
Efficient 2D SLAM for a Mobile Robot
with a Downwards Facing Camera

Christian Colliander
christian.colliander@gmail.com

Supervisor

Magnus Oskarsson
magnuso@maths.lth.se

Examiner

Anders Heyden
heyden@maths.lth.se

Abstract
As digital cameras become cheaper and better, computers more powerful,
and robots more abundant the merging of these three techniques also be-
comes more common and capable. The combination of these techniques is
often inspired by the human visual system and often strives to give machines
the same capabilities that humans already have, such as object identifica-
tion, navigation, limb coordination, and event detection. One such field that
is particularly popular is that of SLAM, or Simultaneous Localization and
Mapping, which has high-profile applications in self-driving cars and delivery
drones.

This thesis proposes and describes an online SLAM algorithm for a specific
scenario: that of a robot with a downwards facing camera exploring a flat
surface (e.g., a floor). The method is based on building homographies from
robot odometry data, which are then used to rectify the images so that the
tilt of the camera with regards to the floor is eliminated, thereby moving the
problem from 3D to 2D. The 2D pose of the robot in the plane is estimated
using registrations of SURF features, and then a bundle adjustment algo-
rithm is used to consolidate the most recent measurements with the older
ones in order to optimize the map.

The algorithm is implemented and tested with an AR.Drone 2.0 quadcopter.
The results are mixed, but hardware seems to be the limiting factor: the
algorithm performs well and runs at 5´20 Hz on a i5 desktop computer; but
the bad quality, high compression and low resolution of the drone’s bottom
camera makes the algorithm unstable and this cannot be overcome, even with
several tiers of outlier filtering.

1

Acknowledgement
I would like to thank my supervisor, Magnus Oskarsson, for valuable input,
ideas, and help. I would also like to thank Anders Robertson for helping me
with the quadcopter and with getting set up in the Robotics Lab.

2

Contents

1 Introduction 5
1.1 Related work . 7

2 Theory 9
2.1 Computer Vision . 9

2.1.1 The pinhole camera model 9
2.1.2 Homographies . 12
2.1.3 Lens Distortion . 13
2.1.4 SURF Features . 14
2.1.5 RANSAC . 15
2.1.6 Levenberg-Marquardt 15

2.2 The AR.Drone 2.0 . 17
2.2.1 Communicating with the drone 18

2.3 ROS . 19
2.3.1 ROS coordinate frames 20

3 Method 21
3.1 Problem formulation . 21

3.1.1 Relevant coordinate systems 23
3.2 High-level design of the SLAM pipeline 24
3.3 ROS chessboard camera calibration 25
3.4 The SLAM pipeline . 27

3.4.1 Initial setup . 28
3.4.2 Read data from the drone 30
3.4.3 Preprocess image . 31
3.4.4 Extract features . 32
3.4.5 Update the rectification homography 34
3.4.6 Match features . 36

3

3.4.7 Rectify coordinates . 39
3.4.8 Estimate the drone’s pose 41
3.4.9 Update the map . 44
3.4.10 Bundle adjustment . 45

4 Results 50
4.1 Pose estimation robustness . 52
4.2 Computational performance 56

5 Discussion 62
5.1 Robustness . 62
5.2 The algorithm . 65
5.3 Pipeline performance . 66

6 Conclusions 69
6.1 Future Work . 70

Bibliography 75

Appendices 79
A IMU covariance values . 79

4

Chapter 1

Introduction

Computer Vision is an interdisciplinary field concerned with automatically
extracting high-level information about an object or scene from one or more
images. Common usage scenarios include scene reconstruction, object recog-
nition, event detection, and camera pose estimation. In many ways, computer
vision aims to give computers capabilities inspired by the human vision sys-
tem, but with the ability to operate with super-human speed, precision, and
acuteness. The field is closely tied to machine learning and sometimes the
line between the two disciplines becomes blurred, as in the case of convolu-
tional neural networks. The two disciplines are often employed in tandem,
where the high-level information extracted via computer vision is fed into
some sort of decision making system. Currently, computer vision is seeing an
explosion in terms of research, investment and applications, largely ushered
in by the recent advances in computing power, digital cameras, robotics and
machine learning. Some of the more high-profile uses are self-driving cars,
autonomous robots and large-scale data classification and annotation.

Quadcopters, or drones in the common parlance, are also seeing an explosion
in terms of their commodity and application. Some of of the driving factors
here are the same as with computer vision1: faster and cheaper computing
power; better and smaller digital cameras; but advances in batteries and
MEMS (MicroElectroMechanical Systems) in recent years are also a driving
factor. Quadcopters come in a wide range of sizes and with a wide range of
intended uses, from small, thumb-sized drones intended as fun gadgets [1],

1Also, there is significant synergy between the fields of computer vision, machine learn-
ing and robotics.

5

to drones large enough to - and intended to - fit a human [28]. Another use
for quadcopters is mapping; here the agility and mobility of quadcopters can
be levied to great effect for quickly exploring a scene, even from angles that
are inaccessible to humans or other types of robots.

SLAM (Simultaneous Localization And Mapping) is the problem within com-
puter vision of simultaneously constructing and updating a map of a previ-
ously unknown environment while also keeping track of an agent’s location
within that environment. This is often done in a back-and-forth manner
[13], where new measurements are first fitted to the existing map, and then
the map is updated (using the measurements as constraints) to obtain a map
that maximizes the likelihood of the measurements. On a slightly lower level,
SLAM can be broken down into coarser parts: landmark extraction, data as-
sociation, state estimation, and state and map update [37]. In the first part,
new data from the agent’s sensors are processed to extract high-level, in-
variant (more or less) landmarks. In the second part, associations are made
between the newly extracted landmarks and previously detected landmarks.
In the third part, a model is fitted to these associations (and optionally other
data as well, like odometry) in order to get some estimate of the agent’s state.
In the fourth and final part, poses and landmarks are retroactively updated,
taking into account the latest set of measurements.

There is a wide variety of measurement devices/sensors that can be used
for SLAM, for example: laser rangefinders [13], Lidar [18], thermal cameras
[18], sonar [7], radar [19], regular cameras (either monocular [6, 9, 8, 14]
or stereo [35, 15]), and even tactile "whiskers" [10]. SLAM using regular
cameras ("Visual SLAM") is a common method, largely due to the recent
advances in digital camera techniques and their resulting broad adaptation,
mentioned earlier in this section.

This is where this thesis comes in: the original aim of the thesis was to
develop a Visual SLAM-algorithm for a particular scenario and a relatively
inexpensive drone. In the scenario the drone maps a planar surface, while
moving in a parallel plane, using a single camera directed towards the first
plane. A real world scenario would be a drone navigating and exploring a
building by looking at the floor. The scenario is simplified from the full 3D
mapping problem (where both the landmarks and the agent moves in 3D
space) and so it was hoped that the algorithm could be made quite effective,

6

performance-wise.

Partway into the project it was discovered that the hardware (most notably
the downwards facing camera of the selected drone, an AR.Drone 2.0) was
going to be a limitation. At that point the goal was redefined so that the aim
was to make the SLAM-algorithm as good as possible, given the hardware
limitations.

1.1 Related work
This thesis was based on earlier work by Wadenbäck and Heyden [41] [40],
Brange [4], and Rudbeck [38].

Wadenbäck and Heyden developed [41] - and then refined [40] - a method for
recovering the tilt and motion (translation + in-plane rotation) of a camera
using inter-image homographies, under the assumption of planar motion and
constant tilt. These homographies could for example come from point cor-
respondences between the images and some robust fitting algorithm, e.g., a
RANSAC2-based solver for the 3ˆ 3 homography H.

The works by Brange and Rudbeck were similar to each other in that both
dealt with a camera moving in one plane and taking images of another, par-
allel plane, with the camera having some constant tilt that was compensated
for using a rectification homography. Both authors also recovered the pose/-
planar motion of the camera using an SVD3-based least-squares point-set
registration algorithm from Arun, Huang, and Blostein [2]. Brange [4] then
used these poses and images, along with loop closure detection and bundle
adjustment to build an offline 2D map construction tool. Rudbeck [38] used
the poses along with a pre-built map of the environment (using Brange’s algo-
rithm from [4]) to build a navigation algorithm for a wheeled robot equipped
with a downwards facing, tilted camera.

In both Brange’s and Rudbeck’s work the rectification homography was esti-
mated once and then used for all images taken by the camera. Both authors
used the algorithm developed by Wadenbäck and Heyden [40] to estimate

2Random Sample Consensus.
3Singular-Value Decomposition

7

the tilt of the camera and then construct a homography that compensated
for that tilt. In the scenario studied in this thesis the tilt of the camera was
not constant, as a quadcopter with a rigidly mounted camera was used. The
drone banked, pitched, and rolled as it flew around, and thus a new homog-
raphy had to be calculated for each image using odometry readings from the
quadcopter.

The bundle adjustment used in [4] was heavily inspired by an algorithm
developed by Konolige et al. [13] for sparse bundle adjustment of 2D poses.
That algorithm also inspired the bundle adjustment in this thesis, but sig-
nificant changes were made to the algorithm in order to move it away from
pose-pose based constraints and instead use pose-feature based constraints.
In [13] constraints were established between poses and then the poses were
shifted around together with all their associated features as the map was
optimized. In this thesis the bundle adjustment was a bit closer to "normal"
bundle adjustment (where 3D points and camera poses are simultaneously
optimized in order to maximize the likelihood of the measurements from the
2D images): the optimization was done over a set of point-feature correspon-
dences in order to simultaneously optimize the location of the features in the
map and the poses of the drone.

Another significant difference from the previous work by Brange and Rud-
beck was that the map building there was done offline: there, a sequence of
pre-collected images were pairwise registered to each other and then loop clo-
sure detection and bundle adjustment was used to optimize the configuration
of the images using more long-term correspondences. The final image regis-
trations were then used to create one large "map-image" from which the final
features that then made up the actual map were extracted. In this project
the map building was done online, using live data from a drone navigating
a scene. The goal was to simultaneously locate the drone in the scene and
build a map of the scene, i.e., the resulting algorithm was one of Simultane-
ous Localization And Mapping (SLAM) and the map needed to be available
and accurate throughout the entire run. In this scenario performance was
very important: the execution time of each iteration couldn’t be too long,
otherwise the map could become to outdated between iterations.

8

Chapter 2

Theory

2.1 Computer Vision

2.1.1 The pinhole camera model

The pinhole camera model is the most commonly used mathematical model
of a camera. The name of the model comes from the type of camera it
models; a pinhole camera has the shape of a box and light from the scene
to be photographed enters the camera through a small hole - the pinhole -
at the front of the camera and produces an image at the back wall of the
camera (see Fig. 2.1).

Figure 2.1: A pinhole camera (left), and the mathematical model inspired
by the pinhole camera (right). The image is taken from [31].

To create the mathematical model of the pinhole camera a right-hand Carte-
sian coordinate system tex, ey, ezu is introduced, with the origin C “ p0, 0, 0q

9

- representing the camera center - located at the pinhole (the directions of
the axes are shown in Figure 2.1). This coordinate system is referred to as
the camera coordinate system. A projection x “ px1, x2, 1q of a scene point
X “ pX1, X2, X3q is then generated by forming a line between X and C and
finding the intersection with the plane z “ 1 (the so-called image plane).
The line ez, perpendicular to the image plane and originating from C, is the
optical axis, or viewing direction of the camera. The fact that the image
plane is placed in front of the camera center (as opposed to behind, like in a
real pinhole camera) has the effect that the image won’t appear upside down,
which simplifies things a bit.

The viewing ray, X´C, can be parameterized via

C` spX´Cq “ sX, s P R (2.1)

sX is then a vector pointing from C to X with length given by the product
of s and |X|. Then an s is chosen s.t. the resulting projection, x, of X onto
the image plane becomes:

sX “ x “ s

»

–

X1

X2

X3

fi

fl “

»

–

x1
x2
1

fi

fl “
1

X3

»

–

X1

X2

X3

fi

fl “

»

–

X1{X3

X2{X3

1

fi

fl (2.2)

In other words, the projection onto the image plane is found1 by element-wise
dividing the scene point’s coordinates with the third scene point coordinate2

in the camera coordinate system, i.e., the depth. This operation is sometimes
called z-dividing.

The image plane is embedded in R3, with the center of the image located
in p0, 0, 1q and lengths given in whatever unit the camera coordinate system
uses (e.g., meters). This contrasts with images from real cameras, which typ-
ically have coordinates measured in pixels and p0, 0q located in the upper left
corner ("row 0, column 0"). This coordinate system is known as the image
coordinate system.

1Assuming that the z-coordinate isn’t 0.
2I.e., multiplying with s “

1

X3
.

10

To move between the camera coordinate system and the image coordinate
system a mapping is introduced, represented by an invertible, upper-triangular
3 ˆ 3 matrix K, called the intrinsic matrix, see (2.3). The matrix contains
the so-called intrinsic parameters of the camera: the focal length, f , which
re-scales image coordinates into pixels; the principal point, px0, y0q, which
translates image coordinates so that p0, 0q is in the upper left corner; the
aspect ratio, γ, which controls how coordinates are scaled differently in the
x- and the y-direction; and the skew, s, which corrects for (the rare case of)
tilted pixels.

K “

»

–

γf sf x0
0 f y0
0 0 1

fi

fl (2.3)

The skew is zero for most cameras, and for such normal, zero-skew cameras
it is common to simplify (2.3) and replace γf with fx and f with fy. An
example is shown in (2.4) of a point X in the camera coordinate system
being transformed to pixel coordinates in the image coordinate system, using
a zero-skew camera (i.e., s “ 0).

X “

»

–

X1

X2

X3

fi

fl “ X3

»

–

x1
x2
1

fi

fl “ X3x 9 x

Kx “

»

–

fx 0 x0
0 fy y0
0 0 1

fi

fl

»

–

x1
x2
1

fi

fl “

»

–

fxx1 ` x0
fyx2 ` y0

1

fi

fl

(2.4)

Moving the other way, i.e., from pixel coordinates in the image coordinate
system to projected coordinates x in the camera coordinate system’s image
plane, is done by applying the inverse of the intrinsic matrix, K´1, to the
pixel coordinates. Restoring scene coordinates X from projected coordinates
x is more complex though, and is outside the scope of this paper3.

The camera coordinate system is often enough when only dealing with a
single image of a given scene, but when there are multiple images of the same
scene from multiple viewpoints (e.g., pictures taken from a camera moving
around in the scene) there needs to be a way to model camera movements.
To this end a world-, or global coordinate system, tewx , ewy , ewz u, is introduced.

3See [11] for information about how this can be done.

11

In this coordinate system a camera can undergo translation and rotation,
i.e., rigid transformations. The translation is specified using a vector t P R3

and the rotation using a 3 ˆ 3 rotation matrix R, which fulfills RTR “ I
and detpRq “ 1. The relation between a point’s coordinates in the global
coordinate system, Xw, and its coordinates in the camera coordinate system,
X is given by (2.5).

