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Abstract

In peritoneal dialysis it is important to make sure the pressure doesn’t
exceed certain limits. It is desirable to do the measuring without inserting
anything inside of the tubing containing the dialysate.
This project uses a load cell pressed against the outside of the PVC tub-
ing to estimate the pressure inside. The interval tested is approximately
atmospheric pressure ±220 mBar. The temperature is constant room
temperature (⇡ 20oC). The best estimate of the pressure uses a neural
network to process the data and results in a mean absolute error of 7.31
mBar. The max error is 126 mBar. The target accuracy was ⇡ 20 mBar
and approximately 88.6 % of the errors are below or equal to 20 mBar.
Unfortunately the errors are highly autocorrelated so there is a possibility
of something missing from the model.
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Figure 1: Illustration of the setup for Peritoneal dialysis. Image from the Mayo
foundation for medical education and research [10].

1 Introduction

1.1 Background, problem formulation and purpose

Triomed AB (triomed.se) is developing a portable dialysis machine. It uses a
dialysis technique called peritoneal dialysis [22]. In peritoneal dialysis the peri-
toneum (a membrane in the stomach) is used as a filter to remove for example
urea from the blood. A tube is operated into the patient on one end, and con-
nected to the dialysis machine on the other end. The purpose of the tube is
to transport the fluids. In figure 1 an illustration is shown. During peritoneal
dialysis it is important to make sure that the pressure inside the tubing to the
peritoneum is neither too high nor too low. The fluids are not transported solely
by gravity, but by a pump and some form of control system is necessary.

When pressure in a liquid is to be measured, a common approach is to have
a membrane between the liquid and the reactive material (such as a capacitor).
This adds an additional part that needs to be changed probably as frequently
as the rest of the tubing, increasing costs. If the pressure could be measured in
a non-invasive way, it could reduce this cost and possibly improve usability.

The purpose of this project is to find and/or develop a method that can measure
the pressure in a (predefined) PVC tube containing water at room temperature.
Ideally it should not require modifications to the tubing or too frequent cal-
ibration (more often than every 5 minutes). The major di↵erence from the
standard presure sensors is that since no modifications to the tubing are al-
lowed, the measuring needs to be non-invasive. It is however allowed to be
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Figure 2: Illustration of the di↵erent ways to apply a sensor. Image from
InstrumentationTools.com [24]

intrusive. An illustration of the di↵erence is shown in figure 2
The resolution that is aimed for is 20 mBar. Finally, the final apparatus

cannot be too large, heavy or expensive (loosely defined).

1.2 Current methods

1.2.1 Sensors for pressure measuring

There are multiple di↵erent ways to measure pressure. The method chosen
generally depend on the requirements for accuracy, the circumstances under
which the measuring will take place, and the environment. The prerequisite for
methods covered here will be that they are non-invasive. If a membrane or other
modification to the tube is allowed, this project would need major changes since
there are already several methods and sensors developed for this kind of more
”ordinary” pressure evaluations.

In the case with a membrane, the pressure can be known to great precision
since there is direct contact with the medium. If it is to be done from outside
the tube, a proxy for the pressure inside the tube has to be used. The most
obvious proxy is the expansion or contraction of the tube.

One way to measure the pressure non-invasively is to press a force-sensor (load
cell) against the outside of the tube. In a recent article [26] they attempted
to measure the pressure on a model of a bone. The pressure was changed by
applying calibrated weights. They tested several di↵erent force-sensors. Unfor-
tunately the tests did not cover underpressures and the dynamics were fairly
limited but overall it seemed successful. So using a force sensor seems possible.
A commercially available product that appears to have similar application is
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provided by Tekscan [28] [29]. It is unclear how accurate it is and appear to
only recognize increases in pressure.

One potential way would be to optically measure the pressure change. There are
very accurate photoelectric sensors on the market, for example Micro-Epsilon
sells a product that measures film thickness (usually plastic sheets) using a
photoelectric sensor and through-beam technology. They achieve an accuracy
of approximately 3µm [19]. They also have a triangulation sensor with accuracy
that’s approximately the same. The downside to these methods are mainly that
they are bulky and expensive. The same arguments regarding bulkiness and
cost applies to microscopy and interferometry.

An ordinary camera could be possible to use, given that it is possibile to detect
features (eg. edge detection) on sub-pixel level, for an explanation of theory
and example, see [15] and [14]. This is discussed more in Optical possibilities
for measuring strain.

If modifications to the outside of the tube was to be allowed, there are a few
more possibilities. It could be worth investigating how a strain gauge performed
if it was attached to the surface of the tube. Depending on how sensitive the
gauge was (and considering what type of adhesive is used) it could be a good
solution.
There is also some research on attaching a capsule filled with oil directly to the
outside of the tube and having a fiber optic pressure sensor inside the capsule
[11]. When the pressure inside the tube changes, the oil would also experience
a change in pressure and this would be captured by the fiber optic sensor.

