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Popularvetenskaplig sammanfattning

Den form av matematik som de flesta av oss ar vana vid handlar om heltal, negativa
tal, braktal och irrationella tal som pi och roten ur 2, samt de fyra raknesatten. Dessa
tal kallas for de reella talen och de fyra raknesatten ar egentligen bara tva raknesatt.
Den matematiska strukturen ovan kallas for elementar algebra. Men kan vi skapa
andra sadana strukturer? Svaret ar ja, och omradet dar man studerar olika
algebraiska strukturer kallas abstrakt algebra. En viss typ av struktur kallas for grupp,
och har endast ett raknesatt, som brukar kallas for operation inom matematiken.
Grupper ar anvandbara for att beskriva olika situationer och system i naturen och i
samhallet, och de studeras inom gruppteori. En algebraisk struktur kan byggas upp av
matematiska objekt som inte ar tal. Inom linjar algebra studerar man istallet vektorer
och matriser, som kan skrivas som tabeller av tal. Dessa vektorer och matriser har
visat sig vara, forutom inom matematiken, valdigt anvandbara bland annat inom
geometri och fysik.

| detta arbete kommer vi arbeta med grupper som bestar av matriser. Dessa
matrisgrupper har ett andligt antal element, och kallas darfér andliga grupper. Om en
grupp ar ett slutet matematiskt system med en operation pa en mangd element, kan
det finnas mindre grupper i en grupp? Ja, och dessa kallas for undergrupper. En viss
typ av undergrupp kallas for normal undergrupp, och dessa ar valdigt viktiga i detta
arbete.

For heltal sa har primtalen en speciell roll. De fungerar namligen som byggstenar for
heltalen. Inom gruppteorin verkar det som att vissa grupper har en liknande roll.
Dessa kallas for enkla grupper, och de kannetecknas av att de inte har nagra normala
undergrupper.

Om vi kan hitta alla enkla grupper, som &r byggstenarna for alla dndliga grupper, da
vet vi valdigt mycket om andliga grupper. Sa borjade arbetet med att hitta alla enkla

grupper

Grupperna som studeras i detta arbete ar en familj av matrisgrupper som heter
Projective Special Linear Groups, eller PSL. Det visade sig att nastan alla dessa
grupper i denna familj ar enkla, och familjen har darfor varit viktig i arbetet att hitta
alla andliga grupper.

Dessa grupper har ocksa visat sig anvandbara inom nagot som kallas projektiv
geometri, en ny typ av geometri som studeras inom matematiken.



Abstract

In this thesis, we will be proving that the Projective special linear
group PSL(m, K) is a simple group for all dimensions m and finite fields
K, with a few exceptions. First, we prove simplicity of PSL(2, K) (Jordan-
Moore), and then move on to proving simplicity of PSL(m, K) (Jordan-
Dickson) for all dimensions m > 3. The most important tool used to
prove this is by using certain linear transformations known as (elemen-
tary) transvections.
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1 Introduction

As the title of this thesis suggest, we will be dealing with the Projective special
linear group, denoted PSL. This is in fact not only one group, but a whole
family of groups. To find a particular Projective special linear group, denoted
PSL(m,K), we need to fix a dimension m > 2 and a finite field K. But
to understand what PSL(m, K) is, we need to use some concepts from linear
algebra, finite fields and group theory. Therefore, in Section 2 we will review
some basics in these topics. We will also be using these to create some more
specific tools and results needed for the rest of the thesis.

In Section 3, we will use our theory, expanding it where needed, with the
aim of proving that PSL(2, K) is a simple group for all finite fields K, other-
wise known as Jordan-Moore. In this chapter, we will mainly be considering
PSL(2,K) as a group of 2 x 2 matrices with elements from a finite field K.

In Section 4, we begin the work of proving that PSL(m,K) is a simple
group for all dimensions m > 3 and finite fields K. But here we will prefer to
work with a general m-dimensional vector space V over a finite field K. In fact,
we can choose if we want to work with PSL(m, K) or PSL(V), since they are
isomorphic to each other.



2 Background

It should be known to the reader that a field is a commutative ring with identity,
where each non-zero element has a multiplicative inverse in the field. If the field
has a finite number of elements, we call it a finite field, and the number of
elements in the field is called the order of a field.

Definition 2.1. The number of elements of a field K is called the order of K,
denoted | K|.

It is known that the order of a finite field must be a prime power, i.e. |K| =
p" = ¢ for some prime p and n > 1. Throughout this text, K will always denote
a finite field with order p™ = ¢ unless it is stated otherwise.

Now we will remind the reader of what a group is.

Definition 2.2. A group G = (S,-) is a set S of elements and an operation
() on the elements of S which satisfies (i) — (iv):
(i) If a,be G thena-be G for all a,be G.
(ii) There exist an element e € G, called the identity of G, that satisfies
a-e=e-a=a forallac.
(iii) a-(b-¢) = (a-b)-c foralla,b,ceqG.
(iv) For all a € G there exist a unique element a=! € G such that a-a=* =
al-a=e.
The number of elements of a group G is called the order of a group, denoted

|G-

It is customary to omit the (-), and simply write the product of a and b as
ab instead of a - b. If we have a field K with p"™ = ¢ elements, then the elements
of K form a group under the multiplication operation of K if we remove the
element Og. This group is denoted K* and has ¢ — 1 elements. Now, it could
happen that a certain subset H of a group also satisfy all the group axioms.
This is then known as a subgroup.

Definition 2.3. If H is a subset of a group G, and H satisifes (i) — (iv) , then
H is called a subgroup of G, denoted H < G.

Certain groups have special properties. One of the most important of these
groups in this text is the normal subgroup, which is defined below.

Definition 2.4. Let H be a subgroup of G. Then H is called a normal subgroup
n G if

ghg teH
forallge G, he H.

This definition tells us that if H is a normal subgroup in G, then ghg™! = h;
for some h; € H. Multiplying this equation by ¢ from the right gives us gh =
h1g. An equivalent definition of a normal subgroup is that the left and right
cosets are equal, i.e. gH = Hg. This means that the set of all elements we get



if we multiply an element g € G by all the elements of H from the right, is the
same set we would get it we would multiply from the left instead. Sometimes we
will use this equivalent definition instead. A group G will always have at least
two normal subgroups, the group {e} consisting only of the identity element,
and G itself. These are called the trivial normal subgroups. Next, we have
another important group, the simple group.

Definition 2.5. A group G is called a stmple group if it does not contain any
non-trivial normal subgroups.

Now that we have defined normal subgroups, we can introduce the concept
of quotient groups. If H is a normal subgroup in G, then we can form the
quotient group, denoted G/H. Before we define quotient groups, however, we
must define what a coset is. If H is a subgroup of G, then the (right) coset Ha
of H in G is the set {ha : h € H}. We can think of this as the congruence class
of a modulo H.

Definition 2.6. Let H be a normal subgroup in G. Then the quotient group
G/H is the group of all right cosets of H in G.

Less important, but needed at certain points, is the commutator subgroup
G’ of G.

Definition 2.7. The commutator subgroup G’ of a group G is the subgroup
of G containing all elements of the form aba='b~' for all a,b € G, as well as
all products of such elements.

As opposed to fields, groups are not commutative in general. A commutative
group, i.e. a group where all elements commute with each other, is known as an
Abelian group. However, it could be that certain elements of a group commute
with all elements of the group. We know that the set of such elements is non-
empty, since by the group axioms, e commutes with all elements of a group.

Definition 2.8. The center of a group G, denoted Z(G), is the subset of
elements of G that commute with all elements of G.

It can be shown that the center of a group is in fact always a normal sub-
group. Next we have the centralizer of a subset of a group.

Definition 2.9. Let G be a group and A be a subset of G. The centralizer
Ca(A) is the subgroup of G containing all the elements of G that commute with
all the elements of A.

We will not prove that the commutator subgroup and the centralizer sub-
group actually are subgroups.

Now, the groups that we will be dealing with in this text are groups consisting
of m x m matrices with matrix multiplication or linear transformations on an
m-dimensional vector space V over a finite field K. Luckily, these two types of
groups are isomorphic, so we can choose which one to work with. Matrices and
linear transformations do not generally have inverses, so in order to make groups
of them, we can only work with invertible matrices and linear transformations.



Definition 2.10. The General linear group GL(V) is the group of all in-
vertible linear transformations on an m-dimensional vector space V' over a field
K, with function composition (o) as operation.

The General linear group GL(m, K) is the group of all invertible m x m matrices
with elements from the field K with matrix multiplication as operation.

Definition 2.11. The Special linear group SL(V) is the group of all invert-
ible linear transformations on an m-dimensional vector space V' over a field K
whose associated matrices have determinant 1, with function composition (o) as
operation.

The Special linear group SL(m, K) is the group of all invertible m x m matrices
with elements from the field K whose determinants are equal to 1, with matriz
multiplication as operation.

Again, we will not prove that these actually are groups. Now we are ready
to define the Projective special linear group PSL. The center of SL is denoted
by SZ. Since the center of a group is a normal subgroup, it is natural to form
the quotient group SL/SZ.

