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Abstract

Traumatic brain injury and diseases causing cortical damage is a global problem.
Despite their vast extent, their pathophysiology is poorly understood. It is how-
ever known that the loss of motor functions can be regained thanks to adaptive
properties of the neuronal system. Early task specific motor training is proven
to be critical for rehabilitation. We set out to better understand how the CNS
controls hand movement to in the future be able to access optimal diagnosis and
motor training succeeding cortical damage. The approach, being to reach exper-
imental support to the theory that muscle synergies during reach-to-grasp type
movements are mirrored by synergies in cortical activity, was put into effect with
the use of a tracking device for hand movement called Leap Motion, and an EEG
system. Simultaneous recordings from these two systems were made on subjects to
document angles of the hand as well as EEG signals in the cortex during approx-
imately 100 repeats of four different types of carefully designed reach-to-grasp
movements. Correlations between specific angles of the hand during the move-
ments were calculated and plotted, as well as correlations between all electrodes.
PCA was performed on both data sets to evaluate the possibility of dimensionality
reduction. The results revealed groups with similar correlation patterns in both
angular and EEG data, as well as primary principal components with high eigen-
values for both data sets, supporting the documented notion of muscular synergies
as well as the theory of synergistic behaviour in the CNS.
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Chapter1
Introduction

This chapter explains the reason why this project was initiated. We introduce a
background explaining why this work is important as well as highlighting its goals
and purposes, giving the reader a general overview of the subject.

1.1 Background
Traumatic brain injury is reported at all ages. It is a leading cause of death and
long term disability among people younger than 45 years of age. In 1990, there
was an estimated 9,500,000 cases of traumatic brain injury worldwide requiring
medical care or resulting in death. Despite its vast frequency, pathophysiological
mechanisms of traumatic brain injury remain poorly understood. [1]

Stroke is also a common neurological threat in the western world. According
to the World Health Organisation, 15 million people per year worldwide suffer a
stroke. After coronary heart disease and cancer, it is the third leading cause of
death. A stroke, causing interruption of blood supply to the brain or intracranial
bleeding, often leads to dysfunctionality of the affected vascular territories, and
ultimately necrosis. Therefore, if not resulting in death, a stroke often causes
disability in a variety of forms. [2]

When suffering a head trauma, stroke or certain degenerative brain diseases
such as dementia, Alzheimer’s disease and many more, damage is often located to
the cortex of the brain. Large areas of the cerebral cortex represent the coordina-
tion of motion and sensation in the hand. In the motor cortex, the area devoted to
the hands approximately equals the total area devoted to arms, torso and legs. [3]
In most cases of occurred cortical damage, motile abilities of patients are affected.
However, the brain has an intrinsic capacity to compensate for structural damage
by reorganising surviving networks. These processes are fundamental for recovery
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Introduction

of function after the mentioned forms of brain injury. Functional neuroimaging
techniques have allowed the investigation of these processes in vivo. Loss of motile
function after brain damage can thus be regained by proper treatment. [2]

A critical factor for cortical reorganisation and recovery seems to be task-
specific practice of mobility. In healthy animals, it can be seen that immobilisation
of a limb for several months leads to reorganisation of the neuronal network in the
cortex representing the limb. More importantly, the reorganisation phenomena
are reversible after cancelling the immobilisation and commencing motor training.
These results demonstrate the adaptational abilities of the cortex when restricting
movement, as well as the impact of motor training. [4]

In another study, it was shown that after ischemic damage to the cortical hand
motor area, monkeys receiving four weeks training of hand use expanded cortical
representations of fingers, wrist and forearm into intact cortex that had been
formerly occupied by the elbow and shoulder representation. On the other hand,
monkeys that did not receive training of hand use experienced a loss of the finger
and wrist-forearm representation area in the surviving cortex. These findings
emphasise the importance of early rehabilitative training for desired functional
recovery following brain damage. [5]

Regarding cortical brain damage as in humans, diagnosis and rehabilitation is
heavily dependent on the knowledge and experience of the physician in practice.
The reason is that the methods used for diagnosis today are medical examinations
by physicians and body scans that show only anatomy and not sufficient neuro-
logical function. Morgenstern et al. conducted a population based study where
the results argue for a system with neurology support so that proper decisions
regarding stroke therapy can be made [6]. Today, we lack a quantitative measure
of brain function suited for this purpose. Tools for imaging such as CT, MRI and
DTI are used, but the sampling rate and obtained information is not sufficient for
optimal analysis of damage. It has been shown that early task-specific practice of
mobility is a critical factor for cortical reorganisation and recovery after cortical
damage [4, 5]. A more systematic, general and accurate method of diagnosing
brain damage is needed to access optimal recovery of brain function after damage
in the brain cortex [1].
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1.2 General purpose of the project
The purpose of this project is to contribute to research intended to lead to an
increased understanding of how the CNS controls hand movements. In the long
term, this can potentially be used to develop improved methods of diagnosing and
rehabilitating patients with cortical brain damage.

1.2.1 Specific goals
The specific goal of this project is to examine whether muscle synergies used during
reach-to-grasp type movements are mirrored by synergies in the brain activity. By
exploring this possibility, the thesis aims to contribute to future studies regarding
how the CNS controls hand movement. This main objective was split into partial
goals providing a more straightforward way to track progress as well as giving a
structured overview for all parties involved. The goals are presented in the form
of sections in upcoming chapters:
- Initial analysis of test data
- Design of reach-to-grasp movements
- Simultaneous collection of Leap Motion and EEG data
- Separate data analysis
- Matching Leap Motion and EEG data
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Chapter2
Theory

2.1 Anatomy and physiology of the CNS
The CNS is the part of the nervous system consisting of the brain and the spinal
chord. Essentially, the cellular composition of the CNS is nerve cells and glia
cells (astrocytes, oligodendrocytes, ependymal cells and microglia). The nerve
cells have a cell body where the nucleus is located. Dendrites and axons emerge
from the cell body to form a network. The nerve cells are responsible for the
transmission of information in the nervous system and to enable this, contact
between the nerve cells is essential. Contact is achieved through synapses formed
between an axon terminal of one neuron and a dendrite or cell body of another
neuron. See figure 2.1. The synapse is a structure that permits a neuron to send
an electrical or chemical signal to another neuron. [7, 8]

Figure 2.1: Two neurons and the connections formed between them
through synapses.
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If the membrane of a neuron is penetrated with a micro electrode, a resting
potential of 60-70 mV can be recorded intracellularly. Synaptic activity causes
fluctuations in this potential. Certain excitatory fluctuations give rise to action
potentials that travel along the axons and allow nerve cells to communicate with
each other. [8] The communication of the nerve cells leaves a trail of electrical
activity that can be measured on the scalp with an EEG system. This will be
further described in section 3.2.

2.2 The human hand
As can be seen in figure 2.2, the bones in the hand are plentiful. For this particular
study, we focus on the fingers. The fingers are comprised of four bones each with
the thumb as an exception, which contains only three bones. The bones closest to
the wrist are called metacarpals. The metacarpals are followed by the phalanges.
There are three phalanges in each finger except the thumb: proximal (closest to the
metacarpals), intermediate (middle) and distal (furthest from the metacarpals).
The thumb lacks the intermediate phalange. [10]

Figure 2.2: Bones of the fingers in the human hand.
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The connections between the bones in the fingers form joints. The joints be-
tween the metacarpals and proximal phalanges are called metacarpo-phalangeal
(MP). The proximal and intermediate phalanges form the proximal-interphalangeal
joints (PIP) and the intermediate and distal phalanges form the distal-interphalangeal
joints (DIP). See figure 2.3. [3]

Figure 2.3: Joints in the fingers of the human hand.