If one can change a part of the tube and add a membrane, an ordinary camera
could be a plausible solution. This was tested in a recent article [21].

1.2.2 Transforming or mapping data

Given that some form of measurement with a sensor has taken place, it needs to
be converted to a unit that we can interpret. Generally there will go a current
through the sensor and the size of the output current changes depending on the
value measured. So the readings need to be converted (in this case to pressure
and mBar) and possible noise etc. should be removed as well as possible.

There are several di↵erent methods available. For this report, these can be
divided into parametric and non-parametric regression methods.
Parametric methods basically imply that the parameters of the model doesn’t
change when the size of the dataset does see [17]. An example of this are the
ordinary Least squares (often used to fit a line or a plane to a set of points). If a
non-parametric regression method is used, the parameters for the model usually
increase with increased training data. An example of this is Kernel regression
or a weighted average.
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However, this is not always a very important distinction to make. For example,
if a Neural network is used, it can be either parametric or not depending on
how it is implemented.

If the data needs to be normalized there are several di↵erent ways to do this.
If the training data comes from a known distribution, it is often a good idea to
use the normalization

x
n

=
x� µ

�
, (1)

where x
n

is the normalized x, µ and � are the mean and standard deviation of
the distribution. This can be used when one wants to compare data of distri-
butions with di↵erent means etc.
If the distribution is not known and the importance perhaps rather lies in sim-
plifying future applications, feature scaling can be used. This requires the min-
imum and maximum values to be known, and the data is rescaled to [0, 1]. The
formula

x
n

=
x� x

min

x
max

� x
min

, (2)

can be modified to rescale the data to other intervals too, if that would be more
appropriate. The paper [25] has a section more fully covering di↵erent aspects
of normalization.

1.3 Tube parameters

The calculations below are to provide a general context and approximation of
how sensitive the method or sensor type that is chosen needs to be.
The tube is assumed to be made of plasticized PVC. This means that the
Young’s modulus (a material constant to measure sti↵ness with unit Pascal)
lies somewhere between approximately 20 MPa and 2.5 GPa [3] [1] [2].
The alternative would be silicone rubber, which has a Young’s modulus be-
tween approximately 1 MPa and 50 MPa [4]. For silicone rubber it’s assumed
that the tubing potentially replacing the PVC is in the upper (more sti↵) range.

The outer diameter of the tube is approximately 5 mm, yielding a outer ra-
dius of 2.5 mm. The inner radius is approximately 1.5 mm.
The length is assumed to be infinite so that e↵ects on the edge can be ignored.
This is reasonable since the pressure will be measured where the tube will be
fairly straight, meaning that it will not bend or end in the close vicinity.

1.3.1 Simplistic model for the tubes deformation

To find the strain at the outer edge of the tube we use Hooke’s law and Lamé’s
equations (a good explanation is given in [9]) for thick-walled cylinders (pres-
sure vessels). This is because the strains are assumed to be so small that the
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deformations are linear. We can’t use the equations for thin walls since the tube
is too thick. The relationship between the radial- and hoop-stresses are

�
r

= A� B

r2
,

�
c

= A+
B

r2
,

(3)

where �
r

and �
c

are the radial- and hoop-stresses in the tube. Here, A and B
are constants and r is the radius. The strain in the circumferential direction is
then given by

✏
c

=
1

E
(�

c

� v�
r

), (4)

where E is Young’s modulus and v Poisson’s ratio. The strain is generally
defined as

✏ =
newC � oldC

oldC
=

2⇡(r + �)� 2⇡r

2⇡r
=

�

r
. (5)

1.3.2 Example of the tubes expansion

The boundary values for the problem are that inside the tube there is a constant
pressure of +2kPa (+20 mBar). So the radial stress on the inner wall is -2000
Pa. On the outer wall there is no radial stress. So �

r

(0.0015) = �2000 and
�
r

(0.0025) = 0. This gives us

�2000 = A� B

0.00152
,

0 = A� B

0.00252
,

(6)

which after solving the system yields: A = 1125 and B = 0.007. Inserting this
into the equation for �

c

we get

�
c

(0.0025) = 1125 +
0.007

0.00252
= 2245Pa. (7)

The value of E that will be used is 45 MPa. As a lower softness-threshold this
is reasonable when the alternative for the tubing, silicone rubber is considered
and noticing that the actual PVC used is likely not the softest PVC possible.
Now we use equation (4) to find the strain

✏
c

=
1

45 · 106 · (2245� 0) = 4.9889 · 10�5. (8)

The radius was 0.0025 m, so this gives a � = 4.9889 · 10�5 · 0.0025 = 1.2472 ·
10�7m. This is the change in radius, which is 0.00012472 mm.
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1.3.3 Optical possibilities for measuring strain

It is interesting to know if a camera could be used. A review article covering
di↵erent available optical methods was published in 2009 [5] (that article covers
more than just ordinary cameras).
It is assumed the field of view is 1 dimensional and that the field of view is 6
mm (since the tube is five and it expands a little bit).
If the radius increases by 0.00012472 mm the diameter would increase by 0.00024944
mm. If there was no, or a only a very small amount of processing available this
would mean that the resolution necessary was given by

resolution =
6

0.00024944
= 24054 pixels. (9)

This is fairly unreasonable, especially considering that the field of view for the
camera will generally be much larger than 6 mm if all the pixels are to be used.