Definition 2.12. The Projective special linear group, denoted PSL(m, K),
is the group SL(m,K)/SZ(m, K).

In the same way, it is possible to create the Projective general linear group
PGL = GL/GZ, but this is not included in this text. As it turns out, the group
PSL has interesting properties, which gave rise to this topic of study.

Now we have defined what we need concerning groups, and we are now ready
to define a very important tool, the (elementary) transvections.

Definition 2.13. An elementary transvection B;;(\), where i # j, is the
matriz obtained from the identity matriz by inserting X € K* in the (i,j)-
position.

Elementary transvections have determinant 1. To see this, note that we
can always find a row or column consisting of a 1 and the rest zeros, and by
finding the determinant using the cofactor expansion method, we always end
up with determinant 1. Thus, if B;;()\) is an elementary transvection, then

Definition 2.14. A transvection T is a matrixz that is conjugate to an ele-
mentary transvection, i.e. T = SB;;(\)S™! for some S € GL(m, K).

Transvections also have determinant 1. By the rule for determinants, we see
that detT' = det(SB;;(\)S™!) = det S det B;j(\) det S~ = det S(det )~ = 1.

Remark: Note that multiplying a matrix A € GL(m, K) from the left by an
elementary transvection B;;(A) adds A times row j to row i. For example, we
see that Bya(\) adds A times row 2 onto row 1:

1 XA 0fla b ¢ a+Ad b+Xde c+\f
Bias(MA=10 1 0| |d e f]|= d e f
0 0 1)g h 1 g h i



Note also that the inverse of an elementary transvection is another elementary
transvection. In particular, B;;(\) ™! = B;;(—=\) :

L XA 0]t =x 0 L A=)\ 0 100
Bia(M)Bia(-A) =10 1 0[]0 1 o0|l=]0 1 0f=]|0 10
00 1|0 0 1 0o 0 1 00 1

Now we will state and prove our first lemma.

Lemma 2.15. Let A€ GL(m, K). Denote p = det(A), and
D(p) = diagf{l,...,1, u}.

Then A =UD(u), where U is a product of elementary transvections.

Proof. We start out with a general matrix

a1 Q12 ... A1m,
a2q 99 ... .

A= e GL(m, K).
am1 e cee Omm

Since A € GL(m, K), at least one element in each column must be non-zero.
By the above remark, multiplying from the left by an elementary transvection
will add a multiple of a row to another row, and doing this will not change the
determinant. First, we wish to make a;; = 1. By the following discussion, we
will see that this can always be done.

If a;1 = 1, we are done. If 11 # 1 and there exist a j such that aj; # 0,
then we can make «;; = 1 by adding a suitable multiple of row j to row 1. If
a11 # 1 and «q; is the only non-zero entry in the first column, we can add the
first row to some other row j and then add a suitable multiple of row j to row
1, making a7 = 1.

If ;1 = 0, then we can add a suitable multiple of some other row j to row
1, where a1 # 0, making a1 = 1. Hence, A can be transformed to

1 Q12 PN A1m,
Q21 (22
Qam1  Qm2 e Qmm

With a7 = 1, we can add suitable multiples of row 1 to the other rows,

making a1, 31, ...,y all zero, resulting in the matrix
1 Q12 ... A1m
0 922
0 Qmm



Now we leave column 1 and focus on column 2. By applying the above
procedure to rows 2 to m, it is clear that we can transform our matrix to a
matrix of the form

1 12 Q13 ve A1m
0 1 Q23

0 0 Q33

_0 0 Am3 ... Qmm

We can also make a5 = 0 by adding a suitable multiple of row 2 to row 1.
By repeatedly applying the above steps, we eventually arrive at a matrix of the
form

10 ... 0 Qim
0 1 0 Q2m,
. S | O[(m_l)m
0 0 ... 0  amm

Since A € GL(m, K), it has a non-zero determinant, and so, at least one entry
in column m is non-zero. Thus, we can assume that o, is non-zero. By adding
suitable multiples of row m to the other rows, we can make a1, 2, - - -, X(m—1)m
all zero, finally arriving at a matrix of the form

10 ... ... 0
0o 1 ... ... 0

1 0
0 0 0  amm

Since multiplying a matrix with unimodular matrices will not change its
determinant, the above matrix has determinant p. Now, by the remark, adding
a multiple of a row to some other row in some matrix B € GL(m, K) can be
done by multiplying B from the left by an elementary transvection, and we see
that we have

PA = D(p)

where P is a product of elementary transvections. Since elementary transvec-
tions are invertible, we now multiply by P! from the left on both sides, which
gives

A= P 'D(p).

By the remark, the inverse of an elementary transvection is another elementary
transvection, so this concludes the proof.
O



Lemma 2.16.
(i) Each T € GL(m, K) can be uniquely decomposed as a product

T = UD()

where U € SL(m, K) and p # 0.
(ii) SL(m, K) is generated by elementary transvections.

Proof. First we prove (7). By Lemma 2.15, each T € GL(m, K) has a decom-
position T' = UD(u), where U is a product of elementary transvections. Since
every elementary transvection has determinant 1, then products of elementary
transvections also have determinant 1, and thus, U € SL(m, K). Now, since
UeSL(m,K) and T = UD(u), we get

det(T) = det(U) -det D(p) = 1- p = p.

Since T was given, we see that u is unique, and thus, D(u) is also unique. By
multiplying both sides by D(u)™! = D(—pu) we get

U=TD(u)™"

Since D(u) is unique for a given T', then so is D(u)~!. It follows that U is
unique because U = T'D(u) ! for a given T and D(p) =" is unique. Thus, T has
a unique decomposition T' = UD(u).

Now we prove (i7). Again, by Lemma 2.15, if A € GL(m, K) and det(A) = p,
then A = UD(u), where U is a product of elementary transvections. Since
SL(m, K) is a subgroup of GL(m, K), the previous statement also applies to
Be SL(m,K), ie.

B =U1D(m),

where U; is a product of elementary transvections. Taking the determinant on
both sides we get

1= det(B) = det(Ul) - det D(,[Ll) =1- M1

and so g1 = 1 and D(uy) is the identity matrix. Hence, B = U; for any
given B € SL(m,K) and we see that SL(m, K) is generated by elementary
transvections. O

Before we state and prove the next theorem, we must introduce some nota-
tion. First, let V' be an m-dimensional vector space over a field K. Let Z(V)
denote the subgroup of GL(V') consisting of all scalar transformations, and let
SZ(V) denote the subgroup of Z(V) consisting of all scalar transformations
with determinant 1.

Also, we will claim without proof that GL(V) = GL(m, K) and SL(V) =
SL(m, K). One can see that this follows due to the invertibility of the elements
in these groups.

Now, let Z(m, K) denote the subgroup of GL(m, K) consisting of all m x m
scalar matrices ol with o € K*, and let SZ(m, K) denote the subgroup of



Z(m, K) consisting of all scalar matrices al with o™ = 1. In fact, we have
Z(m,K)=Z(V)and SZ(m,K) = SZ(V).
It can be shown that these are in fact subgroups.

Theorem 2.17. Let V' be an m-dimensional vector space over a field K.
(i) Z(V') is the center of GL(V).
(i) SZ(m, K) is the center of SL(m, K).

Proof. We begin by proving (i). Let T'e GL(V') be a non-scalar linear transfor-
mation. We want to start by showing that we can find a v € V such that {v, Tv}
are linearly independent, i.e. v is not a multiple of Tw. Let {v1,...,v,} be a
basis for V. We start by letting v = v; and applying T to v;. If Tvy is not a
multiple of v1, we are done, so assume Tv; is a multiple of vy, say, Tvy = a1v1.
We then proceed to do the same with the second basis vector vs.

If we are unlucky, this happens for all basis vectors, in which case we would
have Tv, = aqv1,..., TV, = anv,. But since T was a non-scalar linear trans-
formation, we must have o; # «; for some i, j. Now we apply T to v; + v;, and
we get

T(v; +vj) = av; + a,v;.

Since «; # «; then T'(v; + v;) is not a multiple of v; + v; and we have found
a vector in V' such that {v, Tw} are linearly independent. Having found the set
{v,Tv} of two linearly independent vectors, we extend this set with the vectors
U3, - - - U, such that {v, Tv, us, ..., uy} is linearly independent, and thus forms
a basis for V.

Now, since {v,Tv,us,...,u,} forms a basis for V, we can in fact show
that {v,v + Tv,us,...,uy,} also forms a basis for V. To see this, note that
Tv = (v+Tv —v) € span{v,v + Tv,uz, ..., Uy}, and thus,
span{v,v + Tv,uz, ..., Uy} = span{v, Tv,us, ..., uy,}. Since both these sets of
vectors span V', they are both bases for V.

Let S be the linear transformation such that Sv = v, Su; = u; for all i > 3
and ST (v) = v + Tw. This gives us that T'S(v) = Tv and ST (v) = v + Tv, and
thus T'S(v) # ST(v), i.e. S and T do not commute and 7' cannot be in the
center of GL(V). Since T was chosen to be any non-scalar linear transformation,
the center or GL(V') can only contain scalar linear transformations.

