
size.

There is no way to visualize this relationship perfectly with circles
because they cannot be arranged to keep the A∩B∩C overlap empty
whilst A ∩ B, A ∩ C , and B ∩ C remain non-empty. With ellipses,
however, we can solve this problem since they can both rotate and
stretch, enabling a perfect �t (Figure 1.1).

With four or more sets that all intersect, exact Euler diagrams are in
fact impossible with circles, given that we require 15 intersections
but with four circles can yield at most 13 unique overlaps. This is
not the case with ellipses, which may intersect in up to four, rather
than two, points, altogether yielding the necessary 15 unique areas.
As of yet, the only implementation of elliptical Euler diagrams is
provided in eulerAPE [3], although it only supports three sets that
are all required to intersect. The diagram in Figure 1.2, for instance,
would be impossible with eulerAPE.

Euler diagrams have to be solved numerically [8]. Most software
accomplish this in two steps, �rst �nding a coarse starting layout
that is �nalized in a second, more thorough, algorithm. For the
initial layout, the aforementioned eulerAPE package [9], for in-
stance, uses a greedy algorithm that tries to minimize the error
in the three-way intersection by arranging the circles represent-
ing the sets. The venneuler package [5], meanwhile, uses multi-
dimensional scaling (MDS), taking only pairwise relationships into
account. venn.js [10] combines a constrained version of the MDS
algorithm from venneuler with a greedy algorithm4, picking the
best �t out of the two. Vennerable [2] computes the required pair-
wise distances between circles and then adjusts the largest of these
to optimize the two-way overlaps of the layout. All of the above use
circles in the initial layout.

Diagrams with more than two sets normally require additional
tuning, for which we must �rst �nd the areas of the overlaps in the
diagram, so that we can scrutinize our diagram’s �t. Computing
these overlaps, however, is no trivial task—particularly not for
ellipses. For this reason, many methods resort to approximations
such as quadtrees [5], which are used in venneuler, or polygon
intersections [6].

Compared to approximative algorithms, exact algorithms require
that we know the intersection points of the ellipses. There are two
known approaches to this. Both treat the ellipses in pairs. The �rst
method [11] solves the system of equations formed by each pair of
ellipses, which involves solving a fourth-degree polynomial; the
other method [12] represents the ellipses as conics in projective
geometry, which reduces to solving a third-degree polynomial.
Both methods are accurate up to �oating-point precision.

With all the intersection points at hand, it is possible to derive the
areas of the overlaps. Frederickson [10] (venn.js) and Micallef and
Rodgers [3] (eulerAPE) have developed solutions for circles and
ellipses respectively—although the latter, as we previously cov-
ered, restricts itself to three intersecting ellipses. No algorithm has
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5 venn.js’s loss function is

n∑
i=1
(Ai − ωi )

2 ,

where n is the number of over-
laps, ωi the size of the ith disjoint
subset, and Ai the corresponding
area in the diagram.
6 venneuler’s stress metric is
de�ned as∑n

i=1(Ai − βωi )
2∑n

i=1 A
2
i

,

where β =
∑n

i=1 Aiωi/
∑n

i=1ω
2
i .

7 This idealistic function (used in
Vennerable) is de�ned as

n∑
i=1

(
ωi∑n
i=1ωi

−
Ai∑n
i=1 Ai

)2

+
∑

i<j<n

(
Ai −Aj

)
,

where the sets and their respec-
tive overlaps corresponding to
the indices i and j have been or-
dered so that i < j =⇒ ωi < ωj .
8 eulerAPE’s cost function is
de�ned as

1
n

n∑
i=1

(ωi −Ai )
2

Ai
.

so far been published that extends these methods to any number
of ellipses or elliptical three-set diagrams with subset or disjoint
intersections.

In the �nal layout, the package’s area-algorithm is used with a
numerical optimizer to tune the parameters of the diagram. All pre-
viously considered packages treat this as a minimization problem
but their loss functions vary. venn.js, for instance, uses the residual
sums of squares5, venneuler uses the stress metric6, Vennerable
uses Chow’s [13] idealistic function7, and eulerAPE uses a propor-
tional loss function8 that severely punishes missing overlaps—in
fact, it becomes unde�ned if such areas exist, making it inappro-
priate for algorithms that aim to �t set con�gurations with either
subset or disjoint relationships.

venn.js relies on a Nelder–Mead optimizer for the �nal step. ven-
neuler, on the other hand, sports a combination of steepest descent
optimization and coordinate descent. eulerAPE and Vennerable,
meanwhile, uses hill climbing algorithms.

1.2 Aims

In this thesis, we aim to present an algorithm and software imple-
mentation for constructing and visualizing Euler diagrams for set
relationships of any size using ellipses.

We will also compare this method to existing software for Euler
diagrams on account of consistency in reproducing diagrams with
known, exact solutions, accuracy in �nding solutions for set con�g-
urations that may lack exact solutions, and computational perfor-
mance.

3



9 A \ B = 3 B \A = 2 A∩ B = 1
10 A = 4 B = 3 A ∩ B = 1

11



A B
1 0
1 0
1 0
1 1
0 1
0 1


12 A = {a, b, c, d}

B = {a, e, f }

13
A Ac

B 1 2
Bc 3 0

2 Method

Constructing an Euler diagram is much like �tting a statistical
model in that we have

1. data,

2. a model to �t the data with,

3. tests to assess the model’s �t, and

4. a presentation of the result.

In the following sections, we explain how eulerr tackles each item
in turn.

2.1 Input

Euler diagrams present relationships between sets, wherefore the
data must describe these relationships, either directly or indirectly.
eulerr allows several alternatives for this data, namely,

• disjoint subsets9,

• unions and identities10,

• a matrix of binary (or boolean) indices11,

• a list of sample spaces12, or

• a two- or three-way table13.

As an additional feature for the matrix form, the user may supply
a factor variable with which to split the data set before �tting the
diagram, which sometimes improves diagrams where the set rela-
tionships vary across categories.

Whichever type of input is provided, eulerr will translate it to the
�rst and second types, disjoint subsets and unions and identities,
which will be used in the steps to come.

The Euler diagram is then �t in two steps: �rst, an initial layout
is formed with circles using only the sets’ pairwise relationships.
Second, this layout is �ne-tuned taking all 2N − 1 intersections into
consideration.

4
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d i j

O i j

r i r j

Figure 2.1. The circle–circle
overlap is computed as a function
of the discs’ separation (di j ), radii
(ri , r j ), and area of overlap (Oi j ).
14 According to the documenta-
tion, optimize() consists of a
“combination of golden section
search and successive parabolic
interpolation.”

2.2 Initial layout

For our initial layout, we adopt a constrained version of multi-
dimensional scaling (MDS) that has been adapted from venn.js [10],
which in turn is a modi�cation of an algorithm used in venneuler [5].
In it, we consider only the pairwise intersections between sets, at-
tempting to position their respective shapes so as to minimize the
di�erence between the separation between their centers required
to obtain an optimal overlap and the actual overlap of the shapes in
the diagram.

