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Abstract

Particle accelerators and their connected laboratories for scientific experiments
are equipped with a multitude of data acquisition nodes. Example of such site
is the European Spallation Source (ESS), based in Lund, Sweden. The nodes are
connected to a communication network, designed for quick data transport in the
normal operating mode. In case of emergency or malfunction, the accelerator has
to be halted and then restarted. Data produced from the nodes is valuable, so it
has to be stored during the restart time.

The data communication network adapted for normal production mode is
not suitable for such emergency situation. Software Defined Networking (SDN) is
paradigm in networking that has gained a great attention during the years and is
a promising technique that has many features over the traditional network.

In this Master’s thesis work we give a theoretical information for SDN and
present SDN architectures in case of a failure of the particle accelerator. A general
network architecture for emergency situation is presented, where different use cases
for the network behavior are shown.
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Popular Science Summary

The particle accelerator is a machine that accelerates electrons or protons at very
high energies and is used to investigate different aspects of particle physics. These
facilities are used for new discoveries in different areas such as science or medicine.

The European Spallation Source (ESS) will be world’s largest pulsed neutron
source and will contribute to the ongoing research in fields like life science, cul-
tural heritage and fundamental physics until 2065. During the production mode,
malfunctions may occur and in this case, the accelerator requires a shut down and
the huge amount of the produced data needs to be stored for later analysis.

Traditional data management tools can’t not be used for Big-Data manage-
ment because of it’s volume and complexity. To overcome the drawbacks of the
traditional network architecture, a Software Defined Network (SDN) architecture
is introduced. The major change is the decoupling of control and data plane and
thus having a programmable network that would make it easier to switch from
normal mode to emergency mode.

Since there is no knowledge of ESS’s network topology, the normal production
mode architecture is based on assumption after discussions with our supervisors.

Figure 0.1: Normal production mode

iii



“output” — 2018/2/18 — 16:34 — page iv — #6

The thesis proposes an SDN network architecture that supports Big-Data ap-
plications. This solution offers more flexibility and a global view of the network by
having the SDN controller as the "brain" of the network. The application layer will
receive information about the network status from the controller. Furthermore,
the controller will forward the application’s requests to the data layer.

In case of a malfunction, the controller is informed and changes the network
architecture from normal production mode to the emergency mode, which is pre-
sented in the below picture.

Figure 0.2: Particle accelerators architecture in emergency mode

The suggested solution with a buffer attached to each accelerator node is a
reliable one for any particle accelerator, since we are able to meet the requested
performance requirements such as:

• Reliability - no data should be lost

• Scalability - the network should scale if the number of data acquisition node
is increased

• Time sensitivity - the data should be saved and stored as soon as possible
during the restart time of the facility.

iv
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The presentation of the network architecture model is supported by different
use cases. We define network parameters where the assigned values were estimated.
For better understanding of the network’s bottlenecks graphical representations are
shown.

v
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Chapter 1
Introduction

This chapter gives the reader a general overview of our project. It starts with
a background information for particle accelerators and Software Defined Network
(SDN). The main problems of our thesis are highlighted to give the auditory better
understanding of the goals. The chapter ends with a brief description of how we
approached our work and with a thesis outline.

1.1 Background
The particle accelerator is one of the marvelous instruments that has been ever
built by physicist and represents a machine that accelerates electrons or protons at
very high energies. Initially constructed to broaden our knowledge in physics and
astronomy, numerous accelerators are used nowadays in many different research ar-
eas such as medicine, industrial processing, molecular sciences, life sciences. Those
powerful facilities give the scientist the ability to look deep inside the materials
and study them in finest detail.

The European Spallation Source (ESS) is expected to be the world’s most
powerful neutron source intended for engineering and life sciences. It is being built
in Lund, Sweden and therefore it is a case of interest in our work. Another particle
accelerator that is used as an example in this project is the Large Hadron Collider
(LHC).

Particle accelerators are establishments with high complexity and malfunc-
tions are expected. Huge amount of valuable data with high intensity are produced,
which means that those facilities must be equipped with a reliable communication
network in order to process this important information.The operation of the accel-
erator is stopped if a malfunction occurs, which means that we need to store the
generated information. The peculiarity of the produced data makes the traditional
networking not the best solution.

SDN turns to be quite good approach which overcomes the limitations of
the traditional networking architecture and allows for quick redesign of the whole
network once the accelerator is halted.

1
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2 Introduction

1.2 Problem Definition
The aim with this Master’s thesis work is to make a theoretical study and present
a general architecture case of SDN for particle accelerators. In this study we
investigate how a SDN could be a profitable solution and could help to collect and
save all the data from the nodes, when the accelerator is in restart phase due to
malfunction.

We need to first identify key performance requirements (KPRs) that we need
to take into consideration during the network design phase.

Our network should be:

• reliable - no data should be lost before it is processed

• scalable - if we increase the number of our data acquisition points (nodes),
our architecture should be able to support them

• time sensitive - we need to process the data without excessive delay as fast
as possible.

The nature of the data that is produced in this facility fits in the definition
of "Big-Data". A traditional network, where the control and data plane are set
within the same network device, is not capable to deal with this case. In contrast,
some features of SDN can facilitate Big-Data acquisition. Chapter 3 provides the
readers with more detailed information about what Big Data is and how SDN
relates to Big Data.

1.3 Related work
SDN has gained a great research attention during the last several years and thus
has been implemented and used in different areas of interest.

In 2015, the networking equipment vendor Brocade Communication Systems
has been deployed by the CERN’s Large Hadron Collider, the world’s biggest
particle accelerator and started a project where the aim was to develop a long-
term software defined networking strategy that can support future infrastructure
requirements. It is stated that an overriding issue for CERN is the huge quantity
of data that they produce every second and it is a challenge to store and analyze
it.[1] A complete scientific report related to the project stated above was not found
and there is no information whether the project is still ongoing.

Open Network Operating System (ONOS) represents an open source SDN
networking operating system, which is designed for high performance, scale and
availability. The emergence of ONOS, SDN and end-to-end operating systems
could provide an intelligent and adaptive network that can meet the needs of a
fast and efficient data distribution network, required for scientific research, such
as the LHC experiments.[2]

In [12], the author presents an SDN enabled architecture that is able to handle
the bursting data in Big-Data applications. It is shown that the programmability
and flexibility features of SDN can benefit data delivery for Big-Data applications.

