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Abstract

The Low Energy Beam Transport, LEBT, is the �rst part of the European Spallation
Source accelerator, the ESS linac, that is currently under construction in Lund. The
LEBT section, that will be installed and commissioned in early 2018, has the purpose of
focusing and steering the low-energy proton beam that enters directly from the ion source.
For simulation of the beam dynamics in the LEBT, ESS uses the accelerator application
library OpenXAL. This thesis presents the work in benchmarking models for the LEBT's
focusing solenoids and steerers for OpenXAL, as well as the development of a user-friendly
trajectory and envelope simulation application for the control room. Using TraceWin as a
reference, the derived three-lenses approximation reduced the estimated worst case angle
error of the steerers from 11.5% to 4.5% for the horizontal steerer and from 9.8% to 3.7%
for the vertical steerer. Similar error reductions were found for the modi�ed hard-edge
model for the solenoids and the envelope evolution model. The LEBT application will
be further developed by the Beam Physics section of ESS, and will �nally be used in the
control room during commissioning and routine operations of the LEBT.
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Chapter 1

Introduction

The European Spallation Source, ESS, is currently under construction in the city of Lund,
Sweden. Its 600-meter-long linear accelerator, linac, will enable new opportunities for
research in materials and life sciences, energy and environmental technology, cultural
heritage and fundamental physics. In the facility, high-energy neutrons will be produced
using an accelerated proton beam at 96% of the speed of light that interacts with a
tungsten target. The neutrons can thereafter interact on nuclear level with a sample,
so that smaller and more complex material structures can be investigated. This makes
the study of rare and biological samples, as well as samples under extreme conditions
possible [1]. To do so, the facility has to be carefully planned and prepared. As part of
this work, it is of high importance that the dynamics of the proton beam is understood
so that the beam can be accurately transported.

The ESS linac consists of several di�erent sections, all with speci�c tasks, through
which the beam passes before reaching the tungsten target. The �rst part of the acceler-
ator, right after the ion source, is a 2.5 meter section called Low Energy Beam Transport,
or �LEBT�. The aim of this section is to capture the diverging beam from the ion source.
It must also transport a focused and aligned beam straight into the narrow opening of the
next section of the accelerator, the Radio Frequency Quadrupole, or �RFQ�. The protons
in a low-energy beam are a�ected by the charge of their neighbours, and this space-charge
e�ect causes a constant defocusing of the beam. To be able to serve its purpose of deliv-
ering a focused beam, the LEBT is equipped with two focusing solenoids. The extracted
beam has also a risk of entering the LEBT o�-axis due to possible misalignment of the
ion source, or to be misaligned within the LEBT due to tilt of the LEBT elements. To be
able to counteract misalignments, the LEBT is also equipped with steerers, which have
the purpose of correcting a possible angle error.

As the LEBT is installed and commissioned, it is important to be able to analyse
the beam trajectory and envelope evolution within the section. This is done by cross
checking the beam properties using a trajectory and envelope simulation with the actual
condition of the machine, which is read by two Non-invasive Pro�le Monitors (NPMs),
one in between the two solenoids, and one at the end of the LEBT. The simulation tool
can then be used to guide the operator on how to adjust the element parameters to reach
a successful transport and focus of the beam into the RFQ. For a simulation tool to be
developed at ESS, models of the beam dynamics in the LEBT need to be benchmarked
and implemented into the accelerator application library OpenXAL.

The aim of this project is to benchmark solenoid, steerer and envelope models for
OpenXAL, as well as to develop a user-friendly application that simulates the beam
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centroid trajectory and the envelope throughout the LEBT. This application should have
adjustable input parameters for the beam, as well as adjustable currents for the solenoids
and steerers. It will serve as a �rst draft of the LEBT application.

This thesis gives an overview of the dynamics and speci�cations of the LEBT, to-
gether with a short description of the initial element models: the hard-edge model for
the solenoids and the thin lens approximation for the steerers. It presents the methods
and tools used for benchmarking and application development, and the corresponding
�nal models together with error estimations. As there is no measurements to compare
to at this stage, these errors were calculated with respect to simulations in the program
TraceWin, that o�ers a possibility of using measured B-�eld values to create a more re-
alistic element �eld map. It is shown that the new model, compared to the previous one,
improves the beam position error from 17.0% to 3.4%, and the angle error from 64.0% to
12.7%, for a solenoid of 200 mT when compared to a �eld map simulation in TraceWin.
Similarly, the steerer and envelope models are improved. The improved error from bench-
marking of the new models led to the development of a beam simulation application of
the LEBT, as this thesis' last part.
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Chapter 2

The Low Energy Beam Transport

This chapter brie�y introduces an overview of the LEBT, beam dynamics and describes
the LEBT elements which this thesis concerns.

2.1 Overview

The ESS linac is 600 m long, and consists of a variety of sections, each with its own
purpose (see Fig. 2.1). After the proton beam is extracted from the ion source, it will
be accelerated to an energy of approximately 2 GeV (96% of the speed of light). The
�rst section after the ion source is the 2.5 m long LEBT. In the LEBT, the beam energy
is approximately 75 keV (1.3% of the speed of light), which quali�es the beam as non-
relativistic. The purpose of the LEBT is to transport a focused beam straight into the
next section, the RFQ, through a cone-shaped opening of 14 mm in diameter.

Figure 2.1: Schematic of the ESS linac [2].

The LEBT contains a variety of elements, such as solenoids, steerers, an iris, a chopper,
a Faraday cup, an emittance-meter, a beam current transformer and a collimator, all of
which are brie�y described in Fig. 2.2. This thesis only considers the solenoids and the
steerers, which focus and steers the proton beam.

2.2 Beam transport in the LEBT

Beam dynamics is the study of the collective behaviour of an ensemble of particles consti-
tuting the beam in a particle accelerator [4]. This section covers the equations of motion
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Figure 2.2: Ion source and the LEBT components. The steerers are positioned inside the
solenoids [3].

for a particle in an external magnetic �eld, the transfer matrix formalism and the beam
envelope that describes the space distribution of the beam. The collective state of a beam
can be described by the beam emittance and Twiss parameters, which have to be given
as an input parameter for the beam evolution in the LEBT.

A Cartesian coordinate system is used, where the z-axis de�nes the longitudinal di-
rection, with origin at the start of the LEBT. The x-axis de�nes the horizontal transverse
direction, and the y-axis de�nes the vertical transverse direction, both with origin relative
to the z-axis, and moving with the particles.

The expected initial beam parameters have been simulated for the ion source and are
presented in Table 2.1 [5].

Parameter Value Unit

Emittance εx 0.1223 π.mm.mrad
Twiss αx −3.303 -
Twiss βx 0.397 mm/π.mrad
Emittance εy 0.1217 π.mm.mrad
Twiss αy −3.285 -
Twiss βy 0.392 mm/π.mrad
Beam current 74 mA
Space charge compensation 0.95 -
Kinetic energy 75 keV
Relative speed, βr = v/c 0.013 -
Lorentz factor, γr 1.000 -

Table 2.1: Expected beam parameters at the entrance of the LEBT [5].
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2.2.1 Single-particle system

Equations of motion

The force from an external �eld on a particle is described by the Lorentz force [6],

F = q(E+ v×B), (2.1)

where q is the charge, v is the velocity vector, E is the electric �eld and B is the magnetic
�eld. This force, together with Newton's second law as F = dp/dt [7], gives the equation
of motion of the particle,

dp

dt
= q(E+ v×B). (2.2)

Within the LEBT, there are no forces acting in the longitudinal direction, which
implies that the longitudinal equation of motion in the z-direction is simply that of a
free particle. As there is no acceleration in the LEBT, E = 0, and only the transverse
equations of motion are therefore considered.

Let's �rst consider the magnitude of the horizontal acceleration; performing the curl
in (2.2) gives,

dpx
dt

= q(vyBz − vzBy). (2.3)

In the paraxial approximation, the transverse momentum components px and py are rela-
tively small compared to pz, so that px, py � pz. The total momentum p =

√
p2
x + p2

y + p2
z

can therefore be approximated as p ≈ pz [8]. With p ≈ γrmvz, where γr is the relativis-
tic Lorentz factor, m is the particle's rest mass and vz is the particle velocity in the
z-direction, the relative transverse momentums, or �angles�, x′ and y′ are de�ned as,

x′ ≡ dx

dz
≈ px

p
,

y′ ≡ dyx

dz
≈ py

p
.