We will now show that scalar linear transformations commute with all ele-
ments of GL(V'). Let M = aly € GL(V) and N € GL(V'). Then we get

(aly o N)(v) = (alv)(N(v)) = a(ly)(N(v)) = aN(v)
and
(Noaly)(w) = N((aly)v) = N(av) = aN(v).

Thus, the center of GL(V') is Z(V).

Now we prove (ii). Let R € SL(V) be a non-scalar linear transformation
with determinant 1, and let the linear transformation S be constructed in the
same way as in (7). In fact, we have that S = Bjy(1) relative to the basis

{v,Tv,us,...,up}. Thus, det(S) =1 and S e SL(V).

10



By the same argument as in (i), R is not in the center of SL(V), so the center
of SL(V') can only consist of scalar transformations «I. The center of SL(V) is
a subgroup of SL(V), so the elements in the center must have determinant 1.
Thus, det(a]) = o™ gives that o™ = 1, and we see that the center of SL(m, K)
is SZ(m, K).

O

We now proceed to find the order of these groups.

Theorem 2.18. Let K be the field with ¢ = p™ elements, m = 2 and
d=(m,q—1).
(i) The order of GL(m,K) is (¢™ — 1)(¢™ — q) - (¢™ — g™ 1).
(ii) The order of SL(m, K) is (¢™ — 1)(¢™ —q) -+~ (¢™ — ¢ 2)g™ L.
(iii) The order of SZ(m, K) is d.
(iv) The order of PSL(m, K) is (¢™ — 1)(¢™ — q) - -+ (¢™ — ¢™2?)g™ 1 /d.

m
m

Proof. Let C be the family of all ordered bases of V. Before we start, we will
show that there is a bijection W : GL(V) — C. If {vy,..., vy} is an ordered
basis for V, T € GL(V) and v = ajv1 + - - + @V, € V, then

T(v) = T(avr + -+ + ) = a1 T(v1) + - + @ T(vm) €V

by linearity of T, and so, T'(v) € span{T(v1),...,T(vmm)}. Since T € GL(V), T
is invertible, and thus, T': V' — V is a surjection; all elements in the codomain
V are elements of the form T'(u) for some u € V. Thus, {T(v1),...,T(vm)} is
also a basis for V. So for a fixed ordered basis {vi,...,v,}, each T € GL(V)
maps to exactly one basis in C.

Now assume that two linear transformations T7,T» € GL(V) maps an or-
dered basis to the same basis in C, i.e., Tyvy = Thvy,...,T1vy = Tov,,, and we
try to show T7 = T,. We get that

T (’U) =1 (011’U1 + -+ amvm) =oTivy + -+ aTiv,
=a1Tov + - + apThv, = Tz(al’l)l + -+ amvm) = TQ(’U)

and thus, since T} and 75 have the same effect on a vector v, they are the same
linear transformation, i.e. T3 = Tz. Thus, W is a bijection, so |GL(V)| = |C|.
Therefore, to find the order of GL(V) we can try to find the number of ordered
bases |C|.

We begin by proving (). Let {v1, ..., v} be an ordered basis for V. We want
to count how many ways we can choose the ordered basis {vy, ..., v, }. For vy,
we can choose any of the ¢ vectors of V except the zero vector. Hence, v; can be
chosen in ¢"*—1 ways. For v, we may not choose a vector that is a multiple of vy,
or the zero vector. There are ¢ — 1 non-zero multiples of v; and one zero vector.
Hence, there are ¢"™ — ¢ choices for v,. By similar arguments, we have ¢™ — ¢>
choices for vs, ¢"™ — ¢> choices for vy, and so forth, and finally ¢™ —¢™ ! choices
for v,,. Thus, we have (¢™ — 1)(¢"™ — q) - -+ (¢™ — ¢™ 1) choices for an ordered
basis {v1, ..., vy} of V, and thus, |GL(V)| = (¢™ —1)(¢™ —¢q) -+ (¢™ — ¢™ ).

11



Now we can prove (ii). If A € GL(m,K), then det(A) is some non-zero
element of K, i.e.
det : GL(m, K) — K\{0} = K*.

From linear algebra we know that det(AB) = det(A) det(B). The determinant
function is also surjective: for each a € K*, we can choose B = diag{x, 1,...,1}
so that det(B) = «. Thus, the determinant function above is a surjective
homomorphism of groups, where K is a group under multiplication. It is clear
that the kernel of det is SL(m, K) < GL(m, K).
Now, by the First Isomorphism theorem, we have
GL(m,K) GL(m,K)

ker(det) — SL(m, K)

lle

K*.

Thus, these groups have the same order, so we have

‘GL(m, K)

SL(m,K)‘ =K =1

By rewriting this and using (i), we get

|SL(m, K)| = |GL(m, K)|/(g—1) = (¢" = 1)(¢™ —q)--- (¢™ — ¢ ") /(¢ — 1)
= (" =)™ —q) - (¢" = q" g™

Before we prove (i4i), we will show that o™ = 1 if and only if a? = 1 for
a € K*, where d = (m,q — 1). Note that m is a multiple of d, say m = dk for
some k € Z. If a? = 1, then o™ = a®* = (a?)* = 1. Now assume o™ = 1. There
are integers a, b such that d = am + b(q — 1) due to the Euclidean algorithm, so
we get

ad _ aam+b(q71) _ aamab(qfl) _ aam(aqfl)b - %™ — (am)a -1

since a?~! = 1 due to Lagrange’s theorem. Recall that we had defined SZ(m, K)
as {af : @™ = 1} and so we get that

SZm,K)~x{ae K*:a™ =1} ={ae K~ :ad=1}.

Now, if 7 is a generator of K, then for each o € K* there exists an i such
that o = 7*. We take the dth power to get 1 = a? = 7. The order of 7 is
q — 1 because it is a generator of K>, so di must be a multiple of ¢ — 1, say,
di = (¢ — 1)k, with k € Z. This gives i = (q%dl)k. We substitute this into our
initial form to get

We see that when k € Z takes values from 1 to d, o assumes distinct values.
-1
Hence, |SZ(m, K)| = |=*7 | = d.

12



Finally, we can prove (iv). We defined PSL(m, K) as gég:ﬁg Taking the

order and using (i4),(iii) we get

_ [SLm K)| _ (¢" = D" —q).-(¢" =g *)g" "

PSL(m, K)| = -

3 Simplicity of PSL(2,K)

In this section, we will focus on PSL when the dimension is 2. The first lemma

is quite strong, since it allows us to have some control over the elements in
SL(2,K).

Lemma 3.1. Every element A € SL(2,K) is a conjugate in SL(2,K) to one
of the following:

S fa 0
(Z) 0 a—1:| ; a 7* 0:
(ii) + [é ‘f] = +Bis(a),a #0,
. [0 —a7?
(iii) P b ] ,a#0.

Proof. Let A = [Z Z] € SL(2,K). Let e; = (1,0) and ey = (0,1). Let vy = e,
and multiply v; by A from the left to get

Avy = [Ccl] = aeq + ces.

Now, we have two cases. Either e; is not an eigenvector of A or it is an eigen-
vector of A.

In the first case, assume e; = vy is not an eigenvector of A. Then ¢ # 0. So
Avy = vy will not be a scalar multiple of v; and {vy,ve} forms a basis for K?2.
In the basis {v1,v2} the matrix A has the form

0 -1

1 r |
To see this, note that the first column of A in the basis {v1,v2} should be the
coordinates of vy in the basis {v1, v2}, and from Av; = v = 0-v1 + 1- vy, we can
see that the first column should be [0, 1]. The second column must by necessity

be [—1,r] for some r € K since det A = 1. Now, let S € GL(2, K) be the change
of basis matrix {e1,es} — {v1,v2}, so that

2 sl g
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Since S € GL(2,K), S has some determinant u € K*. Let

D(p) = diag{1,,...,1,u}.

Then T = D(p)~1S has determinant 1. Furthermore, since T = D(u)~1S we
get S = D(p)T if we multiply by D(u) from the left. Thus, we have

0 -1 . a b -1 —1
S RO A E
By multiplying by D(u)~! from the left and D(p) from the right, we get

) R i

Now, if we simplify the left-hand side, we get
1 00 —1f{{1 O | O -1 (|1 0
0 w1 » |0 p| |t pwlr||0 u
| 0 —u| |0 —s71
I 7 A N ro|
Hence, since T'e SL(2, K), A is conjugate in SL(2, K) to a matrix of the form
(iid).

In the second case, assume vy is an eigenvector of A, which means ¢ = 0 and
Avy = vy is a multiple of v;. We have

A= [8 2] e SL(2, K).

Also, since A € SL(2,K), d must be equal to a~! where a # 0. If a = +1 we
get a matrix of the form (i3). Now assume a # +1. We want to show that we
can always find a t € K such that

1 t|ja b 1 —t
0 1[0 a7 tf|0 1
is a matrix of the form (7). We see that

EO 0 | R

_ —1
[a ta+ b+ ta ]—H.