This problem is unfortunately intractable for ellipses, being that
there is an in�nite number of ways by which we can position two
ellipses to obtain a given overlap. Thus, we restrict ourselves to
circles in our initial layout, for which we can use the circle–circle
overlap formula (2.1) to numerically �nd the required distance, di j ,
for each pairwise relationship.

Oi j = r
2
i arccos

(
d2
i j + r

2
i − r

2
j

2di jri

)
+ r 2

j arccos
(
d2
i j + r

2
j − r

2
i

2di jr j

)
−

1
2

√
(−di j + ri + r j )(di j + ri − r j )(di j − ri + r j )(di j + ri + r j ), (2.1)

where ri and r j are the radii of the circles representing the ith and
jth sets respectively, Oi j their overlap, and di j their separation.

Setting ri =
√
Fi/π , where Fi is the size of the ith set, we are able

to obtain di j numerically using the squared di�erence between Oi j
and the desired overlap as loss function (2.2),

L(di j ) =
(
Oi j − (Fi ∩ Fj )

)2
, for i < j ≤ n, (2.2)

which we optimize using optimize()14 from stats.

For a two-set combination, this is all we need to plot an exact dia-
gram, given that we now have the two circles’ radii and separation
and may place the circles arbitrarily as long as their separation, di j ,
remains the same. This is not, however, the case with more than
two sets.

With three or more sets, the circles need to be arranged so that
they interfere minimally with one another. In some cases, the set
con�guration allows this to be accomplished �awlessly, but often,
compromises must me made. As is often the case in this thesis, this
turns out to be another optimization problem. It can be tackled in
many ways; eulerr’s approach is based on a method developed
by Frederickson [14], which the author describes as constrained
multi-dimensional scaling.

The algorithm tries to position the circles so that the separation be-
tween each pair of circles matches the separation required from (2.2).

5
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15 The current development ver-
sion of R features a �x for this
bug; eulerr will be updated to
use (2.5) as soon as it is intro-
duced in a stable version of R.

If the two sets are disjoint, however, the algorithm is indi�erent to
the relative locations of those circles as long as they do not inter-
sect. The equivalent applies to subset sets: as long as the circle
representing the smaller set remains within the larger circle, their
locations are free to vary. In all other cases, the loss function (2.3) is
the residual sums of squares of the optimal separation of circles, d ,
that we found in (2.1), and the actual distance in the layout we are
currently exploring.

L(h,k) =
∑

1≤i<j≤N


0 Fi ∩ Fj = ∅ and Oi j = 0
0 (Fi ⊆ Fj or Fi ⊇ Fj ) and Oi j = min (Fi , Fj )( (
hi − hj

)2
+

(
ki − kj

)2
− d2

i j

)2
otherwise

. (2.3)

The analytical gradient (2.4) is retrieved as usual by taking the
derivative of the loss function,

®∇f (hi ) =
N∑
j=1


®0 Fi ∩ Fj = ∅ and Oi j = 0
®0 (Fi ⊆ Fj or Fi ⊇ Fj ) and Oi j = min (Fi , Fj )
4
(
hi − hj

) ( (
hi − hj

)2
+

(
ki − kj

)2
− d2

i j

)
otherwise,

(2.4)

where ®∇f (ki ) is found as in (2.4) with hi swapped for ki .

The Hessian (2.5) for our loss function is given next. However, be-
cause the current release of R su�ers from a bug15 causing the an-
alytical Hessian to be updated improperly, the current release of
eulerr instead relies on the numerical approximation of the Hes-
sian o�ered by the optimizer.

H (h,k) =
∑

1≤i<j≤N


4
(
(hi−hj )

2
+(ki−kj )

2
−d2

i j

)
+8(hi−hj )

2
· · · 8(hi−hj )(ki−kj )

...
. . .

...

8(ki−kj )(hi−hj ) · · · 4
(
(hi−hj )

2
+(ki−kj )

2
−d2

i j

)
+8(ki−kj )

2

 . (2.5)

Note that the constraints given in (2.3) and (2.4) still apply to each
element of (2.5) and have been omitted for convenience only.

We optimize (2.3) using the nonlinear optimizer nlm() from the
R core package stats. The underlying code for nlm() was written
by Schnabel et al. [15]. It was ported to R by Saikat DebRoy and
the R Core team [16] from a previous FORTRAN to C translation
by Richard H. Jones. nlm() consists of a system of Newton-type
algorithms and performs well for di�cult problems [17].

The initial layout outlined above will sometimes turn up perfect
diagrams, but only reliably so when the diagram is completely
determined by its pairwise intersections. More pertinently, we have
not yet considered the higher-order intersections in our algorithm
and neither have we approached the problem of using ellipses—as
we set out to do.

6
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... ω5 ...

F 1

A1

F 2

A2

F 3

A3

A4

A5

A6

A7

Figure 2.2. Mapping of disjoint
subsets, ωi , to areas in the �nal
diagram, Ai , for a three set combi-
nation of sets F1, F2, and F3.

2.3 Final layout

We now need to account for all the sets’ intersections and, conse-
quently, all the overlaps in the diagram. The goal is to map each
area uniquely to a subset of the data from the input and for this
purpose we will use the sets’ disjoint subsets, for which we will use
the shorthand ω. We introduced this form in Section 2.1, but now
de�ne it properly in De�nition 2.1.

De�nition 2.1. For a family of N sets, F = F1, F2, . . . , FN , we form
n = 2N − 1 combinations of these sets. We proceed by example; for
a three-set combination of sets F1, F2, F3, we establish the following
identity matrix:

F1 F2 F3
i = 1 • ◦ ◦

2 ◦ • ◦

3 ◦ ◦ •

4 • • ◦

5 • ◦ •

6 ◦ • •

n = 7 • • •

where

{
• : inclusion
◦ : exclusion

Next, we de�ne ωi for i = 1, 2, . . . ,n so that each ωi is a disjoint
subset consisting of the elements that are unique to the intersection
of the sets of the i th combination. Analogously, we also introduce the
&-operator. Taken together, we have, for our previous combination,

ω1 = F1 \ (F2 ∪ F3)

ω2 = F2 \ (F1 ∪ F3)

ω3 = F3 \ (F1 ∪ F2)

ω4 = (F1 ∩ F2) \ ω7 = F1&F2

ω5 = (F1 ∩ F3) \ ω7 = F1&F3

ω6 = (F2 ∩ F3) \ ω7 = F2&F3

ω7 = F1 ∩ F2 ∩ F3 = F1&F2&F3

The objective of our algorithm is to map these ω to area-equivalents—
which we will call A—in our diagram (Figure 2.2), so that an exact
diagram requires that ωi = Ai for i = 1, 2, . . . , 2N − 1, where N is the
number of sets in the input.