(2.4)

Substituting the time derivative to a derivative in z as d/dt = vzd/dz, where vz is ap-
proximated to be a constant within the LEBT, (2.3) becomes,

x′′ =
q

p
(Bzy

′ −By). (2.5)

In the same manner, the vertical spacial acceleration is derived to be,

y′′ = −q
p

(Bzx
′ −Bx). (2.6)

Typically, an accelerator does not contain elements that produce longitudinal magnetic
�elds, so Bz = 0. Also, the By-�eld in (2.5) can be expanded in a Taylor series around
the origin,

By(z) = B0(z)x+
1

2

∂B(z)

∂x
x2 + . . . . (2.7)

Assuming x and y are small derivations with respect to the origin, and using only the
�rst term in the expansion gives By(z) ≈ B0(z)x, and Bx(z) ≈ B0(z)y. The equations of
motion then becomes,

x′′ + k2
xx = 0,

y′′ + k2
yy = 0,

(2.8)
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with k2
a ≡ qB0(z)/p, where a ∈ {x, y}.

These equations resemble the dynamics of a simple harmonic oscillator [9]. Making
this Ansatz, remembering that ka = ka(z), the equations can be given a similar solution,

x(z) = x0 cos(kxz) +
x′0
kx

sin(kxz)

x′(z) = −kxx0 sin(kxz) + x′0 cos(kxz)

y(z) = y0 cos(kyz) +
y′0
ky

sin(kyz)

y′(z) = −kyy0 sin(kyz) + y′0 cos(kyz)

. (2.9)

Transfer matrix formalism

The transverse state of a particle can be described as a phase space vector,

P =


x
x′

y
y′

 . (2.10)

With this vector, the linear matrix that transfers the state from one point to another,
P (z) = MP (0), is constructed from (2.9) to be,

M =


cos(kxz) 1

kx
sin(kxz) 0 0

−kx sin(kxz) cos(kxz) 0 0
0 0 cos(kyz) 1

ky
sin(kyz)

0 0 −kx sin(kyz) cos(kyz)

 . (2.11)

This matrix can now be used as a basis to construct the transfer matrix for di�erent
elements.

Example I: Drift In a drift space, no external �elds are present, so kx = ky = 0. The
elements of (2.11) then becomes,

cos(kaz)→ 1,

sin(kaz)→ 0,

sin(kaz)

ka
→ z.

For a drift length of L, the resulting matrix is therefore,

Mdrift =


1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 . (2.12)

This results in the following transfer,
x
x′

y
y′

 = Mdrift


x0

x′0
y0

y′0

 =


x0 + x′0L

x′0
y0 + y′0L

y′0

 . (2.13)
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Example II: Quadrupole For a focusing quadrupole in the thin lens approximation,
k2
xL = f−1 while k2

yL = −f−1, where L is the length of the quadrupole, approximated to
be in�nitely thin, and f is the focal length [10]. As L→ 0, the elements of (2.11) become,

cos(kaz)→ 1,

sin(kaz)→ 0,

ka sin(kaz) = k2
aL−

k4L3

3!
+ · · · → 1/f,

which gives the matrix

Mquad =


1 0 0 0
− 1
f

1 0 0

0 0 1 0
0 0 1

f
1

 . (2.14)

This results in a transfer,
x
x′

y
y′

 = Mquad


x0

x′0
y0

y′0

 =


x0

x′0 − f−1x0

y0

y′0 + f−1y0

 . (2.15)

Note that if the beam is focused in one direction, it is automatically defocused in the
other. To achieve net focusing with quadrupoles, at least 2 elements are therefore needed.

Both the drift and the quadrupole matrices are �lled with zero in their o�-diagonal
elements. Non-zero elements would indicate a coupling between the horizontal and vertical
components [11], which will be seen in the transfer matrix of the solenoid in section 2.3.1.

2.2.2 Multi-particle system

Envelope

The envelope represents the edge of the space distribution of a beam, while the cen-
troid represents the statistical mean position of the particles. The envelope is typically
a multiple of the root mean square, RMS, of the distribution. Instead of performing
full multi-particle simulations when predicting the beam, these statistical properties can
instead be used, which results in a less time-consuming program.

The Transversal RMS's are calculated as,

σx =
√
〈x2〉 − 〈x〉2, σy =

√
〈y2〉 − 〈y〉2, (2.16)

where 〈x2〉 and 〈y2〉 are the mean values of all the particle positions squared, and 〈x〉2
and 〈y〉2 are the square of the mean value of all the particle positions.

Depending on the distribution shape, the RMS includes a di�erent fraction of the
beam. For a Gaussian distribution, the RMS envelope (2σ) contains 68.3% of the beam.
To include a larger portion of this beam, the envelope is scaled by the RMS size, where
scaling the envelope to four times the RMS instead includes 95% of the beam [12].

8



Beam emittance, covariance matrix and Twiss parameters

The collective state of a beam can be described by the beam emittance and Twiss density
parameters, which together give the particle distribution in phase space. In phase space,
the particle density is plotted as a point, with the angle against the position. The expected
phase-space distribution for the input beam of the LEBT can be seen in Fig. 2.3.

Figure 2.3: (left) Expected LEBT input distribution in phase space and (right) its corre-
sponding space distribution. The color bar represents the particle density. The beam is
expected to be transversely symmetric, so that x− x′ = y − y′.

The distribution in phase space generally forms an ellipse. The shape of this ellipse is
described by the statistical phase-space RMS distribution as a covariance matrix,

Σx = 〈XXT 〉 =

(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
. (2.17)

Here,

X =

(
x
x′

)
is the phase space vector of each particle in one dimension. The area of the ellipse is
calculated from the determinant of the covariance matrix as,

Area = π[det (Σx)]
1/2 = πεx, (2.18)

where εx is the horizontal emittance, de�ned as,

εx ≡ [〈x2〉〈x′2〉 − 〈xx′〉2]1/2 (2.19)

= [det (Σx)]
1/2. (2.20)

The evolution of the covariance matrix is described as,

Σx,1 = MΣx,0M
T , (2.21)

where M is the transfer matrix described in (2.11). This gives the evolution of the
emittance as,

εx,z = [det (MΣx,0M
T )]1/2

= [det (M) det(Σx,0) det (MT )]1/2. (2.22)

9



When there is no acceleration of the beam, and all the forces acting on the beam are
linear, the transfer matrices are unitary, so that det (M) = det (MT ) = 1 [13]. εx,z then
becomes,

εx,z = [det(Σx,0)]1/2

= εx,0. (2.23)

The emittance is hence an invariant of motion. This follows Liouville's theorem, that
states that the emittance, that is proportional to the Hamiltonian (the energy) of the
system, stays constant along the trajectories of a Hamiltonian system [13, 14]. A loss in
beam quality results in an increase of the emittance.

Since the emittance and hence the area is ideally constant, it is natural to rede�ne the
covariance matrix as,

Σ = εT, (2.24)

where

T ≡
(
β −α
−α γ

)
, (2.25)

and (detT = 1). The elements of the normalized matrix T are the Courant-Snyder
parameters, or the Twiss parameters [15], de�ned as,√

βxεx ≡ 〈x2〉1/2,
αxεx ≡ −〈xx′〉,
√
γxεx ≡ 〈x′2〉

1/2
,

(2.26)

where γx = (1 + α2
x)/βx. Note that βx and γx di�er from the relative speed βr and the

Lorentz factor γr. The Twiss parameters are a convention, which describes the shape and
evolution of the ellipse. αx, βx and γx can all be transported along the beamline with the
same transfer matrices as the beam centroid (see Fig. 2.4). All derived equations apply
in the same way for the y − y′ plane.

Figure 2.4: The phase space ellipse with the shape-de�ning Twiss parameters [16].
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Space charge

When a beam consists of charged particles, they will naturally repel each other. This
causes a defocusing of the beam. However, this space charge e�ect has di�erent signi�-
cance for low-energy and high-energy beams.

Consider a uniform cylindrical beam. If there are N particles per unit length in a
beam radius a, then the produced electrical and magnetic �elds inside the beam (r < a)
are,

Er =
qN

2πε0a2
r, (2.27)

Bφ =
qNv

2πε0a2c2
r, (2.28)

where ε0 is the permittivity in vacuum and c is the speed of light. The net force on a
particle is then derived from the Lorentz force as,

F(r) =
q2N

2πε0a2γ2
r

r, (2.29)

where γr = (1 − β2
r )
−1 is the Lorentz factor and βr = v/c is the relative speed. If the

beam instead has symmetrical Gaussian distribution, the force becomes,

FG(r) =
q2N

2πε0γ2
rr

(1− e−r2/2σ2

). (2.30)

where σ is the RMS of the Gaussian distribution.
For high-energy beams, γr is large, and the space charge force becomes negligible. As

the LEBT transports a low-energy beam, this force is not negligible and causes the beam
to constantly defocus. The space charge force therefore results in a loss in beam quality
within the LEBT. To reduce this defocusing, the LEBT is designed with a lower vacuum
(higher pressure). The beam has a chance of ionizing a gas, after which the negative ions
will be attracted to the beam while the positive ions are repelled. The negative ions will
then compensate for a part of the charge. This is called space charge compensation.