0 a~!
The matrix H is of the form () if

b—ta+ta ! =0.
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By solving the above equation for ¢ we get

b

t= ——o.
a—al

It is clear that ¢ is well-defined for all b and H is of the form (¢). Thus, our
matrix A is conjugate in SL(2, K') to a matrix of the form (7).
O

Lemma 3.2. Let K be a finite field of characteristic 2. Then every element of
K is a square.

Proof. Define the map

¢ K —> K

by a — a?. First, we want to show that ¢ is injective. Thus, we assume a® = b?
and try to show that this implies a = b. If a®> = b2, then a? — b = 0. Since K
is commutative, we get that (a — b)(a + b) = 0. Hence, a = —b or a = b, but
since K has characteristic 2 then 1 = —1. Thus, a = —a and we get that a = b,
and ¢ is injective. If a € K then a? € K because K is a field. We see that the
q = |K| distinct elements in K are mapped by ¢ to ¢ distinct squares in K, and
so every element in K must be a square. O

Theorem 3.3. Let K be a finite field and let H be a normal subgroup of
SL(2,K). If H contains an elementary transvection then H = SL(2, K).

Proof. Note first that if H contains an elementary transvection Baj(A), then H
also contains Bia(—M). To see this, consider the product

UBoy (NU ™!

1 0

=[!G 1[5
[0 8 e

Since H is normal in SL(2, K), we have that B12(—\) € H. Now, we want to
show that H contains every elementary transvection. By (3.1) we may assume

where U = [0 _1] e SL(2,K). We get

(3.1)

a

that Bi2(A) € H for some A € K*. Now let S = [0

aﬁl]’ where a # 0, and

form the conjugate

15



,1__a b 1 M et —b
SB12(N)S ~ |0 a—l] [0 1”0 a]

_Va ar+b][at —b
10 a7t 0 a

(3.2)

_ aa™t  —ba + a2\ + ba
1o a la

1 a®X
= 0 al :|=Blg()\a2>.

These conjugates are also in H since H is normal in SL(2, K), so Bya(\a?) € H.
If K has characteristic 2, then by Lemma 3.2, all elements in K are of the
form a? with a € K since K is finite, and hence, all elements in K are of the
form Aa? with a € K. By (3.1), if B12()\) € H then Ba;(—)), and since K has
characteristic 2, then Ba;(\) € H. Thus H contains all elementary transvections,
and by Lemma 2.16, H = SL(2, K).

Now assume K does not have characteristic 2. By (3.2) we can assume
Bi2(A\c?) € H for some ¢ € K*. Since H is a group, every element of H has an
inverse in H. The inverse of Bia(\c?) is Bia(—Ac?) :

Bia(A?) - Bia(—Aé?) = [1 )\02] [1 )\c—z]

0 1 0 1
1 A2 — M2
_ [O ) ] 1

Hence, the product
Blg()\aZ) . 312(_)\62) = Blg()\(CLQ — 02))

is also in H. Now, a and ¢ can be chosen to be any elements in K>, so we want
to show that all the elements in K can be represented as A(a? — ¢?). First, we
claim that every element 1 € K can be written as a difference of two squares, if
the characteristic of K is not 2, i.e.

u= (5l 1))2 - (- 1>)2.

To see this, simply expand the right-hand side to get

(o) (hw-n) = 2ee2usn—doe o
1 1

=+ -u=u.
SH TS =h

Since all the elements of K are of the form a? — 2, they are also of the form

A(a? —c?), and thus, H contains all the elementary transvections Bia(p), where

16



p € K*. By (3.1), H also contains all the elementary transvections Baj(u),
where p € K*. Finally, since H contains all elementary transvections, we get
that H = SL(2, K) by Lemma 2.16. O

Theorem 3.4. Let G, R be groups, and let
¢:G—>R
be a group homomorphism. Let M be a normal subgroup of R and define
H={zeG:¢(x)e M}.
Then H is a normal subgroup of G.

Proof. Since ¢ is a group homomorphism from G to R, it will map eg to eg,
that is, ¢(eq) = er. Thus, eg € M and by the construction of H, we get that
eq € H, so H is non-empty. If z € H, then ¢(x) € M. Since M is a group, we
get that (¢(z))~! = ¢(r~1) € M and thus =1 € H by construction of H. Now,
if x,y € H, then ¢(x), ¢p(y) € M. Also, since

o(x)p(y) = dlxy) e M

we have that zy € H by construction of H.

Now we want to show normality of H, i.e. we want to show that if a € G
and z € H, then axa™! € H, Va € G and Vx € H. We take some a € G and some
x € H and apply ¢. We get

¢laza™") = p(a)p(z)g(a) ™.

We know that ¢(a) = r for some r € R and ¢(a=t) = 7! for some r~! € R and
since M is normal in R, we get that

ro(x)r~ = ¢(a)p(z)p(a) "' € M.

Thus, ¢(axa=!) € M and we have that aza=' € H by the construction of
H. The elements a € G and x € H were chosen generally, so we get that
axa~' € H,Va € G and Yz € H, and hence, H is normal in G and the theorem
is established.

O

Now we are ready to prove that PSL(2,K) is a simple group for all fi-
nite fields K where | K| > 4. First, however, we will show that PSL(2,2) and
PSL(2,3) are NOT, in fact, simple groups, since they can be shown to contain
a non-trivial normal subgroup.

First, let’s look at PSL(2,2). Now, we have seen that the center of SL
is SZ = {al : ™ = 1} which is just {I} in this case. Thus, PSL(2,2) =
SL(2,2)/I = SL(2,2). Tt is easy to list all elements of SL(2,2) = PSL(2,2):

DR R R i
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We realize that all these have determinant 1, since —1 = 1 in Zs, and any other
matrix would have determinant 0 or 2 = 0.

Now, any group of order 6 must be isomorphic to Zg or Ss. It is known that
Zg is cyclic and therefore Abelian, while S5 is neither cyclic nor Abelian. So, if
we can show that PSL(2,2) is not Abelian, then it must be isomorphic to Ss.
We can simply take two matrices and see if they commute:

O R F g e e

So, we have produced two elements in PSL(2,2) that do not commute, so
PSL(2,2) =~ Ss. It is also known that Az is a non-trivial normal subgroup in Ss,
and so, PSL(2,2) must also contain a non-trivial normal subgroup, and thus,
PSL(2,2) is not simple.

For the case PSL(2,3), we need a bit more, but with a similar idea. First,
we note that [SL(2,3)| = 24 and |SZ(2,3)] = 2 so |PSL(2,3)] = 12. This
can also be seen by verifying that A € SL(2,3) and —A € SL(2,3) will belong
to the same coset, i.e. A and —A will both be mapped to the same element
B e SL(2,3)/5Z(2,3), so we would expect that the order of PSL(2,3) is half
of the order of SL(2,3), which is 24. We will show that PSL(2,3) = A4. Note
that |Ay| = 41/2 = 24/2 = 12, so the orders match.

Before we move on, we will define group actions. A group G is said to act
on a set X if

(i) eqg-x =z,
(i) g1-(92-2) = (91-92) - @
are satisfied for all g1, go € G and z € X. Now, let X = P!(Z3) = {0,1,2,00} and

let Y = PSL(2,3). We will define a map o that lets an element of PSL(2,3)
map an element of X to an element of X. Define

c:YxX—->X
by
a b ax +0b
x| — .
c d|’ cr +d
We denote this by [Ccl Z] cx = ggis We will show that this is in fact a group

action. We see that (7) is satisified because

v of _1-x+0
G T=10 1 x_i()-:c—kl_x
a; by az by
Next, let g1 = o d and let go = o dol Then
1 dp 2 a2

asx+bs
aq bl] asr +by  G1igg 0

. .x _— . =
g1 (92 ) [01 di] e tdy ¢RI 4

. (alag + blcg)LE + a1b2 + b1d2
(Cla2 + dlcg)x + ¢1bs + dida ’

18



while
( ) )-.’L‘= a1 by as by = aias + bico  arby + bids r
g1- 92 C1 dl C1 dl ascy + Cle bQCl + d2d1
(aras + brca)x + arby + bids
(Clag + dlcz)l‘ + c1bg + d1d2 '

Thus, o satisfies (i7) and hence, o is a group action. Now, if we fix some
A e PSL(2,3), we can investigate what element in X that A maps to for all
X }] . Then B(0) = 1, B(1) = &, B(2) = 2, and
B(o0) = 0. In fact, B represents the permutation (0 1 ) € A4. By checking all
12 elements in PSL(2, 3) we will see that they correspond to the 12 permutations
in Ay. We say that Y = PSL(2,3) acts faithfully on X. Indeed, the only way
that A and A’ could correspond to the same ‘i;”is would be if A = A’ for some
non-zero scalar 8 € Zsz. But the only other non-zero scalar in Zs is 2 = —1,
and we already showed that A and —A is represented by the same elements in
PSL(2,3). So PSL(2,3) = Ay.

