
sEMG Classification with
Convolutional Neural Networks

A Multi-Label Approach for Prosthetic Hand Control

Alexander Olsson

February 5, 2018

Master’s Thesis in

Biomedical Engineering

Faculty of Engineering LTH

Department of Biomedical Engineering

Supervisor: Neboǰsa Malešević

Acknowledgments

I would like to thank the Department of Biomedical Engineering (BME)
for granting me the opportunity to perform my master thesis, as well as
for supplying the necessary (and expensive) hardware and software. In
particular, I would like to thank my supervisor Neboǰsa Malešević and my
examiner Christian Antfolk not only for providing invaluable advise, but
also for enduring the tedious process of providing me with their sEMG data.
Lastly, I would like to extend my gratitude to Filip Johannesson, fellow
student and friend, for taking time and effort to create an extraordinarily
useful interface for hand movement visualization.

Abstract

In myoelectric prosthesis design, there is often a trade-off between control
robustness and range of executable movements. As a low movement error
rate is necessary in any real application, this often results in a quite severe
limitation on the dexterity of the user. One possible remedy for this could
come from the use of multi-label machine learning methods, where complex
hand movements can be expressed as the sum of several simple movements.

I investigate how effective state of the art deep learning methods are at
classifying HD-sEMG signals. Notable weight is put on extracting multi-
label information from both the spatial and temporal signal domain of EMG
signals by use of convolutional neural networks (CNN). In addition, to in-
vestigate the feasibility of reducing the number of necessary electrodes, a
novel method for quantifying channel importance is proposed.

I show that multi-label classification performance can rival that of classical
single-label methods, even with a large set of labels. Despite the general
stochasticity of sEMG signals, no manual feature engineering is necessary
and a very short time window is sufficient for accurate classification.

1

Glossary

Batch In neural network training; a subset of all training data which is
passed through the network before its parameters are updated.

Epoch In neural network training; one complete use (forward and back-
ward pass) of all available batches.

Feature In this thesis, the output of a transformation of data that is (hope-
fully) more descriptive/useful than the input.

Hyperparameter In machine learning; a parameter whose value is set
prior to the training/fitting of the model.

Iteration In neural network training; the forward and backward pass of one
batch. One epoch contains iterations equal to the number of batches.

Tensor A data structure of arbitrary dimensionality; a generalization of
vectors and matrices into 3D space and beyond.

Brief Notes on Notation

In this thesis, the use of boldface when denoting a variable, e.g. X, signifies
that it is a vector, matrix or tensor of higher dimensionality, i.e. not a
scalar. When denoting individual, scalar elements of tensors, parentheses
with coma separated indices will be used and boldface will be omitted,
e.g. X(j, k, l). When only one index is used, such as X(i), this does not
necessarily mean that X is of one dimension, but that only the linear index is
relevant; for example X(i) = X(j, k, l) , i ∈ 1..I , I = sup(j)·sup(k)·sup(l).
One-indexing is consistently used for all tensors. When treating functions
with multidimensional range, braces replaces parentheses, e.g. f(X){i}, to
eliminate confusion with multiplication and in all cases leaving subscript for
(meta)indexation and superscript for (element-wise) exponentiation.

2

Contents

1 Introduction 5
1.1 Objectives . 6
1.2 Earlier Work . 6

2 Theory 7
2.1 Surface electromyography . 7
2.2 Artificial Neural Networks . 9

2.2.1 Classification in Machine Learning 9
2.2.2 Neurons and Layers 9

2.2.2.1 The Fully Connected Layer 11
2.2.2.2 The Convolutional Layer 12
2.2.2.3 The Batch Normalization Layer 13
2.2.2.4 The Residual Block 14

2.2.3 Activation Functions 14
2.2.3.1 The Rectifier Linear Unit 15
2.2.3.2 The Softmax Layer 15
2.2.3.3 The Sigmoid and tanh Layer 15

2.2.4 Loss functions . 16
2.2.4.1 Cross-Entropy Loss 17
2.2.4.2 BP-MLL loss 17

2.2.5 Optimizers . 17
2.2.5.1 Stochastic Gradient Descent 18
2.2.5.2 The Adam Algorithm 19

2.2.6 Overfitting Countermeasures 19
2.2.6.1 Dropout Layer 20
2.2.6.2 L2 Regularization 20
2.2.6.3 Holdout Validation 21

2.3 Multi-Label Machine Learning 22
2.3.1 Performance Measures 22

2.3.1.1 Subset Accuracy 23
2.3.1.2 Hamming Loss 23
2.3.1.3 Jaccard Index 23
2.3.1.4 Precision and Recall 24

3

3 Methodology 25
3.1 Work Overview . 25
3.2 Tools . 26

3.2.1 MATLAB . 26
3.2.2 TensorFlow . 27
3.2.3 CapgMyo Data Set . 27

3.3 Acquisition Setup . 27
3.3.1 Single-Label . 30
3.3.2 Multi-Label . 30

3.4 Preprocessing . 31
3.4.1 Single Time Instant Recordings 31
3.4.2 Time-Domain Depth Recordings 32

3.5 Single-Label Networks . 32
3.5.1 Network Architecture 33
3.5.2 Pixel Contribution Quantification 34

3.6 Multi-Label Networks . 35
3.6.1 Single Time Instant Architectures 35

3.6.1.1 Multiple Networks 35
3.6.1.2 Single Network 36

3.6.2 Time Domain Features Architecture 36

4 Results 39
4.1 Single-Label . 39

4.1.1 CapgMyo Data . 39
4.1.1.1 Pixel Contribution Quantification 40

4.1.2 Original Data . 41
4.1.2.1 Pixel Contribution Quantification 41

4.2 Multi-label . 42
4.2.1 Multiple Networks . 42
4.2.2 Single Time Instant Network 43

4.2.2.1 Cross-Entropy Loss 43
4.2.2.2 BP-MLL loss 45

4.2.3 Time Domain Features Network 48
4.2.3.1 Cross-Entropy Loss 48
4.2.3.2 BP-MLL Loss 49

5 Conclusions and Discussion 52
5.1 Future Work . 54

6 Bibliography 55

Appendices 60

A Multi-Label Acquisition Protocol 60

B Training Plots and Precision-Recall Curves 63

4

Chapter 1

Introduction

When contemplating prosthetic hand design, one of the first and most
salient problems to emerge is the issue of control. While the human hand
can carry out an enormous breadth of tasks without much apparent effort
on the part of its owner, this is not currently the case for even the state of
the art of prostheses. Separate from the domain of mechanical prosthesis
design; an endeavour with increasingly sophisticated results, there are many
angles from which the task of making it possible for the wearer to command
such a contraption can be approached. One such approach which has gar-
nered much attention in recent times is the use of myoelectric devices; a
class of prostheses controlled by the electrical activity of the muscles in the
residual arm of the prospective user. While having been usefully employed
for many decades by now, they still struggle with many problems; mainly
the trade-of between control effort, movement robustness and dexterity.

One set of possible solutions to these problems has come from the rapidly
evolving academic field of machine learning. By recording the surface elec-
tromyogram (sEMG) with a matrix of electrodes along the arm of a subject,
an image of sorts (where each pixel corresponds to an electrode sample) can
be acquired. This data can be used to train a classifier to be used for
hand posture recognition. The recognized poses, provided the recognition
is robust enough, could subsequently be used to instruct the mechanical
behaviour of a prosthesis. Furthermore, with the use of multi-label classi-
fier algorithms, data can be assigned many different combinations of classes
simultaneously. This is of interest in recognition of hand and wrist pos-
tures and movements, as they inherently posses many independent degrees
of freedom. One type of classifier that has received much attention for its
unprecedented accuracy, specifically in the field of image recognition, is the
convolutional neural network (CNN). Its success with images, as well as its
promising ability to operate in multi-label cases, makes it of special interest.

5

1.1 Objectives

The main goal of this thesis is to investigate how effective a convolutional
neural network could be at classifying high density surface electromyography
(HD-sEMG) signals collected from the arm of a subject. Distinctive weight
is put on investigating if it is possible to use multiple, non-mutually exclusive
classes without unacceptable loss of performance. Finding answers to this
large question will entail investigating smaller issues, such as:

• Finding a good method for EMG measurements to ensure maximal
information extraction and hence classification accuracy.

• Figuring out what features, or rather preprocessing steps in general,
are desirable for good results at later stages in the algorithm.

• Deciding what architecture should be selected for the convolutional
neural network.

• Investigating whether it possible and helpful to extract information
present in the transient behaviour of the EMG signal for classification
purposes.

1.2 Earlier Work

In a paper from earlier this year, Yu Du et al.[1] achieved surprisingly good
results by using a convolutional neural network to classify single time in-
stant sEMG images. With this they showed that time window based feature
extraction might not be mandatory, as was previously thought by many [2].
The authors of [3] were successful in applying their own network on the
NinaPro database of sEMG recordings with a much more sparse electrode
setup, and achieved quite impressive results. Among others, many of the
additional methods novel to the specific problem considered here are intro-
duced in [4], [5] and [6].

6

Chapter 2

Theory

This chapter aims to present the general theoretical background by which
the methods employed in this thesis are inspired. Initially, some time is
spent delving into the properties and morphology of the electromyographic
signals. In order to reinforce understanding for the specific task at hand, an
overview of neural networks and their principles and structure is presented.
Particular weight is put on explaining the relevant layers, loss functions and
optimizers. Finally, in order to emphasize the possibilities and challenges
of multi-label learning, a section is dedicated to explaining some pertinent
performance measures and their interpretation.

2.1 Surface electromyography

The electromyogram (EMG) [7],[8] is a bioelectrical signal which represents
the electrical activity in skeletal musculature. It is generated by the neu-
romuscular activation of motor units during muscle contraction; the more
motor units recruited the higher the amplitude. The signal is acquired by
measuring the difference in electrical potential between points in or along
the muscle of interest, and EMG is therefore always measured by multiple
channels. Electromyography can be divided into two main categories; intra-
muscular EMG (iEMG), where measurements are taken via needles inserted
into the muscle, and surface EMG (sEMG), where measurements are taken
via electrodes on the skin along the muscle. While less invasive, sEMG
suffers from some considerable drawbacks compared to iEMG. Notably, the
signal at each recording site is composed of a superimposition of the activa-
tions of nearby muscle fibers, which consequently lowers spatial resolution.
The high impedance of skin tissue also severely decreases signal strength
compared to iEMG. In this thesis, only sEMG is taken or considered.

7

While sEMG is useful for diagnosing in a plethora of clinical situations,
such applications lie far beyond the scope of this work (although similar
procedures as those outlined in this thesis could be used for assessing fea-
tures for detecting e.g. stroke). What is relevant is the fact that forearm
sEMG has been shown to predict hand grip forces [9] and because of this
been utilized to control hand prostheses. Extension and flexion of the digits
is mainly controlled by the extensor digitorum communis (EDC) and the
flexor digitorum profundus (FDP) muscle situated at the radial and ulnar
surface, respectively, of the forearm. It is therefore not surprising that in-
formation about hand movement is encoded in the sEMG signal, however
deeply concealed. An example of a sEMG channel acquired in this thesis
work is shown below in fig. 2.1.