2.3 Hand movement and grasping
The structure of the human hand, with its intricacy of bones, muscles, tendons,
blood vessels and nerves, is a product of a long evolution. At functional level, the
hand has evolved into a dynamic structure that combines rich sensory components
and strength: it handles the scalpel of a neurosurgeon as well as the hammer of a
blacksmith.

Provided the highly sophisticated structure of the hand, a seemingly infinite
variety of movement patterns can be achieved. The disproportionately large area
in the cortex devoted to the hands ensures great potential of learning new activities
and coordinated hand movements. [3]

As infants, we mostly use our hands as sensory organs to explore environmental
properties around us. As we grow and the CNS continues to mature, we start using
our hands as motor organs to grasp objects and pre-shape our hands before doing
so depending on the dimensions of the object. We perform reaching movements
frequently and effortlessly, for example when eating food or using a tool. Because
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of the critical role that the hands play in daily activities, many studies have been
conducted to characterise the way the CNS controls the motions of the hand.
The seemingly simple task of grasping an object contains a highly complicated
cooperation of our muscles, bones and joints that is initiated in the CNS. [9]
Studies conducted so far provide a comprehensive, although incomplete, picture of
the neural mechanisms underlying object grasping. As one could expect, the CNS
behaves differently when grasping an object depending on the physical properties
of the object (i.e. its size and shape), affecting the pre-shaping of the hand.
However, the subject could grasp the same object with different end goals, for
instance in order to eat it or to place it in a basket. Thus, the same grip can be
used to attain different action goals. It is noteworthy that recent studies show
that grasping neurons in monkeys can be differentially activated depending on the
action (grasp-to-eat or grasp-to-place) in which the coded act is embedded. [11]

The opposing thumb is especially important for grasping purposes. The versa-
tility of the thumbs lies in its flexion-extension patterns and the adjustable rotatory
plane in which the flexion-extension can take place. This allows the thumb to act
in any plane necessary to oppose the other fingers. [12]

Given the large variety of possible prehension patterns, it is sufficient to de-
scribe the principal types of patterns for analytical purposes. Figure 2.4 shows an
example of grasping classification in the form of six basic types of grips, defined
by G. Scheslinger in 1919. [12]

Figure 2.4: Six basic types of grips defined by G. Scheslinger in
1919. [12]
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2.4 Synergies

The human hand has so many degrees of freedom that it may seem impossible to
control. A potential solution to this problem is ”synergy control” which combines
dimensionality reduction with great flexibility. Synergy is a concept where multiple
elements work together towards a common goal. It has been extensively used in
studies to understand neural control of movement, and for applications of neuro-
rehabilitation. In recent years, robotics have applied the framework of synergies
to design and control concepts for robotic hands and prostheses. [9]

Synergies have been shown to be active on several levels, including (but not
limited to) neural, muscular, joint and on movement trajectory level. At the
level of neurons, neural input could be viewed as a form of synergistic control as it
constraints the timing at which multiple motor units are activated. [13] Kinematic
and kinetic analysis of reaching have shown invariant features suggesting that the
CNS relies on simple rules for movement planning and execution.

On muscular and joint level, muscle synergies have been defined as patterns of
muscle activity whose timing and/or amplitude modulation enable the generation
of different movements. The dynamic relationships between muscle activation and
joint torques, and between joint torques and joint motions are complex and non-
linear. [14] The synergy term has been used in several contexts when describing
thumb and finger movements, often referring to observations of movement patterns
that are characterised by simultaneous motion of the fingers in the early stages
of a grasping motion, and for the purpose of classifying hand movements or grasp
postures. Studies of isolated finger movement (for instance when typing) and
movement sequences involving motion of one or more digits (piano playing or
finger spelling) have found that during isolated finger movement, motion that
is not necessary to complete the task also occurs at other fingers in a subject-
dependent but stereotypical fashion. This type of movement is called corollary
movement. The degree of movement correlation across pairs of digits is stronger for
adjacent than non-adjacent digits. The studies have also reported that corollary
movement is not obligatory considering biomechanical constraints of the hand.
These observations have lead to the suggestion that synergistic finger motions
would simplify the problem of controlling the large number of degrees of freedom
inherent in motion of all of the fingers of the hand. [15]

Figure 2.5 shows an illustration of how muscle synergies are known to work.
It shows a pattern of co-activation of muscles recruited by single neural command
signals. As illustrated, one muscle can be part of multiple muscle synergies, and
one synergy can activate multiple muscles. [15]
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Figure 2.5: An illustration of muscle synergies controlled by single
neural command signals.
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Regardless of the level on which the synergy exists, the main implication shared
across the levels is that multiple degrees of freedom are controlled within a lower
dimensional space than the available number of dimensions. The combination of
synergies as a whole allows normal movement. Injury to the nervous system would
interfere with the ability of the system to flexibly combine synergies, thus leading
to abnormal synergies. [9]

Existing research suggests that muscle synergies are building blocks used by
the CNS to control goal directed movement. However, regularities may derive
from optimisation of the task. Although theories exist, as for now there is no
direct documented evidence for muscle synergies as centrally organised building
blocks in the CNS. This support would come from identifying the neural substrates
of the muscle synergies, which would help to clarify whether muscle synergies are
merely low-dimensional approximations of the muscle patterns or building blocks
organised by the CNS. [14] This uncertainty is mainly what we attempt to shed a
light on in this thesis.

2.5 Motor control
As mentioned in section 2.4, synergies related to motor control exists on several
levels. A central problem in the neural control of multi-joint movement is the
degree of freedom problem: given the seemingly infinite number of mechanical
degrees of freedom of the human movement system, how does the nervous system
organise and simplify the control of these degrees? In 1967, N. Bernstein concluded
that at higher levels of the nervous system, spatial aspects of movements are
controlled rather than the action of specific joints of muscles, meaning that the
neural command for hand movements is formulated in terms of trajectories of the
hand in space. [16] The underlying notion in this and many other studies of motor
control is that the more invariant and simple an ensemble of movement trajectories
is, the more likely it is that the nervous system employs that reference frame.
In other words, control in this conception refers to stabilisation of a movement.
By implication, lack of control means reduced stability and less regularity of the
movement. [17] Kinematic regularities observed at the level of the end-effector are
interpreted as evidence for end-effector control, and kinematic regularities at the
level of the joint configuration are interpreted as evidence for joint-level control.
A similar argument can be made for yet other levels, such as patterns of EEG or
of joint torques. [18]
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2.6 Principal component analysis
PCA has its origin in work by Karl Pearson around the turn of the 20th century
[19], and was further developed and named in the 1930s by Harold Hotelling. [20]
It is a technique for reducing the dimensionality of large datasets, thus increas-
ing its interpretability and preserving the information of the data. It needs no
distributional assumptions, although multivariate normal (Gaussian) distribution
of data sets is usually assumed. Since the statistical information of data lies in
its variability, PCA finds new uncorrelated variables (principal components) from
correlated ones through maximising the variance of the data. These PCs are linear
functions of the original variables and they depend on the data set at hand rather
than being pre-defined, meaning that they are signal dependent. [21]

Each PC contains new information about the data set. They are ordered so
that the first few components account for most of the variability in the data. In
signal processing applications such as ours, PCA is used on time samples rather
than on a data set of variables. Another way of describing PCA is that it’s an
orthogonal rotation of the space in which the data set is presented. The first axis of
the transformed coordinate system accounts for the maximal variance of the data
set, the second axis to the maximal variance in the direction orthogonal to the
first axis, and so on. The emphasis on variance stems from the observation that
high variance corresponds to interesting dynamics of a signal, while low variance
usually corresponds to noise in the system. [22]

PCA can be based on either the covariance matrix or the correlation ma-
trix of the data set. The correlation matrix is obtained by multiplying the data
set matrix with its transpose. Finding the PCs translates into solving an eigen-
value/eigenvector problem of the correlation matrix. The eigenvector correspond-
ing to the largest eigenvalue constitutes the first PC, the second order eigenvector
constitutes the second PC and so on. Once obtained, the PCs can be further used
for facilitated analysis of the data set. [21, 22]
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Chapter3
System

This chapter provides an overview of the hardware and software used during the
progression of the project.