2.3 LEBT elements

2.3.1 Solenoid

The focusing elements in the LEBT consists of two solenoids. A solenoid can provide
transverse focusing in both the horizontal and vertical direction simultaneously. This
means that a solenoid takes less space as a focusing element compared to quadrupoles, that
require a combination of at least two elements for both horizontal and vertical focusing.
However, a solenoid also couples the horizontal and vertical component of the beam, which
makes the dynamics slightly more complicated than for a quadrupole.

A solenoid is an electromagnetic element that consists of a coil wound into a tightly
packed helix, see Fig. 2.5. The produced magnetic �eld consists of a longitudinal com-
ponent, Bz, that dominates the body of the solenoid. To obey Maxwell's equations and
conserve the magnetic �ux, the �eld diverges radially at the edges of the solenoid as the
longitudinal �eld drops [17].
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Figure 2.5: (Top) Wire outline of a solenoid, where the arrow indicates a longitudinal (z-)
direction. (Bottom) Typical longitudinal magnetic �eld (Bz) and radial magnetic �eld
(Br).

Since a realistic �eld model is complicated to describe mathematically, a simpli�ed
�hard-edge� model is used. In the hard-edge model, the body of the solenoid produces
a constant longitudinal �eld, Bz = B0. The fringe �eld at the edges is considered to be
de�ned within an in�nitely short region, ∆l, between two planes. To obey Gauss law of
magnetic �ux, Br = B′zr/2 in this region, which gives the acceleration in the horizontal
direction from (2.5) as,

x′′ =
q

p
(y′Bz +

y

2
B′z) (2.31)

=
q

2p
((yBz)

′ + y′Bz) . (2.32)

Integrating this for the entrance of the solenoid from z = 0 to z = ∆l gives the angular
kick ∆x′ = x′(∆l)− x′(0) as,

∆x′ =
q

2p

(
(yBz)|∆l0 +

∫ ∆l

0

y′Bzdz

)
(2.33)

=
q

2p

(
yB0 +

∫ ∆l

0

y′Bzdz

)
. (2.34)

Assuming a linear longitudinal �eld in this region, Bz = B0z/∆l, the latter term in (2.34)
vanishes as ∆l goes to zero,

lim
∆l→0

B0

∆l

∫ ∆l

0

y′z dz = lim
∆l→0

B0y
′(∆l)∆l = 0. (2.35)

Calculating the vertical kick in the same manner gives the angular transformation of the
entrance of the solenoid,

x′ → x′ + ksy, (2.36)

y′ → y′ − ksx. (2.37)

where ks ≡ qB0/2p.
This result indicates that any vertical o�set of an incoming particle results in an added

horizontal angle, and vice versa. Hence, a coupling between a particle's horizontal and
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vertical components is created already at the solenoid's entrance. In this lens approxi-
mation, the particle trajectory must be continuous, so with eq. (2.36-2.37), the transfer
matrix of the solenoid's entrance is constructed to be,

Menter =


1 0 0 0
0 1 ks 0
0 0 1 0
−ks 0 0 1

 . (2.38)

At the exit of the solenoid, the radial �eld points in the opposite direction (see Fig. 2.5),
so that ks → −ks, which gives the exit transfer matrix,

Mexit =


1 0 0 0
0 1 −ks 0
0 0 1 0
ks 0 0 1

 . (2.39)

In the body of the solenoid, Bx = By = 0, while Bz = B0. From (2.5), the acceleration
is be expressed as,

d

dz

(
x′

y′

)
= 2ks

(
0 1
−1 0

)(
x′

y′

)
. (2.40)

Integrating this from z = 0 to z = L gives the angle transformation,(
x′(L)
y′(L)

)
=

(
cos (2ksL) sin (2ksL)
− sin (2ksL) cos (2ksL)

)(
x′(0)
y′(0)

)
. (2.41)

As can be seen in (2.41), any transverse angular component of a passing particle will cause
the particle to continuously rotate around the longitudinal �eld lines, with a radius that is
proportional to the transverse angular component r′ =

√
x′2 + y′2. A second integration

gives the trajectory transformation,(
x(L)
y(L)

)
=

(
x(0)
y(0)

)
+

1

2ks

(
sin (2ksL) 2 sin2 (ksL)
−2 sin2 (ksL) sin (2ksL)

)(
x′(0)
y′(0)

)
, (2.42)

which is combined with (2.41) to form the transfer matrix for the solenoid body as,

Mbody =


1 1

2ks
sin (2ksL) 0 1

ks
sin2 (ksL)

0 cos (2ksL) 0 sin (2ksL)
0 − 1

ks
sin2 (ksL) 1 1

2ks
sin (2ksL)

0 − sin (2ksL) 0 cos (2ksL)

 . (2.43)

The three solenoid parts: entrance, body and exit, are now combined to form a com-
plete transfer matrix, Msol, for the solenoid as,

Msol = MexitMbodyMenter =


cos2 (ksL) 1

2ks
sin (2ksL) 1

2
sin (2ksL) 1

ks
sin2 (ksL)

−ks
2

sin (2ksL) cos2 (ksL) −ks sin2 (ksL) 1
2

sin (2ksL)
−1

2
sin (2ksL) − 1

ks
sin2 (ksL) cos2 (ksL) 1

2ks
sin (2ksL)

ks sin2 (ksL) −1
2

sin (2ksL) −ks
2

sin (2ksL) cos2 (ksL)

 .

(2.44)
The non-zero o�-diagonal elements of the solenoid's transfer matrix indicate a coupling
between the horizontal and vertical components of the beam.
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Figure 2.6: Schematics of the LEBT solenoid [19].

Another interesting way of composing this matrix is as a combination of a rotation
and a focusing element [18],

Msol = RMf = MfR, (2.45)

where

R =

(
I cos (ksL) I sin (ksL)
−I sin (ksL) I cos (ksL)

)
, I =

(
1 0
0 1

)
(2.46)

Mf =

(
F 0

0 F

)
, 0 =

(
0 0
0 0

)
(2.47)

F =

(
cos (ksL) 1

ks
sin (ksL)

−ks sin (ksL) cos (ksL)

)
. (2.48)

The solenoid gives a total rotation of φ = ksL, while the focal length of the solenoid is
derived by compressing (2.48) in the thin lens approximation. As L→ 0, the inverse focal
length is given by the �rst term of the limit

lim
L→0

ks sin(ksL) ≈ k2
sL = 1/f. (2.49)

So, for a solenoid, f ∝ p2, while as we have seen for a quadrupole f = (k2
xL)−1 ∝ p.

Hence, the solenoid is more e�cient as a focusing element for a low-energy beam than a
quadrupole, since the focal length of a solenoid can be assumed to be shorter.

Speci�cations for the LEBT solenoid

A drawing of the LEBT solenoid can be seen in Fig. 2.6 and speci�cations can be seen in
Table.2.2.
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Parameter Value Unit

Length 0.240 m
Radius 125 mm
Maximum Bpeak 408 mT

Table 2.2: Solenoid speci�cations.

2.3.2 Steerer

The LEBT is equipped with horizontal and vertical steerers, that are placed inside the
solenoids.

A steerer is an element that produces a transverse magnetic �eld, where a horizontal
steerer produces a �eld in the y-direction, while a vertical produces a �eld in the x-
direction. In contrast to a dipole, the intention of a steerer is to give the charged particle
an angular kick without changing the reference trajectory. A convenient approximation
for the steerer is to describe it as a thin lens.

The total kick from a steerer is calculated from its integrated magnetic �eld,

BL =

∫ ∞
−∞

B�eld(z)dz, (2.50)

where the kick will be in a direction perpendicular to both the �eld and the particle's
trajectory, and is approximated to be independent of the particle's transversal state. The
kick is concentrated at the centre of the element, where the horizontal and vertical steerer
gives an angular kick of,

dx′ = −q
p

(BL)h and dy′ =
q

p
(BL)v. (2.51)

The angular transformation through the steerers will then be x′ → x′ + dx′ for the
horizontal steerer, and y′ → y′+dy′ for the vertical steerer. In the thin lens approximation,
the trajectory must stay continuous

One way to express this e�ect is to expand the phase space vector P , so that,

P →


x
x′

y
y′

1

 . (2.52)

This allows a transfer matrix to be constructed as,

Mkick =


1 0 0 0 0
0 1 0 0 dx′

0 0 1 0 0
0 0 0 1 dy′

0 0 0 0 1

 . (2.53)

The transfer then becomes,
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Figure 2.7: Model of the LEBT steerers, where the vertical steerer is the inner construc-
tion, and the horizontal is the outer. The steerers are positioned inside the solenoid [3].


x
x′

y
y′

1

 = Mkick


x0

x′0
y0

y′0
1

 =


x0

x′0 + dx′

y0

y′0 + dy′

1

 (2.54)

In a simulation where a steerer is used, the transfer matrices of other elements can
easily be adjusted to this new phase space vector through an identity expansion.