Figure 2.1: (top) A differential sEMG channel measured from the forearm
during 5 repetitions of little finger flexion. (bottom) Its frequency content,
computed via FFT.

8

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a set of computationally distributed
machine learning algorithms originally inspired by biological systems [10],
although the similarities are seldom much more than conceptual. In order
to understand the design of a neural network, it is helpful to contemplate
its purpose. While artificial neural networks possess utility in a wide range
of applications, their in some sense most primal area of usage, as well as
the one under consideration here, is classification.

2.2.1 Classification in Machine Learning

With notation partially inspired by [5], consider a list of observations in
the form of the pairings (X1,y1), (X2,y2), ... , (Xn,yn), where Xi ∈ Rd,
henceforth called input data, is a tensor of arbitrary but consistent (w.r.t.
i) size d and yi ∈ {0, 1}q is called its class or sometimes its label set de-
pending on the mutual exclusivity of its elements (see section 2.3). q is the
number of possible labels, and (Xi,yi) is henceforth collectively called an
example. If one assumes that each Xi is sampled from an unknown probabil-
ity distribution χ(X; yi) dependent upon the corresponding yi, there exists
at least one optimal transformation φ(·), in the sense that the probability
P (φ(Xi) = yi) is maximized ∀i. The problem of approximating this trans-
formation to a satisfactory degree based on the observations and applying
it is called classification; one of the main tasks with which contemporary
machine learning is concerned. In the problem to be solved in this thesis,
the input data set X represents HD-sEMG measurements acquired from the
arm of a subject, and the label set y is a representation of the ongoing hand
movement at time of measurement. More details concerning this modeling
are presented in chapter 3. With the problem delineated, we can now move
on to the specific case of artificial neural networks.

2.2.2 Neurons and Layers

The most basic element of an ANN is the artificial neuron [11]. The artificial
neuron is a function that takes an argument x of arbitrary dimensionality
and produces a scalar value x′, calculated according to eq. 2.1.

x′ = f(

n∑
k=1

x(k)w(k) + b) (2.1)

where x′ is the output (also known as the axon or more commonly, activa-
tion), x(k) and w(k) is the k:th input and weight, respectively (the term
a(k)w(k) is known as a dendrite), b is the bias and f(·) is the activation

9

function. The biological terminology is presented for increased intuition and
will not be used further in this thesis. We shall later return to the choice of
activation function, but for now it suffices to say that it in some way limits
to small inputs from producing to large output i.e. activating the neuron.
A graphical representation of the artificial neuron is presented below in fig.
2.2 together with its biological counterpart.

Figure 2.2: Artificial (top) and biological (bottom) neuron [12].

In order to obtain an actual network (or if one wants to be pedantic, a
feed-forward network), neurons are grouped together into layers, and the
output of each layers is used as input for the subsequent layer. Whilst
we shall later see (e.g. section 2.2.6.1) that not all layers are constructed
exclusively from the neuron in eq. 2.1, this is initially useful as a mental
model. The first layer is the input layer, whose size and content is always
the same as the input data X discussed previously, and the final layer is the
output layer, whose size is always the same as the label set y. The layers
in-between are usually referred to as hidden layers. To use the network as a
classifier, the problem is now to tune the weights and biases (and possibly
other learnable parameters) of the network in order to make it approximate
the transformation φ(·) from section 2.2.1 to a satisfactory degree. Before
methods for approaching this task are presented, a taxonomy of relevant
layers is needed.

10

2.2.2.1 The Fully Connected Layer

The fully connected (FC) layer, sometimes called the dense layer, is perhaps
intuitively the most straight-forward type of layer, but by the same token
possibly the most computationally expensive. The output of this layer is
computed by connecting every element in the input to every element in the
output: given an input tensor X, the output tensor X′ is calculated via a
linear combination of inputs as in eq. 2.2:

X ′(i) =

n∑
k=1

(W (i, k)X(k)) + b(i) , i ∈ 1..m ⇐⇒ X′ = WX + b (2.2)

Where n = |X| is the number of input elements, m = |X′| is the number of
output elements, W (i, k) is the learnable weight connecting the k:th input
to the i:th output and b(i) is the learnable bias of the i:th output. A
graphical model of the fully connected network layer is presented below in
fig. 2.3. In this work, as well as in others, an activation function is often
subsequently applied to every output. In the model described in section
2.2.2, we can realize that each element in X′ is generated by its own neuron
with a possibly unique set of weights and bias. The size m of X′ that can
be selected for the layers is arbitrary and not dependent on X; the numbers
of parameters in the layer is n ·m + m = m(n + 1), n ·m weights and m
biases. The final layer of all networks used in this thesis (and often in other
works) is a fully connected layer with output size equivalent to the label set
size q.

Figure 2.3: Example of a fully connected layer. In this case, the input
tensor X is of size [1, 1, 5] and the output tensor X′ is of size [1, 1, 3]. The
varying thickness of the connections signifies the varying magnitudes of
elements in W. Depiction of biases is omitted for clarity.

11

2.2.2.2 The Convolutional Layer

The convolutional layer [13],[14] generates its output tensor, as the name
implies, by convolving the input tensor with one or more kernels of fixed size.
The importance and usefulness of this layer has given rise to the convention
that networks containing it are collectively known as convolutional neural
networks (CNN). The type of convolutional layer under consideration here
is the two-dimensional variant, where the kernels are of size [h,w, d] (h and
w are hyperparameters, while d is the depth of the input tensor), although
the principle generalizes to higher dimensions without issue. The archetypal
use for this type of layer is in image analysis and computer vision, as fully
connected layers do not scale well with full images due to their size and the
curse of dimensionality [15]. Along with the the kernel size (also denoted the
receptive field refering to the related property of sensory neurons in biology),
this layer requires other hyperparameters: Zero padding P = [Py Px], stride
S = [Sy Sx] and filter depth F . P determines if elements with value 0 are
added along the spatial (width and height) edges of the input tensor and
if so how many along each dimension, while S determines the length the
kernel moves along the spatial dimensions with each step when calculating
the output. The filter depth F (not to be confused with the input tensor
depth d) represents the number of kernels in the layer. To construct the
output tensor, the results (called the activation maps) from convolving (i.e.
filtering) the input tensor with each kernel are stacked along the depth
dimension. A visual representation of a simple convolutional layer can be
viewed below in fig. 2.4. A more stringent mathematical definition of the
convolutional layer is presented below in eq. 2.3.

X ′(i, j, k) =

h−1∑
l=0

w−1∑
m=0

d∑
n=1

(
Wk(l + 1,m+ 1, n)X(Syi+ l, Sxj +m,n)

)
+ bk

(2.3)
Where X′ is the output tensor, X is the (possibly zero-padded) input tensor,
Wk is the learnable k:th kernels weights and bk is its bias; k ∈ 1..F . The
operation can be interpreted as the kernels ’sliding’ over the input tensor;
each kernel producing a single depth slice of the output tensor. Contrary
to the fully connected layer, the size of the output of this layer strongly
depends on the size of the input. In the relevant 2D image related case, if
X is of spatial size Vx, the spatial size of the output tensor X′ is Vx′ =
Vx−[h w]T+2P

S + 1, while having depth F . A common strategy, and one
which will be used throughout this thesis, is to set the zero padding to a
value which preserves the spatial dimensions of the input.

Worth noting is the fact that the convolutional layer fundamentally cannot
represent any transform that the fully connected layer in princi-
ple cannot. The convolutional layer is in essence a fully connected layer
with weight sharing ; i.e. the same weight are repeated iteratively over the

12

entirety of the input tensor. This rationing of weight memory is motivated
by the assumption that if a feature is relevant to calculate at one spatial
index, it is also worth calculating at every other spatial index.

Figure 2.4: Example [16] of a convolutional layer in action. The bias is
zero and hyperparameters are set as h = w = 3, S = 1, P = 0 and F = 1.

2.2.2.3 The Batch Normalization Layer

The batch normalization (batchNorm) layer [17] is a proposed solution to
the problem known as covariate shift [18]. In essence, in large networks
the probability distribution functions of input tensors in later layer depends
heavily on the weights of earlier layer, possibly generating instabilities in
activations during training. This leads to the need for smaller learning rates
(see section 2.2.5 on optimizers) and thus slows training down. To combat
this, the batchNorm layer normalizes its input tensor over the current batch.
The exact transform is given below in eq. 2.4.

X ′(i) = γ

(
X(i)− µ̂i√
σ̂2
i + ε

)
+ β (2.4)

Where X ′(i) is the i:th output element, X(i) is the i:th input element, µ̂i
and σ̂2

i is the mean and variance of the i:th input element (estimated over
the current batch) and γ and β are learnable parameters. ε is a small static
value introduced just to avoid output overflow for small variances. When
the network is used for prediction after training, µ̂i and σ̂2

i are calculated
from the entirety of the training set. Use of this layer can allegedly speed up
training and prevent training divergence, which was also observed during
the work performed for this thesis .

13

2.2.2.4 The Residual Block

The residual block [6] is not a layer per se, but rather a technique to im-
prove the performance of very deep (i.e. many-layered) networks by way
of skipping. In principle, a deep network should never perform worse than
any shallower subset network, as the excess layers could assume identity
mappings. In practice however, the optimization methods presented in sec-
tion 2.2.5 do not always manage to reach this configuration. The proposed
solution for this is to introduce a shortcut between the input X and output
F (X) of an arbitrary layer (FC, convolutional, etc.), given below in eq. 2.5
with a graphical representation in fig. 2.5.

X′ = F (X) + X (2.5)

Figure 2.5: The residual block.

Intuitively, this means that the layer F (·) no longer needs to figure out how
to transform the data into something more descriptive, but rather what to
add to the data in order to increase its descriptive qualities. For example,
in the case when the layer is redundant and should perform an identity
mapping, it is empirically simpler to optimize F (·) towards zero rather than
to make it perform an identity mapping for all inputs. It is, of course, also
possible to connect this shortcut around multiple layers, i.e. a block, instead
of just one as shown above.

2.2.3 Activation Functions

Recall that in eq. 2.1, the artificial neuron contains an activation function
f(·). At the network level of analysis, this is conceptualized as an activa-
tion layer, or a nonlinearity. This name aptly captures the importance of
this layer: without any intermingled activation layers, we can deduce from

14

eq. 2.2 and 2.3 that every sequence of FC and convolutional layers
connected in cascade is equivalent to a single FC layer. Because
of this, a network devoid of activation layers just performs linear regression
which, while computationally simple, does not have very high discrimina-
tory capabilities. If this is not a satisfactory explanation, one can note that
the activation layer models the role of somata in biological brains; the most
powerful known neural networks to date credited for (among other things)
writing this thesis, and thus probably worthwhile to mimic. Below follows
a short account of the activation layers used in this thesis.

2.2.3.1 The Rectifier Linear Unit

The rectifier linear unit (ReLU) layer is described by the relation below in
eq. 2.6.

f(X){i} = f(X(i)) = max(X(i), 0) =

{
X(i) if X(i) > 0

0 if X(i) < 0
(2.6)

The function is applied element-wise, thus treating the inputs independently
and preserving shape. While simple to understand and easy to compute, it
has outperformed earlier, more complicated alternatives [19].