3.1 Leap Motion
The Leap Motion Controller (see figure 3.1) is a motion capture device that tracks
hand, wrist, forearm and elbow positions. Benefits such as low cost, user friend-
liness, portable size and open source documentation/coding has lead to a rapidly
occurring integration of the device into health-care applications and research. The
open source documentation allows potential of specifying use of the controller. [23]

Figure 3.1: The Leap Motion Controller, a marker-less motion sens-
ing system designed to quantify hand movements and gestures.
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The controller consists of two cameras and three infrared LEDs. These com-
ponents track infrared light with a wavelength of 850 nm. [25] A hand observed
by the system is tracked within a three dimensional space above the controller.
The system employs a right-handed Cartesian coordinate system. See figure 3.2
for an illustration of the axes of the coordinate system relative to the controller.
[24] The sensors are directed along the y-axis, i.e. upwards from the sensor and
they have a field of view of about 150 degrees. The effective range of the Leap
Motion Controller extends to up to 60 centimetres above the device. [24]

Figure 3.2: The Leap Motion Controller with and illustration of its
tracking coordinate system. [24]

Figure 3.3: Available positional tracking data through the Leap
Motion application programming interface. [26]
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See figure 3.3 the positional tracking data of the hand available through the
application programming interface. Every tracked entity in the Leap Motion in-
teraction space falls within a hierarchy that starts with the hand. The system
allows tracking of all bones shown in the figure, along with positional information
of all joints in the hand, palm, wrist, forearm and elbow. [26]

A. Smeragliuolo et al. conducted a study in 2016 validating its ability to quan-
tify three types of hand movements as well as three types of hand positions, see
figure 3.4. They compared the tracking data with a marker-based motion cap-
ture system from MAC by studying correlation. Wrist flexion/extension and ra-
dial/ulnar deviation showed good overall correlation (95% and 92% respectively)
with the MAC system. However, when tracking forearm pronation/supination,
there were inconsistencies in reported joint angles with a correlation of 79%. Ad-
ditionally, performing movements with a loose or tight fist resulted in data with
significantly lower quality than open hand movements. [23] This has to be taken
into account when designing hand movements for research.

Figure 3.4: Hand movements: a) radial/ulnar deviation, b) flex-
ion/extension, and c) supination/pronation. Hand positions:
d) open hand, e) loose fist, and f) tight fist. [23]
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3.2 EEG equipment
Modern medicine allows a number of electrophysiological techniques to analyse the
functions of the human body. One group is electrobiological measurements such
as EEG (brain) along with ECG (heart), EMG (muscular contractions), MEG
(brain, magnetic), EGG (stomach) and EOG (eye dipole field).

The EEG is a technique that allows measurement of scalp electrical activity
generated by brain structures. The electroencephalogram is defined as electrical
activity of an alternating type recorded from the scalp surface after being picked
up by metal electrodes through conductive media [27]. Since it is measured on the
surface of the head, it is a non-invasive procedure that can be repeatedly applied
to all kinds of patients with minimal risk and limitation. [28]

The EEG measures mostly the currents produced during synaptic activity
(described in section 2.1). Only large populations of neurons can generate activity
strong enough to record on the skull. In order to reach the electrodes on the
surface, the currents need to penetrate the skin, skull and several other layers.
The electrical signal is weakened during the transport and therefore needs to be
massively amplified before being displayed on paper or stored to computer memory.
[29] Since EEG reflects both normal and abnormal electrical activity of the brain,
it is a powerful tool in the field of neurology and clinical neurophysiology. [28]

Electrical activity of neurons forms wave shapes that commonly are sinusoidal.
They normally range from 0.5 to 100 µV in amplitude peak to peak. The brain
state of the individual may make certain frequencies more dominant at times.
Brain waves are categorised into four basic groups, see figure 3.5: beta (>13 Hz),
alpha (8-13 Hz), theta (4-8 Hz) and delta (0.5-4 Hz). The most extensively studied
frequency of the human brain is the alpha rhythm. Alpha activity is induced by
relaxation and closing of the eyes, and abolished by eye opening or alertness by
mechanisms such as concentrated thinking. During normal awake state beta waves
are dominant and when sleeping the power of lower frequency bands increase. [28]

Figure 3.5: Brain wave samples with dominant frequencies belonging
to beta, alpha, theta, and delta band. [28]
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Several types of events such as a hand movement result in the generation
of event-related potentials, synchronisations and desynchronisations which can be
seen in measurements of electrical activity . Averaging techniques are often used in
order to detect event-related potentials since the procedure enhances the signal-
to-noise ratio. [30] See figure 3.6 for an average of recordings from 60 finger
movements and 60 foot movements made by C. Toro et al. The data is an average
of 60 self-paced movements for both finger and foot movements. Frequency of
movement was approximately 0.1 Hertz. [31]

Figure 3.6: (A) Movement-related cortical potentials, (B) 10-12 Hz
event-related desynchronisation and (C) 20-30 Hz event-related
desynchronisation responses recorded from 5 electrodes to finger
movements (thick lines) and foot movements (thin lines) in a
patient. [31]

H. Agashe et al. conducted a study in 2015 where EEG and hand kinematics
were simultaneously recorded during tasks of object grasping. The purpose was to
quantify the EEG information by measuring its ability to discriminate between the
grasp types. Kinematics were segmented consistent with the EEG and PCA was
used to decompose the joint angular velocities into kinematic synergies across all
trials. In this study, they found high decoding accuracy’s far above chance levels
for both joint angle velocities and their synergies, see figure 3.7. These findings are
significant not only as evidence for time-domain modulation in macro-scale brain
activity, but for the field of brain-machine interfaces as well. They may provide
a means of extracting information about motor intent for grasping without the
need for penetrating electrodes, and also suggest that it may soon be possible to
develop non-invasive neural interfaces for the control of prosthetic limbs. [32]
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Figure 3.7: EEG decoding accuracies for the first three PCs of hand
movement found in the study of H. Agashe et al. Mean decod-
ing accuracies across subjects are shown in red for PC1, PC2
and PC3. [32]
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Chapter4
Method

This chapter, as well as the following chapter with results, are structured chrono-
logically by following the five main goals of the project (mentioned in section 1.2.1).
A recap of the goals with brief summaries of methods follows:

• Initial analysis of test data

– Focusing on Leap Motion, previously recorded hand coordinates during
repeats of movements were extensively studied in MatLab with the aim
of finding flaws and optimising both data collection and data analysis
of hand movements. New small scale Leap Motion recordings were
conducted to solve discovered problems, test new theories and apply
calculations.

• Design of reach-to-grasp movements

– Appropriate reach-to-grasp movements were designed for subject tri-
als. A high variation of movement types was aimed for with respect
to limitations of the Leap Motion controller.

• Simultaneous collection of Leap Motion and EEG data

– The designed reach-to-grasp movements were performed by subjects
while recording and saving both Leap Motion and EEG data.

• Separate data analysis

– Leap Motion data: useful parameters were imported from the Leap
Motion data recorded during subject trials, parameter data from move-
ment repeats were cut out from the continuous data, angles of the hand
were calculated and extracted from this data, angular correlation co-
efficients were calculated and plotted at fixed samples and over time,
PCA was performed.
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– EEG data: the EEG data outside the time-span of the Leap Motion
recording was cut out and discarded, the EEG data during the move-
ment repeats were segmented out and saved for use, the signal was
filtered to reduce noise, correlations between electrodes were calcu-
lated during the movement repeats, noisy electrode data was removed,
electrode correlations were plotted at fixed samples and over time,
PCA was performed.