Speci�cations for the LEBT steerers

A model of the steerers can be seen in Fig. 2.7 and speci�cations of the steerers can be
seen in Table 2.3.

Parameter Value Unit

Length 0.320 m
Maximum Bpeak, H-steerer 8.6 mT
Maximum Bpeak, V-steerer 10.3 mT
Maximum horizontal kick −35.3 mrad
Maximum vertical kick 40.4 mrad

Table 2.3: Steerer speci�cations. The horizontal steerer has a lower kick maximum am-
plitude due to the fact that it is positioned outside of the vertical steerer.
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Chapter 3

Methods

In order for the LEBT to serve its purpose and transport the proton beam from the
source with a sharp focus straight into the entrance of the RFQ, it is important to be able
to �nd the optimal element parameters. During commissioning, these parameters will
be found using live-readings from the NPMs (Non-invasive Pro�le Monitors), Faraday
cups and emittance monitor units placed inside and outside the LEBT, together with a
user-friendly beam trajectory and envelope simulation application. For this application
to be written, models need to be benchmarked for the elements in the LEBT. This thesis
benchmarks models for the solenoids, steerers and the envelope of the beam, as well as
provides a �rst draft of the LEBT application.

To get a better understanding of the trajectory simulation, it was written in the
program language Python, using the hard-edge model for the solenoids and the thin lens
approximation for the steerers. The hard-edge model for the solenoid, and the thin lens
approximation was then simulated in the development environment OpenXAL, from where
the errors were quanti�ed, and the models were then improved using di�erent strategies.
The simulation program TraceWin was used as a reference for the error calculations. A
user-friendly simulation program was then written in the software platform JavaFX. The
mentioned software tools are described in more detail below.

3.1 Software tools

TraceWin

TraceWin is a simulation program that calculates the beam dynamics in particle acceler-
ators, where the di�erent elements of the linac can be modelled either by using analytic
expression or �eld maps created from the element's �eld pro�le [20]. TraceWin also has
the ability to overlap �eld maps, making the simulation of several overlapped elements
as realistic as possible. There are no experimental data in this thesis, and therefore, �eld
map simulations in TraceWin were used as a reference for benchmarking element models
as the envelope and trajectory calculations were done in OpenXAL.

OpenXAL

OpenXAL is a Java-based open source developement environment used for creating ac-
celerator physics applications, scripts and services [21]. ESS uses this library do develop
applications for the control room, and is hence where the simulation of the beam dynamics
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occurred. This is the program for which the models need to be benchmarked. OpenXAL
was not developed to handle element �eld maps, but during the work of this thesis, a
version was released where the solenoid �eld map could be used.

Python

Python is a high-level programming language for general-purpose programming [22]. As
Python is a language in which it is easy to perform calculations and plotting, JPype was
used to link OpenXAL to Python to make it easier to work with. It was also used to
calculate a more accurate transfer matrix for the solenoid, and to quantify errors.

JavaFX API

JavaFX is a software platform, based on the programming language Java, for creation of
desktop applications [23]. As OpenXAL is based on Java, it was then a natural choice to
make the application program interface using Java. Gluon's Scene builder was used with
JavaFX for creation of the interface [24], while the actions were written in Java code.
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Chapter 4

Results

4.1 Trajectory simulation

To get a better understanding of the dynamics, a simulation for the LEBT was written
with Python code using hard-edge models for the solenoids, and steerers as thin lenses in
the middle of the solenoids. The code is presented in Appendix I. This code was compared
with TraceWin for benchmarking and comparison.

4.2 Solenoid in the hard-edge model

The hard-edge model is an e�cient way of describing a solenoid. It is easy to calculate
and has in most cases an acceptable accuracy [25]. The model simpli�es the magnetic
�eld map of an element to the shape of a box, with the height, B0, being the maximum
B-�eld and a length L, which together multiplies to the same total magnetic integral as
the real �eld on axis,

B0L =

∫ ∞
−∞

B�eld(z)dz. (4.1)

The hard-edge model is convenient for a solenoid which has a recognizable �at top
gradient [25]. The LEBT solenoids are short in comparison with their radius, which
results in a �eld without a well de�ned plateau. The consequence of this is that this
original (old) hard-edge model results in an inaccurate beam centroid trajectory when
compared to a TraceWin �eld map simulation. This thesis' work around the solenoids
was aimed to increase the accuracy of the hard-edge model for the LEBT solenoids.

Helmut Weidemann presents a procedure for de�ning a more accurate transfer matrix
for a quadrupole through a step function [11]. In the same manner, the solenoid �eld
map with a typical peak �eld of 235 mT was decomposed into segments (see Fig. 4.1),
where each segment was described separately by a hard-edge model. The transfer matrices
of each hard-edge model, Mi, were then multiplied together to form one single transfer
matrix,

Msol = MNMN−1 . . .M1. (4.2)

The Python code for this segmentation can be seen in Appendix II. The matrix elements
were then compared with the hard-edge transfer matrix described in (2.44) to retrieve a
new and improved set of parameters B0 and L. This matrix procedure was then repeated
for a solenoid of a peak �eld strength ranging between 100 and 400 mT, and the resulting
parameters can be seen in the plot in Fig. 4.2. From the calculated parameters, a new
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Figure 4.1: Segmentation of the solenoid �eld map into hard-edge models.

Figure 4.2: Ideal hard-edge parameters for di�erent �eld strengths of the LEBT solenoids,
together with a constant and linear �t.
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length was determined as the average of all results, while the new �eld was determined
as a linear �t, giving the new parameters,

Lnew = 342.7 mm, (4.3)

Bnew = 0.8524 ·B0 T. (4.4)

This can be compared with the parameters of the old hard-edge model,

Lold = 284.1 mm, (4.5)

Bold = B0 T. (4.6)

A magnetic �eld pro�le of the �eld map and the old and new hard-edge model can be
seen in Fig.4.3.

Figure 4.3: Magnetic �eld of solenoid for a peak �eld strength of 235 mT, together with
its old and new hard-edge model.

A �xed length and a linear dependent B-�eld gives a new hard-edge model just as
simple as the old, but with a higher accuracy for the LEBT solenoids. This can be seen in
a beam centroid trajectory example through the LEBT for the �eld map, the old and the
new hard-edge model in Fig. 4.4. As can be seen in this �gure, the old hard-edge model
has a stronger focusing than the new hard-edge model.

An error estimation was done for a simulation though the solenoid for di�erent �eld
strengths, and for two di�erent realistic initial o�sets of x, y = 0.1 mm and x′, y′ =
0.1 mrad, and x, y = 0.4 mm and x′, y′ = 0.4 mrad. The estimated errors can be seen in
Fig. 4.5. The errors, ε, were calculated as,

εr,% = 100 ·
∣∣∣∣ εr,mm

r�eld map

∣∣∣∣ , εr,mm = |rhard-edge − r�eld map| , (4.7)

εr′,% = 100 ·

∣∣∣∣∣ εr′,mm

r′�eld map

∣∣∣∣∣ , εr′,mm =
∣∣r′hard-edge − r′�eld map

∣∣ , (4.8)

εΦ,% = 100 ·
∣∣∣εφ,rad

2π

∣∣∣ , εΦ,mm = |Φhard-edge − Φ�eld map| , (4.9)
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Figure 4.4: Centroid trajectory through the LEBT for a beam with initial conditions
x, y = 0.4 mm and x′, y′ = 0.4 mrad. The two solenoids are centered at z = 0.6 m and
z = 2.1 m and has a peak �eld of 235 mT.

Figure 4.5: Solenoid positional, angular and rotational errors for an incoming beam of
two di�erent o�sets: x, y = 0.1 mm and x′, y′ = 0.1 mrad, and x, y = 0.4 mm and
x′, y′ = 0.4 mrad.
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where,

r =
√
x2 + y2, Φ = arg(x+ iy) (4.10)

The position error for a solenoid of 200 mT was reduced from 17.0% to 3.4%, while the
angle error was reduced from 64.0% to 12.7%. The increase of the percentage error as the
solenoid reaches 400 mT is due to the fact that the output position of the beam is close
to the origin, which is creating a large percentage error for the models.