2.2.3.2 The Softmax Layer

The softmax function layer [20] applied to an input X is given by eq. 2.7.

f(X){i} =
eX(i)∑I
j=1 e

X(j)
(2.7)

Where I is the number of elements in X. It is also known as the normalized
exponential, as f : RJ −→ [0, 1]I and

∑I
i f(X){i} = 1. Its output can be

considered as a categorical probability distribution, and it can thence be
(and in this thesis is) used as the last layer (prior to the loss function) in a
multiclass classification network. In such a setup, the output probabilities
are implicitly assumed to be mutually exclusive, and as such it offers little
use in a multilabel situation.

2.2.3.3 The Sigmoid and tanh Layer

The sigmoid function [20] layer can be considered as a element-wise version
of the softmax function. It is given below in eq. 2.8.

f(X){i} = f(X(i)) =
1

1 + eX(i)
=

eX(i)

1 + eX(i)
(2.8)

15

Just like with the softmax function, it holds that f : RJ −→ [0, 1]J , but

not necessarily
∑J
i f(X){i} = 1. Consequently, it can represent the prob-

abilities of the presence of certain classes/labels without the assumption
of mutual exclusivity. As such, it is useful for multilabel classification. In
contrast to the softmax layer, the sigmoid layer can also be effective further
back in the network with the same purpose as the ReLU layer, although not
used for that purpose in this thesis.

The hyperbolic tangent (tanh) function [20] layer is closely related to the
sigmoid function and is defined in eq. 2.9.

f(X){i} =
sinh(X(i))

cosh(X(i))
=
eX(i) − e−X(i)

eX(i) + e−X(i)
(2.9)

This can be recognized as a sigmoid function that is scaled and has an offset.
While this might convey an illusion of equivalence, the tanh activation layer
has some advantages [21] related to backpropagation (section 2.2.5). As
f(X){i} ∈ [−1, 1], the output of the tanh layer cannot be interpreted as a
probability in the same way as the two previous presented layers unless the
scaling is reversed. In this thesis, it is exclusively used as output activation
in conjunction with BP-MLL loss (section 2.2.4.2).

2.2.4 Loss functions

In order to actually learn a network to perform something approximating
φ(·) from section 2.2.1 instead of some arbitrary transformation in the class

of functions φ̂ : Rd −→ [0, 1]q, the first step needed is to introduce some

sort of error measure. This is the loss function C = L(s,y) = L(φ̂(X),y) =

L(X,W,y), where s = φ̂(X) is the output of the last activation layer (prior
to the loss calculating ’layer’) of the network. s is also called the network
label score or just score, and s(i) can usually be interpreted as the networks
guessed probability for the presence of the ith label; i ∈ 0..q. y is the true
label set/class pertaining to the input data X. W is the collection of all
learnable parameters in the network (e.g. the weights and biases of FC and
convolutional layers) and C is the cost. For a loss function to be effective,

it should generate small values of C when ‖y− φ̂(X)‖ is small. In addition,
in order for the network to be trainable, L must be differentiable w.r.t.

every element in W, i.e. ∃ δL(X,W,y)
δW (i) ∀i. This is perhaps the most distinct

reason why the classification accuracy (or rather the classification error) is
not practical as a loss function for gradient-based learning strategies such
as neural networks. Out of the plethora of available loss functions, two were
used in this thesis: cross-entropy loss and BP-MLL loss, defined below.

16

2.2.4.1 Cross-Entropy Loss

The cross-entropy loss function [22], with variable names conserved since
the previous section, is given by eq. 2.10.

CCE = L(s,y) =

q∑
j=1

y(j) log(
1

s(j)
) = −

q∑
j=1

y(j) log(s(j)) (2.10)

The cross-entropy function has many quite profound interpretations in in-
formation and coding theory relating to the concept of mutual information
[22], but these lie beyond the scope of this thesis.

2.2.4.2 BP-MLL loss

The backpropagation multi-label learning loss function (BP-MLL) [5] is an
improvement over the basic sum-of-squares error, specifically designed for
multi-label neural networks. Its definition (different from the inventors’,
but more in line with the general notation of this thesis) for label set y and
network score s can be viewed in eq. 2.11 below.

CBP−MLL =

∑q
i=1

∑q
j=1

(
y(i) · (1− y(j)) · e−(s(i)−s(j))

)
(∑q

i=1 y(i)
)(∑q

i=1 1− y(i)
) (2.11)

In short, for every pairing of a relevant and an irrelevant label, the func-
tion increases the total loss by an amount inversely proportional to the
exponential of the difference between their respective label score.
This generates a severe penalty in the case when the network gives higher
scores to irrelevant labels than to relevant ones. The cost is finally normal-
ized by dividing by the number of such pairings. It is worth noticing that
as the layer prior to this loss is the tanh layer and not softmax/sigmoid,
the elements of s used in eq. 2.11 must be scaled as s+1

2 in order to be
appropriately interpreted as label probabilities.

2.2.5 Optimizers

With a loss function L defined, one could justly intuit that improving the
networks performance has at least something to to with reducing its output
w.r.t. W over a large amount of input data. One mathematically coherent
way of doing this is called the backpropagation algorithm [21], briefly sum-
marized here. In order to train the network, all parameters are initialized in
some manner. The network is then applied to input data, generating some
cost via the loss function. If input data is sent in a batch, the cost is calcu-
lated as the average over the batch. As we explicitly know the operations

17

the network performs in each layer, the derivative of the cost w.r.t. every

parameter in the network individually, i.e. ∇W(C){i} = δL(W,X,y)
δW (i) ,

can be calculated via the chain rule of calculus. How this gradient is subse-
quently used to update the network parameters differs between optimizers,
of which the employed examples are presented below.

2.2.5.1 Stochastic Gradient Descent

The stochastic gradient descent (SGD) algorithm [23] as an iterative opti-
mization method predates neural networks by quite a margin. From ele-
mentary multivariate calculus, it is known that the gradient of a function
constitutes the direction of fastest increase in argument space. The SGD
exploits this fact by iteratively updating the parameters by translating them
in the opposite direction of the gradient, as seen in eq. 2.12.

W(k+1) = W(k) − α ·
(
∇WL(W,Xk,yk)

∣∣∣∣
W=W(k)

)
(2.12)

Where k is the iteration number and α is a hyperparameter called the learn-
ing rate, directly proportional to the parameter updating step size. Keep
in mind, (Xk,yk) does not necessarily represent a single training example
but rather a batch in which case the loss gradient is evaluated as the batch
average. The updating is repeated for a certain number of steps, more often
than not determined by a static hyperparameter or until some measure of
convergence has been achieved. When the list of available training batches
is exhausted, it will loop around and initialize a new epoch.

In this thesis, the original SGD algorithm is never applied. Instead an
improvement usually denoted stochastic gradient descent with momentum
(SGDM) [24] is used. The mathematical formulation of its update rule is
given by eq. 2.13.

v(k+1) = m · v(k) + α ·
(
∇WL(W,Xk,yk)

∣∣∣∣
W=W(k)

)
W(k+1) = W(k) − vk+1

(2.13)

Where m ∈]0, 1] is an additional hyperparameter called momentum, and v
is called the velocity. The terminology is inspired by the Newtonian case
of a weight traversing a potential field with shape equivalent to the loss
function, in which the loss gradient would be proportional to the force at
each time step. This method gives the list of learnable parameters ’inertia’
as it traverses the (multidimensional) loss surface, making it more robust
to the stochastic fluctuations common in regular SGD.

18

2.2.5.2 The Adam Algorithm

The Adam (adaptive moment estimation) algorithm [4] is an iterative op-
timization method building on the success of AdaGrad [25] and RMSProp
[26]. Its update rule(s) are formulated below in eq. 2.14.

g(k+1) = ∇WL(W,Xk,yk)

∣∣∣∣
W=W(k)

m(k+1) = β1 ·m(k) + (1− β1) · g(k+1)

v(k+1) = β2 · v(k) + (1− β2) · g2
(k+1)

m̂(k+1) =
m(k+1)

1− βk+1
1

, v̂(k+1) =
v(k+1)

1− βk+1
2

W(k+1) = W(k) − α ·
m̂(k+1)√
v̂(k+1) + ε

(2.14)

Where g is the loss function gradient used previously and m̂ and v̂ are
real-time running, bias-corrected estimates of the first and second moments
(mean and variance) of each element in g. As usual, ε is just a small num-
ber introduced to avert numerical instabilities. β1, β2 ∈ [0, 1[are hyperpa-
rameters called exponential decay rates for the first and second moments,
respectively. The algorithm is initialized by setting m(1) = v(1) = 0. The
step size is thus not statically set to the learning rate α, but updated in
accord with the statistical properties of the ever-changing gradient.

The main appeal of this method, at least in this thesis, is its robustness
when faced with the often time non convex properties of the loss function.
In the volatile optimization environment that is ANNs, the regular SGD
and even SGDM can be very sensitive to the choice of α. If to large, the
training runs the risk of diverging; if overly small the training is slow and
might even get stuck in the irregularities of the loss function ’surface’ and
never converge. The Adam algorithm generally circumvents this problem
by course correcting appropriately, and is consequently sufficiently effective
for a much wider range of hyperparameter values. In addition, as step size
decreases when the gradient does so, the risk of ’overshooting’ the optimum
is reduced.

2.2.6 Overfitting Countermeasures

When developing ANNs, and machine learning algorithms in general, a very
common and often necessary approach is to split the available data (with
corresponding label sets) into a training set and a test set. The training set
is used to actually train the network according to the methods presented
thus far. However, the networks performance on the training set is not a fair
measure of its proficiency. For example, as shown in [27], adequately deep

19

networks can achieve perfect results (e.g. ≈ 0 cost) on randomly labeled and
even randomly generated, completely unstructured training data, without
at all generalizing to novel examples. Consequently, the network is applied
to a test set once training is finished in order to evaluate how well the
network performance generalizes to data it has never encountered.

If the training has gone on for a large number of iterations and the network
contains sufficiently many learnable parameters, i.e. has enough expressiv-
ity, it is likely that the network performs well on the training set, but badly
on the test set. This problem is usually referred to as overfitting, and is
caused by the fact that the network model has, with its many learnable
parameters, memorized the exact intricacies of the examples in the training
set instead of the general properties of the unknown, underlying distribution
assumed to generate all data. This can be a massive issue and becomes more
salient the more expressive a network becomes. Below follows an outline of
the approaches utilized in this thesis to combat the problem of overfitting.

2.2.6.1 Dropout Layer

For a given input tensor, the dropout layer [28] iterates through all of its
elements and randomly sets some of them to zero. The probability that
such a operation is performed is a hyperparameter inherent to the layer,
often set to P = 0.5. To compensate for the lack of activation passed on to
subsequent layers, the output is scaled up by a factor 1

P . As the inclusion
of this layer prevents the network from systematically relying on specific
neurons, this is a very simple technique which can drastically reduce the
tendency of the network to overfit.

When the training is finished and the network is to be used for prediction
and evaluation, all dropout layers are ignored.

2.2.6.2 L2 Regularization

A common approach in many optimization problems is that of regulariza-
tion. This is done by appending the cost generated by the loss function
with a regularization term R(W), in simple terms thought of as represent-
ing the complexity of the model under consideration. In ANNs, using the
terminology from section 2.2.4, this can be expressed as in eq. 2.15.