The SDN Next Generation Integrated Architecture (SDN-NGeNIA) project
addresses the challenges that science facilities are facing when it comes to process-
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Introduction 3

ing, distribution and analysis of data sets with sizes of petabytes (PB) or even
exabytes (EB). The aim of SDN-NGeNIA project is to enable LHC and other sci-
ence domains to operate with a new level of efficiency and control. This is based
on intelligent SDN-driven network systems which are coupled to high throughput
applications. [3]

Previous work that is tightly connected to our main goal which is to collect
and save all the data before restarting the particle accelerator in case of emergency
situation or malfunction is not found.

1.4 Limitations
Here are listed the limitations associated with our work:

• The normal production mode of ESS is based on assumptions after discus-
sions with our supervisors, since access to it was not given.

• Our main solutions that are presented are based on pure theoretical research
without any simulations due to the lack of relevant input. Furthermore,
the time needed to find relevant information has shortened the time for
simulations.

• The values assigned to the parameters in Chapter 4 are based on estimations.

Given the fact that there is almost no work done in this field or even if it
is done it is not available to the public, we believe that our work presents useful
information that could be further developed.

1.5 Thesis outline
The following section represents an outline of the thesis work which consist of 7
chapters. Brief description of the content in each chapter is presented.

• Chapter 2 Theory - informs the reader about the architecture in normal
operation mode, reviews what SDN is and what are the advantages over the
traditional network. A brief description of the European Spallation Source,
as well as it’s role is presented given that it is a case of interest

• Chapter 3 SDN meets Big-Data - gives information what Big-Data is, why
we use this characteristics and how SDN is used with Big-Data

• Chapter 4 A general case - in this chapter an architecture that could be
used as a possible solution to the addressed main problem is shown.

• Chapter 5 Discussion - contains a discussion about the results and data
analysis

• Chapter 6 Conclusion - describes the outcome of the main problem in a
short summary

• Chapter 7 Future work - includes suggestions of how this work could be used
and developed in the future
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4 Introduction

1.6 Organization of the project
This Master’s thesis was written both by Eray Duran and George Caraus and took
place at the Department of Electrical and Information Technology (EIT) at Lund
University.

Both the authors took active part in the theoretical investigation process.
Eray got acquainted with the SDN part and made a research, whether this could
be a solution to the problem formulation and studied the advantages of this type of
network over the traditional one. George focused mostly on the Big-Data scenario
and the ESS case. He made a detailed study and came to the conclusion that we
need to make a general case where Big-Data characteristics should be taken into
consideration and that we can use ESS case as an example that suits to the general
case.

Chapter 4, was written by Eray, while the rest of the thesis was written by
George.
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Chapter 2
Theory

A main part of our project was to make a detailed theoretical study and get well
acquainted with the particle accelerators and the current status of the networking
world.

We begin this chapter with a description of the network architecture be-
haviour in normal production mode. Traditional network approach is used in this
mode which means that software and hardware are coupled together in the net-
work devices. We explain why we need to make a transition to programmable
network.

To be able to formulate our main goal and achieve beneficial outcome we
finalize this chapter with theoretical information regarding Software Defined Net-
working and the European Spallation Source.

5
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6 Theory

2.1 Normal production mode
Particle accelerators are complex facilities composed of a lot of self-controlled
nodes that send constantly flows of data to a management station. Figure 2.1
shows the network architecture of a particle accelerators when there is no failure
and everything works smoothly. As stated in the limitations section, we were
not given an access to the exact network topology in the normal production mode.
This topology is an assumption based on our early discussions with our supervisor.
From this moment on, we base our solution on this assumption.

Figure 2.1: Normal production mode

According to [19], during October 2017, CERN’s data centre stored the huge
amount of 12.3 petabytes (PB) of data. This came as a result of the experiments
that took place at LHC. Furthermore, the volume of stored data has increased at
an exponential rate during the past ten years, achieving the milestone of 200 PB
stored data in June 2017.[19]

Particle accelerators require high data rates to collect and save all the pro-
duced data. The estimated data rate from all four experiments that are running
at LHC site is about 25 gigabyte per second (GB/s). [20]

It is clear from the huge amounts of data that is produced and transferred that
those facilities are very complex, hard to manage and require more robustness.For
example, in case of a overloaded switch, we will lose the information from the
attached nodes. In case of a link failure we will also lose the data and with this
approach the reaction time is not fast. Therefore, even if we assume that this
traditional network approach is able to handle the data transfer process in normal
operation mode, it is not suitable in case of a alarm situation. We need to look
for another solution that will offer us more robustness, scalability and flexibility
and this is why we have turned our attention to a technique called SDN.
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2.2 Software Defined Network
The networking world evolves everyday as new devices with new technologies come
out. The traditional network infrastructure approach, as shown in the previous
sub-chapter, is a complex system of many physical elements on which the infor-
mation technology (IT) industry has been dependent over the years for communi-
cation and services. A small change in any part of the network could be a reason
for a failure of the whole system. [4].

To grasp better the SDN concept, the beginning of this sub-chapter introduces
the traditional network architecture so that we focus and understand what are
the needs for a programmable network and what are the advantages of this new
approach.

The sub-chapters later on, inform the readers regarding the SDN devices,
controllers and applications.

2.2.1 Transition to the programmable network
Over the years, the conventional networks have been successful in delivering ser-
vices to the users. However, in our case the number of nodes and data that is
produced is big. Therefore, more forwarding devices such as switches, routers and
middle-boxes are installed. Since the network is static and adapted only for normal
production mode needs, the growth of the network introduced several limitations
that quickly became a challenging task to solve when a failure occurs:

• complexity in routing and flow management became a problem since each
device operates on a particular network-level protocol and therefore requires
an appropriate configuration with each other[8]

• the separate configuration of each device become costly to operate and re-
quired highly skilled personnel to maintain the network nodes in case of an
error as they typically come from different vendors.

In traditional networks the control and data plane are set within the same
network device. The paths for data flows are configured and programmed by the
control plane and then that control information is used for data forwarding. The
drawback with that method, however, is that the control information cannot be
changed unless re-configuration is done. Moreover, the inflexibility is a major
drawback of the traditional networking. Nowadays more dynamic user applica-
tions like dynamic load-balancing are needed and due to the static nature of the
conventional networks the performance is sub-optimal.
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8 Theory

Figure 2.2: Traditional network device architecture

In the last decade companies invested huge amount of money to build a new
architecture type that will reduce the cost and offer more flexibility and reliability
to meet the current needs. Companies re-built their networks with less expensive
and off-the-shelf equipment controlled by software, which is called Software Defined
Network[14].