However, it is possible to approximate on sub-pixel level, and measuring the
size is essentially an edge-detection problem. If the required amount of pixels
could be lowered by a couple of magnitudes, it would be a clearly viable option.
The image processing needs to be able to detect edges with an accuracy of a
few magnitudes higher precision than the amount of pixels.
This is not unreasonable, see for example [18] and [6]. However, it does seem
like a di�cult approach to implement compared to the force sensor (load cell)
which seems promising.

1.4 Limitations of the project

Some limitations are stated in Background, problem formulation and purpose.
Others include that only one type of PVC tubing is used and the temperature
is constant (⇡ 20oC). The pressure span of interest is approximately -220 mBar
(-22 kPa) to +220 mBar (+22 kPa). The target resolution is approximately ±20
mBar (±2 kPa). It will be assumed that the pressure is at atmospheric level
when the measuring starts. The changes in pressure are assumed to be fairly
slow and not impulse-like (time-scale for changes will be of several seconds).
Furthermore, continuous calibrations are allowed.

2 Method

2.1 Set-up

Given the importance of not modifying the tube, a standard force-sensor (FS20
Low Force Compression Load Cell - Measurements Specialities) is the sensor
used (unless an other type of equipment is deemed necessary).

The tube is placed on top of the sensor and inside a socket so that the tube is
pre-stressed. The pre-stressing is to make negative pressure measurable. The
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design of the socket is discussed in the subsection Socket for the force-sensor.

Behaviour of the force-sensor will be tested using di↵erent training cycles where
the pressure is known. These cycles have di↵erent lengths, where the longest
are approximately 4 hours. Over the cycle the pressure varies between ⇡ ±220
mBar. A reference pressure sensor is used to measure the actual pressure.

These cycles will be used as training data for a model to predict the pres-
sure given the data from the force sensor when the reference pressure sensor is
not used.

The mapping between force and pressure is done continuously and di↵erent
methods are compared. Generally, the mean value of the absolute error will be
minimized rather than max-error or any other type.

2.2 Material

The physical material used are:

• Arduino Uno with breadboard and cables.

• Oina Peristaltic pump.

• Servo controller ESCON Module 24/2.

• FS20 low force compression load cell.

• Power supply, providing ⇡ 15 V.

• PVC tubing with accessories.

• Bowl for water and a sealable bin acting as pressure vessel.

• Socket for clamping the sensor and tube, with screws.

• Double sided adhesive tape.

• Supportive frame.

• Reference pressure sensor.

• Handheld pressure sensor.

• Hand powered pump.

The software used to control the Arduino is the standard Arduino IDE.
The servo controller was configured with ESCON studio.
Processing of the data and creation of graphs etc. was done in Matlab.
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Figure 3: The data on how the reference pressure sensor is scaled to mBar units.

2.3 Reference pressure sensor

The reference pressure sensor is assumed to be accurate and linear enough for
the application. The reference pressure sensor is calibrated with a handheld
pressure sensor (values noted by hand) that is also assumed to be accurate
enough. The linearity and accuracy of the reference is important as it will be
assumed to be a key value for all of the following calculations. The best-fit of
the reference sensor and hand-held device is shown in figure 3. The line is given
by:

reading · 0.6174� 314.2632 = pressure[mBar]. (10)

2.4 Force-sensor

The sensor used is Measurements Specialities - FS20 Low Force Compression
Load Cell. It spans 0-750 grams force [27]. It is shown, with a part of the tubing
for reference, in figure 4.

Problems with its accuracy (which would be a combination of non-linearity, hys-
teresis and repeatability) is stated in the specifications sheet [27] and presumed
small compared to the hysteresis, non-linearity and repeatability resulting from
the actual system with the tube and the socket. However, the resolution of the
sensor given the magnitude of the pressure changes could be a limiting factor.
This can be seen in figure 5. Using a handheld pressure sensor and a hand
powered pump, the relationship between measured force and pressure was mea-
sured. Since the pressure span is ⇡ 440 mBar totally and the force readings
span ⇡ 70, the resolution can most likely not be better than ⇡ 6.3 mBar. That
is without considering noise and variance.
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Figure 4: Sensor and tube. The tube has a diameter of ⇡ 5 mm.

Figure 5: Relationship between force measured and pressure inside the tube.
Note that each value pair has been allowed to stabilize.
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Figure 6: The configuation used with the final choice of socket.