During the time of this work, the Integrated Control System section of ESS successfully
developed OpenXAL to be able to include the solenoids as �eld maps. Therefore, the
continuous use of the reference work with the solenoids will be as �eld maps.

4.3 Steerers in the thin lens approximation

There are four steerers in the LEBT. The steerers are positioned inside the solenoids,
with one vertical (referred to as V-steerer) and one horizontal (referred to as H-steerer)
for each of the two solenoids. Reference �eld maps could be produced for TraceWin from
�eld measurements, see Fig. 4.6, where the H-steerer, as it is positioned on top of the
V-steerer, produces a slightly lower peak �eld.

Figure 4.6: B-�elds of realistic strengths for (left) solenoid with steerers and (right) steer-
ers only.

The �rst attempt was done by modeling the steerers with the thin lens approximation,
where the total angular kick is concentrated at one single point: the centre of the element.
This approximation would be highly desirable, since the resulting beam trajectory for
a beam given a single kick at the centre of the beam-rotating solenoid can be easily
implemented, which would be bene�cial for the LEBT application.

The magnetic integrals for the horizontal and vertical steerer, (BL)h and (BL)v, were
calculated as,

(BL)h =

∫ ∞
−∞

By(z)dz, (BL)v =

∫ ∞
−∞

Bx(z)dz, (4.11)

where By(z) is the B-�eld of the horizontal steerer and Bx(z) is the B-�eld of the vertical
steerer. These magnetic integrals convert to an angular kick, dx′ and dy′ accordingly with
(2.51).
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A simulation for a beam trajectory through the thin lens approximation, compared to
a �eld map simulation with and without a solenoid can be seen in Fig. 4.7. Without the
solenoid, the steerers were accurately expressed by the thin lens approximation. With a
solenoid though, the model lost its accuracy, which shows that the width of the steerer's B-
�eld is non-negligible for a solenoid of a strong realistic strength of 400 mT. The outgoing
beam through the thin lens approximation reached an angle error of 11.5% for the H-
steerer and 9.8% for the V-steerer, calculated for r′ =

√
x′2 + y′2 as,

ε% = 100 ·

∣∣∣∣∣r′thin lens − r′�eld map

r′�eld map

∣∣∣∣∣ . (4.12)

(a) (b)

Figure 4.7: Trajectory of a beam through the thin lens approximation and �eld map for
a strong H- and V-steerer of a peak �eld 8.6 mT and 10.3 mT respectively, (a) without
solenoid and (b) with a strong solenoid of peak �eld 400 mT.

To a�ect the beam at di�erent stages of its rotation within the solenoid, a further
modelling attempt was made for the V-steerer by expressing it as three thin lenses, posi-
tioned in the centre, P2 = 0, and at the half maxima of the steerer's B-�eld, located at
P1 = −0.0734 and P3 = 0.0734 (see Fig. 4.8). To calculate the magnetic integral, the
B-�eld was divided into three segments, 1, 2 and 3, with an integral of,

BLv,1 =

∫ −D
−∞

Bx(z)dz, BLv,2 =

∫ D

−D
Bx(z)dz, and BLv,3 =

∫ ∞
D

Bx(z)dz, (4.13)

where D is the integration divider seen in Fig. 4.8. The position of D was calculated from
the constraint that the positions of P1 and P3 must be balanced by an equal magnetic
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Figure 4.8: Position of thin lenses for the three-lens approximation of the V-steerer.

integral from both sides of the kick, i.e. from,∫ P1

−∞
Bx(z)dz =

∫ −D
P1

Bx(z)dz,

and also, ∫ P3

D

Bx(z)dz =

∫ ∞
P3

Bx(z)dz.

With the calculated integration divider positioned at D = ±0.0435, the magnetic integral
ratios could be calculated from a normalized B-�eld to be,

BLv,1 = 0.0386 ·Bx,peak, BLv,2 = 0.0805 ·Bx,peak, BLv,3 = 0.0386 ·Bx,peak. (4.14)

With the same procedure, the magnetic integral ratios of the H-steerer were calculated
to be,

BLh,1 = 0.0411 ·By,peak, BLh,2 = 0.0854 ·By,peak, BLh,3 = 0.0411 ·By,peak. (4.15)

A simulation was done for this �three-lenses approximation� for both the V-steerer
and the H-steerer. The three-lenses approximation reduced the angle error from 11.5% to
4.5% for the H-steerer and from 9.8% to 3.7% for the V-steerer for the maximum current
con�guration. Note that these errors are for the worst case scenario (maximum B-�eld).
This accuracy was considered acceptable, and the three-lenses approximation was then
implemented into OpenXAL. Still, a model with �ve kicks was developed for scienti�c
curiosity.

In the �ve lenses approximation, the thin lenses were positioned at the centre of the
�eld, and at 1/4 and 3/4 of the peak �eld, see Fig. 4.9. This division, that followed the
same procedure as the three lens approximation, gave the magnetic integral ratios,

BLv,1 = 0.0163 ·Bx,peak, BLv,2 = 0.0384 ·Bx,peak, BLv,3 = 0.0483 ·Bx,peak, (4.16)

BLv,4 = 0.0384 ·Bx,peak, BLv,5 = 0.0163 ·Bx,peak, (4.17)
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Figure 4.9: Position of thin lenses for the �ve-lens approximation of the V-steerer.

and

BLh,1 = 0.0176 ·By,peak, BLh,2 = 0.0405 ·By,peak, BLh,3 = 0.0515 ·By,peak, (4.18)

BLh,4 = 0.0405 ·By,peak, BLh,5 = 0.0176 ·By,peak. (4.19)

This reduced the error to 2.6% for the H-steerer and to 2.0% for the V-steerer.
An error estimation of the three di�erent models for steerers of various strengths and

through a solenoid with �eld from 0 to 400 mT can be seen Fig. 4.10.

4.4 Beam envelope evolution

The evolution of the beam's RMS-size, σ, can be calculated by OpenXAL. Unfortunately,
OpenXAL is only designed to work with a bunched probe. The LEBT is the only section
in the ESS linac where the beam is not bunched, but rather continuous, since it is the
�rst section after the proton extraction.

The envelope dynamics of a bunched beam and a continuous beam di�er when space
charge is present. In the LEBT, the energy is not on a relativistic level, which means that
the space charge has a strong impact on the beam. Without a continuous beam option,
a bunched beam can be manipulated to resemble the behaviour of a continuous beam,
where once again TraceWin was used for benchmarking.

The di�erence of the resulting space charge force between a bunched and continuous
beam can be compared with electrodynamics. A bunch charge will be surrounded by a
spherical radial electric �eld, which results in an envelope evolution in a spherically radial
manner, while for an in�nitely long string of charge, the longitudinal net force will sum
to zero [7].

A �rst attempt to resemble the behaviour of a continuous beam was made by simply
increasing the initial longitudinal emittance by 500%, so that σz � σx, σy. This attempt
reduced the longitudinal RMS increase from 90% to 5.8% throughout the LEBT, indicat-
ing a lower space charge force in the longitudinal direction. However, this attempt only
increased the transverse error of the envelope when compared to TraceWin. The next
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Figure 4.10: Error of horizontal and vertical steerer modelled by the thin lens, three-lenses
and �ve-lenses approximation.
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step was then done by comparing the space charge force algorithms for a bunched and
continuous beam.

The acceleration from the space charge for a continuous beam is [12],

x′′ =
2K

ax(ax + ay)
· x y′′ =

2K

ay(ax + ay)
· y, (4.20)

where

K =
|q| · I

πε0mc3β3
rγ

3
r

,

is the beam generalized perveance, ax, ay are the semi-axes of the homogeneous ellipse
(2 times the RMS beam sizes), I is the average beam current, and ε0 is the vacuum per-
mittivity. These equations were matched with the space-charge algorithm for a bunched
beam,

w′′ =
Kw

a∗xa
∗
ya
∗
z

· w∗, (4.21)

with

Kw =
3 · |q| ·Q

4πε0mc2β2
rγ

2
r

· fw(a∗x, a
∗
x, a
∗
y)

and,

fw(a∗x, a
∗
y, a
∗
z) =

∫ ∞
0

ds

(a∗2w + s)
√

(a∗2x + s)(a∗2y + s)(a∗2z + s)
,

fx + fy + fz = 1,

where w is the chosen axis, Q is the bunch charge, a∗x, a
∗
y and a

∗
z are the beam semi-axes of

a uniform ellipsoid (
√

5 times the RMS beam size) in the beam frame, so that a∗w = γraw.
In the LEBT, γr ≈ 1.