SDN is a more flexible and dynamic approach that has the capability to meet
the drawbacks of the traditional networking, described above and is a network type
that is cost-effective and provides an overall view of the network with a single point
of control.[13]

Particle accelerators are research facilities where data sets are large, complex
and are typically not processed, analyzed and visualized at the location that are
produced. Due to variety of reasons data is moved to another locations which leads
to an even higher network complexity and dependence on a functioning distributed
architecture. In such case dynamic traffic change could be required which means
that the traditional networking approach would be less reactive and efficient. To
overcome the limitations described above, a transition to a next-level network that
meets our current needs is inevitable.

2.2.2 SDN - Decoupling the control and data plane
As we have seen above the traditional network was no longer capable to operate
today’s network efficiently, mainly due to to lack of a common control platform.
The researchers proposed to separate the control plane from the data plane.

The decision on how to forward data is taken from the control plane, whereas
the data plane is the system which takes care of forwarding the traffic.

The SDN controller is a server that runs SDN software and communicates
with the data plane through a protocol called OpenFlow. It can transmit different
rules to the data plane according to dynamic needs such as new policies, network
events or alerts.

The role of the data plane is simple, since it needs only to transmit a given
packet to the next hop by following some simple rules. In this way we can increase
the performance of our network which is a critical point, since huge amounts of data
should be quickly transported without big delays and packet losses. Complications
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in network configurations are effectively reduced, since it is only the application
used by the controller that needs to be changed and thus canceling the need of
implementing different vendor specific settings and commands. Therefore, SDN
happens to be a flexible, easy manageable and dynamic system in case of a change
in the application requirements.

2.2.3 SDN Architecture
The SDN architecture consists of three layers - application, control and data/in-
frastructure plane. Application programming interfaces (APIs) are used for cross-
layer communication. This architecture is presented in the following Figure 2.3.

Figure 2.3: SDN architecture

Application plane: The Application plane runs different SDN applications to
specify the resources and behavior that they require from the network. They
communicate with the SDN controller via the Northern API. The applica-
tion layer is provided with a network view which is used in decision making
process. Examples of some applications are network topology discovery, net-
work resource provisioning, path reservation.

Control plane: The control plane or the SDN controller is the core of the net-
work. It receives instructions from the application plane via the Northbound
API (NAPI), processes the information and then transmits it to the data
plane via the Southbound API (SAPI).
The controller also has the duty to transports back hardware information
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to the application level with the network status - for example statistics and
events. The configuration of the devices "below" is done using the OpenFlow
protocol.

Data/Infrastructure plane: The data plane consists of SDN enabled network
devices such as routers and switches that route the packets according to
SDN standards such as having API which allows them to utilize a centralized
controller as the brain that governs their actions.

2.2.4 Northern API
In a SDN architecture, the NAPIs are used to communicate between the SDN
controller and the services and applications running in the application plane.[15]
NAPIs are considered as the most critical ones in a SDN environment, because
they must support a wide variety of applications, which means that one particular
API could not fit all. Due to that reason, there is no specified standard, meaning
that each controller may expose its own API corresponding to the application’s
specificity.

Applications can use the controller via the NAPI to gather information about
the network status or to set new rules throughout the network or to signal the
controller for threats.[8]

2.2.5 Southern API
SAPIs are used to communicate between the controller and the switches and
routers that are situated in the data plane. This APIs support the control over the
network and enable the SDN controller to dynamically make changes according to
real-time demands and needs. Unlike the NAPIs, the SAPIs are standardized and
the first and most well-known interface is the OpenFlow (OF).

2.2.6 OpenFlow
OF protocol was developed by the Open Networking Foundation (ONF) and is an
industry standard that defines the way a SDN controller should interact with the
infrastructure plane and adapt the network to changing business requirements. To
make the network more responsive to traffic demands, the controller could set rules
about forwarding behaviour to the data plane units. Through the OF protocol,
the controller could set the routers and switches to add, remove, en-queue and
forward a packet belonging to particular flow.

OpenFlow has been supported by a number of switch and router vendors such
as Cisco, Juniper, Big Switch Networks, Brocade, Arista, Extreme Networks, Dell,
NoviFlow, Hewlett-Packard, NEC.[16] It is important to state that OpenFlow is
the first and most widely used SAPI. However, it is not the only one available on
the market.
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Figure 2.4: OpenFlow Architecture

A flow is defined as set of packets that belong to a specific flow entry.Switches
situated in the infrastructure layer have flow tables, which consist of flow entries.
These entries could be seen as forwarding rules with three important components:
a command list, a bit pattern that shows particular flow’s properties and a set of
counters. Figure 2.4 shows the function of an OF-based network. When a packet
arrives to the OF switch it can apply one of the following cases:

• If the packet matches to a particular flow entry of the flow tables of the
switch, then the packet is forwarded following the rules of that specific
entry.

• If the packet matches to a particular flow entry but there are no actions
related with that flow entry, the packet is dropped.

• If the packet does not match a particular flow entry, a request is sent to the
controller. Then it assigns a new OF entry where future packets are handled
by the switch.

The OF channel is the interface that is used to connect the controller with
the OF switch. Therefore we can identify three types of OF protocol messages
[14]:

• Controller - Switch Messages:
Those messages are initiated by the controller and used to manage and
configure the underlying devices in the infrastructure layer.

• Asynchronous Messages:
Those are initiated by the switches to send information back to the con-
troller. Typical examples are - notification of a packet arrival, error or
alarm messages, switch state change reports.
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• Symmetric Messages:
Those can be initiated by both the controller or the switch and are sent
periodically to check the existence of a device (the so-called echo messages)
or to test latency.

2.2.7 SDN controller types
Below is given a brief description of different SDN controllers. There are various
types of controllers that have been developed and offer different possibilities.

• NOX:

NOX is the first OpenFlow controller and has been widely used by re-
searchers since the majority of SDN or OpenFlow applications in papers
are based on it. Being open-source and written in C++ programming lan-
guage makes that controller provide a developer-friendly environment in
which it is easy to make modifications. No major changes were made on
this controller since the last 5 years.