2.5 Socket for the force-sensor

The socket will encapsulate the sensor and part of the tubing, with the purpose
of fixating the tube across the middle of the sensors top part. The socket also
creates a pre-stress that allows for measuring of pressures below 0 mBar. 3D
models of the socket are created in CAD with the help of Stefan Landholm and
Hans Bengtsson. Prototypes are printed in a 3D printer.
The major factors of consideration are:

• How much should the pre-stress be?

• How is it made sure that the pre-stress is constant?

• What shape should the socket have?

2.6 Test apparatus

A set up to try di↵erent configurations and general testing was built. It consisted
of tubing, peristaltic pump, pressure vessel (a jar with lid and seal) and a bowl
of water. The pump was controlled by an Arduino Uno with a breadboard and
a servo controller, ESCON Module 24/2 [20]. An additional power supply was
also used (the pump requires more than the 5 voltage the Arduino provides).
Both the force- and pressure-sensor were controlled by the Arduino and readings
were logged in the console. The final set up is shown in figure 6.
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Figure 7: Example of a cycle. The real pressure spans between approximately
-220 mBar and +220 mBar. There are a couple of di↵erent speeds and levels
with constant pressure

2.7 Choice of test cycles

The test cycles were designed to contain the full span of the pressure range and
to cover di↵erent dynamics in the changes of pressure (rapid and slow changes
both up and down, constant low pressure and constant high pressures etc.).
Measurements were printed to the console every 0.2 seconds. Figure 7 shows
an example of just over 2 hours of measuring. In figure 8 a part of figure 7 is
magnified to show details.

3 Mapping force to pressure

3.1 General considerations

There were three methods used. The first is a polynomial fit and the second
uses a neural network to find the pressure. Kernel regression is also attempted.
In all cases processing of the training data is required (can be done o✏ine).

There is also a reference model that convert the force to pressure. This is
to find out whether further processing is actually worth doing (for example the
neural network takes substantial time to train, the Kernel regression requires a
lot of memory). The force is scaled using the data that is shown in figure 5.
The scaling factor, given that data, with a linear best fit is ⇡ 6.206.
The 0 mBar level is found from the calibrations. Since there is clearly a lot of
drift in the beginning of a cycle, when only one calibration takes place the first
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Figure 8: Close-up of a part of figure 7. Notice the similarities between the force
and the pressure but also how the force doesn’t change as much as the pressure.

10 minutes are removed and not considered.

Methods that require more than rescaling all share some major considerations.
These are:

• Removing the drift/relaxation of the tube present after clamping it in the
socket.

• Finding what the max- and min-values of the force are given the pressure
conditions.

• Mapping each force-reading, or a transformation of a force reading, to a
pressure value.

The drift is a large problem and is not shown in figure 7. That is because that
cycle is recorded so long after the initial clamping that the residuals are (pre-
sumably) gone. The e↵ects of the drift are easier to see in figure 9. The cycle
is just under 4 hours.

The max- and min-values for the force vary from cycle to cycle (despite it
being the same cycle) so a way to estimate the boundaries is necessary. Fig-
ure 10 shows a couple of examples of another cycle where the conditions of the
measuring has been made as similar as (realistically) possible (same place on
the tube each cycle, temperature controlled, waiting before starting a new cycle
etc.). The initial variation is from clamping the socket. Part of correcting this
is simply translating and cropping the data. In figure 11 the first 300 samples
(1 min) are removed and the initial force reading is translated to equal 0. The
variance of the measured force between the samples is clearly visible in figure
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Figure 9: The cycle started less than a minute after clamping the tube. The
red parts are all representing atmospheric pressure. Total time shown almost 4
hours.

11. Considering the resolution of the sensor (see the subsection force-sensor)
this is not negligible.

After the data is scaled, translated, etc. (pre-processed) the actual mapping
can be done in several di↵erent ways. The three main methods tested are:

• Polynomial regression using Matlab’s fit().

• Kernel regression, with the Gaussian kernel, implemented separately.

• Neural network, using Matlab’s built in nntraintool.

3.2 Least squares

Given the data points x (which would be the force measured) and the key values
y (the reference pressure) and the assumption of a second degree polynomial as
a relationship, we minimize

min(z)
a1,a2,a3 =

NX

i=1

(y � a1 · x2 � a2 · x� a3)
2. (11)

If the relationship is assumed to be linear, then a1 is set to 0. For this, Mat-
lab’s function fit(x, y,0 type0) is used. If the relationship is of an other form (ex.
y = a1 · ea2·x + a3) the same minimization problem applies.
For more information on Least squares, the article [30] provides a good expla-
nation.

15



Figure 10: Raw data to illustrate normal variance. Total time shown around 25
minutes.