X “

»

–

X1

X2

X3

fi

fl “ RXw
` t “ R

»

–

Xw
1

Xw
2

Xw
3

fi

fl` t (2.5)

This can be simplified into a single matrix operation if the world coordinate
Xw is padded with a 1 as a fourth coordinate:

X3

»

–

X1{X3

X2{X3

1

fi

fl “

»

–

X1

X2

X3

fi

fl “
“

R t
‰

»

—

—

–

Xw
1

Xw
2

Xw
3

1

fi

ffi

ffi

fl

(2.6)

Combining the transformation from the global coordinate space to the camera
coordinate space with the mapping to the image coordinate space and the
projection to the image plane results in the camera equations :

λ

»

–

x1
x2
1

fi

fl

loomoon

x

“ K
“

R t
‰

loooomoooon

P

»

—

—

–

Xw
1

Xw
2

Xw
3

1

fi

ffi

ffi

fl

loomoon

Xw

(2.7)

where the 3ˆ 4 matrix P is called the camera matrix and λ is the depth of
the imaged point. The camera equations can be written more concisely as
2.8.

λx “ PXw (2.8)

2.1.2 Homographies

Projective transformations, or homographies, are invertible mappings H,
Pn ÞÑ Pn, relating one set of points with another set of points, i.e.,

12

λx “ Hy (2.9)

where x P Rn`1 and y P Rn`1 are homogeneous coordinates of points in Pn,
H is an invertible pn ` 1q ˆ pn ` 1q matrix, and λ is a scale factor (i.e., the
homography is unique up to scale). Because of this scale ambiguity it is nec-
essary to do a z-divide again if a homography is applied to image coordinates
and the output is intended to be in image coordinates too.

A notable use of homographies is to transform points from one plane to
another plane - like in this thesis, where a homography maps points from a
tilted plane/image to a plane that is perpendicular to the camera’s optical
axis.

2.1.3 Lens Distortion

The relation between world coordinates and image coordinates does not ac-
count for the lens of real, physical cameras. For most real cameras the lens
distorts the image to such a degree that it negatively impacts the results of
computer vision applications if it is not corrected for.

If the distortion of a camera is known (which it will be after the camera has
been calibrated, see Section 3.3) the distortion can be removed from its im-
ages. Commonly, two types of lens distortion are corrected for, which arise
from the shape of the lens and its position with respect to the camera sensor
[23]: radial distortion, which occurs when light bends more near the edges
of the lens than near its center and tangential distortion, which occurs when
the lens and the camera sensor are not parallel.

Radial distortion of image points is modeled and corrected for using the
relations

xdist “ xp1` k1r
2
` k2r

4
` k3r

6
q

ydist “ yp1` k1r
2
` k2r

4
` k3r

6
q

(2.10)

where pxdist, ydistq are the distorted coordinates of an image point; px, yq are
the distortion-less coordinates of the image point; k1, k2 and k3 are the radial
distortion coefficients of the lens; and r “

a

x2 ` y2 is the distance from the

13

image center of the point. For many lenses it is enough to only include 2
radial distortion parameters, the third parameter is often only required when
dealing with extreme radial distortion, e.g., from wide-angle lenses.

Tangential distortion is modeled and corrected for using the relations

xdist “ x` p2p1xy ` p2pr
2
` 2x2qq

ydist “ y ` pp1pr
2
` 2y2q ` 2p2xyq

(2.11)

where pxdist, ydistq are the distorted coordinates of an image point; px, yq are
the distortion-less coordinates of the image point; p1 and p2 are the tangential
distortion coefficients of the lens; and r “

a

x2 ` y2 is the distance from the
image center of the point.

2.1.4 SURF Features

Computer vision applications commonly use feature detectors and descrip-
tors to find, describe and match points of interest in images. What a "point
of interest" in an image is depends on the feature detector used, but some
common types of features are corners and/or areas of high contrast.

An important aspect of feature detectors and descriptors is their ability to
detect the same feature from different images. An ideal feature system is in-
variant to scale, rotation, illumination and transformations, so that the same
point can be reliably re-identified across different images.

In this project the Speeded-Up Robust Features (SURF) scale- and rotation-
invariant feature detector and descriptor, by Bay et al. [3], is used. The reason
SURF features are used is because of how successful they were when used for
very similar applications by Brange [4] and Rudbeck [38]. Brange even did a
study of different types of feature detectors and descriptors4 for a very similar
scenario and floor texture where SURF and FAST5 came out on top. After
running both the SURF feature detector and the feature descriptor extractor

4Specifically, SIFT, SURF, FAST, BRISK, the Harris Corner Detector, and the Mini-
mum Eigenvalue method were evaluated.

5SURF was found to be slightly faster than FAST, and FAST was found to be slightly
more accurate than SURF.

14

the resulting features are pairs of length two coordinates in the image, px, yq,
and a feature vector/descriptor (commonly of length 64).

2.1.5 RANSAC

Random Sample Consensus (RANSAC) is a method for robustly fitting mod-
els to a large dataset that contains many outliers/bad data points/false data
points. The core idea is that if a small subset of the points are sampled
at random enough times the probability that one of those subsets will be
outlier-free becomes very large.

The outline of the algorithm is as follows:

1. Randomly select the minimum number of points from the dataset needed
to fit the model and solve the problem using only those points.

2. Evaluate the error residuals for all points in the set using that solution
and count the number of inliers. Inliers are points with error residuals
smaller than some threshold.

3. Repeat the above two points a fixed number of times and select the
solution/model that resulted in the largest amount of inliers.

The required number of iterations of the RANSAC algorithm in order to
have a specific probability of getting an outlier free set can be calculated if
the number of outliers in the set is known. In practice, more iterations are
better (to a point) due to noise in most real data sets - which makes good
model fitting dependent on more than just getting an outlier free set.

2.1.6 Levenberg-Marquardt

The Levenberg-Marquardt algorithm is an iterative method for solving non-
linear least-squares problems. The method adaptively combines the gradient
descent-method and the Gauss-Newton-method to improve stability and per-
formance over using either method alone.

All three of these methods work similarly in that they are iterative, and in
each iteration, given a residual epvq that should be minimized, an update
to the variable vector vi`1 “ vi ` ∆v is computed. Ideally the update re-
sults in a smaller value of the objective function and the methods iterate

15

either until a local minimum is found or until some other criterion is fulfilled.
The main difference between the methods is how the update ∆v is computed.

First, some definitions: given a least squares problem of the form

min
v

epvq “ min
v

m
ÿ

j“1

}eipvq}2 (2.12)

where the error residuals ei are the residuals from fitting some non-linear
model to m observed data points. The Jakobian J of e w.r.t v at iteration i
is then defined as

J ” Jpviq “
Be
Bv

∣∣∣∣
v“vi

(2.13)

where e is a vector containing all the error residuals ei. Using this notation
the gradient descent update at iteration i is given by

∆v “ ´βJTe (2.14)

Where β is some small scalar chosen so that epvi`1q ă epviq. Similarly, the
Gauss-Newton update at iteration i is given by

∆v “ ´
`

JTJ
˘´1JTe (2.15)

and the Levenberg-Marquardt update at iteration i is given by

∆v “ ´
`

JTJ` λI
˘´1JTe (2.16)

where λ is a variable scalar that is used to interpolate between more gradient
descent-like behavior and more Gauss-Newton-like behavior. A large value
for λ brings (2.16) closer to (2.14) (with β “ 1{λ) and a small λ brings (2.16)
closer to (2.15). It is common to start with a large λ and gradually reducing
it when approaching the minimum value in order to take advantage of the
rapid convergence of Gauss-Newton close to the minimum (and avoid its risk
of instability when far away from the minimum) [32].

The Levenberg-Marquardt iterations can continue either until a local mini-
mum is found, or until some other criteria is satisfied, e.g., that the updates
start having diminishing returns w.r.t. decreasing the objective function, or
that a certain number of iterations have been run.

16

2.2 The AR.Drone 2.0
The robot used in this project is a quadcopter called the AR.Drone 2.0 [34],
manufactured by Parrot SA and launched in 2012. A photo of the drone can
be seen in Figure 2.2a. The drone features an impressive suite of sensors
and odometry: 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer,
temperature and pressure sensors, ultrasound altimeter, and a front and a
bottom camera [36]. The sensors that are of relevance to this project are the
bottom camera, the ultrasound altimeter, and the gyroscope. Communica-
tion with the drone happens via WiFi.

(a) A photo of the AR.Drone 2.0 used
for the experiments, resting on the
floor in the LTH Robotics Lab.

(b) The local coordinate system of
the drone. Roll is rotation around the
x-axis, pitch is rotation around the y-
axis, and yaw is rotation around the
z-axis. For image credit, see [39].

Figure 2.2: The drone used in this project and its local coordinate system.

The bottom camera is a QVGA 60 fps camera with three color channels
(RGB) and a resolution of 320ˆ240, which is natively upscaled to 640ˆ360.
The camera is mainly intended to be used as a (native) ground speed sensor
(using an optical flow algorithm) for automatic hovering and trimming. Be-
cause of this the camera is designed to focus at infinity and has no way of
changing the focus.

The ultrasound altimeter measures the altitude at low altitudes (< 6 meters),
and the air pressure sensor measures the altitude at higher altitudes, where
the ultrasound altimeter can no longer measure the altitude. The ultrasound
altimeter is more accurate than the air pressure altimeter. The altitudes

17

explored in this project (< 1 meter) are well within the ultrasound range.

The gyroscope is part of a 9-DOF MEMS (MicroElectroMechanical System)
IMU (Inertial Measurement Unit). The IMU combines an accelerometer (3-
DOF), a gyroscope (3-DOF), and a magnetometer (3-DOF). From the doc-
umentation [36] it is unclear how the readings from these three components
(plus the ground speed measurements from the bottom camera + altimeter)
are combined in order to estimate the drone’s orientation, acceleration and
velocity. It is also unclear whether the the drone has some built in safeguards
against sensor drift or not.

The drone manoeuvres by independently varying the rotation speeds of the
four rotors, which in turn causes the drone to throttle and/or change roll,
pitch, and yaw. Unlike a helicopter, the pitch of the blades cannot be changed
- all maneuvering is done by individually varying the thrust of each rotor.
Figure 2.2b shows the local drone coordinate system and how the roll, pitch,
and yaw angles relate to it.

2.2.1 Communicating with the drone

The communication with the drone is handled via ROS (Robot Operating
System), a popular framework for programming and communicating with
robots, which is elaborated on in the next section. The AR.Drone 2.0 hosts
its own WiFi network over which all communication with the drone is con-
ducted. A ROS driver (written in C++) is offered via the ardrone_autonomy
package [25]. The ROS driver is based on the official ARDrone SDK 2.0 [36],
which in turn is written mostly in C. After connecting to the drone’s WiFi
network a ROS driver node, ardrone_driver, from the above mentioned
package needs to be launched. The node then abstracts the communication
with the drone using ROS topics, services and a parameter server. Because
of this abstraction the communication with the node and the communication
with the drone are different things and they have different rates and timings,
which are controlled via the driver. These update frequencies are set when
the ardrone_driver node is launched and for this project the default values
were used: the drone transmits data at 200 Hz, and the driver caches data
and sends it at 50 Hz.

When using these settings some of the updates are inevitably lost and the

18

updates are not strictly real-time, but that is not a problem for this project
- 50 Hz is plenty fast when the SLAM pipeline runs at 10-20 Hz a desktop
computer.

2.3 ROS
The Robot Operating System is a framework that provides tools, libraries and
conventions aiming to simplify the task of programming robots and robot
systems. The libraries and tools available (many of which are open source)
support a wide variety of robotic platforms and provide a plethora of capa-
bilities. The flexibility and simplicity of ROS, along with support for the
languages C++, Python, and Lisp has led to wide adoption of ROS within
the robotics community.

ROS executables are called nodes and different nodes (which do not have to
be on the same machine) can pass information to each other asynchronously
over topics in the form of messages, via request-response services, or store
and read data via a parameter server. The resulting network of nodes and
their relations is called the graph.

ROS topics are updated when some node publishes a message to it and other
nodes can then receive that message if they are subscribed to that topic.
For example, the AR.Drone 2.0 used in this project sends information about
its status and sensor readings (e.g., battery status, flying/landed, measured
altitude, etc.) via the topic /ardrone/navdata by publishing messages of
the type ardrone_autonomy::Navdata and receives navigation commands
in the form of geometry_msgs::Twist messages by subscribing to the topic
/cmd_vel. Most ROS communication in this project happens over topics,
but during launch and setup some parameters on the parameter server are
configured and a service is used to select which camera the drone should
publish images from.

In this project ROS has been used for communicating with the drone and
MATLAB has been used for running a SLAM algorithm using data received
from the drone. The MATLAB Robotics System Toolbox [22] has been used
to bridge the two systems.

19

2.3.1 ROS coordinate frames

Robot applications commonly require moving coordinates between different
coordinate frames in order to orchestrate the robot’s/robots’ movements. To
this end the ROS package tf makes it possible to keep track of multiple co-
ordinate frames over time using a tree-like structure to relate the different
coordinate systems. These coordinate frames are related via coordinate frame
transformations, which are published at regular intervals. These transforma-
tions are translations and rotations that move points from one coordinate
frame to another.

The AR.Drone 2.0 driver publishes coordinate frame transformations
between four different coordinate frames: the camera coordinate systems of
both the bottom and the front camera (ardrone_base_bottomcam and
ardrone_base_frontcam, respectively); the local coordinate system of the
drone, with its origin at the center, or link, of the drone (ardrone_base_link);
and the global coordinate system within which the drone flies, which is
tracked using on-board odometry (odom). The link/center coordinate sys-
tem is the same one as the one shown in Figure 2.2b.

20

Chapter 3

Method

3.1 Problem formulation
A flying robot equipped with a downwards looking camera moves around in
a plane (z “ zaltitude ą 0) parallel to another plane (z “ 0), i.e., the floor.
The camera is rigidly mounted to the drone and thus tilts with the drone as
it moves around. A figure showing the problem geometry is shown in Figure
3.1. The position of the drone in the global coordinate system is described
using the pose c “ ptx, ty, ψq, where ptx, ty, zaltitudeq is the robot’s Cartesian
coordinates in space and ψ is the robot’s rotation around the z-axis (i.e.,
the yaw). Figure 3.2 shows how the pose parameters relate to the drone’s
position and heading in the global coordinate system.

In the ideal case the roll and pitch of the drone would always be zero so
that the camera (and thus its optical axis) would always be perpendicular to
the floor. Then any calibrated and zero-skew image taken with the camera
would be a direct map of the imaged section of the floor, up to a scale factor.
From such a local map of a subregion of the floor it would be possible to find
the drone’s pose c by finding a rigid transformation (a rotation around the
z-axis and a translation in the plane) that registered the small local map to
a bigger map of the floor in the global coordinate system.