• POX:

POX represents an early version of NOX. It is also an open-source controller,
but unlike NOX, it is written in Python. This offers the opportunity to
implement new features, but his performance is lower when conparing with
other controllers.

• Beacon:

Beacon represents a stable controller that is written in Java. It was first
produced in 2010 and its performance make him a viable solution for real
conditions use.

• Floodlight:

Floodlight has its root from the Beacon controller and is an open-source
Java-Based OpenFlow Controller. It is a controller which is easy to set up
and with great performances, being the most mature OpenFlow controller.
[8]
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2.3 The European Spallation Source
The European Spallation Source is a case of interest in our thesis, therefore overall
information about the facility is presented. ESS is a research facility, where neu-
tron beams will be used to investigate scientific questions. ESS Steering Commit-
tee consists of 17 partner countries with financial contributions and contributions
of equipment and other technical services. The construction of the site began in
2013, will reach its full specifications in 2025 and it will serve the European re-
search community until 2065. [5]

2.3.1 Integrated Control System
The main parts of the facility are: accelerator, target, neutron scattering instru-
ments and conventional facilities. The Integrated control system (ICS) will unify
all these components and in this way will keep the costs relatively low. The com-
ponents of ICS are:

• The control system core represents a set of systems that provides data and
services to engineers, physicists and operators. The core includes the timing
systems, the machine protection system (MPS) and the personnel protection
system (PPS).

• Control Boxes represents servers that control a set of equipment. The ICS
will include many control boxes (e.g. for an internal team), dividing the
responsibilities, which leads to a smoother integration.

• The ICS central data management system is named beam line element
database (BLED). Its main characteristic is to store and manage the in-
formation about the machine.

• The human-machine interface (HMI) encloses user interfaces, provides mon-
itoring of facility’s status and remote access.

• The development environment is responsible for development procedures,
code storage or upgrades of the ICS software.[6]
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Figure 2.5: Control System Architecture

2.3.2 Networks
ESS will be the world’s most powerful science site and this leads to specific security
needs for accessing it’s control system. One solution that would provide perime-
ter security is the complete isolation of ICS from the Internet. However, this is
not a suitable solution since it is desirable to access and control the instruments
remotely. The solution that the engineers came with is to have some dedicated
gateway hosts and the remote access to ICS will be possible only through these
hosts.[6]

ICS operation will be provided by seven independent networks:

• A control network - used by channel access

• A timing network - used for time synchronization

• A Machine Protection System (MPS) - used for machine protection

• A Personnel Protection System (PPS) - used for personnel protection

• A video network - used for video streaming

• A network for collecting beam diagnostic data

• A programmable logic controller (PLC) network - used for reliable imple-
mentation of safety. [6]
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Network Transfer rate Protocol
Core control 1 Gbps TCP

Timing 2.5 Gbps Custom
Machine protection system Custom

Programmable logic controller 100 Mbps TCP or UDP
Video > 1 Gbps UDP

Beam diagnostics maximum available UDP

Table 2.1: Transfer rates and protocols for different networks [6]

2.3.3 Failure detection
Operations activities will be coordinated and monitored from the main control
room. Here, a large monitor will provide an analysis of the state of the machine.
If there is an error or a malfunction of the machine, then the status "Error" will
be displayed, otherwise the status will be "all OK". More detailed information will
be displayed on additional monitors, giving the opportunity to the main monitor
to display specific information upon request.

Machine protection system

The main role of Machine Protection System (MPS) is to protect the equipment
from damage caused by a malfunctioning equipment. If a malfunction is detected,
then MPS will initiate an emergency shutdown of the machine. Moreover, MPS
could trace the responsible subsystem and the nature of the problem that caused
the emergency shutdown. Every second that the machine is not on the production
mode is crucial, that’s why the MPS will try to avoid false emergency shutdowns,
which will lead to a lower amount of time with the system shouted down.
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Chapter 3
SDN meets Big-Data

Big-Data represents one of the most popular research topics in both academia and
industry. When referring to big data, they are data sets with such volume and
complexity that traditional data management tools are unsuitable to deal with
it. Big-Data can be characterized according to five salient features, named as the
"5Vs":

• Volume - represents the most obvious characteristic and refers to the amount
of data. Many companies are collecting data from different sources (social
media, business transactions or information from sensors) and with the rapid
development of new technologies, the amount of data will increase signifi-
cantly.

• Velocity - represents speed of data, which increases proportionally with the
amount of produced data. For example, RFID tags or sensors requires to
deal with data in near-real time.

• Variety - represents the range of data type and source. Generated data
comes in many types of formats-from numeric data to audio data or financial
transactions.

• Value - represents the usefulness of data. Collecting endless amounts of data
is useless if it can not be turned into value.

• Veracity - represents the trustworthiness of data. For example, think about
the people that are posting on Twitter or Instagram while using hash tags
and abbreviations and the reliability of all that content. [9]

17
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Figure 3.1: Big-Data: Expanding on 5 fronts at an increasing rate

Considering the ongoing development of Internet of Things (IoT) and scien-
tific research, there is an obvious increasing of the amount of data. According to
International Data Corporation (IDC), it is expected that the global data volume
will grow from 130 exabytes (EB) in 2005 to 40,000 EB in 2020.[9]

3.1 Particle accelerator - a Big-Data scenario
To be able to classify a particle accelerator as a Big-Data scenario, the next char-
acteristics should be identified: volume, velocity, value.

Given the fact that the ESS site is under construction at the moment of
writing, we can compare its structure with the LHC site, which represents one
of the world’s most powerful particle accelerator and is located at the European
Organization for Nuclear Research (CERN).

Volume

At LHC, the protons collide some 1 billion times per second and this process
generates approximately one petabyte (PB) of collision data per second. However,
the data is filtered by the experiments and only the important one are kept. As an
example of the data volumes generated by an particle accelerator, CERN generated
49 petabytes of data during the year of 2016. [11]
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Velocity
A consequence of the huge data volume is represented by an increased demand for
data transfer since all the produced data needs to be stored and then transferred
to permanent storage and analysis. Moreover, the data rates will increase in case
of a malfunction is detected and a shut down of the accelerator is required. In this
case, the data needs to be saved as reliable and as fast as possible.