Figure 11: Raw pressure data and translated force data to illustrate minimal
variance. Total time shown around 25 minutes.
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3.3 Kernel regression

Kernel regression is a non-parametric method of estimation, meaning that there
are not as strict conditions on the underlying function as with for example a
linear fitting method. The specific method used here is the Nadaraya-Watson
kernel estimator, named after the inventors [8] [12]. It is presented below:

f(x0) =

P
N

i=1 yi ·Kh

(x
i

, x0)P
N

i=1 Kh

(x
i

, x0)
, (12)

where f(x0) is the function estimation (the pressure) for the value x0 and
K(x

i

, x0) is the kernel. In this report, the Gaussian kernel will be used so

K(x
i

, x0) = e(
x

i

�x0
h

)2 , (13)

where h is the bandwidth and to be chosen depending on sample size and what
the level of smoothing should be (larger h means more smoothing). Note that
there is usually a normalizing term but it cancels out. Things to note is that the
kernel is even and that normalization is necessary. The normalization is done by
rescaling the data to the interval [0, 1]. For the training data this is done exactly
for each training set. For the test data, the mean min- and max-values from the
training data are used and values that end up outside the bounds are mapped
to the respective boundary. Since the estimation is based on an average, the
training data should be uniform to not create a bias [23].

3.4 Neural network

For a training set x and key values y Matlab’s already implemented neural net-
work is used. First an initial net is created with net = fitnet(amountOfLayers)
and then it is trained by trainedNet = train(net, x, y).

The Levenberg-Marquardt algorithm [16] [7] is used. The method finds the
minimum to the function

F (z) = 0.5
NX

i=1

(f
i

(z))2 (14)

by creating a matrix with the Jacobians to f
i

(z) and doing certain modifications
to the Gauss-Newton method, the updating scheme is

z
i+1 = z

i

� (JT (z
i

)J(z
i

) + µ
i

I)�1JT (z
i

)f(z
i

), (15)

where µ is a parameter to allow invertability, and

J(x) =

2

6664

�f1(z)
�z1

�f1(z)
�z2

... �f1(z)
�z

N

�f2(z)
�z1

...

... ...
�f

N

(z)
�z1

... �f

N

(z)
�z

N

3

7775
, (16)
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Figure 12: Final socket and the force sensor.

where z are the parameters we want to find [31]. A good explanation is given
in [13].

4 Result

4.1 The socket

The final version of the socket is made of aluminium with holes for screws. It is
shown in figure 12. The tube is placed in the groove in the lid (shown standing)
and then placed on top of the bottom part with the force sensor inside. The
aluminium provides a constant distant between the lid and the sensor which
appear to be independent from how hard the screws are fastened. This was
not the case with a plastic socket (that had to be clamped/pinned instead of
screwed in place).

4.2 Pressure from the reference model

When there is only one calibration taking place, the first 10 minutes are removed
and then the calibration takes place. the mean absolute error is ⇡ 181 mBar.
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Figure 13: The blue (upper) is the reference pressure. the red (lower) is the
calculated pressure. Almost 4 hours shown, 1 calibration.

The max error is ⇡ 302 mBar. An example fit is shown in figure 13.
When more calibrations are allowed, only the first minute is removed. The
calibrations are done at minutes: 0, 9, 17, 50, 67 or 77 depending on what cycle
is used and, if possible, also at 120 and 183 minutes.
The mean absolute error is ⇡ 24.7 mBar and the max error ⇡ 223 mBar. The
same raw data as in figure 13, is shown in figure 14 but with the additional
calibrations.

4.3 Pressure from other models

4.3.1 Training data, drift and calibration

Approximately the first minute of the data is removed. The calibrations are
done at the same places as for the reference case (so 0, 9, 17, 50, 67 or 77 and
if possible 120 and 183 minutes).

Given continuous measuring, the drift removal is a constant function approxi-
mated by

g(t) = a1 · ea2·t + a3 · ea4·t, (17)

where a1, a2, a3, a4 are the average parameter values from the training data. The
parameters were found using all parts of the training data where the pressure
was atmospheric, and fitted using Matlab’s fit(x, y,0 exp20). An example of a
cycle before and after subtraction of g(t) is shown in figure 15. The training
data has its drift removed and the actual fit to the data is used. An example
of the modified force and key pressure values, after drift removal, are shown in
figure 16.
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Figure 14: The blue (dashed line) is the reference pressure. the red (solid) is
the calculated pressure. Almost 4 hours shown, 7 calibrations.

Figure 15: The blue (lowest part) is before drift removal. The red (top part)
after drift removal.
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Figure 16: Reference pressure data and pre-processed force data. Note that
there’s a remaining variance in force for a certain pressure.