In reality the optical axis was rarely perfectly perpendicular to the floor due
to how the drone - and thus the camera - shifted as the drone maneuvered.
Because of this there needed to be a way to compensate for the drone’s roll

21

‚Camera plane

Floor plane

Camera center

Plane normal

z “ zaltitude

z “ 0

Optical Axis

Figure 3.1: The problem geometry in the model. The camera moves around
freely in the camera plane and takes images of the floor plane. The images
are affected by the tilted optical axis and this needs to be corrected for.

and pitch - which were collectively labeled the tilt of the drone. A way to
do this was by using a homography: if the camera’s intrinsic parameters and
its tilt were known then a homography could be constructed which mapped
an image taken with the tilted camera to another image where the pitch and
roll was compensated for, i.e., an image of the same scene, but appearing as
if taken by a camera with no tilt. From there the pose of the drone could
be determined in the same way as in the ideal case, by registering the local
image/map to the global map.

Finally, some notes about the floor: because the algorithm relied on identi-
fying and matching specific regions on the floor with each other there were
some requirements on the texture of the floor. The floor could not be of
a uniform color, and needed to feature details and patterns of reasonable
scale that could be resolved by the drone’s camera at the relevant altitude.
"Reasonable scale" here meant that the details were not so small that they
appeared as noise, and not so large that few or no features were fully con-
tained within each given image. Most floors (e.g., wood, laminate, tiles of
textured materials, etc.) fulfilled this requirement when imaged with stan-
dard resolution cameras at altitudes of a couple of decimeters to 1-2 meters,
which was a reasonable altitude span for a quadcopter exploring an indoor
environment.

22

y

x

ptx, tyq

O

yc

xc

ψ

Figure 3.2: The two main coordinate systems of interest: x and y denotes
the global x- and y-axes, xc and yc denotes the local x- and y-axes of the
camera/drone, and c “ ptx, ty, ψq is the pose of the drone in the global
coordinate system.

3.1.1 Relevant coordinate systems

A lot of different coordinate systems/frames were used in this project, so it
is worth clarifying them and their relations to each other.

The global coordinate system is a rigid frame (it does not rotate or translate)
where the navigation map is defined. The drone’s relation to the global co-
ordinate system is shown in Figure 3.2.

The local coordinate system is centered at the drone and rotates around the
z-axis, but not the x- or y-axes, so that it is unaffected by the drone’s tilt but
tracks the drone’s yaw and planar translation within the global coordinate
system (again, see Figure 3.2). The relationship between the local and the
global coordinate system is captured by the drone’s pose, c “ ptx, ty, ψq.

The image coordinate system has the unit "pixels" and is where the undis-
torted (but not rectified) images from the drone’s bottom camera are defined.
The images are affected both by the drone’s tilt and the altitude of the drone
(a scaling factor) - its relation to the local coordinate system is given by the
rectification homography, H, and the drone’s altitude, zaltitude.

23

During the computation of the rectification homography (see Section 3.4.5)
some additional coordinate frames are used. They are the drone’s bottom
camera coordinate system (which ROS tracks as the ardrone_base_bottomcam
tf-frame); the drone’s local, tilt-affected1 link coordinate system (which ROS
tracks as the ardrone_base_link tf-frame); and the drone’s odometry co-
ordinate system (which ROS tracks as the odom tf-frame). The drone’s link
and bottom camera coordinate systems have a constant relationship; the
camera is rigidly mounted to the drone and does not move or rotate in re-
lation to the drone’s body. The relationship between the drone’s link and
odometry coordinate system is based on odometric measurements from the
drone’s onboard suite of sensors and tracks the drone’s pose (rotation and
translation) in relation to a fixed global coordinate system.

3.2 High-level design of the SLAM pipeline
The SLAM pipeline developed in this project could be coarsely divided into
several steps. After an initial setup step the program entered a loop that
could either be run indefinitely or for a set number of iterations. The steps
in the loop are explained in more detail in the following sections, but a quick
summary of the steps is listed below:

1. Initial setup: Setup the ARDrone and the required ROS nodes, load
camera parameters and preallocate arrays for the map.

2. Read data from the drone: Capture the most recently published
altitude, odometry and bottom camera image from the drone.

3. Preprocess image: Preprocess the image from the drone to improve
contrast and remove lens distortion.

4. Extract features: Detect and extract SURF features from the pre-
processed image.

5. Update the rectification homography: Update the rectification
homography using the camera parameters and the latest odometry
data.

1"Tilt-affected" here means that the coordinate system’s x- and y-axes track the drone’s
roll and pitch, unlike the local coordinate system described in the previous paragraph.

24

6. Match features: Match the SURF features from the image to the
features stored in the map.

7. Rectify coordinates: Rectify the coordinates of the matched features
from the image using the homography.

8. Estimate the drone’s pose: Estimate the drone’s pose by finding a
rotation and translation that registers the matched, rectified features
from the last image to their matches in the map.

9. Update the map: Add novel features and the estimated pose to the
map. Update metadata for the features in the map to reflect their
detection from the new pose.

10. Bundle adjustment: Setup and run bundle adjustment on the matched
points in the map and all poses associated with those points, using the
constraints induced by the new measurements.

After step #10 the algorithm jumps back to step #2 and starts a new itera-
tion.

3.3 ROS chessboard camera calibration
Before the pipeline was even started the parameters of the drone’s camera
needed to be known. To this end a process known as geometric camera cali-
bration, camera resectioning, or simply camera calibration was used, whereby
the parameters of the lens and image sensor of the camera were estimated.
Specifically, the intrinsic parameters and the distortion coefficients were es-
timated using this process.

The method required taking multiple pictures of an object with easily identi-
fiable features and known distances between those features, so that relations
between image coordinates and world coordinates of the features could be es-
tablished. The images had to to be from many different angles and distances
so that all of the behaviors of the lens and image sensor were captured. Chess-
boards, with a known number of squares and known square dimensions, are
commonly used as targets for camera calibration due to their high contrast
and easy identification. For this project a chessboard with 10 ˆ 7 squares

25

with 25 mm sides was used.

The technique is very common in vision and image applications, so most
image processing toolboxes implement some form of camera resectioning
tool. ROS was no exception and included a camera calibration package,
camera_calibration [29], which was used for this project. This package
was in turn based on OpenCV routines. Figure 3.3 shows a screenshot of the
interface of the ROS camera calibrator tool.

After the calibration the estimated intrinsic camera parameters and distor-
tion coefficients were sent to the drone. The drone then stored those param-
eters and loaded them whenever the drone booted and subsequently broad-
casted them via the /ardrone/camera_info topic. The drone did not apply
the calibration to the raw images before broadcasting them, instead the pa-
rameters were made available so that the user could choose how and if to
undistort the images coming from the drone.

The intrinsic matrix for the bottom camera, according to the camera resec-
tioning, was

K “

»

–

684.41 0 295.23
0 687.49 179.05
0 0 1

fi

fl (3.1)

Table 3.1 lists the lens distortion coefficients that were estimated by the
camera calibration tool.

Table 3.1: Estimated values of the radial distortion coefficients, k1 and k2,
and the tangential distortion coefficients, p1 and p2, for the drone’s bottom
camera. See Section 2.1.3 for an explanation of these coefficients.

Variable k1 k2 p1 p2
Estimated value 0.143 ´0.508 ´1.198 ¨ 10´3 6.676 ¨ 10´4

Note that the lens distortion for the bottom camera was relatively small
(especially the radial distortion) and that it thus was sufficient with only 2
(as opposed to 3) radial distortion coefficients. The small lens distortion was
likely because the camera was designed to be used for optical flow ground
speed measurements, and thus either needed to be calibrated and natively

26

undistorted (which would have put unnecessary strain on the drone’s onboard
CPU) or have low lens distortion to start with so that the raw images could
be used to that end. The fact that the camera did not need to focus further
reduced the need for a thick lens that could have added distortion.

Figure 3.3: A screenshot of the ROS camera calibrator interface. Notice how
the inner corners of the chessboard squares are identified and highlighted.

3.4 The SLAM pipeline
The SLAM pipeline was implemented in MATLAB (release R2017a). It re-
lied heavily on the Robotics System Toolbox [22] for ROS integration and
communication with the drone, and the Computer Vision System Toolbox
[20] for feature detection and -extraction, camera calibration, and feature
matching. The pipeline also required the ROS package ardrone_autonomy
[25], which was used to launch the AR.Drone 2.0’s driver ROS node.

The communication with the drone was handled via WiFi - the drone hosted
a WiFi network over which it transmitted and received data.

27

3.4.1 Initial setup

Here the driver for the ARDrone was launched via the ROS node
ardrone_driver, from the ardrone_autonomy package. The node was
launched using a custom ROS .launch file which set a couple of ROS param-
eters for the drone: namely, it set the drone to transmit updates at 200 Hz;
set the driver to publish received data from the drone via ROS messages at
50 Hz2; and set covariance values for the IMU (Inertial Measurement Unit)3.
Then, a second ROS node, matlab_node, was launched, which was used to
bridge the gap between ROS and MATLAB. Finally, some additional setup
was performed: some more drone setup; reading camera parameters from the
drone; and preallocating arrays for storing the the map.

For the matlab_node setup 4 ROS topic subscribers were attached to the
MATLAB node. The topics subscribed to were: /ardrone/image_raw, where
images from the camera were published; /ardrone/camera_info, where info
about the camera, like the intrinsic parameters and the distortion param-
eters, were published; /ardrone/navdata, where various data about the
drone’s status, like its measured altitude, were published; and /tf, where
coordinate frame transformations were published. In the MATLAB node
setup some ROS topic publishers were also attached to the MATLAB node.
These publishers were used to send navigation commands to the drone, via
the ROS topics /ardrone/takeoff, /ardrone/land, and /cmd_vel, which
handled commands for taking off, landing, and changing the velocity of the
drone, respectively. The MATLAB integration of ROS allowed subscribers to
have "callback functions", which were MATLAB functions that were called
whenever the subscriber received a message. Each subscriber to the 4 topics
was given a callback function that stored the last received message for that
given topic in a MATLAB global structure array, LATEST_MESSAGES. That
way the ROS messages published by the drone driver were converted into a
data type that was easier to manage from within MATLAB.

The drone setup was simple: the only extra things that needed to be config-
2These update frequencies were the default values from the ardrone_autonomy package.

They worked well enough so there was little reason to change them.
3Here, again, the default values from the ardrone_autonomy documentation were used.

The three 3ˆ3 covariance matrices for the IMU’s linear acceleration, angular velocity and
orientation, are listed in Appendix A.

28

ured on the drone at that point was which camera the drone should publish
images from (front or bottom), and a "flat trim" request had to be sent to the
drone, so that it zeroed its odometry4 under the assumption that it was on
a flat surface. The first was done via the /ardrone/setcamchannel service,
and the second was done via the /ardrone/flattrim service.

During the flat trim-step the drone had to be landed on a horizontal surface
parallel to the floor - otherwise, zeroing the pitch and roll estimates could
ruin the homography construction, or, in the worst case, cause the drone
to crash since it might have an incorrectly zeroed internal control system.
If the odometry was not manually zeroed in this step the odometry would
initialize dependent on the estimate of "down" from the accelerometer and
the direction towards magnetic north from the magnetometer5.

The camera parameters were read from the /ardrone/camera_info topic.
The parameters that were required for the algorithm were the intrinsic cam-
era parameters and the lens distortion coefficients. In addition to those
camera parameters a coordinate frame transformation was also read in this
step, via the /tf topic. The transformation was that from the bottom cam-
era’s coordinate frame (ardrone_base_bottomcam) to the center of the drone
(ardrone_base_link). This transformation was constant due to the rigidity
of the drone.

Finally, arrays for storing the map of features and poses were preallocated.
For each SURF feature/landmark entered into the map, the map needed to
hold the feature descriptor (of length 64), the feature’s coordinates in the
map (of length 2), and metadata describing each detection of that feature.
That metadata was, for each detection of a given feature: the time step
("pose number") the feature was detected in, and the feature’s coordinates
in the local coordinate system of the pose it was detected from. This meta-
data was required for the bundle adjustment step later in the pipeline, where

4The ARDrone used its odometry readings to maintain an estimate of the drone’s
position and orientation in a fixed, global Cartesian coordinate system. Re-initializing the
odometry in this way told the drone to update its odometry frame and use the current
tilt as a "zero-tilt" reference. This feature was likely provided as a way to counter sensor
drift - by allowing the user to "zero" the odometry readings.

5The standard outlined in ROS REP 105 aligns the x-axis east, y-north, and the z-axis
up at the origin of the coordinate frame [24].

29

global feature coordinates and poses were optimized using data from all de-
tections. For each pose/time step, the map needed to hold the estimated
global pose of the drone (of length 3), and the coordinates of the principal
point in the local coordinate system in that time step (of length 2). This
altitude-compensated principal point was needed in order to separate the
registration translation from the global pose of the drone for the given pose
during bundle adjustment.

In the preallocation step assumptions were made about how many features
would be detected over the drone’s campaign, how many iterations it would
go on for, and how many times a feature would be detected at the most.
This assumption was of course scenario dependent and no global "best rule"
could be found (or at least, finding such a rule was outside the scope of this
thesis). The selected preallocation strategy assumed relatively short cam-
paigns of „ 500 iterations, seeing no more than 55000 features and up to 10
detections of each feature.

A pointer was used to keep track of the current size of the map within the
preallocated arrays and should the map outgrow the arrays the arrays were
re-preallocated and grown by 50%.

3.4.2 Read data from the drone

Once setup was complete the algorithm entered a typical SLAM loop [37] of
landmark extraction, data association, state estimation, state- and landmark
update. The first step was then to read data from the drone, via the ROS
topics. The data required at the start of each iteration was the most recently
published measured altitude, the coordinate frame transformation from the
inertial odometry coordinate system (the frame odom) to the drone’s link
coordinate system (the frame ardrone_base_link), and the image from the
bottom camera.

Figure 3.4a shows a typical image of the floor taken by the bottom camera
from an altitude of about 75 cm. The image quality was not ideal; the raw
image suffered from both upscaling and compression artifacts, see Figure 3.4b

30

(a) A typical raw image of the floor taken with the ARDrone 2.0
bottom camera. Note that the whole image is out of focus.

(b) Closeup of the raw image from Figure 3.4b, highlighting the
compression- and upscaling artifacts. Note that the macroblocks
from the compression are very apparent and that the resulting
blockiness of the image bias the extracted features to be aligned
with the x- or y-axis.

Figure 3.4: A raw image from the bottom camera.