In order to have the same defocusing force, a current ratio between the continuous and
manipulated bunched beam could be calculated for the chosen longitudinal emittance,

Ib = 22.703 · Ic, (4.22)

where Ib is the modi�ed bunched beam current and Ic is the current of the continuous
beam. This ratio, together with the altered emittance εz = 0.547588 π.mm.mrad, reduced
the estimated envelope error at the entrance of the RFQ from an initial value of 41.8%
to 11.5%. At this entrance, the beam is very focused, and space charge is higher, which
creates this peak error for the modi�ed beam (see Fig. 4.11). The average error throughout
the LEBT is 1.9%. These errors was calculated for a beam current of 74 mA and a space
charge compensation of 95% through the LEBT as,

εmm = |σ mod − σ �eld map|, ε% = 100 · |σ mod − σx,y �eld map|
σ �eld map

, (4.23)

where σx = σy = σ. The error throughout the LEBT can be seen as a plot in Fig. 4.11.
An example of the envelope evolution for the continuous and manipulated bunched beam
can be seen in �g 4.12.
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Figure 4.11: Envelope error through the LEBT with two active solenoids with a typical
peak �eld of 235 mT for the unmodi�ed bunched beam, half-modi�ed bunched beam with
an increased longitudinal emittance, and the fully modi�ed bunched beam with increased
longitudinal emittance and rescaled current. Initial conditions are presented in Table 2.1.

(a) (b)

Figure 4.12: Envelope dynamics through the LEBT with two active solenoids with a
typical peak �eld of 235 mT. Initial conditions are presented in Table 2.1.(a) Longitudinal
RMS for a modi�ed bunched beam.(b) Transverse RMS for a continuous and modi�ed
bunched beam.
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4.5 LEBT Application Program Interface (API)

For the commissioning and maintenance of the LEBT, the elements will be managed
from the control room. The elements might have to be modi�ed daily due to changes
of the beam, or in best case, only when the ion source is modi�ed. For this to run as
smoothly as possible, a user-friendly program is needed which includes trajectory and
envelope simulation for di�erent element and beam parameters. In this thesis, a simple
user-interface was created with �xed parameters for the initial emittance and space charge
compensation, and with editable parameters for the beam o�set and element parameters
for the models derived in the previous sections.

The implementation of the newly derived models in OpenXAL, that was initially
written in Python, was now transferred to a Java program. Code was written so that
after a run, a variety of data could be retrieved, from which plots could be produced. An
API was created, and in the resulting application, the initial phase space vector (x, x′, y, y′)
can be set as well as the beam current. The elements' currents can be set as well, which
are relative to the magnetic peak �elds accordingly with Table 4.1.

Parameter Ratio

Bsol,peak/Isol 8.1531 · 10−4

Bh,peak/Ih 7.1667 · 10−5

Bv,peak/Iv 8.5833 · 10−5

Table 4.1: Current-to-magnetic �eld ratios for the LEBT solenoids, horizontal and vertical
steerers.

When the simulation is run by clicking ,a trajectory plot and an envelope plot
are displayed, see Fig. 4.13. The coordinate system can be changed from Cartesian to
cylindrical, that is calculated according to (4.10). The envelope can be scaled as nσ,
where n is an integer. In the envelope plot, the centroid o�set can be either included
or excluded, where an included o�set in the cylindrical coordinate system is the optimal
view to see if the beam stays within the LEBT vacuum chamber or not. In Fig. 4.13, the
chamber which is plotted in black and the envelope in colour, see Fig. 4.13.
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Figure 4.13: Application for trajectory and envelope simulation in the LEBT.
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Chapter 5

Discussion and outlook

The LEBT is the �rst of all sections of the ESS linac to be commissioned, which is planned
to be executed in the spring of 2018. A complete linac is expected to be ready in 2021,
after the commissioning of all the following sections. The proton beam will then be ready
to collide with the tungsten target and produce neutrons.

The produced neutrons will be used to probe materials on the molecular level, every-
thing from motors and medicine, to plastics and proteins. Detailed studies are dependent
on how many neutrons can be produced by a neutron source, and ESS will provide up
to 100 times brighter neutron beams than existing facilities today [26]. ESS is important
for the development of new and better computer chips, cosmetics, detergents, textiles,
paints, fuels, drugs, batteries and plastics. Industrial drivers such as fuel cells, supercon-
ductors, innovative structural engineering, climate, transportation and food technologies,
pharmaceuticals, medical devices and clean energy, are all dependent on advances in the
capacity and capability of the science of neutron scattering. Research with neutrons will
�nally give knowledge that improves our everyday lives, our health and the environment.
ESS is positioned as the vanguard of the next century of experimental science and is the
world's next great Big Science facility.

As the commissioning of the LEBT approaches, a tool to be used in the control room
to characterize and test the beam parameters is needed. In this thesis, models for the
solenoid and steerers were tested and improved. The position error for a solenoid of
200 mT was reduced from 17.0% to 3.4%, while the angle error was reduced from 64.0%
to 12.7%. The worst case angle error of the horizontal steerer was reduced from 11.5%
to 4.5% and the vertical steerer from 9.8% to 3.7%. Also, an accurate calculation of the
envelope evolution along the low energy section was successfully achieved by rescaling the
longitudinal beam size and total beam current. The steerer and envelope models were
then implemented in OpenXAL and a �rst draft of the LEBT application was completed,
which can be used in the control room to simulate the trajectory and envelope evolution
in the LEBT for di�erent beam o�sets and element strengths.

Even though the improved hard-edge model for the solenoid is not used in the �nal
application, it can still be bene�cial for the scientists in the control room. For instance,
if a speci�c beam rotation is desired, calculations can easily be done with this model to
estimate the necessary magnetic �eld.

Although the modi�cation of the longitudinal emittance and total current, that was in
OpenXAL to simulate a continuous beam, results in good values of RMS beam size along
the LEBT, it would be preferable if the beam dynamics for a continuous beam would be
implemented in OpenXAL, so that the initial parameters of the real machine could be
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used.
The LEBT application will be further developed by the Beam Physics section of ESS,

and will �nally be used in the control room during commissioning and routine operations
of the LEBT. Editable parameters that will be added include emittance and Twiss pa-
rameters for the input beam, level of space charge compensation and also parameters for
other elements in the LEBT, such as chopper voltage and iris radius. As the LEBT is
being commissioned, the application will be used �rstly to estimate the beam parameters
together with the NPMs with trial-and-error simulations, and lastly to simulate the op-
timal element parameters, that will result in a focused beam travelling straight into the
RFQ.

The �nal work of this thesis resulted in a conference paper, that will be presented at
the International Particle Accelerator Conference (IPAC'18) in Vancouver in the spring
of 2018. The abstract and title of the paper can be found in Appendix III.

33



Acknowledgements

First and foremost, I would like to thank Natalia Milas, who has been an amazing su-
pervisor and friend. My calm and con�dence, that I have felt surprised of having during
these important months, no doubt has their foundation in Natalia's excellent guidance
and support, for everything from physics and programming to knitting and life skills.

I would also like to thank Mamad Eshraqi, �rst of all for receiving me as his master
student, and also for making sure that I quickly felt like part of the group, and for always
asking me how I'm doing. His great sense of humour has constantly given me a lot of
laughs.

I also would like to thank the other scientists of the Beam Physics section: Ryoichi
Miyamoto for his dedication and patience during my endless questions about emittance,
Ciprian Plostinar for stories, laughter and for being such a great go-kart driver, Mark
Munos for being an awesome o�ce mate, Yngve Levinsen and Øystein Midttun for Norway
stories, and Renato de Prisco for letting me steal his o�ce.

I would like to thank great lunch break comrades: Juan Esteban Müller for help and
support in programming and for constantly being astonished by the amount of food on
my plate, Emanuele Laface for teaching me about symplectic integrators and for ordering
my latte macchiatos, Ben Folsom for great company at the yarn-store visits, and Håkan
Danered for interesting discussions.

I would also like to thank all the people of ESS that have enlightened by stay: Saeid
Pirani, Andreas Jansson, Caroline Prabert, Lali Tchelidze, Tom Shea and all the rest.

During this thesis work, I also got married. I would like to thank my wife Maïté Louisy,
whose love, understanding and support have been absolutely vital for my happiness and
well-being during this time.

34



Bibliography

[1] M. Åberg, N. Ahlfors, R. Ainsworth, C. Alba-Simionesco, S. Alimov, N. Aliouane,
B. Alling, K. G. Andersson, N. H. Andersen, B. R. Hansen, et al., ESS technical

design report. European Spallation Source, 2013.

[2] C. Plostinar. Personal communication, 2017.

[3] O. Midttun. Personal communication, 2017.