In Section 2.2, we restricted ourselves to circles but now extend
ourselves also to ellipses. From now on, we abandon the prac-
tice of treating circles separately as they are only a special case
of ellipses—everything that applies to an ellipse does so equally for
a circle.

2.3.1 Intersecting ellipses

As we brie�y discussed in Section 1.1, we now need the ellipses’
points of intersections. eulerr’s approach to this is outlined in

7
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φ

a

b h,k

Figure 2.3. A rotated ellipse with
semimajor axis a, semiminor axis
b, rotation ϕ, and center h,k .
16 The circle, parabola, and hy-
perbola are the other types of
conics.

Richter-Gebert [12] and based in projective, as opposed to Euclidean,
geometry.

To collect all the intersection points, we naturally need only to
consider two ellipses at a time. The canonical form of an ellipse is
given by

[(x − h) cosϕ + (y − k) sinϕ]2

a2 +
[(x − h) sinϕ − (y − k) cosϕ]2

b2 = 1,

where ϕ is the counter-clockwise angle from the positive x-axis to
the semi-major axis a, b is the semi-minor axis, and h,k are the x-
and y-coordinates, respectively, of ellipse’s center (Figure 2.3).

However, because an ellipse is a conic16 it can be represented in
quadric form,

Ax2 + Bxy +Cy2 + Dx + Ey + F = 0

that in turn can be represented as a matrix,
A B/2 D/2
B/2 C E/2
D/2 E/2 F

 ,
which is the form we need to intersect our ellipses. We now pro-
ceed to

1. form three degenerate conics from a linear combination of
the two ellipses we wish to intersect,

2. split one of these degenerate conics into two lines, and

3. intersect one of the ellipses with these lines, yielding 0 to 4
intersection points points (Figure 2.4).

(a) Our objective is to intersect these
two ellipses.

(b) Three degenerate conics (orange,
teal, and blue) are formed from the
linear combination of our two ellipses.

(c) One of the degenerate conics is
split it into two lines and intersected
with one of the ellipses to yield four
intersection points.

Figure 2.4. The process used to intersect two ellipses, here yielding four points. This �gure was inspired by an
example from Richter-Gebert [12].

8
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2.3.2 Overlap areas

Using the intersection points of a set of ellipses that we retrieved
in Section 2.3.1, we can now �nd the overlap of these ellipses. We
are only interested in the points that are contained within all of
these ellipses, which together form a geometric shape consisting of
a convex polygon, the sides of which are made up of straight lines
between consecutive points, and a set of elliptical arcs—one for
each pair of points (Figure 2.5).

Figure 2.5. The overlap area
between three ellipses is the sum
of a convex polygon (in grey) and
2–3 ellipse segments (in blue).

We continue by ordering the points around their centroid. It is then
trivial to �nd the area of the polygon section since it is always con-
vex [18]. Now, because each elliptical segment is formed from the
arcs that connect successive points, we can establish the segments’
areas algorithmically [11]. For each ellipse and its related pair of
points (located at angles θ0 and θ1 from the semimajor axis), we
proceed to �nd its area by

1. centering the ellipse at (0, 0),

2. normalizing its rotation, which is not needed to compute the
area,

3. integrating the ellipse over [0,θ0] and [0,θ1], producing ellip-
tical sectors F (θ0) and F (θ1),

4. subtracting the smaller, F (θ0), of these sectors from the larger,
F (θ0), and

5. subtracting the triangle section to �nally �nd the segment
area,

α(θ0,θ1) = F (θ1) − F (θ0) −
1
2 |x1y0 − x0y1 | , where

F (θi ) =
a

b

[
θi − arctan

(
(b − a) sin 2θi

b + a + (b − a) cos 2θi

)]

9
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θ 0

θ 1

a, 0

x 0, y 0

x 1, y 1

F (θ 0)

F (θ 1) − F (θ 0)

(a) We �rst obtain elliptical sectors
F (θ0) and F (θ1) and then subtract the
smaller sector from the larger.

|x1y 0 − x0y 1 |
2

α(θ0 , θ1)
x 0, y 0

x 1, y 1

(b) The elliptical segment in blue
is then found by subtracting the
triangle part (in grey) from F (θ1) −
F (θ0).

Figure 2.6. Obtaining the ellipti-
cal segment between two points
x0,y0 and x1,y1.
17 1 out of approximately 7000 in
our simulations.

This procedure is illustrated in Figure 2.6. Note that there are sit-
uations where this algorithm is altered, such that when the sector
angle ranges beyond π—we refer the interested reader to Eberly
[11].

Finally, the area of the overlap is then obtained by adding the area
of the polygon and all the elliptical arcs together.

Note that this does not yet give us the areas that we require, namely
A: the area-equivalents to the disjoint subsets from De�nition 2.1.
For this, we must decompose the overlap areas so that each area
maps uniquely to a subspace of the set con�guration. This, how-
ever, is simply a matter of transversing down the hierarchy of over-
laps and subtracting the higher-order overlaps from the lower-order
ones. For a three-set relationship of sets A, B, and C , for instance,
this means subtracting the A ∩ B ∩C overlap from the A ∩ B one to
retrieve the equivalent of (A ∩ B) \C .

The exact algorithm may in rare instances17, break down, the cul-
prit being numerical precision issues that occur when ellipses are
tangent or completely overlap. In these cases, the algorithm will
approximate the area of the involved overlap by

1. spreading points across the ellipses using Vogel’s method (see
Appendix A.1 for a brief introduction),

2. identifying the points that are inside the intersection via the
inequality

[(x − h) cosϕ + (y − k) sinϕ]2

a2 +

[(x − h) sinϕ − (y − k) cosϕ]2

b2 < 1,

where x and y are the coordinates of the sampled points, and
�nally

3. approximating the area by multiplying the proportion of
points inside the overlap with the area of the ellipse.

With this in place, we are now able to compute the areas of all
disjoint subsets, ω, up to numerical precision.

2.3.3 Final optimization

We feed the initial layout computed in Section 2.2 to the optimizer—
once again we employ nlm() from stats but now also provide the
option to use ellipses rather than circles, allowing the “circles” to
rotate and the relation between the semiaxes to vary, altogether
rendering �ve parameters to optimize per set and ellipse (or three if
we restrict ourselves to circles). For each iteration of the optimizer,
the areas of all intersections are analyzed and a measure of loss
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Figure 2.7. Optimizing via stress
is analogous to least-squares lin-
ear regression through the origin.
ω is the set of unique quantities
in the input (De�nition 2.1) and
A the respective areas in the dia-
gram.
18 We conducted thorough bench-
marking, that we opt not to re-
port here, to decide upon an algo-
rithm for this step.
19 The choice of if and when this
last-ditch optimizer is activated
is left to the user via simple com-
mands to the main function of the
package.

returned. The loss we use is the same as that in venneuler [5],
namely stress, ∑n

i=1(Ai − βωi )
2∑n

i=1 A
2
i

, (2.6)

where
β =

∑n
i=1 Aiωi∑n
i=1ω

2
i
.