3.4.3 Preprocess image

The raw image was preprocessed in order to aid with data extraction from
the image further down the line. First, the image was converted to grayscale
(SURF feature extraction only supports grayscale images) and then the

31

grayscale image was histogram equalized in order to improve contrast. Af-
ter that the distortion parameters from the camera calibration were used to
undistort the image, remapping image points to compensate for distortion
caused by the lens of the camera.

Figure 3.5 shows the same image as in Figure 3.4, but after the preprocessing
step.

Figure 3.5: The same image from the bottom camera as in Figure 3.4, but
after preprocessing. The camera’s lens did not distort the image much, so
the distortion correction is hard to notice. Some small black areas can be
seen near the image’s edges, caused by the image being "squeezed" together
from the edges to counteract the (minor) radial distortion.

3.4.4 Extract features

Here SURF features were detected and feature descriptors extracted from
the image, using the detectSURFFeatures and extractFeatures functions,
respectively.

After detecting all SURF features in the image the (up to) 300 strongest de-
tections were selected for feature descriptor(/vector) extraction. The strongest
SURF features were selected using the selectStrongest method of the
SURFPoints class in MATLAB, which culled SURF points based on the

32

strength of the response of the SURF feature detector. More distinct fea-
tures (areas of more pronounced local change) gave stronger responses. The
purpose of this culling of features was twofold: first, a smaller number of
features was faster to compare with the map and in the long run also lead to
a map with fewer features that was faster to search through, again improving
the matching performance; second, because the images were so compressed
and of such low quality the SURF detector occasionally classified artifacts in
the image as features - rejecting weak features was one way of compensat-
ing for the bad image quality. In other words, this early feature/landmark
culling was done both to increase performance and to increase robustness by
removing "false" features/noise.

After the early feature culling the remaining features were used to extract
feature vectors/descriptors from the image regions surrounding the features.
A feature vector length of 64 was used - the alternative length of 128 was
deemed too expensive, performance wise, and overkill, quality wise, given the
application and image quality.

Figure 3.6 shows the pre-processed image from 3.5, with some of the strongest
detected SURF features overlaid.

Figure 3.6: The preprocessed image from Figure 3.5, with the 50 strongest
detected SURF features overlaid. The size of the green rings around each
feature is proportional to the scale of the feature (at a ratio of 6 ˚ Scale).

33

3.4.5 Update the rectification homography

Here the homography H, which was used to correct for the drone’s tilt, was
built using the measured pose of the drone in the same time step that the
last image was taken in.

This homography was constructed using the intrinsic parameters of the cam-
era (contained in the matrix K), the ROS coordinate frame transformation
from the bottom camera to the drone’s center6, and the ROS coordinate
frame transformation from the drone’s odometry coordinate system to the
drone’s center7. The first two of these were read and stored in the Setup-step
of the pipeline and remained constant throughout the entire run; the camera
never changed focus and the camera and drone center did not move relative
to each other. The last one was read from the drone in the Read data from
the drone-step.

The ROS coordinate frame transforms [30] contained both a translation,
specified as a length 3 vector px, y, zq, and a rotation, specified as a quater-
nion px, y, z, wq. The transform was applied in the order translation-rotation
("TR"). The bottom-camera to drone-center transformation always had a
translation of p0,´0.02, 0q due to the bottom camera being situated near the
back of the drone, 2 cm behind the drone-center.

The application of the tilt-correction homography onto a set of points in
image space was a concatenation of a four-step operation:

1. The points in image space were moved to camera space using the inverse
of the intrinsic camera matrix, K´1.

2. The points were translated ´0.02 meters along the y-axis in camera
space, using the matrix T, essentially moving from "camera space" to
"drone space".

3. The points were rotated around the drone to the locations they would
have been in if the drone had no tilt, using a rotation matrix Rφθ.

6I.e., the ROS tf transformation from the ardrone_base_bottomcam-frame to the
ardrone_base_link-frame.

7I.e., the ROS tf transformation from the odom-frame to the ardrone_base_link-
frame.

34

4. The points were moved back to image space from the translated and
rotated camera space by applying the intrinsic camera matrix K.

Combining these four matrices give the tilt correction homography, H:

H “ KRφθTK´1 (3.2)

Where the matrix T was given by

T “

»

–

1 0 0
0 1 ´0.02
0 0 1

fi

fl (3.3)

and the rotation matrix Rφθ was in turn constructed from 3 other rotation
matrices:

Rφθ “ RT
C2LR

xy
L2ORC2L (3.4)

where RC2L was the rotation from the camera frame (of reference) to the
drone center frame (i.e., the "link" frame) and Rxy

L2O was the rotation from
the drone center frame to the odometry frame’s xy-plane, i.e., without rotat-
ing to align with the odometry’s estimated heading.

The matrix RC2L was easily derived by converting the rotation quaternion
from the ROS coordinate frame transformation from the bottom camera to
the drone center into a rotation matrix.

The matrix Rxy
L2O was harder to get as the rotation quaternion from the ROS

coordinate frame transformation included a rotation to align the heading
with the global frame. In order to extract only the pitch and roll correc-
tions necessary to correct for the camera tilt the rotation described by the
odometry-to-drone-center quaternion was converted to Euler angles8, and the
x- and y-components were extracted and used to construct a rotation ma-
trix, Rxy

O2L, which described the pitch and roll of the drone in the odometry’s
frame of reference. Transposing that rotation matrix then yielded a rotation
matrix describing the pitch and roll that needed to be applied to the drone
in order to align it with the odometry plane (which was, excluding sensor
errors, parallel to the floor plane), i.e.,

Rxy
L2O “ pR

xy
O2Lq

T (3.5)
8In the sequence "ZYX".

35

The reason behind using the rotation from the odometry frame to the drone
center frame, extracting the pitch and roll rotations and then transposing the
resulting rotation matrix to get a pitch- and roll correcting rotation matrix
from the drone center frame to the odometry/floor frame had to do with the
Euler rotation sequences supported in MATLAB. MATLAB (as of R2017a)
only supported "ZYX" and "ZYZ" sequences of Euler angles, but had it
supported the "XYZ"-order it would have been possible to use the drone-
center-to-odometry transformation and forgo the the final transposition.

Map initialization

In the first iteration, when initializing the map, the rectification homography
was constructed and applied to the feature coordinates in the same manner
as in the later iterations (the application of the homography is discussed in
Section 3.4.7). Also, the measured tilt of the quadcopter in each iteration was
not a variable that was stored and optimized later (unlike the estimated pose
of the drone and the coordinates in the map of individual features). This
meant that the feature coordinates were not rectified to some sort of per-
sistent plane, but rather the rectification was done on a per-iteration basis.
Specifically, the rectification in each iteration (including the first) was done
to a plane perpendicular to whatever direction the drone’s sensors thought
was "down" (gravity-wise) at that point in time.

This approach was a bit naïve because it assumed that the odometry readings
used to construct the odometry were always good (enough) and that sensor
drift didn’t happen or was negligible. Still, it worked well enough and adding
the drone’s tilt in each iteration as a variable to be optimized during the
bundle adjustment step would have complicated the pipeline beyond the
scope of this project.

3.4.6 Match features

The feature matching step was the most performance intensive step of the
algorithm due to the large number of features that needs to be compared,
especially when the map was big, e.g., after the SLAM loop had run for
multiple iterations. The matching of newly detected SURF feature descrip-
tors/vectors to previously detected feature vectors stored in the "map" could
be done in different ways. The most robust way was brute force matching

36

between all new feature vectors and all previously existing feature vectors in
the map, but this became become prohibitively slow as the map grew larger.

Fast feature matching via geometric distance culling

In order to improve matching speed as the map grew the algorithm first tried
to find matches within a subsection of the map, selected by filtering out fea-
tures that were too far away from the last estimated position of the drone.
The culling step still had to "touch" each entry in the map, as it needed
to look at the px, yq coordinates of each feature, but operating on length 2
vectors is (in general) faster than operating on length 64 vectors.

If this matching step with the smaller, culled map failed (too few matches
were found) - or if the previous iteration failed to estimate the pose of the
drone - then a full brute force matching with the whole map was performed.
This provided a failsafe should the drone move very far between two updates,
or if the estimated location in one step was very wrong, or if the algorithm
failed outright in one iteration.

The culling was done by identifying all features in the map where

}pxf , yf q ´ ptx, tyqi´1}2 ă dmax (3.6)

where pxf , yf q were the coordinates of the feature, ptx, tyqi´1 the estimated
coordinates of the drone in the previous iteration, and dmax was a cutoff
threshold. A maximum distance of 350 pixels was selected for this threshold
as it gave a good performance increase without noticeably compromising the
robustness of the algorithm.

Feature matching

In both the cases of feature matching (against the full map and against a
smaller map as part of the sped-up matching subroutine) the MATLAB func-
tion matchFeatures[21] was used to match SURF feature descriptors from
the last image with features in the map. The function tried to find match-
ing feature vectors between the two sets by finding vectors that were close
to each other, using the sum of squared differences metric while also apply-
ing some other criteria to provide good matches. Some special settings were
used: unique matches were enforced, and the "max ratio" (which is explained

37

below) was set to 0.5, as opposed to the default 0.6.

Forcing matches to be unique meant that each feature vector in the map
could only be matched to one feature vector from the most recent image,
and vice versa. This helped remove ambiguous matches as only the strongest
match to an ambiguous feature vector was kept.

The lower max ratio (which was MATLAB’s name for "Lowe’s Ratio", from
[17]) also helped with filtering out generic/ambiguous matches by setting a
maximum allowed ratio between the distance to the closest match and the
next closest match. If the nearest neighbor to a feature vector was both
within the "matching threshold"9 and the ratio between the distance to that
nearest neighbor and the distance to the next-nearest neighbor was less than
0.5 then the nearest neighbor was deemed a match to the given feature vec-
tor. In other words: Lowe’s ratio filtered out matches where other potential
matches were not significantly worse matches than the best match. A lower
threshold forced matched features to be more unique/descriptive, as generic
and/or false matches were likely to have other generic or false matches within
a similar distance.

Bad match removal ("Rudbeck’s Algorithm")

In order to further filter out false matches the matches returned by
matchFeatures were filtered once more, this time with the goal of removing
matched pairs that were deemed too different from each other. This was
done using an algorithm first implemented by Rudbeck in [38]. The idea was
to filter out matched feature pairs dependent on the distance between them
using a variable threshold.

As mentioned before, feature vectors were compared by the sum of squared
differences distance between them, which for two vectors p and q of length
k is defined as

dpp,qq “
k
ÿ

i“1

ppi ´ qiq
2 (3.7)

Given a set of matched feature vectors, the smallest distance between any
9The default value of 1.0, i.e., "the distance had to be less than 1% away from the

distance of a perfect match", was deemed sufficient.

38

matched pair in the set was denoted dmin. Then, d˚min was defined as

d˚min “ maxpdmin, 0.022
q “ maxpdmin, 0.0004q (3.8)

This thresholded smallest distance was then used to remove any matches
where

d ą 2d˚min (3.9)

This put an upper bound on how different matches could be, using a thresh-
old that, to some extent, adapted to how good the matches were in the given
set. The thresholding of dmin into d˚min was done to prevent a particularly
good match from wiping out matches that would otherwise have been suffi-
ciently good.

The threshold of 0.022 and the multiplier of 2 were taken directly from [38].
Some experiments were done with different values but in the end Rudbeck’s
values were deemed to be suitable for this application.

Because the pose estimation later in the pipeline required at least two point
correspondences to work the algorithm failed the current iteration if there
were fewer than two matches remaining after this match culling step. If that
happened the "estimated" pose of the current iteration was set to the same
pose as the last iteration, and then the current iteration was exited (i.e.,
the map was not updated and no bundle adjustment was done) and the fast
feature matching algorithm was disabled for the next iteration. The last step
there was done to ensure that the next iteration used the "fallback" full map
matching method.

First iteration special case

The first iteration of the pipeline was a special case, because then the map
was empty and there were no previously observed landmarks to match the
newly observed landmarks with. The solution chosen here was to simply
classify all newly observed features as matches to the (empty) map and then
moving on to the next step in the pipeline.

3.4.7 Rectify coordinates

While it is possible to apply a homography to a complete image it is faster
and simpler to just apply the homography to the local (pixel) coordinates of

39

the features from the image.

The unrectified coordinates of a feature in image space, X “ px, y, 1q, and
its rectified/tilt corrected coordinates, XK

“ pxK, yK, 1q, are related via the
rectification homography H:

λXK
“ HX “ KRφθTK´1X (3.10)

where λ is the depth of the rectified coordinate after applying the homogra-
phy, i.e., it is necessary to perform a depth-division on the coordinates after
applying the homography in order to arrive at an image where the points
appear as if they were taken with a tilt-free camera.

This placed the rectified points in a plane at depth 1 in image space, but
the variable altitude of the drone needed to be accounted for as well. The
floor area covered by one pixel varied depending on the altitude of the drone,
and hence some additional scaling needed to be applied to correct for this.
So, the final step of the coordinate rectification step was to scale all feature
coordinates with the measured altitude of the drone, zalt, placing them in a
plane at a depth directly proportional to the altitude of the camera10.

Ideally, the camera should stay at a constant height while exploring, but
due to how it could tilt and shift about as it flew around this correction
was necessary, not to mention that it allowed the drone to be more flexible
as it navigated the environment, e.g., by flying lower to avoid an overhead
obstacle.

The local camera pose

The principal point, px0, y0q, - which can be extracted from the intrinsic cam-
era matrix - represents the location of the camera center within the image
coordinate system (recall that the principal point represents an offset for the
point p0, 0q when moving from the camera coordinate system to the image
coordinate system).

10Here meters were chosen as the unit of the measured altitude. The unit of the altitude
measurements published by the drone was millimeters, but scaling with meters provided
more readable axes when plotting a map of feature coordinates and robot poses.

40

The principal point was specified in pixels, and in order to remain consistent
with the other points in the local coordinate system it also needed to be
scaled dependent on the drone’s altitude. Thus, the same scaling factor, zalt,
that was applied to the rectified and depth-divided feature coordinates was
also applied to the principal point.

pxr0, y
r
0q “ zalt ¨ px0, y0q (3.11)

This scaled principal point then represents the coordinates of the camera in
the local coordinate system of the drone.

Note that because it was possible for the altitude to fluctuate between iter-
ations it was necessary to store the scaled principal point (or the measured
altitude) for each iteration in order to separate the drone’s local position in
each iteration from the translation needed to align that image with the map.
This separation was required in order to optimize the pose during the bundle
adjustment step.

3.4.8 Estimate the drone’s pose

The pose of the drone in each iteration consisted of two parts: a rotation and
a translation, i.e., the pose described a rigid transformation. The most plau-
sible transformation estimate was the one that did the best job of aligning
the matched features from the most recent image with their corresponding
matches in the (global coordinates) map when applying the transformation
to the local coordinates of the re-detected landmarks. In other words, esti-
mating the pose of the drone based on the matched features could be seen
as a image registration problem, where the goal is to find a transformation
that aligns one image with another image (or with a subregion thereof).