Value
The produced data at ESS facility has an extremely importance since it will be
used for research in various fields.

3.2 How can SDN benefit Big-Data applications
During the past years, there has been performed intensive research for both SDN
and Big-Data, but they were mostly addressed separately. However, SDN’s fea-
tures can have an important impact on Big-Data applications. For example, fea-
tures like separation the control plane and data plane, the centralized controller
or the ability to program the network can facilitate Big-Data acquisition, storage
and processing. Furthermore, this section borrows greatly from [9].

Figure 3.2: Features of SDN that can benefit Big-Data applications
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3.2.1 SDN can benefit Big-Data processing in cloud data centers
A characteristic of an SDN enabled data center is that networking and storage
infrastructure is automated by SDN. The cloud data centers represents the cloud
platform which is built on the basis of the data centers. In addition, this infras-
tructure for big data applications can be hosted by cloud service providers.

3.2.2 SDN can benefit data delivery for Big-Data applications
One of the main concerns when referring to Big-Data applications is represented
by the data delivery, which represents a great challenge due to the large volumes
of data. In [12], the author present a prototype demonstration of Big-Data ap-
plications which shows that SDN features like programmability and flexibility can
benefit data delivery for Big-Data applications.

3.2.3 SDN can benefit scientific Big-Data architectures
Science produce nowadays huge amounts of data and in some cases, due to different
reasons, the data can not be processed and analyzed at the same location where
they are generated. As the volumes of generated data increases, a scalable end-
to-end network architectures and implementations that enable applications to use
the network more efficiently is needed.

The authors of [13] introduce SDN to scientific Big-Data models and propose
a new architecture model for campus networks that use SDN for multi-science
disciplines within the same campus network. Finally, the capability of this new
architecture which implies SDN is demonstrated for scientific big data applications.

3.2.4 Programming at Runtime for optimizing big data applica-
tions

In general, Big-Data applications require frequent reconfigurations due to changing
environments. For this issue, SDN’s capacity of programming at runtime is very
useful.
The fact that there does not exist an standardized SDN controller creates issues
when discussing the programming language in SDN. Some controllers uses Java,
whereas others uses Phyton. Big-Data applications causes frequent flow table
changes, and for this there is required a common programming language in SDN.
[9]
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Chapter 4
A general case

Particle accelerators as described earlier are facilities that produce huge amount of
valuable data in normal production mode. ESS is used as an example in our work,
but the provided solutions could be implemented in similar facilities. We have
assumed that the normal production mode architecture could be able to handle
the transport of the produced data.

According to [1], published in 2015, Kevin Woods - Brocade director of prod-
uct management of software networking, says that CERN produces huge amount
of data every second. Given the quantity of the produced data, he says that it is a
challenging task to transport, store or analyze that information. Also, according
to Tony Cass, who is the head of the IT communication systems group at CERN,
SDN is expected to make their network more flexible. He claims also that SDN is
more reactive when there are sudden changes in the topology.

In case of a failure, data should be collected and saved from the nodes as
fast as possible, before the facility is restarted. The nature of the produced data
falls into the category of Big-Data and as presented in the previous chapters this
complexity makes the traditional network unable to support the needs of the site.
Therefore, we presented SDN which has been a promising technique to overcome
the drawbacks of the traditional network.

So far we have a traditional architecture for normal operation mode and
we switch to SDN architecture when a failure occurs. However, we have seen that
SDN offers more advantages and robustness. Therefore, we suggest the use of SDN
network for both situations - in normal and alarm state. We base our proposal on
the advantages of SDN and based on the information that CERN is also looking
forward to implement SDN to handle the data in normal mode.

This chapter introduces a software defined communication network which
is adapted for both normal and emergency mode. Sub-section 4.1 presents the
normal production mode, while sub-section 4.2 explains why we use distributed
controllers rather than a single centralized one. In sub-section 4.3 we present a
list of variables that are important for our system design. Given those variables,
we show several use cases as examples.

Sub-section 4.4 presents the network design which is based on the examples
from sub-section 4.3. Due to lack of other resources, the solutions that we show
in this sub-chapter are based mainly on discussions with Saaed Bastani, a former
researcher in the department of Electrical and Information Technology (EIT) at

21
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Lund University.
Our network design is based on three KPRs that were taken into account

during our design phase - reliability, scalability and time sensitivity.

4.1 Network architecture for normal production mode
SDN is used to separate the control and data plane and provides an opportunity
to enable a network to be application aware. Below we explain the 3-layered SDN
architecture that is adapted for normal operation mode with a description of the
components that build each plane.

Application plane: As could be seen from Figure 2.3 the application plane is
responsible to push information to the controller for making decisions. Big-
Data Analytic are taken into account in our case of interest, therefore, we
have Big-Data applications that interact with other applications that run
on the top of our network. With the emergence of SDN, it is easier for
the network to integrate with those applications. Network resources can be
allocated based on the application’s requirements to increase the speed of
Big-Data delivery.[17]

Control plane: The main role of it is to keep the forwarding table updated so
that the data plane can forward the traffic. The controller sends information
about the network state to the applications through NAPIs and translates
application requirements to data plane through SAPIs. The controller is
informed for any malfunction that occurs in the data plane by the asyn-
chronous OF messages. In this situation the controller changes the network
architecture from normal production mode to the one with the buffers shown
later on. This unit, however, is a single point of failure.It is important to
make this plane more robust in a situation where we need to store the data
as fast as possible. The next sub-chapter explains how we can mitigate the
drawbacks of a single controller by having another control layer model.

Data/Infrastructure plane: Information about the exact view of this plane
was not provided to us. Therefore, we look at this part as a "black-box".
Typically data acquisition/accelerator nodes are situated in this layer where
they pass the information to the switches situated above.
The bottom of Figure 4.1 shows the data plane where it is important to
understand that the attachment of two nodes to a switch is given as an
example. The main idea here is to show that a sufficient number of switches
must be installed to process the data as quick as possible in case of a failure.
OpenFlow switches process a packet according to their flow tables. The OF
switch is connected to the control plane (or in particular the SDN controller)
by the SAPI. It is typically using OpenFlow and provides an open and
standard way for a switch to pass information to the controller.
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Figure 4.1: General SDN architecture for particle accelerator

4.2 From Centralized to Distributed Controllers
This sub-chapter gives an overview of why we chose the distributed controller
architectures rather than the centralized one.