This is equivalent to linear regression through the origin, where β
is the slope of the regression line (Figure 2.7).

2.3.4 Last-ditch optimization

If the �tted diagram is still inexact after the procedure in Sec-
tion 2.3.3, we o�er a �nal step in which we pass the parameters
on to a last-ditch optimizer. The weapon of choice18 is a di�erential
evolution algorithm from the R package RcppDE [19]—a port of the
DEoptim package [20] from C to C++.

The solutions o�ered by RcppDE often avoid local minima but
may be ine�cient in local search regions; this shortcoming can be
remedied by �ne tuning with a local optimizer [21]—once more, we
rely on nlm() to serve this purpose.

By default, this last-ditch step is activated only when we have a
three-set diagram with ellipses and a diagError (2.7) above 0.00119

The reason being that the method is considerably more computa-
tionally intensive.

2.4 Goodness of fit

Every Euler diagram must be investigated for its adequacy in rep-
resenting the input. Exact Euler diagrams are not always possible
When eulerr cannot �nd a perfect solution, it o�ers an approx-
imate one instead, the adequacy of which has to be measured
in a standardized way. For this purpose we adopt two measures:
stress [5], which is also the loss metric we use in our �nal optimiza-
tion step and is used in venneuler, as well as diagError [3], which
is used by eulerAPE.

We �rst encountered the stress metric (2.6) in Section 1.1 and cov-
ered it again in Section 2.3. The stress metric is not easily grasped
but can be transformed into a rough analogue of the correlation
coe�cient via r =

√
1 − stress2.

diagError, meanwhile, is given by

max
i=1,2, ...,n

���� ωi∑n
i=1ωi

−
Ai∑n
i=1 Ai

���� , (2.7)

which is the maximum absolute di�erence of the proportion of any
ω to the respective unique area of the diagram.

11
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2.5 Availability

eulerr is available as an R package on the CRAN network [22] and
is installed by calling

install.packages("eulerr")

A development version, along with source code, for the project is
maintained in a GitHub repository at https://github.com/jolars/
eulerr. This version can be installed, provided that the devtools
package [23] is installed, by running the following code:

devtools::install_github("jolars/eulerr")

We have also developed a shiny [24] web application for eulerr,
which can be found at http://jolars.co/eulerr. It features a
slimmed-down version of the package that allows the two primary
forms of input, o�ers a little less freedom in customizing the dia-
gram, and does not feature the last-ditch optimizer (Section 2.3.4).

Finally, the source code for this thesis has been provided in the
form of an R-package and is located in a GitHub repository at
https://github.com/jolars/eulerr2017bsc, which, in addition to
the text and markup for the thesis, also hosts the code used to gen-
erate the data, the data itself, and the analyzes of this data (Chap-
ter 3).
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20 The speci�cation of the com-
puter was

• Microsoft Windows Pro 10
x64

• Intel® CoreTM i7-4500U
CPU @ 1.80GHz, 2 cores

• 8 GB memory

21 This was a m4.large instance
with the following speci�cations:

• Ubuntu 16.04 x64

• 2.4 GHz Intel Xeon®E5-
2676 v3 (Broadwell) CPU, 2
cores

• 8 GB memory

3 Results

The only R packages that feature area-proportional Euler diagrams
are eulerr, venneuler, Vennerable, and d3VennR. The latter
is an interface to the venn.js script that has been discussed pre-
viously, but because it features an outdated version of the script
and only produces images as html, we call venn.js directly using
the javascript engine V8 via the R package of the same name [25].
Only eulerr, venn.js, and venneuler support more than three sets,
which is why there are only three-set results for Vennerable and
eulerAPE.

The packages used here were

• eulerr 3.1.0,

• eulerAPE 3.0.0,

• venn.js 0.2.14,

• venneuler 1.1-0, and

• Vennerable 3.1.0.9000.

The results for eulerAPE were computed on a laptop computer20.
The remaining results were computed on an Amazon EC2 cloud-
based computing instance21.

3.1 Case studies

We begin our examination of eulerr by studying a di�cult set
relationship from Wilkinson [5],

A = 4, B = 6, C = 3, D = 2, E = 7, F = 3,
A&B = 2, A&F = 2, B&C = 2, B&D = 1,
B&F = 2, C&D = 1, D&E = 1, E&F = 1,

A&B&F = 1, and B&C&D = 1,

speci�ed as disjoint subsets and using the &-operator as in De�ni-
tion 2.1. We �t this speci�cation with venneuler and eulerr, in the
latter case using both circles and ellipses.

eulerr manages to �t this set con�guration perfectly using el-
lipses (Figure 3.1a) and furthermore produces a better circular
Euler diagram (Figure 3.1b) compared to venneuler (Figure 3.1a),
although the di�erence is small.

13
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A

B

C

D

E

F

(a) The diagram from venneuler,
with a stress of 0.007 and diagError
of 0.013.

A

B

C
D

E

F

(b) The circular diagram from eulerr,
with a stress of 0.004 and diagError
of 0.011.

A

B

C

D

E

F

(c) The elliptical diagram from eu-
lerr, with a stress of 3.49 × 10−13 and
diagError of 7.671 × 10−8.

Figure 3.1. A comparison of a Euler diagram generated with venneuler with two generated from eulerr with
circles and ellipses respectively.

Micallef and Rodgers [3] features a diagram from Lenz and Fornoni
[26] that they favorably remodelled using eulerAPE. We will do
the same here, using eulerr and compare the results of the two
packages. The data from the original diagram (as disjoint sub-
sets (De�nition 2.1)) was

A = 0.36, B = 0.03, C = ∅,

A&B = 0.41, A&C = 0.04, B&C = ∅, and
A&B&C = 0.11.

However, because eulerAPE cannot �t set con�gurations with
empty intersections, the authors used 0.00001 as a proxy for ∅.
Since the diagram was �tted with ellipses, we will do the same with
eulerr but keep the areas as in the original data.

The �ts from both packages are exact (Figure 3.2). Although we
instructed eulerr to allow ellipses in the �t, the algorithm stuck to
circles, which, given that the �t is exact, is the appropriate choice
since circles are easier to interpret [7]. The reason eulerAPE did
not is that it tries to keep the three shapes intersecting (albeit
marginally), which cannot be done with circles if the layout is to be
exact.

A

B

C

(a) The diagram from eulerr. (b) The diagram from eulerAPE.