A rotation and translation in 2D can be estimated by using only two point
correspondences, and while it was possible to estimate using more than two
correspondences via least-square fitting this was opted against. Instead, a
RANSAC approach was chosen to further filter out and reduce the impact
of bad feature matches/outliers.

41

Least square fitting of R and t

Given a set of n point correspondences the best rigid transformation that
aligns the local point coordinates, Xi, with the global point coordinates, xi,
is the R and t that solves the non-linear least-squares minimization problem

min
R, t

n
ÿ

i“1

}xi ´ pRXi ` tq}2

s.t. RTR “ I , detpRq “ 1

(3.12)

There are many possible ways to solve this problem, e.g., using eigenvalue-
eigenvector decompositions [12], singular value decompositions (SVDs) [2],
or by using Lagrange multipliers [5, 33].

The method chosen for this project was the method using SVDs, outlined in
[2], which was also the method used by Brange and Rudbeck in their papers.
This method, given n pairs of corresponding points, xi and Xi, is described
below:

First, find and subtract away the centroids, x̄ and X̄, of each of the two sets

x̄ “
1

n

n
ÿ

i“1

xi

X̄ “
1

n

n
ÿ

i“1

Xi

(3.13)

The new, centered point coordinates are then

x̂i “ xi ´ x̄

X̂i “ Xi ´ X̄
(3.14)

Then calculate the sum of pairwise outer products matrix C

C “
n
ÿ

i“1

X̂ix̂Ti (3.15)

Find the singular value decomposition of C

C “ USVT (3.16)

42

The rotation R and translation t that minimizes (3.12) is then given by

R “ U
„

1 0
0 detpUVT

q



VT (3.17)

t “ x̄´RX̄ (3.18)

Image registration with RANSAC

In each iteration of the RANSAC method two matches were used to estimate
the rotation and translation for registering the image, then all the matches
were transformed using the newly estimated rigid transformation and the
number of inlier points were counted. After all the RANSAC iterations were
completed the transformation that resulted in the most inliers was selected.
Then, a final check was performed to see if a sufficiently large fraction of all
the matches were classified as inliers using the estimated best transforma-
tion11 - this was for the case where even the best registration was "bad". In
that case the estimated drone pose was rejected and the algorithm "failed"
that iteration, leaving the estimated pose unchanged from the previous iter-
ation and then the current iteration was exited in the same way as if too few
matches were found in the "Match features"-step of the pipeline.

This failure could happen for example when a lot of false matches made it
through the previous culling steps or when the tilt correction homography
was wrong (due to bad odometry in the given step) so that no rigid trans-
formation could properly register the image to the map.

The whole robust RANSAC image registration algorithm is outlined below:

1. At the start of each RANSAC iteration, select 2 pairs of point corre-
spondences at random.

2. Find the R˚ and t˚ that solves (3.12) given the two matched pairs.

3. Transform all image feature points using R˚ and t˚.

4. Count the number of inliers. A point is counted as an inlier if the
transformed point from the image is closer than 10 pixels to its match
in the map.

11In the implementation at least 40 % of the matches needed to be inliers.

43

5. Repeat steps 1-4 for a set number of iterations.

6. Select the rotation R and translation t that resulted in the largest
number of inliers. If there is a tie select the tied transformation that
did the best job of minimizing (3.12).

The drone’s pose

The transformation that registered the most recent image with the map trans-
lated and rotated all the points within the image, including the principal
point, which represented the camera center. In order to get the drone’s pose
in the global map, c “ ptx, tx, ψq, the registration transformation was applied
to the scaled principal point pxr0, yr0q and the rotation angle ψ was extracted
from R:

ptx, tyq “ R ¨ pxr0, y
r
0q ` t (3.19)

R “

„

cospψq ´ sinpψq
sinpψq cospψq



ùñ ψ “ arctan2psinpψq, cospψqq (3.20)

First iteration special case

The first iteration of the SLAM algorithm is a special case because there are
no matches in the map to register the features from the image to. Instead,
all features and the principal point are transformed with the translation
t “ p0, 0q and the rotation angle ψ “ 0, giving the initial pose pxr0, yr0, 0q.

3.4.9 Update the map

If a transformation registering the image to the map was found the map was
updated by adding entries for all first-detection landmarks/features12 and
updating the map metadata to include information about all the features
detected in the current iteration.

Each first-detection landmark had its length 64 feature vector and its length
2 coordinates added to the map.

12"First-detection features" are features that were not matched to another feature in the
map. Features that were matched to a feature in the map are referred to as "re-detected
features".

44

The map metadata included information about each detection of each feature
- this information was required in the bundle adjustment step. The metadata
about each feature included which iterations the feature had been detected
in and the local, rectified coordinates of the feature in that given iteration.
Such a metadata entry was added for each feature detected in the iteration,
both first-detection and re-detected features.

Thus, each feature/landmark stored in the map required storing a length 64
single precision vector, a length 2 single precision vector, and a number of
length 3 single precision vectors depending on how many times that landmark
had been detected. If the map was sufficiently preallocated the map updates
are relatively cheap and effective. As was mentioned previously, the map
was preallocated in order to fit a generous amount of entries, and if the map
outgrew the preallocated size it was re-allocated with 50 % more available
entries. The metadata entries were preallocated in the same way, allowing
many feature re-observations before the metadata array had to be reallocated.

First iteration special case

In the first iteration all observed landmarks from the image were first-detection
features and they were added to the map accordingly.

3.4.10 Bundle adjustment

As the last step of each iteration of the SLAM pipeline a bundle adjustment
routine was launched if the pose estimation was successful. The new ob-
servations of the re-detected features were used to refine the models of the
coordinates of those features in the map and of all the poses from which those
features have been observed.

The inspiration for this implementation of bundle adjustment came from a
paper on sparse bundle adjustment for 2D mapping [13], which was also uti-
lized by Brange [4].

As the local coordinates of re-observed features are registered to the global

45

coordinates there will inevitably13 be some reprojection errors, where the
transformed coordinates do not perfectly line up with the coordinates in
the map. Given a match/re-observed feature with coordinates in the map
x “ px, yq and local (rectified) coordinatesX “ pX, Y q, which were registered

to the map using the 2 ˆ 2 rotation matrix R “

„

Rx

Ry



and the translation

vector t “ ptx, tyq the reprojection error for that feature and estimated pose
is given by

e “ }pex, eyq}2 “
›

›

›

´

x´
`

RxX` tx
˘

, y ´
`

RyX` ty
˘

¯›

›

›

2

(3.21)

For multiple features being detected from multiple poses each detection of
each feature is associated with its own reprojection error; feature i being
detected from pose j is associated with the error eij.

The generalization of (3.21) to get the sum of all reprojection errors ("total
error"), given n features and mi detections of feature i, is given by

etot “
n
ÿ

i“1

mi
ÿ

j“1

eij “
n
ÿ

i“1

mi
ÿ

j“1

}eij}2 “
n
ÿ

i“1

mi
ÿ

j“1

}pexij, e
y
ijq}

2

“

n
ÿ

i“1

mi
ÿ

j“1

›

›

›

´

xi ´
`

Rx
jXij ` t

x
j

˘

, yi ´
`

Ry
jXij ` t

y
j

˘

¯
›

›

›

2

(3.22)

where pxi, yiq are the coordinates of feature i in the map; Rj “

„

Rx
j

Ry
j



is the

rotation matrix corresponding to the estimated pose angle ψj of pose j; Xij

are the local coordinates of feature i observed from pose j; and ptxj , t
y
j q is the

estimated translation vector associated with pose j.

The error function (3.22) is the objective function that the bundle adjustment
algorithm tries to minimize. This is a non-linear least-squares problem, and
in order to find a local minimum to this the Levenberg-Marquardt algorithm
is used.

13These errors stem from many factors, such as quantization errors due to the discrete
resolution of digital images and image compression, or from non-ideal registrations due to
outliers affecting the pose estimation.

46

First, in order to apply the Levenberg-Marquardt method the rotation ma-
trices Rj need to be linearized. This can be done via the exponential map
[32]:

exppAq “
8
ÿ

k“0

1

k!
Ak

“ I`A`
1

2
A2
`

1

6
A3
` . . . (3.23)

Given a rotation estimate, R0, any other rotation R can be written as R0

multiplied with the exponential map of a skew symmetric matrix

R “ exp
ˆ

0 ´a
a 0

˙

R0 «

´

I`
„

0 ´a
a 0



¯

R0 “ pI` aSqR0 (3.24)

where only the first order terms of (3.23) were considered for the purposes

of linearization and where S “
„

0 ´1
1 0



. The equation

R « Rlin
“ pI` aSqR0 “

„

1 ´a
a 1



R0 (3.25)

is then a linear local parameterization of the rotation R0 in the variable a.
Each term in the sum of the objective function (3.22) is thus - after local
linearization - associated with the variables vij “ pxi, yi, t

x
j , t

y
j , ajq and the

vector function eij “ pexij, e
y
ijq. The corresponding partial derivatives Beij

Bvij
are

Bexij
Bxi

“ 1
Beyij
Bxi

“ 0

Bexij
Byi

“ 0
Beyij
Byi

“ 1

Bexij
Btxj

“ ´1
Beyij
Btxj

“ 0

Bexij
Btyj

“ 0
Beyij
Btyj

“ ´1

Bexij
Baj

“ Ry
0jXij

Beyij
Baj

“ ´Rx
0jXij

(3.26)

47

The Levenberg-Marquardt update

In each iteration of the bundle adjustment algorithm the following Levenberg-
Marquardt (LM) update (which here includes a precision matrix to add
weight to the errors) was computed

∆v “ ´
`

H` λ diagH
˘´1JTΛ e (3.27)

where

Λ ”

»

—

–

Λ
. . .

Λ

fi

ffi

fl

(3.28)

J ”
Be
Bv

(3.29)

H ” JTΛJ (3.30)

and where, in turn, Λ was a precision matrix w.r.t. the errors in the x- and
y-dimensions14 and e was a vector containing all the error residual vectors
eij. The Jakobian (3.29) was filled in using the partial derivatives (3.26),
iterating over all relevant features i and poses j.

The variables v were then updated using vnew “ vold`∆v and the objective
function was re-evaluated as etotpvnewq. If the update resulted in a smaller
value for the objective function the new variables were kept, and then a
new iteration was started, unless some criterion was fulfilled that signified
that the algorithm was done. After each LM-update the resulting Rlin

j (3.25)
were normalized before re-evaluating the objective function (3.22) and before
updating J, if the update was successful.

The first pose

The pose from the first iteration of the pipeline was been defined to be asso-
ciated with a rotation of 0 degrees and a translation of p0, 0q pixels. Because
of this the variables of the first pose, i.e., ptx1 , t

y
1, a1q, were not included as

14The precision matrix used in this project was derived by measuring the average re-
projection errors for the x- and y-dimensions over a large amount of iterations, forming a
2ˆ 2 covariance matrix and inverting it to get the precision matrix.

48

variables in the bundle adjustment algorithm, meaning that each detection of
a feature i from the first pose was only associated with the partial derivatives

Bexi1
Bxi

“ 1
Beyi1
Bxi

“ 0

Bexi1
Byi

“ 0
Beyi1
Byi

“ 1

(3.31)

The reprojection errors for these detections were still calculated the usual
way, i.e., using (3.21) and the rotation R1 “ I and the translation t “ 0.

Implementation in code

The map metadata - which included information about each detection of
each feature in the map - was used to find all the mi poses relevant to each of
the n re-detected inlier15 features and the rectified image coordinates, Xij, of
each feature in each respective detection. The rotation R0j relevant to each
pose was calculated from the pose angle ψj, and the registration translation
tj “ ptxj , t

y
j q was reconstructed from the pose coordinates by solving (3.19)

for t using R0j from above and the rectified principal point for iteration j.

Bundle adjustment using Levenberg-Marquardt as outlined above was then
run until the decrease in the total reprojection error reached a plateau or
for at most 10 iterations16. The error decrease was said to have plateaued
if there was a successful update (error decreased) which yielded a less than
5 % error reduction. After the Levenberg-Marquardt loop exited the poses
and the feature coordinates in the map were updated to the new, optimized
values. If any of the updated poses were associated with some features in the
map that had only been detected from that pose then those features were
also updated to reflect the new pose.

An optimal initial value of λ (see (3.27)) and how to best update it is ap-
plication specific, but for this application an initial value of λ = 10 and a
scaling factor of 3 was deemed to be a good fit. If an update was successful
in decreasing the total reprojection error the current value of λ was divided
by 3, otherwise λ was multiplied by 3.

15Including outlier features in the bundle adjustment step would wreak havoc on the
results, due to most of them being false matches.

16This was chosen empirically as a balance between error reduction and performance.

49

Chapter 4

Results

The experiments were done in the Robotics Lab on LTH, using an AR.Drone
2.0 (see Section 2.2) flying over a plastic laminate floor. The drone was
maneuvered around using scripts with specific timings for the movement
commands in order to try to get as repeatable movements as possible. It
was deemed infeasible to get ground truth against which the live runs could
be compared1, so the mapping accuracy of the pipeline had to be evaluated
using more qualitative methods (as opposed to quantitatively measuring er-
rors between the estimated path and the true path, or between the estimated
map and the true map).

The experimental data was obtained by commanding the drone to fly in
squares, at about 75 cm altitude and at a velocity of 0.1 m/s, and then com-
paring the resulting estimated map and poses with the observed flight path
to see if it was reasonable and continuous. The drone’s maneuvers were not
particularly precise: the drone rarely moved in a perfect square and instead
moved in some sort of open ended quadrilateral, the drone rarely managed to
keep its position perfectly steady while hovering and instead drifted around,
and the drone often shifted/wobbled before or after maneuver commands
were received. Still, the resulting path was more or less a square and exper-
iments could always be repeated until acceptable paths were obtained.

1The drone, mainly being marketed towards consumers, was not capable of making
small, precise maneuvers with good repeatability (unlike the robot used by Rudbeck [38])
and mounting the drone in some rig and manually moving it around was deemed overkill,
out of scope, and too far removed from the realistic scenario of the drone flying around at
speed.

50

Both higher and lower altitudes than 75 cm were tested briefly, but it was
found that it made little difference to the results, so drone altitude was not
used as a variable during the experiments. Different velocities than 0.1 m/s
were also tested; it was quickly discovered that velocity commands of less
than 0.1 m/s led to erratic and unpredictable maneuvers and that velocity
commands ofmore than 0.1 m/s made the pipeline less stable. The drone was
not very good at flying slowly; when given slow velocity commands (ă 0.1
m/s) there would sometimes be a delay before the drone started moving in
the commanded direction, and sometimes entire movement commands would
be ignored (e.g., instead of strafing forward, left, back and then right then
drone could just wait, then strafe left, back and right). The higher instability
of the pipeline when the drone was given fast velocity commands (ą 0.1 m/s)
was due to significant motion blur in the images at those velocities. Motion
blur was already an occasional problem at 0.1 m/s, but at higher velocities
that became an insurmountable problem. Figure 4.1 shows two images from
the bottom camera taken at different velocities, showing the motion blur that
came with higher velocities.