• Matching Leap Motion and EEG data

– Temporal correlation coefficient plots from Leap Motion and EEG data
were visually compared to analyse how to match the two data sets and
proceed with future synergy studies.

The complete method description of each goal is presented in its own section
ahead.

4.1 Initial analysis of test data
Computations, data processing and plotting were performed using MATLAB (The
MathWorks Inc., USA). Data sets from the Leap Motion controller as well as the
EEG system were saved in formats compatible with this program.

4.1.1 Analysis of pre-existing data
Visualisation of Leap Motion data previously collected(by the department of neural
bases of sensory motor control at BMC, Lund) for three different reach-to-grasp
type movements (a precision grip of a small desk lamp, power grip of a pen and
grasping of a round lid with all finger tips) revealed several problems regarding
upcoming analysis. Primarily the coordinate system seemed to fluctuate, creating
a deviation in the end point coordinate location of a hand movement even though
it spatially never changed. With deviating end point coordinates the repeats of
a movement would not be relatable to each other since the end goal of a reach-
to-grasp movement is the only consistent spatial feature within each type of the
movement. This feature of the system would greatly interfere with future analysis
since the tracking data would need to be manipulated (without distorting the
information) to reach a conformed end point. Attempts were made to find a
general and automatic way to decide the end points of each repeat from the raw
data. This task was particularly difficult since there is no guarantee that the
hand will behave in a certain way during a movement, or stay within any pre-
set boundaries. This lead to the decision to manually identify and select the
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termination points by visualising the Leap Motion data in a predictable spot on
the hand. For instance, when performing precision gripping, the tip of the index
finger would seemingly be good spot to look at since its coordinates in space should
show an abrupt stop when reaching the final destination. Despite using plots of
predictable joint coordinates, it proved difficult to determine the exact location
of the end point in the data. For this reason, a small sample window around
these selected points were used to align the trajectory of each repetition of the
movement with the initial one. The alignment was made with Procrustes analysis
using a simple linear transformation consisting only of orthogonal rotation and
translation. In this case, the transformation T(X) was from R3 → R3 and can be
described by equation 4.1, where t is the translation vector and R is the rotation
matrix.

T (X) = t+RX (4.1)

This way, the transforms of each repeat of the movement were found to optimally
match the end point of the initial iteration in space. These transforms were then
applied to the entire movement trajectories which were successfully moved and
matched in space, resulting in conjoined end points. However, visualisation re-
vealed an unwanted amount of deviation in the rest of the movement. In addition,
the displacement of the trajectories seemed to distort the information. For this
reason, a simpler approach was chosen. The fluctuation of the coordinate system
seemed to be the result of the hand leaving the field of vision of the Leap Motion
device between each event. Consequently, in order to avoid the problem during
future data collection, the movements were to be designed so that the hand stays
within the field of view for the entire duration of a recording session.

Another problem discovered during this phase of testing was the amount of
noise and glitches in the Leap Motion data. This issue was partly dealt with
through the solution to the previous problem. However, glitching often occurred
at the termination point of the movements since some tracking points (such as the
finger tips) would be blocked by the grasped object. Certain hand positions also
revealed glitching due to the limitations of the controller mentioned in section 3.1
and 4.2, mainly during pronation and supination of the hand or when making a fist.
This problem was avoided by designing hand movements with minimal intent of
pronation/supination. The glitches at the termination points proved more difficult
to deal with since it was impossible for all tracking points to be visible during the
grasping moment. However, the target of analysis is the pre-shaping of the hand
before grasping. Consequently, information at the absolute end of a movement
and the moment of actual grasping could be discarded, making glitching during
this phase irrelevant. Therefore, movements that include creating a fist at the
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grasping moment could be used despite this. This conclusion was helpful since it
allowed a broader spectrum of grasping types for data collection and analysis.

4.1.2 Small scale data collection
To further prepare for the simultaneous data collection described in section 4.3,
different movements were tested while being tracked with the Leap Motion con-
troller and evaluated during this phase. As previously mentioned, the end-points
had proven to be difficult to pin point because of different tracking points being
blocked by the grabbed item. As the whole hand was visible and no tracking points
blocked at the starting phase of each repetition, these points were much more dis-
tinct. Consequently, it was decided that the starting phases of each movement
repetition would be used to mark and extract movement trajectories.

Initially, a lot of testing was performed with the coordinates of a hand during
movement. This seemed natural since the coordinates showed the trajectory of
the hand. When visualising the coordinates in a 3D plot, it was discovered that
there was a lot of deviation within each type of movement since the position of the
hand in space is not reproducible. This problem was solved through the realisation
that looking at the angles of the joints together with the angles between adjacent
fingers, as well as the roll, pitch and yaw of the hand sufficiently describes the pre-
shaping of the hand while eliminating the dependency of hand localisation in space.
As seen in figure 3.3 in section 3.1, the Leap Motion controller tracks the positions
of all joints in the hand in the form of coordinates in a 3D space. The spatial
whereabouts of the bones that form the fingers is also obtainable in the form of
vectors through programming. Since joint angle is not a feature directly available
through the Leap Motion programming interface, they were obtained through
calculations in MatLab. An open source java-code for tracking and printing the
coordinates of all joints in the hand, position of the palm, wrist and elbow, roll,
pitch and yaw was found. Using the open source documentation of Leap Motion
as a basis, this code was modified to find the bone vectors and store them along
with the pre-set features. The bone vectors were used to calculate targeted angles
of the hand using linear algebra.

To proceed with the analysis, 50 repetitions each of three distinct reach and
grasp type movements were evaluated by tracking the movements and creating
scatter plot matrices from the recorded data. This was done to verify that the
movements were distinguishable and that changes of different angles of the hand
were correlated with each other.
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4.2 Design of reach-to-grasp movements
Since the tracking of the Leap Motion controller is done with the help of cameras
and LEDs directed upwards from the position of the controller, anything behind
the initial target is impossible to track with absolute certainty. The controller
uses algorithms and interpolation to estimate the positions of body parts outside
its field of vision. This is a major limitation of the controller. As described in
section 3.1, forearm pronation/supination and fist formation should be avoided to
maximise tracking accuracy. This was important to consider when designing move-
ments for further analysis. Variations in joint angles, roll/pitch/yaw and in angles
between adjacent fingers were highly considered when designing the movements.
Four different types of grasping movements were designed with requirements and
tracking limitations taken into account.

4.3 Simultaneous collection of Leap Motion and EEG
data

Four subjects participated in the simultaneous data collection of EEG and Leap
Motion data. Setup of objects (pencil/bottle) used as targets of grasping were
prepared as shown in figure 4.2. Subjects were instructed how to perform the
four designed reach-to-grasp movements shown in section 5.2. EEG equipment
was attached to the scalp of the subjects according to instructions from the EEG
system manufacturer (128 electrode Geodesic Sensor Net), see figure 4.1. Electrode
impedance was measured and electrodes showing poor conduction were moistened
with a pipette to optimise conductivity. EEG system calibration was performed
prior to each recording. When comparing collected data from EEG and Leap
Motion, it is essential that they can be related to each other in the time domain
and if they can not, there is no way to find useful correlations between EEG
signals and hand movements. Therefore, time stamps were checked when testing
Leap Motion data collection to make sure the time-line during each session was
continuous and didn’t reset due to any events. In order to temporally match the
two data sets created during each trial, a timestamp mark was manually generated
in the EEG files as soon as the Leap Motion data collection started, as well as
at the moment it finished. Subjects performed approximately 100 iterations of
each reach-to-grasp movement, resulting in four sessions per person. They were
instructed to perform grasping as intuitively as possible with minimal thinking
activity and concentration to minimise interfering signals from irrelevant cortical
activity.
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Figure 4.1: Subject with attached EEG electrodes.