Figure 3.2. Diagrams from eu-
lerAPE and eulerr based on
data from a diagram in Lenz and
Fornoni [26]. The diagram from
eulerAPE has been modi�ed to
enlarge fonts and remove labels
for b and bc, which had been
added at seemingly arbitrary lo-
cations in the original diagram.
Both diagrams are exact.
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Amelie 38,753
Pulp Fiction 15,197 70,153

Miss Congeniality 1,829 3,854 37,837
Armageddon 1,218 6,593 10,536 40,345

Rashomon 2,087 2,799 132 143 6,209
Coyote Ugly 610 2,206 5,965 5,699 38 15,611

Table 3.1. The data from the
Net�ix Prize dataset used by
Frederickson [27]. Each number
indicates the number of users
who gave the corresponding
movies a �ve-star rating.

22 The dataset is no longer
available on this webpage, but
has been archived at https:
//www.kaggle.com/netflix-

inc/netflix-prize-data for
those who are interested.

To conclude our case studies, we turn to a diagram that was fea-
tured on the website of the author of venn.js [27]. The diagram is
based on the Net�ix Prize Dataset22, from which the author

[...] picked 6 movies, kind of at random – and then
represented them using the set of users that gave the
movie a 5 star rating.

The movies were Amelie, Pulp Fiction, Miss Congeniality, Armaged-
don, Rashomon, and Coyote Ugly. The data only includes pairwise
relationships (Table 3.1).

The �t from eulerr is marginally better than that of venn.js. The
stress and diagError of the eulerr diagram (Figure 3.4a) are 0.003
and 0.014 respectively, whilst the same �gures are 0.004 and 0.015
for the venn.js diagram (Figure 3.4b).

Amelie

Pulp Fiction

Miss Congeniality

Armageddon

Rashomon

Coyote Ugly

(a) The �t from eulerr with a stress of 0.003 and diagEr-
ror of 0.014.

Amelie

Pulp Fiction

Miss Congeniality

Armageddon

Rashomon

Coyote Ugly

(b) The �t from venn.js with a stress of 0.004 and di-
agError of 0.015.

Figure 3.4. The Euler diagrams generated from the Net�ix Prize data. The di�erence in the two layouts primarily
concern the placements of Rashomon and Miss Congeniality.
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3 Results

3.2 Consistency

To compare the consistency among eulerr, venneuler, eulerAPE,
venn.js, and Vennerable, we generate random diagrams of circles
and ellipses (separately), compute their areas, and attempt to repro-
duce the original diagrams using the various software. We restrict
ourselves to diagrams consisting of between three and eight shapes.

For the circles, we sample radii (ri ) and coordinates (hi and ki ) from

hi ,ki ∼ U(0, 1)
ri ∼ U(0.2, 0.6).

(3.1)

For the ellipses, we sample semiaxes (ai and bi ), coordinates (hi and
ki ), and rotation axes (ϕi ) from

hi ,ki ∼ U(0, 1)
ri ∼ U(0.2, 0.6)
ci ∼ U(0.5, 2)
ai = ciri

bi =
ri
ci

ϕi ∼ U(0,π ).

(3.2)

Next, we compute the required areas, ω (De�nition 2.1) and �t Euler
diagrams using the aforementioned packages. Finally, we compute
and return diagError (2.7) and score each diagram as a success if its
diagError is lower than 0.01, that is, if no portion of the diagram
is one percentage point o� from that of the input; note that this is
always achievable since our input comes from sampled diagrams.

For each number of shapes, N = 3, 4, . . . , 8, we run the simula-
tions until we have achieved a 95% con�dence interval around p̂,
the proportion of successful diagrams, no wider than 0, and for a
minimum of 1,000 iterations. We use the normal approximation
interval,

I(p̂)0.95 = p̂ ± z0.025

√
p̂(1 − p̂)

n
. (3.3)

The procedure is formalized in Algorithm 1. For circular diagrams,
eulerr outperforms Vennerable and venneuler in consistency by
considerable margin and is on par with venn.js and eulerAPE (Fig-
ure 3.5). eulerr and eulerAPE are the only packages that success-
fully �ts all of the circular diagrams (although eulerAPE only ac-
cepts a subset of our three-set diagrams). venn.js fails in 4 cases
out of 6000.

For ellipses of three shapes, eulerr successfully �ts all diagrams
whilst eulerAPE fails in 6 cases out of 1000.

For ellipses of four or more sets—which only eulerr accepts—the
consistency drops for each additional set, from 78% at four sets
to 38% at eight sets. Vennerable, which is only able to produce
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for N ← 3 : 8 do
i, successes← 0
do

i ← i + 1
αi ← random diagram
ωi ← compute overlaps(αi )
for all j ← software do

p̂j ← successesj/i
if I(p̂)0.95 is wider than 0.02 or i ≤ 1000 then

Ai j ← fit diagram(ωi )

if diagError(Ai j ,ωi ) < 0.01 then
successesj ← successesj + 1

while all I(p̂)0.95 are wider than 0.02 or i ≤ 1000

Algorithm 1. The algorithm
used to simulate diagrams of cir-
cles or ellipses, reverse-engineer
set relationships, and �t Euler
diagrams to these relationships
using the di�erent software pack-
ages. I(p̂)0.95 is the binomial pro-
portion con�dence interval (3.3).
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Vennerable

venneuler

eulerAPE

eulerrvenn.js
Circles

3 4 5 6 7 8

eulerr

eulerAPE

Ellipses

Figure 3.5. Proportions of successfully reproduced Euler diagrams from set con�gurations based on sampled
circular and elliptical diagrams generated from the distributions in (3.1) and (3.2). The results are based on at least
1000 iterations for each software package and number of sets and have at most a 0.02-wide symmetric 0.95%
con�dence interval around the displayed point estimate. A success is de�ned as a diagram with a diagError (2.7)
below 0.01.
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23 The R-code used
to generate this ε is
sqrt(.Machine$double.eps)

three-set diagrams, only produces accurate diagrams for 7% of the
random layouts and moreover fails with an error in 6 cases.

3.3 Accuracy

In Section 3.2, we assessed the e�cacy in reproducing diagrams
with exact, albeit unknown, solutions. Reality, however, often
presents us with relationships that lack such exact solutions. Yet,
when there is no exact solution, one might still exist that is good
enough, which we naturally want our model to �nd.

To assess the accuracy in producing diagrams for which there
might not be an exact �t, we generate random set relationships,
�ting Euler diagrams to each using the software under study. For
each N = 3, 4, . . . , 8 sets, we initialize N -set combinations with all
items set to 0. For every set relationship, we pick N elements from
the relationship at random—making sure that each set is selected
at least once—and assign to each a number generated fromU(ε, 1),
where ε is de�ned as the square root of the current machine’s small-
est representable di�erence between one and the smallest value
greater than one23. Next, we draw a sample of a random subset of
the remaining 2N − 1 − N set intersections and assign to them a
number fromU(ε, 1) as before.