(a) Image taken when drone moved
at 0.1 m/s

(b) Image taken when drone moved
at 0.2 m/s

Figure 4.1: Two images captured at different drone velocities, showing the
the impact drone velocity has in terms of motion blur. Notice that the image
taken at the higher velocity has noticeably less detail. Also notice that the
color in the images differ, despite the images being taken under seemingly
identical lighting conditions (the explanation for this difference is unknown).

Lighting conditions weren’t initially considered a significant factor, but it
was quickly discovered that the camera was very sensitive to changes in il-
lumination - it was important for the results that the floor was very well
and consistently lit. The lighting sensitivity was so severe that there was

51

a noticeable difference in algorithm robustness between experiments using
summer daylight for illumination and experiments using the ceiling lights for
illumination. Summer daylight was preferable, likely because it resulted in
less glare via the shiny plastic laminate floor and gave a more even, diffuse
light than the strong fluorescent ceiling lights did.

During the experiments many of the drone’s maneuver campaigns were
recorded so that they could be examined in more detail later. The recordings
were done by sampling the drone’s ROS topics that the MATLAB node sub-
scribed to (/ardrone/image_raw, /ardrone/camera_info, /ardrone/navdata
and /tf) at a high frequency (20 Hz) and storing the received messages so
that they could be re-published later by a dummy drone. The dummy drone
was written in MATLAB and mimicked the real drone by publishing such
recorded messages at the same rate which they were sampled at to identically
named topics as those of the real drone. These dummy recordings were used
to study various parts and aspects of the pipeline on repeatable datasets.
Such recordings were also used heavily during development of the pipeline in
order to streamline the process by eliminating the need to go to the Robotics
Lab to test new features and changes.

4.1 Pose estimation robustness
The robustness of the pipeline was very inconsistent. During the development
phase - using saved campaign data from an early test run - the algorithm was
relatively robust and the drone’s estimated path was a reasonable estimation
of the true path. The results during the experiment phase were drastically
different: there the pipeline was completely unreliable and not a single suc-
cessful run could be obtained. This was the case both for live runs and offline
runs using data saved from live runs.

The early test run - which led to successful runs during the development -
was recorded under different circumstances than the later runs in the exper-
iment phase. The test run was recorded before the drone maneuver scripts
was written, so instead the drone was manually carried around at a height
of about 75 cm. Because of this (and the inability of the drone to reliably fly
slowly, described in the previous section) the drone moved around at a lower
speed than what it did during the experiment phase, leading to less motion

52

blur in the images. The lighting conditions was also different during the the
test run: the test run was recorded during June on a day with with good
daylight, and the experiments were done in November/December on days
with overcast weather or after sunset. During the experiments the strong
fluorescent lights in the ceiling had to be used for illumination, which led to
less diffuse lighting and more glare from the shiny laminate floor. During the
test run the drone wasn’t moved in a square - it was such an early stage in the
project that the experiment methodology hadn’t been defined yet. Instead
the drone was moved in a more Y-like shape. One final difference between
the early test data and the final experiments was that the early test data was
sampled at 5 Hz, which was lower than the 20 Hz of the offline samples from
the experiment phase.

Figure 4.2 shows a navigation map after running the pipeline on the recorded
early test data. To better show that the estimated path is continuous Figure
4.3 shows the same map as Figure 4.2, but with a line tracing the path of
the drone via all the poses.

53

Figure 4.2: The estimated map and poses after running the pipeline on the
recorded early test data. The drone was moved in a Y-like shape, instead
of a square, and the estimated path was close to the true path. Cyan dots
denotes SURF features, red circles denotes poses, black circles denotes poses
from failed iterations2, the yellow circle is the first pose, and the blue circle
is the last pose. The relatively large gaps between the poses stems from the
low sample rate of 5 Hz. The reason the poses seem shifted to the right w.r.t.
the map is because the drone was accidentally held at an angle when it was
carried.

2Recall that if an iteration failed the new pose was set to the last known pose, but no
new features were added to the map.

54

Figure 4.3: The same estimated map and poses as in Figure 4.3, but with
a line drawn through all the poses to better show the estimated path of the
drone. Notice that the path is continuous. The color scheme is the same as
in Figure 4.2.

The robustness during the experiments was drastically worse than during the
developmental tests on the early recorded data. Despite several attempts
over several days, and testing with different drone velocities and altitudes,
it was not possible to get a single run that didn’t derail. Often the pipeline
derailed after about 50 to 150 iterations3, some time into the first maneuver
command, i.e., along the first edge of the square. The most plausible reason
for the pipeline derailing at those points was motion blur (caused by the drone
either moving at top speed along the square’s edges or rotating quickly as
it maneuvered at the start or end of the movement command), but another
possible factor was apparent lighting changes (caused by specular reflections
and/or changes in exposure as the drone rotated during the maneuvers). It
is important to note that the images from the bottom camera were never
good to begin with, so these effects on top of the already low resolution,
blurry image, and high compression was probably the straw that broke the
camel’s back and consistently made the pipeline derail. Figure 4.4 shows

350 to 150 iterations translated to about 5 to 18 seconds, respectively.

55

a navigation map after a typical run during the experiment phase. That
figure also demonstrates some other phenomena that have been mentioned
previously, like the drone drifting and not being able to hover in place, and
the drone shifting as it maneuvers to begin the forward strafe.

Figure 4.4: The estimated map and poses after a typical run during the ex-
periment phase. The drone was commanded to fly in a square. After takeoff,
the drone drifted forwards slowly before the command to strafe forward was
issued, and then shortly after that the algorithm derailed. The bend halfway
through the path was caused by the drone maneuvering as it began the strafe.
The color scheme is the same as in Figure 4.2 and 4.3.

4.2 Computational performance
The performance (speed and efficiency) of the pipeline and the cost of the
various subsystems could easily be measured using the MATLAB profiler,
which gave data on execution times down to individual lines of code. From
this data bottlenecks could be identified and the (inverse) performance scal-
ing with map size could be investigated. The performance was measured on
a Ubuntu system (running version 16.04 LTS) with 16 GB of RAM and a

56

Intel i5-4670K processor running at 4.5 GHz.

The performance was primarily evaluated on medium length campaigns with
the drone repeatedly moving in a quasi4-square. The campaigns were re-
peated 5 times (using recorded campaign data) and results were computed
as an average of the 5 runs. "Medium campaign length" here means 500
iterations, which equaled roughly 80 seconds and 2 completed "square laps".

Because of the robustness issues described in the previous section it was
impossible to get a single medium length campaign that didn’t derail. In
order to study the performance of longer campaigns (50-150 iteration long
campaigns, spanning 5 to 20 seconds, were not considered "long") the inlier
criteria for registrations had to be lowered significantly so that the algorithm
didn’t derail, i.e., fail to estimate new poses. The resulting pose estima-
tions were completely wrong, of course, but the long term performance of
the pipeline could still be studied. These bogus estimations often placed the
new poses in the densest part of the map, where the concentration of features
was the highest and thus the probability of false matches the greatest. This
in turn meant that the fast matching (geometric distance culling) was less
effective than it would have been under more normal circumstances, due to
the artificially high map density. This also made the bundle adjustment step
more costly, as the number of poses related to the matched points was also
artificially inflated from the high concentration of poses and features. Be-
cause of this, the performance tests can be considered "worst case" scenarios,
and the pipeline performance would likely be better under less artificial cir-
cumstances.

For a medium length campaign, as described above, the average execution
time per iteration was 0.157 seconds, starting out at „0.05 seconds in the
first iteration and ending at „0.20 seconds. The average final map size was
„85000 features. The average amount of matches found between the last im-
age and the map in each iteration was 118. It was hard to estimate how many
of those matches were outliers, but given the robustness issues described in
the previous section the ratio of outliers to inliers was likely large. Figure
4.5a shows a typical plot of the execution time as a function of the iteration
number.

4See the point about maneuver precision at page 50.

57

The increase in execution time with iteration number mainly stemmed from
more time consuming feature matching operations as the map grew, but the
bundle adjustment step also became more expensive as the number of pose-
feature relations in the map grew alongside the size of the map. The large
fluctuations in execution time that can be seen in Figure 4.5a were iterations
where the reduced map searched using the sped-up matching algorithm was
especially small. If the last estimated location of the drone in the map was
in a region with relatively few features then the smaller map searched with
the sped-up matching algorithm would be very small and hence the feature
matching step would be exceptionally fast.

(a) Representative execution times as a function of SLAM pipeline iteration #
during a typical run.

(b) Representative execution times as a function of SLAM pipeline iteration #
during a typical run with the sped-up matching disabled.

Figure 4.5: Representative execution times per iteration over 500 iteration
long runs, with and without the sped-up matching step.

58

Feature matching

Of the total execution time almost 43.3% of the time was calls to MATLAB’s
built in feature matcher function, matchFeatures, which both the regular
and the sped-up feature matching relied on. The reason it was so time
consuming was the sheer size of the map that had to be searched in the later
iterations. The sped-up matching algorithm helped, but it could only do so
much due to how quickly the map grew even on the local scale when up to
300 features could be added to the map each iteration. For campaigns shorter
than 500 iterations the feature matching would be less of a bottleneck due
to the smaller map at lower iteration numbers.

Reading data, preprocessing and feature extraction

The next most expensive part of the pipeline was detecting and extracting
SURF features, which stood for 10.1% of the total execution time. This
cost (along with that of reading data from the drone and pre-processing the
images, which stood for „4.0% of the processing time) could be considered
overhead.

Bundle adjustment

The third most expensive part of the pipeline, which stood for 8.6% of the
total execution time, was the bundle adjustment algorithm. Of the bundle
adjustment algorithm’s total execution time 48% of the time was spent on
updating the map and poses after new optimal values had been found5 and
almost 24% of the time was spent on the initial assembly of the J, H, e and
v arrays. The remaining 28% of the time was spent on calculating the LM-
update, calculating the new errors, updating J and H, updating the variable
vector, and on various overhead tasks.

The average amount of LM iterations per call to the bundle adjustment
algorithm was 7.3 (including the first iteration), meaning that the cost of
successive LM iterations was very low once the setup step in the first iteration
was done. From the execution times reported via the MATLAB profiler a call

5The bulk of the map update computation time was spent on updating features that
had only been detected once when their only related pose was updated, due to the cost
associated with searching the map for all such features for each updated pose. Still, this
time was very short with respect to the total computation time for the whole SLAM
pipeline.

59

to the subroutine for the initial set-up of the sparse matrices was more than
6 times as expensive as all other calls in a single LM iteration put together.

Homography construction

The homography construction (including reading the odometry data from the
drone) stood for less than 1.4% of the total execution time. Judging by this,
updating the homography in each iteration using robot odometry readings
(as described in Section 3.4.5) was not a significant performance drawback,
compared to only computing it once, like what was done in [4] and [38].

Sped-up matching

The sped-up matching step had a small, but noticeable impact on the total
execution time. This impact was measured by running the pipeline for 500
iterations over the same dataset (using the offline dummy drone) with and
without the sped-up matching step engaged, and averaging the execution
times over 5 runs. The average speedup was 21.8%, but given that feature
matching was the single most expensive step of the pipeline this speedup
was not negligible. The speedup in real-world scenarios would of course be
variable depending on how the drone moved, which would in turn would
how dense the map became. Figure 4.5b shows a representative plot of
the iteration times of a single 500 iteration run with the sped-up matching
disabled. Notice how the execution time there shows a stronger dependence
on the iteration number and less extreme fluctuations than Figure 4.5a.

Early feature culling

The early SURF feature culling, where only the 300 strongest SURF features
from the detector were passed on to the feature descriptor extractor, had a
significant positive impact on the performance of the pipeline. In a typical
image of the floor used in the experiments the SURF feature detector de-
tected somewhere around 550 to 750 features, so culling this down to 300 or
less made a significant difference. In order to study the exact impact this
step had on the performance of the algorithm the pipeline was run for 200

60

iterations, while the drone flew in a square6. Using the dummy drone the
experiment was repeated 5 times using the same data and the final map size
and average execution time per iteration was averaged. Then the experiment
was repeated (still using the same data via the dummy drone) but with the
early feature culling disabled.

The result was that the average final map sizes were 13980 and 31120 fea-
tures, for tests with and without early feature culling, respectively. Similarly,
the average execution times per iteration was 0.0826 and 0.1987 seconds, re-
spectively. In other words: the early feature culling led to a 56.0% decrease
of the average final map size and a 58.5% decrease of the average execution
time per iteration. On top of those performance increases the early feature
culling also resulted in noticeably less noisy maps and poses.

6The reason for using 200 instead of 500 iterations here was that over the course of
a 200 iteration long campaign the drone did slightly less than one complete lap. That
meant that the image in each iteration was often of a new region, so map growth was more
isolated than if views of previously visited regions were included, like in the length 500
campaigns.

61

Chapter 5

Discussion

5.1 Robustness
Here the driver for the ARDrone was launched via the ROS node
AR.Drone 2.0 could be described as erratic at best and unreliable at worst.
The exact sources of error were hard to pin down, especially since it was not
possible to have the drone fly in a consistent manner.

The pipeline was most prone to derailing when the drone changed move-
ment direction (and thus maneuvered and changed its tilt1) or slightly after
a new movement command was issued and the drone was moving at or near
top speed. The algorithm was generally very robust when the drone was just
hovering - even if the drone rarely managed to stay stationary while hovering
and often drifted around a bit. The reason for this stability was likely that
the drone didn’t tilt and moved slowly, causing the images to vary slowly
from frame to frame and keeping the specular light in the images largely
constant. It’s also possible that the instability while maneuvering was due to
problems with the odometry: bad odometry readings could lead to incorrect
rectification homographies, which in turn could lead to failed pose estima-
tions (this is discussed in more detail later in this section). This stability
while hovering can be seen in Figure 4.4 where the drone hovers and drifts
without the algorithm derailing but the algorithm derails shortly after the
drone begins its strafe forward.

1The plastic laminate floor caused a non-negligible amount of specular reflections from
the lights in the ceiling.

62

The most significant source of the lack of robustness was deemed to be the
bottom camera of the AR.Drone 2.0. As was mentioned in Section 2.2, the
camera was mainly intended to be used as a ground speed sensor (using
optical flow). The camera was designed to provide the drone’s on-board pro-
cessor with low resolution2, out of focus images at a high rate, and - as was
learned during this project - using the camera for visual SLAM was pushing
it a bit too far. The images from the camera were both out of focus, had
low resolution and were significantly compressed. Motion blur was likely a
factor too, but the images were already so blurry that it was hard to notice
any difference when manually inspecting captured images.