Now, A4 does contain the normal subgroup {e, (12)(34), (13)(24), (14)(23)}
and thus, is not simple. It then follows that PSL(2,3) also contains a non-trivial
normal subgroup, and so, PSL(2,3) is not simple.

However, PSL(2,q) is simple for ¢ > 4, which the next theorem will show.

x € X. For example, let B =

Theorem 3.5. (Jordan—-Moore)
The group PSL(2, K) is a simple group if ¢ = 4, where ¢ = |K]|.

Proof. Let M # {e} be a normal subgroup of PSL(2, K). We want to show that
M = PSL(2, K). Denote by ¢ the canonical homomorphism

¢: SL(2,K) — PSL(2, K)
such that g — SZ(2,K)g for ge SL(2,K). Let

H=¢ ' (M)={reSL(2,K): ¢(zx) e M}.

Then H is a normal subgroup of SL(2, K') by Theorem 3.4. Note that ¢ will map
SZ(2,K) to {e} < PSL(2, K). Therefore, by construction of H, we have that H
in fact properly contains SZ(2, K), since M # {e}. The homomorphism ¢ maps
g € SL(2, K) to the coset in PSL(2, K) which g belongs to modulo SZ(2, K). If
H = SL(2,K), we have that ¢ maps H onto SL(2,K)/SZ(2,K) = PSL(2,K),
and by construction of H, we get that M = PSL(2, K). By this argument, it
suffices to show that H = SL(2, K). Thus, we want to show that H contains
an elementary transvection because this implies that H = SL(2, K) by Lemma
2.16, and subsequently, M = PSL(2, K).

Let A be a matrix in H which is different from +7. By Lemma 3.1, every
matrix in SL(2, K) is a conjugate in SL(2, K) to one of the following:
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1 a
[0 —at
(#i1) a b

(7) 0 1] ,a#0,
(ii) + [0 1] = +Bs(a),a # 0,

],a;éO.

We want to show that H contains an elementary transvection in all three
cases. We begin with Case (i), so assume A is a conjugate in SL(2, K) to

0 —a !
D=[a ' ]

Since H is normal in SL(2, K), we also have D € H. Now define

b0
T = [ 0 c] € SL(2,K),

where ¢ # +1 is an element of K* we have yet to choose, and form the product
U = TDT'D~!. Since H is a normal subgroup in SL(2, K), we have that
TDT 'e H and D~ € H, so U € H. We expand the product to get

U=TDT ‘D! =

E=BLB 'L =

O

10 —c a1 [e O b a7t
~|ca cb 0 ¢c'f]|-a O (3.3)
B [0 ¢ 2g1 b a! '
o 702a cc™b —a 0
_ [ 2" 1a 0 - 2 0
~|ab—ab Faa”t|  |ab(2 —1) &
Then U is a matrix of the form
d 0
L= [g dl] . (3.4)
Take B = By;(1) and form the product E = BLB~ 'L~ € H. We get

[1 0|[d O 1 0][d™t o

1 1) |g da'||-1 1||[-g d

[ d 0 ] [ 1 o] [d‘l 0]

d+ d' -1 1] - d

e g (3.5)

[ d 0][dat 0
d+g—d?t d'||—-g d

dd—1 o] [ 1 o
dYd+g—d ) —dlg dld|” |1—-d2 1|
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If d # +1, then F will be an elementary transvection. For our matrix
(3.4) above, this means that F is an elementary transvection if ¢ is such that
1 —c* # 0, since this means that 1 — d=2 # 0. If ¢ > 5, then we can always
find a ¢ such that ¢* — 1 # 0 because the polynomial t* — 1 can have no more
than four zeros, so H contains an elementary transvection E for the case ¢ > 5.
If g =4, let K = Zs[z]/(2* + 2 + 1) = {0, 1, [z], [z + 1]}. We will see that all
elements of K satisfy

th—t=o0. (3.6)
The element 0 and 1 trivially satisfies (3.6). If ¢ = [x] then

t-t=[z] [z]=[z-2]=[2*] =[x +o+ 1]+ [z +1] = [z +1].

o]t = 2] %) = [+ 1] [o + 1] = [ 4 1] = [22 + 0+ 1] + [o] = [2]

and hence, [z]* — [z] = 0.

If t =[x+ 1], then [z + 1]* = [z] so [z + 1]* = [z]? = [z + 1], and hence,
[z +1]* — [z + 1] = 0. So we see that if ¢ # 1, then ¢* # 1. Thus, H contains
an elementary transvection F for ¢ = 4.

672

ab(c? —
K =~ 7Z5. If b # 0, then we choose ¢ = 2 € Z5. We see that ¢ —1 = 3 # 0, and
that ¢ = ¢=2 = 4 so our matrix U can be written as

4 0
Us = [Bab 4] ’

For ¢ = 5, we look at our matrix U = 0 again, and note that
1) ¢

By squaring Us we get

> |4 o]]4 of [16 o] [1 of_
U5[3ab 4] [3ab 4][24ab 16][4@1) 1]321(4ab)eH,

which is an elementary transvection because b # 0 and a # 0. Thus, H contains
an elementary transvection for ¢ = 5 and b # 0.

-1
If b = 0, then A is a conjugate in SL(2,K) to D = [2

—a

0 ].Nowwe

form the product

S = Blg(2a_1)DBlg(2a_1)_1 = Blg(2a_1)DBlg(—2a_l) € H.

sefp L ]
]l T e
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Since —2 = 27! in Zjs, we see that S is a matrix of the form (3.4), where
d = 2. Hence, by the calculation (3.5), if S € H then E € H where d = 2. For
this particular d, we will find that

E‘[1—1d2 (1)]_[1—(121)2 (1)]_[114 (1)]_[% ?]EH'

Thus, H contains an elementary transvection F when ¢ = 5 and b = 0.

Case (). If A is conjugate in SL(2, K) to a matrix of the form [g agl]’

then A is a conjugate in SL(2, K) to a matrix of the form (3.4) where g = 0.
By the same arguments, we have seen that this will lead to the conclusion that
H contains an elementary transvection. Since a # 0, the only problem would
be if a = +1, i.e. that A is conjugate in SL(2, K) to +I. If that was the case,
then

SAS™! = +1

for some S € SL(2, K). This would have to mean that SA = £+, which implies
that A = +1. But by assumption, A is a matrix in H which is different from
+1, so this would lead to a contradiction. Thus, A # +I and H contains an
elementary transvection.

Case (ii). If A is conjugate to a matrix of the form + [(1) {], then H

already contains an elementary transvection.

We have shown that we can always find an elementary transvection in H,
and thus, by Theorem 3.3, H = SL(2, K). Hence, we see that M = PSL(2, K),
and since PSL(2, K) contains no non-trivial normal subgroups, PSL(2, K) is
simple.

O

4 Simplicity of PSL(m,K)

Since the rows of an invertible matrix form a basis for V', we realise that B;;(\)
represents a linear transformation 7" that fixes all basis vectors but the jth basis
vector if we have chosen a suitable basis. In other words, Tv, = vy for all k # j
and Tv; = v; + Av;.

Since V is an m-dimensional vector space, the vectors {v} form a basis for
an (m—1)-dimensional subspace of V' because the ith basis vector was removed.
This prompts us to make the following definition.

Definition 4.1. A hyperplane H is an (m — 1)-dimensional subspace of an
m-dimensional vector space over a field K.

In the previous paragraph, we saw that the linear transformation B;;(\)
fixes the (m — 1) basis vectors for some (m — 1)-dimensional hyperplane H. In
fact, T will fix all vectors in H, for if v = ayvq + ... + @pm_1V;m_1 € H, then

Tw) =T(a1v1) + ... + T(n-1Vm-1) = cxTv1 + ... + 1T V-1

=V + ...+ Qp—1Um—1 = V.
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If we take a vector w € V where w ¢ H, then w + H will form an affine
hyperplane that is parallel to H. If we take a y € K which is not 0 or 1, then
pw + H will form a different hyperplane that is parallel to H. So if we let p
vary over K, the union of the hyperplanes pw + H will fill up the entire vector
space V. In other words, the hyperplanes uw + H form disjoint cosets whose
union is V. Thus, every vector v in V can be uniquely written in the form

v = pw + h,
where p€ K and h e H.

Lemma 4.2. Let H be a hyperplane in V and let T € GL(V) be a linear
transformation that fivres H pointwise. If w eV but w ¢ H, then

T(w) = pw + hyg

for some pe K and some hg € H.
Furthermore, if ve V, then

T('U) = uv + hl
for some hy € H.

Proof. Since w € V', then T(w) € V because T : V — V. By the preceeding
discussion, all vectors in V' can be written in the form pw + h for some h € H,
so in particular, T'(w) = pw + hg for some p € K and some hy € H. If we take
any v € V, we can write v as v = Aw + hy for some A € K and hy € H by
the preceeding discussion. Due to linearity of 7" and the fact that T fixes H
pointwise, we get

T(v) = TOw + he) = NT(w) + T(hs)
= Apw + hg) + ha = Apw + Ahg + he
= A\pw + Mg + ha + pho — pho = p(Aw + ha) + (1 — p)he + Mg
= uv + (1 — p)ha + Ahg.