CR = LR(X,W,y) = L(X,W,y) +R(W) (2.15)

Where LR is the regularized cost function. In this thesis, only the L2
regularizer, also known as weight decay, was applied. Its formulation is

20

given below by eq. 2.16.

R(W) = λ ·
|W∗|∑
i=1

‖W ∗(i)‖2 (2.16)

Importantly, W∗ is the vector containing all learnable parameters in the
network, excluding biases. | · | denotes set cardinality, while ‖ · ‖ is the
absolute value operator. λ is a hyperparameter called the regularization
parameter. It is also important to note that, as mentioned under section
2.2.5, the loss is evaluated as the batch average during training. If a batch
size larger than one is used, R(W) should be divided by this batch size
before being added to the total cost.

Intuitively, the addition of this term is a way to coerce the optimizer to
prefer small values for the learnable parameters; all else being equal, W∗

will tend towards the origin of the learnable parameter space. If allowed to
be pretentious, one could view this as enforcing something resembling the
famous heuristic of Occam’s razor on the trained model. This counteracts
overfitting by giving overly convoluted parameter configurations an added
cost, but also provides an additional advantage in that it continuously per-
turbs the training. In this way, the optimization process is unlikely to get
’stuck’ in the small local minimas of the loss function.

2.2.6.3 Holdout Validation

Even with the previous countermeasures imposed, the network is still very
likely to eventually reach an overfitted state after a certain (albeit large)
number of iterations have passed. Because of this, some way of performing
early stopping once this stage is reached would be quite useful. A naive
approach would be to regularly pause the training to investigate whether
the test data performance has decreased since the last pause, as this is an
indicator of imminent overfitting. If this is the case, the training would be
halted. Alas, while this at first glance seems to actually stop overfitting, it
only transfers the problem. Now the choice of hyperparameters and even the
network architecture itself runs the risk of being manually ’overfitted’ by
their creator, as the network will never be tried on truly novel input data.

In order to work around this issue, one could introduce a third set of input
data laterally to the training and test set; the validation set. The procedure
is then to pause the training at regular, set intervals, known as the valida-
tion frequency, and evaluate the average cost of the entire validation set. If
an increase persists through a certain number of pauses, known as the vali-
dation patience, the training is aborted. While thinning the amount of data
available for training and testing, this strategy circumvents the concerns of
manual overfitting.

21

2.3 Multi-Label Machine Learning

There are many situations in which a multi-label model is much more useful
than a single-label one. Consider, for example, identifying what objects
are present in an image (e.g. dog and car), or medical diagnosis from
biometrical data (e.g. cancer and cystic fibrosis). As is argued in chapter
1, hand movement prediction is not an exception to this rule. In preceding
sections of this chapter, an effort has been made to describe the theory
independent of whether the network will work with a single-label problem
or a multi-label problem. There are however some details that could benefit
from clarification. Recalling the framework delineated in section 2.2.1, a
single-label classification problem is one where the label set y ∈ {0, 1}q
for each example contains one and only one ’relevant’ (i.e. equal to 1)
element. If q > 2, the problem is called multiclass classification and if q = 2
it is known as binary classification. Multi-label classification on the other
hand describes the case when no such requirement of mutual exclusivity
exists; every combination of relevant and irrelevant labels is allowed.

An issue that sets classifiers purposed for the single-label and multi-label
case apart is how to generate a prediction p from the class scores s. In
the single-label case, the predicted label is simply assumed to be that with
highest score, as no more than one can be present simultaneously. In this
thesis, the jth label in a multi-label environment is assumed as predicted
if it falls above some threshold t, i.e. p(j) = 1(s(j) > t), where 1(·) is the
indicator function.

In recent times, many effective multilabel machine learning methods have
been constructed by modifying ubiquitous single-label methods; prominent
examples include ML-kNN [29], multi-label naive bayes [30] and rank-SVM
[31]. While some attempts have been to do the same with CNNs (e.g.
[32]), the task is still somewhat open-ended and dependent on application.
In this thesis, two main approaches will be attempted: by transforming
the multilabel problem into q binary classification problems via q different
networks, and by modifying the network architecture and cost function to
accommodate the multi-label problem statement. Note that in the case of
multiple single-label binary networks, no continous score value is used for
each label and thus no thresholding is necessary to generate predictions.

2.3.1 Performance Measures

Once the network training has concluded and the resulting model is to be
tested, some way to evaluate performance is needed. In single-label classi-
fication, the accuracy a ∈ [0, 1], defined as the ratio of correctly classified
examples to the total number of examples, is used for this purpose as it
is intuitive and in some sense completely describes exactly what we want

22

the classifier to do. It is, however, not a wholly trivial task to contrive
ways to quantify the ability of a trained multi-label classifier (e.g. the
CNN). This conundrum stems mostly from the fact that, contrary to the
single-label case, a label set prediction performed by the classifier can be
partially correct in its predictions by way of correctly predicting some labels
but not others. In the following sections, some effort is made to describe
what measures of error and performance are put to use in this thesis, as
it will be essential for interpreting the results presented in chapter 4. In
all cases, N is the test set cardinality and 1(·) is the indicator function.

yi and pi = 1(si > t) = φ̂(Xi) are the correct label set and prediction,
respectively, of the i:th test example.

2.3.1.1 Subset Accuracy

The subset accuracy, or exact match rate [33], is the metric perhaps most
related to the regular accuracy of single label classifiers. It measures the
fraction of test examples in which the classifier correctly predicts all labels,
and is calculated via eq. 2.17.

Subset accuracy =
1

N

N∑
i=1

1(yi = pi) (2.17)

In contrast to the accuracy of a single-label accuracy, its baseline in case of
random guessing is not 1

q , but 1
2q .

2.3.1.2 Hamming Loss

Hamming loss [33] is a metric which operates on each label independently by
measuring the ratio of wrongly predicted individual labels to total number
of labels q ·N . Mathematically, it can be stated as in eq. 2.18

Hamming loss =
1

N

N∑
i=1

1

q

q∑
j=1

1
(
yi(j) 6= pi(j)

)
(2.18)

It is a more lenient metric than the subset accuracy but, because it does
not take label dependencies into account, it might give a faulty perception
of performance. For example, a classifier might systematically misclassify
one particular label but still generate an acceptable Hamming loss.

2.3.1.3 Jaccard Index

The Jaccard index [33] is a statistic for quantifying set similarity. Is is
quite closely related to the Hamming loss, and is in the notation used so far

23

defined by eq. 2.19.

Jaccard index =

∑N
i=1

∑q
j=1 1

(
yi(j) = 1 ∧ pi(j) = 1

)
∑N
i=1

∑q
j=1 1

(
yi(j) = 1 ∨ pi(j) = 1

) (2.19)

A Jaccard index of 1 means that all individual labels predicted to be relevant
truly are and vice versa. A score of 0 means the classifier never predicts
a label to be relevant when it actually is. Thus, the Jaccard index is not
directly improved by labels correctly predicted to be irrelevant (although a
label incorrectly predicted to be relevant always reduces it).

2.3.1.4 Precision and Recall

In binary classification, specifically information retrieval, a common mea-
sure of performance is precision and recall combined together into what is
known as the precision-recall curve [33]. While the multi-class classification
problem as such is not binary it can, just as in the case of Hamming loss
and Jaccard index, be seen as q · N binary instances; one for each label
across all testing examples. To begin with, we define

tp: True positives, the number of relevant labels (correctly) predicted as
relevant across all test examples.

fp: False positives, the number of irrelevant labels (incorrectly) predicted
as relevant across all test examples.

tn: True negatives, the number of irrelevant labels (correctly) predicted
as irrelevant across all test examples.

fn: False negatives, the number of relevant labels (incorrectly) predicted
as irrelevant across all test examples.

With this, we define precision and recall as in eq. 2.20.

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

(2.20)

Put into words, precision is the fraction of labels predicted as relevant which
are actually relevant, while recall is the fraction of actually relevant labels
which are predicted to be so. In the single network multi-label cases im-
plemented in this thesis, some classification threshold t ∈]0, 1[(section 2.3)
is always required to transform the output of the final softmax of sigmoid
layer to a prediction. Typically, a strict (high) threshold generates good
(high) precision and poor (low) recall, while a lenient (low) threshold does
the opposite. To visualize this trade-of, the precision-recall curve is created
by parametrically plotting the precision and recall at different thresholds.

24

Chapter 3

Methodology

In this chapter, the practical details of the work performed are outlined.
It is inaugurated by a short overview of the work flow in order to give the
reader some notion of the direction the work followed. It is followed by a
comprehensive review of the tools, data sets and acquisition setup utilized.
Lastly, a more detailed description of the specific CNNs and training reg-
imens applied in this thesis is included. The results achieved by following
the processes traced here are presented in chapter 4.

3.1 Work Overview

Every sub-task of the main objective in this thesis can be visualized as the
simple flow chart presented in fig. 3.1. Firstly, a high density sEMG signal
is measured from the arm of a subject while said subject performs a series
of hand movements determined prior to the experiment. Via a sequence of
processing steps, this signal is transformed into a series of ’images’ (more
appropriately thought about as tensors), each paired with its relevant label
set. Such an image represents the bioelectrical state at the surface of the
arm; at a single time instant for the first methods used, and at a series of
consecutive time instants later in the thesis. The data is split into training,
testing and validation sets which are used to train and evaluate a CNN.
What varies between tasks is the details of the steps, e.g. preprocessing
methodology and model complexity. Below follows a short summation of
what was done to investigate the questions posed in section 1.1, presented
in chronological order.

25

Figure 3.1: High level flow chart describing all processes designed in this
thesis.

Initially, a simple recording was acquired from a single test subject. This
recording was structured as a series of images, where each image repre-
sents the sEMG measured at a single time instant. For these introductory
measurements, together with an external data set, a single-label model was
assumed. As a proof of concept, the data was processed with a simple
network before moving on to a more complex one.

As this proved quite successful, the decision was made to increase the com-
plexity and adopt a multi-label approach. The data acquisition, prepro-
cessing and of course the neural network architecture itself had to be re-
constructed for these new circumstances. In total, measurements from 3
subjects were used in this phase in order for the results to possess some
degree of generality. As in the previous step, all data used was structured
as single time instant images.

Lastly, additional alterations were made to the methodology in order to
investigate whether the multi-label network could utilize the time informa-
tion inherent to the signal by using time-windowed data. For this, the data
acquired for the single time instant, multi-label case was reused.

3.2 Tools

3.2.1 MATLAB

MATLAB is a well known proprietary programming language developed
by MathsWork for numerical computing. For this thesis, use was made of
the Deep Learning Toolbox, specifically the class SeriesNetwork, for creating
single-label neural networks. In all stages of work, MATLAB was used as
the primary tool for filtering, structuring and miscellaneous preprocessing.

26

3.2.2 TensorFlow

TensorFlow [34] is an open source library designed with machine learning as
its primary purpose. It is capable of running on GPUs and uses the NVIDIA
CUDA Deep Neural Network library (cuDNN) which delivers GPU accel-
erated implementations of common neural network routines. In this thesis,
its Python version was used specifically for the increased customizability
it bestows upon the user compared to MATLAB; a necessary feature for
implementing the multi-label networks presented later in this chapter.