4.3.2 Polynomial fit

A second degree polynomial fit, where the polynomial parameters are the mean
parameters from the training data, gives a mean absolute error of ⇡ 10.8 mBar
and a max error of ⇡ 120 mBar.
An example of parameters for the function are

pressure [mBar] = �0.0157 · (force reading)2+6.644 · (force reading)�1.7969

(18)

This provided a slight improvement compared to a first order fit. Example fits
are shown in figure 17 and figure 18. The mapping is shown in figure 19.
If only one calibration was used (and the 10 first minutes removed instead of
just 1), the mean absolute error was ⇡ 24.2 mBar and the max error ⇡ 148
mBar.

4.3.3 Kernel regression fit

The Gaussian kernel was used with a bandwidth of 0.006. The bandwidth was
found by trial and error. The mean absolute error was ⇡ 11.1 mBar and the
absolute error ⇡ 113 mBar. Example fits are shown in figure 20 and in figure
21. The mapping is shown in figure 22.
If only one calibration was used (and the 10 first minutes removed instead of
just 1), the mean absolute error was ⇡ 21.1 mBar and the max error ⇡ 163
mBar.
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Figure 17: Example of poor perfor-
mance from the polynomial fit.

Figure 18: Example of good perfor-
mance from the polynomial fit.

Figure 19: Mapping from force to pressure for the polynomial fit.

4.3.4 Neural network fit

Using a neural net with a Levenberg-Marquardt algorithm and 25 hidden layers
provided a mean absolute error of ⇡ 7.28 mBar and a max error of ⇡ 126 mBar.
If 10 layers were used, the performance was lowered slightly but the speed of
training was faster. An example fit is shown in figure 23 and also in figure 24.
The mapping is shown in figure 25.
If only one calibration was used (and the 10 first minutes removed instead of
just 1), the mean absolute error was ⇡ 35.5 mBar and the max error ⇡ 296
mBar. This was with 10 layers instead of 25 (25 layers yielded a mean absolute
error of ⇡ 49.4 mBar)

4.3.5 Comparison between methods

There are other parameters except the mean absolute error and the max-error
that can be used to evaluate the methods. Table 1 shows a couple of measure-
ments to simplify comparison. The reference is the one with the same amount
of calibrations as the other methods (more than 1).
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Figure 20: Example of poor perfor-
mance from the Kernel regression.

Figure 21: Example of good perfor-
mance from the Kernel regression.

Figure 22: Mapping from force to pressure with Kernel regression.

Note that the correlation between the error and pressure (in the last row) is cal-
culated on the actual error values. If the absolute error is used, the correlations
change. For the polynomial fit the correlation increases to -0.1658, while the
Neural network fit and the Kernel regression fit both see lowered correlations,
-0.09 and -0.14 respectively. The reference pressure correlation is lowered to
0.0467.

5 Discussion

5.1 The sensor and design of the socket

5.1.1 General discussion of the workflow

The socket went through several iterations. The lids depth didn’t seem to make
a noticeable di↵erence as long as it kept the tube properly in place (the amount
of pre-stress did not appear important). The first models didn’t do this and
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Figure 23: Example of poor perfor-
mance from the neural network.

Figure 24: Example of good perfor-
mance from the neural network.

Figure 25: Mapping from force to pressure with the Neural network.

are shown in figure 26. With hindsight it is fairly obvious why the first two
models/lids are insu�cient; they allow too much movement of the tube. The
argument for using a non-round shape was that it might a↵ect how the tube
expanded in a negative way (eg. increasing friction).

Before the third lid is evaluated, it is worth reiterating what the socket is sup-
posed to do. The tube that the measurement is done upon can and will be
removed and put back during the lifetime of the sensor and socket. This is a
important part since a large benefit of non-invasive measuring is that the sensor
and socket can be kept while the tube is exchanged. While there almost always
will be some di↵erence between di↵erent tubes, it could improve accuracy to
have all external factors as similar as possible.

The problem with the third iteration of the lid to the socket is that there is
no good way to create a proper pre-stress. The edges of the bottom part to the
socket are narrow in comparison to the lid so the top part (lid) is allowed to
bend and relax considerably depending on how much force is applied to keep
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Reference Polynomial Neural network Kernel regression
Mean absolute error 24.7 10.8 7.31 11.1
Max absolute error 223 120 126 113
% of errors >20 mBar 40.0 15.0 11.4 14.7
% of errors >50 mBar 12.5 0.98 1.25 0.92
Error and
pressure correlation 0.17 -0.02 0.20 0.24

Table 1: Comparison between mapping methods

Figure 26: First lid to the left, second middle and third to the right.
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Figure 27: Fourth attempt for the socket.

it closed (kept close by putting a heavy box of sand on top). As long as the
di↵erence is not too extreme (values going out of sensor bounds) this can be
handled by calibration. However, it is probably not increasing the accuracy.
The fourth model, shown in figure 27, are made of a more rigid plastic and
generally thicker.
This socket is good. Unfortunately the box of sand used to keep the lid closed
is large relative to the lid, and moves easily. This cause variance in the pre-
stress and hence in the measuring. For the final version of the socket, it was
realized (by Hans Bengtsson) that the defining part of the pre-stress is that the
distance between the lid and bottom part should be the same, independent of
the external force applied. Hence the final version of the socket was designed
(made in CAD by Stefan Landholm) in aluminium and with holes for screws so
the reliance on the sand box was removed. It is shown in figure 12. It is worth
noting that the sensor itself is attached to the socket by double-coated adhesive
tape.