(4.1)

Now, it is clear that (1 — p)he + Ahg is some element in H, say, hy. Thus,
T(v) = pv + hy and we are done. O

In Lemma 4.2 above, we first consider the hyperplane H to be fixed. Then
we fix a vector w € V' that is not in H. We then pick a T' e GL(V) that fixes
H pointwise, and after picking this T, we arrive at a specific u = p(7T'). It turns
our that this u(7T) tells us something about a linear transformation 7" that fixes
our hyperplane H.

Definition 4.3. Let T € GL(V) fix a hyperplane H pointwise.
(3) If w(T) # 1 then T is a dilatation.
() If w(T) =1 and T # 1y, then T is a transvection.
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Theorem 4.4. Let H be a hyperplane in V, let T € GL(V) be a linear trans-
formation that fizes H pointwise, and let y = p(T).
(i) If T is a dilatation, then T is associated with the matriz
D(p) = diag{1,...,1,u} for a suitable basis for V.
(ii) If T is a transvection, then T is associated with the matriz Boy(1) for
a suitable basis of V. Also, all eigenvectors of T are in H.

Proof. Since T fixes all vectors in H, i.e. Tv = v,Yv € H, then all nonzero
vectors in H are eigenvectors of T' with eigenvalue 1. Now we want to investigate
if there are any other eigenvectors of T'.

If we choose a w € V with w ¢ H, then by Lemma 4.2 we have

Tw = pw + hg
where hg € H. The proof of Lemma 4.2 gives us that if v € V with v ¢ H, then
Tv=pv+ hy = pv+ (1 — p)hg + Ahg.

If v is an eigenvector of T', we have Tv = av for some a € K. In fact, v is an
eigenvector of T if and only if ¢ = p and Ahg = ( — 1)ho, which we will now
show.

First assume a = p and Mg = (u — 1)ha. This clearly shows that v is an
eigenvector of T'. To see this, note that Lemma 4.2 gave us that

Tv = pv + (1 — p)ha + Ahg.

If Mg = (p — 1)hg, then Mg + (1 — p)he = 0, since (1 — 1) = —(1 — u). Thus,
Tv =av+ 0= av and v is an eigenvector of T' with eigenvalue a.

Now assume that v is an eigenvector of T" with eigenvalue ¢ € K. Then
Tv = av = pv + hy. We can rewrite this expression to get (a — u)v = hy. Since
v is a nonzero vector in V outside of H, then we must have a = u because {(v)
and H intersects only at 0. Thus, hy = 0, which implies Ahg = (z — 1)he and
we have shown what we wanted.

(1) Assume T is a dilatation, so that u # 1, or equivalently p — 1 # 0. If
p—1+#0, then (u—1)"! exists. As we saw in the preceeding discussion, if T
has any more eigenvectors, we must have Ahg = (u — 1)hg. Since p—1 # 0, we
get ho = A — 1)"thg. In fact, v = w + (u — 1)"thg is an eigenvector of T*

Tv=Tw+ (u—1)""ho = pw + ho + (u—1)"*ho
= p(v— (p—1)""ho) + ho + (n—1)""ho
= v — p(p — 1) " ho + ho + (. —1)"tho
= v — (ulp—=1)"" =1 (n—=1)"ho
= o+ (g =17 (n—1) = Dho = po.

Thus, v is an eigenvector of T" with eigenvalue u. By adjoining v to a basis
{v1,...,vm—1} of H, we get a basis for V', since v was chosen to be outside of
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H and thus will be linearly independent to a basis for H. Hence, the associated
matrix for T in this basis is D(u) = diag{1,...,1, u}.
(#) If T is a transvection, then p = 1 and thus g — 1 = 0. Now we choose a
w ¢ H such that Tw = pw + hy = w + hg where hg € H and hy # 0. [f v ¢ H is
to be an eigenvector of T', we must have Tv = bv = v + hy for some b € K and
some hy € H. But this means that (b—1)v = hy. Then we must have b = 1 since
0 is the only point where (v) intersects H. If so, then Tv = v and T would be
the identity transformation. But by the definition of a transvection, T cannot
be the identity transformation, and we arrive at a contradiction. Hence, T' can
have no eigenvectors outside of H. Finally, by taking a basis {hg, us, ..., um} of
H and adjoining w as the first vector, this is a basis for V', and the associated
matrix for T is B (1).
O

At this point, we need to introduce some new concepts to move forward.
If T e GL(V) is a transvection that fixes a hyperplane H, then u(T) = 1 by
our definition. The first part of Lemma 4.2 then gives us that Tw = w + hyg.
Also, the discussion preceeding Lemma 4.2 tells us that if v € V, then v can
be uniquely written as v = Aw + h where A € K and h € H. So for a fixed
v we get a certain scalar A € K. Now we define the function ¢ : V. — K by
o(v) = ¢(Aw + h) = A. In fact, ¢ is a linear functional, whose kernel is H. The
kernel of ¢ is the set of all v € V' such that ¢(v) =0, i.e. A = 0. If A =0, then
Aw + h e H, and since w ¢ H, we see that A\w + h ¢ H if A # 0.

Now, since T is a transvection, we have g = 1 so ¢ — 1 = 0. This implies
Tv = v+ Ahg from the calculation (4.1) in the proof of Lemma 4.2. Also, from
the preceeding discussion, we have

Tv =v+ ¢(v)ho (4.2)

for all v € V, where ¢ is a linear functional and hg € H = ker ¢. This holds
for each transvection T fixing a hyperplane H. In fact, for each transvection T'
fixing a hyperplane H, there exists linear functional ¢ and a hg € H such that
(4.2) holds, so we can associate a particular ¢ and hg € H to each transvection
T. Thus, we can denote each transvection T by

T =[¢,h]:v— v+ ¢(v)ho.

The following lemma gives us some properties of transvections, and how they
relate to this new notation.
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Lemma 4.5. Let V' be a vector space over K.
(i) If ¢ and ¢ are linear functionals on V, and if h,1 € V

satisfy

¢(h) = ¢(h) = ¢(l) = 0,
then

[¢,h] o [¢,1] = [¢,h + ] (4.3)
and

[¢,h] o [th,h] = [¢ + ¢, R] (4.4)

where (6 +6)(v) = (v) + ¥(v).
(ii) For all a € K*

lag, h] = [¢, ah]. (4.5)

(1ii) Assume ¢ # 0 and ¢ # 0. Then [¢,h] = [¢,1] if and only if there is a
scalar a € K* with ¥ = a¢ and h = al.
(i) If S e GL(V), then

S[¢,h]S™" =[S, Sh] (4.6)
where

#S™(v) = #(S™w). (4.7

Proof. (i) We start off by showing (4.3). To do this, we apply [¢, h] o[#,1] to a
general vector v € V. First we use our definition of [¢, k] to find what [¢,](v)
is, and then apply [¢, h] to that vector. Then, by using the definition again and
rewriting the expression we get

(6, h] o [6,1](v) = [, k(v + ¢(v)I) = (v + (v)]) + d(v + B(v)D)h
= (v 4 ¢()I) + (¢(v) + ¢(v)¢(l)h
= (4 o)) + ¢(W)h = v+ d(v)(h +1) = [¢,h +1](v)

which concludes the proof of (4.3).
To prove (4.4), we start off in a similar way. We simply use our definition
to find what [, h] is, and then apply [, h] to that vector. We get

(@, h] o [¢, h](v) = [, h](v + P (v)h) = (v + Y (v)R) + G(v + P(v)h)h
= v+ P)h+ (¢(v) + Y()¢(h))h = v+ p(v)h + d(v)h
v (¢

(v) + ¥ (v))h.

By our previous discussion, we said that we interpret [¢ + ¢, h](v) as the linear
transformation with v — v + (¢(v) + 1 (v))h, and the result follows.
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(#4) To prove (4.5), we simply apply the left hand side to a general vector
v € V and use the definition to get

[ag, h](v) = v + ap(v)h = v + d(v)ah = [¢, ah](v).

(731) We start by assuming [¢, h] = [¢,[] and try to prove that it implies
¢ = avy and h = al for some a € K*. By the definition, we have

[¢,h](v) = v+ ¢(v)h
and
[¥,1](v) = v+ Y(v)l.

Let H = ker¢. We assumed that [¢,h] = [¢,1], and so [¢, h] and [¢, 1] will
have the same effect on a vector v € V where v ¢ H. Thus, we get

v+ p(v)h = v+ P(v)l.

which implies ¢(v)h = ¥(v)l. Now, ¢(v) = X and ¥(v) = p where A\, u are
elements in K. Note that ¢(v) # 0 implies that A # 0, so in fact, g and A
are elements in K*. Thus, A € K* has an inverse A\~! € K*. By multiplying
by A~! from the left in the equation above, we get h = A~!ul and we see that
h = al for some a € K* since h # 0. Since we know that ¢(v)h = 1(v)l and
h = al, then ¢(v)al = a¢(v)l = 1 (v)l which implies ¥ = ag.