Figure 4.2: Illustration of the setup with a pen as grasping target.
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4.4 Separate data analysis
Here follows a description of how the data files from the final collection of Leap
Motion and EEG data were processed and analysed. Each flow chart is followed
by a more detailed description of the involved steps.

4.4.1 Leap Motion
Figure 4.3 gives an overview of the processing performed on data from the Leap
motion device during the simultaneous data collection described in section 4.3.

Extract use-
ful parameters1

Manually select
starting point of
each repetition

2

Cut out movement
repeats from the

continuous time-line
3

Create and
save features4

Calculate angular
correlation coefficients
and create correla-
tion matrices/plots

5

Perform PCA6

Figure 4.3: Flow chart of Leap Motion data processing.
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Step 1 - Extract useful parameters

The raw data files from the Leap Motion recordings during the reach-to-grasp
movements by the subjects contained a substantial amount of tracking information.
They were loaded into MatLab in the form of large matrices with all available
features represented column-wise and each sample represented by a row in the
matrix. The pitch, roll and yaw of the hand, thumb fingertip positional coordinates
as well as the bone vectors for the whole hand were imported from the matrices
of each subject and saved for further analysis.

Step 2 - Manually select starting point of each repetition

The xyz-coordinates of the thumb finger tip of each subject were plotted. The
initiations of each movement repetition were identified through these plots, and
marks were manually created at the initiation points. In this way, vectors with
temporal information of movement starting points were obtained to be used for
isolating the information of each movement repeat (in step 3) from the continuous
data.

Step 3 - Cut out movement repeats from the continuous time-line

It was assumed that each movement repeat took approximately the same amount of
subject-dependent time to perform in each recording trial. Hence, the Leap Motion
information from each starting point up to a fixed number of sample points ahead
was extracted and saved. The number of samples for each movement type and
each subject was determined by using the thumb finger tip coordinate plots with
the marked initiation points mentioned in step 2 and additionally marking the
perceived middle of the end point location area in order to calculate the average
of all repeats. Data describing the period after the point of contact, including the
retraction of the hand to the initial position, was thereby discarded, leaving only
the pre-shaping trajectory information.

Step 4 - Create and save features

The bone vectors from the extracted movement information were used to calculate
the joint angles as well as the angles between adjacent fingers. Since the tail of each
obtained subsequent vector started at the head of the previous one (see figure 4.4),
the joint angles were calculated using equation 4.2. The angles between adjacent
fingers were calculated by simply using the dot product between the metacarpal
bone vectors of each finger.
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Figure 4.4: Illustration of how joint angles were mathematically
obtained.

Angle =
360◦ − 2 ∗ cos−1( v1·v2

|v1||v2| )
2 (4.2)

The 17 chosen features (listed in table 4.1 and visualised in figure 4.5) were used
and the rest of the tracking information from the Leap Motion controller was
discarded.

Feature nr. Description
1 Pitch
2 Roll
3 Yaw
4-7 Angle between fingers
8-17 MP and PIP joint angles

Table 4.1: Description of features. All features are angles measured
in degrees.
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Figure 4.5: Illustration of numeral designations of features.

Step 5 - Calculate angular correlation coefficients and create correlation ma-
trices/plots

Matrices with feature information from all repeats were created for each sample.
Since each movement was repeated 100 times, 100 angular values were obtained
from each sample of the movements. The matrices were used to calculate and plot
the pair wise correlations using the corrcoeff-command. This way, all correlations
between the 17 angle features were obtained for each sample. The correlation
values, being within the span of r=0 (no correlation) to r=1 (full correlation),
were plotted in a greyscale matrix plot where 0 correlation would show as white
and full correlation would show as black. The correlation coefficients were then
plotted over time to see how they changed during a movement.

Step 6 - Perform PCA

PCA was performed for each sample point on the matrices with feature information
from all repeats using the princomp-command. Eigenvalues of each principal com-
ponent were obtained, and a percentage of the total variance that each principal
component accounts for was calculated by dividing the eigenvalue of said principal
component with the sum of all eigenvalues. The results of the PCA were eval-
uated to corroborate that dimensionality reduction was possible and appropriate
for future studies.
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4.4.2 EEG

The flow chart in figure 4.6 gives an overview of the data processing performed on
data from the EEG system during the simultaneous data collection described in
section 4.3. Processing in this section is dependant on results from the previous
section (4.4.1).

Extract EEG data
from the same
time-span as

Leap Motion data

1

Cut out EEG data for
each movement repeat2

Filter signals
to reduce noise3

Calculate the pair-wise
correlation coefficients
between electrodes

4

Remove data from
noisy channels5

Plot correlation
coefficients over time6

Perform PCA7

Figure 4.6: Flow chart of EEG data processing.
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Step 1 - Extract EEG data from the same time-span as Leap Motion data

The collected raw data files of the EEG recordings during the four reach-to-grasp
movements by each subject were obtained in the form of large matrices with all
128 electrodes represented row-wise. The measured electrode amplitudes in each
sample were represented column-wise. The matrices of each subject were loaded
into MatLab. The sample numbers from the initial and terminal marks created
in the EEG recordings (described in section 4.3) were used to find the beginning
and the end of each session. Everything outside of that time span was removed so
that the EEG and Leap Motion data files were matched time-wise. Furthermore,
the row representing the ground electrode was removed form the data matrix.

Step 2 - Cut out EEG data for each movement repeat

Since the two systems had different sampling rates, the starting sample numbers
from the Leap Motion recording as well as the number of samples a repeat consisted
of needed to be translated from Leap Motion samples to EEG samples. To do
this, the vector of Leap Motion starting point samples was scaled appropriately
by dividing each point with the total amount of Leap Motion samples and then
multiplying them with the total amount of EEG samples. This stretched the vector
of Leap Motion starting sample points to fit the EEG data. The new sample vector
was used to cut out the EEG data belonging to the movements cut out from the
Leap motion data as described in section 4.4.1.

Step 3 - Filter signals to reduce noise

Mean amplitudes of all repetitions for each electrode were created and visualised to
screen for reoccurring patterns within recordings from each individual electrode as
well as between different electrodes. Additionally, this was also used as an initial
approach to identify noisy electrodes that would likely distort the results when
proceeding with further analysis, and might therefore need to be removed during
future processing. The number of each of the identified noisy electrodes were
written down. All EEG data was filtered using a Savitzky-Golay filter (command
sgolay in MatLab) in order to reduce high frequency noise. Various filters were
available in MATLAB and the results obtained by using a number of different
filter types, orders and coefficients were examined evaluated by observing the plots
before and after filtering.
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Step 4 - Calculate the pair-wise correlation coefficients between electrodes

For each sample during the movements, a matrix with electrode information from
all repeats during that specific sample was created. Thus, since each movement
was repeated 100 times, 100 amplitude values from each of the 128 electrodes were
obtained for each sample of the movements. This information was used to cal-
culate and plot the pairwise correlations using the corrcoeff-command. Greyscale
correlation matrices spanning from r=0 (no correlation, white colour) to r=1 (full
correlation, black colour), were plotted for specific points in time, namely the
start, middle and end point of each movement. To be able to examine the changes
in correlation coefficients over time, these calculations were expanded to cover all
sample points.