[4] A. Letchford, �Beam dynamics in linacs.�

[5] O. Midttun, L. Celona, B. Cheymol, R. Miyamoto, L. Neri, and C. Thomas, �Mea-
surements and simulations of the beam extraction from the ess proton source,�

[6] I. S. Grant and W. R. Phillips, Electromagnetism. John Wiley & Sons, 2013.

[7] H. Benson, University physics. John Wiley & Sons, 2008.

[8] J. Rosenzweig, Fundamentals of beam physics. Oxford University Press Oxford, 2003.

[9] J. R. Taylor, Classical mechanics. University Science Books, 2005.

[10] R. Miyamoto, Diagnostics of the Fermilab Tevatron using an AC dipole. The Uni-
versity of Texas at Austin, 2008.

[11] H. Wiedemann, Particle accelerator physics. Springer, 2015.

[12] T. P. Wangler, RF Linear accelerators. John Wiley & Sons, 2008.

[13] A. J. Dragt, R. L. Gluckstern, F. Neri, and G. Rangarajan, �Theory of emittance
invariants,� in Frontiers of Particle Beams; Observation, Diagnosis and Correction,
pp. 94�121, Springer, 1989.

[14] H. J. Müller-Kirsten, Basics of statistical physics. World Scienti�c, 2013.

[15] C. K. Allen and N. Pattengale, �Theory and technique of beam envelope simulation,�
Los Alamos National Laboratory Internal Report LA-UR-02-4979, 2002.

[16] A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, Handbook of accelerator

physics and engineering. World Scienti�c, 1999.

[17] T. L. Chow, Introduction to electromagnetic theory: a modern perspective. Jones &
Bartlett Learning, 2006.

[18] M. Conte and W. W. MacKay, An introduction to the physics of particle accelerators.
world scienti�c, 2008.

35



[19] �Ess-0094638.� ESS internal document, 2017.

[20] D. Uriot and N. Picho�, �Tracewin,� CEA Saclay, June, 2014.

[21] I. Pelaia et al., �Open xal build system,� 2015.

[22] G. Van Rossum et al., �Python programming language.,� in USENIX Annual Tech-

nical Conference, vol. 41, p. 36, 2007.

[23] H. Schildt, Introducing JavaFX 8 Programming. McGraw-Hill Education, 2015.

[24] M. Taman, JavaFX Essentials. Packt Publishing Ltd, 2015.

[25] S. Bernal, H. Li, R. Kishek, B. Quinn, M. Walter, M. Reiser, P. O'Shea, and
C. Allen, �Rms envelope matching of electron beams from �zero� current to extreme
space charge in a �xed lattice of short magnets,� Physical Review Special Topics-

Accelerators and Beams, vol. 9, no. 6, p. 064202, 2006.

[26] E. P. Sciences and E. S. W. G. N. L. Group, Neutron scattering facilities in Europe:

Present status and future perspectives. Dipartimento di Fisica - Università degli Studi
di Milano, 2016.

36



Appendix I - Code: Trajectory

simulation in Python

The code presented below is a simulation of the beam trajectory within the LEBT. The
solenoids are modelled by the new hard-edge model presented in Chapter 4, while the
steerers (correctors) are represented by the thin lens approximation described in Sec-
tion 2.3.2. A simulation produced by this code can be seen in Fig. 5.1

Figure 5.1: Plotting result from simulation of above code.

1 import matp lo t l i b . pyplot as p l t
2 %matp lo t l i b i n l i n e
3 import numpy
4 import math
5 import s c ipy . l i n a l g
6 from sympy import ∗

Listing 5.1: Imports
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1 #−−−−−−−−−−Adjustable parameters
2 #I n i t i a l c ond i t i on s
3 x = 0.005
4 x_ = 0.005
5 y = 0.005
6 y_ = 0.005
7

8 #St e e r e r s
9 H1_B_max = −0.001

10 H2_B_max = −0.002
11

12 V1_B_max = 0.001
13 V2_B_max = 0.002
14

15 #So l eno id s
16 sol1_B_max = 0.235
17 sol2_B_max = 0.235
18 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

20 #Proton p r op e r t i e s in SI un i t s
21 m = 1.6726219∗10∗∗(−27) ;
22 q = 1.6021766208∗10∗∗(−19) ;
23 E = 75∗10∗∗3∗q ;
24 c = 2.99797458∗10∗∗8 ;
25 gamma = E/(m∗c ∗∗2)+1;
26 betagamma = sqr t (gamma∗∗2 − 1) ;
27 Er = m∗c ∗∗2 #r e s t energy
28

29 #So l eno id s
30 const_s = q/(2∗m∗c∗betagamma) ;
31

32 #Sol1
33 so l1_e f f_len = 0.3427
34 sol1_eff_B = 0.8524∗ sol1_B_max
35 sol1_k = sol1_eff_B∗ const_s
36

37 #Sol2
38 so l2_e f f_len = 0.3427
39 sol2_eff_B = 0.8524∗ sol2_B_max
40 sol2_k = sol2_eff_B∗ const_s
41

42 #St e e r e r s ( hor or ve r t )
43 const_k = q∗c /(Er∗betagamma)
44

45 V1_BL = 0.15765∗V1_B_max
46 V2_BL = 0.15765∗V2_B_max
47

48 H1_BL = 0.16765∗H1_B_max
49 H2_BL = 0.16765∗H2_B_max
50

51 V1kick_dp_x = const_k∗V1_BL
52 V2kick_dp_x = const_k∗V2_BL
53

54 H1kick_dp_y = −const_k∗H1_BL
55 H2kick_dp_y = −const_k∗H2_BL
56

57 #Dr i f t to s o l eno i d
58 pre_len = 0.6081− so l1_e f f_len /2
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59

60 #Dr i f t between s o l e n o i d s
61 middle_len = 1.4988− so l1_e f f_len/2− so l2_e f f_len /2
62

63 #Dr i f t a f t e r s o l eno i d
64 post_len = 0.399− so l2_e f f_len /2

Listing 5.2: Parameter settings

1 de f M_drift (d) :
2 re turn Matrix ( [ [ 1 , d , 0 , 0 , 0 ] ,
3 [ 0 , 1 , 0 , 0 , 0 ] ,
4 [ 0 , 0 , 1 , d , 0 ] ,
5 [ 0 , 0 , 0 , 1 , 0 ] ,
6 [ 0 , 0 , 0 , 0 , 1 ] ] )
7

8 de f M_kick(dp_x , dp_y , l =1) :
9 re turn Matrix ( [ [ 1 , 0 , 0 , 0 , 0 ] ,

10 [ 0 , 1 , 0 , 0 , dp_x∗ l ] ,
11 [ 0 , 0 , 1 , 0 , 0 ] ,
12 [ 0 , 0 , 0 , 1 , dp_y∗ l ] ,
13 [ 0 , 0 , 0 , 0 , 1 ] ] )
14

15 de f M_sol (k , l ) :
16 s = s i n (k∗ l )
17 c = cos (k∗ l )
18 i f k != 0 :
19 re turn Matrix ( [ [ c ∗∗2 , s ∗c/k , s ∗c , s ∗∗2/k , 0 ] ,
20 [−k∗ s ∗c , c∗∗2,−k∗ s ∗∗2 , s ∗c , 0 ] ,
21 [− s ∗c ,− s ∗∗2/k , c ∗∗2 , s ∗c/k , 0 ] ,
22 [ k∗ s ∗∗2,− s ∗c ,−k∗ s ∗c , c ∗∗2 , 0 ] ,
23 [ 0 , 0 , 0 , 0 , 1 ] ] )
24 e l s e :
25 re turn Matrix ( [ [ 1 , l , 0 , 0 , 0 ] ,
26 [ 0 , 1 , 0 , 0 , 0 ] ,
27 [ 0 , 0 , 1 , l , 0 ] ,
28 [ 0 , 0 , 0 , 1 , 0 ] ,
29 [ 0 , 0 , 0 , 0 , 1 ] ] )

Listing 5.3: Transfer matrices

1 In = Matrix ( [ [ x ] , [ x_ ] , [ y ] , [ y_ ] , [ 1 ] ] )
2

3 #Simulat ion v a r i a b l e s
4 dz = 0.001
5 z_ l i s t = [ 0 ]
6 z = 0
7 pos = In
8 pos_ l i s t = [ In ]
9

10 whi le z < pre_len :
11 z+=dz
12 z_ l i s t . append ( z )
13 pos = M_drift ( dz ) ∗pos
14 pos_ l i s t . append ( pos )
15

16 #Going through ha l f so lenoid_ !
17 now = z
18 whi le z < now+so l1_e f f_len /2 :
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19 z+=dz
20 z_ l i s t . append ( z )
21 pos = M_sol ( sol1_k , dz ) ∗pos
22 pos_ l i s t . append ( pos )
23