5.1.2 Possible improvements, physical parameters

It could help to have a more clip-on type of closure for the lid. It would be
easier and could possibly reduce residuals from the attachment of the screws.

The resolution from the sensor is fairly low and it could probably increase ac-
curacy to have a more sensitive force-sensor.

Considering the decreased drift when a silicone tube was used instead of a PVC
tube (Limitations of the result) a change to silicone tubing could also improve
performance.

If the force sensor was replaced with a camera (discussed as an option pre-
viously), the initial drift could maybe be removed if it is assumed that it stems
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from the clamping. It would be quite likely that one would have to deal with
other problems instead, but if the need for calibrations was removed that would
be a large benefit.

5.2 The models and the errors

5.2.1 General accuracy

From table 1 we see that the best average error comes from the mapping using
a Neural network. However, all three methods perform quite similarly with the
majority of the errors being smaller than 20 mBar.
The very large errors (> 100 mBar) are unfortunate and appear to take place
when the pressure changes rapidly and the change in diameter is delayed.

While the average mean absolute error is generally low if the calibrations are
done, there are some other concerning aspects.

One part is that the min- and max-vales are not only di↵erent, but that the dif-
ference between the max- and the min-value (max

forceReading

�min
forceReading

)
changes. There is no good explanation to this yet. Part of it might come from
variance in placement of the tube, maybe even from how hard the lid is screwed
even though it was assumed negligible.
It could also come from the sensor itself. This is at least probably part of the
reason. The sensors accuracy is stated as an unknown combination of non lin-
earity, hysteresis and repeatability and is ±1% of the span. Since 1% of the
span is enough to change the output by more than 1 reading, this could result
in a noticeable change in the mapping to pressure.

5.2.2 The error

The error is not randomly distributed but rather correlated to itself. This is
especially true within a given cycle. In figures 28-31, the autocorrelation of the
mean absolute average errors are shown for the reference fit, the kernel regres-
sion fit, the polynomial fit and the neural network fit respectively. Note that
the maximal lag of a 100 samples correspond to 20 seconds.

The large correlation is a bad feature. If it was low and the real pressure
constant, averaging the estimation would approach the actual average. Now
that is not the case.

The neural network fit appears to result in slightly less correlation but it is still
quite significant. It is unclear why it performs better. The other methods are
fairly similar.

One reason for the large correlation is probably that the pressure is constant
for relatively long amounts of time, causing the force reading to also be fairly
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Figure 28: Autocorrelation between er-
rors for the reference fit.

Figure 29: Autocorrelation between er-
rors for the kernel regression fit.

Figure 30: Autocorrelation between er-
rors for the neural network fit.

Figure 31: Autocorrelation between er-
rors for the polynomial fit.

constant. That means that the mapping wont change. However, that doesn’t
explain why the mapping is not accurate.

A reasonable explanation to the autocorrelation of the error and the error itself
could be the delay between a pressure change and the time for the tube to adapt
its size. If this is the case, an increase in error and a large change of pressure
would be fairly correlated (or close to ±1).
The derivative of the pressure is approximated by first averaging with a filter of
size 100 (using Matlab’s movmean()), then calculating the di↵erence between
these elements using diff() and zero-padding at the end. The interesting part is
the absolute change (both increases and decreases in pressure), so the absolute
value is calculated.
The derivative of the error is found in the exact same way. As can be seen in
table 2, the correlation coe�cients are fairly large. The conclusion is that the

28



Source of error correlation
Error from reference 0.23
Error from kernel regression 0.50
Error from polynomial fit 0.51
Error from neural network 0.54

Table 2: Correlations between the estimated derivatives of the errors and the
estimated derivatives of the pressure.

delay could potentially be a part of the reason for the errors autocorrelation.

Generally, if the error is not white noise or can’t be approximated as such the
conclusion would be that the model lack something. There could for example
be some parameter missing. This might be the case, especially considering that
the correlation between di↵erent models errors are fairly large (for example the
correlation coe�cient between the polynomial fit error and the neural network
fit error is 0.82). Another hypothesis (so not the delay) is that the larger changes
in pressure induce new drift that is not as noticeable as the one from the clamp-
ing, but large enough to not be negligible.

5.2.3 Possible improvements of the mapping

It is clear that frequent calibrations are very important. It seems very likely
that the accuracy will increase if the frequency is increased further. However, it
also seems as the longer a cycle goes on, the less frequent the calibrations needs
to be. The initial drift is mostly gone after a couple of hours.
The frequency for the calibrations was chosen with this in mind. Unfortunately,
the use of calibrations came in rather late in the project so the majority of the
cycles had already been recorded and wouldn’t allow for calibrations at totally
arbitrary times (and since there would be no realistic way to calibrate at, for
example, 200 mBar it wasn’t tested).