3.2.3 CapgMyo Data Set

During the early stages of work, before original data had been collected,
use was made of the CapgMyo DB-a data set1, create specifically for the
work done in [1]. This is a (single-)labeled sEMG data set with 8 different
hand movement, available in preprocessed or raw format. Here, only the
preprocessed version was put to use.

3.3 Acquisition Setup

The acquisition protocol remained mostly constant throughout this thesis.
Al measurements are recorded with an OT Bioelettronica Quatrocento am-
plifier, with two 8 × 8 electrode matrices, coated in conductive gel, placed
on the extensor digitorum communis and the flexor digitorum profundus
muscles on the right arm of the able-bodied subject, as shown in fig. 3.2.

Figure 3.2: Electrode placement

1available from http://zju-capg.org/myo/data/

27

The arm of the subject is initially placed in a specifically designated stand
(fig. 3.3) capable of measuring individual finger and wrist forces. These
measurements are never used in the actual classification, but are shown in
real time to the subject on a screen as feedback for easier muscle control.

Figure 3.3: Stand for hand placement during measurement.

During acquisition, a LabVIEW VI is used to show the subject a sequence
of texts describing the movement he or she is supposed to perform while
simultaneously measuring the sEMG signal. The exact sequence of move-
ments differs between experiments, but at every moment the currently
shown movement is recorded and paired with its concurrent sEMG mea-
surement. Every movement is repeated 5 times for 5s each, with 5s of rest
between every repetition. A sound cue is played at the onset of each move-
ment following rest. During acquisition, the the sEMG sampling frequency
was chosen as 2048 samples/s, as a higher rate likely would not contribute
with anything other than to duplicate already recorded moments. A lower
rate would run the risk of thinning the amount of available input data, and
in the extreme case spoil information hidden in the farther parts of the
spectrum.

16 labels, representing the main degrees of hand and lower arm freedom,
are consistently used throughout acquisition. The label set is composed of
flexion and extension of all fingers (5 × 2 = 10 DoF’s), thumb abduction
and adduction (2 DoF’s), wrist flexion, extension, pronation and supination
(4 DoF’s). A visual representation of these can be viewed on the following
page in fig. 3.4, and their numerical encoding can be viewed in tab. 3.1.

28

Figure 3.4: Visualization of the hand movement ’basis’

Movement Relevant label Corresponding label set y
Rest N/a [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Little finger flexion 1 [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Little finger extension 2 [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Ring finger flexion 3 [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
Ring finger extension 4 [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]
Middle finger flexion 5 [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]
Middle finger extension 6 [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
Index finger flexion 7 [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]
Index finger extension 8 [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
Thumb flexion 9 [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Thumb extension 10 [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]
Thumb abduction 11 [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]
Thumb adduction 12 [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
Wrist flexion 13 [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
Wrist extension 14 [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]
Wrist pronation 15 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
Wrist supination 16 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Table 3.1: Hand movement encoding

29

Despite being measured, the rest state (i.e. time instants with all-zero label
set) is never used explicitly in the subsequent CNN training and testing.
This is motivated by the fact that rest detection is exceedingly simple, and
as such might contribute undeservedly to the evaluated performance of the
network(s). While this possibly biases the classification, it could easily be
solved in a real application by including a rest state detector prior to the
network.

3.3.1 Single-Label

For the single-label case, only 1 recording was collected using a single test
subject. As it is implicitly assumed that only one label can be relevant
at each time instant, the only movements the subject were instructed to
perform are the ones presented in tab. 3.1.

3.3.2 Multi-Label

For the multi-label case, 3 different recordings from 3 different test subjects
were collected. Initially, the same movements as in the single-label case
were recorded. Of course, in contrast to the single-label case, it is also of in-
terest to record combinations of the basic hand movements, as there might
exist interlabel interactions for the networks to potentially learn. These
combinations are simple to encode using the same scheme as in tab. 3.1;
if one for instance wants to record the label set pertaining to the execu-
tion of little and ring finger flexion simultaneously, it would be denoted
as y1+3 = y1 + y3 = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. As there exists
216 such combinations, it would clearly be folly to record every single one
of them; instead a subset judged to be somewhat representative were se-
lected in the interest of time. Beyond the single label movements, every
2-label combination were recorded, excluding movements containing
finger extension together with finger flexion, or with two digits
separated by 1 or more intermediate digits. In addition, some 3,
4 and 5 label combinations of great importance were manually selected,
namely all fingers extension, all fingers flexion (Palmar grasp), all finger
flexion excluding the thumb, Palmar grasp + wrist pronation, index finger
extension + other digits flexion (pointing), thumb flexion + index finger
flexion + middle finger flexion (3-digit pinch), 3-digit pinch + wrist prona-
tion, thumb flexion + index finger flexion (key grasp) and key grasp + wrist
pronation. Together with the single-labeled movements, this makes 66 dis-
tinct movements in total, generating an aggregate experiment duration of
approximately 1h per test subject. A complete list of every movement of
this protocol with corresponding label encoding is available in appendix A.

30

3.4 Preprocessing

Once acquired, all signals are filtered with a 2:nd order digital band stop
Butterworth filter with lower and upper half-power frequencies set to
48 Hz

2048 S/s ≈ 0.0234 and 52 Hz
2048 S/s ≈ 0.0254, respectively, to remove power line

interference. An additional 20:th order digital band pass Butterworth filter
with half-power frequencies 20 Hz

2048 S/s ≈ 0.0098 and 380 Hz
2048 S/s ≈ 0.1855 is ap-

plied to suppress low and high frequency noise (e.g. movement artifacts).
The filtering is done independently to each of the 2 · 8 · 8 = 128 individual
sEMG channels. The next step is to structure these 128 sEMG channels
into ’images’ (i.e. spatially structured matrices) with corresponding label
sets for a CNN to operate on. This was by necessity done by a slightly dif-
ferent method depending on whether more than one time instant was taken
into consideration for a single input data instance or not.

3.4.1 Single Time Instant Recordings

The method for structuring input data is equivalent in the single-label and
multi-label case. Given the acquisition setup presented above in 3.3, the
neuromuscular state of the arm at time i of sampling is represented by
2 × 64 numerical values with 16 bits of precision. These are reshaped into
2 8 × 8 matrices and concatenated vertically, generating a matrix Xraw

i ∈
R16×8. To generate an image Xi in the traditional sense, each such matrix
Xraw
i is individually linearly rescaled to the range [0, 255] and rounded

to the nearest integer, where the largest and smallest elements of Xraw
i are

transformed into 0 and 255, respectively, in X. As such, a certain value of
an element of Xi might not represent the same measured sEMG voltage for
different sampling times i. Such a deliberate reduction in resolution might
seem unwarranted, but actually proved to increase network performance.

Each image is thereafter paired with its corresponding label set yi, deter-
mined via the procedure described above in section 3.3.2, together con-
stituting a single example (Xi,yi) with the notation introduced in sec-
tion 2.2.1. To eliminate the subject reaction time as well as transient
signal behaviour, examples originating from the first or last second of a
movement repetition are discarded before proceeding, generating a total of
(5s−2s)·Fs = 6144 examples per repetition, where Fs = 2048S/s is the sam-
pling frequency. Across all repetitions, this supplies 16·5·6144 = 491520 and
66 · 5 · 6144 = 2027520 examples in total in the single-label and multi-label
case, respectively.

Some hand-picked examples of images generated by following the above
steps are shown in fig. 3.5.

31

Figure 3.5: An example of sEMG-HD images to be used in classification.
From left to right, the images belong to labels 1, 3, 4 and 5. In contrast to
many other classification tasks, it might not be apparent how to go about
manually classifying these.

3.4.2 Time-Domain Depth Recordings

For the later multi-label networks implemented in this thesis, the network
input data X no longer represents a single time instant sample, but a se-
quence of 24 consecutive samples, lasting for a duration of 24−1

Fs
≈11ms.

The input data is thus generated by stacking 24 images, created the same
way as previously, along the depth dimension, creating a tensor
Xi ∈ N16×8×24, (1 ≤ Xi(j, k, l) ≤ 255)∀(j, k, l). The full set of such ten-
sors is created by a sliding window with 50% overlap, or equivalently a
step size of 12 samples. This entails that each time instant sample will
appear in two different, consecutive tensors but at different depth. Just as
earlier, the first and last second of measurements from each repetition is
discarded, which results in the total number of available tensors becoming
2 · 202752024 − 1 = 168959. In order to determine the corresponding label set
y for each tensor, a label-wise majority vote is taken, although this is not
strictly necessary in this setup as every window only extends over a uniform
sequence of label sets.

3.5 Single-Label Networks

For both single-label CNNs considered below, the loss function in use was
cross-entropy loss, and for optimization the SGDM algorithm with α = 0.1,
m = 0.9 and L2 normalization with λ = 0.0001 was adopted (hyperparam-
eters determined empirically). Both networks were separately trained and

32

tested on the CapgMyo data set and on the original data collected as de-
scribed previously in section 3.3.1. The training was done in batch with a
batch size of 1000, for 30 epochs with CapgMyo data and for 100 epochs for
the original data. The exception to this was training of the first simple net-
work, which lasted for 20 epochs for both data sets. For easier convergence,
the learning rate α was reduced by a factor 10 after the 10th, 20th, 30th and
40th epoch. The available examples were split into a training and testing set
of equal cardinality; no validation data was used in this initial experiment.
Partitioning into training and testing sets was done by splitting each label
temporally, so that the first half of measurements for each movement con-
stituted the training data, and the second half testing data. For CapgMyo,
this entailed using the first half of the sessions (1-5) for training and the
second half of session (6-10) for testing. Only data from subject 1 was used
here. Prior to training, the test set is shuffled once, so that every batch
contains an acceptable mix of labels. As the networks perform single-label
classification, only accuracy was considered as a performance measure.

3.5.1 Network Architecture

The first, very simple CNN to be tested was implemented in MATLAB, and
contained only the input layer, a convolutional layer with 64 3 × 3 filters
(stride 1, zero padding 1), a ReLU activation layer, a fully connected layer
16 outputs for and the final softmax layer. As such, this network contains
only a single hiddel layer. Training of this network lasted for 20 epochs.
For use with CapgMyo, the number of fully connected outputs had to be
replaced with 8.

After this initial modest attempt, a more extensive CNN, with architecture
inspired by [1], was created. An illustration of this network, for this work
realized in MATLAB, is shown in fig. 3.6. Secondary to the input layer,
4 blocks of the form conv-batchNorm-ReLU follows; the first two convolu-
tional layers with 64 kernels of width and breadth 3 and the last two with
kernels of width and breadth 1. While a 1×1 kernel might seem to just per-
form pixel-wise rescaling, this is not the case as the kernel is fully connected
along the depth dimension. These blocks are succeeded by 3 blocks of the
form dropout-FC-batchNorm-ReLU, where the fully connected layers are of
output size 512, 512 and 128. Lastly, as is usually the case for single-label
networks, comes a fully connected layer of the same output size as the label
set (8 for CapgMyo and 16 for the original data) together with a softmax
activation layer. During training, this is followed by the cross-entropy loss
which in turn feeds into the SGDM by backpropagation. During testing,
this is followed by prediction, where the index of the largest element in the
softmax output (or equivalently, the output of the last fully connected layer)
is the network label prediction.