We run our simulations for a minimum of 1,000 iterations and until
we achieve a 95% con�dence interval around the mean diagError
no wider than 0.02. The con�dence level used is based on the t-
distribution,

I(x̄)0.95 = x̄ ± t0.025,n−1
s
√
n
, (3.4)

with

s =

√√
1

n − 1

n∑
i=1
(x − x̄)2,

where n is the number of iterations. The procedure is formalized
in Algorithm 2.

for N ← 3 : 8 do
i ← 0
do

i ← i + 1
for k ← 1 : N do

random element in {ωi : ωi ∩ Fk , ∅} ← U(ε, 1)
for all j ← software packages do

Aji ← fit diagram(ωi )

x ji ← diagError(Aji ,ωi )

while all I(x̄)0.95 are wider than 0.02 or i ≤ 1000

Algorithm 2. The algorithm
used to simulate and �t random
set relationships to assess the ac-
curacy of the various software we
are studying. I(x̄)0.95 is the 95%
con�dence interval around the
mean diagError (3.4), F denotes
a set, and ε is the square root of
the di�erence between 1 and the
least value greater than 1 on our
machine.

However, given that neither Vennerable nor eulerAPE are capable
of �tting Euler diagrams that feature subset or disjoint relation-
ships, and because fully intersecting diagrams are more di�cult
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to �t—at least with circles—we run a separate treatment in which
we modify Algorithm 2 so that every intersection is initialized to a
value inU(ε, 1).

From the results generated via Algorithm 2, we can surmise that
eulerr’s elliptical diagrams achieve the lowest median stress and
diagError (Figure 3.6) for all set sizes, although the di�erence is
relatively more pronounced for set sizes three and four.
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Figure 3.6. Tukey box plots of Euler diagrams based on set relationships that may or may not have perfect solu-
tions, generated from (3.2).

We also �nd that among the algorithms that �t circular Euler dia-
grams, eulerr o�ers the lowest median stress across all the sizes
of set relationships. For diagError, however, venn.js produces dia-
grams with the least loss for three sets, whilst eulerr scores better
for all the remaining set sizes, for which venn.js is moreover out-
done by venneuler.

Looking at the results from the simulation of three-set relationships
with all intersections present (Figure 3.7), eulerr still produces
the most accurate diagrams provided that we use ellipses—both in
terms of stress and diagError. The di�erence next to eulerAPE is
neglible, however, with di�erences below 10−7.

eulerr (circles)

eulerr (ellipses)

venneuler

venn.js

eulerAPE (circles)

eulerAPE (ellipses)

Vennerable

0.0 0.2 0.4 0.6 0.8

stress

0.0 0.2 0.4 0.6 0.8

diagError
Figure 3.7. Tukey box plots of
diagError and stress for Euler
diagrams based on set relation-
ships of three sets with every
intersection present.
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For circular diagrams, venn.js achieves the lowest median diagEr-
ror at 0.044, followed by venneuler at 0.048, eulerr at 0.055, eu-
lerAPE at 0.067, and Vennerable at 0.1. As for stress, however, the
order is partially reversed with respective stress values at 0.022,
0.035, 0.044, 0.08, 0.159 for eulerr, venneuler, venn.js, eulerAPE,
and Vennerable respectively.

3.4 Performance

Using the same procedure as in Algorithm 2, we generate random
set relationships and measure the time it takes for each software
package to form a diagram from the input. We use microbench-
mark [25] for the benchmarks, which randomizes the order in
which the packages are called between trials. Because neither the
current version of venn.js, nor any version of eulerAPE, have
been implemented in R, we omit these packages from the perfor-
mance benchmarks.

eulerr is faster for circular diagrams up to and including seven
sets (Figure 3.8), after which venneuler catches up and subse-
quently outperforms eulerr for eight-set relationships. For a three-
set diagram, for instance, eulerr takes a median of 0.007 seconds to
�nd a �t, whilst venneuler takes 0.414 seconds, and Vennerable
0.056 seconds. For eight sets, meanwhile, eulerr takes 2.68 seconds
and venneuler 2.059.

The computation time for the elliptical diagrams from eulerr gen-
erally vary more but are still, on average, faster than venneuler for
up to �ve sets—albeit with the exception of diagrams of three sets,
where the resulting bimodal distribution is a consequence of the
time-consuming last-ditch optimizer (Section 2.3.4) that is activated
by default if the �t is not error-free after the �nal optimizer.
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Figure 3.8. Violin plot of the performance of eulerr, venneuler, and Vennerable on random set relationships of
three to eight sets. The density smoother is that of Sheather and Jones [28].
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4 Discussion

In this thesis, we have presented a novel method for generating
elliptical Euler diagrams for any number of sets. We have shown
that the package is both more consistent and accurate than the
other packages analyzed as well as faster for up to seven sets.

eulerr reproduced all the circular diagrams generated in Section 3.2
within our stipulated margin of error. No other package managed
this task, although the failing diagrams of both eulerAPE and
venn.js numbered in the single digits. venneuler, in contrast, was
not able to adequately reproduce 57% of these diagrams, which,
however, was still better than the results on a previous test [29].

Some of the examined set relationships feature disjoint or subset re-
lationships, which venneuler have problems �tting on account of
its initial optimizer. As we discussed in Section 1.1, eulerr, venn.js,
and venneuler all use multi-dimensional scaling for their initial
diagram. venneuler, however, unnecessarily restricts the locations
of disjoint and subset circles. Given, for instance, two disjoint sets,
the algorithm will attempt to place them tangent to one another;
otherwise, the optimizer will report loss. Likewise, for a subset re-
lationship, venneuler tries to place the smaller circle at the exact
midpoint of the enclosing shape.

For the �t to be accurate, however, those restrictions are pointless
as long as the sets remain disjoint or subset. For venneuler, this
becomes problematic because the required positions might interfere
with space that could be used by other sets to improve the �t. The
constrained multi-dimensional scaling method in venn.js and eu-
lerr circumvents this by assigning a loss and gradient of zero when
the pairwise set intersection and the candidate circles are disjoint
or subset. This makes it easier for the starting layout to �nd a good
initial layout.

Another reason for the mediocre results of venneuler could be
both that the optimizer terminates prematurely in case the relative
reduction in stress is considered negligible between iterations or
that the number of iterations is too low.

eulerr managed to also reproduce all of the elliptical three-set
diagrams perfectly but failed for an increasing number of cases as
we added sets to our input. For three-set diagrams, eulerr employs
a rigorous last-ditch optimizer in case the �t it not adequate after
the �rst step of the �nal optimization procedure. This step is time-
consuming (as we saw in Section 3.4), but if activated would yield
better results also for sets of more than three shapes.
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Figure 4.1. A six-set Venn
diagram using Edward’s
method [30]; this diagram was
generated with Vennerable.
24 Stress, on the other hand, is
directly related to the residual
sums of squares.