It could be an idea to approximate the pressure using not one method but a
combination. Unfortunately the errors between the di↵erent methods are fairly
correlated so the accuracy isn’t really improved.

Another idea is to not map the force directly to the pressure, but instead mod-
ify or transform the force and then map this or these values to the pressure.
for example the square root, or using both the force and some of the previous
values to take the history into account. Several variations of this was tested and
it didn’t seem to give any substantial improvement, except for a slightly smaller
max-error in a few cases.
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5.3 Limitations of the result

5.3.1 Parameters from the set-up

An important limitation is that the softness of the tube is impacted by the
surrounding temperature. If the temperature decreases the tube sti↵ens and
will most likely change diameter slower. On the other hand, if the tempera-
ture increases the tube softens and probably expands or contracts faster. A
cold temperature has no clear benefits what so ever, a warmer temperature will
probably lower the amount of drift so if it is accounted for it could possibly
improve the measurements.

Another factor that was briefly examined was how the dynamics would be with
a tube made out of silicone instead of PVC. The hypothesis was that a silicone
tube would have less drift since the material is more flexible.
In figure 32 and figure 33, the only modifications to the recorded data are that
the first minute has been removed and the cycles have all been translated so
they are the same at the start. There are approximately 25 minutes shown. The
reference pressure for all of the individual cycles, both for PVC and silicone, are
shown in figure 34.
A potential source of error is that the silicone tube has a slightly smaller di-
ameter than the PVC tube so the range used for measuring on the force sensor
is slightly di↵erent. There is, however, nothing from the previous tests and
measurements that would suggest that this would cause the di↵erence in per-
formance.
It seems clear from figure 34 that the pressure is basically the same for all the
cycles, no matter whether the tube was PVC or silicone.
It also seems clear that the PVC (figure 32) exhibits more drift and also a larger
variance, compared to the silicone (figure 33).

5.3.2 Parameters from the mapping

The interval over which the measuring takes place is well defined and one would
have to be careful to extrapolate the result to outside of the boundaries. For
the polynomial model, there is a possibility that the method is worth using a
little bit outside of the bounds. The second degree polynomial provided only
a slight improvement over the first degree so it is reasonable to assume that it
wouldn’t be useless. For the neural network and especially the kernel regression,
it is important to have training data for the very majority of the possible results
(ex. the kernel regression output NaN’s out of bounds, or if there’s a large gap
in the data).

5.4 Other sources of error

Since a breadboard was used, a large part of the cables weren’t soldered. If they
moved or was in some way disturbed, this caused large amount of noise.
Similarly, if the force sensor was not fixed but allowed to move, this caused
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Figure 32: 4 short cycles using a PVC
tube. Figure 33: 4 cycles using a silicone tube.

Figure 34: Actual reference pressures
for the PVC and silicone comparison.

large changes (usually drops) when it moved. Because of this, it was made sure
that everything was fairly stable and not moving during tests. However, there
is probably still a little noise stemming from movement.
The longest cycle tested was just above 4 hours. The drift seems to approach 0
(realized after keeping the tube pre-stressed over night and then used for test-
ing) but if longer cycles are to be used, it might be worth increasing the length
of the training cycles too.
Figure 35 illustrates both a cycle after a long pre-stress, and the noise caused
by movement in the cables. The full cycle is just below 2.5 hours. The reference
pressure is shown in figure 36.

Another thing worth considering is the sampling speed. The readings are printed
every 0.2 seconds and this was chosen simply because it appeared to be a good
compromise between fast enough to capture changes, but not so fast that the
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Figure 35: Force readings after letting
the tube sit in the socket over night.

Figure 36: Reference pressure to figure
35.

sheer amount of data for training cycles would be hindering. It is possible that
reduced sampling speed could improve memory requirements. It is uncertain if
increased sample speed would result in any benefits given the current environ-
ment.

6 Conclusion

The purpose of this report was to find a way of measuring the pressure in a
PVC tube without creating any changes to said tubing. The result relies upon
the temperature being kept constant at (close to) 20oC, frequent calibrations
(although not more often than every 9 minutes) and su�cient training data
being available.

If a combination of calibration and a neural network is used the mean abso-
lute error is < 8 mBar and approximately 88.6% of the measurements have
error less than or equal to 20 mBar (which was stated target resolution).
Unfortunately there might be something missing from the model used since the
error is autocorrelated and the reliance on frequent calibrations is not optimal.

It is important that the socket used to connect the tube and sensor is rigid
and consistent with the pre-stress it creates.
The choice of sensor could probably be improved since it doesn’t need to cover
such a large span as it currently does.
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