33

Figure 3.6: Flow chart of the architecture of the second single-label CNN.
The total number of learnable parameters is 4572496.

3.5.2 Pixel Contribution Quantification

If the methods devised in this thesis is to be used in a real prosthesis control
application, it would be of interest to be able to reduce the number of sEMG
channels necessary. This is motivated both by the reduction in processing
power needed to perform the classification, but also by the infeasibility for
a portable device to measure 128 channels with the same fidelity as the
stationary setup employed here. Because of this, a measure of channel
importance, denoted as the Pixel Contribution Matrix Q is proposed here.
Once the network has finished training, the training set is fed into the
network once again. Q is then calculated for each image via eq. 3.1.

Q(x, y) =

q∑
j=1

‖φ̂(X){j} − φ̂(X∗x,y){j}‖ (3.1)

Here, X∗x,y is the input image X, but modified so that X(x, y) = 0. As
in chapter 2, q is the number of labels, here equal to 8 for CapgMyo and

34

16 for the original data, and φ̂ : Rd −→ [0, 1]q is the trained network
output prior to classification, i.e. the activations of the softmax layer. As
Q varies depending on input X, its element-wise average is calculated over
the entirety of the training data. To investigate how the removal of less
important channels affect network performance, 50% of the pixels of each
image in both the training and testing set were set to 0. To determine which
pixels were selected for removal, a binary mask was created via element-wise
thresholding of the averaged Q, were the threshold is set to its median. After
element-wise multiplication with this mask, the network is retrained with
the reduced training set, and new performance measures (i.e. accuracy) are
obtained from the reduced testing set. As this is only tangentially relevant
to the main goals of this thesis, and some work would have to be done
to adapt this method for multi-labeled time windowed data, this procedure
was only applied to the second, multi-layered single-label CNN, but for both
the CapgMyo and original data.

3.6 Multi-Label Networks

For classifying multi-labeled movements, two approaches were taken: mul-
tiple binary single-label CNNs and single multi-label CNN. ALL networks
were developed, trained and tested with the data acquired during the same
measurement sessions (see section 3.3.2) from 3 different subjects. In con-
trast to previously, a validation set was incorporated, as described in section
2.2.6.3. Measurements from the 2:nd and 3:rd repetition of each movement
were used for training, from the 4:th for testing and from the 5:th for val-
idation. The 1:st repetition of each movement was discarded, as it for all
subjects happened once or more that the subject did not switch movement
and instead performed the previous movement through the first repetition
of the subsequent movement.

3.6.1 Single Time Instant Architectures

3.6.1.1 Multiple Networks

The first approach to expanding the model into the domain of multi-label
classification was done in MATLAB with 16 separate networks, each iden-
tical to fig. 3.6 with the exception of the output size of the final fully
connected layer, which was reduced to 2. Each network is trained sepa-
rately, and with the sole purpose of detecting the relevance or irrelevance of
a single label each. In this setup, the same training hyperparameters as in
section 3.5 were used, but with the number of epochs reduced to 10. The
validation frequency was set to once per epoch, with a validation patience
of 3.

35

3.6.1.2 Single Network

The multi-label single network models utilized here were both implemented
in Python, making use of the TensorFlow library, as MATLAB did not offer
the relevant functionality needed. The first multi-label CNN was imple-
mented very much akin to the second single-labeled network; and illustra-
tion is available in fig. 3.7. The main differences are the residual blocks,
and naturally the choice of final activation layer. For optimization, both the
cross-entropy and BP-MLL were tested, with sigmoid and tanh activation,
respectively. In training, the validation frequency was set to every second
epoch with a validation patience of 5. If no early stopping was performed
in this way, the maximum number of allowed epochs was set to 30. For
optimization, the Adam algorithm with α = 0.03, β1 = 0.9, β2 = 0.999 was
selected together with L2 regularization with λ = 0.0065 and a batch size
of 1000. As earlier, these values were arrived at empirically. During testing,
all measures introduced in section 2.3.1 are calculated. As the classifica-
tion depend on the chosen activation threshold, performance measures were
computed for a range of uniformly sampled thresholds from the interval
[0, 1] in the case of cross-entropy loss and sigmoid activation, and [−1, 1]
in the case of BP-MLL and tanh activation. The results are used to plot
the precision-recall curve, while the other measures are reported as the ones
computed from the threshold that yielded maximum subset accuracy.

3.6.2 Time Domain Features Architecture

For the multi-label CNN to be able to formulate spatiotemporal features
from the data, some slight modifications were made to the network in fig.
3.7. The full extent of these modification can be viewed in the network
flowchart illustration in fig. 3.8. Most notably, the number of kernels in the
first layer was increased from 64 to 128, and by necessity the depth of these
kernels were increased from 1 to 24. The motivation for this interference
is that as the number of elements in the input data X has increased, it
should follow that a greater number of features is needed to represent it in
a descriptive way. The choice of hyperparameters and evaluation procedure
here was the same as in the single time instant scenario; the single difference
was the choice of batch size and maximum number of allowed epochs, here
incremented to 3000 and 250, respectively.

36

Figure 3.7: Flow chart of the architecture of the single time instant multi-
label CNN. The total number of learnable parameters in this model is
4572496.

37

Figure 3.8: Flow chart of the architecture of the time window multi-label
CNN. The total number of learnable parameters in this model is 4636560.

38

Chapter 4

Results

This chapter contains the results obtained from following the procedures
outlined in chapter 3, intermingled with some sparse commentary. For
further discussion and interpretation of the results, proceed to chapter 5.

4.1 Single-Label

Here follows the results yielded from training and testing both of the single-
label networks as described in section 3.5. As the first, single hidden layer
CNN acted solely as a proof of concept, graphs of its training progress are
omitted.

4.1.1 CapgMyo Data

With the single hidden layer CNN trained and tested with the CapgMyo
data set, an accuracy of 0.845 was achieved. When the network was ex-
panded to the second, deeper version (fig. 3.6) but applied to the same
data, the accuracy was increased to 0.895. The training progress (loss and
accuracy) of this network is shown in fig. 4.1.

39

Figure 4.1: (top) The iteration accuracy during training of the second
single-label CNN with CapgMyo data. (bottom) The corresponding aver-
aged batch loss during training.

4.1.1.1 Pixel Contribution Quantification

Figure 4.2: (left) Pixel contribution matrix Q obtained from the CapgMyo
data. (right) The 50% removal binary mask created from median thresh-
olding of Q. Black pixels are set to zero before retraining and retesting.

40

A gray-scale image representation of the pixel contribution matrix Q, de-
fined in eq. 3.1 and obtained from the network in fig. 3.6 trained on
CapgMyo data, is shown in fig. 4.2 alongside the corresponding binary
mask. When the CapgMyo data was filtered with this mask and the net-
work retrained and retested with identical setup as for the pristine data, an
accuracy of 0.831 was obtained.

4.1.2 Original Data

When trained and tested on the original data, the single hidden layer CNN
achieved an accuracy of 0.6214. With the same data, the network in fig.
4.1 improved this to a final accuracy of 0.742. The training progress of this
later case can be viewed in fig. 4.3.

Figure 4.3: (top) The iteration accuracy during training of the second
single-label CNN on original data. (bottom) The corresponding averaged
batch loss during training.

4.1.2.1 Pixel Contribution Quantification

Just as for the CapgMyo data, the pixel contribution matrix Q with cor-
responding binary mask were computed and are shown in fig. 4.4. The
accuracy after training and testing with reduced data amounted to 0.669.

41

Figure 4.4: (left) Pixel contribution matrix Q obtained from the original
data. (right) The 50% removal binary mask created from median thresh-
olding of Q. Black pixels are set to zero before retraining and retesting.

4.2 Multi-label

In the following sections, results obtained from use of the different multi-
label CNNs are presented. In both the single time instant and time window
single network models, results from training with cross-entropy loss and BP-
MLL are presented separately and for each subject individually. To keep
the layout comprehensive, only representative examples of training progress
plots and precision-recall curves, one from each method, are shown here.
For a systematic exhibition of all such graphs obtained, see appendix B.

4.2.1 Multiple Networks

The results from using 16 separate binary classification networks are visible
in tab. 4.1. As there is no tunable sensitivity threshold in these networks,
no precision-recall curve can be generated.

42

Subject 1 2 3

Average final epoch 7.81 7.25 8.69

Subset accuracy 0.223 0.449 0.349
Hamming loss 0.097 0.060 0.075
Jaccard Index 0.400 0.606 0.538
Precision 0.672 0.807 0.731
Recall 0.497 0.709 0.671

Table 4.1: Performance measures for the multiple binary networks ap-
proach. As there are 16 separate networks, the final epoch is reported as
the average over all networks.

4.2.2 Single Time Instant Network

4.2.2.1 Cross-Entropy Loss

Here follows the results obtained from utilizing the multi-label single time
instant CNN depicted in fig. 3.7 trained with cross-entropy loss. Tab. 4.2
contains all performance measures for each subjects, while fig. 4.5 depict
a representative precision-recall curves from subject 2. Fig. 4.6 show the
training progress of the network the same subject. The full set of resulting
images pertaining to this specific method can be viewed in fig. B.1-B.6 of
appendix B.

Subject 1 2 3

Final epoch 20 30 30
Optimal threshold 0.34 0.42 0.42

Subset accuracy 0.229 0.503 0.342
Hamming loss 0.105 0.057 0.085
Jaccard Index 0.479 0.686 0.56
Precision 0.596 0.790 0.680
Recall 0.615 0.770 0.651

Table 4.2: Performance measures of the multi-label single time instant
CNN trained with cross-entropy loss. Here final epoch denotes the epoch
during which the training was aborted, by validation checking or by reaching
the maximum number of allowed epochs. Optimal threshold is the threshold
for the final activation layer which generated the highest subset accuracy.

43

Figure 4.5: Precision-recall curve acquired from the multi-label single time
instant CNN trained with cross-entropy loss on data for subject 2.

44

Figure 4.6: (top) Multi-label single time instant CNN iteration accuracy
when training with cross-entropy loss on data from subject 2 (bottom) Cor-
responding iteration loss

4.2.2.2 BP-MLL loss

In this section, the results from utilizing the multi-label single time instant
CNN depicted in fig. 3.7 with BP-MLL selected as loss function for training.
In the same way as in the previous section, tab. 4.3 contains the performance
measures, fig. 4.7 present a representative precision-recall curve and fig. 4.7
show the CNN training progress for the same subject. All subject-specific
plots are compiled in fig. B.7-B.12 in appendix B. Note that the optimal

45

threshold domain is [−1, 1] as the final activation layer is of the tanh kind.

Subject 1 2 3

Final epoch 20 30 30
Optimal threshold 0.86 0.90 0.92

Subset accuracy 0.182 0.412 0.272
Hamming loss 0.103 0.0.065 0.089
Jaccard Index 0.45 0.652 0.542
Precision 0.629 0.762 0.674
Recall 0.514 0.733 0.625

Table 4.3: Performance measures of the multi-label single time instant
CNN trained with BP-MLL loss. Here final epoch denotes the epoch during
which the training was aborted, by validation checking or by reaching the
maximum number of allowed epochs. Optimal threshold is the threshold
for the final activation layer which generated the highest subset accuracy.