25 Nominal in the sense that each
relationship in the input is also
represented in the diagram.

The elliptical diagrams from eulerr are more accuracte for set rela-
tionships that might lack exact solutions compared with the other
packages in this thesis, although the di�erence next to eulerAPE
is slight. Elliptical Euler diagrams are more successful since they
allow two additional degrees of freedom for each set, that is, rota-
tion and stretching. The marginal gains are greatest for three sets
and diminishes as we add more sets. This is what we expect: com-
plicated inputs require complicated models and there are many set
con�gurations that even elliptical Euler diagrams cannot support—
consider, for instance, the complicated geometry of the Venn dia-
gram in Figure 4.1 that is required to represent all the intersections
between six sets.

Considering only circular Euler diagrams, eulerr remains the best
choice for both diagError and stress in all cases except for three-set
diagrams, where it ranks best in terms of stress but not diagEr-
ror, which venn.js scores best on. It might be appropriate to note,
however, that eulerr, venneuler, and venn.js all try to minimize
the residual sums of squares in one way or another—not diagEr-
ror. In essence, this means that the lower diagError from venn.js,
regardless of whether it is desired, is not a sign that the algorithm
performed as intended, particularly not when stress is considered as
well24.

Surprisingly, given the results in Section 3.2, venn.js performs
worse than venneuler in all of the remaining cases. We can only
speculate as to reasons for this, but it is possible that the Nelder–
Mead variant used in venn.js chokes on the more complicated
layouts; indeed, this was our experience when designing eulerr,
which at one point featured a version of the same optimizer. In our
case, nlm() from the stats package was found to be superior.

In contrast to eulerAPE’s elliptical diagrams, its circular ones per-
formed worse than all other packages save for Vennerable. This
result likely stems from the particular loss function used in euler-
APE, which prohibits empty overlaps in the diagram—often at the
expense of the overall �t. The author’s argue that this function
drives the optimizer away from local minima [3], but we could not
�nd any such issues with eulerr. On the other hand, this feature of
eulerAPE might be desired by those who prioritize the nominal25,
rather than proportional, representativeness of the diagram.

Performance-wise, eulerr is faster than both Vennerable and ven-
neuler for up to seven sets. One reason for this is likely the imple-
mentation in C++ and use of the Armadillo library [31] provided
by the interfaces Rcpp [32] and RcppArmadillo [33]. Another
reason—possibly the foremost—comes from the exact-area algo-
rithm that involves less work than the quadtrees of venneuler
with few sets.

Paradoxically, this is also why the performance of eulerr su�ers
as the number of sets increase. In essence, we must examine every
possible intersection when computing the areas. For eight sets, for
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instance, this means investigating 28 − 1 = 255 intersections. Asymp-
totically, the algorithm thus converges in O(2n) time. Wilkinson
[5], meanwhile, report convergence for venneuler in O(n) time,
which there indeed is evidence of in Figure 3.8. As a result, the com-
putational demand of complicated set con�gurations make �tting
di�cult diagrams with eulerr prohibitive where speed is a concern.
On the other hand, Euler diagrams seldom make sense for such
complicated set relationships—only rarely will they conform to an
adequate �t. Nevertheless, future versions of this algorithm should
consider implementing approximate area-calculations when the
number of sets is large to cater to the, albeit few, instances where a
Euler diagram is appropriate.

Fitting diagrams is substantially harder with ellipses than with
circles. There are many more local minima that might hobble our
optimizer and since our initial con�guration only considers cir-
cles, such minima cannot reliably be avoided before the �nal opti-
mization step. And because we default to a local optimizer in this
�nal step, it is not uncommon that we terminate before �nding the
global minimum. The last-ditch optimizer battles such minima with
brute force: it tries a vast number of permutations and uses the pre-
vious �ts (initial and semi-�nal) only to set up constraints for the
algorithm. The downside to using this algorithm is that it, in con-
trast to human beings, does not favor circles over ellipses, which
means that we might get elliptical diagrams when circular ones
would do. Future e�orts in this �eld should consider penalization,
or similar techniques, in order to promote user-friendly diagrams.

4.1 Conclusion

In all of the scenarios examined in this thesis, eulerr’s elliptical
Euler diagrams o�er solutions with the least error among all of the
packages tested. For three sets, eulerr’s accuracy is equalled only
by the elliptical diagrams from eulerAPE, which, however, impose
restrictions that eulerr do not, namely, that there be no disjoint or
subset relationships.

eulerAPE’s restriction to three sets is discussed by the authors of
the package, who motivate this limitation with the propensity of
Euler diagrams with more sets to lack adequate solutions and that
their complexity make implementations di�cult [9]. Whilst it is
true that inputs with more than three sets do not always reduce to
adequate Euler diagrams, it is our stance that those that do, war-
rant a software implementation that enables users to �nd them,
given that Euler diagrams are intuitive visualizations that are easily
grasped by most viewers.

The foremost shortcoming of eulerr is its failure to consistently
�nd optimal elliptical diagrams, which is evident in Section 3.2,
wherein a portion of the sampled diagrams are not re�t adequately,
implying that the accuracy (see Section 3.3) must have potential to
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improve. This problem is not intractable and we believe it could be
overcome either by

• relying on brute-force global optimizers that thoroughly
examine the search space and attempt to optimize—possibly
parallelize—these routines to make complex diagrams �t with
reasonable speed, or by

• designing an algorithm for the initial con�guration that
works speci�cally for ellipses and avoids local minima ahead
of �nal optimization.

Whichever direction future research takes, we believe that the ad-
vances presented in this thesis serves as another step in the direc-
tion towards more accurate Euler diagrams.
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A Visualization

Once we have ascertained that our Euler diagram �ts well, we can
turn to visualizing the solution. For this purpose, eulerr leverages
the Lattice graphics system [34] for R to o�er intuitive and granu-
lar control over the output.

Plotting the ellipses is straightforward using the parametrization of
a rotated ellipse,[

x
y

]
=

[
h + a cosθ
k + b sinθ

]
, where θ ∈ [0, 2π ], a,b > 0.

Most users will also prefer to label the ellipses and their intersec-
tions with text and this, however, is considerably more involved.

A.1 Labeling

Labeling the ellipses is complicated since the shapes of the inter-
sections often are irregular, lacking well-de�ned centers; we know
of no analytical solution to this problem. As usual, however, the
next-best option turns out to be a numerical one. First, we locate a
point that is inside the required region by spreading points across
the discs involved in the set intersection. To distribute the points,
we use a modi�cation of Vogel’s method [35, 36] adapted to ellipses.
Vogel’s method spreads points across a disc using

pk =

[
ρk
θk

]
=

[
r
√

k
n

π (3 −
√

5)(k − 1)

]
for k = 1, 2, . . . ,n. (A.1)

In our modi�cation, we scale, rotate, and translate the points formed
in (A.1) to match the candidate ellipse. We rely, as before, on projec-
tive geometry to carry out the transformations in one go:

p ′ =


x ′

y ′

1

 =

1 0 h
0 1 k
0 0 1




cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1



a 0 0
0 b 0
0 0 1



x̂
ŷ
1

 ,
where h,k translates, ϕ rotates, and a,b stretches the ellipse.