Centralized architecture do not meet two of the performance requirements -
reliability and scalability, which are critical for our network architecture when we
detect a failure.

When SDN was introduced, the main idea was to have a centralized controller.
However, one of the most significant aspects with such a controller is that it is a
single point of failure. Due to variety of reasons, the controller can stop functioning
at any time and thus abandon the network without its control plane. Another
disadvantage with this model is the big delays that we can experience from far-
situated data plane units that transfer information to the controller. The switches
with which the controller will communicate are supposed to be quite many, which
will require more controllers that are physically situated to overcome the problems
with the network scalability.

The distributed controller architecture, as show in Figure 4.2, is an approach
that suits better to our case and clearly meets better the network performance re-
quirements. Here we have a cluster of controllers that work together in the control
plane to cover the entire network. Those controllers are geographically distributed
but logically centralized. Logically centralized means that each controller makes
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decision based on a global view of the the entire network. In this type of archi-
tecture, the controllers have the same responsibilities and are always aware of the
changes in the network topology by instant network synchronization. If one of the
controllers fails to operate, the SDN operation continues to operate without any
significant problems.

The communication between the multiple SDN controllers is made via east-
bound and westbound APIs. Some tasks supported by these interfaces include
changing data between controllers and monitoring if all controllers are up. Since
each controller implements it’s own east/west - bound APIs, the drawback is repre-
sented by the lack of standard API. This leads to a lower inter-operability between
different controllers.[18]

Figure 4.2: SDN with distributed controllers
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4.3 Network architecture for emergency case
In the previous sub-sections we have discussed how we will meet the reliability
and scalability requirements from control plane perspective. In this sub-section
we present our network architecture for emergency case. We put more attention
to the data plane, where we show how this design will help us meet better the
KPRs.

The accelerator nodes in the data plane are expected to be quite many. This
will require more switches to be attached to a given number of nodes to overcome
the problems with network scalability and time sensitivity.

The network functions in the following way: when there is a malfunction, the
control plane is informed for the failure from the data plane via SAPI. Then, the
controller updates the application plane by NAPI for the error. The applications
push information to the control plane to change the network architecture from
normal production mode to the one shown below. The next step is to update the
flow tables to push the data from the nodes to the buffers. When the process of
storing data has been completed, a transmission control protocol (TCP) connec-
tion could be used, to transport the data reliably back to the application layer.

Figure 4.3: General architecture case for particle accelerators with
buffer attached to each node
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In Figure 4.3 we present an architecture where a buffer is attached to each
node. Depending on the system parameters, the number of nodes that are attached
to a buffer can differ. The system parameters and the different use cases will be
shown in the next sub-section. This construction will improve the reliability and
the time-sensitivity of the network. Data will be collected in the buffers faster and
only a particular node’s data could be lost if it fails.

We want to process our data as quick as possible, before we restart the facility.
In certain cases we would not be able to do that, if a node is attached to a buffer
using one communication link, given its certain capacity. For faster transfer of the
data, we suggest to attach a parallel communication link to increase the bandwidth,
as could be seen in Figure 4.3. If the bandwidth of the first link is sufficient to
handle our data, the second link could be set on stand-by mode to save power.
Therefore, it could be used only if there is a failure in the first link (i.e having the
second link as a back-up) or if there is not enough bandwidth to support the data
flow.

4.4 Estimations of network parameters
The architecture model presented above is not based on any data. In this sub-
chapter, we support our solution by showing different use cases, where the input
data is estimated. We need to know how much data has to be transported, what
time is required to send the data to the buffers and where are the bottlenecks.

4.4.1 Network parameters
In this sub-section, a list of network parameters that are used to make the calcu-
lations for the use cases is presented.

• Total produced data per second. This represents the summed data rate
from all the nodes, assuming that all the nodes produce the same amount
of data.

• Saved data duration. In case of an emergency shut down and restart
of the facility, there is a need to save the last produced data for further
investigation.

• Restart time of the accelerator. The time required for the facility to
restart, when a malfunction occurs.

• Number of nodes. This variable depends on the complexity of the site
and represents the number of data acquisition nodes.

• Buffer Input/Output (I/O) data transfer rate. Depending on the
buffer type that will be used, there are different data rates which represent
the maximum rate that a buffer can save the produced data from a node.

• Capacity of a link. The nodes are connected to buffers with links with
certain capacity.
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• Number of nodes per switch. This is the maximum number of nodes
that can be attached to the ports of a switch.

• Data rate per node. This is the data that each node produces per second,
when we are in emergency situation.

• Number of buffers. The number of buffers that is needed to store the
data from all the nodes.

• Number of links. This is the number of links that are used to attach the
nodes with the buffers.

4.4.2 Scenarios
In this sub-section we make valid estimations of the values for the network param-
eters that are presented above. Some of the variables have a constant value (e.g.
capacity of a link), others are variables with multiple values (e.g. the number of
nodes).

Table 4.1 shows the description of the parameters together with the values
that we estimate.

Parameter Type Values
Total produced data per second Variable 20 GB/s, 50 GB/s, 100 GB/s

Saved data duration Constant 120 sec
Restart time Variable 5 sec, 30 sec, 2 min, 10 min

Number of nodes Variable 50, 200, 500
Buffer I/O data transfer rate Variable 600 MB/s, 19.2 GB/s

Capacity of the link Constant 10 GB/s
Number of nodes per switch Constant 24

Data rate per node Variable To be calculated
Number of buffers Variable To be calculated
Number of links Variable To be calculated

Table 4.1: Values of the network’s parameters

By using the information in the table, we will elaborate different use cases
and set thresholds for the system availability. The goal is to find the values of
the last three parameters from Table 4.1. Please note that the values for the total
produced data per second are valid when we have an emergency situation.

The data rate produced by a node in case of an emergency is calculated by
using the following mathematical expression:

d =
p · 120
t · n

, where d=data rate per node, p=produced data per second, t=restart time and
n=number of nodes and the constant value of 120 seconds, which is the saved data
duration (in case of a failure, we need to save the data that is produced by the
accelerator for the last 2 minutes).
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There are two types of buffer that we take as an example for our solution.

• Buffer 1: Seagate ST8000VN0002
Size of a buffer - 8 TB [21]

• Buffer 2: IBM V9000
Size of a buffer - scalable up to 456 TB [22]

Depending on the buffer type that will be used, there are different data rates
that a buffer can save the produced data from a node.