Figure 4.7: Precision-recall curve acquired from the multi-label single time
instant CNN trained with BP-MLL loss on data for subject 2.

46

Figure 4.8: (top) Multi-label single time instant CNN iteration accuracy
when training with BP-MLL loss on data from subject 2. (bottom) Corre-
sponding iteration loss

47

4.2.3 Time Domain Features Network

4.2.3.1 Cross-Entropy Loss

Presented below are the results from using the multi-label time depth CNN
from fig. 3.8 trained with cross-entropy loss, as described in section 3.6.2.
The joint results from all subjects are presented in tab. 4.4. Corresponding
precision-recall curves are shown in fig. B.13-B.3 and the training progress
that led to these results are shown in fig. B.16-B.18 in appendix B. Rep-
resentative samples of a precision-recall curve and a training progress plot
are shown below in fig. 4.9 and fig. 4.10, respectively.

Subject 1 2 3

Final epoch 250 250 250
Optimal threshold 0.42 0.50 0.50

Subset accuracy 0.577 0.806 0.759
Hamming loss 0.055 0.024 0.030
Jaccard Index 0.727 0.871 0.846
Precision 0.792 0.913 0.891
Recall 0.781 0.905 0.875

Table 4.4: Performance measures of the multi-label time depth CNN
trained with cross-entropy loss. Here final epoch denotes the epoch dur-
ing which the training was aborted, by validation checking or by reaching
the maximum number of allowed epochs. Optimal threshold is the threshold
for the final activation layer which generated the highest subset accuracy.

Figure 4.9: Precision-recall curve acquired from the multi-label time depth
CNN trained with cross-entropy loss on data for subject 2.

48

Figure 4.10: (top) Multi-label time depth CNN iteration accuracy when
training with cross-entropy loss on data from subject 2 (bottom) Corre-
sponding iteration loss.

4.2.3.2 BP-MLL Loss

In this chapter-ending section, the results from the CNN in fig. 3.8 trained
with BP-MLL loss are described. Tab. 4.5 contains the compiled per-
formance measures, fig. B.19-B.21 shows the precision recall curves of each
subject while finally fig. B.22-B.24 depicts their respective training progress.
As previously, representative examples are shown in fig. 4.11 and fig. 4.12.

49

Subject 1 2 3

Final epoch 250 250 250
Optimal threshold 0.93 0.95 0.94

Subset accuracy 0.502 0.700 0.681
Hamming loss 0.060 0.031 0.037
Jaccard Index 0.697 0.825 0.809
Precision 0.774 0.890 0.858
Recall 0.762 0.866 0.860

Table 4.5: Performance measures of the multi-label time depth CNN
trained with BP-MLL loss. Here final epoch denotes the epoch during which
the training was aborted, by validation checking or by reaching the maxi-
mum number of allowed epochs. Optimal threshold is the threshold for the
final activation layer which generated the highest subset accuracy.

Figure 4.11: Precision-recall curve acquired from the multi-label time
depth CNN trained with BP-MLL loss on data for subject 2

50

Figure 4.12: (top) Multi-label time depth CNN iteration accuracy when
training with BP-MLL loss on data from subject 2 (bottom) Corresponding
iteration loss

51

Chapter 5

Conclusions and
Discussion

The aim of the work carried out here was to investigate the possible ap-
plication of multi-label convolutional neural networks for HD-sEMG clas-
sification. This was done with the specific application of hand prostheses
in mind. While single-label classification of the individual digit movements
might be useless for practical purposes (a prosthetic hand that can only
move a single finger at the time is not very helpful), it still offers insight
into the feasibility of the multi-label endeavour. As is shown in section
4.1, the sEMG signal clearly possesses extractable patterns relating to the
current digit or wrist state, even at the single time-instant level. Exactly
what these patterns are remains unknown, and would require further physi-
ological inquiry to find out. It was also shown that the descriptive qualities
of the HD-sEMG signal is not uniformly distributed across the input chan-
nels, and an approach with fewer electrodes could prove feasible in a real
application: In sections 4.1.1.1 and 4.1.2.1, the reduction of accuracy when
removing the channels below the 50:th importance percentile amounted to
6.4% and 7.3%, respectively. In fig. 4.4, a clear pattern emerged where the
rightmost pixels, corresponding to electrodes placed further towards the ra-
dial and ulnar side of the forearm for each matrix, contributed the most in
classification. No equally clear pattern emerged from CapgMyo data, which
used a completely different electrode setup.

In multi-label classification, inter-subject variations in performance mea-
sures proved quite large, as can be seen in tab. 4.2, 4.3, 4.4 and 4.5. This
conforms well to the reported experience of the subjects, where data from
those who reported making more mistakes were associated with worse per-
formance measures. From these tables, it can in all cases be shown that
the network actually learns interlabel dependencies in the raw data, as

52

subset accuracy > (1 − Hamming loss)16, i.e. the CNN adapts its predic-
tion depending on which set of labels it estimates is present. From the same
tables, it is readily apparent that expanding the data along the time dimen-
sion improved performance quite significantly. There are some ambiguities
regarding the choice of loss function, as the data is somewhat inconclusive.
While cross-entropy loss always generated superior performance measures
for all subjects, precision recall curves show slightly more robustness for
BP-MLL, most saliently for subject 3 (compare fig. B.15 and fig. B.21).
In addition, when comparing the training characteristics in fig. B.4-B.6,
B.10-B.12, B.16-B.18 and B.22-B.24 with the obtained subset accuracy, it
is observed that the cross-entropy loss based training systematically overfits
the CNN, although not to the extent required to trigger validation abor-
tion. This is however not the case for BP-MLL loss based training, which
achieves similar results on both the training and testing data. In an inters-
ession environment, when a long time elapses between training and testing,
BP-MLL loss could prove superior. Compared to the results of multiple
networks approach (tab. 4.1), the single network approach proved system-
atically superior. This is postulated to be caused by the inability to learn
how the relevance of some labels might affect the patterns associated with
the relevance of other labels, despite the multiple networks approach being
almost 16 times more computationally expensive compared to the single
network counterparts.

It is not a trivial task to compare the results obtained here and those ob-
tained from similar endeavours elsewhere. To the best knowledge of yours
truly, there exists no published work in which multi-label classification has
been applied to EMG signals, let alone via convolutional neural networks.
To be able to attain any notion of how the approaches attempted here
fare, one must turn to the more extensive literature on single-label EMG
classification. Conventional wisdom dictates that as classification accuracy
decreases rapidly with the the number of possible classes [3], it is only fair to
compare classification methods of similar class set cardinality. The number
of unique ’classes’ possible here is equal to 216 = 65536, massively more
than that of other works found. Another issue, as discussed in section 2.3.1,
is what measures to compare. Subset accuracy might skew perception neg-
atively, as even failed testing examples might be partially correct. Even at
this disadvantage, the best methods employed here could generate subset a
accuracy of more than 0.8; highly comparable to the results of the works of
others, e.g. [35],[36] and [37].

53

5.1 Future Work

While the networks applied in this thesis proved quite effective, their archi-
tecture is still somewhat arbitrary. In the space of possible and plausible
CNNs, it is not at all obvious that the networks proposed here are close to
optimal. Hence, it could be of interest to investigate a genetic algorithm
[38] approach, in which many different networks are iteratively tried and the
superior ones extended. Granted, this would require significant computing
power to be done in a reasonable time span.

One aspect that could be expanded upon is the measurement setup, specif-
ically electrode placement. As was shown in this thesis, different channels
contribute differently to the performance of the classifier. Because of this, it
could be of interest to systematically vary electrode placement and evaluate
which setups prove most effective.

One problem which was ignored in this thesis was whether networks trained
with data from one session could be used at a different session, at a different
time with slightly different electrode placement. For a network to be able to
function is such an environment, it is likely some fine tuning would have to
be done for each session, and some methodology for performing this would
be necessary.

A related approach taken to the one presented in this thesis would be to
move from classification to regression of individual muscle forces. This
would eliminate the impact of erroneous subject behaviour, as the muscle
forces would be measured separately and no assumption of currently relevant
labels would be needed

54

Chapter 6

Bibliography

[1] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng, “Surface EMG-based
inter-session gesture recognition enhanced by deep domain adapta-
tion,” Sensors, vol. 17, no. 3, p. 458, 2017.

[2] A. Phinyomark, C. Limsakul, and P. Phukpattaranont, “A novel fea-
ture extraction for robust emg pattern recognition.,” Jornal of Com-
puting, vol. 1, 2009.

[3] M. Atzori, M. Cognolato, and H. Müller, “Deep learning with convolu-
tional neural networks applied to electromyography data: A resource
for the classification of movements for prosthetic hands.,” Frontiers in
Neurorobotics, vol. 10, no. SEP, 2016.

[4] D. Kingma and J. Ba, “Adam: A method for stochastic optimization.,”
arXiv, 2014.

[5] M.-L. Zhang and Z.-H. Zhou, “Multi-label neural networks with ap-
plications to functional genomics and text categorization.,” IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
2006.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition.,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[7] K. R. Mills, “The basics of electromyography.,” Journal Of Neurology,
Neurosurgery, And Psychiatry, vol. 76 Suppl 2, pp. ii32 – ii35, 2005.

[8] R. H. Chowdhury, M. B. I. Reaz, M. A. B. M. Ali, A. A. A. Bakar,
K. Chellappan, and T. G. Chang, “Surface electromyography signal
processing and classification techniques,” Sensors (Basel, Switzerland)
13(9), p. 12431–12466, 2013.

55

[9] M. J. Hoozemans and J. H. van Dieën, “Prediction of handgrip forces
using surface emg of forearm muscles.,” Journal of Electromyography
and Kinesiology, vol. 15, pp. 358 – 366, 2005.

[10] T. Kohonen, “An introduction to neural computing.,” Neural Networks,
vol. 1, pp. 3 – 16, 1988.

[11] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity.,” Bulletin of Mathematical Biophysics, vol. 5, no. 4,
p. 115, 1943.

[12] Image modified from
http://www.theprojectspot.com/tutorial-post/

introduction-to-artificial-neural-networks-part-1/7.
Accessed: 2017-12-12.

[13] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in Advances in Neural Information
Processing Systems 2 (D. S. Touretzky, ed.), pp. 396–404, Morgan-
Kaufmann, 1990.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition.,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278 – 2324, 1998.

[15] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and L. Qianli, “Why
and when can deep-but not shallow-networks avoid the curse of dimen-
sionality: a review.,” International Journal of Automation and Com-
puting, vol. 14, no. 5, pp. 503 – 519, 2017.

[16] Image modified from https://cambridgespark.com/content/

tutorials/convolutional-neural-networks-with-keras/index.

html. Accessed: 2017-12-14.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift.,” arXiv, 2015.

[18] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function.,” Journal of Statistical Planning
and Inference, vol. 90, pp. 227 – 244, 2000.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks.,” Communications of
the ACM, vol. 60, no. 6, pp. 84 – 90, 2017.

[20] C. M. Bishop, Pattern recognition and machine learning. Information
science and statistics, Springer, 2006.

[21] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient back-
prop.,” Neural Networks: Tricks of the Trade, pp. 9 – 48, 2012.