Step 5 - Remove data from noisy channels

In the grey-scale correlation matrices, highly noisy channels were identified by
their consistently dominating white colours, corresponding to low correlation with
all other electrodes and therefore interpreted as noise. The numbering of these
electrodes were checked against the list made during step 3 to confirm that this
interpretation was correct. Thereafter, data from the noisy channels were removed
from the correlation matrices.

Step 6 - Plot correlation coefficients over time

After removing the noisy electrodes, the correlation coefficients were once again
plotted over time to see how they changed during a movement as for the Leap
Motion data in section 4.4.1, step 5. The process of creating these plots were
fairly similar, the largest difference being the number of correlation coefficients.
Whereas the the number of correlation coefficients for the Leap Motion data was
136 the number for the EEG data was closer to 15,000.

Step 7 - Perform PCA

PCA was performed on the matrices representing each sample point with informa-
tion from all repeats and all remaining electrodes using the princomp-command.
Eigenvalues of each principal component were obtained, and a percentage of the
total variance that each principal component accounts for was calculated by divid-
ing the eigenvalue of said principal component with the sum of all eigenvalues. The
results of the PCA were evaluated to corroborate that dimensionality reduction
was feasible and appropriate for future studies.
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4.5 Matching Leap Motion and EEG data
One of the aims when proceeding further with this study is to match the Leap
Motion and EEG correlation coefficient data (as shown in chapter 5, figure 5.25).
These plots from the different subjects were visualised and compared to analyse
how they should be treated in future studies to find underlying information. Meth-
ods of identifying specific synergies in the Leap Motion data and matching them
with the possible synergies in the EEG data were reflected upon and considered
for the future.
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Chapter5
Results

The following list is a brief summary in text of the results obtained for each goal.

• Initial analysis of test data

– Obtained finger tip coordinate plots show that glitches in Leap Mo-
tion data could be minimised by keeping the hand inside the controller
field of view at all times during recordings. Visualisation of coordinate
data from Leap Motion showed that movement repeats were possible
to identify and extract by finding the initiations of the reach-to-grasp
movements in the finger tip coordinates. Plotting recorded angle data
against each other during repeats of different movement types revealed
both that correlations between several angles exist and that the move-
ment types are distinguishable in the data, indicating that varying
reach-to-grasp movement types are separable through their data and
that correlation analysis is a useful tool for upcoming data analysis.

• Design of reach-to-grasp movements

– Four different types of reach-to-grasp movements were selected.

• Simultaneous collection of Leap Motion and EEG data

– Since all four test subjects repeated four different movement types
approximately 100 times each, four Leap Motion recordings and four
EEG recordings were collected from each subject, resulting in a total
of 16 Leap Motion data files and 16 EEG data files.

• Separate data analysis

– Leap Motion: As in the results of the initial analysis of test data, cor-
relation matrices for fixed time values were obtained from the Leap
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Motion data. In addition to this, the same type of matrices in a grey-
scale representation of correlation value were obtained for improved
visualisation and an overview of correlations between angles of the
hand. Plots of angular correlation values during the entire course of
the movements were obtained for an overview of how the angle corre-
lations vary in time, showing groups of similarly behaving correlation
patterns, indicating synergies. PCA analysis showed initial principal
components with high eigenvalues, indicating possibility of reduced
dimensionality and thereby also the possibility of synergies.

– EEG: Initial visualisation of mean electrode amplitudes during move-
ment repeats showed groups of similarly behaving electrodes. Grey-
scale correlation matrices showed high correlation values between many
electrodes at fixed samples. Plots of correlation values between elec-
trodes visualised over time also showed groups of similarly behaving
correlation patterns, indicating a possibility of synergies in the cor-
tex. PCA analysis showed high eigenvalues for the first few principal
components, also supporting the possibility of reduced dimensionality,
possibly also the synergy theory.

• Matching Leap Motion and EEG data

– Comparison between the obtained angular and EEG correlation coef-
ficient plots showed how the correlation behaviour of the two data sets
were related in time domain. Some methods for future data processing
were suggested.

More detailed results in the form of figures, tables and descriptions are found
in the titled sections ahead.

5.1 Initial analysis of test data
As mentioned in section 4.1.1, removing the hand from the Leap Motion field of
vision between each repetition of a movement caused glitching. Figures 5.1 and
5.2 show xyz-coordinates of the thumb fingertip during Leap Motion testing. The
glitching problem can be seen in figure 5.1, and the area around sample 8600
shows the most evident glitching. This was a recording where the hand left the
controller field of view between each movement repetition. The glitching problem
is minimised by keeping the hand inside the controller field of view at all times
during recording, as can be seen in figure 5.2.

34



Results

Sample

7500 8000 8500 9000 9500 10000

P
o

s
it
io

n

-100

0

100

200

x

y

z

Figure 5.1: Glitching in Leap Motion recording seen in thumb fin-
gertip coordinates.
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Figure 5.2: Glitching problem seen in figure 5.1 reduced by ensuring
that the hand does not leaves the field of view of the Leap
motion controller between the repeats of a movement.

In figure 5.3, the xyz-coordinate plot of the thumb fingertip coordinates for one
movement type is zoomed in to demonstrate the appearance of the trajectories.
The start point is marked by an arrow and the region where the end point (the
actual grasping of the target object) is located is marked by a circle. This was
the typical shape for all repetitions and movement types. As this figure shows,
the starting point of each movement generates a sharp change in the curve and is
therefore more distinct than the end point, which is smoother and more rounded.
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Figure 5.3: Example of what the start- and end points of a repetition
typically look like for the xyz-coordinates of the thumb fingertip.

Figure 5.4 shows all 17 features (angles of the hand) at a fixed time during
the 50 test repeats of three different types of test movements plotted against each
other. The test movements were a precision grip of a small desk lamp, a power grip
of a pen and a grasping of a round lid with all finger tips. It shows that correlations
between the features (angles) exist within the different movement types. Stronger
correlations related to all movement types can for example be seen in (row 15,
column 11), where the data points appear in a diagonal line. This is an indication
of a correlation between PIPs of the index finger and ring finger, which have
the feature numbers 11 and 15, shown in figure 4.5. The correlation means that
the synergistic muscle system of the hand encourages bending of both these PIP
joints in synchronisation with each other during all test movements. The same
phenomenon can for example be seen in (row 16, column 12) which indicates a
correlation between the MPs of the middle finger and the little finger. In some
cases, the areas of data points from the different movement types overlap (see
for example (row 9, column 7), showing values of the thumb DIP angles plotted
against the values of the angles between the ring finger and little finger). In other
cases, the areas are clearly separable (see (row 3, column 2), showing yaw angles
of the hand plotted against the roll angles of the hand). The cases where the
areas don’t overlap can be used to distinguish between different movement types,
which is useful for future work. Rows/columns 5 and 6 show the angle between
the index finger and middle finger, and between the middle finger and ring finger
respectively, plotted against other angles. As seen in figure 5.4, these plots are
examples where the data points stay within a short span on the axis. This means
that the spreads of angular values of feature 5 and 6 are small, meaning that the
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angles between said fingers are somewhat constant for these specific movement
types.

The most important overall information obtained from the plot in figure 5.4 is
that correlations between hand angles are present for some angle pairs (data points
appearing in a diagonal line) and absent for some (no visible diagonal appearance),
areas of data points from different movement types overlap in some plots and not in
others, etc. The high variation of how the data points appear in the plots provides
a basis with both unique features and features in common for different movement
types, pointing towards the ability of separating and identifying movement types,
as well as visualising a muscle synergy basis for future work.