• Seagate ST8000VN0002: I/O data transfer rate - 600 MB/s

• IBM V9000: I/O data transfer rate - 19.2 GB/s

If the node produces big amount of data, which is more than the I/O data
transfer rate of any of the buffers, then we have a bottleneck on the buffer side. In
this case, the system will be not able to process the information that is sent from
the nodes.

The nodes are connected to buffers with links. Those links have a certain
capacity and in our case we assume that it has a fixed value of 10 GB/s. Another
situation where the system could face a bottleneck is when the nodes produce more
data than the capacity of the link. However, this could be solved by increasing
the number of links so that we can achieve higher the capacity if needed.

Table 4.2 shows the resulted data rate per node for a facility with 50 nodes.
It can be observed that different values are taken into consideration for total
produced data per second and restart time for a better understanding of the system
behaviour.

Total produced data per second Restart time Data rate per node
20 GB/s 5 seconds 9.6 GB/s
20 GB/s 30 seconds 1.6 GB/s
20 GB/s 2 minutes 0.4 GB/s
20 GB/s 10 minutes 0.08 GB/s

50 GB/s 5 seconds 24 GB/s
50 GB/s 30 seconds 4 GB/s
50 GB/s 2 minutes 1 GB/s
50 GB/s 10 minutes 0.2 GB/s

100 GB/s 5 seconds 48 GB/s
100 GB/s 30 seconds 8 GB/s
100 GB/s 2 minutes 2 GB/s
100 GB/s 10 minutes 0.4 GB/s

Table 4.2: Calculations for a facility with 50 nodes
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Figure 4.4 shows the graphical representation of the system behaviour using
the values from table 4.2. It could be seen that the thresholds are dependent on
the buffer I/O data transfer rate.

Figure 4.4: Graphical representation of the parameter’s values from
Table 4.2
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In a similar way as above, Table 4.3 shows the resulted data rate per node,
but in this case it is assumed that the facility has 200 nodes.

Total produced data per second Restart time Data rate per node
20 GB/s 5 seconds 2.4 GB/s
20 GB/s 30 seconds 0.4 GB/s
20 GB/s 2 minutes 0.1 GB/s
20 GB/s 10 minutes 0.02 GB/s

50 GB/s 5 seconds 6 GB/s
50 GB/s 30 seconds 1 GB/s
50 GB/s 2 minutes 0.25 GB/s
50 GB/s 10 minutes 0.05 GB/s

100 GB/s 5 seconds 12 GB/s
100 GB/s 30 seconds 2 GB/s
100 GB/s 2 minutes 0.5 GB/s
100 GB/s 10 minutes 0.1 GB/s

Table 4.3: Calculations for a facility with 200 nodes

Figure 4.5 shows the graphical representation of the system behaviour using
the values from table 4.3. It could be seen again that the thresholds are dependent
on the buffer I/O data transfer rate. In this figure, the scale has been changed
to achieve better view of the threshold when Seagate buffer is used. The buffer
provided by IBM handles all the cases without bottleneck on the buffer side.
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Figure 4.5: Graphical representation of the parameter’s values from
Table 4.3

The last case is represented by a facility with 500 nodes. The resulted data rate
per node are shown in Table 4.4.

Total produced data per second Restart time Data rate per node
20 GB/s 5 seconds 0.96 GB/s
20 GB/s 30 seconds 0.16 GB/s
20 GB/s 2 minutes 0.04 GB/s
20 GB/s 10 minutes 0.008 GB/s

50 GB/s 5 seconds 2.4 GB/s
50 GB/s 30 seconds 0.4 GB/s
50 GB/s 2 minutes 0.1 GB/s
50 GB/s 10 minutes 0.02 GB/s

100 GB/s 5 seconds 4.8 GB/s
100 GB/s 30 seconds 0.8 GB/s
100 GB/s 2 minutes 0.2 GB/s
100 GB/s 10 minutes 0.04 GB/s

Table 4.4: Calculations for a facility with 500 nodes
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Figure 4.6 shows the graphical representation of the system behaviour using
the values from table 4.4. It could be seen again that the thresholds are dependent
on the buffer I/O data transfer rate. In a similar manner, in this figure, the scale
has been changed to achieve better view of the threshold when Seagate buffer is
used. The buffer provided by IBM handles all the cases without bottleneck on the
buffer side.

Figure 4.6: Graphical representation of the parameter’s values from
Table 4.4
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Chapter 5
Discussion

With all the parameters presented in the previous chapter, it could be seen that
a lot of combinations are possible.

To give the reader a better view of the presented network architecture, we
show three use cases as an example in sub-chapter 5.1. Each case is specific and
there is a dependency between the variables.

Sub-chapter 5.2 shows extreme cases where the network is not able to process
the data due to a bottleneck on the buffer side.

Another important assumption here is that a single switch has 24 ports which
means that at most 24 nodes can be attached to it.

5.1 Use cases
Case 1: From table 4.2 we choose the case with 50 nodes, a total produced data
rate of 100 GB/s and restart time of 10 minutes. This results in 0.4 GB/s (400
MB/s) of data produced by each node. In this case, 3 switches will be required to
cover the number of nodes.

• If the Seagate ST8000VN0002 buffer is used, with maximum I/O data-
transfer rate - 600 MB/s, it follows that at most one node can be attached
to a single buffer. Thus, for the given network, 50 buffers will be needed.
Each node is connected to the buffer with 2 links, where one of them is not
used in this case, but acts as a backup link. Therefore, the total number of
links is 100.

• If the IBM V9000 buffer is used, with maximum I/O data-transfer rate -
19.2 GB/s, it follows that at most 48 nodes can be attached to a single
buffer. Thus, for the 50 nodes, 2 buffers will be needed.
Each node is connected to the buffer with 2 links, where one of them is not
used in this case, but acts as a backup link. Therefore, the total number of
links is 100.

Case 2. From table 4.3 we choose the case with 200 nodes, a total produced
transfer rate of 50 GB/s and restart time of 5 seconds. This results in 6 GB/s of
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data produced by each node. In this case, 9 switches will be required to cover the
number of nodes.

• If the Seagate ST8000VN0002 buffer is used, with maximum I/O data-
transfer rate - 600 MB/s, it follows that there is a bottleneck on the buffer
side. The buffer is not able to support the data produced by a node given
the short restart time.