Now we prove the other direction, so assume that ¥ = a¢ and h = al for
some a € K*. Then we apply [¢,1] to a general vector v € V' and use the two
assumptions to get

[V, ]](v) = v+ ¢Y) =v+ap(v)l =v+ d(v)h = [¢, h](v)

which is what we wanted to show.

(iv) To prove (iv) we apply S[#, h]S~! to a general vector v € V. We do this
by applying the rightmost linear transformation to the vector, one at a time.
By noting that S is linear and that ¢(S~!v) is a scalar, we get

S[¢.h]S™H(v) = S[e, h](S™1v) = S(S™'v + ¢(S™ v)h)
= v+ S(¢(S7 )h) = v + ¢(S ) Sh.
On the other hand, we have
[0S~ Sh](v) = v + ¢S~ (v)Sh
where ¢S~ is defined in (4.7) and we are done. O

Theorem 4.6. All transvections are conjugate in GL(m, K).
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Proof. By Theorem 4.4, all transvections have matrix Ba(1) for a suitable basis
for V. This means that if T}, Ty are two transvections, we have that the matrix
for T can be written as Ap, = SlBgl(l)Sfl for a suitable basis for V, and
the matrix for 75 can be written as Ap, = Sngl(l)Sz_1 for another suitable
basis for V', where S1, S3 € GL(m, K). By rewriting the second equation, we get
Sz_lAT2 Sy = Ba1(1). Hence, we get

Ap, = 8185 A, S STt = 8155 LA, (8155 1) 7! = S3Ag, S5t

where S3 € GL(m, K). Thus, all transvections are conjugate in GL(m, K).
O

Theorem 4.7. Let V be a vector space that is not a two-dimensional vector
space over Zg. Then SL(V) is the commutator subgroup GL' of GL(V).

Proof. We will prove the theorem by showing that GL’ is contained in SL(V),
and that SL(V) is contained in GL', so that SL(V) = GL'. Now, the commuta-
tor subgroup GL' contains all elements of the form aba='b~', a,be GL(V), as
well as all products of such elements. But all these elements have determinant
1, since the rule for determinants gives that

det(aba™1b™') = det(a) det(b) det(a™") det(b™?
= det(a) det(b)(det a) ! (det b) !
= det(a)(det a) " det(b)(detb)~! = 1.

Also, all products of commutators has determinant 1 for the same reason. Hence,
GL' < SL(V).

Now we want to prove that SL(V) < GL'. We denote by 7 the natural
map v : GL(V) — GL(V)/GL'. We claim now that if T7,T» are any two
transvections, then v(T1) = v(T2) = §, where 0 is the coset that T} and T3 both
belong to. To see this, we start by noting that all transvections are conjugate in
GL(V) by Theorem 4.6. This means that for any two transvections T3, T5, there
is a S e GL(V) such that T} = ST»S~!. By rewriting this, we get Tp = S™1T}.S.
Now, note that T, ' = S~!T,1S. By forming the product 775 *, we find that

T, =TS 'T'SeGL

Since Tngl € GL', we have that T} =~ T mod GL'. Thus, 77 and T belong
to the same coset ¢, which means that y(71) = y(T2). In fact, all transvections
belong to the same coset, since all transvections are conjugate in GL(V).

Now, fix a hyperplane H in V and choose two non-zero vectors h,l € H such
that h +1 # 0. Such vectors can always be found since V is not a 2-dimensional
vector space over Zso. Also, fix a linear functional ¢ such that H = ker ¢. Then
[¢,h] and [¢,1] are two transvections fixing a hyperplane H in V. By Lemma
4.5, we have that

(¢, k] o [¢,1] = [¢,h +1]. (4.8)
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We want [¢, h + ] to be a transvection, i.e. that h + 1 # 0. By applying v to
(4.8), we get 62 = § in GL'. Multiplying by 6! gives us that § = 1. Thus,
maps all transvections to 1 in GL/, and so every transvection is in the kernel
of v. Now, note also that the kernel of v is GL’. Hence, every transvection is
in GL'. By Theorem 3.3, SL(V) is generated by (elementary) transvections, so
SL(V) < GL'. We found that GL' < SL(V) and SL(V) < GL', which means
that SL(V) = GL' and we are done.

O

Theorem 4.8. Let V' be an m-dimensional vector space over a field K, where
m = 3. Then all transvections are conjugate in SL(V).

Proof. Let Ty = [¢, h] be a transvection fixing a hyperplane H in V, and let
Ty = [¢,1] be a transvection fixing a hyperplane L in V. Furthermore, let
{h,ha,...,hym—1} be a basis for H, and let {l,l3,...,l;n—1} be a basis for L.
Now, we choose v,u € V such that ¢(v) = ¢(u) = 1. Note that this implies
that v ¢ H and u ¢ L. Thus, we have that By = {v,h,ha,...,hyp—1} and
By = {u,l,ls,...,l;—1} are both bases for V.

Now let S € GL(V) be the linear transformation mapping By to By such
that S(v) = u, S(h) =1 and S(h;) =1; for i = 2,...,m — 1. Since S € GL(V),
it has some determinant g € K*. For a fixed basis, by the properties of the
determinant, multiplying a column of a matrix A by some value a will result in
a matrix with determinant a det A. Thus, we multiply the rightmost column in
our matrix S by p~!, resulting in a matrix S; with determinant 1. Note that
Sy also satisfies S;(v) = w, S1(h) =1 and S1(H) = L. Since m > 3, we can
always find a basis vector different from v and h. By the above discussion, S
also satisifies S1(hm,_1) = g~ tl,,_1 and has the same properties of S.

Now, since we want to prove that any two transvections are conjugate in
SL(V), we want to show that

Sl h]STH = [0, 1]. (4.9)

To show this, we will verify that S;[¢, h]S; ! and [¢,1] have the same effect on
all vectors in V.
First, we investigate their effect on the vector u. We get

(S1l6, h1ST ) (u) = S1([9, h](v)) = Si(v + p(v)h) = Si(v) + Si(h) = u +1
since S;*(u) = v, ¢(v) = 1 and Sy (h) = I. Now let’s check the right-hand side:
[V, 1) (u) =u+Y(u)l =u+1

since ¢ (u) = 1.
Secondly, we investigate their effect on a general vector I’ € L. First, we
check the right-hand side:

[,0() =V

since [, 1] fixes all vectors in L. Now, on the left-hand side we get

(S1o, h1STH') = Su([é, hl(R)) = Su(h') =V
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since S; ! maps I’ to some element i’ € H and [¢, h] fixes all vectors in H. Since
(4.9) is valid on L, it in particular holds on the basis vectors I, la, ..., ;1 of L.
Together with u, (4.9) holds on the basis vectors in Bs, hence (4.9) holds on V
by linearity. Thus, since [¢, h] and [, [] were chosen to be any two transvections

in V, we have that all transvections are conjugate in SL(V).
O

Before the next theorem, we will introduce new notation. Let H be a hyper-
plane in a vector space V. Then let 7(H) denote the set of all transvections that
fix the hyperplane H. Furthermore, let 1y € 7(H). The next theorem shows
that 7(H) is a group, and is, in fact, an Abelian subgroup of SL(V).

Lemma 4.9. Let V' be an m-dimensional vector space over a field K, and let
H be a hyperplane in V.
(i) There is a linear functional ¢ # 0 with ker ¢ = H such that

T(H) =A{[¢,h] : he H} u{ly}.

(ii) The group 7(H) is an Abelian subgroup of SL(V). Furthermore,
T(H) ~ H.
(iii) The centralizer Csrvy(T(H)) equals SZ(V)7(H).

Proof. Before we start, we will prove that two linear functionsls ¢ and v have
the same kernel if and only if ¢ = a¢ for some a € K*.

First, assume ¢ = a¢ for some a € K*. Now, ¢(v) will take values in K, but
since K is a field, it has no zero divisors. Thus, a¢ is zero only when ¢ is zero,
and so, ¥ and a¢ have the same kernel.

Assume now, instead, that ker ¢ = kery = H. We choose a vector w € V
that is not in H. Then ¢(w) and ¥ (w) are some non-zero elements in K. Since
K is a field, there is an element a € K* such that ¢¥(w) = a¢(w). Now, if ve V,
then v = Aw + h by the proof of Lemma 4.2, where A € K and h € H. Thus, we
get

PY) =Y(Aw + h) = Mp(w) = arp(w) = ap(Aw + h) = ad(v) (4.10)

which is what we wanted to prove.

Now, let [¢, h],[¢,1] € T(H) be two transvections fixing a hyperplane H in
V. Then, by (4.10) and Lemma 4.5, we have that [¢,l] = [a¢,l] = [¢,al]. If
[¢,h] € T(H) fixes a hyperplane H, then so does its inverse [¢,h] = [¢, ]! =
[¢, —h], and thus, [¢,h]~! € 7(H). Since [¢,1] € T7(H) fixes H, then so does its
inverse [¢,1]7! = [¢, —al] € 7(H) and [, h] o [¢, —al] = [¢,h — al] € T(H). So,
since a,b € 7(H) implied that ab—! € 7(H), and since 1y € 7(H), we have that
7(H) is a group. Transvections have determinant 1, so 7(H) < SL(V). Also,
7(H) is Abelian, because (i) in Lemma 4.5 tells us that

(@, h]o[o,0] = [, h +1] = [¢, 1+ h] = [#,1] o [¢, h].