Figure 5.4: Scatter plot matrix for 50 repetitions of three different
types of test movements.
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5.2 Design of reach-to-grasp movements

The four definitive reach-to-grasp movements chosen for analysis were a power
grip of a pen, an angled power grip of a pen, a precision grip of a pen and a
wide grasp of a bottle as shown in figure 5.5. The figures illustrate the terminal
grasps of the movements. The reaching motion prior to grasping is performed in a
straight-forward trajectory with the hand inside the Leap Motion controller field
of view at all times. The arm is relaxed on a pillow between each iteration of the
movements.

(a) Wide grasp. (b) Power grip.

(c) Angled power grip. (d) Precision grip.

Figure 5.5: Terminal grasps of the four selected movements.
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5.3 Simultaneous collection of Leap Motion and EEG
data

The simultaneous data collection for each subject resulted in four .dat files con-
taining Leap motion recordings of all positional tracking data shown in figure 3.3
along with roll, pitch, yaw and bone vectors for the different movement types, as
well as four .mat files with corresponding EEG amplitude recordings in the 128
electrodes. Additionally, the EEG data files included additional information such
as sample rate as well as markers representing the start and end of each recording
session.

5.4 Separate data analysis
All plots displayed from this point and forward in the report are created with data
from one representative subject.

5.4.1 Leap Motion
Figure 5.6 shows a matrix where each small plot shows data points of one specific
angle plotted against another specific angle from 100 repeats of each movement
type at a fixed point in time. The displayed time point is the mean of the last 10
samples of each movement repeat. The angles can be numerically identified on the
axes and thereafter anatomically identified through figure 4.5. The concept is the
same for the test plots in figure 5.4. The matrix shows that the four movement
types are separable when plotting data points from some angles against each other.
A clear example of this is for example all boxes in column 2 that show the data
points of the roll of the hand plotted against all other tracked angles. In most
of these boxes, and especially for the case in row 4, column 2 which shows the
data points of the roll of the hand plotted against the angle between the thumb
and index finger, the data points of the four movement types are separated into
their own regions. This information is valuable since it is important to be able
to separate movement types in the data for future synergy identification. In some
plots the regions overlap, for example row 8, column 7 shown in figure 5.7. The
plots in rows and columns 10-17 show data points of the MP and PIP joint angles
plotted against each other. Most of the data points in these appear in a diagonal
line, indicating a correlation between MP and PIP joint angles which is consistent
for all four movements. A clear example of this is shown in figure 5.8. Correlation
between angles in the hand is an indication that muscles acting on those joints
work together to create a movement as a whole - in other words a muscular synergy.
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Figure 5.6: Scatter plot matrix of recorded Leap Motion angles at
the end of all four hand movements.
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Figure 5.7: Row 8, column 7 from figure 5.6 zoomed in.
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Feature 11, angle in degrees
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Figure 5.8: Row 13, column 11 from figure 5.6 zoomed in.

Since the type of angular plot in figure 5.6 does not quantify the correlation,
correlation values extracted from the plot during the start, middle and end of all
four hand movements are plotted in figure 5.9 in a grey-scale representation. Each
pixel represents a correlation value between two angles where black indicates a high
correlation and white indicates a low correlation. The figure shows that there are
collective components with similar correlation behaviour within each movement at
different points in time. For example, the plots in rows and columns 10-17 that re-
main black throughout the movements indicate a high correlation and thereby the
presence of muscular synergies throughout the movement. There are also uniquely
behaving correlations present within each movement at different points in time,
for example row 3, column 1 for the power grip showing the correlation coefficient
for the yaw angles against pitch angles. It starts out with a high correlation but
decreases throughout the movement. These types of unique movement-dependent
angular correlations are important for future connection to movement-dependent
EEG electrode correlations for synergy analysis.
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Figure 5.9: Correlation coefficients of recorded Leap Motion an-
gles during start, middle and end of all four hand movements.
Black corresponds to a correlation of 1 (100%) and white to a
correlation of 0 (0%).

A detailed plot of how each correlation coefficient in the movement matrices
changes throughout the time-line of each movement can be found in figures 5.10-
5.13. In these plots, there are a total of 136 correlation coefficients representing
correlation values between the angles of the hand, each represented by a line. Many
of the lines have adjacent lines which are behaving similarly to them, indicating
similarly behaving correlation patterns between different angles of the hand. This
indicates several pairs of joints correlating in a similar manner, pointing towards
patterns of muscular synergies acting uniquely during each movement type. These
specific patterns need further exploration and comparison with EEG patterns to
reach full potential.
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Figure 5.10: Correlation coefficient time-line for the wide grasp
movement type.
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Figure 5.11: Correlation coefficient time-line for the power grip
movement type.
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Figure 5.12: Correlation coefficient time-line for the angled power
grip movement type.

Sample

10 20 30 40 50 60 70

C
o

rr
e

la
ti
o

n
 C

o
ff

ic
ie

n
t

0

0.2

0.4

0.6

0.8

1

Figure 5.13: Correlation coefficient time-line for the precision grip
movement type.
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The results of the PCA performed on Leap Motion data can be seen in table
5.1. The PC’s are represented as the percentage of the total variance that they
account for. The values confirm that a substantial reduction of the dimensionality
is possible while still giving a sufficient description of the movement trajectories,
which is a feature that appears when synergy is present.

Wide grasp Power grip Angled
power grip

Precision
grip

PC1 46.96 48.16 45.31 34.94
PC2 17.70 17.31 17.74 26.65
PC3 10.52 10.93 11.94 10.80
PC4 6.66 7.03 6.07 7.94
PC5 5.05 4.70 5.31 5.37

Table 5.1: Percentage of variance accounted for by each principal
component (mean of each trajectory) for Leap Motion data.

5.4.2 EEG
As mentioned in sections 4.1.2 and 4.4.2, events in the Leap Motion data that were
interpreted as the start of a movement were manually selected and used to cut out
both the Leap Motion and EEG data of each movement. Figure 5.14 shows the
result of the matching between Leap Motion and EEG data.
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Figure 5.14: Matching of time-line events between Leap Motion and
EEG data.
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Figures 5.15 and 5.16 are representations of the signal to noise ratio in all
electrodes at a specific point in time (sample 200). The figures shows a high
spread of recorded amplitudes of all wide grasp movement repeats at the fixed
time. The black markings show the mean recorded amplitude in the electrodes.
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Figure 5.15: Box plots of smoothed data in all 128 electrodes at a
fixed time (sample 200).
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Figure 5.16: Figure 5.15 zoomed in.

Figures 5.17-5.20 show the mean EEG amplitude curves (raw and smoothed
with filter) in different electrodes from all repetitions of the wide grasp movement.
Mean EEG amplitudes in figures 5.17 and 5.18 show behaviours similar to each
other. The same goes for the amplitudes in figures 5.19 and 5.20. The electrodes
showing similar behaviours are located in proximity to each other. The illustrated
mean amplitude values show that there are different dominant activities during
the course of a hand movement in different areas of the cortex.
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Figure 5.17: Mean EEG amplitude curve of all wide grasp repetitions
in electrode 2.

Figure 5.18: Mean EEG amplitude curve of all wide grasp repetitions
in electrode 27.

Figure 5.19: Mean EEG amplitude curve of all wide grasp repetitions
in electrode 44.
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Figure 5.20: Mean EEG amplitude curve of all wide grasp repetitions
in electrode 128.

Figure 5.21 shows the mean EEG amplitude curve from the same subject in
electrode 68. There is substantial visible noise in this electrode.

Figure 5.21: Mean EEG amplitude curve of all wide grasp repetitions
in electrode 68.

Figure 5.22 shows a correlation coefficient matrix from sample 200 with all
128 EEG electrodes as features. This matrix is created with calculated EEG
correlation data in the same manner as the matrices in figure 5.9, although each
pixel here shows the correlation between two electrode amplitudes instead of two
angles.
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Figure 5.22: Correlation matrix from sample 200 of the wide grasp
movements.