After we spread our points throughout the ellipse and �nd a point,
p ′i , that is contained in our desired intersection, we proceed to op-
timize its position numerically. The position we are looking for is
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Figure A.1. The method eulerr
uses to locate an optimal position
for a label in three steps from top
to bottom: �rst, we spread sample
points on one of the ellipses and
pick one inside the intersection of
interest, then we begin moving it
numerically, and �nally place our
label.

that which maximizes the distance to the closest ellipse in our dia-
gram to provide as much margin as possible for the label. This is a
maximization problem with a loss function equal to

L(x ,y) = min
i=1,2, ...,N

f (x ,y,hi ,ki ,ai ,bi ,ϕi ) (A.2)

where f is the function that determines the distance from a point
(x ,y) to the ellipse de�ned by h,k,a,b and ϕ.

Similarly to �tting Euler diagrams in the general case, there ap-
pears to be no analytical solution to computing the distance from
a point to an ellipse. The numerical solution we use has been de-
scribed by Eberly [37] and involves solving the roots to a quartic
polynomial via a robust bisection optimizer.

To optimize the location of the label, we employ a version of the
Nelder–Mead method [38], which has been translated from a Matlab
code by Kelley [39] and adapted for eulerr to ensure that it con-
verges quickly and that the simplex remains within the intersection
boundaries (since we want the local maximum). The method is
visualized in Figure A.1.

A.2 Aesthetics

Euler diagrams display both quantitative and qualitative data. The
quantitative aspect is the quantities or sizes of the sets depicted in
the diagram and is visualized by the relative sizes, and possibly the
labels, of the areas of the shapes—this is the main focus of this pa-
per. The qualitative aspects, meanwhile, consist of the mapping of
each set to some quality or category, such as having a certain gene
or not. In the diagram, these qualities can be separated through any
of the following aesthetics:

• color,

• border type,

• text labelling,

• transperancy,

• patterns,

or a combination of these. The main purpose of these aethetics
is to separate out the di�erent ellipses so that the audience may
interpret the diagram with ease and clarity.

Among these aesthetics, the best choice (from a viewer perspective)
appears to be color [7], which provides useful information without
extraneous chart junk [40]. The issue with color, however, is that it
cannot be perceived perfectly by all—8% of men and 0.4% of women
in European Caucasian countries, for instance, su�er the most
common form, red–green color de�ciency [41]. Moreover, color is
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often printed at a premium in scienti�c publications and adds no
information to a diagram of two shapes.

For these reasons, eulerr defaults to distinguishing ellipses with
color using a color palette generated via the R package qualpalr [42],
which automatically generates qualitative color palettes based on
a perceptual model of color vision that optionally caters to color
vision de�ciency. This palette has been manually modi�ed to full�l
our other objectives of avoiding using colors for two sets. The �rst
eight colors of the pallete are visualized in Figure A.2.

1

2

3

4

5

6

7

8

Figure A.2. The eight �rst colors
of the default color palette.

A.3 Normalizing dispered layouts

If there are disjoint clusters of ellipses, the optimizer will often
spread these out more than is necessary, wasting space in our di-
agram. To tackle this, we use a SKYLINE-BL rectangle packing
algorithm [43] designed speci�cally for eulerr. In it, we surround
each ellipse cluster with a bounding box, pack these boxes into a
bin of appropriate size and aspect ratio, and adjust the coordinates
of the ellipses in the clusters to compact our diagram. As a bonus,
this increases the chance of having similar layouts for di�erent
function calls.
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euler() and plot() are the only functions that users of eulerr
need concern themselves with. In Section 2.1, we described the vari-
ous forms of input that the function can be supplied with. Using the
�rst form, we will showcase how a Euler diagram is �t. For this ex-
ample, we use a diagram from a publication by Junta et al. [44] that
was also tackled by Wilkinson [5]. We load the package, specify our
diagram, and �t it using euler() as follows.

library(eulerr)
junta_2009 <- c("SE" = 13, "Treat" = 28, "Anti-CCP" = 101,

"DAS28" = 91, "SE&Treat" = 1, "SE&DAS28" = 14,

"Treat&Anti-CCP" = 6, "SE&Anti-CCP&DAS28" = 1)

fit1 <- euler(junta_2009)

Printing the results provides a summary of the �t, including the
stress and diagError metrics that were introduced in Section 2.4.

fit1 # or equivalently print(fit1)

## original fitted residuals regionError

## SE 13 12.780 0.220 0.000

## Treat 28 27.525 0.475 0.000

## Anti-CCP 101 99.287 1.713 0.002

## DAS28 91 89.457 1.543 0.001

## SE&Treat 1 0.983 0.017 0.000

## SE&Anti-CCP 0 0.000 0.000 0.000

## SE&DAS28 14 13.763 0.237 0.000

## Treat&Anti-CCP 6 5.898 0.102 0.000

## Treat&DAS28 0 0.000 0.000 0.000

## Anti-CCP&DAS28 0 0.000 0.000 0.000

## SE&Treat&Anti-CCP 0 0.000 0.000 0.000

## SE&Treat&DAS28 0 0.000 0.000 0.000

## SE&Anti-CCP&DAS28 1 0.000 1.000 0.004

## Treat&Anti-CCP&DAS28 0 0.000 0.000 0.000

## SE&Treat&Anti-CCP&DAS28 0 0.000 0.000 0.000

##

## diagError: 0.004

## stress: 0

The �t is more or less equivalent to that of venneuler [5]. There is
an error but it is small at a diagError of 0.004. We could, however,
try to improve the �t using ellipses:
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# Fit the data using ellipses instead

fit2 <- euler(junta_2009, shape = "ellipse")

# Compare the fits on diagerror

fit1$diagError - fit2$diagError

## [1] 0

Comparing the two �ts in diagError, however, shows that we have
not bettered the �t in any meaningful way. Our next goal is to
visualize the layout, which we do both using the default options
and by customizing the �t, adding quantities, replacing the sets’
labels with a key, removing lines, and changing the �lls (Figure B.1)
using the RColorBrewer package [45].

p1 <- plot(fit1)
p2 <- plot(fit1,

quantities = list(fontface = 3),

fill = RColorBrewer::brewer.pal(4, "Set2"),

border = "transparent",

auto.key = list(space = "right")) # key on the right

SE

Treat

Anti-CCP

DAS28

(a) The default settings.

13

28

101

91

1

14

6 Anti-CCP
DAS28
SE
Treat

(b) Custom plot settings.

Figure B.1. The same �t visual-
ized in two distinct ways.
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