24 #Corrector_1
25 pos = M_kick(V1kick_dp_x , H1kick_dp_y) ∗pos
26

27 #Going through ha l f so lenoid_1
28 now = z
29 whi le z < now+so l1_e f f_len /2 :
30 z+=dz
31 z_ l i s t . append ( z )
32 pos = M_sol ( sol1_k , dz ) ∗pos
33 pos_ l i s t . append ( pos )
34

35 #Dr i f t between s o l e n o i d s
36 now = z
37 whi le z < now+middle_len :
38 z+=dz
39 z_ l i s t . append ( z )
40 pos = M_drift ( dz ) ∗pos
41 pos_ l i s t . append ( pos )
42

43 #Going through ha l f s o l eno i d body_2
44 now = z
45 whi le z < now+so l2_e f f_len /2 :
46 z+=dz
47 z_ l i s t . append ( z )
48 pos = M_sol ( sol2_k , dz ) ∗pos
49 pos_ l i s t . append ( pos )
50

51 #Corrector_2
52 pos = M_kick(V2kick_dp_x , H2kick_dp_y) ∗pos
53

54 #Going through ha l f so lenoid_2 body
55 now = z
56 whi le z < now+so l2_e f f_len /2 :
57 z+=dz
58 z_ l i s t . append ( z )
59 pos = M_sol ( sol2_k , dz ) ∗pos
60 pos_ l i s t . append ( pos )
61

62 #Dr i f t in c o l l ima t o r
63 now = z
64 whi le z < now+post_len :
65 z+=dz
66 z_ l i s t . append ( z )
67 pos = M_drift ( dz ) ∗pos
68 pos_ l i s t . append ( pos )
69

70 #cr ea t i n g the x_l i s t
71 x_l i s t = [ ]
72 i = 0
73 whi le i < l en ( po s_ l i s t ) :
74 x_l i s t . append ( po s_ l i s t [ i ] [ 0 ] ∗ 1 . 0 e+3)
75 i+=1
76
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77 #cr ea t i n g the y_l i s t
78 y_l i s t = [ ]
79 i = 0
80 whi le i < l en ( po s_ l i s t ) :
81 y_l i s t . append ( po s_ l i s t [ i ] [ 2 ] ∗ 1 . 0 e+3)
82 i+=1

Listing 5.4: Simulation

1 f i g , ( ax1 ) = subp lo t s ( nco l s =1, nrows=1, f i g s i z e =(18 ,12) )
2

3 ax1 . s e t_x labe l ( ' Po s i t i on [m] ' )
4 ax1 . s e t_y labe l ( ' Tranverse p o s i t i t i o n [mm] ' )
5

6 ax1 . p l o t ( z_l i s t , x_l i s t , '−b ' , l a b e l = ' x ' )
7 ax1 . p l o t ( z_l i s t , y_l i s t , '−r ' , l a b e l = ' y ' )
8 ax1 . s e t_ t i t l e ( 'Hard−edge mode l l ing by hand ' )
9

10 ax1 . l egend ( )
11 ax1 . g r id ( )
12

13 show ( )

Listing 5.5: Plotting
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Appendix II - Code: Transfer matrix

from �eld map segmentation

The magnetic �eld pro�le can be divided into segments to produce a more accurate
transfer matrix, see Fig. 4.1. The code that calculates this matrix is presented below.
With this code, the transfer matrix of a segmented �eld map for a solenoid of 235 mT
was calculated to be:

Msol, 235 =


0.3339 0.2705 0.3818 0.3093
−1.2045 0.3221 −1.3773 0.3683
−0.3818 −0.3093 0.3339 0.2705
1.3773 −0.3683 −1.2045 0.3221

 , (5.1)

which gives the values

B235 = 0.193 T, (5.2)

L235 = 349.3 mm. (5.3)

1 import numpy as np
2

3 #Proton p r op e r t i e s in SI un i t s
4 m = 1.6726219∗10∗∗(−27) ;
5 q = 1.6021766208∗10∗∗(−19) ;
6 E = 75∗10∗∗3∗q ;
7 c = 2.99797458∗10∗∗8 ;
8 gamma = E/(m∗c ∗∗2)+1;
9 betagamma = sqr t (gamma∗∗2 − 1) ;

10 Er = m∗c ∗∗2 #r e s t energy
11

12 #Soleno id constant
13 const_s = q/(2∗m∗c∗betagamma) ;
14

15 #Fi l e read ing func t i on
16 de f f ie ldMapToList ( my f i l e ) :
17 f = open ( myf i l e , ' r ' )
18 traceWin = f . read ( ) . s p l i t ( ' \n ' )
19

20 x = [ ]
21 y = [ ]
22 f o r pa i r in traceWin :
23 pa i r = pa i r . s p l i t ( ' , ' )
24 x . append ( f l o a t ( pa i r [ 0 ] . s t r i p ( ) ) )
25 y . append ( f l o a t ( pa i r [ 1 ] . s t r i p ( ) ) )
26

27 re turn [ x , y ]
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28

29 #Hard−edge model t r a n s f e r matrix
30 de f M_he(b , l ) :
31 k = b∗ const_s
32 s = s i n (k∗ l )
33 c = cos (k∗ l )
34 i f k != 0 :
35 re turn Matrix ( [ [ c ∗∗2 , s ∗c/k , s ∗c , s ∗∗2/k ] ,
36 [−k∗ s ∗c , c∗∗2,−k∗ s ∗∗2 , s ∗c ] ,
37 [− s ∗c ,− s ∗∗2/k , c ∗∗2 , s ∗c/k ] ,
38 [ k∗ s ∗∗2,− s ∗c ,−k∗ s ∗c , c ∗ ∗ 2 ] ] )
39 e l s e :
40 re turn Matrix ( [ [ 1 , 0 , 0 , 0 ] ,
41 [ 0 , 1 , 0 , 0 ] ,
42 [ 0 , 0 , 1 , 0 ] ,
43 [ 0 , 0 , 0 , 1 ] ] )

Listing 5.6: Parameter settings and method de�nitions

1 #Read the f i e l d map
2 s o l = f ie ldMapToList ( ' S t e e r e r / f ie ld_map_solenoid . txt ' )
3

4 #Redef ine z to s t a r t at 0
5 l ength = s o l [ 0 ] [ l en ( s o l [ 0 ] )−1]− s o l [ 0 ] [ 0 ]
6 s o l [ 0 ] = [ i−s o l [ 0 ] [ 0 ] f o r i in s o l [ 0 ] ]
7

8 #Fi t t i n g
9 p = numpy . p o l y f i t ( s o l [ 0 ] , s o l [ 1 ] , 4 0 )

10

11 #Calcu la t ing i n t e g r a l
12 q = numpy . po l y i n t (p) ;
13

14 #I n i t i a t i n g matrix
15 M_sol = np . matrix ( [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] ] )
16

17 #Set segmentat ion parameters
18 N = 10000
19 dz = length /N
20 z = 0
21

22 #Calcu la te i n t e g r a l
23 f o r i in range (0 ,N) :
24 I = numpy . abs(−numpy . po lyva l (q , z )+numpy . po lyva l (q , z+dz ) )
25 b = I /dz
26 M_sol = M_he(b , dz ) ∗M_sol
27 z+=dz
28

29 pr in t (M_sol )
30

31 #ca l c u l a t i n g new B and L
32 k l = np . arctan (np . f l o a t 6 4 (−M_sol [ 3 , 0 ] /M_sol [ 1 , 0 ] ) )
33 aux2 = np . s i n ( k l ) ∗∗2
34 k = np . f l o a t 6 4 (M_sol [ 3 , 0 ] ) /aux2
35 B = k/const_s
36 L = kl /k
37

38 pr in t ( [B,L ] )

Listing 5.7: Transfer matrix calculation via segmentation
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Appendix III - IPAC conference

abstract

Transverse dynamics and software integration

of the ESS Low Energy Beam Transport

So�a LOUISY, Natalia MILAS

Abstract: The �rst part of the ESS linac, which comprises the Ion Source and the Low
Energy Beam Transport (LEBT) section, will be installed and commissioned already in
early 2018. The LEBT is used to focus and correct the proton beam trajectory and clean
the head and tail of the proton pulse from the �at top before entering the RFQ. Full beam
characterization is planned during the ion source and LEBT commissioning at the RFQ
entrance interface. It is thus important to have an application at the control room able to
display quantities measured by the diagnostic devices and also to quickly run a simulation
including not only centre of mass dynamics but also envelope. This paper presents the
e�orts in modelling the LEBT elements, as accurately as possible, and implementing the
dynamics calculation and integration with diagnostics tools. The �nal result is a Java FX
GUI based on the OpenXAL library.
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