• If the IBM V9000 buffer is used, with maximum I/O data-transfer rate -
19.2 GB/s, it follows that at most 3 nodes can be attached to the buffer.
Thus, for our given network case, 67 buffers will be needed.
Each node is connected to the buffer with 2 links, where one of them is not
used in this case, but acts as a backup link. Therefore, the total number of
links is 400.

Case 3. From table 4.4 we choose the case with 500 nodes, a total produced
transfer rate of 50 GB/s and restart time of 2 minutes. This results in 0.1 GB/s
(100 MB/s) of data produced by each node. In this case, 21 switches will be
required to cover the number of nodes.

• If the Seagate ST8000VN0002 buffer is used, with I/O data-transfer rate -
600 MB/s, it follows that at most 6 nodes can be attached to the buffer.
Thus, for the given network with 500 node 84 buffers will be needed.
Each node is connected to the buffer with 2 links, where one of them is not
used in this case, but acts as a backup link. Therefore, the total number of
links is 1000.

• If the IBM V9000 buffer is used, with maximum I/O data-transfer rate -
19.2 GB/s, it follows that at most 190 nodes can be attached to the buffer.
Thus, for our 500 node network we will need at 3 buffers.
Each node is connected to the buffer with 2 links, where one of them is not
used in this case, but acts as a backup link. Therefore, the total number of
links is 1000.

5.2 Extreme cases
• For a system with 50 nodes, a restart time of 5 seconds, with a total produced

data per second of 50 GB/s, the resulted data rate per node will be 24 GB/s.
In this case, the bottleneck will be in the communication link and at the
buffer side, for both types of buffer.

• For a system with 50 nodes, a restart time of 5 seconds, with a total produced
data per second of 100 GB/s, the resulted data rate per node will be 48
GB/s. Again, the bottlenecks will be in the communication link and at the
buffer side, for both types of buffer.
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Chapter 6
Conclusion

Particle accelerators are facilities with great importance for the humans, since
they produce data that is used to gain more insight in different research areas.
With the innovations in those science centers, the production of valuable research
data increases with high temps. Such information is typically dependent on a
communication network, designed for quick data transport in normal operating
mode that ensures successful transfer.

In case of emergency situation, however, the accelerator has to be stopped
and restarted and the produced data must be stored within the restart time. In
this situation the traditional networking techniques are not able to guarantee ro-
bustness and flexibility, mainly because of the the nature of data that is produced.
Therefore, there is a need for a new architecture type that would be able to collect
and store the information in case of a failure in the accelerator.

6.1 Why SDN?
In this Master thesis we have made a study about SDN and how it could be used
to save and collect all of our data as fast as possible from the accelerator’s data
acquisition nodes. We have explored the benefits of using SDN as a technique that
would offer more flexibility for data acquisition in big research environments. The
Big-Data characteristics were discussed since the information that is produced in
such big facility falls into that category of data type.

Network programmability is an advantage of SDN which allows us to change
policies easier and in this way we can react faster to a network modification or
a network event, which is important since our network is time sensitive. With
the traditional network techniques, this was something that we would need to do
manually, which led to more errors and slower reaction times.

The controller sets low level rules to specified requirements and in this way
it is more flexible to re-route traffic, inspect new policies or test particular flows.
This thesis proposed an network architecture with a distributed SDN controller
that solves the problem with the reliability.

The forwarding devices in the data plane are not required to provide many
features and capabilities. Being less vendor specific, the switches will make the
network equipment low-cost. This means that, with SDN, adding a new device is
not an issue and makes the network scalable.
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6.2 Proposed general case
As a summary of Chapter 4, having a buffer attached to each data acquisition
node makes the network more reliable and makes it less time sensitive since the
data does not need to be processed by the switch before saving it in the buffer.

We have defined network parameters and made calculations with data that
has been estimated due to lack of exact information.
In chapter 5, readers got familiar with different use cases. The extreme cases
showed that if the produced data rate per node is high and the restart time is too
small, we can experience bottlenecks on the buffer side.

We can conclude that for all the cases when produced data rate per node is
less than 10 GB/s (capacity of the link) and with the IBM v9000 storage, there
will be no bottlenecks in the network. In the same way, for the cases when the
produced data rate per node is less than 600 MB/s (I/O data-transfer rate for the
Seagate buffer), there will be no bottlenecks in the network.

As a final conclusion, taking into consideration the KPRs during the network
design phase - reliability, scalability and time sensitivity, we can conclude that
SDN meets them and could be used in our case with particle accelerators.
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Chapter 7
Future work

This master thesis was a pure theoretical research and the presented use cases
are based on estimated data. We believe that a challenging and useful next step
would be to have an exact network architecture model, with given parameters
and assigned values. Therefore, our general case could be used as an example for
real-life implementations.

Throughout our research, we have seen many simulations that have been
done for different scenarios. Mininet is an example of a software that supports
simulations of SDN and OpenFlow and has been broadly used. We suggest that
it could be studied and used as a simulation tool.

When there is information about the network’s parameters, tests could be
made to see how exactly the network will behave and where will be the bottlenecks.
We strongly suggest this as a future step, since it is important to have a network
architecture which will be suitable to handle the burst of data that is produced
and needs to be collected in case of an emergency situation.

The protocol proposed to be used for transferring the collected data from
the storage units to the application layer is TCP, but specific details of how the
protocol is designed are not presented in our work. It is strongly recommended
to make a detailed research for this part. This is an important part of the whole
design process, since by using the TCP protocol we could be sure that the data
is collected without errors. Other alternatives than using TCP protocol could be
used, so we think that it could be further investigated.

Issues with the network security have been not discussed in our work, but
they are quite important given the peculiarity of the produced data and should
not be underestimated. For example, storing the data in cloud database is not
recommended solution in our case due to reliability and security issues. The use
of SDN solves a lot of problems in the networking world nowadays, but adding a
centralized controller that governs the management makes the network a perfect
target for attacks and in particle accelerator case it could cause a lot of troubles.
Furthermore, the 3-layered architecture gives the possibility of malicious attacks
on every layer:

• Application layer - attack some applications or the NAPIs

• Control layer - attack the controller, the NAPIs or the SAPIs

• Data layer - attack switches or the SAPIs.
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