Since the white lines in figure 5.22 reflect low correlation and thereby deviant
behaviour, they are interpreted as noisy channels. The result of removing these
electrodes can be seen in figure 5.23.

Figure 5.23: Figure 5.22 with noisy electrodes removed.
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A plot showing how each EEG correlation coefficient from the matrix in figure
5.23 changes throughout the time-line of the precision grip movement can be found
in figure 5.24. As seen for the Leap Motion data in figures 5.10-5.13, many of the
lines in figure 5.24 have groups of adjacent lines behaving similar to them, indicat-
ing similarly behaving correlation pattern between different groups of electrodes.
This is an indication of synergies in the cortical activity.

Figure 5.24: Changes in correlation coefficients for EEG data during
precision grip movements.

The results of the PCA performed on the EEG data can be seen in table 5.2.
The high values of the first few PC’s indicate that a substantial reduction of the
dimensionality is possible while still describing a large part of the activity in the
cortex, supporting cooperation and synergistic behaviour in the CNS.

Wide grasp Power grip Angled
Power grip

Precision
grip

PC1 86.40 76.37 78.62 87.09
PC2 5.88 12.05 11.03 6.04
PC3 3.93 4.24 3.93 2.40
PC4 1.20 1.83 1.77 1.05
PC5 0.49 1.12 1.18 0.70

Table 5.2: Percentage of variance accounted for by each principal
component (mean of each trajectory) for EEG data.
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5.5 Matching Leap Motion and EEG data
Figure 5.25 shows an example of how the changes of correlation coefficients from
the Leap Motion and EEG data are related in the time domain.

Figure 5.25: Correlation coefficients from the Leap Motion device
(top) and EEG recording (bottom) for the precision grip.

Figure 5.25 clearly shows that due to the number of lines in the plots, further
data processing and parameter reduction needs to be applied before any definitive
conclusions can be reached from the data. By applying time continuous dimen-
sionality reduction (PCA) to the correlation coefficient data, an interpretation of
whether synergies at the joint/muscular level are mirrored by the activity distri-
bution in the brain could be obtained. This may be the planned course of action
for the future.
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Chapter6
Discussion and Conclusions

6.1 Leap Motion
The mixture of reoccurring and differing correlation values within and between
movement types seen in figure 5.9 is what we set out to find in the Leap Mo-
tion data. It provides a wide basis for future work. Additionally, the first five
principal components from the PCA account for approximately 86 − 88% of the
movement, serving as further support of the possibility of dimensionality reduction
and muscle synergies. As a whole, the results from the Leap Motion data analysis
indicate synergistic behaviour between angles (and thereby also muscles) of the
hand, which was expected considering that muscular synergies are documented. In
conclusion, the analysis of the Leap Motion data has at this point served two main
purposes among others: confirmation of documented muscle synergies in the hand
(indicating a correct path of analysis), and providing an important tool for the
search and identification of specific synergies in the CNS through data processing
and comparison with recorded EEG signals.

6.2 EEG
Figure 5.14, which illustrates the temporal matching of EEG and Leap Motion
data, shows clear reoccurring patterns and similar data behaviour between each
event in the two data types. This is interpreted as a sign of successful temporal
matching between EEG and Leap Motion data, which is critical for obtaining
coherent and relevant EEG data during the movement repetitions.

Figure 5.21 illustrates the high level of noise seen in electrode number 68.
This kind of noisy electrodes are an inevitable part of the EEG since some of the
electrodes may lose contact with the scalp and some are attached in proximity to
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muscles controlling for instance the eyes, neck and jaw, producing mostly noise.
High noise levels are important to handle appropriately since they disturb data
and interfere with analysis. Noise was handled by filtering the data and thereby
creating the smoothed black lines seen in the EEG plots. Electrodes with excep-
tionally high levels of noise such as electrode 68 were removed completely from
the data to stop them from interfering with further analysis.

Strategies of removing the noisy channels (such as visualising the average data
in all electrodes) were discussed during the course of the analysis. Many discussed
strategies were time consuming. By creating a correlation matrix from the EEG
data, a simple solution to this problem was found. Figure 5.22 shows the corre-
lation matrix of the EEG data from the wide grasp movements. In this figure,
white lines are visible. A high level of noise suppresses the underlying signal and
should as a result reduce similarity of patterns between electrodes. Therefore, the
white lines are interpreted as very noisy electrodes since they correspond to low
correlation between the numbered electrode and all other electrodes. Identifying
the noisy electrodes in this way and removing the data from them left us with
data free from large noise levels in an easy way. Figure 5.23 shows the correlation
matrix free from data collected in the noisy electrodes.

Figures 5.15 and 5.16 are an analysis of signal to noise ratio. Looking at
the mean amplitude values (the black markings) in the plots, they are in some
electrodes very low in comparison to the span of recorded amplitudes during the
movement repeats. This indicates a low signal to noise ratio which could be im-
proved with a better EEG system. This also gave an overview of which electrodes
were the most noisy ones.

As detected in the Leap Motion data, figure 5.24 shows that some correlation
coefficients behave similar to each other. This, together with the high eigenvalues
obtained in the first few PC’s from the EEG PCA, might in the same manner
as described in section 6.1 be supportive of a dimensionality reduction possibility,
and the theory of a synergistic system in the CNS, which is what we hoped to
find.

6.3 Sources of errors and suggested improvements
There are some sources of error that need to be addressed to validate the work in
this thesis.

With our manual time-stamp method of synchronising Leap Motion and EEG
data, there is an inevitable factor of human error. Despite this, since the error stays
within a smaller range of milliseconds, the data sets appear to match sufficiently
well to study joint events. An improved method (preferably automated) to identify
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the temporal start and end of a motion would be useful for future work.
After segmentation, the collected EEG signals were filtered using a Savitzky-

Golay filter before any other data processing. This filter was chosen due to its
ability to minimise the temporal shift of the signal while at the same time creating
an easily adjustable level of smoothing. The level of smoothing was chosen roughly
by looking at the effects of the filter on data plots, which naturally contains an
underlying source of human error. This could be optimised before proceeding with
future data analysis.

The EEG system used for this work showed a high level of baseline drift and
differences between electrode amplitudes. The data was processed accordingly
during the work to minimise the negative effects of the EEG system shortages. A
more reliable EEG system is recommended since it could possibly provide more
stable data for future recordings.

In figures 5.10-5.13, the correlation coefficients between the angles become
chaotic at certain sample points. Even if it is most probably a result of terminal
glitching in the Leap Motion system, it could also be a smoothing artefact or
faulty data processing. In the same manner we see a possible artefact in the
beginning of the EEG correlation plot in figure 5.24. It shows an unexpected
trend of low correlations in the very beginning of the hand movement. This is
possibly a data processing artefact that was not addressed during the given time
limit. Nevertheless, in spite of these possible artefacts the data in the plots are
sufficient for serving as a basis for future work.

6.4 Future work
Through this work we have established that there is a possibility of underlying
neural synergies acting on motor output during reach-to-grasp movements. How-
ever, more work needs to be done in order to validate the findings. The work in
this thesis will be continued by the department of Neural Basis of Sensorimotor
Control at BMC, Lund. More Leap Motion and EEG data needs to be collected,
data processing needs to be improved and new methods of analysis need to be
introduced and applied to the data. It is mainly the type of correlation coefficient
data illustrated in figures 5.10-5.13 and 5.24 that need further clarification. There
is much to explore in the Leap Motion and EEG correlation coefficient data, both
on an independent level and combined. So far we have only been able to look
at PCA of the data at fixed moments in time. The data needs temporal PCA
analysis that clarifies the relationship between the landscapes of cortical activity
and motor synergies of reach-to-grasp activity over time.
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