It’s possible that the camera was part of the reason for why the drone’s ma-
neuvers were inconsistent: if the drone was indeed using the bottom camera
for ground speed measurements (which were in turn used for station keeping
and maneuvering) then the odd maneuver behavior of the drone could very
well stem from the camera. For example, the drone’s inability to remain sta-
tionary while hovering could be due to incorrect ground speed measurements
due to artifacts and changes in exposure of the bottom camera images. In-
deed, a rolling effect in the image stream, moving from the top of the images
to the bottom, was occasionally observed where the relative brightness of the
image changed periodically even when the drone was perfectly still (landed
on the floor). This could have led the drone into believing that it was moving
in a way that it really wasn’t.

Another possible source of the inconsistent behavior was deemed to be the
odometry of the drone; even when the drone was stationary on the ground
the odometry readings would fluctuate. This fluctuation was not very large
and wasn’t a problem for normal operation of the drone, but possibly had
a negative impact on the SLAM pipeline when piled onto the previously
mentioned shortcomings of the bottom camera. It’s possible that jitter in
the odometry occasionally resulted in incorrect tilt correction homographies
which then in turn could result in incorrect or failed pose estimations. The
drone’s documentation [36] contained very little information about how the
odometry readings were derived, but it seemed they relied on sensor fusion

2High resolution images would have been too demanding for the on-board processor to
process at the required rate.

63

from the array of onboard sensors (gyroscope, accelerometer, magnetometer,
ultrasound altimeter, pressure sensor, and ground-speed readings via bottom
camera optical flow).

It’s unclear whether sensor drift came into play during the experiments - the
odometry was always zeroed before each test campaign by sending a so-called
flat-trim request to the drone before taking off, telling it to zero its odometry
frame assuming it was on a horizontal surface. The campaigns were usually
short (less than 2 minutes) so sensor drift was unlikely to have impacted the
results.

It was discovered that the bundle adjustment algorithm could occasionally
backfire if a lot of false matches were made and registered as inliers. The
subsequent optimization of the map and poses could then make the map
worse, instead of better. This could be observed as an erratic repositioning
of features and poses in the map by the bundle adjustment algorithm. In
the worst case the algorithm would derail completely and poses and features
would start to move together into one large mess in an attempt to reduce
reprojection errors between all the false observations. This phenomenon was
very rare and most often a knock-on effect of snowballing false registrations
(see Section 4.1), so it was rarely the reason for the algorithm derailing, but
instead occasionally made the derailings worse.

Finally, the elephant in the room when it comes to the robustness is why the
early recorded test data gave robust results, but none of the experiments gave
robust results. From the tests it seemed like motion blur and illumination
were the two determining factors: the scenarios were different in the way
the drone was maneuvered (carried by hand as opposed to flown via scripted
maneuver commands) and the illumination of the scene (summer daylight as
opposed to fluorescent ceiling lights). The first led to less motion blur and
less jerky movements, and the second led to more consistent exposures and
weaker specular reflections in the laminate floor. By comparing Figure 4.2
and Figure 4.4 it’s clear that the overlap of the images from one frame to
the next was lower in the early test data than in the experiment phase (cf.
the distances between the poses in the two images and recall that the scale
of the map was normalized using the altitude of the drone, so the map units
are comparable). From this it is reasonable to assume that the amount of
related features from one frame to the next was not a problem, but rather

64

the quality of those features.

During the experiment phase tests where made where the drone was carried
instead of flown, in order to try to recreate the robust results from the early
test. While the pipeline was more robust when the drone was carried around
it didn’t reach the same stability as when using the early test data. The
pipeline still derailed eventually, but it managed to go on longer than when
the drone was flown by scripts. when flying the pipeline usually derailed along
the first edge of the square, and when the drone was carried the pipeline
usually derailed along the second or third edge. Judging by this, either
illumination played a key factor (since the summer daylight illumination
could not be replicated during those tests), or some other, unknown factors
played in - or the tests were just plain unlucky.

5.2 The algorithm
The algorithm was initially largely inspired by the work of Brange [4] and
Rudbeck [38], but a lot of special considerations had to be made due to
the different scenario and end-goal. Brange’s work focused on offline map
building using images taken of a planar surface with a constant tilt camera,
and Rudbeck’s work focused on using such a map to navigate using a drone
equipped with a camera with constant tilt. The work in this thesis was fo-
cused on building such a navigation map from scratch and finding the drone’s
pose in it in real time, but with a consumer level drone with non-constant
camera tilt. To this end the tilt correction homography had to be rebuilt
each iteration and the map had to be built and maintained using only fea-
tures, as opposed to Brange’s map building algorithm which was built around
matching and aligning images and thus used a bundle adjustment algorithm
that was very close to the one employed by [13].

There were several sources of odometry readings made available through the
ROS topics published by the drone and they all gave slightly different read-
ings. The different sources were [26]: rotation about drone’s px, y, zq-axes via
the ardrone/navdata-topic, px, y, zq-rotation reported by the onboard IMU
via the ardrone/imu-topic, px, y, zq-rotation as part of odometry data via
the ardrone/odometry-topic, and drone coordinate frame transformations
(quaternion + 3 component translation) via the tf-topic. The documen-

65

tation did not clarify the differences between the readings from all those
sources. The readings from the different sources were largely the same - the
differences were on the scale of ă 10 - so it was hard to determine which
source was the most accurate. The choice of odometry source didn’t impact
the final rectification homography that much, but since the homography as-
sembly already required reading transformations from the tf-topic in order
to move from the bottom camera’s coordinate system to the drone’s local
one it was opted to use the odometry readings from the tf-topic. Also, the
whole point of the ROS tf-topic was to simplify moving between coordinate
frames related to a robot, so using it to do just that made it feel like the
right choice as the source of odometry readings.

While moving from a quaternion to Euler angles and then to a (transposed)
rotation matrix (see Section 3.4.5) was more expensive than to going directly
from Euler angles (from px, y, zq drone orientation angles) to a rotation ma-
trix neither approach had a significant performance cost. The transpose step
could have been avoided if MATLAB’s function for transforming Euler angles
to a rotation matrix, eul2rotm, had supported the "XYZ" sequence, but the
cost of transposing a 3ˆ 3 matrix was ultimately negligible compared to the
total cost of each iteration in the SLAM pipeline.

5.3 Pipeline performance
Overall the pipeline performed very well - the initial goal was 5-20 Hz and the
algorithm fell within that range for the campaign lengths tested during the
experiments. The performance of the pipeline was very directly tied to the
map size - the main bottleneck was the feature matching step where matches
between the last image and the map were sought.

From the experiments (see Section 4.2) it was discovered that over the course
of entire (500 iteration) runs 43.3% of the total execution time would be spent
on calls to MATLAB’s matchFeatures whereas reading images from the
drone, preprocessing them and then detecting and extracting SURF features
stood for less than 15% of the total execution time. The feature matching
step was by far the single most demanding step of the pipeline so trying to
optimize it is likely to provide a good return on investment. The performance
could likely have been even better if better quality and higher resolution im-

66

ages were used: having to extract fewer (but higher quality and more salient)
features from the images - and thus adding fewer features to the map in each
iteration - would likely have improved performance more than it would have
been decreased from having to detect and extract features from higher reso-
lution images.

Another way to speed up the matching step would have been to use some
sort of approximate matching method, like the one described in [27]. Hope-
fully, the performance benefit of such a method would outweigh the reduced
amount and quality of matches returned due to the approximate nature of
the method.

The bundle adjustment step was very effective under normal circumstances -
its computation time only stood for 8.6% of the total computation time under
the 500 iteration long campaigns done as part of the experiments. The most
expensive part of the bundle adjustment step was (barring the post opti-
mization map update, which required searching the map for single-detection
features) the setup of the sparse matrices used to compute the Levenberg-
Marquardt update. Once those matrices were set up they were very cheap
to update after each iteration.

The main reason the sparse setup was so expensive was because no good
vectorization was found for some of the sparse matrix initializations. All
the sparse matrices used in the bundle adjustment algorithm were assem-
bled using MATLAB’s sparse function and three vector arguments3 - which
was a very effective function - but the filling in of the initial values in the
triplet vectors couldn’t be sufficiently vectorized in some cases. For example,
no good vectorization4 was found for filling in the vector containing all the
original rotation matrix R0 (see Equation (3.25)) values (for all point-pose

3The syntax is S = sparse(i,j,v) where i, j, and v are arrays s.t.
S(i(k),j(k)) = v(k).

4One vectorization was found, but it was slower than the non-vectorized nested loop
approach. That vectorization was to use MATLAB’s structfun to get the rotation ma-
trices for all poses, then extract the structure entries as a comma-separated list, which
was then used as the argument of a call to blkdiag.

67

relations being optimized over, so 4 entries for each detection of each point)5
due to the complex interactions between features in the map and the poses
they had been detected from - instead a nested loop had to be used.

The poor vectorization of some of the components of the sparse matrix setup
was generally caused by nested for-loops for unraveling the relationships be-
tween inlier features and the poses they had been detected from. Because
of this the bundle adjustment step could become quite expensive when there
were a lot of inliers that had been detected from a lot of poses. This could
happen when the drone hovered and managed to stay relatively stationary,
or when the SLAM algorithm was running while the drone sat on the ground.
This could become a problem if the robustness issues were solved and the
SLAM pipeline was used for longer missions in confined areas so that the
same features would be detected very many times.

If the initial sparse matrix setup could be vectorized more it might be worth
doing bundle adjustment across all poses and features, instead of only the
inliers from each iteration and all their related poses. This large scale opti-
mization could then be done in a separate thread at some interval - say, every
10th iteration. Another option would be to use some loop closure detection
algorithm to flag when bundle adjustment should be performed.

5This vector was then used to set up a sparse matrix containing all the relevant R0-
matrices along the diagonal, which could then be used to update the error vector e using
just two matrix multiplications and two vector subtractions: i.e. e “ x´t´AsparRspar

0 X,
see Section 3.4.10.

68

Chapter 6

Conclusions

The initial goal of this thesis project was to create a working and efficient
SLAM algorithm for a quadcopter drone with a downwards facing camera.
Under the course of the project it was discovered that the camera of the
selected drone (an AR.Drone 2.0) was going to be a severe limitation for the
SLAM algorithm, so then the goal was reformulated slightly so that the aim
was to make the algorithm as good as possible using the given hardware.
That goal was reached; the algorithm worked under the absolute right cir-
cumstances, as was evidenced by the experiments on the early captured data,
but the algorithm generally didn’t work in live tests where the optimal cir-
cumstances were hard to replicate. The algorithm was generally stable when
the drone moved slowly, but due to the problems associated with giving the
drone movement commands of less than 0.1 m/s (see Section 4) it was not
possible to reliably keep the drone within that "reliability threshold" while
exploring a scene. The main limiting factor was the drone’s camera and the
compression of the image stream; whether the pipeline worked or not seemed
to be down to the quality of the images read from the drone as a result of
the scene and the drone’s maneuvering.

The iteration-wise update of the rectification homography worked well and
didn’t hamper the performance of the pipeline. The homography construc-
tion (including reading the odometry data from the drone) stood for less
than 1.4% of the total execution time, so it was not a significant drawback
compared to only having to compute it once. The accuracy of the on-board
odometry was often sufficient, and the technique could likely be used to great
effect for similar problem scenarios using better hardware.

69

The performance of the pipeline was good and fell within the range of 5´ 20
Hz iterations for the campaigns tested as part of the experiments. That said,
even with the sped-up feature matching step the pipeline would likely not
have been suitable for longer campaigns due to how rapidly the map grew
with each iteration. For longer campaigns it would have been necessary to
slow down the growth of the map, but a different way to optimize the map
w.r.t. to the measurements that required less metadata would possibly also
be required.

The bundle adjustment step worked well and could be run each iteration
without negatively impacting the performance of the pipeline. The cost of
each iteration was very low - the total cost of each bundle adjustment call
was dominated both by the cost of finding and updating the so-called single
detection features in the map, and by the cost of the initial setup of the
sparse matrices needed to compute the Levenberg-Marquardt update. Single
detection features were relatively common due to the large amount of noisy
features being added to the map that were never detected again and the
initial sparse matrix setup was expensive due to the difficulty of vectorizing
the complex feature and pose interactions embedded in the map metadata.

6.1 Future Work
The method for planar map construction using odometry sourced rectification
homographies and point registrations was effective and could be developed
further. The main limitations of the implementation were the hardware and
the growth speed of the map. On the hardware side the drone’s camera
was the main hindrance, but the precision in the drone’s maneuvers was
also lacking. The growth speed of the map limited the algorithm to short
campaigns of only a couple minutes in order to avoid the iteration frequency
slowing down to less than 1 Hz.

Robustness

If the hardware was improved, e.g. by using a more modern quadcopter with
a high quality camera, the advancements in both digital cameras and MEMS
from the last 5 years would likely improve the robustness of the algorithm

70

greatly. A better camera would lead to better images, from which more inlier
features (and less outliers) could be extracted, thus improving the pipeline
where it needs it the most. Obviously, image compression would be a factor
as well; heavy compression could render the high quality of the uncompressed
image moot.

The pipeline could also be made more robust by storing images from failed
iterations for some time and re-attempting to estimate the pose in those
iterations at some later point in time. Currently, data from failed iterations
is discarded and not used again, but it is possible that that data could be
used later. For example, if some iterations failed when the drone entered a
new area, the images from those iterations could possibly be registered to
the map later if the drone moved back to a known area and the pipeline
recovered. By going through those saved images in reverse order (newest
first, oldest last) it could be possible to retrace the path of the drone and
put information to use that would otherwise be lost.

Performance

If a better camera was used - as suggested in the previous section - then the
resulting increase in inlier features/landmarks could also improve the growth
rate of the map. A larger ratio of inlier features in each image reduces the
need to extract many features to ensure that enough inliers are extracted
to get a good pose estimation, thus slowing down the map growth as fewer
features are added to the map each iteration.

To further increase performance and allow longer missions some better way
of storing, searching and/or updating the map would be needed, even with
the speed-up matching step. A different method of storing the map could
be to use sub-maps, like in [16], where the full map is divided into several,
partly overlapping maps and then only one sub-map is searched, based on
the expected location of the drone. An alternative way of searching the
map could be to use an approximate matching method, possibly the one
described in [27], which employs tree searches and adaptive parameter selec-
tion to provide fast approximate high-dimensional nearest neighbor matching
with configurable precision. The relatively expensive map update step at the
end of the bundle adjustment could be optimized by adding some metadata
to each pose. Specifically, a pointer to where in the map array the new de-

71

tections from each respective pose were saved could make it faster to find all
the single detection features. Then only a small section of the map metadata
array had to be searched, instead of the whole map metadata array.