(¢) By the above discussion, if [¢,1] is in 7(H), then 1 has the same kernel as
¢ since they fix the same hyperplane H. Then [¢,1] = [¢, hq] for some h; € H,
and thus, all transvections in 7(H) can be written as [¢, k1] for some hy € H.
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(#4) Furthermore, this form will be unique. Since all transvections in 7(H)
can be expressed by a single ¢ but for different h € H, there are as many
elements of 7(H) as there are in H. Hence, 7(H) = H.

(iii) Finally, we want to show that SZ(V)7(H) = Cgrv)(7(H)) by showing
that SZ(V)r(H) < Cspovy(7(H)) and Cspovy(7(H)) < SZ(V)7(H). Since
7(H) is Abelian we have that 7(H) < Cgpv)(7(H)). Clearly, we see that
SZ(V) < Cspvy(T(H)), so together we have SZ(V)1(H) < Cgpvy(T(H)).

Now we want to show that Cgpv)(7(H)) < SZ(V)7(H). Assume there is
an S € SL(V) that commutes with every transvection [¢, h]. This means that
S[¢,h] = [¢,h]S for all h e H, i.e. S[p,h]S™ = [¢, h]. Now, (iv) in Lemma 4.5
tells us that S[¢, h]S™1 = [¢S~1, Sh]. But since S[¢, k]S~ = [¢, h], this means
that [¢, h] = [¢S~, Sh]. We now use (iii) in Lemma 4.5 to see that

#S™! = a¢ (4.11)

and
h = aSh

for some a € K*. Since h = aSh, we see that aS fixes the hyperplane H
pointwise, so a.S is either a transvection or a dilatation, or the identity.

Assume that aS is a dilatation. Then by Theorem 4.4, given a suitable
basis for V', aS has an eigenvector v; outside of H with eigenvalue p # 1. This
means that aSv; = pvy, and furthermore, u = det aS = a™ det S = a™ because
det S = 1. Plugging this into the previous equation, we get aSv; = a™ vy, which
implies Sv; = ™ v;. Now, multiply by S~! and 1/a™~! = a=™*! from the
left to get a=™* vy, = S~1oy. This gives ¢S~ v = dp(a " vy) = a1 (vy).
Multiplying both sides by a™~! and using (4.11), we get that

a™ oS v, = a™ Lagu, = a™pvy = Py

which implies ™ = 1 since w ¢ H implies ¢(w) # 0. But this is a contradiction
since 1 # p = a'™, and so, aS cannot be a dilatation.

Clearly, the identity operator belongs to SZ(V)7(H), so assume that aS
is a transvection. Then aS € 7(H). Now, note that a='1y € SZ(V) because
(ahHm = (a™)™! = 171 = 1. Thus, S = a1y (aS) € SZ(V)7r(H). So if
S e SL(V) commutes with every element in 7(H), i.e. S € Cgrvy(7(H)), then
SeSZ(V)r(H).

Thus, it follows that Cgp,yv)(7(H)) < SZ(V)7(H) and we have that
SZ(V)r(H) = Csrv)(T(H)).

O

Theorem 4.10. (Jordan—Dickson) Let V' be an m-dimensional vector field over
a field K, where m = 3. Then the group PSL(V) is a simple group.

Proof. The proof of this theorem will be similar to the proof Theorem 3.5. Let
¢ : SL(V) — PSL(V) denote the cannonical homomorphism. We want to
show that if PSL(V) contains a normal subgroup M # {e}, then we must have
M = PSL(V). We will do this by showing that if N = ¢~1(M) is a normal
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subgroup of SL(V) that contains some linear transformation A which is not
in SZ(V), then N must be SL(V). Note that Theorem 3.4 ensures that if M
is normal, then N = ¢~ !(M) is normal. Then, when we have showed that
N = SL(V), we apply the canonical homomorphism ¢ to N = SL(V), which
maps it to N/SZ(V) = SL(V)/SZ(V) = PSL(V). Thus, in the same way as
in Theorem 3.5, by controlling our pre-image N = ¢~!(M) and showing that it
must be all of SL(V'), we force M to be all of PSL(V).

So, assume N is a normal subgroup of SL(V) containing some linear trans-
formation A which is not in SZ(V'). We want to show that N contains a transvec-
tion. Since N contains a linear transformation A which is not in SZ(V'), then
there exists a transvection Ty that does not commute with A. To see this, note
that SZ(V) is all the linear transformations in SL(V) that commutes with all
elements of SL(V'), and A ¢ SZ (V). Thus there exists some linear transforma-
tion B € SL(V) that does not commute with A. Also, SL(V) is generated by
transvections, so all elements in SL(V) can be written as a product of transvec-
tions. In particular, B can be written as a product of transvections. For sim-
plicity, let B = T,T5Tg. Since AB # BA, this means that AT T5Tg # TyT5TsA.
In fact, our linear transformation A can commute with some of these transvec-
tions, but not all, else we would have equality. Thus, there exists a transvection
To that does not commute with A.

Now, form the commutator C' = T;; ' A~Ty A, and note that C' # 1 since A
does not commute with Ty. Furthermore, C' € N since Tj; YA-1T, € N due to
normality of N and A € N. It is easy to show that a conjugate A~'TpA of a
transvection is a transvection. Set 7o = A~'TyA € SL(V). Since the inverse of
a transvection is a transvection, TO_1 = T} is a transvection and thus, we have
that

C=Ty ' A" THA = T\ T.

We saw earlier in this section that if T, T are transvections, then T = [¢1, hq]
and Ty = [¢2, h2] where hy € Hy = ker ¢1 and hy € Hy = ker ¢p5. We remind the
reader that this means that

T;(v) = v + ¢i(v)h;

forallveV andi=1,2.

Now, let W be the subspace spanned by hq, ho, i.e. W = (hy, ha). The
dimension of W can be no more than 2, so dim W < 2. By assumption, we have
that dim V' > 3, so there exists a hyperplane L in V that contains W. If [ € L,
then

C(l) =T1Ta() =To(l) + p1(T2(l))h1 =1+ da(D)ha + &1 (To(1))h;.

Note that (¢2(l)he + ¢1(T2(1))h1) € W < L and [ € L, so we see that C(l) € L.

We will now show that Hy n Hy # {0}. If Hy = H,, this is clearly true,
so assume Hy # Hs. Since hyperplanes are, by definition, (m — 1)-dimensional
subspaces of the vector space V', we have Hy + Hy = V since dim(H; + Ha) = m.
By linear algebra we have

dim H; + dim Hy = d1m(H1 + HQ) + d1m(H1 N HQ)
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In our case, the equation becomes
(m—1)4+ (m—1) =m+ dim(Hy n Hs)

and we see that dim(Hy n Hz) = m — 2 > 1 since m > 3.
Now, if z is a non-zero vector in H; n Hs, then

Cz)=T1Ts(z) = =

since T7 fixes all vectors in Hy and T, fixes all vectors in Ho. If C' € N is a
transvection, then N = SL(V) because SL(V) is generated by transvections,
and we are done. So we assume C'is not a transvection, that is, assume C ¢ 7(L).
We wish to show that C' ¢ SZ(V)7(L) = Cgrvy7(L). For a contradiction,
assume that C' = aly S for some S € 7(L), where a € K*. Then z = Cz = aSz
gives that Sz = a~ !z, and we see that z is an eigenvector of S. Since all
eigenvectors of transvections lie in the hyperplane they fix, and all eigenvalues
are 1, we have that z€ L and a = a~! = 1, and thus S = C. But C = S e 7(L)
and S = C ¢ 7(L) is a contradiction. Therefore, C' # aS, and it follows that
C ¢ SZ(V)r(L) = Cspvy(T(L) since SZ(V) are all the elements in SL(V') of
the form aly where a € K*.

By the same argument as in the start of this proof, there must therefore
exist a transvection T' € 7(L) that does not commute with C. Thus, we have
that the commutator D is not 1:

D=TCT'C™ ' #1.

Now, C~! € N and again, by normality of N, we have that 7TCT~! € N, and
so D e N. If [ € L is some vector in L, then

D(l)=TCT'C7 () =TCT=*(C~ (1)) =TC(C (1) =T() =1

because T € 7(L) fixes all vectors in L and C~!(I) € L. But this means that D
fixes all vectors in L, so D is either a transvection or a dilatation. By the rule
of determinants, D has determinant 1, so D cannot be a dilatation. Hence, D is
a transvection, and we have shown that N contains a transvection. Therefore,
¢ 1 (M) = N = SL(V) because SL(V) is generated by transvections. By the
discussion in the beginning of this proof, this means that the normal subgroup
M < PSL(V) in fact is PSL(V). Thus, PSL(V) has no non-trivial normal
subgroups, so PSL(V) is simple, and we are done.

O
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