56

http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[23] L. Bottou, “Online algorithms and stochastic approximations,” in On-
line Learning and Neural Networks (D. Saad, ed.), Cambridge, UK:
Cambridge University Press, 1998. revised, oct 2012.

[24] D. Rumelhart, R. Williams, and G. Hinton, “Learning representations
by back-propagating errors.,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[25] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.,” JOURNAL OF MA-
CHINE LEARNING RESEARCH, vol. 12, pp. 2121 – 2159, 2011.

[26] T. Tieleman and G. Hinton, “Lecture 6.5 - rmsprop, coursera: Neural
networks for machine learning.,” 2012.

[27] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization.,” arXiv, 2016.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting.,” Journal of Machine Learning Research. Vol. 15, pp. 1929–1958,
2014.

[29] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning.,” Pattern Recognition, vol. 40, pp. 2038 – 2048,
2007.

[30] M.-L. Zhang, J. M. Peña, and V. Robles, “Feature selection for
multi-label naive bayes classification.,” Information Sciences, vol. 179,
pp. 3218 – 3229, 2009.

[31] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in Proceedings of the 14th International Conference on Neu-
ral Information Processing Systems: Natural and Synthetic, NIPS’01,
(Cambridge, MA, USA), pp. 681–687, MIT Press, 2001.

[32] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan,
“Hcp: A flexible cnn framework for multi-label image classification.,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, IEEE
Trans. Pattern Anal. Mach. Intell, p. 1901, 2016.

[33] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks.,” Information Processing and Man-
agement, vol. 45, pp. 427 – 437, 2009.

[34] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-

57

http://www.deeplearningbook.org

fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
Large-scale machine learning on heterogeneous distributed systems.,”
arXiv, 2016.

[35] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, and J. Li, “Gesture recogni-
tion by instantaneous surface emg images.,” Scientific Reports, vol. 6,
p. 36571, 2016.

[36] C. Amma, T. Krings, J. Böer, and T. Schultz, “Advancing muscle-
computer interfaces with high-density electromyography,” in Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, CHI ’15, (New York, NY, USA), pp. 929–938, ACM,
2015.

[37] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Electromyogra-
phy data for non-invasive naturally-controlled robotic hand prosthe-
ses,” Scientific data, vol. 1, p. 140053, 2014.

[38] M. Mitchell, An introduction to genetic algorithms. Complex adaptive
systems, Cambridge, Mass. : MIT Press, cop. 1996, 1996.

58

Appendices

59

Appendix A

Multi-Label Acquisition
Protocol

In this appendix, the full list of movements recorded for multi-label presen-
tation is collected. As described in sections 3.3.1 and 3.3.2, each movement
is performed for 5s, repeated 5 times with 5s of rest in-between.

Movement Corresponding label set y

Rest [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Little finger flexion [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Little finger extension [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Ring finger flexion [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]
Ring finger extension [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]
Middle finger flexion [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]
Middle finger extension [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]
Index finger flexion [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]
Index finger extension [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
Thumb flexion [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Thumb extension [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]
Thumb abduction [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]
Thumb adduction [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
Wrist flextion [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
Wrist extension [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]
Wrist pronation [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
Wrist supination [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
Little finger flexion + Ring finger flexion [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Little finger flexion + Thumb down [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Little finger flexion + Thumb abduction [1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

60

Little finger flexion + Thumb adduction [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
Little finger flexion + Wrist flextion [1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
Little finger flexion + Wrist extension [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]
Little finger flexion + Wrist pronation [1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
Little finger flexion + Wrist supination [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
Ring finger flexion + Middle finger flexion [0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]
Ring finger flexion + Thumb down [0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0]
Ring finger flexion + Thumb abduction [0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0]
Ring finger flexion + Thumb adduction [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0]
Ring finger flexion + Wrist flextion [0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0]
Ring finger flexion + Wrist extension [0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0]
Ring finger flexion + Wrist pronation [0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
Ring finger flexion + Wrist supination [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]
Middle finger flexion + Index finger flexion [0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0]
Middle finger flexion + Thumb down [0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0]
Middle finger flexion + Thumb abduction [0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0]
Middle finger flexion + Thumb adduction [0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0]
Middle finger flexion + Wrist flextion [0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0]
Middle finger flexion + Wrist extension [0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0]
Middle finger flexion + Wrist pronation [0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0]
Middle finger flexion + Wrist supination [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1]
Index finger flexion + Thumb down [0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0]
Index finger flexion + Thumb abduction [0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0]
Index finger flexion + Thumb adduction [0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0]
Index finger flexion + Wrist flextion [0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0]
Index finger flexion + Wrist extension [0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0]
Index finger flexion + Wrist pronation [0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0]
Index finger flexion + Wrist supination [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1]
Thumb down + Thumb abduction [0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0]
Thumb down + Thumb adduction [0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0]
Thumb down + Wrist flextion [0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0]
Thumb down + Wrist extension [0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0]
Thumb down + Wrist pronation [0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0]
Thumb down + Wrist supination [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1]
Wrist flextion + Wrist pronation [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0]
Wrist flextion + Wrist supination [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1]
Wrist extension + Wrist pronation [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0]
Wrist extension + Wrist supination [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1]
Extend all fingers [0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
All fingers flexion (without thumb) [1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0]
All fingers extension [0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
Palmar grasp [1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0]
Pronation with the Palmar grasp [1,0,1,0,1,0,1,0,1,0,0,0,0,0,1,0]

61

Pointing: index-ext, all-flex [1,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0]
3-digit pinch [0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0]
3-digit pinch with pronation [0,0,0,0,1,0,1,0,1,0,0,0,0,0,1,0]
Key grasp with pronation [0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0]

62

Appendix B

Training Plots and
Precision-Recall Curves

Here follows the training progress plots and resulting precision-recall curves
of all test subjects, some of which were omitted from chapter 4 to conserve
space.

Single Time Instant Network

Cross-Entropy Loss

Figure B.1: Precision-recall curve acquired from the multi-label single
time instant CNN trained with cross-entropy loss on data for subject 1.

63

Figure B.2: Precision-recall curve acquired from the multi-label single
time instant CNN trained with cross-entropy loss on data for subject 2.

Figure B.3: Precision-recall curve acquired from the multi-label single
time instant CNN trained with cross-entropy loss on data for subject 3.

64

Figure B.4: (top) Multi-label single time instant CNN iteration accuracy
when training with cross-entropy loss on data from subject 1 (bottom) Cor-
responding iteration loss

65

Figure B.5: (top) Multi-label single time instant CNN iteration accuracy
when training with cross-entropy loss on data from subject 2 (bottom) Cor-
responding iteration loss

66

Figure B.6: (top) Multi-label single time instant CNN iteration accuracy
when training with cross-entropy loss on data from subject 3 (bottom) Cor-
responding iteration loss

67

BP-MLL Loss

Figure B.7: Precision-recall curve acquired from the multi-label single
time instant CNN trained with BP-MLL loss on data for subject 1.

Figure B.8: Precision-recall curve acquired from the multi-label single
time instant CNN trained with BP-MLL loss on data for subject 2.

68

Figure B.9: Precision-recall curve acquired from the multi-label single
time instant CNN trained with BP-MLL loss on data for subject 3.

69

Figure B.10: (top) Multi-label single time instant CNN iteration accu-
racy when training with BP-MLL loss on data from subject 1 (bottom)
Corresponding iteration loss.

70

Figure B.11: (top) Multi-label single time instant CNN iteration accu-
racy when training with BP-MLL loss on data from subject 2. (bottom)
Corresponding iteration loss

71

Figure B.12: (top) Multi-label single time instant CNN iteration accu-
racy when training with BP-MLL loss on data from subject 3 (bottom)
Corresponding iteration loss.

72

Time Domain Features Network

Cross-Entropy Loss

Figure B.13: Precision-recall curve acquired from the multi-label time
depth CNN trained with cross-entropy loss on data for subject 1.

Figure B.14: Precision-recall curve acquired from the multi-label time
depth CNN trained with cross-entropy loss on data for subject 2.

73

Figure B.15: Precision-recall curve acquired from the multi-label time
depth CNN trained with cross-entropy loss on data for subject 3.

74

Figure B.16: (top) Multi-label time depth CNN iteration accuracy when
training with cross-entropy loss on data from subject 1 (bottom) Corre-
sponding iteration loss.

75

Figure B.17: (top) Multi-label time depth CNN iteration accuracy when
training with cross-entropy loss on data from subject 2 (bottom) Corre-
sponding iteration loss.

76

Figure B.18: (top) Multi-label time depth CNN iteration accuracy when
training with cross-entropy loss on data from subject 3 (bottom) Corre-
sponding iteration loss.

77

BP-MLL Loss

Figure B.19: Precision-recall curve acquired from the multi-label time
depth CNN trained with BP-MLL loss on data for subject 1

Figure B.20: Precision-recall curve acquired from the multi-label time
depth CNN trained with BP-MLL loss on data for subject 2

78

Figure B.21: Precision-recall curve acquired from the multi-label time
depth CNN trained with BP-MLL loss on data for subject 3

79

Figure B.22: (top) Multi-label time depth CNN iteration accuracy when
training with BP-MLL loss on data from subject 1 (bottom) Corresponding
iteration loss

80

Figure B.23: (top) Multi-label time depth CNN iteration accuracy when
training with BP-MLL loss on data from subject 2 (bottom) Corresponding
iteration loss

81

Figure B.24: (top) Multi-label time depth CNN iteration accuracy when
training with BP-MLL loss on data from subject 3 (bottom) Corresponding
iteration loss

82

	Introduction
	Objectives
	Earlier Work

	Theory
	Surface electromyography
	Artificial Neural Networks
	Classification in Machine Learning
	Neurons and Layers
	The Fully Connected Layer
	The Convolutional Layer
	The Batch Normalization Layer
	The Residual Block

	Activation Functions
	The Rectifier Linear Unit
	The Softmax Layer
	The Sigmoid and tanh Layer

	Loss functions
	Cross-Entropy Loss
	BP-MLL loss

	Optimizers
	Stochastic Gradient Descent
	The Adam Algorithm

	Overfitting Countermeasures
	Dropout Layer
	L2 Regularization
	Holdout Validation

	Multi-Label Machine Learning
	Performance Measures
	Subset Accuracy
	Hamming Loss
	Jaccard Index
	Precision and Recall

	Methodology
	Work Overview
	Tools
	MATLAB
	TensorFlow
	CapgMyo Data Set

	Acquisition Setup
	Single-Label
	Multi-Label

	Preprocessing
	Single Time Instant Recordings
	Time-Domain Depth Recordings

	Single-Label Networks
	Network Architecture
	Pixel Contribution Quantification

	Multi-Label Networks
	Single Time Instant Architectures
	Multiple Networks
	Single Network

	Time Domain Features Architecture

	Results
	Single-Label
	CapgMyo Data
	Pixel Contribution Quantification

	Original Data
	Pixel Contribution Quantification

	Multi-label
	Multiple Networks
	Single Time Instant Network
	Cross-Entropy Loss
	BP-MLL loss

	Time Domain Features Network
	Cross-Entropy Loss
	BP-MLL Loss

	Conclusions and Discussion
	Future Work

	Bibliography
	Appendices
	Multi-Label Acquisition Protocol
	Training Plots and Precision-Recall Curves