The sped-up matching step could probably be sped up even further if sorted
lists of all the coordinates of the features in the map (sorted by the x- and
y-values, respectively) were used to find the relevant sub-map. In this case
the L8-norm would have to be used, instead of the L2-norm.

Bundle adjustment

The bundle adjustment is quite effective, barring some vectorization prob-
lems. If the vectorization could be improved, or if the sparse array setup
was optimized in some other way it could be feasible to do global bundle
adjustments over all poses and points. Such optimizations would suitable
for running in a parallel thread and could be run more seldom than each
iteration. Some possible timings for those calls would be either at a fixed
frequency or whenever loop closures were detected, which would of course
require some loop-closure detection step in the pipeline.

Map units

The units of the global coordinate system (and thus the map) was "scaled
pixels". The pixels were scaled based on altitude measurements so that each
pixel covered the same floor area. Using the measured altitude of the drone
and the intrinsic camera parameters it would be relatively trivial to convert
the map into real world map units, e.g. meters. The reason this wasn’t done
was mostly because of convenience; real world map units weren’t required
for the development of the pipeline and having more direct relationships be-
tween the three main coordinate systems (global, local and image) simplified
troubleshooting.

Robot navigation

This project was exclusively focused on map building and localization. Robot
navigation and path-finding was outside the scope except for the rudimen-
tary navigation needed for the experiments. In any real world application,
autonomous robot navigation would be an essential component of a system

72

employing a SLAM algorithm.

Rudbeck [38] developed a planar navigation algorithm which followed user
defined waypoints in order to reach an end goal. That algorithm could be
supplemented with a path-finding algorithm, such as A˚ or Dijkstra’s algo-
rithm, to get a more complete navigation and mapping pipeline.

Lagrange multiplier rotation estimation

From private conversations with Magnus Oskarsson [33] another method for
estimating the rotation during the RANSAC point registration (see Section
3.4.8) was suggested. Instead of the SVD-based method from [2] it was pos-
sible to solve for the optimal rotation matrix using a Lagrange Multiplier ap-
proach. This method was not implemented, even though it seemed superior
on paper1. The reason for this was that the SVD approach worked sufficiently
well and wasn’t a bottleneck, so it wasn’t prioritized in this project. Though,
if this SLAM pipeline is developed further it might be worth implementing
the Lagrange multiplier rotation estimation, just to make the pipeline even
sleeker.

At the core of the Lagrange approach is a parameterization of the rotation
matrix, R, along with a constraint on the parameters:

R “

„

a ´b
b a



s.t. a2 ` b2 “ 1

(6.1)

The Lagrangian of the registration problem for two pairs of 2D points,
tx1,x2u and ty1,y2u, then becomes

Lpa, b, t1, t2, λq “

ˆ 2
ÿ

i“1

`

Rxi ` t´ yi
˘2

˙

` λpa2 ` b2 ´ 1q (6.2)

Where t “ pt1, t2q is a translation vector. The translation is removed from
the equation in the same way as in the SVD approach, i.e. by subtracting the

1The SVD method was developed for least square fitting of large (n ě 2) 3D point sets,
so it was slightly overkill for the two-point 2D registration in this thesis. The Lagrange
multiplier approach was more direct and had less overhead.

73

respective centres of gravity for the two point sets. From there the system
is solved by expanding the square in the sum (exploiting that RTR “ I),
differentiating w.r.t a and b, then plugging in the values of xi and yi and
solving for λ (exploiting that a2 ` b2 “ 1), and then finally solving for a and
b.

74

Bibliography
[1] Aerix Drones. Aerius - World’s Smallest Quadcopter. url: https://

aerixdrones.com/products/aerius-the-new-worlds-smallest-
quadcopter (visited on 2017-12-23).

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-Squares Fitting of
Two 3-D Point Sets”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-9.5 (1987-09), pp. 698–700.

[3] H. Bay et al. “Speeded-Up Robust Features (SURF)”. In: Computer
Vision and Image Understanding 110.3 (2008). Similarity Matching in
Computer Vision and Multimedia, pp. 346–359.

[4] E. Brange. Efficient and robust map building from a downward looking
camera with loop closing. eng. Master’s Thesis at Faculty of Engineer-
ing, Centre for Mathematical Sciences, Lund University. 2016.

[5] C. Chen and D. Schonfeld. “Pose estimation from multiple cameras
based on Sylvester’s equation”. In: Computer Vision and Image Under-
standing 114.6 (2010). Special Issue on Multi-Camera and Multi-Modal
Sensor Fusion, pp. 652–666.

[6] F. Chenavier and J. L. Crowley. “Position estimation for a mobile robot
using vision and odometry”. In: Proceedings 1992 IEEE International
Conference on Robotics and Automation. 1992-05, 2588–2593 vol.3.

[7] E. Delgado and A. Barreiro. “Sonar-based robot navigation using nonlinear-
robust Kalman filter”. In: 2001 European Control Conference (ECC).
2001-09, pp. 1056–1061.

[8] J. Engel, J. Sturm, and D. Cremers. “Scale-aware navigation of a low-
cost quadrocopter with a monocular camera”. In: Robotics and Au-
tonomous Systems 62.11 (2014). Special Issue on Visual Control of
Mobile Robots, pp. 1646–1656.

[9] J. Engel and D. Cremers. “LSD-SLAM: Large-scale direct monocular
SLAM”. In: In ECCV. 2014.

[10] C. Fox et al. “Tactile SLAM with a biomimetic whiskered robot”.
In: 2012 IEEE International Conference on Robotics and Automation.
2012-05, pp. 4925–4930.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Second Edition. Cambridge University Press, 2004.

75

https://aerixdrones.com/products/aerius-the-new-worlds-smallest-quadcopter
https://aerixdrones.com/products/aerius-the-new-worlds-smallest-quadcopter
https://aerixdrones.com/products/aerius-the-new-worlds-smallest-quadcopter

[12] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. “Closed-form
solution of absolute orientation using orthonormal matrices”. In: J. Opt.
Soc. Am. A 5.7 (1988-07), pp. 1127–1135.

[13] K. Konolige et al. “Efficient Sparse Pose Adjustment for 2D mapping”.
In: 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2010-10, pp. 22–29.

[14] J. Kosecka et al. “Qualitative image based localization in indoors envi-
ronments”. In: 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003. Proceedings. Vol. 2. 2003-06,
II-3–II-8 vol.2.

[15] T. Lemaire et al. “Vision-Based SLAM: Stereo and Monocular Ap-
proaches”. In: International Journal of Computer Vision 74.3 (2007-09),
pp. 343–364.

[16] J. Leonard and P. Newman. “Consistent, Convergent, and Constant-
time SLAM”. In: Proceedings of the 18th International Joint Conference
on Artificial Intelligence. IJCAI’03. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2003, pp. 1143–1150.

[17] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Key-
points”. In: International Journal of Computer Vision 60.2 (2004-11),
pp. 91–110.

[18] M. Magnabosco and T. P. Breckon. “Cross-spectral visual simultaneous
localization and mapping (SLAM) with sensor handover”. In: Robotics
and Autonomous Systems 61.2 (2013), pp. 195–208.

[19] J. W. Marck et al. “Indoor radar SLAM A radar application for vision
and GPS denied environments”. In: 2013 European Microwave Confer-
ence. 2013-10, pp. 1783–1786.

[20] MATLAB. Computer Vision System Toolbox. url: https://se.mathworks.
com/products/computer-vision.html (visited on 2017-10-05).

[21] MATLAB.matchFeatures Documentation. url: https://se.mathworks.
com/help/vision/ref/matchfeatures.html (visited on 2017-11-05).

[22] MATLAB. Robotics System Toolbox. url: https://www.mathworks.
com/products/robotics.html (visited on 2017-10-05).

[23] MATLAB.What is Camera Calibration? url: https://se.mathworks.
com/help/vision/ug/camera-calibration.html (visited on 2017-11-20).

76

https://se.mathworks.com/products/computer-vision.html
https://se.mathworks.com/products/computer-vision.html
https://se.mathworks.com/help/vision/ref/matchfeatures.html
https://se.mathworks.com/help/vision/ref/matchfeatures.html
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html
https://se.mathworks.com/help/vision/ug/camera-calibration.html

[24] W. Meeussen. ROS REP 105: Coordinate Frames for Mobile Platforms.
url: https : / / www . ros . org / reps / rep - 0105 . html (visited on
2017-11-03).

[25] M. Monajjemi. ardrone_autonomy Package Summary. url: http://
wiki.ros.org/ardrone_autonomy (visited on 2017-10-05).

[26] M. Monajjemi. Documentation for ardrone_autonomy - "Reading from
AR-Drone". 2015-04-25. url: https://ardrone-autonomy.readthedocas.
io/en/latest/reading.html (visited on 2017-12-05).

[27] M. Muja and D. G. Lowe. “Fast approximate nearest neighbors with
automatic algorithm configuration”. In: In VISAPP International Con-
ference on Computer Vision Theory and Applications. 2009, pp. 331–
340.

[28] P. Olson. Dubai To Put Autonomous Taxi Drones In The Skies ’This
Summer’. Forbes. 2017-02-14. url: https://www.forbes.com/sites/
parmyolson/2017/02/14/dubai-autonomous-taxi-drones-ehang
(visited on 2017-12-23).

[29] Open Source Robotics Foundation. camera_calibration Package Sum-
mary. url: https://wiki.ros.org/camera_calibration (visited on
2017-11-03).

[30] Open Source Robotics Foundation. geometry_msgs/TransformStamped
- Documentation. url: http://docs.ros.org/api/geometry_msgs/
html/msg/TransformStamped.html (visited on 2017-11-03).

[31] M. Oskarsson. Lecture notes in FMA270, Computer Vision. Lecture 1:
The Pinhole Camera Model. 2017. url: http://www.ctr.maths.lu.
se/media/FMA270/2017/forelas1.pdf (visited on 2017-10-05).

[32] M. Oskarsson. Lecture notes in FMA270, Computer Vision. Lecture
9: Local Optimization. 2017. url: http://www.ctr.maths.lu.se/
media/FMA270/2017/forelas9.pdf (visited on 2017-11-05).

[33] M. Oskarsson. Personal communication with Magnus Oskarsson. Pri-
vate Communication. 2017-11-06.

[34] Parrot SA. Quadcopter AR Drone 2.0 Elite Edition. url: https://
www.parrot.com/global/drones/parrot- ardrone- 20- elite-
edition (visited on 2017-12-23).

77

https://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/ardrone_autonomy
http://wiki.ros.org/ardrone_autonomy
https://ardrone-autonomy.readthedocas.io/en/latest/reading.html
https://ardrone-autonomy.readthedocas.io/en/latest/reading.html
https://www.forbes.com/sites/parmyolson/2017/02/14/dubai-autonomous-taxi-drones-ehang
https://www.forbes.com/sites/parmyolson/2017/02/14/dubai-autonomous-taxi-drones-ehang
https://wiki.ros.org/camera_calibration
http://docs.ros.org/api/geometry_msgs/html/msg/TransformStamped.html
http://docs.ros.org/api/geometry_msgs/html/msg/TransformStamped.html
http://www.ctr.maths.lu.se/media/FMA270/2017/forelas1.pdf
http://www.ctr.maths.lu.se/media/FMA270/2017/forelas1.pdf
http://www.ctr.maths.lu.se/media/FMA270/2017/forelas9.pdf
http://www.ctr.maths.lu.se/media/FMA270/2017/forelas9.pdf
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition

[35] L. M. Paz et al. “Large-Scale 6-DOF SLAM With Stereo-in-Hand”. In:
IEEE Transactions on Robotics 24.5 (2008-10), pp. 946–957.

[36] S. Piskorski et al. AR.Drone Developer Guide, SDK 2.0. 2012-05-21.
url: https : / / developer . parrot . com / docs / SDK2/ (visited on
2017-11-08).

[37] S. Riisgaard and M. R. Blas. SLAM for Dummies: A Tutorial Approach
to Simultaneous Localization and Mapping. Tech. rep. 2005.

[38] F. Rudbeck. Visual navigation and control of a mobile robot. eng. Mas-
ter’s Thesis at Faculty of Engineering, Centre for Mathematical Sci-
ences, Lund University. 2017.

[39] "Syahlevi". AR.Drone 2.0 photgraph via Wikimedia Commons under
the CC BY-SA 4.0 license; coordinate axes added by the author of this
paper. 2016-03-16. url: https://commons.wikimedia.org/wiki/
File:81RNYV29HCL._SL1500_(1).jpg (visited on 2017-11-28).

[40] M. Wadenbäck and A. Heyden. “Ego-Motion Recovery and Robust
Tilt Estimation for Planar Motion Using Several Homographies”. In:
Proceedings of 9th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP 2014). SciTePress, 2014, pp. 635–639.

[41] M. Wadenbäck and A. Heyden. “Planar Motion and Hand-Eye Cal-
ibration Using Inter-Image Homographies from a Planar Scene”. In:
Proceedings of 8th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP 2013). SciTePress, 2013, pp. 164–168.

78

https://developer.parrot.com/docs/SDK2/
https://commons.wikimedia.org/wiki/File:81RNYV29HCL._SL1500_(1).jpg
https://commons.wikimedia.org/wiki/File:81RNYV29HCL._SL1500_(1).jpg

Appendices

A IMU covariance values
The three 3 ˆ 3 covariance matrices for the IMU were stored in the 3 ROS
parameters cov/imu_la (linear acceleration), cov/imu_av (angular velocity),
and cov/imu_or (orientation). The following values were used for the co-
variance matrices:

cov/imu_la “

»

–

0.1 0 0
0 0.1 0
0 0 0.1

fi

fl

cov/imu_av “

»

–

1.0 0 0
0 1.0 0
0 0 1.0

fi

fl

cov/imu_or “

»

–

1.0 0 0
0 1.0 0
0 0 100000.0

fi

fl

79

	Introduction
	Related work

	Theory
	Computer Vision
	The pinhole camera model
	Homographies
	Lens Distortion
	SURF Features
	RANSAC
	Levenberg-Marquardt

	The AR.Drone 2.0
	Communicating with the drone

	ROS
	ROS coordinate frames

	Method
	Problem formulation
	Relevant coordinate systems

	High-level design of the SLAM pipeline
	ROS chessboard camera calibration
	The SLAM pipeline
	Initial setup
	Read data from the drone
	Preprocess image
	Extract features
	Update the rectification homography
	Match features
	Rectify coordinates
	Estimate the drone's pose
	Update the map
	Bundle adjustment

	Results
	Pose estimation robustness
	Computational performance

	Discussion
	Robustness
	The algorithm
	Pipeline performance

	Conclusions
	Future Work

	Bibliography
	Appendices
	IMU covariance values

